
HAL Id: tel-01940541
https://theses.hal.science/tel-01940541

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Commande de chute pour robots humanoïdes par
reconfiguration posturale et compliance adaptative

Vincent Samy

To cite this version:
Vincent Samy. Commande de chute pour robots humanoïdes par reconfiguration posturale et com-
pliance adaptative. Automatique / Robotique. Université Montpellier, 2017. Français. �NNT :
2017MONTS059�. �tel-01940541�

https://theses.hal.science/tel-01940541
https://hal.archives-ouvertes.fr


  
 

 

Délivré par l’Université de Montpellier 

 

 

 

Préparée au sein de l’école doctorale I2S – Information, 

Structure, Systèmes 

Et de l’unité de recherche UMR 5506 

 

Spécialité : SYAM – Systèmes Automatiques et 

Microélectroniques 

 

 

 

 

 

Présentée par Vincent SAMY 

 

 

 

 

 

 

 

 

 

 
 

 

 
Soutenue le 13 Novembre 2017 devant le jury composé de 

 

 

M.  Vincent PADOIS Maître de Conférences ISIR Rapporteur 

M.  Olivier STASSE Directeur de Recherche LAAS Rapporteur 

Mme Christine CHEVALLEREAU Directeur de Recherche IRCCyN Examinateur 

M. Shuuji KAJITA Directeur de Recherche AIST Examinateur 

M. Karim BOUYARMANE Maître de Conférences LORIA Co-encadrant de thèse 

M. Abderrahmane KHEDDAR Directeur de Recherche LIRMM Directeur de thèse 

 

 

 

Commande de chute pour robots 

humanoïdes par reconfiguration posturale 

et compliance adaptative 

 

 

 



2



Titre : Commande de chute pour robots humanöıdes par reconfiguration posturale et
compliance adaptative

Résumé :
Cette thèse traite du problème de la chute de robots humanöıdes. L’étude consiste

à découpler la stratégie de chute en une phase de pré-impact et une phase de post-
impact. Dans la première, une solution géométrique permet au robot de choisir des
points d’impact dans un environnement encombré. Le robot réadapte sa posture tout
en évitant les singularités de chute et en préparant le seconde phase. La phase de
post-impact utilise une commande par Programmation Quadratique (QP) qui permet
d’adapter les gains Proportionnels-Dérivés (PD) des moteurs en ligne, afin d’atteindre
une compliance dans les articulations et amortir activement le choc. L’approche consiste
à incorporer les gains de raideur et d’amortissement dans le vecteur d’optimisation du
QP avec les variables habituelles que sont l’accélération articulaire et les forces de
contact. Enfin, pour compléter cette approche locale et en augmenter les performances,
une commande de modèle prédictif sur un modèle simplifié du robot et son évolution
sur une fenêtre glissante de temps est incorporée à la méthode. Plusieurs expériences
et simulations sont présentées pour valider les différentes parties de cette thèse.

Mots-clefs : Robotique Humanöıde ; Chute ; QP Adaptatif ; Compliance Active.

Title: Humanoid fall control by postural reshaping and adaptive compliance

Abstract:
This thesis deals with the problem of humanoid falling with a decoupled strategy

consisting of a pre-impact and a post-impact stages. In the pre-impact stage, geomet-
rical reasoning allows the robot to choose appropriate impact points in the surrounding
environment and to adopt a posture to reach them while avoiding impact singularities
and preparing for the post-impact. The post-impact stage uses a quadratic program
controller (QP) that adapts on-line the joint proportional-derivative (PD) gains to make
the robot compliant, i.e. to absorb post-impact dynamics, which lowers possible dam-
age risks. We propose a new approach incorporating the stiffness and damping gains
directly as decision variables in the QP along with the usually-considered variables that
are the joint accelerations and contact forces. Finally, to overcome the limitations of
the local QP approach, we combine the method with a Model Predictive Controller
(MPC) allowing for a preview on a time-horizon based on a reduced model. Several
experiments on the real humanoid robot HRP-4 or in a full-dynamics simulator are
presented and discussed to illustrate and validate each part of the thesis.

Keywords: Humanoid Robot ; Fall ; Adaptive QP; Active compliance.

Discipline : Systèmes Avancés et Microélectronique

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
UMR 5506 CNRS/Université de Montpellier
Batiment 5 - 860 rue de St Priest



4



Résumé de la thèse

La robotique humanöıde est devenue un secteur de recherche prépondérant. Dans un
monde en constante évolution, la robotique humanöıde est une exellente alternative
à l’homme lorsque les situations sont dangereuses (intervention dans les centrales nu-
cléaires), et elle est habilité à naviguer dans ces lieux sans avoir à les modifier. Ces
environnements dans lesquels les robots sont de plus en plus amenés à évoluer ont été
créés par l’homme pour l’homme, il apparâıt ainsi naturel que le système le plus apte
à se mouvoir dans cet univers, et interagir avec, soit de forme humanöıde. Cependant,
la complexité de tels systèmes nécessite un effort important de recherche et de déve-
loppement. Les difficultés techniques tournant autour de la robotique humanöıde sont
multiples, les sujets à traiter sont donc nombreux, ils abordent des problèmatiques
comme l’aptitude d’un robot à marcher, ouvrir une porte, monter des marches, mon-
ter une échelle, etc... C’est l’aboutissement de ces techniques qui permettront dans un
futur proche d’avoir des robots avec une motricité permettant de réaliser des gestes
identiques à l’homme.

En 2015, le DARPA Robotics Challenge (DRC) a permis de montrer les capacités
de tels robots dans un milieu humain. On peut de plus noter que certains robots
sont actuellement au contact d’humains (Nao, Asimo, ...). Cela montre que ces robots
sont de plus en plus robustes et aptes à réaliser les tâches qu’on attend d’eux. C
ependant, le DRC a également révélé que certains cas de figure n’ont pas fait l’objet
d’études approfondies : comme par exemple la chute du robot qui était l’incident le
plus récurrent . Il s’agissait d’un des rares cas d’application réelle où les robots étaient
en dehors du laboratoire et n’étaient plus attachés à leur cordon de sécurité, ce qui
a amplifié l’importance du phénomène. Lorsqu’un robot tombait, aucune stratégie de
chute, aucun mouvement dédié à l’amortir ou l’éviter, n’était visible sur les robots, ce
qui signifie que ce genre de situation n’a pas été pris en compte dans la commande du
robot.

Le sujet de cette thèse s’inscrit suite à cette observation, i.e. comment agir lorsque la
commande du robot n’est plus à même de satisfaire sa stabilité ou son équilibre, statique
ou dynamique ? Une première approche en trois étapes se dégage naturellement:

(a) tenter de se ressaisir pendant une chute ;



6

(b) si la chute ne peut être évitée en (a), ou, si pour certaines raisons, le robot doit
tomber volontairement, réduire les potentiels dégâts dûs à l’impact ;

(c) si aucune solution n’est possible, le robot devrait porter son propre système de
sécurité (airbag, carapace compliante, etc....).

Cette thèse s’intéresse principalement à l’étape (b). Elle présente une nouvelle ma-
nière d’aborder le sujet de la chute et valide les théories développées par des simulations
et/ou des expériences.

État de l’art et motivations

Le chapitre 1 se concentre sur la chute de robots humanöıdes dans la littérature scien-
tifique et explore les solutions existantes. La recherche dans ce domaine étant à son
commencement, le nombre d’articles le traitant est relativement réduit. Cependant, il
a été possible de dégager une répartition des différentes solutions et leur classification
en fonction des types de chute et de l’environnent.

Avant toute chose, pour contrôler un comportement lors d’une chute il faut définir
ce qu’est une chute et comment la détecter. La définition même de la chute est une
notion difficile à formaliser, une des plus proches définitions est celle donnée par Chang
et al. [2013] : ”It is clear that ‘expectancy’ is required to walk safely. There will be
a motion perturbation if expectation and reality do not match” (Il est évident que
’l´anticipation’ est nécessaire pour une marche sûre. Il y aura une perturbation dans
le mouvement si ce qui est attendu ne cöıncide pas avec la réalité). Elle est cependant
mathématiquement complexe à formaliser et demande de pouvoir corréler correctement
mesures et sorties de contrôleur.

Dans la littérature, les détections de chutes se font, par exemple, via des seuils an-
gulaires à ne pas dépasser. Pour la marche, la projection du Centre de Masse sur le
polygone de sustentation est un bon critère mais ne fonctionne que pour des marches
quasi-statiques. Ogata et al. [2008] ont donc proposé une méthode basée sur la prédic-
tion du Zero-Moment Point (ZMP). Celui-ci n’est fonctionnel que pour de la marche
et l’idée doit être étendue pour des mouvements plus généraux (manipulation avec les
bras, mouvements multi-contacts,...). Enfin il est notable qu’une méthode basée sur de
l’apprentissage a été également proposée par Ogata et al. [2007].

Une fois la chute détectée, intervient alors le contrôleur. Deux types de contrôleurs
se distinguent. Tout d’abord ceux où le robot cherche à éviter de tomber sur quelqu’un/-
quelque chose. Ce sont notamment les travaux de Goswami et ses collègues. Goswami
et al. [2014] utilisent des méthodes de reconfiguration de l’inertie de différentes ma-
nières (cf. Lee et Goswami [2013], Lee et Goswami [2007], Lee et Goswami [2013]). Le
deuxième type de contrôleurs représente les études de minimisation des dégâts dûs aux
chutes. Cette minimization peut être réalisée de manière passive (par exemple, Kajita
et al. [2016] utilise des airbags), ou active (c’est le cas avec Lee et al. [2016a]). Il est
possible de reconfigurer le robot durant la chute pour minimiser ses dégâts potentiels.



7

Cela s’effectue grâce à une technique bien connue dans des sports tels que le judo et
l’äıkido : le Ukemi. Les algorithmes développés par Fujiware et al. permettent aux ro-
bots des chutes en avant et en arrière plus sûres. Enfin, Ha et Liu [2015] présentent un
séquenceur de contacts pour des chutes en avant et Yun et Goswami [2014] proposent
la méthode du trépied pour casser la chute le plus tôt possible.

La plupart des commandes en vue de réduire les dégâts de chute n’étudient que des
chutes en avant et en arrière. Dans cette thèse, des environnements plus complexes et
des chutes omnidirectionnelles seront considérés.

Chutes singulières

Nous commençons les contributions de cette thèse en prenant du recul par rapport à ce
qui a été fait dans l’état de l’art, ce qui nous a permis de proposer plusieurs nouvelles
idées. La première que nous proposons est celle des chutes dites singulières présentée
dans le chapitre 2. Basée sur une observation de l’homme, une taxonomie des chutes
les plus dangereuses a été extraite, nommées chutes singulières. Ce genre de chutes
augmente le risque de destruction du squelette (humain ou robotique). Pour expliquer
ici de manière simple, une chute singulière arrive lorsque, à l’impact, la force de réaction
du sol (généralement normale au sol) est perpendiculaire à un axe de moteur. En multi-
contact, il est également possible que ce type de chutes apparaisse suite à la fermeture
d’une boucle cinématique. Une taxonomie de ces chutes est alors proposée.

Suite à cela une commande essentiellement basée sur la géométrie du robot et
de l’environnement a permis de réaliser des simulations et expériences sur le robot
HRP-4. Pour éviter de détruire les moteurs suite à l’impact de la chute, les gains
Proportional-Derivative (PD) des moteurs ont sont volontairement diminués. Cela a
non seulement permis de garder les moteurs indemnes après la chute, mais aussi de
réaliser un comportement compliant du système. Les expériences sur la palteforme
HRP-4 du LIRMM ont été effectuées pour des chutes en avant et en arrière sur un
matelas standard.

QP-adaptatif et environnement encombré

L’étape suivante a été d’améliorer la modification des gains des moteurs pour aboutir
à un comportement adaptatif (qui dépend donc de la chute et de son intensité) et
ce, en ligne. Nous ne nous restreignons pas à des chutes en avant ou en arrière, en
proposant des stratégies plus générales qui peuvent gérer des chutes dans n’importe
quelle direction dans un environnement non vide (mais sans hommes). Le chapitre 3
présente les travaux effectués sur ces deux points.

Le phénomène problématique au cœur d’une chute est l’impact. Mathématiquement,
un impact est un phénomène instantané, ce qui le rend incontrôlable directement. Il
n’est donc possible d’agir qu’avant et après l’instant précis de l’impact. La chute a
donc été séparée en deux phases. Une phase dite de pré-impact qui comprend toute la



8

partie entre la détection de la chute et l’impact et une phase dite de post-impact qui
comprend la partie entre l’impact et l’arrêt total du robot à une position de repos (par
arrêt, il est signifié ici que le robot atteint une vitesse nulle et non que celui-ci cesse de
fonctionner).

La phase de pré-impact est cruciale quant à la réalisation de la phase de post-
impact. En effet, elle va préparer le robot à l’impact et lui permettre d’annuler la vitesse
accumulée pendant la chute. Dans un environnement 3D encombré, il est nécessaire de
faire des choix pour le positionnement des mains du robot. La phase de pré-impact est
elle-même subdivisée en trois étapes qui sont 1) la détection de chute ; 2) L’analyse de
l’environnement et des surfaces potentielles sur lesquelles s’appuyer ; 3) le contrôle de
la chute. Cette dernière étape combine trois actions :

(i) L’estimation de la direction de chute,

(ii) La recherche des points d’impact,

(iii) La mise à jour des tâches de chute.

La recherche des points d’impact est une partie délicate car le temps d’analyse et
de décision doit être bref. En effet, la phase de pré-impact dure de 0.7 s à 1 s ce qui
rend les algorithmes de planification courants quasi-inutilisables. La méthode que nous
proposons répond à cette problématique en restant rapide et efficace. Elle peut au
besoin être parallélisée (multi-thread) si l’environnement comporte un grand nombre
de surfaces. La Fig. 3.2 illustre la méthode proposée. L’idée est de considérer le robot
comme un objet non-actionné tombant. L’avantage d’un objet non-actionné est qu’il est
rapide de calculer sa trajectoire (un arc de cercle dans notre cas). Il est alors possible de
rechercher l’intersection des mains du robot (dans une configuration prédéfinie) avec
tous les plans définis par les surfaces de contact potentielles. Cette intersection est
appelée un Most Probable Impact Point (MPIP) (point d’impact le plus probable).
La projection de ce point sur la surface réelle est appelée le Best Impact Point (BIP)
(le meilleur point d’impact). Ensuite, il ne reste plus à l’algorithme qu’à choisir le
meilleur des BIP parmi tous les points. Le meilleur étant le point le point le plus élevé
(coordonnée verticale) et inclus dans l’espace de travail du bras du robot.

Ces étapes sont effectuées à chaque itération de la boucle de contrôle du robot
(toutes les 5 ms sans le cas d’HRP-4) et doivent aussi prendre en compte les limites
articulaires, de couple et de vitesse angulaire du robot ainsi que les singularités de chute
précédemment identifiées.

La phase de post-impact, elle, permet la modification des gains en ligne. Une analyse
sur un système à 1 degré de liberté à montré l’intérêt de rechercher des gains variables
dans le temps (trajectoire dans le plan des gains), plutôt que d’en calculer une valeur
unique optimale qui restera fixe. Ainsi, un Quadratic Programming (QP) adaptatif a
été conçu pour rechercher les gains adéquats à modifier dans les moteurs pour atteindre
un comportement compliant. Le QP est une reformulation des QP standards utilisés
en robotique humanöıde. L’idée nouvelle ici est d’inclure les gains K et B en tant que



9

variable du vecteur d’optimisation (qui comportent traditionnellement l’accélération
articulaire et les forces de contact).

La méthode a été validée dans le simulateur physique Gazebo et a permis de consta-
ter l’efficacité du QP-adaptatif dans le cas de chutes dans différents environnements et
pouvant avoir de grandes vitesses à l’impact.

Commande prédictive basée polytope pour la réali-

sation de la compliance

Un des problèmes rencontrés avec le QP-adaptatif est l’impossibilité de savoir si les
gains modifiés seront suffisants pour amener le robot au repos sur le long terme (quelques
secondes après impact), le QP ne raisonnant que de manière locale sur une fenêtre de
quelques millisecondes. La solution proposée dans la méthode précédente a consisté à
augmenter les poids des tâches pour assurer l’arrêt du robot. Dans le chapitre 4, une
méthode pour prédire une trajectoire du CoM a été conçue.

L’idée centrale et novatrice de cette méthode est la séparation de de chaque membres
(bras et jambes) dans l’équation du mouvement (Eq. (4.3)). Il s’agit alors d’assigner de
manière optimale à chacun de ces membres une partie de l’effort à fournir pour annuler
la vitesse post-impact.

Pour chaque membre (bras, jambes), il est possible d’écrire la relation entre le
couple articulaire et force que celui-ci exerce sur un point de contact situé au bout du
membre (mains, pieds). Il est alors possible d’utiliser des polytopes représentant les
couples minimum et maximum de chaque moteur pour représenter les forces minimum
et maximum atteignables au point de contact. Ce polytope est alors intersecté avec le
cône de friction pour recouvrir l’ensemble des forces applicables. Cette information va
permettre de fournir des bornes en couple sur l’algorithme de prédiction.

Il faut maintenant assigner à chaque membre l’effort qu’il doit compenser. Pour ce
faire, un nouveau QP appelé Force Distribution Quadratic Programming (FDQP) pour
QP de distribution des efforts a été imaginé. Le principe est le suivant. le FDQP va
répartir la force de gravité et la quantité de mouvement dans chaque membre en se
basant sur les capacités de ceux-ci (fournies par les polytopes précédemment calculés).

Le résultat du FDQP permet de récupérer une quantité de mouvement à annuler
et un effort à compenser. Un Linear Model Predictive Control (LMPC) est attribué
à chaque membre et calcule la force à fournir pour atteindre une vitesse nulle sur
un horizon de temps donné. Les solutions pour les différents membres sont ensuite
recombinées en une seule équation au niveau du CoM, ce qui permet de calculer une
trajectoire désirée du CoM.

La trajectoire est alors envoyée dans le QP-adaptatif formulé dans la méthode
précédente, qui recherche les gains pour accomplir la trajectoire désirée. Les simulations
dynamiques montrent l’efficacité de la méthode avec une chute sur un mur. Dans cette
situation le robot a 4 points de contacts à l’impact (les deux mains et deux pieds).



10

Conclusion

Dans cette thèse, de nouvelles stratégies de chute ont été développées. Diverses simula-
tions et expériences ont montré l’efficacité de ces méthodes. Cependant, tester de tels
algorithmes en situations réelles reste dangereux et potentiellement coûteux pour le
robot. Une amélioration des divers algorithmes de détection de chute, de détection de
contact, etc.... est nécessaire, et constitue les travaux futurs à la suite de cette thèse.



Contents

List of Figures 16

Nomenclature 17

Introduction 21

1 State of the art and motivations 25

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Humanoid robot presentation . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Fall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.1 Limit angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2 Projection of the CoM . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.3 Abnormality Detection Method . . . . . . . . . . . . . . . . . . 28

1.3.4 Experiential Learning . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.5 Predicted ZMP . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Avoiding human/high-value objects . . . . . . . . . . . . . . . . . . . . 30

1.4.1 Direction of the fall . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.2 Foot placement strategy . . . . . . . . . . . . . . . . . . . . . . 31

1.4.3 Inertia shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.4 Partial inertia shaping . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Minimizing damages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.1 UKEMI technique . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.2 Online methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.3 Shock-reducing motion . . . . . . . . . . . . . . . . . . . . . . . 40

1.5.4 Tripod fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6 Compliant strategy in front of a wall . . . . . . . . . . . . . . . . . . . 41

1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



12 CONTENTS

2 Fall singularities 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Taxonomy of fall singularities . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Singularity avoidance controller . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Fall Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Front fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.3 Back fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4 Side fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Simulation and experimentations . . . . . . . . . . . . . . . . . . . . . 52
2.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Cluttered environment and adaptive-QP 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Pre-impact phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Search of landing points . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Reshaping tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Post-impact phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1 1-dof analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Multi-dof on-line solution . . . . . . . . . . . . . . . . . . . . . 70

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.1 Impact detection . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.2 Gains stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.3 Torque-based controlled robots . . . . . . . . . . . . . . . . . . 76
3.5.4 Actuator dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Polytope-based model predictive control for compliance 79
4.1 Reduced Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Actuation constraints . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Distribution of gravity and linear momentum . . . . . . . . . . . . . . . 81
4.3 CoM trajectory solution . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 90

Conclusion 91

A Polytopes 93

B Linear Model Predictive Control 95

Bibliography 104



CONTENTS 13

Personal papers 105



14 CONTENTS



List of Figures

1.1 Main planes of a humanoid robot . . . . . . . . . . . . . . . . . . . . . 26

1.2 Fall detection using the lean line . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Foot placement strategy to avoid falling on something/someone . . . . 31

1.4 Foot placement available region . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Inertia reshaping strategy . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6 Model of the quadruple inverted pendulum . . . . . . . . . . . . . . . . 36

1.7 Contact sequence for the BioloidGP robot . . . . . . . . . . . . . . . . 38

1.8 Compass model of a falling robot . . . . . . . . . . . . . . . . . . . . . 39

1.9 Tripod startegy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.10 Controller manager logic graph . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Taxonomy of fall singularities . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Taxonomy of closed kinematic loop singularity . . . . . . . . . . . . . . 47

2.3 Main directions of a fall . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Search of a shoulder sagittal angle in a Front Fall . . . . . . . . . . . . 50

2.5 Closed kinematic loop singularity avoidance in a Front Fall . . . . . . . 50

2.6 Search of a shoulder angle in a Back Fall . . . . . . . . . . . . . . . . . 51

2.7 Different fall simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 HRP-4 Embedded accelerometer profile . . . . . . . . . . . . . . . . . . 53

2.9 HRP-4 left and right shoulders: desired and actual pitch and roll joint
encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.10 HRP-4 left and right elbows: desired and actual joint encoders . . . . . 56

2.11 Fall experiments on HRP-4 . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Examples of falling in a cluttered environment . . . . . . . . . . . . . . 58

3.2 Illustration of the search of possible impact points . . . . . . . . . . . . 60

3.3 The four possibilities for the vector orientation task . . . . . . . . . . . 62

3.4 Evolution of the position z for a given set (K ∈ [0..50], B ∈ [0..25]) . . 66

3.5 Evolution of the velocity ż for a given set (K ∈ [0..50], B ∈ [0..25]) . . 66

3.6 Evolution of the force f for a given set (K ∈ [0..50], B ∈ [0..25]) . . . . 67



16 LIST OF FIGURES

3.7 Computation of the solution region depending on the problem con-
straints in the K-B domain . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Projection of the joint limit and the force limit on the K-B plane for
different times with z = -0.3m . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Evolution of the different joint parameters through time . . . . . . . . 69
3.10 2-DoF system under the gravity g . . . . . . . . . . . . . . . . . . . . . 71
3.11 Evolution of the 2-DoF system variables through time . . . . . . . . . . 72
3.12 K-B view of the 2-DoF system . . . . . . . . . . . . . . . . . . . . . . 73
3.13 Evolution of the stiffness, the damping gains and the torque for the right

leg pitch joints (hip, knee, ankle) resulting from our adaptive-QP method 74
3.14 Comparison of the knee position and the z-axis of the IMU for different

falling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.15 Fall timeline in a real situation . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Torque-limited friction polytopes . . . . . . . . . . . . . . . . . . . . . 81
4.2 Optimized contact force distribution . . . . . . . . . . . . . . . . . . . 84
4.3 Distribution of the preview algorithm’s tasks over the CPUs for com-

puting s(t), ṡ(t) and s̈(t) . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Simulation results of the linear momentum and its split part . . . . . . 88
4.5 Simulation results of the gravity force and its split part . . . . . . . . . 89
4.6 Gains output of the adaptive-QP through time and for several joints . . 89
4.7 Simulation of a spring-damper system . . . . . . . . . . . . . . . . . . . 92

A.1 Example of the two representation of a polytope in a 2D space . . . . . 93



Nomenclature

This nomenclature stands for all the thesis but Chapter 1 due to convention mis-
matches. Bold symbols are for vectors.

Acronyms

H-representation Intersection of finite halfspaces polytope representation
V-representation Convex hull of finite set of vertices polytope representation
BF Back Fall
BIP Best Impact Point
CoM Center of Mass
CoP Center of Pressure
CPU Central Processing Unit
CRB Composite Rigid Body
DoF Degrees of Freedom
DRC DARPA Robotics Challenge
FDQP Force Distribution Quadratic Programming
FF Front Fall
LIP Linear Inverted Pendulum
LMPC Linear Model Predictive Control
MPIP Most Probable Impact Point
PD Proportional-Derivative
QP Quadratic Programming
SF Side Fall
ZMP Zero-Moment Point

List of symbols

B Diagonal damping matrix
E QP task



18 List of symbols

G Matrix of friction cone generators
H Inertia matrix
J Jacobian matrix
K Diagonal stiffness matrix
M Total mass of the system
Ndof Number of dof in the system
Nc Number of contact points
Ng Number of generators of the linearized friction cone
Nm Number of motors
Ncpu Number of CPUs
SM Selection matrix
Λ Operational space inertia matrix
α Positive coefficient of polytope V-representation

ϑ̇ Vector of task velocity error
λ Contact force magnitude vector
ω× Skew-symmetric matrix associated to ω
τ Generalized force vector
ϑ Vector of task error

J̇ Time-derivative Jacobian matrix
˙̂
J Time-derivative task Jacobian

Ĵ Task Jacobian
Fext External force applied to the system
F Net contact force
X QP decision vector
q̈ Generalized acceleration vector
s̈ Acceleration of the CoM
ė Joint velocity error vector
q̇ref Reference of the generalized velocity vector
q̇ Generalized velocity vector
ṡ Velocity of the CoM
c Coriolis and gravity vector
df Fall direction vector
dt Torso yaw vector projected on the ground
e Joint position error vector
g Gravity vector
p Linear momentum at the the CoM
qref Reference of the generalized position vector
q Generalized position vector
s Position of the CoM
v Vertex of a polytope
ω Task weight
NS Subscript for matrix/vector of non-selected rows



List of symbols 19

S Subscript for matrix/vector of selected rows
kp Task stiffness
kv Task damping gain
BEA Rotation matrix from A to B coordinates
BXA General transformation matrix from A to B coordinates
BrA Translation vector from A to B in A coordinates



20 List of symbols



Introduction

Humanoid robots have come to a new era of development. There is a strong desire for
making robots collaborate with humans in a close way. The robots have to navigate
and move around in the human environment, interact with it, understand the needs of
the humans, communicate with them, and interact with them. The surge in the devel-
opment of humanoid robotics can be attributed to the simple following intuition: what
is better than a human-like system to realize all these new human-centered challenges?

Recently, humanoid robots have been considered (i) for rescue and intervention in
disaster situationsKakiuchi et al. [2017]; (ii) as home service companions to assist frail
and aging people1; and (iii) as collaborative workers (i.e. as cobots termed“comanoids”)
in large-manufacturing assembly plants2 where wheeled and rail-ported robots cannot
be used (e.g. aircrafts and shipyards), among other applications. These three example
applications have different social and economic impacts, different business models, but
they also have different requirements in terms of hardware, perception capabilities,
and dexterity. Humanoids are highly complex systems and stabilizing them is still a
big challenge. Therefore, a rising number of works study the balance and stabilizing
problem of humanoids, but few consider what should the robot do when their stabilizing
control is undermined.

As for any other robotic systems, humanoid robots shall preserve first the human
integrity, secondly their surrounding environment integrity, and finally their own in-
tegrity. This is a well-know behavior formulated in the iconic so-called Asimov’s laws:

1. ’Law 1: A robot may not injure a human being or, through inaction, allow a
human being to come to harm’

2. ’Law 2: A robot must obey the orders given it by human beings except where
such orders would conflict with the First Law’

3. ’Law 3: A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law’

1www.projetromeo.com/en
2www.comanoid.eu

www.projetromeo.com/en
www.comanoid.eu


22 Introduction

Law 1 could be extended with, ’A robot must avoid objects that are high-value objects’
(for example a 3000 years old vase, with a high economic and cultural value). As for
our concern in this thesis, these laws should also be enforced in the robot controller
when falling.

In 2014, the DARPA Robotics Challenge (DRC)3 showed how well humanoid robots
are able to realize human-like manipulation and locomotion tasks, but also how much
they struggled to this end. Different tasks were assigned to the robots, among them
driving, opening a door and crossing the threshold, climbing stairs, navigating in a
cluttered environment and drilling a hole. The challenge showed that robots with hu-
manoid morphology were a good match for the problem, since some of them manage
to realize all the tasks. Thanks to the humanoid technology, robots are getting closer
to humans in terms of these capabilities. However, the challenge also revealed an over-
looked behavior and a big hole, or missing component, in the controllers of humanoid
robots: this overlooked behavior is the fall. Indeed, not a single robot had a strategy
when loosing balance.

Humans are, from our scientific understanding and our technological advances per-
spective, one of the most sophisticated known systems, they are capable of planning
their movement, walking and running in cluttered environment, etc... and they do it
without even thinking about it. Nevertheless, they also still fall. Therefore, it is not
irrelevant to consider that (i) even if the environment is well structured and even if we
devote advanced strategies to walking, a humanoid robot will fall; and (ii) we are not
able to list all the possible cases and situations where this will occur. This thesis tries
to uncover what robot “can, should, and must” do when there is no other choice than
falling.

A general common sense approach that accounts for the humanoid falling event
would ideally operate as follows:

(a) devise strategies to avoid falling in the first place;

(b) if falling cannot be avoided in (a), or, for some reasons the robot must fall on
purpose, then, if the robot is in servo-on, reduce as much as possible the damage
resulting from the fall;

(c) when the two previous solutions are not applicable, i.e. if the robot is no more
under control, it is better to simply resort to an extra shock absorbing system,
such as an airbag, that can be triggered independently from the robot embedded
control board.

Chapter 1 lays down some strategies that have been developed in the humanoid
robotics research community to prevent damage from falling. As there are relatively
few papers that deal with humanoid falls, all the strategies are reviewed in detail.
Many of these strategies came up with the idea of Ukemi motion, which is the term

3https://www.darpa.mil/program/darpa-robotics-challenge

https://www.darpa.mil/program/darpa-robotics-challenge


23

used by Judo and Aikido. Ukemi is a controled break-fall. In other words, it designates
a technique which allows to control the fall to minimize or to cancel impact damages.

Humans have developed several techniques through the years to find the best re-
ception techniques when falling. It is thus interesting to think here that humanoid
robot falling strategies have been inspired by human’s martial art sports. However
other considerations have to be taken into account, e.g. avoiding humans when falling,
which makes the fall riskier for the robot but safer for the human.

We decided to take a different perspective from the current state of the art in order
to bring out new ideas on the subject. As it is difficult to precisely know what are the
good postures to reach when falling, Chapter 2 considers the opposite problem, and
seeks instead the postures that are dangerous for the robot. Knowing them, control
tools can be designed to prevent bad fall landing.

Until now, most of the strategies focused and restricted on specific types of falls:
Front Fall (FF) and Back Fall (BF). In this thesis however, we consider that a fall in
any direction must be treated. Chapter 3 addresses falls in any direction. We have also
decided to challenge another, never-treated-before, difficulty of the problem: the fall
shall occur in a cluttered environment. To decrease the damages taken by the robot,
the fall is split into two separate phases which are the phase before the impact and
the phase after the impact. This separation allows us to prepare the robot for the
impact and to cancel the remaining velocity after it. This cancellation is made through
a Quadratic Programming (QP) and an on-line adaption of the motors’ Proportional-
Derivative (PD) gains.

As a QP is controlling the robot and due to its local nature, it can not foresee if,
on the long term, the computed gains will be high enough to stop the robot motion
completely before it reaches its limits. Chapter 4 thus proposes a way to predict what
will happen on a longer horizon of time and to decide a trajectory for the Center of
Mass (CoM) that stops the robot at the right time.

All the contributions of this thesis have been validating either by a simulation or
by some experiments on the HRP-4 robot platform.



24 Introduction



CHAPTER 1

State of the art and motivations

Introduction

Humanoid robots are an imitation of the humans. Even if human motor control is
infinitely more complex and more advanced than whatever the state of the art in
humanoid robotics can offer to this day, humans themselves still fall on occasion Lortie
et Rizzo [1999]. Moreover, the DARPA Robotics Challenge (DRC), that took place
between the years 2012 and 2015, has shown that falls do occur at a very high rate when
the robots are not anymore attached to security cords Atkeson et al. [2015] Atkeson
et al. [2016], even under the close supervision of humans and in partial autonomy
conditions. The challenge also shed the light on the fact that no fall controls were
used when the robots were falling. The motivation for developing such algorithms is,
therefore, evident in this context.

When considering falls, an important question is “How the fall has occurred and
in which conditions?”. Indeed, existing control algorithms assume that the robot is
pushed when it is in a vertical upright stationary configuration, and that the push is
done at an upper point of the torso in the saggital or the coronal plane. For instance,
Ogata et al. [2007] have considered this kind of push on a walking robot to validate
their control law. However, in general, the robustness of a fall control law should be
tested and demonstrated with different kinds of pushes, applied at different points on
the robot. The robot may also slip on a surface or trip on an object. These two
situations have been barely considered in the literature, in part due to the fact that
the experimentation in this domain is risky, costly, and dangerous. Another major
difficulty in these general cases is getting the information about the contact points
that are lost. Closed-loop control with contact estimation is a strict necessity in these
situations.

To satisfy Asimov-s laws, we first need to define what is a fall. Humans can ‘sense’



26 State of the art and motivations

Figure 1.1 – Main planes of a humanoid robot. The green plane is called sagittal plane, the red one coronal
plane and the blue one transverse plane

when they are just about to fall, then, and depending of their reaction speed, they move
their body to either avoid someone or/and something during the fall, or if nothing is
around try to break the fall. Thus, to activate the falling control algorithm, the robot
needs to detect its fall. This part is considered in Section 1.3. Once the robot has
detected its own fall, it has roughly about 0.7 − 1 s to actuate its body to avoid to
hurt and/or break something on it. Goswami et al. [2014] have presented change-of-
direction algorithms during falls which are presented in Section 1.4. Breaking falls has
been studied by Fujiwara et al. Fujiwara et al. [2007] using offline optimization tools,
and Ogata et al. Ogata et al. [2008] who simplified the problem to obtain an online
control algorithm.

Note that in this chapter, in order to not rewrite everything (because the authors
do not have the same convention), the equation has been taken as is without being
transformed to match the nomenclature.

Humanoid robot presentation

Humanoid robots are human-size and human-shaped robots. In this thesis, we consider
that the robot has two distinct legs and two distinct arms attached to a torso and a
waist respectively. We also recall the three main planes of humans (see Fig. 1.1). The
platform used for the experiments is HRP-4 from Kawada. It is a relatively ‘fragile’
robot that has not been primarily designed to resist impacts and falls in general. At
low level, it is a position-based controller that commands the motors.



1.3 Fall detection 27

We recall here the main equation of motion that described the robot

Hq̈ + c = JT
concacGλ+ τ (1.1)

with H the inertia matrix, q̈ the generalized acceleration vector, c the Coriolis and
gravity forces, Jconcac the concatenation of the Jacobian matrix of all contacts, G the
matrix of friction cone generator, λ the contact force magnitude vector and τ the
generalized force vector.

We also recall the centroidal dynamics

F = M (̈s− g) (1.2)

with F the net force, M the total mass of the robot, s̈ the acceleration of the Center
of Mass (CoM) and g the gravity vector.

Algorithms developed in this thesis have been designed to deal with humanoid
robots but most of them can be directly (or with some extensions) exploited on other
types of legged robots.

Fall detection

Because a fall is a matter of only a few milliseconds, it is admitted that the sooner
the fall is detected the more efficient the control law will be. Also, falling detection
must happen only when the robot is in a situation in which it cannot avoid the fall. In
another words, if it has been pushed, but can still maintain its stability by performing
a fall-avoidance algorithm (Ogata et al. [2007] and Sugihara [2008] for example), then
fall should not be detected and the fall-avoidance algorithm should be executed first.
Therefore, the falling detection algorithm should not only be fast, but also robust, as
it should not detect “false positives”, nor trigger “false alarms”.

Limit angle

As a first and very simple way to detect a fall, Lee et Goswami [2013] propose to
consider the angle α between the lean line and the normal of the ground. The lean line
is the line going through both the Center of Pressure (CoP) and the CoM as represented
in Fig. 1.2.

The reported time delay before detection of the fall is about 30 ms with a push of
160 N. This kind of fall detection has the advantage of simplicity and quasi-instantaneous
computation, but it also has a major limitation. That is, the robot could be stable
even with α > 15◦. For example, the robots could be lying down on a couch or it could
be leaning on one of its arms. Another possibility is a non planar ground, making the
normal vector computation wrong. In the latter case, one could think of taking the
angle between the gravity direction and the lean line, but in the same way, if the robot
is standing on an inclined ground α would be greater than 15◦. Finally, increasing the
limit angle would make the robot react slower which is not advisable.



28 State of the art and motivations

Figure 1.2 – Fall detection using the lean line. The lean line is the crossing of the CoP (point P) and the
CoM (point G). The angle α is the angle between the ground normal and the lean line. Here, {t,b,s} is a
frame attached to the CoM. Image edited from Lee et Goswami [2013].

Projection of the CoM

Another simple way of detecting a fall is the projection of the CoM on the ground.
Fujiwara et al. [2004] suggests that idea. In a standing position, the CoM projection
is inside the convex hull of the soles making the robot stable. When a push occurs
on the torso, the robot bends moving the projection of the CoM outside the convex
hull. Then, the robot is considered as falling and the falling control system is triggered.
By looking closely, this solution amounts to the same as the limit angle fall detector
(Section 1.3.1). Indeed, α and the CoM projection on the ground are related by

cos(α) =
Gproj

d
(1.3)

where Gproj is the projection of the CoM on the ground and d the length of the vector
PG. This kind of detector is working for quasi-static behavior but may trigger false-
positive when dynamics is considered.

These two detection methods have an important drawback: they do not take into
account the possibility that the robot can try to stabilize itself.

Abnormality Detection Method

This method has been developed by Ogata et al. [2007]. It tries to make a difference
between two states called normal state and Unusual state. The normal state is defined
as “the state in which humanoid robots walk stably”. The unusual state is defined as
“the statFe resulting from a disturbance”. To make the difference between those two



1.3 Fall detection 29

states, the former state has to be quantified. To do so, sensors data have been collected
when the robot is performing a walk and the results have been put in the vector

si =
[
si1(k) si2(k) ... sins(k)

]T
(1.4)

where s is the sensor datas in a certain step i for one walking cycle, ns is the number
of sensors, i represents the step time and k the number of samples. Then, the mean of
the normal state becomes

si = E
k

[si(k)]. (1.5)

which allows for the deviation to be calculated online. When the Euclidean distance
between the current si and Eq. (1.5) is bigger than a threshold, the robot considers
itself in an unusual mode.

This method also presents some drawbacks, since it is necessary to set a threshold,
and it appears that sometimes the detection fall is triggered even if the robot is not
about to fall. Additionally, it is very specific to walking fall detection, since it is
based on reading sensors values when walking, which makes it impossible to use for
fall detection in other ‘regular’ tasks. The authors were aware of that limitation and
suggested another falling detection method based on learning algorithm.

Experiential Learning

Machine learning has been proposed as an approach to fall detection as in Ogata et al.
[2007] Kalyanakrishnan et Goswami [2011] and more recently in André et al. [2016]
Hofmann et al. [2016]. The idea proposed by Ogata et al. [2007] is to discriminate two
states after a disturbance. The one in which the robot can recover its stability (using
fall-avoidance control) and the one in which the robot falls (the actual fall detection).
An experiment has been done with several learning data, those data were obtained
by applying a push on the rear side of the robot meaning that the robot is not able
to discriminate the two states with another kind of disturbance. Still, the results
were positive in this experiment and the robot was able to perform both fall-avoidance
control and fall control (here an UKEMI motion) depending of the magnitude of the
disturbance. Kalyanakrishnan et Goswami [2011] et al. considered two data. The
first is called the False Positive Rate (FPR) and the second is the lead time τlead.
The former designates the fraction of trajectories in which falling is predicted for a
balanced state and the latter is the average value of tfallen − tpredict over trajectories
that terminate in fallen. tfallen is the time at which fallen is reach and tpredict the time
at which falling is predicted. The training is done over several trajectories to find a
low FPR with a high lead time. André et al. [2016] et al. used four data mining
algorithms over sensor data to find classifier that identifies failures. It is based on the
so-called Associative Skill Memories which tries to associate data together considering
that stereotypical movement has sensor footprints. Hofmann et al. [2016] uses neural
network with NAO’s outputs (especially gyroscopes) as training data.



30 State of the art and motivations

Predicted ZMP

The use of the Zero-Moment Point (ZMP)Kajita et al. [2003a] seems a straightforward
solution for fall detection. By definition, a walking robot is stable as long as the ZMP is
inside the supporting area. When the ZMP gets to an edge or a vertex of the polygon,
it implies that the robot might fall (necessary but not sufficient condition). Thus,
Ogata et al. [2008] suggest to predict the ZMP of the system as a falling detection
criterion. To do so, they assuming that the stabilizing control is a implemented by a
state space control which allows the computation of the an estimated ZMP.

From the reported experiments, the falling detector shows good performance and
acts quickly as requested. However, using the ZMP for a fall is not recommended in
certain situations since the ZMP is known to be erroneous when the feet slips, when
the surface is uneven or when the robot has multi-contact points (for example, when
the robot leans on one of its elbows). Yet, the first two cases are the principal reasons
for human falls. Nevertheless, it can still be considered as an acceptable solution,
particularly for robots which may work in a facility since, due to security, the ground
is generally a non-slippery plane in this particular context.

Conclusion

Contrary to other fall detectors, the predicted ZMP algorithm and the experiential
learning have the advantage of anticipation. Chang et al. [2013] states that “It is clear
that ‘expectancy’ is required to walk safely. There will be a motion perturbation if
expectation and reality do not match”. This study is a survey on humans falls. A fall
detector may be realized as a loss-of-control detector e.g. when the robot measurements
diverge from the expected control output. In other terms, the robot falls when the
robustness of the control law is exceeded. So, the fall detection should not be based
on the current posture or configuration of the robot but it is a criterion that evaluates
when the stabilizer can no more operate correctly. Such a detector needs then to
be updated in all kind of controllers (walk control, run control, whole-body reaching
control, etc) which makes it more complex. For example, let’s imagine a robot pushing
a wall. The equilibrium results from the contact on its feet and on its hands making the
projection of the CoM undefined. Thus, all above fall detections become impractical.
In particular, the fall dectectors using ZMP criteria should be adapted for multi-contact
(see Caron et al. [2017]).

Avoiding human/high-value objects

Now that the fall can be detected, the robot needs to perform actions against it. In this
section, the control laws ensure that the robot would not hurt anybody. As for general
humanoid control, the difficulties come from the fact that the robot is under-actuated.
When it is falling, the contact with the ground is reduced to only an edge or a vertex
(fall with no contact has not been studied yet), meaning that 1 to 3 degrees of control



1.4 Avoiding human/high-value objects 31

are lost. Goswami et al. [2014] proposes three different methods to perform a change
of the fall direction. All of them come from two main observations, the first one deals
with the support polygon of the humanoid. Indeed, while falling, the robot topples, at
least, on a edge of the polygon meaning that if the geometry of the polygon is changed,
the fall direction is changed. The second observation is that an overall change of inertia
also changes the direction of the fall.

To start off, it is important to define the reference point and the desired fall direc-
tion. The former represents a point on the ground where the robot is estimated to fall.
The latter is the most favorable direction of the fall which depends on the environment.

Direction of the fall

First, to avoid any objects, it is necessary to know the direction of the fall. This can be
done knowing both the CoP and the supporting area at the moment of the push. As
shown in Fig. 1.3a and 1.3b, the direction of the fall is perpendicular to the so-called
leading edge. When the robot is about to fall, the CoP is getting closer to the limits of
the support polygon. When the CoP reaches an edge, that edge is called the leading
edge and it represents the joint around which the robot topples.

(a) Fall direction 1 (b) Fall direction 2

Figure 1.3 – Foot placement strategy to avoid falling on something/someone. Both figures represent the
robot being pushed in the back. The fall direction is the perpendicular to the leading edge (green line),
crossing the CoP (point P). Point T represents an object the humanoid has to avoid and point Q is the
reference point. Image from Goswami et al. [2014]

Foot placement strategy

As it can be seen in Fig. 1.3b, even if the push is in the direction of a high-value
object (point T), the robot falls besides it. Thus, considering the initial position as in
Fig. 1.3a, one can change the position of a foot in order to change the direction of the
fall.

Let’s consider the legs velocities. We can write

VL −Vbody = JLθ̇L (1.6)

VR −Vbody = JRθ̇R (1.7)



32 State of the art and motivations

Figure 1.4 – Foot placement available region. The yellow area represents the allowable stepping zone. P
is the CoP, Q is the reference point, T is the object to avoid to fall on, Dx and Dy are the maximum
half lengths of the allowable stepping zone and Dβ is the maximum amount of rotation of the swing foot.
Image from Goswami et al. [2014]

where VL, VL and Vbody are respectively the linear and angular velocities of the

left leg, right leg and body. θ̇L and θ̇R are the joints velocities of the left and right
leg respectively. JL and JR represent the Jacobian matrices of the left and right leg
respectively.

Subtracting Eq. (1.6) from Eq. (1.7)

VR −VL = [JR, −JL]
[
θ̇R, θ̇L

]T
(1.8)

then, we can control the movement of a leg to change the direction of the fall. During
the control time ∆T , and using Eq. (1.8), the reachable stepping area is deduced

Dk = ∆T
12∑
i=1

|JR−L(k, i)θ̇MAX
i |. (1.9)

Here i corresponds to one of the 12 joints of the two legs, k stands for x (the x-axis
linear part), y (the y-axis linear part) and β (the z-axis anuglar part). In Fig. 1.4, the
yellow area corresponds to the reachable stepping zone. Since the linear momentum of
the robot is directing toward, it is intuitive that, because of a forward push, taking a
step backward is meaningless. Once the reachable area is computed, the best position
needs to be found. To do so, Goswami et al. propose to subdivide the reachable area in
multiple cells, then for each cell, a range of angles is taken and the CoP is calculated.
Finally, the reference point is estimated. From all the computations, the configuration
that has the reference point closest to the desired fall direction is chosen.



1.4 Avoiding human/high-value objects 33

The computation of this algorithm can be heavy. Moreover, the longer the legs
of the robot are, the larger the reachable area is. Nevertheless, online calculation is
possible by choosing large cells and few values of β. The main concern is then the
control time approximation. Indeed, since it is impossible to know exactly the time
of the fall, it has to be estimated. The simplest way is to represent the robot as a
pendulum (2D or 3D) and to calculate the time it needs to fall. Unfortunately, this
method is rather inaccurate. On a 0.4s time fall, the estimator exceeds an error of 20%
Lee et Goswami [2013].

Inertia shaping

Inertia shaping consists of using the inertia of the robot in order to modify its fall
direction. To do so, the robot is approximated as an inverted pendulum with rigid-
body mass inertia.

The composite rigid body inertia matrix of the robot can be reduced to an ellipsoid
called the reaction mass ellipsoid (RMP)Lee et Goswami [2007]. The inertia of the
RMP is related to the robot angles by

δsÎ = JIδθ. (1.10)

Denoting I the Composite Rigid Body (CRB) inertia matrix, I can be strung out so
that I ∈ R3×3 −→ sÎ ∈ R6×1. The CRB inertia Jacobian JI maps changes in the
generalized coordinates into corresponding changes in the CRB inertia. The desired
inertia is simply a transformation of the current inertia.

Id = RIR−1 (1.11)

and R is the rotation matrix
R = e[ωd] (1.12)

where [ωd] is the skew-symmetric matrix corresponding to the vector ωd. Thus,
Eq. (1.10) is written

θ̇ = J†I (Id − I) (1.13)

where J†I is the Moore-Penrose pseudo-inverse of JI . The question is “How to choose
the desired inertia ?”. We can change the direction of the linear velocity at the CoM
VG. It is linked with the angular velocity ωPG at point P by

VG = ωPG ×PG. (1.14)

Then, let’s set edfd = -PT the desired fall direction that opposes the fall direction. A
simple way to write VG would be VG = cedfd (Fig. 1.5) where c is the amplitude of
the desired velocity. Let’s set ωd = kez × edfd with k the magnitude of the angular
velocity. Substituting VG and ωPG in Eq. (1.14), k is calculated by

k =
cedfd

(ez × edfd)×PG
. (1.15)



34 State of the art and motivations

Figure 1.5 – Inertia reshaping strategy. If the robot falls over an object T , the desired linear velocity of the
robot’s CoM should be opposite to the fall direction as VG. To do so, it can apply a torque ωD on an axis
passing by the CoP P and perpendicular to the fall direction. Image edited from Lee et Goswami [2013].

Thus, ωd is known and using Eq. (1.11), the desired inertia is found.

The work done on inertia shaping is one of the most important improvement of fall
controllers because it enables the robot to operate during the fall to avoid any high-
value objects. This still need to be enhanced. First, it has been made for a standing
robot with a mild push represented by a force on the CoM. The robot decides where
to fall only based on configuration of its environment but since a push could be on a
shoulder (and thus could induce a rotation of the body), the robot may try to reach an
impossible direction of fall. Therefore, the magnitude of the force and its application
point should be considered for the choice of the new orientation of the fall. An extension
to falls while operating a movement and while holding objects is also necessary.

Partial inertia shaping

The previous methods can be extended so that, both foot placement strategy and
inertia are used simultaneously. As the foot placement strategy uses only the legs to
perform its control, the idea is to manipulate the inertia of the upper part of the robot.
Then, the angular velocity and the Jacobian are split such that θ̇ = [θ̇PIS θ̇FP ] and
JI = [JPIS JFP ]. The subscript PIS stands for the Partial Inertia Shaping, so the
upper part of the body, and FP represents the Foot Placement. To only shape the
inertia of the upper body, the desired velocity is computed such that

θ̇PIS = J†I (Id − I − JFP θ̇FP ). (1.16)

As the angular velocity is computed about the CoP, and for effectiveness purposes, it
is preferable to perform the inertia shaping about the CoP.



1.5 Minimizing damages 35

Minimizing damages

A way of considering the 3rd law of Isaac Asimov, i.e. “the robot must protect itself”,
two solutions have been considered. The first solution, and the most common one, is
adding to the robot a soft carapace that can absorb shocks. The cover can be completely
passive as in Kajita et al. [2016] or active Lee et al. [2016b]. Lee et Goswami [2013]
suggest to only use a backpack as a cover and to change the configuration of the robot
during the fall so that the robot falls on it. The second solution tries to move the
robot in such a way it minimizes its shock. These two solutions have to be combined.
Fujiwara et al. teach the robot martial art’s techniques Fujiwara et al. [2002] called
UKEMI to reduce damages and add the robot some shock absorbing cushion on robot
strategic points. Ogata et al. propose two algorithms that can work online Ogata et al.
[2007]Ogata et al. [2008]. Ha et Liu [2015] propose a planning algorithm to minimize the
damages. Finally, Yun et Goswami [2014] suggests that a tripod fall should minimize
damages considerably.

UKEMI technique

As said previously, shock absorbing components should be mounted on the robot.
Fujiwara et al. [2002] suggests to give priority to knees and hips, then less effective
shock absorbers are mounted on elbows, hands and back. The priority is given because
of the following assumption: the robot should first fall on its knees or hips and then
finishes its fall on elbows, hands or back. Since assumption comes from the fact that the
formers are lower than the latters. When falling, the robot accumulates kinetic energy
to the cost of potential energy. The more the robot has kinetic energy the stronger
the impact is, thus breaking the fall as soon as possible would reduce damages. Thus,
there is no need of covering all the robot which would increase the weight of the robot.

Backward falls

Fujiwara et al. have mostly concentrated their efforts on backward and forward falls.
Kajita et al. [2003b] presents the backward fall. They modeled HRP-2P as a Linear
Inverted Pendulum (LIP) from the CoP to the CoM. The control law consists in a
succession of tasks:

1. Squatting: The impact force is mostly due to the potential energy. So, squatting
allows the robot to reduce the altitude of the CoM minimizing the potential
energy. It is triggered by the fall detection control.

2. Extend 1: The second factor that increases the impact force is the kinetic energy.
Providing an extension of leg at a well-chosen moment allows the robot to reduce
its angular velocity. It is triggered when the angle θ (angle between the ground
and the line containing the heel and the hip) reaches a set angle θ1 (experimental
angle).



36 State of the art and motivations

Figure 1.6 – Model of the quadruple inverted pendulum. Image from Fujiwara et al. [2004].

3. Touchdown: To not damage the motors, they are switched off just before the
shock.

4. Extend 2: The motors are switched on to prevent the robot from rolling back-
ward too far. It is triggered after an amount of time T1, chosen experimentally.

5. Finish: Once the robot is stopped, it is prepared for getting up again.

The algorithm has been upgraded by using an offline non-linear optimization ap-
proach Fujiwara et al. [2006].

The main drawback is the time-consuming algorithm, that has to be done offline.

Forward falls

The forward fall is more complicated since a simple linear inverted pendulum can not be
modeled to perform the UKEMI techniques. The chosen model is a quadruple inverted
pendulum as shown in Fig. 1.6.

Like the previous control strategy, the minimization of the damages is partitioned
in different steps:

1. Knee Bending: This step is equivalent to the Squatting strategy of the pre-
vious section. Bending knees allow the robot to decrease the height of the CoM,
reducing the potential energy.

2. Braking of the Landing Speed: The hip pitch joint, waist pitch joint and
shoulder pitch joint are actuated such that θ should be braked (Fig. 1.6).

3. Landing: The feedback gains are changed to make the robot more compliant to
the impact of the landing.



1.5 Minimizing damages 37

The detail of the breaking of the landing speed step is given as follow. The angular
momentum can be described as

L = I0(θ̇ + ∆θ̇) + I1θ̇1 + I2θ̇2 + I3θ̇3 (1.17)

where θ is the angle between the knees and the ground (cf. Fig. 1.6), I0 is the moment
of inertia at the tip of the feet, Ii, i = 1..3 are the moment of inertia relative to the
angular velocities θ̇i, i = 1..3. L represents the angular momentum. This equation is
rewritten to get the reference of the inputs θ̇j, j = 1..3. θ̇ref1

θ̇ref2

θ̇ref3

 = (I1 I2 I3)†I0(θ̇0 − θ̇)

= (K1θ̇0 +K2)

 θ̇max1

θ̇max2

θ̇max3

 (1.18)

with 

 θ̇max1

θ̇max2

θ̇max3

 = 1
γ

sup((I1 I2 I3)†)I0,

K1 = γ,

K2 = -γθ̇.

(1.19)

γ is set so that θ̇maxi remains within actual speed limits. K1 and K2 are set experimen-
tally, and, even if K2 depends on θ̇, it is set to a constant.

This method is easy to implement but needs some gains tuning which are specific to
each robot. It can minimize the fall quite efficiently but for stronger pushes, the upper
part would fall too, thus, a control strategy of the upper part (or whole body) is also
needed. To develop a better falling strategy, the robot HRP-2FX has been designed
to facilitate the control law Fujiwara et al. [2006] and Fujiwara et al. [2007]. Then, a
triple inverted pendulum has been considered. One of the most important quantities
in falling control is the impact force. That impact is given at landing by

∂T +

∂ξ̇+
=
∂T -

∂ξ̇-
+ P (1.20)

with T the kinetic energy, P the applied impact and ξ̇ = [θ̇, ẋj, żj]
T where ẋj and

żj are the horizontal and vertical velocities of the knees or hands. The signs − and
+ represent the variable just before and just after the shock happens. Assuming a
perfect inelastic impact, ẋ+

j and ż+
j become zeros. Thus, we can calculate the change

of velocity and the impact force. The angular momentum is given by

L+
j = M [ẋ+

c -ż+
c ]

[
xg − xj
zg − zj

]
+ Iθ̇+ (1.21)



38 State of the art and motivations

where ẋc and żc are the coordinates of the CoM of the whole body. Then, an offline non-
linear optimization is performed to minimize both the excessive angular momentum L+

j

and the impact force P . The experiments have proven the viability of the optimization,
but it is necessary to seek for a solution offline because of the time-expensive method.

Another way to the optimal control is to decompose the optimal control problem
into an NLP by the pseudospectral Legendre method Wang et al. [2012].

Contact planning

Ha et Liu [2015] present a contact planner to solve the frontward fall and backward
fall. In this paper, the authors seek for a succession of contact points that minimize
the maximum impulse. The contact sequence is predefined and based on common
humanoid robot shape (see Fig. 1.7).

Figure 1.7 – Contact sequence for the BioloidGP robot. Image from Ha et Liu [2015].

The core component of the algorithm solves

v(x) = min
a

max(g(x, a), v(f(x, a))) (1.22)

with x the state of the system, a an action that depends on the contact, g(x, a) the
computed vertical impulse local cost function, f(x, a) the transition function which
outputs the state after taking a at x and v(x) the cost-to-go function.

Once the solution is found, the results are mapped to a whole-body controller by
solving an optimization problem that tries to match i) the current contact position of
the robot with the model; ii) the CoM of the robot with the model; iii) the next contact
position (the impact point) of the robot with the model.

Using this offline optimization tool, several simulation on different humanoid robot
and an experiment shows the capability the robot of reducing falling damages by break-
ing a fall or by rolling when the push is strong.

Online methods

For forward methods, Ogata et al. [2007] suggest to perform the UKEMI motion using
the 2D LIP equation of motion. They have not only been able to develop an algorithm
considering the current location, but they have also made their controller running
online. Taking into account the current location means that even if the robot is walking,
the controller is still able to perform the UKEMI motion.



1.5 Minimizing damages 39

Figure 1.8 – Compass model of a falling robot. α is an angle between two support legs. β1 and β2 are an
angle between each support leg and ground. L1 and L2 are each length of support leg. Image from Ogata
et al. [2007].

The idea is to constrain the CoM on a line which enforces a contraction and expan-
sion of the body length as in Fujiwara’s work. The linear inverse pendulum trajectory
at the CoM can be computed through an analytical solution


x(t) = x(0) coshωt+

ẋ(0)

ω
sinhωt

z(t) = kx(0) coshωt+ k
ẋ(0)

ω
sinhωt+ zc

with x(0), ẋ(0) the position and velocity at detection time, ω the angular frequency of
the motion equation, k the slope of the line and zc the z-intercept. Once the motion
of the CoM is set, the position of the hand has to be set too. An elegant way to do
it, is to consider the compass model as in Fig. 1.8. As previously, we can consider the
impact force 

M(v+
x − v-

x) = Px
M(v+

z − v-
z) = Pz

IG(ω+ − ω-) = -L2Pz cos β2 − L2Px cos β2

(1.23)

with vx and vz the linear velocities at point P on the x-axis and z-axis, ω the angular
velocity, Px and Pz are impulses, IG the inertia around the CoM and L2 and β2 are
defined as in Fig. 1.8. Considering a perfect inelastic collision with the ground, Ogata et
al. show that the angle alpha (see Fig. 1.8) is constrained by

cosα ≤ -
IG

ML1L2

(1.24)

with M the total mass and L1 and L2 defined as in Fig. 1.8.



40 State of the art and motivations

Shock-reducing motion

Following the example of walking stabilizers, it is possible to use the equation of motion
based on the ZMP Ogata et al. [2008].

px = x− z − pz
z̈ + g

ẍ (1.25)

py = y − z − pz
z̈ + q

ÿ (1.26)

Here [px py pz] is the position of the ZMP, g the gravity and [x y z] the position of
the CoM. Instead of constraining the CoM on a simple line, the authors propose to use
a Bessel function that has the measured position and velocity at the initial state and
has a zero velocity on the z-axis at the contact. The proposed solution is computed
analytically and is of the form

z(t) = Cz0τI1(τ) + Cz1τK1(τ) + zs(t) (1.27)

where Cz0 and Cz1 are integration constants, I1(τ) and K1(τ) is the first and second
modified Bessel function,

τ = 2

√
a1t+ a0

a2
1

(1.28)

and zs(t) is a particular solution of

z̈(t)− f(t)z(t) = −g, f(t) =
1

a1t+ a0

(1.29)

with a0 and a1 arbitrary parameters.

Tripod fall

As said earlier, the damage of a fall is mostly due the potential energy. So an idea
would be to stop the robot before it reaches the ground. This is the purpose of the
tripod fall Yun et Goswami [2014]. By doing a step and bending such that the arms
touch the ground, a tripod position comes out (Fig. 1.9a), the robot is then saving
itself.

The algorithm is based on

k̇d = Γ11(kd − k) (1.30)

l̇d/m = Γ21(ṙdG − ṙG) + Γ22(rGd − rG) (1.31)

with k and k̇ are centroidal angular momentum and its rate change, m is the total
mass of the robot, rG and ṙG are the locations and the velocity of the CoM. kd and ld
are the desired rates of change of centroidal angular and linear momenta, respectively,



1.6 Compliant strategy in front of a wall 41

(a) Two ways of falling. The green robot
is using a tripod fall thus stopping the
robot as soon as possible. Compared to
the red robot, the tripod results in an
impact with low kinetic energy.

(b) Three ways of handling falls. (b) compensate
the angular momentum to keep balance, (c) com-
pensate the linear momentum by stepping forward
and (d) uses the tripod fall that compromises both
the linear and angular momentum.

Figure 1.9 – Tripod startegy. Image from Yun et Goswami [2014].

and rG is the desired CoM position. Γij represents a 3× 3 diagonal matrix of feedback
gain parameters.

It is then necessary to choose the gains. Tuning Γ11 to a small value and Γ21 and
Γ22 to a large one induces a balance mode (Fig. 1.9b (b)). To obtain the stepping
motion (Fig. 1.9b (c)), a large value of Γ11 is needed. In such case, a low-level stepping
controller handles the stepping motion. Finally, to make the robot in a tripod solution,
Γij must be between Γij of the balance mode and Γij of the stepping motion. The
values of the gains are produced with machine learning algorithms.

Compliant strategy in front of a wall

Most of the control laws don’t consider the environment around the robot when falling.
Hoffman et al. [2013] consider a robot that is pushed in front of wall. The main idea
here is to make the robot use the wall as support zone. It has to fold its elbows for
compliance.

The control law is based on the stiffness matrix which links the applied force and
the position. An active compliant control is then realized. The arm is represented as
a 2D planar manipulator which is modeled as two serial springs (one passive and one
active). The originality of this work is to describe the arms as linear spring systems.
This system is then represented by a length with a Cartesian stiffness. The main
idea of Mingo et al. is to search for the Cartesian stiffness to reach contact stability
while recovering from a disturbance. This means that the robot is capable of active



42 State of the art and motivations

compliance by solving a non-linear optimization problem that minimizes errors between
a desired Cartesian compliance matrix and the current Cartesian compliance matrix.

It is possible to map the Cartesian stiffness in the joint space with

Kq = J(q)TKCJ(q) (1.32)

where Kq and Kc are respectively the joint and cartesian stiffness and J(q) is the
jacobian from the root to the tip of the arm. This equation offers a mapping of the
stiffness from the Cartesian space to the joint space and vice-versa. It means that
finding a method that computes Cartesian space stiffness also computes joint space
stiffness.

Discussion

In this chapter we have presented all the methods that deal with humanoid falls. At
first glance, it is clear that this subject is still at its very beginning and research needs
to keep going in order to have a more robust fall controller. Almost all the methods
are only considering frontward fall and backward fall in an empty environment which
enables to tackle the problem with some simplifications. First, it allows to reduce the
problem to a 2D space and the model can be assimilated with an association of inverted
pendulum. Secondly, there is no obstacle to the fall so the robot is not constrained by
the environment.

We tried to classify the above research into a single graph (see Fig. 1.10) that
can be seen as a global controller that selects a suited set of controllers depending on
situations. The first task the robot is required to fulfill is to check whether or not
humans are nearby. If the robot is holding something valuable or someone, there must
be a specific controller for this case. Most of the controllers in the literature deal with
falls where only foot contacts and only with the ground are involved. Free falls (no
contact falls) and cluttered environment are yet to be considered.

As can be seen in Fig. 1.10 several problems are still unsolved. This thesis focuses
on the free fall and falls in cluttered environment.



1.7 Discussion 43

 

Fall 
detection

Human 
nearby?

Strict 
avoidance

Lee
Goswami

Holding 
item

Has 
contact

Free fall

?

Cluttered 
environment

Possible 
recovery

Ukemi

Fujiwara
Ogata

Ha

Step 
recovery

Pratt
Yun

Goswami

Possible 
recovery

Ukemi

?

Grasp / 
other

?

In-hand 
control

?

Controller Manager

Figure 1.10 – Controller manager logic graph (our view). The green path means a ‘yes’, the red one, ‘no’.
Our contribution lies in the free fall box and in the ukemi box with or without the environment.



44 State of the art and motivations



CHAPTER 2

Fall singularities

In the previous chapter, we reviewed several ways of handling falls for humanoid robots.
From these methods we proposed a decision graph that selects one fall controller de-
pending on the type of fall, the robot state and the surroundings. We showed that
for some falling conditions, such as free falls and falls in a cluttered environment, no
solution have been proposed yet in the state of the art. This chapter aims to give a
solution for falls with no contacts (free falls) and to propose a way of decreasing the
risks for the motors by tuning the Proportional-Derivative (PD)-gains at the impact.

Introduction

Our goal is to mitigate damage on the robot. We build our approach on the following
hypotheses and choices:

• we consider that we reached the phase of total loss of attitude controllability: the
robot is falling under gravity without any possible recovery other than reducing
damage and the fall has been detected;

• we assume that no contact can be exploited or used to control the posture (free
fall) during the falling motion;

• we assume that we can estimate reliably, using state estimators, the position of
any part of the robot from embedded sensors (encoders and IMU-accelerometers);

• distances to contacts can be computed between the robot links and the envi-
ronment: the environment is estimated using SLAM methodSalas-Moreno et al.
[2014] which allows the computation of distances between robot links and the
surroundings;



46 Fall singularities

It is important to note that the robot is considered “fragile” in the sense that it
has not been designed to resist impacts. Relative to existing work, we reshape the
robot posture in closed-loop so that for all possible fall taxonomy cases, which we
enumerate hereafter, we compute a posture that absorbs the shocks at each contact by
making available a priori Degrees of Freedom (DoF) to comply with the impact force.
Compliance, at the joints, is actively achieved by adjusting the PD gains right before
the contact, the time of which can be continuously computed. We present proof-of-
concepts of our approach in simulation and experimented it on the HRP-4 humanoid
platform for two frequent falls: Front Fall (FF) and Back Fall (BF). The Side Fall (SF)
is only considered theoretically and in simulation here, because of the high experimental
risk of such falls for the robot.

Taxonomy of fall singularities

Humans intuitively try not to fall on knees first or elbows first, given that in such
conditions, the damage on the skin, the bones and the body can lead to severe injuries.
To prevent them, whenever possible we use our feet or hands to meet contacts and
absorb impacts; some people do even roll if well trained. Hence, we start from this
common sense observation to devise strategies of falling for humanoids. We term fall
singularities the end-falling configurations that the robot should try to avoid at best.
Fall singularities depend also on the surrounding environment and tell us that there
are configurations which could potentially destroy the robot at the impact. First, we
establish a taxonomy of fall-singularities that we illustrate in Fig. 2.1, and which cover
such fall-singularities as they occur on a flat ground.

Definition 1 (Fall Singularity) For all joints, a fall singularity exists if the line
passing through the impacting body joint and its parent joint is aligned with the impact
force direction.

There are others fall singularities which are less obvious and happen when having
simultaneous contacts at the end-fall. Indeed, when having two or more contacts, closed
kinematics loops occur and a fall singularity can arise in the way illustrated in Fig. 2.2.

We use the following method to recognize such configurations. Considering only the
kinematic loop, let Fext

i be the impact force of the ground and Ji be the body Jacobian
matrix for the impact point i. Let SM be the motor selection vector (which have 1
for the considered motor and 0 otherwise). Thus, closed kinematic loop singularities
happen when: (∑

i

JT
i Fext

i

)
· SM = 0. (2.1)

In such fall singularities, the impacts generate no torques on the motors, but it also
means that it is impossible for these joints to comply. When a fall occurs, it is appro-



2.2 Taxonomy of fall singularities 47

(a) (b) (c)

(d) (e) (f)

Figure 2.1 – Taxonomy of fall singularities. The red line is the impact force direction. The green lines
are the possible unaligned axis the robot can choose to avoid the considered fall singularity. γi, i ∈
hp, ap, f, b, Sp, SR represents minimal angles to the fall singularity. (a) represents fall singularities due to
the elbow pitch angle, the hip pitch angle and the foot pitch angle in FF. (b) shows the singularities for
the ankle pitch angle and the elbow pitch angle in BF. (c) is a less common singularity of the chest pitch
joint that happens when the robot falls on its buttock. (d) – (f) shows a singularity due to the shoulder
pitch angle in respectively FF, BF and SF.

(a) Front fall (b) Back fall

Figure 2.2 – Taxonomy of closed kinematic loop singularity. γi, i ∈ SL, SR represents minimal angles to
the fall singularity. The red line is the impact force direction. The green lines are the possible unaligned
axis the robot can choose to avoid the considered fall singularity.



48 Fall singularities

priate to use the motors as much as possible so that they can act as adjustable active
spring-dampers and absorb impact shocks in the best possible way, resulting in the
least possible damage.

To ensure that the robots avoid fall singularities minimal angles to their respective
singularity can be considered. Those angles have been chosen so that the concerned
motor can at least apply 15% of its maximal force in the impact direction (normal of
the surface). The nice part of that definition is that it does not depends neither on the
motor strength nor on the link length but only on the angle itself. We chose an angle
of 10° which corresponds to around 17% of the motor maximal applicable force.

Singularity avoidance controller

We devised a set of tasks and their parameters embedded with a multi-objective two-
priority Quadratic Programming (QP) controller to avoid fall singularities. The sen-
sors/estimators data needed to be fed back to the controller are the distances between
the robot links and the environment (the ground in this study), the robot postural
configuration, and the robot attitude orientation obtained from the IMU. Here, we
consider humanoid falls from an upright posture.

Fall Direction

FF 

SF 

SF 

BF 

n 

dt 

df 

θ"

Figure 2.3 – Main directions of a fall. FF, SF and BF respectively stands for Front Fall, Side Fall and Back
Fall. dt is projection of the torso yaw joint on the gravity orthogonal plan and df is the falling direction
vector. n is the normal of the ground, df is the fall direction vector and dt is the torso yaw projected
vector.

Having a body symmetry only in the sagittal plane, three mains directions, w.r.t
the usual waist egocentric humanoid frame, are chosen: FF, BF and right/left SF.
What differentiate SF from the other two directions is that only one arm and one leg
will most likely impact the ground. For BF, the two legs, the arms, the elbows can
possibly impact the ground. The FF adds possible impacts on the knees. In FF and



2.3 Singularity avoidance controller 49

BF we can reshape the posture to have more impact points possibilities, and the shock
can be absorbed by different parts of the robot.

Therefore, the use of BF and FF shall be preferred. A way to do it is to reshape
the posture of the robot using the torso yaw joint and the humanoid arm endpoints
(exploiting inertia). In the most general case, the humanoid hands/grippers are likely
to be fragile, and the best option is to fall on the wrist-kind junction of the robot by
keeping the hands away from impact (pulling them to the most up positions).

Once falling is detected, we compute the direction of fall. For a general environment
configuration and robot posture, the direction can be obtained based on the IMU,
projected in the gravity orthogonal plan. For our case study we assume a flat ground.
The falling direction df is computed in a closed-loop way (i.e. during falling)

df =
comrt0 − comrtd0
‖comrt0 − comrtd0 ‖

, (2.2)

where td if the fall detection time, t > td the current time and comr0 the CoM projection
point on the gravity orthogonal plan in the world frame.

Once df is obtained, the control strategy is always to try to position the humanoid’s
right and left arms from the right and left side of df respectively. In the case of SF,
this behavior will favor landing as close as possible to a FF or BF falls. Let dt be the
projection of the vector defining the torso yaw joint on the gravity orthogonal plan.
We design four main tasks:

• minimize θ = ̂(dt; df ) through posture reshaping;

• left/right wrist placing on left/right part of df ;

• use yaw joint to align the coronal plane with that of the ground;

• avoid fall-singular configurations.

Front fall

Fig. 2.1a gives a singularity linked to the elbow which is also a common Cartesian
singularity. To get rid of it, we set an angle in the elbows. A way to reduce impact
damages is to be compliant in the articulations. A compliant control can be realized
but it needs the motors to be able to operate in any direction with maximum torque.
We use the manipulability criterion measurement Yoshikawa [1985] for the 2-links arms.

In the following we reason in the sagittal plane. First, we compute the shoulders
angle. Then, avoiding the singularity showed in Fig. 2.1d may be performed by po-
sitioning the hand relative to the shoulder. For a given elbow angle δe, we need to
compute the angle δ represented in Fig. 2.4. Ph represents the closest point on the
hand to the ground, Pg is the closest point on the ground to the shoulder and O the
center of the shoulder joint. Given the vectors OPh and OPg, δ is easily deduced. The
sign of delta is calculated from df ·OPh. The same reasoning applies to the transverse



50 Fall singularities

Figure 2.4 – Search of a shoulder sagittal angle in a FF. O is the center of rotation of the shoulder, Pg
(resp. Ph) is the closest point on the ground (resp. the hand) to the shoulder (resp. the ground), n is the
normal of the ground and δe is the current elbow angle. δ is the error angle.

plane, but we need to account for the closed kinematic fall singularity illustrated in
Fig. 2.2a. To cancel it, we need to control the δ angle in Fig. 2.5 so that the line linking
the origin of the elbow and the wrist point is not aligned. We have two possible options
concerning the terminal point and hence δ: 1) if we know the friction coefficient, we
can consider adjusting the δ angles of both the sagittal and transverse planes to lie
within the friction cone of which the angle is determined from the friction coefficient;
we may assume that it will be a good approximation of the reaction force direction;
2) consider that dynamic friction would allow dissipating impact energy as the wrists
will slide and hence favor rather a wide δ in the wrist we want it to slide. Here, the δ
angles clearances are set ad-hoc.

δ"

Figure 2.5 – Closed kinematic loop singularity avoidance in a FF. The blue cones are the friction cones. δ
is the shoulder roll angle the robot should aim for.

The lower part of the robot embeds the strongest motors, thus, it can perform
better compliance than the arms (and hence absorb higher impacts). It is preferable



2.3 Singularity avoidance controller 51

that the two feet impact at the same moment, then the two knees at the same moment,
in this order. This allows a better absorption of the impact and cancels out any torque
generated by the collision force. To do so, hip joints are used while still paying attention
to the singularity illustrated in Fig. 2.1d.

Back fall

For back falls, it is preferable that the arms touch the ground before the buttocks to
have more compliance clearance. Here, the choice for δe must not be too small and can
still be based on the manipulability criterion. This is due to the fact that humanoid
robots have a shoulder joint limit more constraining backwards.

Ph 

Pb 

O 

δe#

n δ+#δ%#

Figure 2.6 – Search of a shoulder angle in a BF. O is the shoulder center of rotation, n is the ground
normal, Pb (resp. Ph) is the closest point on the ground (resp. the hand) to the buttock (resp. the ground)
and δe is the current elbow angle. δ- and δ+ are the possible solution of Eq. (2.3).

Now that the elbow angle is set, a control similar to the FF is made. Let’s find
δ, the angle needed to set the shoulder pitch angle. First, we get the nearest buttock
point Pb to the ground, the nearest hand point Ph to the ground and the shoulder point
O. Here, an offset of the point Pb is made such that the targeting angle makes the
hands below the buttock. An offset is set along the ground normal to get P offset

b .
Now it is possible to find δ as shown in Fig. 2.6, such that the hands are in the

plane defined by the vector n and the point P offset
b . As the angle δe is known, we can

just consider the equation of a circle of center O and radius R = OPh. Then, the point
Pn can be found by solving the system of equations:{

PnPoffset
b · n = 0

OPn
TOPn = R2

(2.3)

This equation results in two possible values. The solution is the one that is in the range
of motion of the shoulder joint and with the highest force in the direction of n (this
can be found by looking at the manipulability ellipsoid of the arm).



52 Fall singularities

In the transverse plane, the reasoning is similar to FF. As for FF, the feet should
impact at the same time without being in the fall singularity shown in Fig. 2.1b.

Side fall

The controller tries to avoid SF at best. SF must avoid fall singularities but it also
should ensure the continuity at the areas limits. Depending in the side, the left or right
arm can be put in contact first (there is no other choice if the body attitude of the
robot cannot be brought to a FF or BF schemes). The contact shall be made in a way
to initiate a rotation of the body around the contact and feet, hopefully to reach a FF
or BF with the other arm. We could not experiment real robot side falls because of
the hardware high-risk failure.

(a) Standing (b) Back fall (c) Front fall (d) Side fall

Figure 2.7 – Different fall simulations. (a) is the static posture of the robot before the push. (b) – (d) are
respectively a BF, a FF and a SF.

Compliance

In Kajita et al. [2003b], it is suggested to switch-off the motors at the impact so as
not to damage mechanical parts such as gears. It is called the “TouchDown” state. We
suggest another approach, that consists in reducing the gains of the motor PD-gains
right before the contact occurs. We show its effectiveness despite an ad-hoc constant
gain adjustment. When PD gains are reduced, the motor servos behaves like a spring-
damper, and the gains can be adjusted on-line according to the falling case. In this
experimentation, PD gains have been changed in an empiric way, however, we will
show hereafter that it is possible to adapt the PD gains on-line considering falling
speed estimation, possible posture reshaping, the environment obstacles, etc.

Simulation and experimentations

We use Gazebo as a dynamic simulator. The dynamics parameters and geometry are
those of the HRP-4 humanoid robot. The high-level control loop of the robot runs



2.5 Simulation and experimentations 53

at 5ms. All simulations are made with the robot starting from a static stable half-
sitting posture, see Fig. 2.7a. Then HRP-4 is pushed with a virtual force of 200N for
a duration of 0.2s. The detection is triggered when the torso bending is bigger than
a threshold of 15◦ (As the fall detection is complex problem, we decided to use the
same arbitrary value than other paperLee et Goswami [2013]). Back fall and Front
fall, Fig. 2.7c and 2.7b, behave as expected. The HRP-4 arms are used to do a more
compliant control and the robot does avoid a fall singularity state. The side fall is more
complex, but we considered the worst SF case where the robot does not have to reshape
for a near FF of BF states, Fig. 2.7d. In this case, the controller succeeds in not falling
in singularity, but the arm is not able to comply enough in such a posture, and it will
be crushed by the trunk, which may result in damage. This shows the importance of
favoring FF or BF falls in all situations.

Following successful trials in simulation, we decided to implement similar falling
conditions on the HRP-4 humanoid robot. Because of the fragility of the robot’s
hardware and the lack of data from Kawada (concerning the maximum impact the
gears and actuator can absorb), we decided to use a mattress, yet a relatively minimal
stiff one (> 3000N/m that increases with the deformation). We did not use any specific
implements or shock absorbing material on the HRP-4 humanoid robot, which is used
as commercially available.

The robot is placed on a stage at the same level of the mattress on which the
robot is supposed to land. HRP-4 is first put in a half-sitting posture, in front of
the mattress and then pushed frankly by the user (the exact value is unknown). The
falling controller will trigger based on the IMU threshold (z-axis > 15deg). The arms
will then be servoed according to the FF or BF strategy: secure the hands, put the
wrists in front and reduce the PD gains. We have performed several successful trials
of front falls and back falls: the HRP-4 is still ‘healthy’, in the sense that it can still
move and has not servo off the motors, after these trials.

Time (s) 

A
cc

el
er

om
et

er
 (m

/s
2 )

 

-25 

-15 

-5 

5 

15 

25 

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 

Acceleration X 
Acceleration Z 
Acceleration Y 

Falling phase  
detection                  impact 

FF 

(a) FF

A
cc

el
er

om
et

er
 (m

/s
2 )

 

Falling phase  
detection                  impact 

-25 

-15 

-5 

5 

15 

25 

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 

Acceleration X 
Acceleration Z 
Acceleration Y 

BF 

Time (s) 

(b) BF

Figure 2.8 – HRP-4 Embedded accelerometer profile. The robot is falling toward (a) x (b) -x. At the
impact the x accelerometer axis (blue line) is nearly colinear to the world z-axis.

The Fig. 2.8 illustrates the behavior of the accelerometers during the three phases
and shows the acceleration due to impact at landing, see ≈ −2.6g on the x-axis which



54 Fall singularities

will be nearly aligned with −~g at the impact.1 Notice an acceleration in the z-axis
due to the mattress motion and a quasi-zero acceleration on the sagittal plane. On
the back fall experiment, the acceleration measured on the y-axis clearly shows that
the robot did not touch down on both hands at the same time. And even if the robot
is symmetrical, the friction and the motors’ behavior in the joints may vary (due to
fatigue or damage taken before the experiment).

We do not analyze all of the joints, instead we focus on the arms. The Fig. 2.10
shows the control of the elbow to which we give more weight to handle the manipu-
lability criteria. Whereas the shoulder joints is given more weight for positioning (δ
angles in transverse and sagittal planes). Note that the positioning is made in closed-
loop fashion and is correlated to the estimate of the closed-loop computed distance to
impact. We can notice in both Fig. 2.10 and 2.9, that the impact occurs right after
the arms reach their desired state. One can also notice that at the impact, the error
between the desired state and the actual one increases as a result of shock absorption
and low PD gains.

The PD gains are reduced just before the impact is detected/estimated: the P gain
is divided by a factor of 1000 and the D gain by a factor of 100. On the Fig. 2.9, the roll
angles are not solicited (they are of the same absolute value but opposite sign because
of the rotation convention). The pitch angles behave as the elbow.

Conclusion and discussion

The fall-defined singularities combined with active compliance is a new way to con-
sider falls control. They give a justification to the principle of self damage reduction
algorithms. From that, new controllers can be developed to perform an avoidance sin-
gularity control. The controller developed here is a geometrical one. From simulation,
it can be seen that it is not sufficient. Indeed, when rotation is induced to the robot
(e.g. through pushing a shoulder), the rotation makes fall areas vary and the robot
must re-adjust the positioning. The last part to be improved is the active compliant
control. The aim is to find for each joints the gains P and D that maximize shock ab-
sorption at impact. We believe that compliant cover with eventually shock dissipative
material must be combined with the controller to reduce damage in a more effective
way Battaglia et al. [2009], Kajita et al. [2016].

Fall taxonomy can be exploited to perform the reverse of what is proposed here.
From a design point of view the fall singularities show the worst impact cases the
skeleton and the cover should resist. Thus, it is possible to consider these cases when
designing the robot in order to make the robot able to passively absorb a part of the
impacts.

1The acceleration along x-axis in Fig. 2.8a and Fig. 2.8b might be saturated just after the impact.
It is inferred from the shape of the plots which keeps constant at their minimum/maximum. The true
peak acceleration at the impact is assumed to be 10 to 20g from the similar experiments reported in
Kajita et al. [2016]



2.6 Conclusion and discussion 55

This chapter is only considering humanoid robots, but all the work can be extended
to different kinds of multi-limb robots. This work can be included in the graph Fig. 1.10
under the free fall box.

-1.00

-0.75

-0.50

-0.25

0.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

T
o
 e

ra
se

To erase

-0.40

-0.30

-0.20

-0.10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

T
o
 e

ra
se

Time (s)

-1.00

-0.75

-0.50

-0.25

0.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

P
it

ch
 a

n
g
le

 (
ra

d
)

To erase

Desired

Encoder

0.10

0.20

0.30

0.40

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

R
o
ll

 a
n
g
le

 (
ra

d
)

Times (s)

Left shoulder Right shoulder

Push       Fall Impact Push       Fall Impact

Figure 2.9 – HRP-4 left and right shoulders: desired and actual pitch and roll joint encoders. The first
vertical black line is the fall detection time and the second one is the impact time. From the impact time,
the PD gains are tuned down to allow a compliant behavior which leads to a bigger gap between the desired
values and the encoder values.



56 Fall singularities

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

T
o
 e

ra
se

Time (s)

Right Elbow

Push Fall Impact

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

E
lb

o
w

 j
o
in

t 
an

g
le

 (
ra

d
)

Time (s)

Left Elbow

Desired Elbow

Encoder Elbow

Push Fall Impact

Figure 2.10 – HRP-4 left and right elbows: desired and actual joint encoders.

(a) Front fall (b) Back fall

Figure 2.11 – Fall experiments on HRP-4. (a) Front and (b) Back falls experiments with HRP-4: the
user pushes frankly the HRP-4 humanoid. Falling is detected using a simple criterion, which results in
fast posture reshaping for chosen contact landing and instant PD gain reductions to absorb the resulting
impact.



CHAPTER 3

Cluttered environment and
adaptive-QP

In the previous chapter we introduced the notion of fall singularity as a configuration
in which the robot should not land at the impact time. We then designed a free fall
controller that enables the avoidance of these singularities by the falling robot. The
suggested solutions in Chapter 1 and Chapter 2 are mostly considering a fall in the
sagittal plane (see Fig. 1.1) without any surroundings. In this chapter we will extend the
notion of active compliance of the previous chapter while allowing fall in any directions
in a cluttered environment.

Introduction

This chapter addresses the following two questions: 1) what to do in the case of a fall in
a cluttered environment, and 2) how to extend the concept of gains tuning in a general
setting. Both questions are an extensions of Chapter 2 and their answers lie under the
Ukemi box in a cluttered environment in Fig. 1.10.

In our proposed method, we consider separating a fall into two phases: the pre-
impact and the post-impact phase. The pre-impact phase should prepare the robot to
receive the impact so that it can comply to it. Typically, at the end of this phase, the
robot should be away from the singularity postures. The post-impact phase consists
in using a method to tune PD gains automatically in an adaptive way. To do so,
we have integrated the gain adaptation problem directly into the multi-objective QP
formulation. This way, we can benefit from the on-line capabilities of the QP control
approach –which has been widely adopted for controlling humanoid robots, and at
the same time use the remaining DoF of the control for other tasks that can appear
to be useful or necessary during falling, such as posture and CoM tasks as will be



58 Cluttered environment and adaptive-QP

demonstrated later.

Pre-impact phase

The pre-impact phase is an essential phase. Having a bad behavior in this phase could
lead to the impossibility of performing a compliant control afterwards. It is in this phase
that the robot can move/reshape its posture and prepare to the impact. We can divide
it into three main parts: 1) Fall detection, 2) Environment analysis, and 3) Pre-impact
strategy execution.

In step 1) a fall detection system must be constantly running in parallel to the
performed tasks as a background process. The system should be able to stop the
execution of the current tasks and switch to the pre-impact strategy execution whenever
necessary. Note that this step might also include a fall recovery mode if possible.

In step 2) the robot performs an analysis of the situation (we exclude having hu-
mans or valuable items in the surroundings) in order to process useful information
such as estimating the current pose of the robot and building a map of the surround-
ing’s planar surfaces. Step 2) is out of this thesis’ scope. We shall consider it as a
black-box module and assume that the environment, the robot state, and the available
environment falling surfaces are known. This is a plausible assumption considering the
advances made recently in SLAM technology Salas-Moreno et al. [2014].

When the fall is detected, the controller goes through different states at each iter-
ation loop in step 3), as follows:

(i) estimate the fall direction,

(ii) search landing points,

(iii) update falling tasks,

Figure 3.1 – Examples of falling in a cluttered environment. On the left, the robot is falling on randomly
positioned multiple size boxes. On the right, the robot is falling toward a common table.



3.2 Pre-impact phase 59

This step is detailed with Eq. (2.2) and in Section 3.2.1 and 3.2.2.
Since the robot is under multiple tasks and constraints, we rely on a multi-objective

weighted QP controller Vaillant [2015]. The highest priority level is the QP constraints
that must be satisfied without compromise:

• Joint limits, joint velocity limits, and torque limits

• Self-collision avoidance,

• The equation of motion and the physics model.

The second priority level (lowest level) are the tasks that are formulated as set-point
tasks and combined in a weighted sum to form the objective function of the QP. A
set-point task is defined as the minimization of the following quadratic cost:

Esp =
1

2
‖SM(kpϑ+ kvϑ̇+ Ĵ q̈ +

˙̂
J q̇)‖2 , (3.1)

where SM is a selection matrix, kp and kv are proportional and damping task gains (not
to be confused with the low-level joint PD gains that will be computed in Section 3.3,
ϑ is the task error and Ĵ is its Jacobian. More details on the controller can be found
in Vaillant et al. [2016b].

In the following three subsections, we give further details on the three states de-
scribed in step 3).

Search of landing points

In order to choose the landing/impact points, we first need to know the potential impact
surfaces. For a humanoid robot, the impact points are the hands, feet and knees (see
Chapter 2). We also assume here that a SLAM routine coupled with appropriate
segmentation algorithms can return the available planar surfaces in the environment,
as in Salas-Moreno et al. [2014]. In simulation however this information is readily
available.

To lower the damage risks resulting from the fall, we need to decide where to locate
the impact points. These should be reachable, meaning that the robot can change its
configuration in order to meet the desired landing spots during the falling time.

We approximate the robot as rigid stick that is falling, see Fig. 3.2 (green model
on the figure). This stick lives in the plane defined by a contact point (if any, or a
projection of the nearest point from feet), the fall direction vector and the gravity
vector. The length of the stick is set to the distance between the latter point and
the middle of the two shoulders. Both the plane of motion of the stick and its length
are adjusted at each time step. The trajectory of this stick in the defined plane is a
2D circle. The shoulders’ trajectories are directly computed from it and the desired
whole-body posture of the robot is then generated aiming for the hands to be on their
respective shoulders’ trajectories.



60 Cluttered environment and adaptive-QP

Figure 3.2 – Illustration of the search of possible impact points. The yellow arrow is the fall direction, the
green lines represent a simplified stick model. The dotted arc is its trajectory. The transparent red plane
is the plane where an impact surface exists. The transparent green ellipsoid is a gross representation of
the polyhedron representing the arm’s reachable workspace. Black and white points are the MPIP and BIP
respectively. The red line represents the minimum distance between MPIP and BIP.

Finally, we compute all the intersections between shoulders’ trajectories and the
planes of the surfaces returned by step 2). We call these points Most Probable Impact
Point (MPIP) hereafter. Fig. 3.2 represents one such MPIP as a black point. These
points may or may not be on the environment surfaces (in the example of Fig. 3.2,
the MPIP does not belong to the environment), this is why we also need to compute
for each MPIP its closest point belonging to its respective environment surface. These
closest points on the environment surfaces are called Best Impact Point (BIP) (Fig. 3.2
represents the BIP corresponding to the MPIP as a white point). Note that the BIP
are never on the edge of the surface, we add a safe distance (few centimeters) to the
edge to avoid dangerous contact points.

We now need to make a choice between the different available BIP. First, the arms’
workspaces define two polyhedra which are split in two by the coronal plane, leading to
one polyhedron for reachable Front Fall points and one for reachable Back Fall points.
We then compute the centroid of each polyhedron. Note that these are calculated off-
line only once and are associated with the geometric model of the robot. Placing the
centroid on the MPIP, the BIP is selected if the segment of line between the MPIP
and the BIP is inside the given polyhedron.

In case more than one BIP satisfies the condition, then the highest BIP (highest
vertical coordinate) is chosen because the impact happens sooner and less potential
energy is converted into kinetic energy before the impact. In case none of the points
are inside the polyhedron, the BIP having the minimum distance to its respective MPIP
is chosen.



3.2 Pre-impact phase 61

Reshaping tasks

To make the robot directly face the impact environment (Front Fall) or directly oppose
it (Back Fall), since those two falls are the safest falls (see Chapter 2), we propose to
use a vector orientation task which aims to align two vectors, one of which is linked
to the torso and the other to the environment. A posture task is also included to help
avoiding singular falls as defined in Chapter 2 and to bend the knees to lower the CoM.
Finally, end-effector position tasks are used to reach the desired impact points. All
of these tasks are run and their targets updated at each control loop. To implement
a new set-point task (Eq. (3.1)), the task error ϑ, the task Jacobian Ĵ and the time-

derivative of the task Jacobian
˙̂
J are needed. We describe these derivations in the next

subsections.

Vector orientation task

Let utarget be the desired goal unit vector and r,bu a unit vector in the robot body
coordinates. The task error is given by:

ϑvo = utarget − 0Er,b
r,bu ,

= utarget − 0u , (3.2)

where 0Er,b is the rotation from the body b to the world. As the target vector is con-
sidered as fixed in the world, only the time-derivative of the robot vector is considered:

0u̇ = 0Er,b[
r,bω × r,bu] ,

= -0Er,b(
r,bu×)r,bJang

r,b q̇ ,

= Ĵvoq̇ . (3.3)

Here, r,bω is the angular velocity of the body in body coordinates and r,bJang
r,b is the

angular part of the body Jacobian in body coordinates. Differentiating one more time,
the time-derivative of the task Jacobian is then:

˙̂
Jvo = 0Er,b[

r,bω × (r,bω × r,bu) + r,bavp,ang × r,bu] , (3.4)

where r,bavp,ang = r,bJ̇ang
r,b q̇ is the angular part of velocity-product of the acceleration in

body coordinates Featherstone [2014].
The targeted vector is set so that utarget ∈ D0 and utarget · df = 0 (Fig. 3.3). r,bu

is chosen perpendicular to the torso sagittal plane in the torso coordinates. There are
four possible solutions so both vectors must be chosen depending on whether a front
fall or a back fall is desired.

Relative distance task

Ideally, we would like that multiple impacts occur all at the same time, but this is
difficult to achieve in practice because it requires the estimation of the exact impact



62 Cluttered environment and adaptive-QP

Figure 3.3 – The four possibilities for the vector orientation task. The blue vectors are the two possible
body vectors r,bu. The yellow vector is the fall direction and the two orange vectors are the possible targets
utarget.

time. A solution is to control the distance between the desired environment impact
surfaces and the robot impacting bodies so that the relative error of the distances
between two pairs of surface-impacting bodies is zero. One of the advantages of this
task is that it handles different heights of surfaces. We remind here that the considered
surfaces are planar and the environment is static, so the time-derivatives of surfaces’
normal are zero. Let r,b1,p1r0 be the closest point of a body b1 to a surface s1 and r,b2,p2r0

the closest point of a body b2 to a surface s2. Let e,s1,p1r0 and e,s2,p2r0 be points on s1

and s2 respectively. The distance of a pair of impact body and surface is:

di = ‖r,bi,pir0 − e,si,pir0‖ = ‖di‖, i = 1, 2. (3.5)

Here, we do not want to consider the minimal distance but rather a distance along
an axis, which is more useful in our application. The task is designed to modify the
distance between robot bodies and surface planes, so the distance along the normal of
a plane is more relevant. This method controls only the motion along the normal of
the plane, while the motion along the plane itself is left free and will be handled by a
position task for reaching the desired impact points.

Let now u1 and u2 be unit vectors linked to s1 and s2 respectively. The task error
is:

ϑrd = d1 · u1 − d2 · u2 . (3.6)

The surfaces s1 and s2 are considered fixed so the time-derivatives of ui and e,si,pir0

is zero (i = 1, 2). Note that if this assumption is false, then it means that the robot



3.3 Post-impact phase 63

would fall on a moving environment or on a curved surface. It is possible to adapt the
tasks to handle such cases but we will not consider them here. The time-derivative of
ϑ is given by:

ϑ̇rd = v1 · u1 − v2 · u2 ,

= (uT
1 J

lin
r,b1,p1

− uT
2 J

lin
r,b2,p2

)q̇ ,

= Ĵ rdq̇ , (3.7)

where J lin
bi,pi

is the linear part of the body Jacobian of point pi associated to body bi
(i = 1, 2). The Jacobian time-derivative is:

˙̂
J rd = uT

1 J̇
lin
b1,p1
− uT

2 J̇
lin
b2,p2

. (3.8)

End-effector position task

The end-effector position task is a common task Vaillant et al. [2016b]. The points
on the hands to control are the closest points to their respective chosen BIP. We also
mention that the task should be written in the surface frame so that only the x and
y coordinates are controlled by the task. The z-coordinate (normal to the surface) is
handled by the relative-distance task above.

Post-impact phase

The pre-impact process described in Section 3.2 shapes the robot into a “compliable”
posture just before the impact. The impact is produced whenever the feet, knees or
hands are about to touch down. From that instant, the controller behaves as an active
compliance for lowering the damage, using a single QP whole-body controller.

In position-controlled humanoids, the low-level actuator controller consists in a PD,
which leads to the simplified governing equation:

Hq̈ + c− JTGλ = τ = Ke +Bė , (3.9)

where H ∈ RNdof×Ndof is the robot inertia matrix, c ∈ RNdof×1 the gravity and Coriolis
vector, J ∈ R6Nc×Ndof the contact Jacobian, G ∈ R6Nc×NcNg the matrix of friction
cone generators, λ is the contact forces magnitude vector, and τ the generalized forces
(comprising the actuation torques for the actuated joints and zero entries for the non-
actuated ones). The parameters K ∈ RNdof×Ndof and B ∈ RNdof×Ndof are the diagonal
matrices of PD gains, e = qref − q and ė = q̇ref − q̇ are respectively the errors in
joint position and velocity. For the free-flyer part, the torque is null so are K, B, e
and ė. qref is set to the current configuration just before the impact and q̇ref is set
to zero. Note that in the case of joints without motors (e.g. the free-floating base)
the corresponding entries in the diagonals of K and B are zeros. We denote K and B
the vectors containing the diagonal entries of K and B respectively, i.e. K = diag(K)



64 Cluttered environment and adaptive-QP

and B = diag(B). Ndof, Nc and Ng are respectively the number of degrees of freedom
(dof) of the system, the number of contact points and the number of generators of the
linearized friction cones. We also define Nm as the number of motors. K and B have
constant values that encode the default high stiffness behavior of the motors. These
values are generally very high to make the motors track the reference values as fast
as possible accounting for perturbations, inertia –and more general dynamics, while
avoiding overshooting. In order to comply, we need to relax and adapt these values.

1-dof analysis

Let’s consider for the sake of analysis a mass-spring-damper system. This is a well
known system that was thoroughly studied in the control literature. Unfortunately,
there is not much existing work on the problem of gain-tuning of such a system at
impact. In this section we aim to solve our problem analytically in order to have a
good understanding of the problems at stake.

Analytical resolution

The analytical solution of our system comes from the resolution of the following differ-
ential equation:

mz̈(t)−Ke(t)−Bė(t) +mg = 0

⇔ mz̈(t)−K(zref − z(t))−B(żref − ż(t)) +mg = 0 (3.10)

where m is the mass of the system, z(t) is the position, g the gravity and K, B the
gains that need to be tuned. This equation can also be interpreted as a PD controller
of a linear motor supporting a mass m under the gravity g. In such a case, the zref

is the desired position which is set to the position just before impact q-(0) and żref is
always 0.

When solving for z(t), three distinct solutions are found. An under-damped solution
occurs if B2 < 4mK, in which case the system is oscillating at its natural frequency.
The critically-damped solution occurs when B2 = 4mK. It is the fastest way to reach
the zdes position as a stable equilibrium point without overshooting. The last solution
is the over-damped system when B2 > 4mK. This leads to a long time reaching zdes.
The derivations of the following equation are made with the symbolic computation
software Maplesoft [2017].

Off-line non linear resolution

From Eq. (3.10), it is possible to find the gains K and B such that:

• The joint limits are respected

• The joint force limits are respected



3.3 Post-impact phase 65

• The robot reaches a zero velocity

Here, since we cannot afford overshooting and joint limit violation, we are only inter-
ested in over-damped solutions. It is thus a necessity to always include the constraint
equation B2 > 4mK of the system. Note that we do not consider the joint velocity
limit. This is due to two main consideration: i) During all the post-impact phase,
the system is slowing down; ii) The joint velocity comes from the impact which is not
directly controllable (input) so, the post-impact velocity might or might not cross the
velocity limit.

Solving Eq. (3.10) with t, K and B as parameters leads to

z(t,K,B) =
e- 1

2m
(B−√γ)t(Bg + 2Kż(0) +

√
γg)m

2
√
γK

−

e- 1
2m

(B+
√
γ)t(Bg − 2Kż(0)−√γg)m

2
√
γK

+
Kz(0)−mg

K
(3.11)

with γ = B2 − 4Km.
To reduce the expressions and the number of variables, and without loose of gener-

icity, the initial condition and system intrinsic parameters are numerically set so that
m = 1

g = 9.81

z(0) = 0

ż(0) = -5

. (3.12)

Initializing the velocity to a value different from zero simulates a system configuration
just after an impact. Suppose the system is impacting with a net velocity v- = -0.5ms-1

and ż-(0) = 0ms-1 and that the impact is inelastic (no bounce), the remaining velocity
in the joint is then ż+(0) = -5ms-1. z(t,K,B) becomes

z(t,K,B) =
e- 1

2
(B−√γ)t(-10K + 9.81(B +

√
γ)

2
√
γK

−

e- 1
2

(B+
√
γ)t(10K + 9.81(B −√γ)

2
√
γK

− 9.81

K
. (3.13)

As we seek the solution in the over-damped domain, γ > 0 is added as a constraint of
the equations. A 3d representation (Fig. 3.4) of z over time as a function of K and B
can thus be obtained.

Taking the time-derivative of z(t,K,B) leads to the joint velocity

ż(t,K,B) =
(-B +

√
γ)e- 1

2
(B−√γ)t(-10K + 9.81(B +

√
γ)

4
√
γK

−

(-B −√γ)e- 1
2

(B+
√
γ)t(10K + 9.81(B −√γ)

4
√
γK

. (3.14)



66 Cluttered environment and adaptive-QP

0

10

20
30
40
50

0510152025
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(a) t = 0ms

0

10

20
30
40
50

0510152025
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(b) t = 50ms

0

10

20
30
40
50

0510152025
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(c) t = 100ms

0

10

20
30
40
50

0510152025
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(d) t = 150ms

0

10

20
30
40
50

0510152025
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(e) t = 200ms

Figure 3.4 – Evolution of the position z for a given set (K ∈ [0..50], B ∈ [0..25]). The red axis is the
stiffness K in N.m-1, the green axis is the damping B in N.s.m-1 and blue axis is position z in m.

The 3d representation of ż over time as a function of K and B is also output (see
Fig. 3.5).

0

10

20
30
40
50

0510152025
−5

−4

−3

−2

−1

0

(a) t = 0ms

0

10

20
30
40
50

0510152025
−5

−4

−3

−2

−1

0

(b) t = 50ms

0

10

20
30
40
50

0510152025
−5

−4

−3

−2

−1

0

(c) t = 100ms

0

10

20
30
40
50

0510152025
−5

−4

−3

−2

−1

0

(d) t = 150ms

0

10

20
30
40
50

0510152025
−5

−4

−3

−2

−1

0

(e) t = 200ms

Figure 3.5 – Evolution of the velocity ż for a given set (K ∈ [0..50], B ∈ [0..25]). The red axis is the
stiffness K in N.m-1, the green axis is the damping B in N.s.m-1 and blue axis is velocity ż in m.s-1

Lastly, the force over time, K and B is computed (Eq. (3.15) and Fig. 3.6).

f(t,K,B) = K(zref − z(t,K,B))−Bż(t,K,B)

= -
(2.5B2 − 5K − 4.905B + (4.905− 2.5B)

√
γ)e- 1

2
(B−√γ)t

√
γ

-
(-2.5B2 + 5K + 4.905B + (4.905− 2.5B)

√
γ)e- 1

2
(B+
√
γ)t

√
γ

+ 9.81 (3.15)

The Projection of the joint constraint and the torque constraint on the K-B plane
through time is shown in Fig. 3.8. Having no overshoot (and thus no oscillation in the
system) is the same as having no change of sign in the velocity. Thus, we can define
the overshoot time tos at which the velocity reaches 0. Solving Eq. (3.14) = 0 as a



3.3 Post-impact phase 67

0

10

20
30
40
50

0510152025
0

50

100

150

200

(a) t = 0ms

0

10

20
30
40
50

0510152025
0

20

40

(b) t = 50ms

0

10

20
30
40
50

0510152025
0

10

20

30

(c) t = 100ms

0

10

20
30
40
50

0510152025
0

5

10

15

20

(d) t = 150ms

0

10

20
30
40
50

0510152025
0

5

10

15

(e) t = 200ms

Figure 3.6 – Evolution of the force f for a given set (K ∈ [0..50], B ∈ [0..25]). The red axis is the stiffness
K in N.m-1, the green axis is the damping B in N.s.m-1 and blue axis is the force f in N

function of K and B, we get

tos =
ln
(

- 4905B−2500K−9623.61
1250B2−1250B

√
γ−2500K−4905B+4905

√
γ+9623.61

)
√
γ

. (3.16)

This equation is stiffness-dependant and damping-dependant. The joint limit constraint
is given by

z ≤ z(t = tos, K,B) ≤ z. (3.17)

Here, z and z are the lower and the upper bounds and z is given in Eq. (3.10).
The force limits can be reached in three possible ways: i) high damping when having

high velocity; ii) high stiffness when having high error; iii) a mixed of the two. In this
study, we considered impacts involving short post-impact distance between the initial
position and the limit and high post-impact velocity. It means that the maximum force
value comes from the damping of the velocity and not from the stiffness linked to the
distance. Moreover, since we will only slow down the system, we can consider that the
maximum force is reached at t = 0 thus giving the constraint:

f ≤ f(t = 0, K,B) ≤ f. (3.18)

This assumption is confirmed in this example with Fig. 3.8b as the force limit is getting
less an less restrictive with time. As only the over-damped system is taken into account,
a third constraint is added.

4K −B2 < 0. (3.19)

Finally, to find the gains, we solve the nonlinear optimization problem{
min
K,B

K2 +B2

s.t. Eq. (3.17) – (3.19)
(3.20)

that finds the minimum solution for K and B that respects the constraints. The
solution of this problem has been computed in a Matlab simulation MATLAB Software



68 Cluttered environment and adaptive-QP

[2016] and the result is shown in Fig. 3.7. In this example, the impulse happens at the
time t0 = 0 such that at t-0 the velocity is zero and at t+0 the velocity is -5m.s-1. This
means that the impulse is

ι =

∫ t+0

t-0

f(t)dt = m(ż(t+0 )− ż(t-0)) = −5. (3.21)

We also set z(0) = 0, z = -0.5, f = 60.

0 10 20 30 40 50

K (in N.m-1)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

B
(i

n
N

.s
.m

-1
)

(a) Solution region (z = -0.5)

0 10 20 30 40 50

K (in N.m-1)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

B
(i

n
N

.s
.m

-1
)

(b) No solution (z = -0.3)

Figure 3.7 – Computation of the solution region depending on the problem constraints in the K-B domain.
The blue curve represents Eq. (3.19), the green Eq. (3.18) and the orange Eq. (3.17). The possible solutions
lie in the white region. The red dot is the solution of the QP Eq. (3.20).

When the joint limit is not too close to the current position (Fig. 3.7a), we are able
to find a set of solutions that respect all the constraints (Fig. 3.9). On the other hand,
if the joint limit is set to 0.3 instead of 0.5 (much closer to the current position) as in
Fig. 3.7b, no solution can be found. We can draw two conclusions from this study: i)
the solutions to the problem are dependent on the system configuration, which means
that the pre-impact phase is crucial; ii) the search for a single pair of (K,B) may not be
the best choice. We have assumed here that the stiffness and damping coefficients stay
constant during the post-impact phase. However, from Fig. 3.8a we can see that the
joint limit constraint does not influence the choice of K and B before 0.07s. Moreover,
Fig. 3.8b shows that after 0.03s K and B can be largely increased without reaching
the torque limit.

These concerns lead to the consideration of finding a time-varying stiffness and
damping coefficients during the post-impact phase. This is the goal of the following
subsection below.



3.3 Post-impact phase 69

0 20 40 60 80

K (in N.m-1)

0

5

10

15

20

25

B
(i

n
N

.s
.m

-1
)

0.07s
0.1s
0.2s

0.5s
1.0s
3.0s

(a) Joint limit projection through time.

0 20 40 60 80

K (in N.m-1)

0

5

10

15

20

25

B
(i

n
N

.s
.m

-1
)

0.0s
0.005s

0.01s
0.03s

(b) Force limit projection through time.

Figure 3.8 – Projection of the joint limit and the force limit on the K-B plane for different times with
z = -0.3m.

0.0 0.2 0.4 0.6 0.8 1.0
Time t (in s)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

P
os

it
io

n
z

(i
n

m
)

(a) Evolution of z(t).

0.0 0.2 0.4 0.6 0.8 1.0
Time t (in s)

−5

−4

−3

−2

−1

0

V
el

o
ci

ty
ż

(i
n

m
.s

-1
)

(b) Evolution of ż(t).

0.0 0.2 0.4 0.6 0.8 1.0
Time t (in s)

0

10

20

30

40

50

60

F
or

ce
f

(i
n

N
)

(c) Evolution of f(t).

Figure 3.9 – Evolution of the different joint parameters through time. The system reaches the joint limit
without crossing it and after around 0.5s it is completely stopped.



70 Cluttered environment and adaptive-QP

Multi-dof on-line solution

Our novel idea is to use a multi-objective QP formulation in the X = (q̈,λ,K,B)
decision vector.

First, to handle the impact/contact, a constraint is added so that at the contact
points, the velocity is zero. This condition is realized with the following constraints Vail-
lant et al. [2016a]:

SM

(
v − v

∆T
≤ J q̈ + J̇ q̇ ≤ v − v

∆T

)
, (3.22)

where SM is a n × 6 (n ≤ 6) selection matrix, v and v are the minimal and maximal
body velocity.

The primary objective of a compliant behavior is the motor’s constraints. They are
modeled as box torque constraints and added to the QP as follows

τ ≤ Ke−Bė ≤ τ . (3.23)

The other box constraints are the bounds over the parameters in X:
q̈ ≤ q̈ ≤ q̈
λ ≥ 0
K ≥ 0
B ≥ 0

. (3.24)

Important note: in post-impact, constraints on joint limits and velocity limits are
purposely not inserted as constraints in the QP. The reason for this is that we have no
control over the impact behavior. Indeed, the impact is imposed to the robot in a very
limited time. If it is large enough, the generated velocity would make the QP fail to
find a feasible solution so the robot would remain stiff. Thus, the main advantage of
not taking limits as constraints is that the robot will always comply until it has fully
absorbed the post-impact dynamics or until it reaches a mechanical stop (joint limit).
On the other hand, in case the impact is not large enough, nothing guarantees that
the robot will not reach a joint limit. In order to ensure that the joints are kept inside
their limits, a basic strategy would be to give high weight and stiffness to a posture
task instead. This amounts to changing the ‘priority’ level, i.e. shifting the joint limit
constraints from the constraint set to the cost function in the QP.

Finally, the QP writes as follow:{
min

q̈,λ,K,B

∑
k ωkE

sp
k + ωλ‖λ‖2 + ωG(‖K‖2 + ‖B‖2) ,

s.t. Eq. (3.9), Eq. (3.22) – (3.24)
(3.25)

where k is an index over the tasks (posture, CoM). The number of parameters is equal
to dim(X) = NX = Ndof + NcNg + 2Nm, which is almost three times the number
of variables of the more usual form of the QP used for general-purpose control (i.e.
without K and B). In order to improve the performance, we choose to restrain the



3.4 Simulations 71

gain adaptation only to a selected set of joints directly involved in impact absorption.
We propose to select all the motors in the kinematic chain between the end-effector
contact points and the root of the kinematic chain of the robot. For example, if a
contact is on the hand (actually the wrist on the HRP-4 robot), then the motors of the
elbow and the shoulder are retained.

Once the joints are selected, we only need to extract their corresponding lines in
the matrices H and JTG and in the vectors c and τ . The other joints need also to be
consistent with the dynamics and the torque limits, so a new constraint is added to the
QP. The constraints (Eq. (3.9) and (3.23)) are removed and the following constraints
are added to the QP Eq. (3.25):

HSq̈ + cS − (JTG)Sλ = KeS −BėS

τ S ≤ KeS −BėS ≤ τ S

τNS ≤ HNSq̈ + cNS − (JTG)NSλ ≤ τNS

(3.26)

with the subscript S (resp. NS) designating the matrix/vector of selected (resp. non-
selected) rows.

Note that both the pre-impact and post-impact stages can be performed. As all
bodies are not impacting at the same time (in a front fall the knees generally impact way
before the hands), this QP form allows to perform both pre-impact and post-impact
in parallel. (At knees’ impact, the legs are set to the complying behavior whereas the
upper part of the robot continues its pre-impact stage).

Simulations

A first simulation has been set up using Matlab software with a double inverted pen-
dulum (see Fig. 3.10).

Figure 3.10 – 2-DoF system under the gravity g. An impact is simulated by injected a velocity v+.

We have set the system parameters to be ∀i ∈ [0, 1]: mi = 1Kg the mass of
the links, li = 1m the length of the link, qi(0) = 1rad the joint angle at initialization,
q̇i(0) = 0rad.s-1 the joint velocity at initialization, q̈i(0) = 0rad.s-2 the joint acceleration



72 Cluttered environment and adaptive-QP

at initialization, q
i

= 0rad the lower joint limit, q0 = πrad and q1 = 7π
8

rad the upper

joint limit. τ i = -τ i = 60N.m the torque limits and g = −9.81m.s-2 the gravity in the
z-axis. At t = 1s, the impact occurs and generates a velocity v+ = -5m.s-1 at the tip
of the system in the z-axis. The reference values are then set so that qref

i = q-
i(1) and

qref
i = 0.

0 1 2 3 4 5
t (in s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
(i

n
ra

d
)

(a) Evolution of q(t)

0 1 2 3 4 5
t (in s)

−4

−2

0

2

4

6

q̇
(i

n
ra

d
.s

-1
)

(b) Evolution of q̇(t)

0 1 2 3 4 5
t (in s)

−30

−20

−10

0

10

20

q̈
(i

n
ra

d
.s

-2
)

(c) Evolution of q̈(t)

0 1 2 3 4 5
t (in s)

0

2

4

6

8

10

12

14

K
(i

n
N

.m
.r

ad
-1

)

(d) Evolution of K(t)

0 1 2 3 4 5
t (in s)

0

2

4

6

8

10

12

14

B
(i

n
N

.m
.s

.r
ad

-1
)

(e) Evolution of B(t)

0 1 2 3 4 5
t (in s)

−20

−10

0

10

20

30

40
τ

(i
n

N
.m

.r
ad

)
joint 0
joint 1

(f) Evolution of τ (t)

Figure 3.11 – Evolution of the 2-DoF system variables through time

The results are shown in Fig. 3.11. First of all, Fig. 3.11a and Fig. 3.11f show that
the QP joint and torque limits constraints have been respected. During the post-impact
phase (1s to 2.5s), the joints’ velocity are smoothly decreasing and after around 2.5s
(Fig. 3.11b and 3.11c), the system stops moving. As expected, the damping coefficient
increases significantly just after the impact to decrease continuously (Fig. 3.11e) while
the stiffness coefficient smoothly increases until reaching a constant value (Fig. 3.11d).
As soon as the post-impact phase begins, the joint velocity reaches high values with an
almost zero error between the reference and the current position. This means that with
the damping coefficient, the QP is able to output more torque than with the stiffness
which then leads to an abrupt change of B. On the contrary, when the system is about
to stop, no velocity remains in the joints, so the system only needs to compensate its
own weight, leaving constant values for K.



3.4 Simulations 73

0 5 10 15

K (in N.m.rad-1)

0

2

4

6

8

10

12

14

B
(i

n
N

.m
.s

.r
ad

-1
)

joint 0
joint 1

Figure 3.12 – K-B view of the 2-DoF system. The arrows show the direction of the curve through time.

To fully demonstrate the capabilities of the adaptive-QP, we performed several
falling simulations of the HRP-4 robot in the Gazebo simulator.

We focus on the very first experiment consisting in dropping the robot from a given
height (1m) and letting it land on its feet (at impact time t ' 0.45s with a velocity
of 4.43m/s). Four methods are compared 1) keeping the robot’s stiff initial gains, 2)
using predefined static gains (as in Chapter 2), 3) using zero gains (shutting down the
robot, in servo-off mode) and finally 4) adaptive gains (our proposed method). This
experiment illustrates the post-impact gain adaptation strategy part of the paper. The
pre-impact geometric reshaping part is illustrated along with the gain adaptation in
all the other experiments of the video.

In order to back up our claim that the adaptive-QP complies with the post-impact
dynamics and lowers the risk of damaging the robot, we chose to look at two quali-
fiers: (i) the IMU acceleration (in the waist) (Fig. 3.14b), and (ii) the joint positions
(Fig. 3.14a). As the floating-base (waist) acceleration is proportional to the applied
external forces, and as there are many contacts, we found the IMU acceleration to be
a good indicator of how much total impact/contact force is applied on the structure.
We use the IMU acceleration as damage quantification comparison quantity: the less
acceleration there is, the better and the safer for the robot.

Let us first analyse the data from our proposed approach alone (Fig. 3.13). We
can see that the damping coefficient increase very fast untill 0.6s. This is mostly due
to the fact that right after the impact, the error is almost null whereas the velocity is
high, hence the solver is mostly using the damping gains B (Fig. 3.13). To understand
the high variation of the damping gain around 0.6s (from 60 to 0Nms/rad), we note in
Fig. 3.13c that around 0.6s the torque’s sign (minus) is unchanged. At this stage, the
joint velocity is switching sign (from plus to minus). Considering the eq. τ = Ke+Bė



74 Cluttered environment and adaptive-QP

0

50

100

150

200

250

300

K
 (
in

 N
.m

/r
ad

)

(a) Stiffness

0

20

40

60

0,4 0,6 0,8 1,0 1,2

B
 (i

n 
N

.m
.s

/r
ad

)

time (in s)

Hip
Knee
Ankle
Impact time

(b) Damping

-250

-200

-150

-100

-50

0

ta
u 

(i
n 

N
.m

)

time (in s)

100
150
200

(c) Torque

Figure 3.13 – Evolution of: (a) the stiffness, (b) the damping gains, and (c) the torque for the right leg
pitch joints (hip, knee, ankle) resulting from our QP adaptive method. The dashed line is the impact time.
In (c), the dashed horizontal lines are torque limits.

we can see that in order to have a negative torque with a positive velocity error (ė =
0 − q̇) we need B < 0. But the constraint B ≥ 0 enforces the non-negativity of the
damping coefficient resulting in a zero value for it.

Fig. 3.14a shows that using the predefined static fixed PD gains or turning off the
motors could be extremely risky since joint limits are reached fast. On the other hand,
keeping the initial (stiff) gains does not make the robot reach the mechanical stops
but leads to very high jerk and IMU acceleration (Fig. 3.14b) at the impact, which is
a prediction of a high impact force. The proposed adaptive-QP approach avoids all
these issues. It has a low jerk and a low acceleration profile while still staying under
the joint limit and not reaching any mechanical stop at the joints. Fig. 3.13c shows
that the adaptive-QP keeps the torques under their limits.

Discussion

We break down several potential problems relative to a real fall.



3.5 Discussion 75

0,5

1

1,5

2

2,5

0,4 0,5 0,6 0,7

K
ne

e 
an

gl
e 

(i
n 

ra
d)

Time (in s)

Knee_limit

(a) Knee posture

-100

0

100

200

300

400

500

IM
U

 z
-a

xi
s 

(i
n 

m
/ŝ

2)

Stiff
Oneshot
Zero
Adaptive_qp
Impact time
Mechanical stop
Mechanical stop

(b) IMU

Figure 3.14 – Comparison of (a) the knee position and (b) the z-axis of the IMU for different falling
methods. Four methods are represented. Stiff: default gains, Oneshot: fixed gains as in Chapter 2, Zero:
zero gains, Adaptive qp: adaptive gains. The black dotted line is the joint limit of the knee and the colored
dotted lines represent mechanical stops (joint limits).

Impact detection

Although the detection of the impact time is continuously processed, it does not need
to be known perfectly in the pre-impact phase. Indeed, we set the gain to 0 prior to the
near-impact (2 to 3 control loop time step) so that we are sure to be fully compliant
at the impact. The estimation should return if in a near future (2 to 3 control loop
time step) the impact occurs. If so, the gains are set to 0. Then an impact detection is
needed in order to launch the adaptive-QP. The detection of the impact can be reliable
enough by combining data from force sensors, IMU acceleration and/or joint velocities
outputs. The process of the above principles is illustrated by the timeline in Fig. 3.15.

Gains stability

The system (Eq. (3.26)) assumes that the gains K and B are treated separately. Al-
though in general K and B are coupled through system stability constraints (e.g.
through the relation B = 2

√
K), we consider here that during the fall we are in a

transition state where the main purpose is to generate enough torque to slow down the
system, allowing temporary decoupled K and B. The system (Eq. (3.26)) states that
the gains K and B are treated separately. Once the velocity is down (or close) to zero,
the gains can be restored to a given control objectives. When all the gains have been
reset to a stable state, the robot can get up and eventually pursue with its previous
tasks.

Normal stage Waitstage Post-impact stage Getup stage

Perturbation
Fall detection

Contact
Contact detection Low velocity detection

Time
Contact estimation

Pre-impact stage

Figure 3.15 – Fall timeline in a real situation.



76 Cluttered environment and adaptive-QP

Torque-based controlled robots

Our approach applies also to torque-based humanoids. Torque control humanoids,
e.g. Nori et al. [2015]Albu-Schäffer et al. [2007] implement a low-level torque controller
in the following general form:

u = f(τd, τ̇d, τ̈d, τ , τ̇ ,κ) . (3.27)

The voltage u is computed using several parameters such as actuator identified con-
stants, Coulomb friction and viscous friction coefficient compensation or any other
compensation terms κ. There is also a PID control on the torque error τd − τ , with
perturbation rejection (part of κ), etc. There are several implementations of the torque
controller. But, the main purpose of all low-level torque controllers is to have a very
good torque tracking, and changing the gains of the torque error parts would not in-
fluence the compliance of the robot: it would influence the backdrivability, but not
the compliance. Notice that, above the torque controller bandwidth (like in impacts),
the robot is as rigid as in position controlled humanoids. One possible way to have a
adaptive compliance is to implement on top of the low-level control, the following law:

τd = K(qd − q) +B(q̇d − q̇) , (3.28)

which is exactly what we implement directly on the low-level position controlled robot,
which adaptation can be handled straightforwardly by the QP. If for some reason one
wants to use an adaptive-QP controller at the low-level torque control (Eq. (3.27)) it
is possible only if there are no derivative terms of the torque unless they can explicitly
be expressed in the time-discrete domain.

Actuator dynamics

We can easily include the actuator dynamics in order to use our method at the voltage
level. Let τm = Kci be the motor torque proportional to the current i, e = Keq̇m the
back electromotive force proportional to the motor velocity q̇m, u = e + L di

dt
+ Ri the

electrical equation and τm = J q̈m+f q̇+Γload the mechanical equation. Neglecting the
inductance term (for simplicity) and substituting the current and changing the load by
the equation of motion Hq̈ + Cq̇ + g = Γload, the following equation comes out:

u =
R

Kc

(
JN2 +H

)
q̈ +

(
R

Kc

(f + C) +KeN

)
q̇ + g , (3.29)

with R the actuator electrical resistance, J the motors inertia, N the gears ratio, f the
motors viscous friction. The QP can be rewritten at the voltage level and we have:

u = Ke +Bė . (3.30)

Of course, with the actuator model, the gains values will change but the method-
ology is the same. If one can access to the actuator data, they can be easily included
to the QP.



3.6 Conclusion 77

Conclusion

We proposed an original way of addressing falls in a cluttered environment. First, an
active reshaping fall strategy prepares the robot to the impact from the moment the
fall is detected and up to just before the impact occurs. We showed with a simple
1-DoF system how important the pre-impact phase is. This study also demonstrated
the importance of searching for a time-varying stiffness and a damping rather than
fixed values. During the post-impact stage, a QP controller allows the robot to be-
come compliant in order to absorb the impact energy while satisfying its structural
constraints.

In order to implement this strategy on a real robot, two modules are necessary and
were assumed as available black-boxes: robot state estimation and landing surfaces
candidates computation, both can be provided by SLAM in future work.

For now, sliding contacts are not perfectly handled in the QP. A temporary solution
we implemented was to release the tangent space dof of the contacts to allow sliding
without any friction.

This part of the work can fill the parts under the Ukemi box of Fig. 1.10. It indeed
proposes a way to handle falls in cluttered environment and aims to reduce the damages
on the robot.



78 Cluttered environment and adaptive-QP



CHAPTER 4

Polytope-based model predictive
control for compliance

In the previous chapter we introduced the notion of pre-impact and post-impact and
we explained why pre-impact phase is important to accomplish a compliant behavior
in the post-impact phase. We developed a strategy to fall in a cluttered environment
and prepare the robot to the impact. After the impact, the robot is governed by an
adaptive-QP that tunes PD gains on-line. The adaptive-QP is a local control and
can only foresee 5ms in the future, therefore it cannot ensure that the robot will not
reach the joint limits at a longer horizon. This chapter extends the adaptive-QP with
additional tools that seek for solutions aver a longer horizon of time.

Reduced Dynamic Model

We approximate the whole-body dynamics at the CoM of the robot and search for
contact forces that compensate for both gravity and post-impact linear momentum.
The Newton equation of motion that governs the acceleration of the CoM is:

F = M (̈s− g), (4.1)

with M the total robot mass, s̈ the acceleration of the CoM, g the gravity vector and
F the net contact force (sum of all external forces) applied to the robot.

Under the assumption that the initial linear momentum M ṡ0 at impact is known,
the goal of post-impact absorption is to find a trajectory s̈(t) such that, at time t = tf ,
ṡ(tf ) = 0, meaning that all the linear momentum accumulated while falling has been
driven out of the system. Achieving this task requires proper control of the net contact
force F.



80 Polytope-based model predictive control for compliance

Actuation constraints

Let us consider again the full-body dynamics equation of motion of the system

Hq̈ + c = JTF + ST
Mτ . (4.2)

F = Gλ is the stacked vector of contact forces and SM is a selection matrix of actuated
joints among all the degrees of freedom (DoFs) of the robot (hence the matrix that
excludes the floating-base DoFs from the total DoFs Bouyarmane et Kheddar [2012].

A fundamental property of the humanoid kinematic tree topology is that it com-
prises at least 4 limbs (two legs and two arms), indexed here with the variable c ∈
{lh, rh, lf, rf}, that extend from the root of the kinematic tree to the end-effectors (re-
spectively the two hands and two feet). The contact force applied at the end-effector c
is denoted Fc (therefore we have F = (Fc)c∈{lh,rh,lf,rf}). The rest of the DoFs, including
the floating base are indexed with 0. Eq. (4.2) can be rewritten as

H0

Hlh

Hrh

Hlf

Hrf

 q̈ +


c0

clh

crh

clf

crf

 =


JT

0,lh JT
0,rh JT

0,lf JT
0,rf

JT
lh 0 0 0
0 JT

rh 0 0
0 0 JT

lf 0
0 0 0 JT

rf




Flh

Frh

Flf

Frf

+


τ0

τlh

τrh

τlf

τrf

 , (4.3)

where Hc, cc, τc are the rows of respectively H, c and τ and Jc is the reduced Jacobian
of the contact points at the end-effector c to the root of the kinematic tree, with respect
only to the set of joints of the considered limb (and not with respect to all the DoFs
of the robot). The contact force at limb c ∈ {lh, rh, lf, rf}. Fc, only affects the part of
the dynamics equation in {c, 0}:

Hcq̈ + cc = JT
c Fc + τc. (4.4)

Using the reduced Jacobian, the kinematic contact constraint at the end-effector c
is expressed in acceleration-form as:

Jcq̈ + J̇cq̇ = 0. (4.5)

Substituting Eq. (4.4) in Eq. (4.5) yields

JcH
-1
c J

T
c Fc = JcH

-1
c (cc − τc)− J̇cq̇

Λ-1
c Fc = −JcH -1

c τc + JcH
-1
c c− J̇cq̇

Fc = −ΛcAcτc + dc

Fc = Ccτc + dc.

(4.6)

The matrix Λ is the operational space inertia matrix at point c, Cc and dc provide an
affine mapping from torque limits to contact force limits and depends on q and q̇. The
H-representation of the torque-constraint polytope (see Appendix A) is:

τ c ≤ τc ≤ τ c (4.7)



4.2 Distribution of gravity and linear momentum 81

(a) (b)

Figure 4.1 – Torque-limited friction polytopes. Feasible contact forces at the left foot of HRP-4 under (a)
leg torque limits and (b) both torque limits and friction constraints..

where τc is the vector of selected joint torques for the contact c (corresponding to the
limb at hand, e.g. left-leg joints for a left-foot contact), τ c and τ c are respectively
the lower and upper torque limits of the actuators. Applying Eq. (4.6) yields the
V-representation of the torque-limited polytope of feasible end-effector forces at the
contact point, depicted in Fig.4.1a. Using the double-description method, we convert
it to H-representation:

Gactuators
c Fc ≤ hactuators

c . (4.8)

Distribution of gravity and linear momentum

Our primary idea is to make each limb c ∈ {lh, rh, lf, rf} of the robot contribute, in
post-impact, to a “share” of the pre-impact linear momentum absorption, summing up
all contributions into the resultant equation of motion:∑

c∈{lh,rh,lf,rf}

Fc = M (̈s− g) . (4.9)

This can be conceptually interpreted as “splitting” the CoM into four virtual mass
points with state vectors (sc, ṡc), each going towards one of the limb extremities in
contact, and each with a force Fc applied to it. Hence we are solving for the system of



82 Polytope-based model predictive control for compliance

four differential equations for the state variables (sc, ṡc):

Fc = M (̈sc − gc) , (4.10)

where gc is a quantity to be defined below (gravity force distribution problem) and
where the initial condition for each component is also to be defined below (initial impact
momentum distribution problem). The force Fc is used to decelerate its respective CoM
component until full initial momentum absorption, while being contrained to lie inside
its respective actuation limit polytope (Section 4.1.1).

The momentum being an additive quantity, when virtually splitting the CoM into
four virtual components, the initial momentum has to be distributed among the four
components. Similarly, the total gravity force applied on the CoM has also to be split
into four components, each applied to one of the four virtual CoM components. There-
fore, in the following, we distribute the amount of gravity and initial linear momentum
that each contact will support. This distribution must satisfy Eq. (4.9). Additionally,
we want to make sure that the distribution is optimal with respect to the actuation
constraint polytope at each contact.

Assuming that the linear momentum p after impact is known, we look for a cor-
responding force quantity fa that would be physically consistent with the problem of
distribution in the respective contact force polytopes. The force being a time-derivative
of the linear momentum, we can write:

f =
dp

dt
= M

dṡ

dt
. (4.11)

In the worst case scenario where the robot is completely rigid (non compliant) and the
coefficient of restitution of the impact is zero, the impact force corresponding to the
momentum M ṡ0 is:

f = lim
h→0

M
ṡ0

h
. (4.12)

Because this form is non-linear in h, we set k = 1/h (hence k can be seen as a “gain”
that maps a linear momentum quantity to a force quantity). The limit becomes

f = lim
k→∞

kM ṡ0. (4.13)

Then we define fa as the exact applied force

fa , kM ṡ0 (4.14)

where k is a parameter that approach infinity. fa corresponds to the average impact
force for impact time 1/k.

Being already a force quantity, the gravity force:

f g = Mg , (4.15)

can be readily distributed in the polytopes.



4.2 Distribution of gravity and linear momentum 83

The idea now is to find which contact will better handle f g and which will better
handle fa. For example, in the case of Fig. 4.2, the feet of the robot are more suitable
for compensating the gravity than the hands. From Eq. (A.1) of Appendix A we split
αi in two variables αgi and αai corresponding respectively to the percentage of f g and
fa to address to the contact.

∑
i

αi =
∑
i

αgi + αai . (4.16)

This is done for each contact c. Using Eq. (A.1) and Eq. (4.14) – (4.16) we can write
the following constraints ∑

c

∑
i
αgc,ivc,i = −Mg (4.17)∑

c

∑
i
αac,ivc,i = −kM ṡ0 (4.18)∑

i
αgc,i + αac,i ≤ 1 (4.19)

αgc,i ≥ 0 (4.20)

αac,i ≥ 0 (4.21)

k ≥ 0. (4.22)

Constraints Eq. (4.17) and (4.18) distribute forces considering the polytope of each con-
tact. Constraint Eq. (4.19) is a generalization of Eq. (A.1). Substituting the equality
to an inequality does not change the definition of the polytope and relax the constraint.
And finally, Eq. (4.20) – (4.22) make the variables consistent with the polytope defini-
tion Eq. (A.1) and the force generated at the CoM definition Eq. (4.14).

To have a good distribution over the feet and the hands (i.e. to avoid having the
robot’s weight supported by one foot), we design the following cost functions


‖∑i α

g
rf,ivrf,i −

∑
i α

g
lf,ivlf,i‖2

‖∑i α
a
rh,ivrh,i −

∑
i α

a
lh,ivlh,i‖2

−k
(4.23)

where rf (resp. lf) stands for right foot (resp. left foot) and rh (resp. lh) for right hand
(resp. left hand).

As we want the variable k to approach infinity, a cost function is set to maximize
its value in the problem.

The overall system, with linear constraints Eq. (4.17) – (4.22) and quadratic cost
functions Eq. (4.23) is a QP problem. Later on, we call it the Force Distribution
Quadratic Programming (FDQP). Fig. 4.2 shows a possible repartition of the forces
over two contact points. The FDQP looks for a solution that compensates the force
from gravity and maximizes the force generated against linear momentum.



84 Polytope-based model predictive control for compliance

Figure 4.2 – Optimized contact force distribution. 2D illustration of a potential scenario. Dotted arrows
fg and fa are forces to be distributed. Plain arrows show their repartition inside force polytopes: f fp and
fhp have to remain inside their respective polytope. The dotted vector fa is taken so as to maximize the
linear momentum coming from the CoM velocity ṡ.

Once the solution is found, αgc , α
a
c and k can be computed using the FDQP output:

−Mgc =
∑
i

αgc,ivc,i , (4.24)

−kM ṡ0
c =

∑
i

αac,ivc,i . (4.25)

These two latter equations make Eq. (4.10) fully specified, with the specification of the
constant vector gc and the initial condition ṡ0.

CoM trajectory solution

We solve the system (Eq. (4.10)) using a Linear Model Predictive Control (LMPC).
Let xc = [sTc ṡTc ]T be the parameter vector. Eq. (4.10) can be put into matrix form:



4.3 CoM trajectory solution 85

ẋ =

[
03 I3

03 03

]
x +

[
03

13M
-1

]
u +

[
03

gc

]
ẋ = Ax + Bu + Ec.

where ẋ = [ṡTc s̈Tc ]T. This is a continuous time system with u = Fc, the control vector,
M the total mass of the system and gc the contact distributed part of the gravity
(computed with Eq. (4.24)). After discretization with a sampling time T , we get

xk+1 = Axk +Buk + Ec (4.26)

and assuming the input is discretized with a zero-order block

A =

[
I3 I3T
03 I3

]
B = M -1

[
I3

T 2

2

I3T

]
Ec =

[
gc

T 2

2

gcT

] . (4.27)

The sampling time is not necessarily set to the robot control loop time. Indeed the
greater the LMPC’s sampling time the wider is the horizon of time. Then an interpola-
tion is done to get the values at each control loop time. By recursion we can compute a
prediction of the behavior of the simplified system Audren et al. [2014]. We only need
to know the initialization parameter of the system.

By recursively calculating Eq. (4.26) we get (see Section B)

XN = Φx0 + ΨU + ζc. (4.28)

Note that x0 = [s0T ṡ0T
c ]T where ṡ0

c is the CoM distributed velocity (Eq. (4.25)) and s0

is the intial position of the CoM (which is the inital position of all four virtual CoMs).
The objective function of the LMPC is

Ed = (xN − xtarget)ωx(xN − xtarget) + UTωUU (4.29)

= UTQU + 2lTc U. (4.30)

The target xtarget = [stargetT ṡtargetT]T is such that starget = s0 and ṡtarget = 0. The
weights ωx and ωU are chosen so that the priority is to reach a zero velocity, then
maintain the position and lastly minimize the effort. Briefly, this means that ωx(3..6)�
ωx(0..2) > ωU . The force limit constraint (computed via Eq. (4.8)) is added to the

system constraints. We then solve the LMPCs corresponding to each contact to get the
vectors U and deduce the forces to apply at the contact points. As the adaptive-QP of
the robot allows us to set a trajectory task for the CoM, the forces are converted into
CoM acceleration.

s̈(t) =
1

M

∑
c

Fc(t) + g. (4.31)



86 Polytope-based model predictive control for compliance

Integrating forward returns ṡ(t) and s(t). Those three trajectories are sent to the
adaptive-QP.

Finally, since the LMPCs are launched again and again and that it targets a zero
velocity about T ×Nsteps seconds, the robot can never reach it completely so a stopping
criterion is necessary. This criterion can simply be based on the current CoM velocity
norm.

Discussion in Eq. (4.3), we have split the equation of motion into a coupling part
(first row) and a decoupled, block-diagonal part (next rows). As shown in Wieber
[2006], the coupling part corresponds to Newton and Euler equations. We enforce
Newton’s equation when combining LMPC results via Eq. (4.31), but chose to ignore
Euler’s equation (on the rate of change of the angular momentum) as a first approx-
imation. This part will be further surveyed in future works. For now, we compute
force polytopes by assuming that each limb is decoupled from each the others, and rely
on the cost function of the FDQP to balance solutions and avoid adding unnecessary
angular-momentum variations.

Simulations

The simulation sets up HRP-4 pushed against a wall, as depicted in Fig. 4.2. Here,
it is assumed that the pre-impact phase (treated in Chapter 3) is already done and
only the post-impact phase remains to be controlled. The control loop of HRP-4 is
5 ms, it is pushed on the back with a force of 300 N for 0.15 s. The wall is 10◦

inclined and we use an LMPC1 with variables set as Nsteps = 15 and T = 15 ms. The
detection of the impact is done through the distance between the hands and the wall.
As the algorithm computation time is higher than the control loop time, it launched
is an estimated position of the hand touch the wall. This estimation is done with a
simple Euler integration over 15 ms of the nearest point of a hand to the wall. To
ensure that the adaptive-QP does not output high torque at the impact time, all tasks
are removed but the minimization of the stiffness and damping coefficient. As soon
as the LMPCs output the first results, a CoM trajectory task and posture task (with
relatively low weight) is added. With an Intel(r) Core(tm) i7-4900MQ CPU at 2.8GHz
(up to 3.8GHz) with 4 cores and 8 running threads, the time required to compute the
polytopes, the distribution force QP and the LMPCs is up to 15 ms. To improve
performance, the contact polytopes2 and the LMPCs are computed in parallel.

The stopping criterion has been set so that it is triggered when the norm of CoM
velocity reached 1 cm.s-1. From there, the weight of the posture task is increased and
the CoM trajectory is updated to a fixed set-point task at the current CoM position.
We then stop the adaptive-QP and revert to the standard QP whole-body controller.

1https://github.com/vsamy/Copra
2The polyhedral library (cddlib) itself is not multi-threadable.

https://github.com/vsamy/Copra


4.4 Simulations 87

Euler
integration

CoM

trajectory task

Robot controller
(QP)

Polytope 
for contact 1

Polytope 
for contact 2

Polytope 
for contact Nc

Linear 

momentum
and 

gravity force
distribution

(QP)

Linear Model

Predictive

Control

for contact 1

Linear Model

Predictive

Control

for contact 2

Linear Model

Predictive

Control

for contact Nc

Preview results aggregation

Main control loop Preview Algorithm

CPU 0 CPU 1 CPU 2 CPU Nc

Figure 4.3 – Distribution of the preview algorithm’s tasks over the Central Processing Unit (CPU)s for
computing s(t), ṡ(t) and s̈(t). One CPU is handling the adaptive-QP and performs the update of the
robot’s state. The preview algorithm is distributed over the other CPUs with one CPU per contact. Each
CPU compute the Convex hull of finite set of vertices polytope representation (V-representation) and
Intersection of finite halfspaces polytope representation (H-representation) of its contact polytope which
are regrouped in one CPU for the FDQP. Then the results are reassigned to different CPUs to compute
the LMPC for each contact. Finally, the desired CoM trajectory is computed and made available in shared
memory for the main control loop.

As the problem is symmetric the FDQP gives arms and legs the same amount of
linear momentum and gravity hence Fig. 4.4 – 4.6b only display right side contact-
s/joints. The linear momentum of the CoM (Fig. 4.4) smoothly decreases, on each
axis, and reaches zero after roughtly 1.5 s. Notwithstanding the symmetrical proper-
ties of the problem, we can denote a deviation of the linear momentum on the y-axis.
In Fig. 4.5, the FDQP choses to compensate the z-axis of the gravity with only the
foot which is coherent since the maximal forces of the feet are on this axis. It is also
interesting to note that the FDQP may give one or multiple contacts the ability to
go along with the whole-body linear momentum, rather than against it. This is quite
visible on Fig. 4.4 on the z-axis where after the impact time, the sum of the two feet
is greater than the robot linear momentum. Thus the feet alone have to compensate



88 Polytope-based model predictive control for compliance

0 1 2 3 4 5
−5

0

5

10

15

20

p
(i

n
K
g
.m
.s
−

1
)

t p
u
s
h

t i
m
p
a
c
t

x-axis

p
prh
prf

0 1 2 3 4 5
−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

p
(i

n
K
g
.m
.s
−

1
)

y-axis

0 1 2 3 4 5
−6
−5
−4
−3
−2
−1

0
1
2
3

p
(i

n
K
g
.m
.s
−

1
)

z-axis

Linear momentum split

Figure 4.4 – Simulation results of the linear momentum and its split part. As the problem is symmetrical,
prh = plh and prf = plf. The black curve represents the total linear momentum at the CoM, the green
curve is the split linear momentum for the hands and the orange is the split linear momentum for the feet.
tpush is the time at which the robot is pushed and timpact is the time at which the robot touches the
wall.

more than needed. This is due to the fact that the FDQP gives to the hand linear
momentum a sign opposite to the whole-body one. So, LMPCs attached to the hands
are seeing the robot going upward while the feet sees the robot going downward with
higher velocity.

The adaptive-QP is able to find the stiffness (Fig. 4.6a) and damping (Fig. 4.6b)
coefficient for arms and legs. At impact time, the damping coefficient dominates the
stiffness one since the error term is almost zero whereas velocity is high. It is very clear
that the hip joint is making most of the effort to fulfill the tasks. From common sense,
the elbow joint should have particapated more since it is the one that can directly
damp the linear momentum but it is not. This can be explained by the fact that the
hip motor has a torque limit 3.5 times superior to the elbow’s one. Around t = 3 s,
the knee joint takes over and is mainly set so that it maintains the height of the CoM
and compensates gravity.



4.4 Simulations 89

0 1 2 3 4 5
−0.20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

f
g

(i
n

K
g.

m
.s
−

2
)

x-axis

0 1 2 3 4 5
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

f
g

(i
n

K
g.

m
.s
−

2
)

y-axis

0 1 2 3 4 5
−400
−350
−300
−250
−200
−150
−100
−50

0

f
g

(i
n

K
g.

m
.s
−

2
)

t p
u
s
h

t i
m
p
a
c
t

z-axis

f g
f grh
f grf

Gravity force split

Figure 4.5 – Simulation results of the gravity force and its split part. As the problem is symmetrical,
Fgrh = Fglh and Fgrf = Fglf. The black curve represents the total gravity force at the CoM, the green curve is
the split gravity force for the hands and the orange is the split gravity force for the feet. tpush is the time
at which the robot is pushed and timpact is the time at which the robot touches the wall.

0 1 2 3 4 5

time (in s)

0

5

10

15

20

St
if

fn
es

s
(i

n
N
.m
.r
a
d
−

1
)

t i
m
p
a
c
t

t p
u
s
h

Stiffness coefficient

Right elbow pitch
Right hip pitch
Right shoulder pitch
Right knee pitch
Right shoulder roll

(a) Stiffness coefficient

0 1 2 3 4 5

time (in s)

0

100

200

300

400

500

600

D
am

pi
ng

(i
n
N
.m
.s
.r
a
d
−

1
)

t i
m
p
a
c
t

t p
u
s
h

Damping coefficient

Right elbow pitch
Right hip pitch
Right shoulder pitch
Right knee pitch
Right shoulder roll

(b) Damping coefficient

Figure 4.6 – Gains output of the adaptive-QP through time and for several joints. As the problem is
symmetrical only the joints of the right leg and arm are shown.



90 Polytope-based model predictive control for compliance

Conclusion and discussion

We have presented an approach that allows a humanoid robot to actively control its
compliance after falling and impacting its environment with its arms and/or legs. Par-
allel model predictive controllers are run at each of the four contacting limbs, the joint
action of which is to absorb the undesired linear momentum accumulated during fall.
These predictive controllers are instantiated by a FDQP that optimally distributes the
initial momentum and gravity force across contacting limbs. Despite relying on reduced
dynamic models, all predictive controllers are constrained by contact polytopes that
encode both friction and joint torque limitations.

The approach was validated in full-body simulations with a model of the HRP-
4 humanoid robot in falling scenarios. The simulation showed corroborating results
making the linear momentum vanish after few seconds, in an active compliance way.

With the two previous chapters and the present one, we have now a complete
framework for fall handling from pre-impact posture adoption, to impact-time motor
PD-gains automatic adaptation, and with the present work, post-impact active com-
pliance with LMPC to optimally absorb the impact and bring the robot to a safe rest.

Note that this method has been designed for falling humanoid robots. Even so, it
can be easily extended other types of robot (especially multi-legs robots) and may also
be adapted for other problems (walking, manipulation, etc...)

Although it is a very challenging experiment to be carried out on real hardware,
we plan in a near future to test the method on HRP-4. Future work will also need
to address sliding of contacts at impact points, reliable linear momentum estimation,
visual estimation of the robot’s surroundings for impact surfaces, and impact time
detection are other open topics in fall control that are challenging and that we are
actively researching.



Conclusion

In this thesis, we endowed humanoid robots with new strategies to handle falls and to
prevent damaging themselves upon fall impact.

The complexity of the problem and the high experimental risks have made falling
barely studied in the humanoid robotics community. The few existing papers on this
subject in the literature mostly considered falls in simulation and/or with small robots.
In the first part of this thesis, we reviewed all the strategies suggested by previous re-
search. We then identified and classified what has been proposed in order to understand
where we could make our contribution among the existing body of work.

Our first contribution was to set up a taxonomy of falls that characterizes the
postures the robot should not be adopting when impacting the environment. With this
knowledge at hand, we designed a geometrical solver that avoids fall singularities and
prevents direct damage to the structure of the robot. We also experimentally tuned
down the motors PD gains to comply with the impact. Simulations in Gazebo and
experiments on the robot validated the concept introduced here.

We then decided to further investigate more general falls such as falls in any direc-
tion and/or in a cluttered environment. Because impacts are not directly controllable,
we proposed to separate the falls into two different phases: the pre-impact and the
post-impact phases. During the former, an algorithm prepares the robot to the impact
i.e. it searches for impact points and reshapes the robot while trying to avoid fall
singularities. Then we deigned an adaptive-QP to control the post-impact. This QP
can tune the motors PD gains on-line and thus is able to comply to the contact forces
generated after the impact.

One limitation of the adaptive-QP is that it can only solve the control problem for
a very short amount of time which is generally the control loop time. Therefore, the
tasks weights need to be tuned to high enough values to ensure a solution that will
damp the system correctly after the impact. This motivated us to develop a strategy
that to account for a time-horizon on a robot model reduced to the CoM. Using a
novel polytopial representation of the torque limits in the limbs, we have been able to
find reachable forces at the contact for each limb. We then proposed a FDQP that
distributes the gravity force and the linear momentum among the different contacts.
For each contact, a LMPC is used to find the force to apply at each contact to make the



92 Conclusion

robot comply. Finally, the LMPC solutions for each impacting limb were combined,
returning as an output a trajectory for the CoM of the robot. This trajectory was
finally sent as a task to the adaptive-QP.

The research in humanoid falls is only at its prelude and several problems need to
be addressed before mastering this domain. First of all, the fall detection problem is
still an open problem and deserves a more in-depth investigation. As mentioned in
Chapter 1, fall detection algorithms should search for differences between expectation
and realization so that it could be used for on type of motion controller (walking,
whole-body reaching and manipulation, multi-contact locomotion, etc).

Most of the falls are considering a direct push of the robot, which is not so common
in real situations. Falls are more often due to tripping or slipping. These two types
of falls should be treated, and raise along the problem of contact characterization :
contact position, contact reliability (whether or not the contact is safe to exploit),
contact Degrees of Freedom (sliding direction if any), etc.

Other future research could also be made to extend the Fig. 1.10. These include:
falls over a fence, falls that include poles (as in a subway), falls while the robot is
holding something or someone. It is also possible to extend the Ukemi motion by
performing a much higher dynamics reshaping (rolling on the ground).

The description and the algorithms given in Section 3.3.1 could also be better
exploited for the post-impact phase. By representing the whole arm as a spring-damper
system (see Fig. 4.7), estimating the velocity, and computing the effective mass at the
link’s contact points, it will be possible to compute the optimal coefficient K and B of
the Cartesian virtual spring damper system. Once the Cartesian values are found, a
mapping to the joint space could be also used.

Figure 4.7 – Simulation of a spring-damper system

Although we have listed these many open questions and open problems left for
future research, we still believe that our thesis contributed to identifying, formulating,
and solving a number humanoid fall-related problems, and we hope that it will have
contributed positively to the future of humanoid robotics with more robust humanoid
robots, more autonomous robots, safer robots, and globally better humanoids.



APPENDIX A

Polytopes

Polyhedra are convex sets realized by the intersection of finitely-many halfspaces. They
correspond to the inequality constraints found in linear and quadratic programs, as well
as the dual constraints such as friction cones or ZMP support areas that arise in me-
chanics Caron et al. [2017]. A polytope is a bounded polyhedron. It can be represented
equivalently (see Fig. A.1) as: (i) the intersection of finitely-many halfspaces, called
the H-representation, or (ii) the convex hull of a finite set of vertices, called the V-
representation.

(a) H-representation (b) V-representation

Figure A.1 – Example of the two representation of a polytope in a 2D space. (a) is the H-representation
where the polytope is defined by a set of halfspace. (b) is the V-representation where the polytope is
defined by the convex hull of its vertices.

The latter can be written mathematically as:

P =
{

x =
∑N

i=1 αivi

∣∣∣ ∀i, αi ≥ 0,
∑N

i=1 αi = 1
}

(A.1)

where the positive coefficients αi form a convex combination of the N vertices vi of the



94 Polytopes

polytope. Meanwhile, the H-representation can be concisely written as:

Ax ≤ b (A.2)

where the matrix A = [A0 . . .AN ]T stacks halfspace normals Ai, so that AT
i x = bi is

the equation of the ith supporting halfspace of the polytope. The conversion from H-
representation to V-representation (resp. from V-representation to H-representation)
representation of a polytope is known as the vertex enumeration problem. Both can
be realized by the double-description algorithm Fukuda et Prodon [1996].



APPENDIX B

Linear Model Predictive Control

The LMPC, also called linear model preview control, is a common problem in robotics.
It often found in walking problems such as in Kajita et al. [2003a] and allows to find
a set of necessary force to reach a desired trajectory in a horizon of time. It can also
be used reversely, to find the trajectory that force inputs will lead to. This appendix
explains how it works and presents the Copra1 library that implements it.

Let ẋ ∈ Rn the state vector and u ∈ Rm the control vector of the discrete system

ẋk+1 = Axk +Buk + e. (B.1)

where A ∈ Rn×n is the state matrix, B ∈ Rn×m is the control matrix and e ∈ Rn is a
bias. By doing a simple recursion, we have:

x1 = Ax0 +Bu0 + e (B.2)

x2 = Ax1 +Bu1 + e (B.3)

= A(Ax0 +Bu0 + e) +Bu1 + e (B.4)

= A2x0 + [AB B][uT0 uT1 ]T + Ae + e (B.5)

x3 = Ax2 +Bu2 + e (B.6)

= A(A2x0 + [AB B][uT0 uT1 ]T + Ae + e) +Bu1 + e (B.7)

= A3x0 + [A2B AB B][uT0 uT1 uT2 ]T + A2e + Ae + e (B.8)

It is easy to show that after N step, we get:

XN = Φx0 + ΨU + ζ (B.9)

with

XN = [xT
0 xT

1 . . . xT
N ]T (B.10)

U = [uT
0 uT

1 . . . uT
N−1]T (B.11)

1https://github.com/vsamy/Copra



96 Linear Model Predictive Control

and where Φ, Ψ and ζ are defined as

Φ =


A
A2

...
AN

 , Ψ =


B 0 . . . 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B . . . B

 , ζ =


E

AE + E
...∑i=N−1

i=0 AiE

 (B.12)

Eq. (B.9) is the system to give to the library.

1 #inc lude <memory>
2 #inc lude <u t i l i t y >
3 #inc lude <Eigen/Core>
4 #inc lude <copra /PreviewSystem . h>
5

6 // Create a system with :
7 // the s t a t e matrix A
8 // the con t r o l matrix B,
9 // the b ia s vec to r d

10 // an i n i t i a l s tep x 0
11 // The number o f s tep nStep .
12 auto ps = std : : make shared<copra : : PreviewSystem>(A, B, d , x 0 , nStep ) ;

The task used in Chapter 4 can be decomposed into two subtask, a target cost and
control cost. The former minimizes ‖MxN + p‖

1 #inc lude <copra / cos tFunct ions . h>
2

3 // Create a t a r g e t co s t with
4 auto targetCost = std : : make shared<copra : : TargetCost>(M, p) ;
5 // add weight
6 contro lCost−>weight (w x ) ;

and the later minimizes ‖MU + p‖.
1 // Create a con t r o l co s t
2 auto cont ro lCos t = std : : make shared<copra : : ControlCost>(N, p) ;
3 // add weight
4 contro lCost−>weight (w u) ;

Then the H-representation of the force is a constraint of the form GU ≤ f

1 #inc lude <copra / c on s t r a i n t s . h>
2

3 // Create an i n e qua l i t y c on s t r a i n t with
4 auto cont ro lConst r = std : : make shared<copra : : Contro lConstra int >(E, f ) ;



97

Then, we just need to build the system and send it to the solver.

1 #inc lude <copra /LMPC. h>
2

3 // Create the lmpc with the system
4 copra : :LMPC c o n t r o l l e r ( ps ) ;
5 // Add the co s t and con s t r a i n t
6 c o n t r o l l e r . addConstraint ( cont ro lConst r ) ;
7 c o n t r o l l e r . addCost ( t ra jCos t ) ;
8 c o n t r o l l e r . addCost ( cont ro lCos t ) ;
9

10 // Build and so l v e the problem
11 c o n t r o l l e r . s o l v e ( ) ;

The results are directly accessible through the mpc

1 Eigen : : VectorXd t r a j e c t o r y ( c o n t r o l l e r . t r a j e c t o r y ( ) ) ;
2 Eigen : : VectorXd con t r o l ( c o n t r o l l e r . c on t r o l ( ) ) ;



98 Linear Model Predictive Control



Bibliography

[Albu-Schäffer et al. 2007] Albu-Schäffer, Alin ; Ott, Christian ; Hirzinger,
Gerd: A Unified Passivity-based Control Framework for Position, Torque and
Impedance Control of Flexible Joint Robots. In: The Int. J. of Robotics Research
26 (2007), Nr. 1, S. 23–39. – URL http://ijr.sagepub.com/content/26/1/23.

abstract

[André et al. 2016] André, João ; Faria, Bŕıgida M. ; Santos, Cristina ; Reis,
Lúıs P.: A Data Mining Approach to Predict Falls in Humanoid Robot Locomotion.
In: Reis, Lúıs P. (Hrsg.) ; Moreira, António P. (Hrsg.) ; Lima, Pedro U. (Hrsg.) ;
Montano, Luis (Hrsg.) ; Muñoz-Martinez, Victor (Hrsg.): Robot 2015: Second
Iberian Robotics Conference. Cham : Springer International Publishing, 2016, S. 273–
285. – ISBN 978-3-319-27149-1

[Atkeson et al. 2015] Atkeson, C. G. ; Babu, B. P. W. ; Banerjee, N. ; Berenson,
D. ; Bove, C. P. ; Cui, X. ; DeDonato, M. ; Du, R. ; Feng, S. ; Franklin, P. ;
Gennert, M. ; Graff, J. P. ; He, P. ; Jaeger, A. ; Kim, J. ; Knoedler, K. ; Li,
L. ; Liu, C. ; Long, X. ; Padir, T. ; Polido, F. ; Tighe, G. G. ; Xinjilefu, X.:
No falls, no resets: Reliable humanoid behavior in the DARPA robotics challenge.
In: IEEE-RAS Int. Conf. on Humanoids, Nov 2015, S. 623–630

[Atkeson et al. 2016] Atkeson, C. G. ; Babu, B. P. W. ; Banerjee, N. ; Berenson,
D. ; Bove, C. P. ; Cui, X. ; DeDonato, M. ; Du, R. ; Feng, S. ; Franklin,
P. ; Gennert, M. ; Graff, J. P. ; He, P. ; Jaeger, A. ; Kim, J. ; Knoedler,
K. ; Li, L. ; Liu, C. ; Long, X. ; Padir, T. ; Polido, F. ; Tighe, G. G. ;
Xinjilefu, X.: What Happened at the DARPA Robotics Challenge, and Why?
http://www.cs.cmu.edu/~cga/drc/jfr-what.pdf. 2016. – submitted to the DRC
Finals Special Issue of the J. of Field Robotics

[Audren et al. 2014] Audren, H. ; Vaillant, J. ; Kheddar, A. ; Escande,
A. ; Kaneko, K. ; Yoshida, E.: Model preview control in multi-contact motion-
application to a humanoid robot. In: 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sept 2014, S. 4030–4035. – ISSN 2153-0858

http://ijr.sagepub.com/content/26/1/23.abstract
http://ijr.sagepub.com/content/26/1/23.abstract
http://www.cs.cmu.edu/~cga/drc/jfr-what.pdf


100 BIBLIOGRAPHY

[Battaglia et al. 2009] Battaglia, Martin ; Blanchet, Laurent ; Kheddar, Ab-
derrahmane ; Kajita, Suuji ; Yokoi, Kazuhito: Combining haptic sensing with safe
interaction. In: IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems. Saint
Louis, MO, USA : IEEE, 11-15 October 2009, S. 231–236

[Bouyarmane et Kheddar 2012] Bouyarmane, Karim ; Kheddar, Abderrahmane:
On the dynamics modeling of free-floating-base articulated mechanisms and appli-
cations to humanoid whole-body dynamics and control. In: Humanoid Robots (Hu-
manoids), 2012 12th IEEE-RAS International Conference on IEEE (Veranst.), 2012,
S. 36–42

[Caron et al. 2017] Caron, Stéphane ; Pham, Quang-Cuong ; Nakamura, Yoshi-
hiko: ZMP Support Areas for Multi-contact Mobility Under Frictional Constraints.
In: IEEE Transactions on Robotics 33 (2017), Feb, Nr. 1, S. 67–80

[Chang et al. 2013] Chang, Wen-Ruey ; Leclercq, Sylvie ; Haslam, Roger ;
Lockhart, Thurmon: The state of science on occupational slips, trips and falls on
the same level. (2013)

[Featherstone 2014] Featherstone, Roy: Rigid body dynamics algorithms.
Springer, 2014

[Fujiwara et al. 2006] Fujiwara, Kiyoshi ; Kajita, Shuuji ; Harada, Ken-
suke ; Kaneko, Kenji ; Morisawa, Mitsuharu ; Kanehiro, Fumio ; Nakaoka,
Shinichiro ; Hirukawa, Hirohisa: Towards an optimal falling motion for a humanoid
robot. In: IEEE-RAS Int. Conf. on Humanoid Robots, 2006, S. 524–529

[Fujiwara et al. 2007] Fujiwara, Kiyoshi ; Kajita, Shuuji ; Harada, Ken-
suke ; Kaneko, Kenji ; Morisawa, Mitsuharu ; Kanehiro, Fumio ; Nakaoka,
Shinichiro ; Hirukawa, Hirohisa: An optimal planning of falling motions of a hu-
manoid robot. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007,
S. 456–462

[Fujiwara et al. 2004] Fujiwara, Kiyoshi ; Kanehiro, Fumio ; Kajita, Shuuji ;
Hirukawa, Hirohisa: Safe knee landing of a human-size humanoid robot while
falling forward. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2004,
S. 503–508

[Fujiwara et al. 2002] Fujiwara, Kiyoshi ; Kanehiro, Fumio ; Kajita, Shuuji ;
Kaneko, Kenji ; Yokoi, Kazuhito ; Hirukawa, Hirohisa: UKEMI: falling motion
control to minimize damage to biped humanoid robot. In: IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2002, S. 2521–2526

[Fukuda et Prodon 1996] Fukuda, Komei ; Prodon, Alain: Double description
method revisited. S. 91–111. In: Deza, Michel (Hrsg.) ; Euler, Reinhardt (Hrsg.) ;



BIBLIOGRAPHY 101

Manoussakis, Ioannis (Hrsg.): Combinatorics and Computer Science: 8th Franco-
Japanese and 4th Franco-Chinese Conference Brest, France, July 3–5, 1995 Selected
Papers. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. – ISBN 978-3-540-
70627-4

[Goswami et al. 2014] Goswami, Ambarish ; Yun, Seung-kook ; Nagarajan,
Umashankar ; Lee, Sung-Hee ; Yin, KangKang ; Kalyanakrishnan, Shivaram:
Direction-changing fall control of humanoid robots: theory and experiments. In:
Autonomous Robots 36 (2014), Nr. 3, S. 199–223

[Ha et Liu 2015] Ha, Sehoon ; Liu, C K.: Multiple contact planning for minimizing
damage of humanoid falls. In: IEEE/RSJ Int. Conf. on Intelligent Robotics and
Systems IEEE (Veranst.), 2015, S. 2761–2767

[Hoffman et al. 2013] Hoffman, E. M. ; Perrin, N. ; Tsagarakis, N. G. ; Cald-
well, D. G.: Upper limb compliant strategy exploiting external physical constraints
for humanoid fall avoidance. In: 2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids), Oct 2013, S. 397–402. – ISSN 2164-0572

[Hofmann et al. 2016] Hofmann, Matthias ; Schwarz, Ingmar ; Urbann, Oliver ;
Ziegler, Florian: A Fall Prediction System for Humanoid Robots Using a Multi-
Layer Perceptron, 2016

[Kajita et al. 2016] Kajita, S. ; Cisneros, R. ; Benallegue, M. ; Sakaguchi, T. ;
Nakaoka, S. ; Morisawa, M. ; Kaneko, K. ; Kanehiro, F.: Impact acceleration
of falling humanoid robot with an airbag. In: 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), Nov 2016, S. 637–643

[Kajita et al. 2003a] Kajita, S. ; Kanehiro, F. ; Kaneko, K. ; Fujiwara, K. ;
Harada, K. ; Yokoi, K. ; Hirukawa, H.: Biped walking pattern generation by
using preview control of zero-moment point. In: 2003 IEEE International Conference
on Robotics and Automation (Cat. No.03CH37422) Bd. 2, Sept 2003, S. 1620–1626
vol.2. – ISSN 1050-4729

[Kajita et al. 2003b] Kajita, Suuji ; Fujiwara, Kiyoshi ; Kanehiro, Fumio ;
Yokoi, Kazuhito ; Kaneko, Kenji ; Saito, Hajime ; Harada, Kensuke ;
Hirukawa, Hirohisa: The first human-size humanoid that can fall over safely and
stand-up again. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2003,
S. 1920–1926

[Kakiuchi et al. 2017] Kakiuchi, Y. ; Kamon, M. ; Shimomura, N. ; Yukizaki,
S. ; Takasugi, N. ; Nozawa, S. ; Okada, K. ; Inaba, M.: Development of Life-Size
Humanoid Robot Platform with Robustness for Falling Down, Long Time Working
and Error Occurrence. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2017



102 BIBLIOGRAPHY

[Kalyanakrishnan et Goswami 2011] Kalyanakrishnan, Shivaram ; Goswami,
Ambarish: Learning to predict humanoid fall. In: International Journal of Humanoid
Robotics 08 (2011), Nr. 02, S. 245–273. – URL http://www.worldscientific.com/

doi/abs/10.1142/S0219843611002496

[Lee et al. 2016a] Lee, J. ; Choi, W. ; Kanoulas, D. ; Subburaman, R. ; Cald-
well, D. G. ; Tsagarakis, N. G.: An active compliant impact protection system
for humanoids: Application to WALK-MAN hands. In: 2016 IEEE-RAS 16th Inter-
national Conference on Humanoid Robots (Humanoids), Nov 2016, S. 778–785

[Lee et al. 2016b] Lee, Jinoh ; Choi, Wooseok ; Kanoulas, Dimitrios ; Subbura-
man, Rajesh ; Caldwell, Darwin G. ; Tsagarakis, Nikos: An Active Compliant
Impact Protection System for Humanoids: Application to WALK-MAN Hands. In:
IEEE-RAS Int. Conf. on Humanoid Robots. Cancun, Mexico, 15-17 November 2016

[Lee et Goswami 2007] Lee, Sung-Hee ; Goswami, Ambarish: Reaction mass pen-
dulum (RMP): An explicit model for centroidal angular momentum of humanoid
robots. In: IEEE Int. Conf. on Robotics and Automation, 2007, S. 4667–4672

[Lee et Goswami 2013] Lee, Sung-Hee ; Goswami, Ambarish: Fall on Backpack:
Damage Minimization of Humanoid Robots by Falling on Targeted Body Segments.
In: ASME J. of Computational and Nonlinear Dynamics 8 (2013), Nr. 2, S. 1–10

[Lortie et Rizzo 1999] Lortie, Monique ; Rizzo, P: Reporting and classification of
loss of balance accidents. In: Safety science 33 (1999), Nr. 1, S. 69–85

[Maplesoft 2017] Maplesoft: Maple 2017, a division of Waterloo Maple Inc.,
Waterloo, Ontario. 2017

[MATLAB Software 2016] MATLAB Optimization Toolbox. 2016. – The MathWorks,
Natick, MA, USA

[Nori et al. 2015] Nori, Francesco ; Traversaro, Silvio ; Eljaik, Jorhabib ;
Romano, Francesco ; Del Prete, Andrea ; Pucci, Daniele: iCub Whole-Body
Control through Force Regulation on Rigid Non-Coplanar Contacts. In: Frontiers
in Robotics and AI 2 (2015), S. 6. – URL http://journal.frontiersin.org/

article/10.3389/frobt.2015.00006. – ISSN 2296-9144

[Ogata et al. 2007] Ogata, Kunihiro ; Terada, Koji ; Kuniyoshi, Yasuo: Falling
motion control for humanoid robots while walking. In: IEEE-RAS Int. Conf. on
Humanoid Robots, 2007, S. 306–311

[Ogata et al. 2008] Ogata, Kunihiro ; Terada, Koji ; Kuniyoshi, Yasuo: Real-
time selection and generation of fall damage reduction actions for humanoid robots.
In: IEEE-RAS Int. Conf. on Humanoids, 2008, S. 233–238

http://www.worldscientific.com/doi/abs/10.1142/S0219843611002496
http://www.worldscientific.com/doi/abs/10.1142/S0219843611002496
http://journal.frontiersin.org/article/10.3389/frobt.2015.00006
http://journal.frontiersin.org/article/10.3389/frobt.2015.00006


BIBLIOGRAPHY 103

[Salas-Moreno et al. 2014] Salas-Moreno, R. F. ; Glocken, B. ; Kelly, P. H. J. ;
Davison, A. J.: Dense planar SLAM. In: 2014 IEEE Int. Symposium on Mixed
and Augmented Reality (ISMAR), Sept 2014, S. 157–164

[Samy et al. 2017] Samy, V. ; Bouyarmane, K. ; Kheddar, A.: QP-based
adaptive-gains compliance control in humanoid falls. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, S. 4762–4767

[Samy et Kheddar 2015] Samy, V. ; Kheddar, A.: Falls control using posture
reshaping and active compliance. In: 2015 IEEE-RAS 15th International Conference
on Humanoid Robots (Humanoids), Nov 2015, S. 908–913

[Sugihara 2008] Sugihara, Tomomichi: Simulated regulator to synthesize ZMP
manipulation and foot location for autonomous control of biped robots. In: IEEE
Int. Conf. on Robotics and Automation, 2008, S. 1264–1269

[V. Samy et Kheddar 2017] V. Samy, K. B. ; Kheddar, A.: Post-Impact Adaptive
Compliance for Humanoid Falls Using Predictive Control of a Reduced Model. In:
IEEE-RAS 17th International Conference on Humanoid Robots (Humanoids), Nov
2017. – Accepted

[Vaillant et al. 2016a] Vaillant, J. ; Bouyarmane, K. ; Kheddar, A.: Multi-
Character Physical and Behavioral Interactions Controller. In: IEEE Transactions
on Visualization and Computer Graphics PP (2016), Nr. 99, S. 1–1. – ISSN 1077-
2626

[Vaillant 2015] Vaillant, Joris: Programmation de mouvement de locomotions
et manipulations en Multi-Contact pour Robots Humanöıdes et Expérimentations,
Université de Montpellier, Dissertation, 2015

[Vaillant et al. 2016b] Vaillant, Joris ; Kheddar, Abderrahmane ; Audren,
Hervé ; Keith, François ; Brossette, Stanislas ; Escande, Adrien ; Bou-
yarmane, Karim ; Kaneko, Kenji ; Morisawa, Mitsuharu ; Gergondet, Pierre ;
Yoshida, Eiichi ; Kajita, Suuji ; Kanehiro, Fumio: Multi-contact vertical lad-
der climbing with an HRP-2 humanoid. In: Autonomous Robots 40 (2016), Nr. 3,
S. 561–580

[Wang et al. 2012] Wang, Jiuguang ; Whitman, Eric C. ; Stilman, Mike: Whole-
body trajectory optimization for humanoid falling. In: American Control Conf.,
2012, S. 4837–4842

[Wieber 2006] Wieber, P.-B.: Holonomy and Nonholonomy in the Dynamics of
Articulated Motion. S. 411–425. In: Diehl, Moritz (Hrsg.) ; Mombaur, Katja
(Hrsg.): Fast Motions in Biomechanics and Robotics: Optimization and Feedback
Control. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. – ISBN 978-3-540-
36119-0



104 BIBLIOGRAPHY

[Yoshikawa 1985] Yoshikawa, Tsuneo: Manipulability of robotic mechanisms. In:
The Int. J. of Robotics Research 4 (1985), Nr. 2, S. 3–9

[Yun et Goswami 2014] Yun, Seung-kook ; Goswami, Ambarish: Tripod fall: Con-
cept and experiments of a novel approach to humanoid robot fall damage reduction.
In: IEEE Int. Conf. on Robotics and Automation, 2014, S. 2799–2805



Personal papers

Samy et Kheddar 2015 Samy, V. ; Kheddar, A.: Falls control using posture re-
shaping and active compliance. In: 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), Nov 2015, S. 908–913

Samy et al. 2017 Samy, V. ; Bouyarmane, K. ; Kheddar, A.: QP-based adaptive-
gains compliance control in humanoid falls. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, S. 4762–4767

V. Samy et Kheddar 2017 V. Samy, K. B. ; Kheddar, A.: Post-Impact Adap-
tive Compliance for Humanoid Falls Using Predictive Control of a Reduced Model.
In: IEEE-RAS 17th International Conference on Humanoid Robots (Humanoids), Nov
2017. – Accepted




	List of Figures
	Nomenclature
	Introduction
	State of the art and motivations
	Introduction
	Humanoid robot presentation
	Fall detection
	Limit angle
	Projection of the CoM
	Abnormality Detection Method
	Experiential Learning
	Predicted ZMP
	Conclusion

	Avoiding human/high-value objects
	Direction of the fall
	Foot placement strategy
	Inertia shaping
	Partial inertia shaping

	Minimizing damages
	UKEMI technique
	Online methods
	Shock-reducing motion
	Tripod fall

	Compliant strategy in front of a wall
	Discussion

	Fall singularities
	Introduction
	Taxonomy of fall singularities
	Singularity avoidance controller
	Fall Direction
	Front fall
	Back fall
	Side fall

	Compliance
	Simulation and experimentations
	Conclusion and discussion

	Cluttered environment and adaptive-QP
	Introduction
	Pre-impact phase
	Search of landing points
	Reshaping tasks

	Post-impact phase
	1-dof analysis
	Multi-dof on-line solution

	Simulations
	Discussion
	Impact detection
	Gains stability
	Torque-based controlled robots
	Actuator dynamics

	Conclusion

	Polytope-based model predictive control for compliance
	Reduced Dynamic Model
	Actuation constraints

	Distribution of gravity and linear momentum
	CoM trajectory solution
	Simulations
	Conclusion and discussion

	Conclusion
	Polytopes
	Linear Model Predictive Control
	Bibliography
	Personal papers

