Skip to Main content Skip to Navigation

Probing femtosecond and attosecond electronic and chiral dynamics : high-order harmonic generation, XUV free induction decay, photoelectron spectroscopy and Coulomb explosion

Abstract : This thesis manuscript is articulated around the investigation of the interaction between ultrashort light pulses and gas-phase atoms, polyatomic and chiral molecules. Using the toolboxes developed in attosecond and strong-field physics as well as in femtochemistry, our general goal is to reach a better understanding of subtle effects underlying ultrafast light-induced dynamics in matter.To do so, we developed cutting-edge near-infrared and mid-infrared few-cycle light sources, which were used to build a water-window soft-X-ray source based on high order harmonic generation (HHG), as well as to study new HHG channels involving highly-excited (Rydberg) states. The latter study revealed a delayed HHG emission from the ionization of Rydberg states and radiative recombination onto the electronicground state, triggering our interest in the role of Rydberg states in strong-field physics. This led us to investigate the laser-induced XUV Free Induced Decay from electronic wave packets as a new background-free 2D spectroscopic technique.More over, we have found out that strong-field interaction with a well prepared coherent superposition of electronic states led to the generation of hyper-Ramanlines concomitant with standard high-order harmonics. These spectral features were predicted in the early-days theoretical calculations of HHG but had never been reported experimentally.After these experiments in rare gas atoms, we moved to molecular targets, in whichlight-induced electronic excitation can trigger nuclear dynamics. Using simple benchmark molecules, we have studied dynamics involving the participation of both nuclear and electronic degrees of freedom: first, we studied the ultrafast non adiabatic photoisomerization of the acetylene cation into vinylidene cation, andsecond, we investigated the coherent control of electron localization during molecular photodissociation of H2+. The simplicity of these molecular targets enabled the comparison of the experimental results with state-of-the-art theoretical calculations,revealing the importance of the coupling between nuclear and electronic degrees of freedom in photoinduced molecular dynamics.The other major pillar of this thesis is the study of ionization of chiral molecules usingchiral light pulses. It has been known since the 70s that the ionization from an ensemble of randomly oriented chiral molecules, using circularly polarized light pulse,leads to a strong forward-backward asymmetry in the number of emitted photoelectrons, along the light propagation axis (Photoelectron Circular Dichroism,PECD). Prior to this thesis, PECD was widely studied at synchrotron facilities (single photonionization) and had recently been demonstrated using table-top lasers in resonant-enhanced multiphoton ionization schemes. In this thesis, we have shownthat PECD is a universal effect, i.e. that it emerges in all ionization regimes, from single photon ionization, to few-photon ionization, to above-threshold ionization, up to the tunneling ionization regime. This bridges the gap between chiral photoionizationand strong-field physics. Next, we have shown how the combination of standard femtochemistry approaches and PECD can be used to follow the dynamics of photoexcited chiral molecules using time-resolved PECD. Using similar experimental approaches, but by using pulse sequences with counter-intuitive polarization states,we have demonstrated a novel electric dipolar chiroptical effect, called Photoexcitation Circular Dichroism (PXCD), which emerges as a directional and chirosensitive electron current when multiple excited bound states of chiral molecules are coherently populated with chiral light. Last, we introduced a time-domain perspective on chiral photoionization by measuring the forward-backward asymmetry of photoionization delays in chiral molecules photoionized by chiral light pulses. Our work thus carried chiral-sensitive studies down to the femtosecond and attosecond ranges.
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, December 4, 2018 - 2:02:08 PM
Last modification on : Tuesday, March 29, 2022 - 3:02:05 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01939703, version 1



Samuel Beaulieu. Probing femtosecond and attosecond electronic and chiral dynamics : high-order harmonic generation, XUV free induction decay, photoelectron spectroscopy and Coulomb explosion. Other [cond-mat.other]. Université de Bordeaux; Institut national de la recherche scientifique (Québec, province), 2018. English. ⟨NNT : 2018BORD0063⟩. ⟨tel-01939703⟩



Record views


Files downloads