Skip to Main content Skip to Navigation

Régionalisation du climat avec le modèle LMDZ : étude méthodologique

Abstract : The work developed in this thesis explores through methodological modelling studies the current techniques of climate regionalization. In this case, the regionalization focuses on a geographical domain covering from the North Atlantic to Eastern Europe longitudinal wise, and from the Sahel to the Arctic as a latitudinal interval. The aim of this thesis is not the improvement of regional climate modelling per se, but tackling three key questions that are commonly met by all attempts when trying to improve climate regionalization. Firstly, the choice and advantages of the nesting scheme: one-way nesting (OWN) versus two-way nesting (TWN). Secondly, the evaluation of the nesting method, which is generally a Newtonian relaxation operation added to the prognostic equations of the model. And finally, the consequences of the mesh refinement in Regional Circulation Models (RCM). The objective of this manuscript consists in conceptualizing and carrying out numerical simulations to answer these three questions by isolating each individual effect and quantifying the consequences of each of the effects. The general circulation model LMDZ is used for all experiments. It is able to play the role of the General Circulation Model (GCM) and the RCM, keeping the same physical parameterizations and the same dynamical configuration, as well as the same external forcings and model parameters. Our experimental set-up, referred as “Master versus Slave”, consists on two related protocols: “DS-300-to-300” and “DS-300-to-100”. The former implies the downscaling of the GCM at 300 km of horizontal resolution while the RCM has the identical resolution of 300 km. The latter implies the downscaling from 300 km (GCM) to 100 km (RCM). We have assumed the “DS-300-to-300” as an idealized framework, particularly appropriate to evaluate the relaxation operation effect. In parallel, the “DS-300-to-100” protocol, subtracted from the “DS-300-to-300”, allows assessing the effect of the increased resolution for the RCM. In each protocol, two communication schemes between the RCM and the GCM have been implemented. The first one -OWN- is the classic one-way methodology to control the RCM by the outputs of the GCM. The second one -TWN- is used to establish a mutual exchange between the two models (RCM and GCM). This thesis has found that climate regionalization is highly sensitive to the choice of the communication scheme between the RCM and the GCM, especially at mid-latitudes. TWN clearly improves the representation at the boundaries. For the regional atmospheric circulation modes, expressed in EOF structures, both OWN and TWN are able to reproduce them, but with a slight deformation in space. Newtonian relaxation, widely used in climate regionalization, allows the RCM to follow the GCM’s synoptic trajectory. However, temporal concomitance and spatial resemblance of the two depend on the variables considered, on the particular seasons selected, on the weather regimes, and on the spatiotemporal scales of atmospheric circulation. De-correlation cases are remarkable when the dominant circulation on a regional scale is small. Moreover, mesh refinement increases the freedom of the RCM to develop its internal dynamic circulation, especially at small scales, and also across the whole spectrum of circulation regimes through the scales in which the RCM operates. Thus, when resolution increases, the RCM becomes more independent from the GCM behavior and the model results deviate significantly from the GCM. Focused on the methodological aspects of climate regionalization, this thesis helps to gain a better understanding on the regionalization practice. Il also sends a precautionary message to the RCM community, kindly inviting to verify their regionalization strategy.
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Saturday, December 1, 2018 - 1:03:50 AM
Last modification on : Tuesday, September 22, 2020 - 3:49:38 AM
Long-term archiving on: : Saturday, March 2, 2019 - 12:21:14 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01941400, version 1


Shan Li. Régionalisation du climat avec le modèle LMDZ : étude méthodologique. Sciences de la Terre. Université Pierre et Marie Curie - Paris VI, 2017. Français. ⟨NNT : 2017PA066451⟩. ⟨tel-01941400⟩



Record views


Files downloads