, pancreatectomy ? Korean Journal of Hepato-Biliary-Pancreatic Surgery, vol.18, issue.3, p.14, 2014.

J. Ferlay, Le cancer du pancréas dans le monde, International Agency for Research on Cancer, vol.13, issue.4, p.15, 2014.

A. Fingerhut, N. Veyrie, T. Ata, N. Alexakis, and E. E. Leandros, Use of sealants in pancreatic surgery : Critical appraisal of the literature, Digestive Surgery, vol.26, issue.1, p.15, 2009.

H. F. Schoellhammer, Y. Fong, and E. S. Gagandeep, Techniques for prevention of pancreatic leak after pancreatectomy. Hepatobiliary surgery and nutrition, vol.3, p.15, 2014.

A. Cunha, N. Carrere, B. Meunier, J. M. Fabre, A. Sauvanet et al., Stump closure reinforcement with absorbable fibrin collagen sealant sponge (TachoSil) does not prevent pancreatic fistula after distal pancreatectomy : The FIABLE multicenter controlled randomized study, vol.210, p.15, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163242

Y. Ikada, Surface modification of polymers for medical applications, Biomaterials, vol.15, issue.10, p.16, 1994.

V. Mars, Charte Des Blocs Operatoires De L ' Assistance Publique-Hôpitaux De Marseille, p.17, 2013.

M. Castel, Mise en forme et caractérisation de biomatériaux pour la prévention des fistules pancréatiques après pancréaectomies

P. Sabatier, , vol.17, p.56, 2017.

K. Y. Lee and D. J. Mooney, Alginate : properties and biomedical applications, vol.37, p.21, 2012.

D. Sahoo, P. L. Nayak, and . Chitosan, The Most Valuable Derivative of Chitin. Biopolymers : Biomedical and Environmental Applications, p.18, 2011.

S. N. Pawar and K. J. Edgar, Alginate derivatization : A review of chemistry, properties and applications, Biomaterials, vol.33, issue.11, p.19, 2012.

D. E. Clark and H. C. Green, Alginic acid and process of making same, p.18, 1936.

G. Klöck, H. Frank, R. Houben, T. Zekorn, A. Horcher et al., Production of purified alginates suitable for use in immunoisolated transplantation, Applied Microbiology and Biotechnology, vol.40, issue.5, p.18, 1994.

, Chapitre 1: Contexte scientifique et réglementaire

S. Meng and Y. Liu, Alginate block fractions and their effects on membrane fouling, Water Research, vol.47, issue.17, p.19, 2013.

I. D. Hay, Z. U. Rehman, A. Ghafoor, and B. H. Rehm, Bacterial biosynthesis of alginates, Journal of Chemical Technology and Biotechnology, vol.85, issue.6, p.19, 2010.

I. Colinet, V. Dulong, T. Hamaide, D. L. Cerf, and E. L. Picton, New amphiphilic modified polysaccharides with original solution behaviour in salt media, Carbohydrate Polymers, vol.75, issue.3, p.19, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00382813

G. Skjåk-braek, H. Grasdalen, and E. O. Smidsrød, Inhomogeneous polysaccharide ionic gels, Carbohydrate Polymers, vol.10, issue.1, p.19, 1989.

G. T. Grant, E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom, Biological interactions between polysaccharides and divalent cations : The egg-box model, FEBS Letters, vol.32, issue.1, p.20, 1973.

P. Sikorski, F. Mo, G. Skjåk-braek, and B. T. Stokke, Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction, Biomacromolecules, vol.8, issue.7, p.20, 2007.

I. Donati, S. Holtan, Y. Mørch, M. Borgogna, M. Dentini et al., New hypothesis on the role of alternating sequences in calcium-alginate gels, Biomacromolecules, vol.6, issue.2, p.20, 2005.

B. Bellich, I. D'agostino, S. Semeraro, A. Gamini, and E. A. Cesàro, The Good, the Bad and the Ugly" of Chitosans, Marine Drugs, vol.14, issue.5, p.21, 2016.

N. Yan and X. Chen, Don't waste seafood waste, pp.155-157, 1921.

A. Percot, C. Viton, and E. A. Domard, Optimization of chitin extraction from shrimp shells, Biomacromolecules, vol.4, issue.1, pp.12-18, 2003.

I. Younes and M. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications, Marine Drugs, vol.13, issue.3, p.22, 2015.

I. Younes, S. Hajji, V. Frachet, M. Rinaudo, K. Jellouli et al., Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan, International Journal of Biological Macromolecules, vol.69, p.22, 2014.

C. T. Pires, J. A. Vilela, and C. Airoldi, The Effect of Chitin Alkaline Deacetylation at Different Condition on Particle Properties. Procedia Chemistry, vol.9, pp.220-225, 2014.

Y. Yuan, B. M. Chesnutt, W. O. Haggard, and J. D. Bumgardner, Deacetylation of chitosan : Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures, Materials, vol.4, issue.8, p.22, 2011.

M. Rinaudo, G. Pavlov, J. Desbrie, and J. Desbrières, Influence of acetic acid concentration on the solubilization of chitosan, Polymer, vol.40, p.22, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00309773

K. Azuma, R. Izumi, T. Osaki, S. Ifuku, M. Morimoto et al., Chitin, Chitosan, and Its Derivatives for Wound Healing : Old and New Materials, Journal of Functional Biomaterials, vol.6, issue.1, p.22, 2015.

C. Chatelet, O. Damour, and . Domard, Influence of the degree of acetylation on some biological properties of chitosan films, Biomaterials, vol.22, issue.3, p.22, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00313081

I. A. Alsarra, Chitosan topical gel formulation in the management of burn wounds, International Journal of Biological Macromolecules, vol.45, issue.1, p.22, 2009.

C. Wenling, J. Duohui, L. Jiamou, G. Yandao, Z. Nanming et al., Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films, Journal of biomaterials applications, vol.20, issue.2, p.22, 2005.

F. Croisier and C. Jérôme, Chitosan-based biomaterials for tissue engineering, European Polymer Journal, vol.49, issue.4, pp.780-792, 2013.

K. M. Vårum, M. M. Myhr, R. J. Hjerde, and E. O. Smidsrød, In vitro degradation rates of partially N-acetylated chitosans in human serum, Carbohydrate Research, vol.299, issue.1-2, pp.99-101, 1997.

S. H. Pangburn, P. V. Trescony, and J. Heller, Lysozyme degradation of partially deacetylated chitin, its films and hydrogels, Biomaterials, vol.3, issue.2, pp.105-108, 1982.

S. L. Patwekar, A. P. Potulwar, S. R. Pedewad, M. S. Gaikwad, S. A. Khan et al., Suryawanshi. Review on Polyelectrolyte Complex as Novel Approach for Drug Delivery System, Ijppr.Human, vol.5, issue.4, pp.97-109, 2016.

D. Park, B. Choi, S. Zhu, J. Huh, B. Kim et al., Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol.33, p.24, 2005.

L. Becherán-marón and C. Peniche, Argüelles-Monal. Study of the interpolyelectrolyte reaction between chitosan and alginate : influence of alginate composition and chitosan molecular weight, International Journal of Biological Macromolecules, vol.34, issue.1-2, pp.127-133, 2004.

J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine et al., Cell sheet engineering : Recreating tissues without biodegradable scaffolds. Biomaterials, vol.26, p.45, 2005.

M. A. Cooperstein and H. E. Canavan, Assessment of cytotoxicity of (N-isopropyl acrylamide) and Poly(N-isopropyl acrylamide)-coated surfaces, Biointerphases, vol.8, issue.1, p.31, 2013.
DOI : 10.1186/1559-4106-8-19

URL : http://avs.scitation.org/doi/pdf/10.1186/1559-4106-8-19

A. Tourrette, N. De, D. Geyter, R. Jocic, M. M. Morent et al., Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.352, p.31, 2009.
DOI : 10.1016/j.colsurfa.2009.10.014

H. Lim, Y. Lee, S. Han, Y. Kim, J. Song et al., Wettability of poly(styrene-coacrylate) ionomers improved by oxygen-plasma source ion implantation, Journal of Polymer Science Part B : Polymer Physics, vol.41, p.31, 2003.
DOI : 10.1002/polb.10536

A. M. Borges, L. O. Benetoli, M. Licínio, V. C. Zoldan, M. C. Santos-silva-;-debacher et al., Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion, Materials Science and Engineering C, vol.33, issue.3, p.32, 2013.
DOI : 10.1016/j.msec.2012.12.031

A. Sdrobi¸ssdrobi¸s, G. E. Ioanid, T. Stevanovic, and C. Vasile, Modification of cellulose/chitin mix fibers with N-isopropylacrylamide and poly(N-isopropylacrylamide) under cold plasma conditions, Polymer International, vol.32, p.45, 2012.

L. Moroni, M. Klein-gunnewiek, and E. M. Benetti, Polymer brush coatings regulating cell behavior : passive interfaces turn into active, Acta biomaterialia, vol.10, issue.6, p.32, 2014.
DOI : 10.1016/j.actbio.2014.02.048

A. Olivier, F. Meyer, J. Raquez, P. Damman, and P. Dubois, Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes : From self-assembled monolayers to patterned surfaces, Progress in Polymer Science, vol.37, issue.1, p.34, 2012.
DOI : 10.1016/j.progpolymsci.2011.06.002

M. A. Stuart, W. T. Huck, J. Genzer, M. Müller, C. Ober et al., Emerging applications of stimuli-responsive polymer materials, Nature materials, vol.9, issue.2, p.35, 2010.
DOI : 10.1038/nmat2614

C. Xue, B. Choi, S. Choi, P. V. Braun, and D. E. Leckband, Protein Adsorption Modes Determine Reversible Cell Attachment on Poly(N-isopropyl acrylamide) Brushes

, Advanced Functional Materials, vol.22, issue.11, p.42, 2012.

, Chapitre 1: Contexte scientifique et réglementaire

A. Halperin and M. Kröger, Theoretical considerations on mechanisms of harvesting cells cultured on thermoresponsive polymer brushes, Biomaterials, vol.33, issue.20, p.45, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00971378

C. Xue, N. Yonet-tanyeri, N. Brouette, M. Sferrazza, P. V. Braun et al., Protein adsorption on poly(N-isopropylacrylamide) brushes : dependence on grafting density and chain collapse, vol.27, p.45, 2011.

A. Halperin, Polymer brushes that resist adsorption of model proteins : Design parameters, Langmuir, vol.15, p.34, 1999.

R. B. Grubbs, Nitroxide-Mediated Radical Polymerization : Limitations and Versatility, Polymer Reviews, vol.51, issue.2, p.34, 2011.

T. Schulte, K. O. Siegenthaler, H. Luftmann, M. Letzel, and E. A. Studer, NitroxideMediated Polymerization of N-Isopropylacrylamide : Electrospray Ionization Mass Spectrometry , Matrix-Assisted Laser Desorption Ionization Mass Spectrometry , and Multiple-Angle Laser Light Scattering Studies on Nitroxide-Terminated Poly-N-is. Macromolecules, p.34, 2005.

J. Ran, L. Wu, Z. Zhang, and E. T. Xu, Atom transfer radical polymerization (ATRP) : A versatile and forceful tool for functional membranes, Progress in Polymer Science, vol.39, issue.1, p.36, 2014.

S. Edmondson, V. L. Osborne, and W. T. Huck, Polymer brushes via surface-initiated polymerizations, Chemical Society reviews, vol.33, issue.1, p.38, 2004.

J. Draper, I. Luzinov, S. Minko, I. Tokarev, and M. Stamm, Mixed Polymer Brushes by Sequential Polymer Addition : Anchoring Layer Effect, Langmuir, vol.20, issue.10, p.36, 2004.

B. Zdyrko and I. Luzinov, Polymer brushes by the "grafting to" method. Macromolecular rapid communications, vol.32, pp.859-69, 2011.

K. S. Iyer, B. Zdyrko, H. Malz, J. Pionteck, and E. I. Luzinov, Polystyrene Layers Grafted to Macromolecular Anchoring Layer, Macromolecules, vol.36, issue.17, pp.6519-6526, 2003.

M. Husseman, E. E. Malmström, M. Mcnamara, M. Mate, D. Mecerreyes et al., Controlled Synthesis of Polymer Brushes by "Living" Free Radical Polymerization Techniques

, Macromolecules, vol.32, issue.5, p.42, 1999.

N. Ayres, C. D. Cyrus, and W. J. Brittain, Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization. Langmuir : the, ACS journal of surfaces and colloids, vol.23, issue.7, p.42, 2007.

G. Conzatti-ups, , 2017.

U. Mansfeld, C. Pietsch, R. Hoogenboom, C. R. Becer, and U. S. Schubert, Clickable initiators, monomers and polymers in controlled radical polymerizations-a prospective combination in polymer science, Polymer Chemistry, vol.1, issue.10, p.42, 2010.

P. Liu, Modification of Polymeric Materials via Surface-Initiated Controlled, Living" Radical Polymerization. e-Polymers, vol.7, issue.1, p.36, 2007.

P. Król and P. Chmielarz, Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials, Progress in Organic Coatings, vol.77, issue.5, p.37, 2014.

C. Hsiao, H. Han, G. Lee, and C. Peng, AGET and SARA ATRP of styrene and methyl methacrylate mediated by pyridyl-imine based copper complexes, European Polymer Journal, vol.51, p.36, 2014.

W. Feng, J. Brash, and S. Zhu, Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine : Separate effects of graft density and chain length on protein repulsion, Biomaterials, vol.27, issue.6, p.42, 2006.

J. Pyun, T. Kowalewski, and E. K. Matyjaszewski, Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization, Macromolecular Rapid Communications, vol.24, issue.18, p.42, 2003.

J. Qin, Z. Cheng, L. Zhang, Z. Zhang, J. Zhu et al., A Highly Efficient IronMediated AGET ATRP of Methyl Methacrylate Using Fe(0) Powder as the Reducing Agent, Macromolecular Chemistry and Physics, vol.212, issue.10, p.38, 2011.

R. Gong, S. Maclaughlin, and E. S. Zhu, Surface modification of active metals through atom transfer radical polymerization grafting of acrylics, Applied Surface Science, vol.254, issue.21, p.37, 2008.

C. Hou, R. Qu, C. Sun, C. Ji, C. Wang et al., Novel ionic liquids as reaction medium for ATRP of acrylonitrile in the absence of any ligand

, Polymer, vol.49, issue.16, p.37, 2008.

T. Wang, D. Liu, C. Lian, S. Zheng, X. Liu et al., Rapid cell sheet detachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm and hectorite clay, Reactive and Functional Polymers, vol.71, issue.4, p.45, 2011.

J. Cao, L. Zhang, X. Jiang, C. Tian, X. Zhao et al., Facile iron-mediated dispersant-free suspension polymerization of methyl methacrylate Chapitre 1: Contexte scientifique et réglementaire via reverse ATRP in water, Macromolecular rapid communications, vol.34, issue.22, pp.1747-54, 2013.

L. Zhang, Z. Cheng, Z. Zhang, D. Xu, and E. X. Zhu, Fe(III)-catalyzed AGET ATRP of styrene using triphenyl phosphine as ligand, Polymer Bulletin, vol.64, issue.3, p.37, 2009.

C. Bolm, J. Legros, J. L. Paih, and E. L. Zani, Iron-catalyzed reactions in organic synthesis, Chemical reviews, vol.104, issue.12, p.37, 2004.

R. Poli, L. E. Allan, and M. P. Shaver, Iron-mediated reversible deactivation controlled radical polymerization, Progress in Polymer Science, vol.39, issue.10, p.38, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023159

S. Nakanishi, M. Kawamura, H. Kai, R. Jin, Y. Sunada et al., Welldefined iron complexes as efficient catalysts for "green" atom-transfer radical polymerization of styrene, methyl methacrylate, and butyl acrylate with low catalyst loadings and catalyst recycling, Chemistry (Weinheim an der Bergstrasse, vol.20, issue.19, p.37, 2014.

M. Klein-gunnewiek, A. Di-luca, X. Sui, C. A. Van-blitterswijk, L. Moroni et al., Controlled Surface Initiated Polymerization of N-Isopropylacrylamide from Polycaprolactone Substrates for Regulating Cell Attachment and Detachment

, Israel Journal of Chemistry, vol.52, issue.3-4, p.39, 2012.

J. Liu, W. He, L. Zhang, Z. Zhang, J. Zhu et al., Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst, Langmuir, vol.27, p.37, 2011.

K. Min, H. Gao, and E. K. Matyjaszewski, Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP, Macromolecules, vol.40, issue.6, p.38, 2007.

B. V. Bhut, K. Conrad, and S. M. Husson, Preparation of high-performance membrane adsorbers by surface-initiated AGET ATRP in the presence of dissolved oxygen and low catalyst concentration, Journal of Membrane Science, p.37, 2012.

P. Shivapooja, L. K. Ista, H. E. Canavan, and G. P. Lopez, ARGET-ATRP Synthesis and Characterization of PNIPAAm Brushes for Quantitative Cell Detachment Studies

, Biointerphases, vol.7, issue.1-4, p.45, 2012.

Y. Zhang, Y. Wang, C. Peng, M. Zhong, W. Zhu et al., Copper-Mediated CRP of Methyl Acrylate in the Presence of Metallic Copper : Effect of Ligand Structure on Reaction Kinetics, Macromolecules, vol.45, issue.1, p.38, 2012.

G. Conzatti-ups, , 2017.

, Chapitre 1: Contexte scientifique et réglementaire

W. Wu, J. Li, W. Zhu, Y. Jing, and H. Dai, Thermo-responsive cellulose paper via ARGET ATRP. Fibers and Polymers, vol.17, p.39, 2016.

L. Li-yang, J. Zhang, J. Song-he, J. Zhang, and Z. Hua-gan, Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers, Chinese Journal of Polymer Science (English Edition), vol.33, issue.12, p.39, 2015.

R. B. Vasani, S. J. Mcinnes, M. A. Cole, A. M. Jani, A. V. Ellis et al., Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide), Langmuir, vol.27, issue.12, p.39, 2011.

K. Kusolkamabot, P. Sae-ung, N. Niamnont, K. Wongravee, M. Sukwattanasinitt et al., Poly( N-isopropylacrylamide)-Stabilized Gold Nanoparticles in Combination with Tricationic Branched Phenylene-Ethynylene Fluorophore for Protein Identification, Langmuir, vol.29, issue.39, p.39, 2013.

P. Chung, R. Kumar, M. Pruski, V. S. , and -. Lin, Temperature Responsive Solution Partition of Organic-Inorganic Hybrid Poly(N-isopropylacrylamide)-Coated Mesoporous Silica Nanospheres, Advanced Functional Materials, vol.18, issue.9, p.39, 2008.

F. Audouin and A. Heise, Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE, European Polymer Journal, vol.49, issue.5, p.41, 2013.

A. Hufendiek, V. Trouillet, M. A. Meier, and C. Barner-kowollik, Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization, Biomacromolecules, vol.15, issue.7, p.39, 2014.

H. Takahashi, M. Nakayama, M. Yamato, and E. T. Okano, Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest, Biomacromolecules, vol.11, issue.8, p.46, 2010.

M. Barsbay and O. Güven, A short review of radiation-induced raft-mediated graft copolymerization : A powerful combination for modifying the surface properties of polymers in a controlled manner, Radiation Physics and Chemistry, vol.78, p.40, 2009.

C. Barner-kowollik, T. P. Davis, J. P. Heuts, M. H. Stenzel, P. Vana et al., RAFTing down under : Tales of missing radicals, fancy architectures, and mysterious holes, Journal of Polymer Science, Part A : Polymer Chemistry, vol.41, issue.3, pp.365-375, 2003.

C. Kang, R. M. Crockett, and N. D. Spencer, Molecular-Weight Determination of Polymer Brushes Generated by SI-ATRP on Flat Surfaces, Macromolecules, vol.47, issue.1, p.42, 2014.

Y. Yang, X. Song, L. Yuan, M. Li, J. Liu et al., Synthesis of PNIPAM polymer brushes on reduced graphene oxide based on click chemistry and RAFT polymerization, Journal of Polymer Science Part A : Polymer Chemistry, vol.50, issue.2, p.40, 2012.

, Handbook of RAFT Polymerization, vol.40, p.41, 2008.

J. Bigot, D. Fournier, J. Lyskawa, T. Marmin, F. Cazaux et al., Synthesis of thermoresponsive phenyl-and naphthyl-terminated poly(NIPAM) derivatives using RAFT and their complexation with cyclobis(paraquat-p-phenylene) derivatives in water, Polymer Chemistry, vol.1, issue.7, p.41, 2010.

L. Chen, M. Liu, H. Bai, P. Chen, F. Xia et al., Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface with nanoscale topography, Journal of the American Chemical Society, vol.131, issue.30, p.42, 2009.

Y. Liu, V. Klep, B. Zdyrko, and E. I. Luzinov, Synthesis of high-density grafted polymer layers with thickness and grafting density gradients, Langmuir : the ACS journal of surfaces and colloids, vol.21, issue.25, pp.11806-11819, 2005.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona et al.,

C. Rowan, W. Weder, M. Thielemans, S. Roman, W. Renneckar et al.,

A. Benight, L. Bismarck, E. T. Berglund, and . Peijs, Review : current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science, vol.45, issue.1, pp.1-33, 2009.

J. Lindqvist and E. Malmström, Surface modification of natural substrates by atom transfer radical polymerization, Journal of Applied Polymer Science, vol.100, issue.5, p.42, 2006.

X. Wang, H. Tu, P. V. Braun, and P. W. Bohn, Length scale heterogeneity in lateral gradients of poly(N-isopropylacrylamide) polymer brushes prepared by surfaceinitiated atom transfer radical polymerization coupled with in-plane electrochemical potential gradients, Langmuir : the ACS journal of surfaces and colloids, vol.22, issue.2, p.42, 2006.

E. C. Cho, Y. D. Kim, and E. K. Cho, Thermally responsive poly(N-isopropylacrylamide) monolayer on gold : synthesis, surface characterization, and protein interaction/adsorption studies, Polymer, vol.45, issue.10, p.44, 2004.

, Chapitre 1: Contexte scientifique et réglementaire

X. Sui, S. Zapotoczny, E. M. Benetti, P. Schön, and G. J. Vancso, Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy, Journal of Materials Chemistry, vol.20, p.42, 2010.

K. N. Plunkett, X. Zhu, J. S. Moore, and D. E. Leckband, PNIPAM chain collapse depends on the molecular weight and grafting density, Langmuir : the ACS journal of surfaces and colloids, vol.22, issue.9, p.44, 2006.

N. Brouette, C. Xue, M. Haertlein, M. Moulin, G. Fragneto et al., Protein adsorption properties of OEG monolayers and dense PNIPAM brushes probed by neutron reflectivity, European Physical Journal : Special Topics, vol.213, p.42, 2012.

R. Iwata, P. Suk-in, V. P. Hoven, A. Takahara, K. Akiyoshi et al., Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations, Biomacromolecules, vol.5, p.42, 2004.

M. Yasaka, X-ray thin-film measurement techniques. V. X-ray reflectivity measurement, The Rigaku Journal, vol.26, issue.2, p.42, 2010.

H. Tu, C. E. Heitzman, and P. V. Braun, Patterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization, Langmuir, vol.20, issue.19, p.42, 2004.

A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, and E. T. Okano, Preparation of thermoresponsive polymer brush surfaces and their interaction with cells, Biomaterials, vol.29, issue.13, p.45, 2008.

F. Adar, E. Lee, S. Mamedov, and E. A. Whitley, Experimental Evaluation of the Depth Resolution of a Raman Microscope, Microscopy and Microanalysis, vol.16, issue.S2, p.43, 2010.

Y. Maeda, T. Nakamura, and E. I. Ikeda, Changes in the Hydration States of Poly( N-n-propylmethacrylamide) and Poly( N-isopropylmethacrylamide) during Their Phase Transitions in Water Observed by FTIR Spectroscopy, Macromolecules, vol.34, issue.23, p.44, 2001.

R. Umapathi, P. M. Reddy, A. Kumar, P. Venkatesu, and C. Chang, The biological stimuli for governing the phase transition temperature of the "smart" polymer PNIPAM in water, Colloids and surfaces. B, Biointerfaces, vol.135, p.44, 2015.

T. Qu, A. Wang, J. Yuan, J. Shi, and E. Q. Gao, Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release, Colloids and Surfaces B : Biointerfaces, vol.72, issue.1, p.44, 2009.

G. Conzatti-ups, , 2006.

T. Qu, A. Wang, J. Yuan, J. Shi, and E. Q. Gao, Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release, Colloids and Surfaces B : Biointerfaces, vol.72, issue.1, pp.94-100, 2009.

M. Klein-gunnewiek, A. Di-luca, X. Sui, C. A. Van-blitterswijk, L. Moroni et al., Controlled Surface Initiated Polymerization of N-Isopropylacrylamide from

, Polycaprolactone Substrates for Regulating Cell Attachment and Detachment, Israel Journal of Chemistry, vol.52, issue.3-4, pp.339-346, 2012.

R. Umapathi, P. M. Reddy, A. Kumar, P. Venkatesu, and C. Chang, The biological stimuli for governing the phase transition temperature of the "smart" polymer PNIPAM in water, Colloids and surfaces. B, Biointerfaces, vol.135, pp.588-595, 2015.

A. Zajac, J. Hanuza, and M. Wandas, Dymi ? ?ska. Determination of N-acetylation degree in chitosan using Raman spectroscopy, Spectrochimica Acta-Part A : Molecular and Biomolecular Spectroscopy, vol.134, p.113, 2015.

J. Clayden, N. Greeves, and S. G. Warren, Organic chemistry, p.113, 2012.

, Modification chimique pour une bioadhésion thermorégulée sivation des surfaces. Les polymères synthétisés par polymérisation RAFT se sont montrés fonctionnels et l'un d'entre eux, Chapitre, vol.3

V. Mars, Charte Des Blocs Operatoires De L ' Assistance Publique-Hôpitaux De Marseille, p.130, 2013.

G. Conzatti, S. Cavalie, C. Combes, J. Torrisani, N. Carrere et al., PNIPAM grafted surfaces through ATRP and RAFT polymerization : Chemistry and bioadhesion, Colloids and Surfaces B : Biointerfaces, vol.151, p.133, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01625967

D. Kessler and P. Théato, Temperature-Responsive Surface Coatings Based on Poly(methylsilsesquioxane)-hybrid Polymers, Macromolecular Symposia, p.130, 2007.

M. A. Cooperstein and H. E. Canavan, Assessment of cytotoxicity of (N-isopropyl acrylamide) and Poly(N-isopropyl acrylamide)-coated surfaces, Biointerphases, vol.8, issue.1, p.144, 2013.

P. Shivapooja, L. K. Ista, H. E. Canavan, and G. P. Lopez, ARGET-ATRP Synthesis and Characterization of PNIPAAm Brushes for Quantitative Cell Detachment Studies

, Biointerphases, vol.7, issue.1-4, p.144, 2012.

Y. Yang, X. Song, L. Yuan, M. Li, J. Liu et al., Synthesis of PNIPAM polymer brushes on reduced graphene oxide based on click chemistry and RAFT polymerization, Journal of Polymer Science Part A : Polymer Chemistry, vol.50, issue.2, p.155, 2012.

C. Barner-kowollik, T. P. Davis, J. P. Heuts, M. H. Stenzel, P. Vana et al., RAFTing down under : Tales of missing radicals, fancy architectures, and mysterious holes, Journal of Polymer Science, Part A : Polymer Chemistry, vol.41, issue.3, pp.365-375, 2003.

A. Veloso, W. Garcia, A. Agirre, N. Ballard, F. Ruiperez et al., Determining the effect of side reactions on product distributions in RAFT polymeri

G. Conzatti-ups, RÉFÉRENCES zation by MALDI-TOF MS, vol.6, p.143, 2015.

H. Takahashi, M. Nakayama, M. Yamato, and E. T. Okano, Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest

, Biomacromolecules, vol.11, p.133, 1991.

X. Hao, M. H. Stenzel, C. Barner-kowollik, T. P. Davis, and E. E. Evans, Molecular composite materials formed from block copolymers containing a side-chain liquid crystalline segment and an amorphous styrene/maleic anhydride segment, Polymer, vol.45, issue.22, p.138, 2004.

P. Vana, L. Albertin, L. Barner, T. P. Davis, and C. Barner-kowollik, Reversible additionfragmentation chain-transfer polymerization : Unambiguous end-group assignment via electrospray ionization mass spectrometry, Journal of Polymer Science, Part A : Polymer Chemistry, vol.40, issue.22, p.138, 2002.

F. Audouin and A. Heise, Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE, European Polymer Journal, vol.49, issue.5, p.152, 2013.

J. Bigot, D. Fournier, J. Lyskawa, T. Marmin, F. Cazaux et al., Synthesis of thermoresponsive phenyl-and naphthyl-terminated poly(NIPAM) derivatives using RAFT and their complexation with cyclobis(paraquat-p-phenylene) derivatives in water, Polymer Chemistry, vol.1, issue.7, p.142, 2010.

Y. Sugihara, P. O'connor, P. B. Zetterlund, and E. F. Aldabbagh, Chain transfer to solvent in the radical polymerization of N-isopropylacrylamide, Journal of Polymer Science, Part A : Polymer Chemistry, vol.49, issue.8, p.138, 2011.

M. Benaglia, E. Rizzardo, A. Alberti, and M. Guerra, Searching for more effective agents and conditions for the RAFT polymerization of MMA : Influence of dithioester substituents, solvent, and temperature, Macromolecules, vol.38, issue.8, p.134, 2005.

F. P. Byrne, S. Jin, G. Paggiola, T. H. Petchey, J. H. Clark et al., Tools and techniques for solvent selection : green solvent selection guides, Sustainable Chemical Processes, vol.4, p.134, 2016.

, Handbook of RAFT Polymerization, vol.136, p.138, 2008.

S. R. Ting, T. P. Davis, and P. B. Zetterlund, Retardation in RAFT polymerization : Does cross-termination occur with short radicals only ?, Macromolecules, vol.44, issue.11, p.136, 2011.

, Chapitre 3: Modification chimique pour une bioadhésion thermorégulée

M. Zhang and W. H. Ray, Modeling of "Living" Free-Radical Polymerization with RAFT Chemistry, Industrial & Engineering Chemistry Research, vol.40, issue.20, p.136, 2001.

J. Xu, J. He, D. Fan, W. Tang, and Y. Yang, Thermal decomposition of dithioesters and its effect on RAFT polymerization, Macromolecules, vol.39, issue.11, p.140, 2006.

X. Zhang, O. Giani, S. Monge, and J. J. Robin, RAFT polymerization of N,Ndiethylacrylamide : Influence of chain transfer agent and solvent on kinetics and induction period, Polymer, vol.51, issue.14, p.138, 2010.

E. Grau, J. P. Broyer, C. Boisson, R. Spitz, and V. Monteil, Free ethylene radical polymerization under mild conditions : The impact of the solvent, Macromolecules, vol.42, issue.19, p.138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00944969

I. Cauët and K. L. Wooley, Kinetic investigation of the RAFT polymerization of pacetoxystyrene, Journal of Polymer Science Part A : Polymer Chemistry, vol.48, issue.12, p.142, 2010.

C. Huang and F. Chang, Polypeptide Diblock Copolymers : Syntheses and Properties of Poly( N-isopropylacrylamide)-b-Polylysine, Macromolecules, vol.41, issue.19, p.143, 2008.

B. Wang, Z. Cai, N. Zhang, B. Zhang, D. Qi et al., Fully aromatic naphthalene-based sulfonated poly(arylene ether ketone)s with flexible sulfoalkyl groups as polymer electrolyte membranes, RSC Adv, vol.5, issue.1, p.144, 2015.

Y. Akiyama, A. Kikuchi, M. Yamato, and E. T. Okano, Ultrathin Poly( N

, Grafted Layer on Polystyrene Surfaces for Cell Adhesion/Detachment Control, Langmuir, vol.20, issue.13, p.144, 2004.

C. A. Montalbetti and V. Falque, Amide bond formation and peptide coupling

, Tetrahedron, vol.61, issue.46, p.149, 2005.

M. Schmeing and V. Ramakrishnan, What recent ribosome structures have revealed about the mechanism of translation, Nature, vol.461, issue.7268, p.146, 2009.

S. Zuffanti, Preparation of Acyl Chlorides with Thionyl Chloride, J. Chem. Educ, vol.25, issue.9, p.148, 1948.

J. Clayden, N. Greeves, and S. G. Warren, Organic chemistry, p.148, 2012.

J. R. Navarro, G. Conzatti, Y. Yu, B. Fall, R. Mathew et al., Multi-color fluorescent labelling of cellulose nanofibrils by click-chemistry Multicolor fluorescent labelling of cellulose nanofibrils by click-chemistry, p.148, 2015.

G. Conzatti-ups, , 2017.

Z. Wang, Schotten-Baumann Reaction, p.148, 2010.

M. R. Kasaai, J. Arul, and G. Charlet, Fragmentation of chitosan by acids, The Scientific World Journal, issue.149, 2013.

S. Holtan, Q. Zhang, and W. I. Strand, Skjåk-Braek. Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting MG-oligosaccharides by NMR spectroscopy and ESI-Mass spectrometry, Biomacromolecules, vol.7, issue.7, p.149, 2006.

Z. Ahmad, J. H. Shepherd, D. V. Shepherd, S. Ghose, S. J. Kew et al., Effect of 1-ethyl-3-( 3dimethylaminopropyl ) carbodiimide and N-hydroxysuccinimide concentrations on the mechanical and biological characteristics of cross-linked collagen fibres for tendon repair, vol.149, p.150, 2015.

T. Heinze, T. Liebert, and E. A. Koschella, Esterification of polysaccharides, p.149, 2006.

J. Chen and T. Cheng, Thermo-responsive chitosan-graft-poly(Nisopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells, Macromolecular bioscience, vol.6, issue.12, p.155, 2006.

L. Zhao, Y. Wu, S. Chen, and E. T. Xing, Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications. Carbohydrate Polymers, vol.126, pp.150-155, 2015.

J. Chen, C. Kuo, and W. Lee, Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics, Applied Surface Science, vol.262, pp.95-101, 2012.

S. Sakai, I. Hashimoto, and E. K. Kawakami, Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold, Journal of Bioscience and Bioengineering, vol.103, issue.1, p.150, 2007.

N. Taheri and Q. Sahar, Synthesis and characterization of gelatin nanoparticles using CDI / NHS as a non-toxic cross-linking system, p.150, 2011.

H. Chen, S. Cui, Y. Zhao, C. Zhang, S. Zhang et al., Grafting Chitosan with Polyethylenimine in an Ionic Liquid for Efficient Gene Delivery, Plos One, vol.10, issue.4, p.150, 2015.
DOI : 10.1371/journal.pone.0121817

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0121817&type=printable

S. Boufi and S. Alila, Modified Cellulose Fibres as a Biosorbent for the Organic Pollutants, Biopolymers : Biomedical and Environmental Applications, pp.483-524, 2011.
DOI : 10.1002/9781118164792.ch17

, Chapitre 3: Modification chimique pour une bioadhésion thermorégulée

T. Heinze, T. Liebert, and E. A. Koschella, Esterification of Polysaccharides. Springer Laboratory

N. Z. Burns, P. S. Baran, and R. W. Hoffmann, Redox economy in organic synthesis

, Angewandte Chemie-International Edition, vol.48, issue.16, pp.2854-2867, 2009.

V. R. Pattabiraman and J. W. Bode, Rethinking amide bond synthesis, Nature, vol.480, issue.7378, p.149, 2011.

S. K. Verma, R. Ghorpade, A. Pratap, and M. P. Kaushik, CDI-mediated monoacylation of symmetrical diamines and selective acylation of primary amines of unsymmetrical diamines, Green Chem, vol.14, issue.2, p.149, 2012.

S. Alila, A. M. Ferraria, A. M. Botelho-do-rego, and E. S. Boufi, Controlled surface modification of cellulose fibers by amino derivatives using N,N-carbonyldiimidazole as activator, Carbohydrate Polymers, vol.77, issue.3, p.165, 2009.

S. K. Verma, R. Ghorpade, A. Pratap, and M. Kaushik, Solvent free, N,Ncarbonyldiimidazole (CDI) mediated amidation, Tetrahedron Letters, vol.53, issue.19, p.150, 2012.

N. Nakajima, Y. Ikada, B. Engineering, R. June, I. Carbodiimides et al., Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media

, Bioconjugate Chemistry, vol.150, p.162, 1995.

K. Nam, T. Kimura, and E. A. Kishida, Controlling Coupling Reaction of EDC and NHS for Preparation of Collagen Gels Using Ethanol / Water Co-Solvents, vol.150, p.167, 2008.

I. Filpponen, H. Sadeghifar, and D. S. Argyropoulos, Photoresponsive Cellulose Nanocrystals. Regular Paper, vol.1, issue.1, p.152, 2011.

S. V. Sambasivarao, , vol.18, pp.1199-1216, 2013.

S. Indulekha, P. Arunkumar, D. Bahadur, and E. R. Srivastava, Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management

, Materials Science and Engineering : C, vol.62, p.155, 2016.

K. Nam, T. Kimura, and A. K. , Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels, vol.28, p.153, 2007.

J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate : A surface plasmon resonance study, Analytical Chemistry, vol.71, issue.4, p.152, 1999.

G. Conzatti-ups, , 2017.

J. Credou, H. Volland, J. Dano, and E. T. Berthelot, A one-step and biocompatible cellulose functionalization for covalent antibody immobilization on immunoassay membranes, Journal of Materials Chemistry B, vol.1, issue.26, p.152, 2013.

T. Qu, A. Wang, J. Yuan, J. Shi, and E. Q. Gao, Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release, Colloids and Surfaces B : Biointerfaces, vol.72, issue.1, p.154, 2009.

M. Klein-gunnewiek, A. Di-luca, X. Sui, C. A. Van-blitterswijk, L. Moroni et al., Controlled Surface Initiated Polymerization of N-Isopropylacrylamide from

, Polycaprolactone Substrates for Regulating Cell Attachment and Detachment, Israel Journal of Chemistry, vol.52, issue.3-4, pp.339-346, 2012.

R. Umapathi, P. M. Reddy, A. Kumar, P. Venkatesu, and C. Chang, The biological stimuli for governing the phase transition temperature of the "smart" polymer PNIPAM in water, Colloids and surfaces. B, Biointerfaces, vol.135, p.154, 2015.

G. Lawrie, I. Keen, B. Drew, A. Chandler-temple, L. Rintoul et al., Grøndahl. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS, Biomacromolecules, vol.8, issue.8, p.166, 2007.

M. R. Kasaai, A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, vol.71, p.155, 2008.

A. C. Kumar, H. B. Bohidar, and A. K. Mishra, The effect of sodium cholate aggregates on thermoreversible gelation of PNIPAM, Colloids and Surfaces B : Biointerfaces, vol.70, issue.1, p.155, 2009.

M. W. Frey, L. Li, M. Xiao, and T. Gould, Dissolution of cellulose in ethylene diamine/salt solvent systems, Cellulose, vol.13, issue.2, p.159, 2006.

Y. Li and H. Ishida, Concentration-dependent conformation of alkyl tail in the nanoconfined space : Hexadecylamine in the silicate galleries, Langmuir, vol.19, issue.6, pp.2479-2484, 2003.

R. Heacock and L. Marion, The infrared spectra of secondary amines et leurs sels

, Canadian Journal of Chemistry, p.159, 1956.

R. S. Yangt, R. R. Maronpott, J. A. Mckelvey, C. S. Well, and M. D. Woodside, Acute and Subchronic Toxicity of Ethylenediamine in Laboratory Animals, Fundamental and applied toxicology, vol.3, p.162, 1983.

, Chapitre 3: Modification chimique pour une bioadhésion thermorégulée

Z. Ma, Z. Mao, and C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids and Surfaces B : Biointerfaces, vol.60, issue.2, p.164, 2007.

P. Heinz, F. Brétagnol, I. Mannelli, L. Sirghi, G. Valsesia et al., Poly(N-isopropylacrylamide) grafted on plasma-activated poly (ethylene oxide) : Thermal response and interaction with proteins, Langmuir, vol.24, issue.12, p.169, 2008.

I. Younes and M. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications, Marine Drugs, vol.13, issue.3, p.174, 2015.

G. Conzatti-ups, , 2017.

, Biomacromolecules, vol.11, 0190.

M. A. Cooperstein and H. E. Canavan, Assessment of cytotoxicity of (N-isopropyl acrylamide) and Poly(N-isopropyl acrylamide)-coated surfaces, Biointerphases, vol.8, issue.1, p.191, 2013.
DOI : 10.1186/1559-4106-8-19

URL : http://avs.scitation.org/doi/pdf/10.1186/1559-4106-8-19

R. S. Yangt, R. R. Maronpott, J. A. Mckelvey, C. S. Well, and M. D. Woodside, Acute and Subchronic Toxicity of Ethylenediamine in Laboratory Animals, Fundamental and applied toxicology, vol.3, p.191, 1983.

, ISO/EN10993-5. ISO/EN10993-5. International Standard ISO 10993-5 Biological evaluation of medical devices-Part 5 : Tests for cytotoxicity : in vitro methods, vol.3, p.192, 2009.

K. Anselme, L. Ploux, and . Ponche, Cell/Material Interfaces : Influence of Surface Chemistry and Surface Topography on Cell Adhesion, Journal of Adhesion Science and Technology, vol.24, issue.5, p.192, 2010.

A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, and E. T. Okano, Preparation of thermoresponsive polymer brush surfaces and their interaction with cells, Biomaterials, vol.29, issue.13, pp.2073-2081, 0197.

L. Li, Y. Zhu, B. Li, and C. Gao, Fabrication of Thermoresponsive Polymer Gradients for Study of Cell Adhesion and Detachment, Langmuir, issue.24, pp.13632-13639, 0197.

L. Moroni, M. Klein-gunnewiek, and E. M. Benetti, Polymer brush coatings regulating cell behavior : passive interfaces turn into active, Acta biomaterialia, vol.10, issue.6, pp.2367-78, 0198.

Y. Maeda, T. Nakamura, and E. I. Ikeda, Changes in the Hydration States of Poly( N-npropylmethacrylamide) and Poly( N-isopropylmethacrylamide) during Their Phase Transitions in Water Observed by FTIR Spectroscopy, Macromolecules, vol.34, issue.23, pp.8246-8251, 0200.

L. Liu, Y. Shi, C. Liu, T. Wang, G. Liu et al., Insight into the amplification by methylated urea of the anion specificity of macromolecules, Soft matter, vol.10, issue.16, pp.2856-62, 0200.

X. Zhao-et-z.-f and . Gao, Role of hydrogen bonding in solubility of poly(Nisopropylacrylamide) brushes in sodium halide solutions, Chinese Physics B, vol.25, issue.7, p.74703, 0200.

M. Keerl, V. Smirnovas, R. Winter, and W. Richtering, Zuschriften Interplay between Hydrogen Bonding and Macromolecular Architecture Leading to Unusual Phase Behavior in Thermosensitive, Angewandte Chemie, issue.120, pp.344-347, 0200.

, Propriétés de surface : influence du greffage de PNIPAM, vol.4

Q. Yu, Y. Zhang, H. Chen, Z. Wu, H. Huang et al., Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces : Effects of grafted layer thickness and protein size, Colloids and Surfaces B : Biointerfaces, vol.76, issue.2, p.201, 2010.

M. Tunc, X. Cheng, B. D. Ratner, E. Meng, and M. Humayun, Reversible thermosensitive glue for retinal implants, Retina, vol.27, p.203, 2007.

M. Waring, S. Bielfeldt, and M. Brandt, Skin adhesion properties of three dressings used for acute wounds, Wounds UK, vol.5, issue.3, p.203, 2009.

, Chapitre 5: Matériel et méthodes

, Dans un même temps, des mélanges contenant 1,5 % (m/v) chitosane (poudre) sont préparés (V = 6,6 mL)

, Après l'activation du PNIPAM-COOH, les mélanges contenant le chitosane sont ajou

, g/mol) pour éliminer le PNIPAM-COOH n'ayant pas réagi. L'eau de dialyse est changée trois fois par jour. Après dialyse, les échantillons sont lyophilisés pendant 3 jours

, De l'alginate (poudre) est mis dans 5 mL de trois solvants différents (H 2 O, un tampon et DMSO) contenant NHS (860 µmol, 1 eq) et EDC (1 600 µmol

L. Parallèlement and . Diamine, 40 ou 200 eq) est mélangée à 5 mL de solvant, vol.2

, g/mol) pour éliminer la diamine n'ayant pas réagi. L'eau de dialyse est changée trois fois par jour. Après dialyse, les échantillons d'alginate-NH 2 obtenus sont lyophilisés pen

P. Greffage-du, ème étape Des mélanges contenant le PNIPAM-COOH (Mn = 5 000 g/mol, 150 mg, 1 eq), NHS (90 µmol, 3 eq) et EDC (130 µmol, 4 eq) sont préparés pour activer l'acide carboxylique, p.5

, Trois solvants sont utilisés : H 2 O, un tampon et DMSO. Le tampon est une solution

, Dans un même temps, des mélanges contenant 1,5 % (m/v) d'alginate-NH 2 (issus de la première étape) sont préparés dans différents solvants (V = 10 mL) : H 2 O, un tampon et DMSO. Le tampon est une solution tamponnée PBS (0,01 M)

. Références,

M. Robitzer, A. Tourrette, R. Horga, R. Valentin, M. Boissière et al., Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels, Carbohydrate Polymers, vol.85, issue.1, p.209, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00573148

R. L. Johnson and K. Schmidt-rohr, Quantitative solid-state cross polarization C NMR with signal enhancement by multiple, Journal of Magnetic Resonance, vol.239, p.211, 2014.

W. D. Worthington, Biochemical Corporation. Manual of Clinical Enzyme Measurements, p.213, 1972.

S. Dash, P. N. Murthy, L. Nath, and E. P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems, Acta poloniae pharmaceutica, vol.67, issue.3, p.215, 2001.

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, International Journal of Pharmaceutics, vol.15, issue.1, p.215, 1983.

C. Huang and F. Chang, Polypeptide Diblock Copolymers : Syntheses and Properties of Poly( N-isopropylacrylamide)-b-Polylysine, Macromolecules, vol.41, issue.19, p.221, 2008.

F. Audouin and A. Heise, Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE, European Polymer Journal, vol.49, issue.5, pp.1073-1079, 2013.

. , 2.2. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization

. .. Acknowledgement,

, for disease treatment. These biomaterials have to fulfil various requirements depending on the application but in all cases biocompatibility is a crucial point that has to be considered in early processing stages. Biocompatibility is defined as the ability to act in a living system without any toxicity or rejection, whether physiological or immunological. Although biocompatibility includes "non-toxicity, E-mail address: audrey.tourrette@univ-tlse3.fr (A. Tourrette)

B. Kasemo, Biological surface science, Surf. Sci, vol.500, pp.656-677, 2002.

J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine et al., Cell sheet engineering: recreating tissues without biodegradable scaffolds, vol.26, pp.6415-6422, 2005.

M. A. Cooperstein and H. E. Canavan, Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces, Biointerphases, vol.8, 2013.

A. Tourrette, N. De, D. Geyter, R. Jocic, M. M. Morent et al., Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface, Colloids Surf. A Physicochem

. Eng, Aspects, vol.352, pp.126-135, 2009.

H. Lim, Y. Lee, S. Han, Y. Kim, J. Song et al., Wettability of poly(styrene-co-acrylate) ionomers improved by oxygen-plasma source ion implantation, J. Polym. Sci. Part B Polym. Phys, vol.41, pp.1791-1797, 2003.

L. Bacakova, E. Filova, M. Parizek, T. Ruml, and V. Svorcik, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnol. Adv, vol.29, pp.739-767, 2011.

A. M. Borges, L. O. Benetoli, M. Licínio, V. C. Zoldan, M. C. Santos-silva et al., Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion, Mater. Sci. Eng. C, vol.33, pp.1315-1324, 2013.

A. Sdrobis¸, G. E. Sdrobis¸sdrobis¸, T. Ioanid, C. Stevanovic, and . Vasile, Modification of cellulose/chitin mix fibers with N-isopropylacrylamide and poly(N-isopropylacrylamide) under cold plasma conditions, Polym. Int, vol.61, pp.1767-1777, 2012.

Y. M. Lee and J. K. Shim, Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation, Polymer (Guildf), vol.38, issue.96, pp.548-552, 1997.

J. A. Reed, S. A. Love, A. E. Lucero, C. L. Haynes, and H. E. Canavan, Effect of polymer deposition method on thermoresponsive polymer films and resulting cellular behavior, Langmuir, vol.28, pp.2281-2287, 2012.

L. Moroni, M. Klein-gunnewiek, and E. M. Benetti, Polymer brush coatings regulating cell behavior: passive interfaces turn into active, Acta Biomater, vol.10, pp.2367-2378, 2014.

A. Olivier, F. Meyer, J. Raquez, P. Damman, and P. Dubois, Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: from self-assembled monolayers to patterned surfaces, Prog. Polym. Sci, vol.37, pp.157-181, 2012.

G. Bao and S. Suresh, Cell and molecular mechanics of biological materials, Nat. Mater, vol.2, pp.715-725, 2003.

M. Gao, M. Sotomayor, E. Villa, E. H. Lee, and K. Schulten, Molecular mechanisms of cellular mechanics, Phys. Chem. Chem. Phys, vol.8, pp.3692-3706, 2006.

W. Xu, H. Baribault, and E. D. Adamson, Vinculin knockout results in heart and brain defects during embryonic development, Development, vol.125, pp.327-337, 1998.

K. Anselme, L. Ploux, and A. Ponche, Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion, J. Adhes. Sci. Technol, vol.24, pp.831-852, 2010.

D. G. Castner and B. D. Ratner, Biomedical surface science: foundations to frontiers, Surf. Sci, vol.500, issue.01, pp.1587-1591, 2002.

J. H. Lee, J. W. Lee, G. Khang, and H. B. Lee, Interaction of cells on chargeable functional group gradient surfaces, Biomaterials, vol.18, pp.351-358, 1997.

A. Tamura, M. Oishi, and Y. Nagasaki, Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core, J. Control. Release, vol.146, pp.378-387, 2010.

A. Tamura, M. Nishi, J. Kobayashi, K. Nagase, H. Yajima et al., Simultaneous enhancement of cell proliferation and thermally induced harvest efficiency based on temperature-responsive cationic copolymer-grafted microcarriers, Biomacromolecules, vol.13, pp.1765-1773, 2012.

D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel, vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis, vol.24, pp.445-448, 2003.

H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, A. Bretscher et al., L'intégration cellulaire dans des tissus, pp.925-975, 2014.

J. Pei, H. Hall, and N. D. Spencer, The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide, Biomaterials, vol.32, pp.8968-8978, 2011.

J. Andersson, K. N. Ekdahl, J. D. Lambris, and B. Nilsson, Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface, Biomaterials, vol.26, pp.1477-1485, 2005.

K. N. Ekdahl, J. D. Lambris, H. Elwing, D. Ricklin, P. H. Nilsson et al., Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies, Adv. Drug Deliv. Rev, vol.63, pp.1042-1050, 2011.

E. A. Vogler, Structure and reactivity of water at biomaterial surfaces, Adv. Colloid Interface Sci, vol.74, issue.97, pp.40-47, 1998.

A. J. Pertsin and M. Grunze, Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers, Langmuir, vol.16, pp.8829-8841, 2000.

Z. Ma, Z. Mao, and C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids Surf. B Biointerfaces, vol.60, pp.137-157, 2007.

T. Suzuki and Y. Mizushima, Characteristics of silica-chitosan complex membrane and their relationships to the characteristics of growth and adhesiveness of L-929 cells cultured on the biomembrane, J. Ferment. Bioeng, vol.84, p.82541, 1997.

C. D. Tidwell, D. G. Castner, S. L. Golledge, B. D. Ratner, K. Meyer et al., Static time-of-flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy characterization of adsorbed albumin and fibronectin films, Surf. Interface Anal, vol.31, pp.724-733, 2001.

B. G. Keselowsky, D. M. Collard, and A. J. García, Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion, J. Biomed. Mater. Res. A, vol.66, pp.247-259, 2003.

M. Cockerill, M. K. Rigozzi, and E. M. Terentjev, Mechanosensitivity of the IInd kind: tGFb mechanism of cell sensing the substrate stiffness, PLoS One, pp.1-11, 2015.

D. E. Discher, P. Janmey, and Y. Wang, Tissue cells feel and respond to the stiffness of their substrate, Science, vol.310, pp.1139-1143, 2005.

Q. S. Li, G. Y. Lee, C. N. Ong, and C. T. Lim, AFM indentation study of breast cancer cells, Biochem. Biophys. Res. Commun, vol.374, pp.609-613, 2008.

M. S. Yousafzai, F. Ndoye, G. Coceano, J. Niemela, S. Bonin et al., Substrate-dependent cell elasticity measured by optical tweezers indentation, Opt. Lasers Eng, vol.76, pp.27-33, 2016.

M. G. Haugh, C. M. Murphy, R. C. Mckiernan, C. Altenbuchner, and F. J. O'brien, Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds, Tissue Eng. Part A, vol.17, pp.1201-1208, 2011.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, Cell movement is guided by the rigidity of the substrate, Biophys. J, vol.79, pp.76279-76284, 2000.

S. Kidoaki and T. Matsuda, Microelastic gradient gelatinous gels to induce cellular mechanotaxis, J. Biotechnol, vol.133, pp.225-230, 2008.

H. Liu, C. Lin, Y. Liou, K. Hsu, J. Yang et al., NBT-II cell locomotion is modulated by restricting the size of focal contacts and is improved through EGF and ROCK signaling, Int. J. Biochem. Cell Biol, vol.51, pp.131-141, 2014.

F. G. Russel, J. M. Bindels, and C. H. Van, Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.13661-13665, 1997.

L. Bacakova, E. Filova, D. Kubies, L. Machova, V. Proks et al., Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides, J. Mater. Sci. Mater. Med, vol.18, pp.1317-1323, 2007.

Y. Zhu, C. Gao, X. Liu, T. He, and J. Shen, Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration, Tissue Eng, vol.10, pp.53-61, 2004.

R. D. Abbott and D. L. Kaplan, Strategies for improving the physiological relevance of human engineered tissues, Trends Biotechnol, vol.33, pp.401-407, 2015.

C. Xue, B. Choi, S. Choi, P. V. Braun, and D. E. Leckband, Protein adsorption modes determine reversible cell attachment on poly(N-isopropyl acrylamide) brushes, Adv. Funct. Mater, vol.22, pp.2394-2401, 2012.

M. A. Stuart, W. T. Huck, J. Genzer, M. Müller, C. Ober et al., Emerging applications of stimuli-responsive polymer materials, Nat. Mater, vol.9, pp.101-113, 2010.

J. Ran, L. Wu, Z. Zhang, and T. Xu, Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes, Prog. Polym. Sci, vol.39, pp.124-144, 2014.

S. Edmondson, V. L. Osborne, and W. T. Huck, Polymer brushes via surface-initiated polymerizations, Chem. Soc. Rev, vol.33, pp.14-22, 2004.

J. Draper, I. Luzinov, S. Minko, I. Tokarev, and M. Stamm, Mixed polymer brushes by sequential polymer addition: anchoring layer effect, Langmuir, vol.20, pp.4064-4075, 2004.

B. Zdyrko and I. Luzinov, Polymer brushes by the grafting to method, Macromol. Rapid Commun, vol.32, pp.859-869, 2011.

K. S. Iyer, B. Zdyrko, H. Malz, J. Pionteck, and I. Luzinov, Polystyrene layers grafted to macromolecular anchoring layer, Macromolecules, vol.36, pp.6519-6526, 2003.

M. Husseman, E. E. Malmström, M. Mcnamara, M. Mate, D. Mecerreyes et al., Controlled synthesis of polymer brushes by living free radical polymerization techniques, Macromolecules, vol.32, pp.1424-1431, 1999.

N. Ayres, C. D. Cyrus, and W. J. Brittain, Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization, Langmuir, vol.23, pp.3744-3749, 2007.

U. Mansfeld, C. Pietsch, R. Hoogenboom, C. R. Becer, and U. S. Schubert, Clickable initiators, monomers and polymers in controlled radical polymerizations-a prospective combination in polymer science, Polym. Chem, vol.1, p.1560, 2010.

P. Liu, Modification of polymeric materials via surface-Initiated Controlled/Living radical polymerization, E Polymers, vol.7, pp.1-3, 2007.

P. Król and P. Chmielarz, Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials, Prog. Org. Coat, vol.77, pp.913-948, 2014.

C. Hsiao, H. Han, G. Lee, and C. Peng, AGET and SARA ATRP of styrene and methyl methacrylate mediated by pyridyl-imine based copper complexes, Eur. Polym. J, vol.51, pp.12-20, 2014.

N. Singh, X. Cui, T. Boland, and S. M. Husson, The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion, Biomaterials, vol.28, pp.763-771, 2007.

W. Feng, J. Brash, and S. Zhu, Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl

G. Conzatti, phosphorylcholine: separate effects of graft density and chain length on protein repulsion, Colloids and Surfaces B: Biointerfaces, vol.151, pp.847-855, 2006.

J. Pyun, T. Kowalewski, and K. Matyjaszewski, Synthesis of polymer brushes using atom transfer radical polymerization, Macromol. Rapid Commun, vol.24, pp.1043-1059, 2003.

J. Qin, Z. Cheng, L. Zhang, Z. Zhang, J. Zhu et al., A highly efficient iron-mediated AGET ATRP of methyl methacrylate using Fe(0) powder as the reducing agent, Macromol. Chem. Phys, vol.212, pp.999-1006, 2011.

R. Gong, S. Maclaughlin, and S. Zhu, Surface modification of active metals through atom transfer radical polymerization grafting of acrylics, Appl. Surf. Sci, vol.254, pp.6802-6809, 2008.

C. Hou, R. Qu, C. Sun, C. Ji, C. Wang et al., Novel ionic liquids as reaction medium for ATRP of acrylonitrile in the absence of any ligand, Polymer (Guildf), vol.49, pp.3424-3427, 2008.

Y. Wang, Y. Zhang, B. Parker, and K. Matyjaszewski, ATRP of MMA with ppm levels of iron catalyst, Macromolecules, vol.44, pp.4022-4025, 2011.

J. Cao, L. Zhang, X. Jiang, C. Tian, X. Zhao et al., Facile iron-mediated dispersant-free suspension polymerization of methyl methacrylate via reverse ATRP in water, Macromol. Rapid Commun, vol.34, pp.1747-1754, 2013.
DOI : 10.1002/marc.201300513

L. Zhang, Z. Cheng, Z. Zhang, D. Xu, and X. Zhu, Fe(III)-catalyzed AGET ATRP of styrene using triphenyl phosphine as ligand, Polym. Bull, vol.64, pp.233-244, 2009.
DOI : 10.1007/s00289-009-0139-7

C. Bolm, J. Legros, J. L. Paih, and L. Zani, Iron-catalyzed reactions in organic synthesis, Chem. Rev, vol.104, pp.6217-6254, 2004.

R. Poli, L. E. Allan, and M. P. Shaver, Iron-mediated reversible deactivation controlled radical polymerization, Prog. Polym. Sci, vol.39, pp.1827-1845, 2014.
DOI : 10.1016/j.progpolymsci.2014.06.003

S. Nakanishi, M. Kawamura, H. Kai, R. Jin, Y. Sunada et al., Well-defined iron complexes as efficient catalysts for green atom-transfer radical polymerization of styrene, methyl methacrylate, and butyl acrylate with low catalyst loadings and catalyst recycling, Chemistry, vol.20, pp.5802-5814, 2014.
DOI : 10.1002/chem.201304593

M. Klein-gunnewiek, A. Di-luca, X. Sui, C. A. Van-blitterswijk, L. Moroni et al., Controlled surface initiated polymerization of N-isopropylacrylamide from polycaprolactone substrates for regulating cell attachment and detachment, Isr. J. Chem, vol.52, pp.339-346, 2012.

J. Liu, W. He, L. Zhang, Z. Zhang, J. Zhu et al., Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst, Langmuir, vol.27, pp.12684-12692, 2011.
DOI : 10.1021/la202749v

K. Matyjaszewski, W. Jakubowski, K. Min, W. Tang, J. Huang et al., Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.15309-15314, 2006.
DOI : 10.1073/pnas.0602675103

URL : http://www.pnas.org/content/103/42/15309.full.pdf

W. Jakubowski and K. Matyjaszewski, Activator generated by electron transfer for atom transfer radical polymerization, Macromolecules, vol.38, pp.4139-4146, 2005.
DOI : 10.1021/ma047389l

K. Min, H. Gao, and K. Matyjaszewski, Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP, Macromolecules, vol.40, pp.1789-1791, 2007.

B. V. Bhut, K. Conrad, and S. M. Husson, Preparation of high-performance membrane adsorbers by surface-initiated AGET ATRP in the presence of dissolved oxygen and low catalyst concentration, J. Memb. Sci, pp.43-47, 2012.

P. Shivapooja, L. K. Ista, H. E. Canavan, and G. P. Lopez, ARGET-ATRP synthesis and characterization of PNIPAAm brushes for quantitative cell detachment studies, Biointerphases, vol.7, pp.1-9, 2012.
DOI : 10.1007/s13758-012-0032-z

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842120

Y. Zhang, Y. Wang, C. Peng, M. Zhong, W. Zhu et al., Copper-Mediated CRP of methyl acrylate in the presence of metallic copper: effect of ligand structure on reaction kinetics, Macromolecules, vol.45, pp.78-86, 2012.

C. H. Worthley, K. T. Constantopoulos, M. Ginic-markovic, R. J. Pillar, J. G. Matisons et al., Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance, J. Membr. Sci, pp.30-39, 2011.

X. Qiu, X. Ren, and S. Hu, Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP, Carbohydr. Polym, vol.92, pp.1887-1895, 2013.
DOI : 10.1016/j.carbpol.2012.11.080

K. Pan, X. Zhang, R. Ren, and B. Cao, Double stimuli-responsive membranes grafted with block copolymer by ATRP method, J. Memb. Sci, vol.356, pp.133-137, 2010.
DOI : 10.1016/j.memsci.2010.03.044

C. Zhang, P. T. Vernier, Y. H. Wu, and W. Yang, Surface chemical immobilization of parylene C with thermosensitive block copolymer brushes based on N-isopropylacrylamide and N-tert-butylacrylamide: synthesis, characterization, and cell adhesion/detachment, J. Biomed. Mater. Res.-Part B Appl. Biomater, vol.100, pp.217-229, 2012.
DOI : 10.1002/jbm.b.31941

W. Zhen and C. Lu, Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment, Appl. Surf. Sci, vol.258, pp.6969-6976, 2012.
DOI : 10.1016/j.apsusc.2012.03.145

J. Chen, C. Hsieh, C. Huang, and P. Li, Characterization of patterned poly(methyl methacrylate) brushes under various structures upon solvent immersion, J. Colloid Interface Sci, vol.338, pp.428-434, 2009.
DOI : 10.1016/j.jcis.2009.06.040

Y. Liu, V. Klep, B. Zdyrko, and I. Luzinov, Synthesis of high-density grafted polymer layers with thickness and grafting density gradients, Langmuir, vol.21, pp.11806-11813, 2005.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona et al., Review: current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci, vol.45, pp.1-33, 2009.

J. Lindqvist and E. Malmström, Surface modification of natural substrates by atom transfer radical polymerization, J. Appl. Polym. Sci, vol.100, pp.4155-4162, 2006.

C. Kang, R. M. Crockett, and N. D. Spencer, Molecular-weight determination of polymer brushes generated by SI-ATRP on flat surfaces, Macromolecules, vol.47, pp.269-275, 2014.

M. Barsbay and O. Güven, A short review of radiation-induced raft-mediated graft copolymerization: a powerful combination for modifying the surface properties of polymers in a controlled manner, Radiat. Phys. Chem, vol.78, pp.1054-1059, 2009.

C. Barner-kowollik, T. P. Davis, J. P. Heuts, M. H. Stenzel, P. Vana et al., RAFTing down under: tales of missing radicals, fancy architectures, and mysterious holes, J. Polym. Sci. Part A Polym. Chem, vol.41, pp.365-375, 2003.

K. Kusolkamabot, P. Sae-ung, N. Niamnont, K. Wongravee, M. Sukwattanasinitt et al., Poly(N-isopropylacrylamide)-Stabilized gold nanoparticles in combination with tricationic branched phenylene-Ethynylene fluorophore for protein identification, Langmuir, vol.29, pp.12317-12327, 2013.

H. Takahashi, M. Nakayama, M. Yamato, and T. Okano, Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest, Biomacromolecules, vol.11, pp.1991-1999, 2010.

J. Bigot, D. Fournier, J. Lyskawa, T. Marmin, F. Cazaux et al., Synthesis of thermoresponsive phenyl-and naphthyl-terminated poly(NIPAM) derivatives using RAFT and their complexation with cyclobis(paraquat-p-phenylene) derivatives in water, Polym. Chem, vol.1, pp.1024-1029, 2010.

, Handbook of RAFT Polymerization, 2008.

F. Audouin and A. Heise, Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE, Eur. Polym. J, vol.49, pp.1073-1079, 2013.

H. Alem, A. Duwez, P. Lussis, P. Lipnik, A. M. Jonas et al., Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes, J. Membr. Sci, vol.308, pp.75-86, 2008.

I. Lokuge, X. Wang, and P. W. Bohn, Temperature-Controlled flow switching in nanocapillary array membranes mediated by Poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization ?, Langmuir, vol.23, pp.305-311, 2007.

L. Ren, S. Huang, C. Zhang, R. Wang, W. W. Tjiu et al., Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP on water, J. Nanoparticle Res, vol.14, 2012.

P. Zhuang, A. Dirani, K. Glinel, and A. M. Jonas, Temperature dependence of the surface and volume hydrophilicity of hydrophilic polymer brushes, Langmuir, vol.32, pp.3433-3444, 2016.

W. Wu, J. Li, W. Zhu, Y. Jing, and H. Dai, Thermo-responsive cellulose paper via ARGET ATRP, Fibers Polym, vol.17, pp.495-501, 2016.

L. L. Yang, J. M. Zhang, J. S. He, J. Zhang, and Z. H. Gan, Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers, Chin. J. Polym Sci. (English Ed.), vol.33, pp.1640-1649, 2015.

R. B. Vasani, S. J. Mcinnes, M. A. Cole, A. M. Jani, A. V. Ellis et al., Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide), vol.27, pp.7843-7853, 2011.

P. Chung, R. Kumar, M. Pruski, and V. S. Lin, Temperature responsive solution partition of organic-Inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres, Adv. Funct. Mater, vol.18, pp.1390-1398, 2008.

A. Hufendiek, V. Trouillet, M. A. Meier, and C. Barner-kowollik, Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization, Biomacromolecules, vol.15, pp.2563-2572, 2014.

X. Wang, H. Tu, P. V. Braun, and P. W. Bohn, Length scale heterogeneity in lateral gradients of poly(N-isopropylacrylamide) polymer brushes prepared by surface-initiated atom transfer radical polymerization coupled with in-plane electrochemical potential gradients, Langmuir, vol.22, pp.817-823, 2006.

X. Sui, S. Zapotoczny, E. M. Benetti, P. Schön, and G. J. Vancso, Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy, J. Mater. Chem, vol.20, p.4981, 2010.

K. N. Plunkett, X. Zhu, J. S. Moore, and D. E. Leckband, PNIPAM chain collapse depends on the molecular weight and grafting density, vol.22, pp.4259-4266, 2006.

N. Brouette, C. Xue, M. Haertlein, M. Moulin, G. Fragneto et al., Protein adsorption properties of OEG monolayers and dense PNIPAM brushes probed by neutron reflectivity, Eur. Phys. J. Spec. Top, vol.213, pp.343-353, 2012.

R. Iwata, P. Suk-in, V. P. Hoven, A. Takahara, K. Akiyoshi et al., Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations, Biomacromolecules, vol.5, pp.2308-2314, 2004.

M. Yasaka, X-ray thin-film measurement techniques, V. X-Ray reflectivity meas, Rigaku J, vol.26, pp.1-9, 2010.

A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, and T. Okano, Preparation of thermoresponsive polymer brush surfaces and their interaction with cells, Biomaterials, vol.29, pp.2073-2081, 2008.

Y. Maeda, T. Nakamura, and I. Ikeda, Changes in the hydration states of Poly(Nn-propylmethacrylamide) and Poly(N-isopropylmethacrylamide) during their phase transitions in water observed by FTIR spectroscopy, Macromolecules, vol.34, pp.8246-8251, 2001.

R. Umapathi, P. M. Reddy, A. Kumar, P. Venkatesu, and C. Chang, The biological stimuli for governing the phase transition temperature of the smart polymer PNIPAM in water, Colloids Surf B. Biointerfaces, vol.135, pp.588-595, 2015.

T. Qu, A. Wang, J. Yuan, J. Shi, and Q. Gao, Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release, Colloids Surf. B Biointerfaces, vol.72, pp.94-100, 2009.

L. Liu, Y. Shi, C. Liu, T. Wang, G. Liu et al., Insight into the amplification by methylated urea of the anion specificity of macromolecules, Soft Matter, vol.10, pp.2856-2862, 2014.

A. C. Kumar, H. B. Bohidar, and A. K. Mishra, The effect of sodium cholate aggregates on thermoreversible gelation of PNIPAM, Colloids Surf. B Biointerfaces, vol.70, pp.60-67, 2009.

D. M. Jones, J. R. Smith, W. T. Huck, and C. Alexander, Variable adhesion of micropatterned thermoresponsive polymer brushes: AFM investigations of poly(N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations, Adv. Mater, vol.14, pp.2-7, 2002.

E. C. Cho, Y. D. Kim, and K. Cho, N-isopropylacrylamide) monolayer on gold: synthesis, surface characterization, and protein interaction/adsorption studies, Thermally responsive poly, vol.45, pp.3195-3204, 2004.

C. Xue, N. Yonet-tanyeri, N. Brouette, M. Sferrazza, P. V. Braun et al., Protein adsorption on poly(N-isopropylacrylamide) brushes: dependence on grafting density and chain collapse, vol.27, pp.8810-8818, 2011.

A. Halperin and M. Kröger, Theoretical considerations on mechanisms of harvesting cells cultured on thermoresponsive polymer brushes, Biomaterials, vol.33, pp.4975-4987, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00971378

A. Halperin, Polymer brushes that resist adsorption of model proteins: design parameters, Langmuir, vol.15, pp.2525-2533, 1999.

X. Cheng, H. E. Canavan, D. J. Graham, D. G. Castner, and B. D. Ratner, Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide, Biointerphases, vol.1, p.61, 2006.

I. B. Malham and L. Bureau, Density effects on collapse, compression, and adhesion of thermoresponsive polymer brushes, Langmuir, vol.26, pp.4762-4768, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01239417

H. E. Canavan, X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner, Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer, Langmuir, vol.21, pp.1949-1955, 2005.

M. Cooperstein and H. E. Canavan, Biological cell detachment from poly(N-isopropyl acrylamide) and its applications, Langmuir, vol.26, pp.7695-7707, 2010.

N. Kaneshiro, M. Sato, M. Ishihara, G. Mitani, H. Sakai et al., Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage, Biochem. Biophys. Res. Commun, vol.349, pp.723-731, 2006.

T. Ide, K. Nishida, M. Yamato, T. Sumide, M. Utsumi et al., Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes, Biomaterials, vol.27, pp.607-614, 2006.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru et al., Fabrication of pulsatile cardiac tissue grafts using a novel 3-Dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces, Circ. Res, vol.90, pp.40-48, 2002.

H. E. Canavan, D. J. Graham, X. Cheng, B. D. Ratner, and D. G. Castner, Comparison of native extracellular matrix with adsorbed protein films using secondary ion mass spectrometry, Langmuir, vol.23, pp.50-56, 2007.

F. J. Xu, S. P. Zhong, L. Y. Yung, E. T. Kang, and K. G. Neoh, Surface-active and stimuli-responsive polymer-Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion, Biomacromolecules, vol.5, pp.2392-2403, 2004.

Y. Akiyama, A. Kikuchi, M. Yamato, and T. Okano, Ultrathin Poly(N ?isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control, Langmuir, vol.20, pp.5506-5511, 2004.

T. Zhao, H. Chen, J. Zheng, Q. Yu, Z. Wu et al., Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: effect of graft molecular weight, Colloids Surf. B Biointerfaces, vol.85, pp.26-31, 2011.

Q. Yu, Y. Zhang, H. Chen, Z. Wu, H. Huang et al., Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: effects of grafted layer thickness and protein size, Colloids Surf. B Biointerfaces, vol.76, pp.468-474, 2010.

L. Chen, M. Liu, H. Bai, P. Chen, F. Xia et al., Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface with nanoscale topography, J. Am. Chem. Soc, vol.131, pp.10467-10472, 2009.

H. Liu, X. Liu, J. Meng, P. Zhang, G. Yang et al., Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces, Adv. Mater, vol.25, pp.922-927, 2013.

Q. Yu, J. Cho, P. Shivapooja, L. K. Ista, and G. P. López, Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria, ACS Appl. Mater. Interfaces, vol.5, pp.9295-9304, 2013.

Q. Yu, L. M. Johnson, and G. P. López, Nanopatterned polymer brushes for triggered detachment of anchorage-dependent cells, Adv. Funct. Mater, vol.24, pp.3751-3759, 2014.

J. Chen and T. Cheng, Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells, Macromol. Biosci, vol.6, pp.1026-1039, 2006.

J. Chen, C. Kuo, and W. Lee, Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics, Appl. Surf. Sci, vol.262, pp.95-101, 2012.

C. Ignacio, L. Barcellos, M. D. Ferreira, S. Moura, I. Soares et al., In vivo tests of a novel wound dressing based on biomaterials with tissue adhesion controlled through external stimuli, J. Mater. Sci. Mater. Med, vol.22, pp.1357-1364, 2011.

M. Tunc, X. Cheng, B. D. Ratner, E. Meng, M. ;. Humayun et al., Alginate sequencing: an analysis of block distribution in alginates using specific alginate degrading enzymes, Biomacromolecules, vol.27, issue.1, pp.106-116, 2007.

T. Andersen, P. Auk-emblem, and M. Dornish, 3D cell culture in alginate hydrogels. Microarrays, vol.4, pp.133-161, 2015.

S. Anjum, A. Arora, M. S. Alam, and B. Gupta, Development of antimicrobial and scar preventive chitosan hydrogel wound dressings, International Journal of Pharmaceutics, vol.508, issue.1-2, pp.92-101, 2016.

N. Annabi, J. W. Nichol, X. Zhong, C. Ji, S. Koshy et al., Controlling the porosity and microarchitecture of hydrogels for tissue engineering, Tissue Engineering. Part B, Reviews, vol.16, issue.4, pp.371-383, 2010.

A. D. Augst, H. J. Kong, and D. J. Mooney, Alginate hydrogels as biomaterials, Macromolecular Bioscience, vol.6, issue.8, pp.623-633, 2006.
DOI : 10.1002/mabi.200600069

B. Bellich, I. D. Agostino, S. Semeraro, A. Gamini, and A. Cesàro, The Good, the Bad and the Ugly * of Chitosans, 2016.

C. Z. Bueno, A. M. Moraes, H. C. De-sousa, and M. E. Braga, Effects of supercritical carbon dioxide processing on the properties of chitosan-alginate membranes, The Journal of Supercritical Fluids, vol.112, pp.128-135, 2016.

S. Cardea, L. Baldino, I. Marco, P. De-pisanti, and E. Reverchon, Supercritical gel drying of polymeric hydrogels for tissue engineering applications, Chemical Engineering Transactions, vol.32, pp.1123-1128, 2013.

M. Castel, G. Conzatti, J. Torrisani, A. Rouilly, S. Cavalie et al., Influence of homogenization technique and blend ratio on chitosan/alginate polyelectrolyte complex properties, Journal of Medical and Biological Engineering, 2017.

P. Costa and J. M. Sousa-lobo, Modeling and comparison of dissolution profiles, European Journal of Pharmaceutical Sciences, vol.13, issue.2, pp.123-133, 2001.
DOI : 10.1016/s0928-0987(01)00095-1

T. R. Cuadros, A. A. Erices, and J. M. Aguilera, Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture, Journal of the Mechanical Behavior of Biomedical Materials, vol.46, pp.331-342, 2015.
DOI : 10.1016/j.jmbbm.2014.08.026

S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems, Acta Poloniae Pharmaceutica, vol.67, issue.3, pp.95-96, 2001.

T. Garg, G. Rath, and A. K. Goyal, Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis, Nanomedicine, and Biotechnology, pp.1-5, 2015.
DOI : 10.3109/21691401.2015.1008508

M. G. Haugh, C. M. Murphy, R. C. Mckiernan, C. Altenbuchner, and F. J. Brien, Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds, Tissue Engineering Part A, vol.17, issue.9, pp.1201-1208, 2011.
DOI : 10.1089/ten.tea.2010.0590

URL : http://www.tara.tcd.ie/bitstream/2262/55329/1/Crosslinking%20and%20mechanical%20properties%20significantly%20influence%20cell%20attachment%2c%20proliferation%2c%20and%20migration%20within%20collagen%20glycosaminoglycan%20scaffolds.pdf

M. H. Ho, P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou et al., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods, Biomaterials, vol.25, issue.1, pp.483-489, 2004.
DOI : 10.1016/s0142-9612(03)00483-6

M. R. Kasaai, Calculation of Mark-Houwink-Sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscometric constants data, Carbohydrate Polymers, vol.68, issue.3, pp.477-488, 2007.

J. C. Kasper and W. Friess, The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals, European Journal of Pharmaceutics and Biopharmaceutics, vol.78, issue.2, pp.248-263, 2011.

M. A. Kassem, A. N. Elmeshad, and A. R. Fares, Lyophilized sustained release mucoadhesive chitosan sponges for buccal buspirone hydrochloride delivery: Formulation and In vitro evaluation, AAPS PharmSciTech, vol.16, issue.3, 2014.
DOI : 10.1208/s12249-014-0243-3

URL : http://europepmc.org/articles/pmc4444631?pdf=render

S. Kidoaki and T. Matsuda, Microelastic gradient gelatinous gels to induce cellular mechanotaxis, Journal of Biotechnology, vol.133, issue.2, pp.225-230, 2008.
DOI : 10.1016/j.jbiotec.2007.08.015

M. Y. Kim and J. Lee, Chitosan fibrous 3D networks prepared by freeze drying, Carbohydrate Polymers, vol.84, issue.4, pp.1329-1336, 2011.
DOI : 10.1016/j.carbpol.2011.01.029

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, International Journal of Pharmaceutics, vol.15, issue.1, pp.90064-90073, 1983.
DOI : 10.1016/0378-5173(83)90064-9

G. Lawrie, I. Keen, B. Drew, A. Chandler-temple, L. Rintoul et al., Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS, Biomacromolecules, vol.8, issue.8, pp.2533-2541, 2007.
DOI : 10.1021/bm070014y

K. Y. Lee and D. J. Mooney, Alginate: properties and biomedical applications, Progress in Polymer Science, vol.37, issue.1, pp.106-126, 2012.
DOI : 10.1016/j.progpolymsci.2011.06.003

URL : http://europepmc.org/articles/pmc3223967?pdf=render

G. Leofanti, M. Padovan, G. Tozzola, and B. Venturelli, Surface area and pore texture of catalysts, Catalysis Today, vol.41, issue.1-3, pp.50-59, 1998.
DOI : 10.1016/s0920-5861(98)00050-9

N. Levi-polyachenko, R. Jacob, C. Day, and N. Kuthirummal, Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules, Colloids and Surfaces B: Biointerfaces, vol.142, pp.315-324, 2016.

X. Li, H. Xie, J. Lin, W. Xie, and X. Ma, Characterization and biodegradation of chitosan-alginate polyelectrolyte complexes, Polymer Degradation and Stability, vol.94, issue.1, pp.1-6, 2009.

X. Li, Q. Yang, J. Ouyang, H. Yang, and S. Chang, Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier, Applied Clay Science, vol.126, pp.306-312, 2016.

A. Martinsen, G. Skjåk-braek, O. Smidsrød, F. Zanetti, and S. Paoletti, Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates, Carbohydrate Polymers, vol.15, issue.2, pp.90031-90038, 1991.

S. Meng and Y. Liu, Alginate block fractions and their effects on membrane fouling, Water Research, vol.47, issue.17, pp.6618-6627, 2013.

F. U. Momoh, J. S. Boateng, S. C. Richardson, B. Z. Chowdhry, and J. C. Mitchell, Development functional characterization of alginate dressing as potential protein delivery system for wound healing, International Journal of Biological Macromolecules, vol.81, pp.137-150, 2015.

C. K. Pillai, W. Paul, and C. P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science, vol.34, issue.7, pp.641-678, 2009.

T. Pongjanyakul and N. Khuathan, Quaternary polymethacrylate-sodium alginate films: effect of alginate block structures and use for sustained release tablets, Pharmaceutical Development and Technology, vol.7450, pp.1-12, 2015.

S. Quraishi, M. Martins, A. A. Barros, P. Gurikov, S. P. Raman et al., Novel non-cytotoxic alginate-lignin hybrid aerogels as scaffolds for tissue engineering, The Journal of Supercritical Fluids, 2015.

S. P. Raman, P. Gurikov, and I. Smirnova, Hybrid alginate based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications, Journal of Supercritical Fluids, vol.106, pp.23-33, 2015.

M. Rezvanian, M. C. Mohd-amin, and S. F. Ng, Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing, Carbohydrate Polymers, vol.137, pp.295-304, 2016.

D. A. Rio, A. F. Aguilera-alvarado, I. Cano-aguilera, M. Martínez-rosales, and S. Holmes, Synthesis and Characterization of Mesoporous Aluminosilicates for Copper Removal from Aqueous Medium, pp.485-491, 2012.

M. Robitzer, L. David, C. Rochas, F. Di-renzo, and F. Quignard, , 2008.

, Supercritically-dried alginate aerogels retain the fibrillar structure of the hydrogels. Macromolecular Symposia, vol.273, pp.80-84

M. Robitzer, A. Tourrette, R. Horga, R. Valentin, M. Boissière et al., Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels, Carbohydrate Polymers, vol.85, issue.1, pp.44-53, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00573148

D. Sahoo and P. L. Nayak, Chitosan: The most valuable derivative of chitin, Biopolymers: Biomedical and Environmental Applications, pp.129-166, 2011.

Y. Shigemasa, H. Matsuura, H. Sashiwa, and H. Saimoto, Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin, International Journal of Biological Macromolecules, vol.18, issue.3, pp.1079-1082, 1996.

W. Trisunaryanti, Calculation of nitrogen adsorption enthalpy on various catalysts, Journal of Materials Science and Engineering, vol.3, issue.8, pp.40-43, 2009.

E. M. Vilén, M. Klinger, and C. Sandström, Application of diffusion-edited NMR spectroscopy for selective suppression of water signal in the determination of monomer composition in alginates, Magnetic Resonance in Chemistry, vol.49, issue.9, pp.584-591, 2011.

, Manual of clinical enzyme measurements, 1972.

X. Yan, E. Khor, and L. Lim, PEC films prepared from chitosan-alginate coacervates, Chemical & Pharmaceutical Bulletin, vol.48, issue.7, pp.941-946, 2000.

L. Zhao, Y. Wu, S. Chen, and T. Xing, Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications, Carbohydrate Polymers, vol.126, pp.150-155, 2015.