R. A. Weiss, 67. 2. van der Kuyl, A.C. HIV infection and HERV expression: a review, Retrovirology, vol.3, p.6, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00501570

P. K. Vogt, Retroviral oncogenes: a historical primer, Nat Rev Cancer, vol.12, pp.639-648, 2012.

L. Mselli-lakhal, C. Favier, K. Leung, F. Guiguen, D. Grezel et al., Lack of functional receptors is the only barrier that prevents caprine arthritis-encephalitis virus from infecting human cells, Journal of virology, vol.74, pp.8343-8348, 2000.

M. and L. , Mémoire et observations sur une maladie de sang, connue sous le nom d'anhémie hydrohémie, cachexie acquise du cheval, Rec Med Vet Ec Alfort, vol.1843, pp.30-45

H. Vallée and C. H. , Sur la nature infectieuse de l'anémie du cheval, C. R. Acad. Sci, vol.139, pp.331-333, 1904.

C. Leroux, J. L. Cadore, and R. C. Montelaro, Equine Infectious Anemia Virus (EIAV): what has HIV's country cousin got to tell us?, Vet Res, vol.35, pp.485-512, 2004.

D. T. Mitchell, Investigations into jaagziekte or chronic catarrhal pneumonia of sheep

. Dir and . Vet, Union of South Africa, Educ. Res, p.585, 1915.

H. Marsh, Progressive pneumonia in sheep, J. Am. Vet. Med. Assoc, vol.62, pp.458-473, 1923.

P. A. Palsson, Maedi and visna in sheep, Front Biol, vol.44, pp.17-43, 1976.

P. A. Palsson and . Maedi-visna, J Clin Pathol Suppl (R Coll Pathol, vol.6, pp.115-120, 1972.

H. B. Stunzi, H. L. Leroy, and W. Leeman, Endemische arthritis chronic a bei zeiegen

, Schw Arch Tier, vol.106, pp.778-788, 1959.

D. Stavrou, N. Deutschlander, and E. Dahme, Granulomatous encephalomyelitis in goats, J Comp Pathol, vol.79, pp.393-396, 1969.

L. C. Cork, W. J. Hadlow, T. B. Crawford, J. R. Gorham, and R. C. Piper, Infectious leukoencephalomyelitis of young goats, The Journal of infectious diseases, vol.129, pp.134-141, 1974.

M. J. and V. D. , Isolation of a virus from cattle with persistent lymphocytosis Journal of the National Cancer Institute, vol.49, pp.1649-1657, 1972.

M. S. Gottlieb, Pneumocystis pneumonia-Los Angeles, Am J Public Health, vol.96, pp.982-983, 1981.

C. Cfdc, Kaposi's sarcoma and Pneumocystis pneumonia among homosexual menNew York City and California, MMWR Morbidity and mortality weekly report, vol.30, pp.305-308, 1981.

F. Barre-sinoussi, J. Chermann, F. Rey, M. Nugeyre, S. Chamaret et al., Isolation of a Tlymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science, vol.220, pp.868-871, 1983.

F. Clavel, M. Guyader, D. Guetard, M. Salle, L. Montagnier et al., Molecular cloning and polymorphism of the human immune deficiency virus type 2, Nature, vol.324, pp.691-695, 1986.

M. Peeters, K. Fransen, E. Delaporte, M. Van-den-haesevelde, G. M. Gershy-damet et al., Isolation and characterization of a new chimpanzee lentivirus (simian immunodeficiency virus isolate cpz-ant) from a wildcaptured chimpanzee, AIDS, vol.6, pp.447-451, 1992.

A. Derdowski, L. Ding, and P. Spearman, A novel fluorescence resonance energy transfer assay demonstrates that the human immunodeficiency virus type 1 Pr55Gag I domain mediates Gag-Gag interactions, Journal of virology, vol.78, pp.1230-1242, 2004.

C. H. Hung, L. Thomas, C. E. Ruby, K. M. Atkins, N. P. Morris et al., HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I, Cell host & microbe, vol.1, pp.121-133, 2007.

R. L. Willey, F. Maldarelli, M. A. Martin, and K. Strebel, Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4, Journal of virology, vol.66, pp.7193-7200, 1992.

C. Zimmerman, K. C. Klein, P. K. Kiser, A. R. Singh, B. L. Firestein et al., Identification of a host protein essential for assembly of immature HIV-1 capsids, Nature, vol.415, pp.88-92, 2002.

W. C. Greene and B. M. Peterlin, Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy, Nature medicine, vol.8, pp.673-680, 2002.

R. N. De-guzman, Z. R. Wu, C. C. Stalling, L. Pappalardo, P. N. Borer et al., Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element, Science, vol.279, pp.384-388, 1998.

L. S. Ehrlich, T. Liu, S. Scarlata, B. Chu, and C. A. Carter, HIV-1 capsid protein forms spherical (immature-like) and tubular (mature-like) particles in vitro: structure switching by pH-induced conformational changes, Biophys J, vol.81, pp.586-594, 2001.

J. Lanman, J. Sexton, M. Sakalian, P. E. Prevelige, and . Jr, Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro, Journal of virology, vol.76, pp.6900-6908, 2002.

R. K. Holmes, M. H. Malim, and K. N. Bishop, APOBEC-mediated viral restriction: not simply editing?, Trends Biochem Sci, vol.32, pp.118-128, 2007.

R. Goila-gaur and K. Strebel, HIV-1 Vif, APOBEC, and intrinsic immunity, Retrovirology, vol.5, p.51, 2008.

B. A. Desimmie, K. A. Delviks-frankenberrry, R. C. Burdick, D. Qi, T. Izumi et al., Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all, J Mol Biol, vol.426, pp.1220-1245, 2014.

K. Stopak, C. De-noronha, W. Yonemoto, and W. C. Greene, HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability, Mol Cell, vol.12, pp.591-601, 2003.

J. Zhang, W. Ge, P. Zhan, E. De-clercq, and X. Liu, Retroviral restriction factors TRIM5alpha: therapeutic strategy to inhibit HIV-1 replication, Curr Med Chem, vol.18, pp.2649-2654, 2011.

E. E. Nakayama and T. Shioda, Impact of TRIM5alpha in vivo, AIDS, vol.29, pp.1733-1743, 2015.

S. J. Neil, T. Zang, and P. D. Bieniasz, Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu, Nature, vol.451, pp.425-430, 2008.

R. Serra-moreno, The end of Nef's tether, Trends in microbiology, vol.22, pp.662-664, 2014.

C. Goujon, O. Moncorge, H. Bauby, T. Doyle, C. C. Ward et al., Human MX2 is an interferon-induced postentry inhibitor of HIV-1 infection, Nature, vol.502, pp.559-562, 2013.

N. Yan, A. D. Regalado-magdos, B. Stiggelbout, M. A. Lee-kirsch, and J. Lieberman, The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1, Nat Immunol, vol.11, pp.1005-1013, 2010.

L. A. Wheeler, R. T. Trifonova, V. Vrbanac, N. S. Barteneva, X. Liu et al.,

, Interferon Response to HIV that Delays Viral Infection in Humanized Mice, Cell reports, vol.15, pp.1715-1727, 2016.

F. Christ and Z. Debyser, The LEDGF/p75 integrase interaction, a novel target for antiHIV therapy, Virology, vol.435, pp.102-109, 2013.

A. Gerard, E. Segeral, M. Naughtin, A. Abdouni, B. Charmeteau et al., The integrase cofactor LEDGF/p75 associates with Iws1 and Spt6 for postintegration silencing of HIV-1 gene expression in latently infected cells, Cell host & microbe, vol.17, pp.107-117, 2015.

A. Iwasaki, Innate Immune Recognition of HIV-1, Immunity, vol.37, pp.389-398, 2012.

M. Biasin, M. Clerici, and L. Piacentini, Innate immunity in resistance to HIV infection. The Journal of infectious diseases, vol.202, pp.361-365, 2010.

A. J. Mcmichael, P. Borrow, G. D. Tomaras, N. Goonetilleke, and B. F. Haynes, The immune response during acute HIV-1 infection: clues for vaccine development, Nat Rev Immunol, vol.10, pp.11-23, 2010.

M. Altfeld, M. Gale, and . Jr, Innate immunity against HIV-1 infection, Nat Immunol, vol.16, pp.554-562, 2015.

N. Goonetilleke, M. K. Liu, J. F. Salazar-gonzalez, G. Ferrari, E. Giorgi et al., The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection, The Journal of experimental medicine, vol.206, pp.1253-1272, 2009.

A. Oxenius, S. Fidler, M. Brady, S. J. Dawson, K. Ruth et al., Variable fate of virus-specific CD4(+) T cells during primary HIV-1 infection, Eur J Immunol, vol.31, pp.3782-3788, 2001.

J. Esparza, A brief history of the global effort to develop a preventive HIV vaccine, vol.31, pp.3502-3518, 2013.

S. M. Barry, M. L. Novak, and R. M. , Trial, Error, and Breakthrough: A Review of HIV Vaccine Development, J AIDS Clin Res, p.5, 2014.

J. B. Whitney and R. M. Ruprecht, Live attenuated HIV vaccines: pitfalls and prospects, Curr Opin Infect Dis, vol.17, pp.17-26, 2004.

R. Shibata, C. Siemon, S. C. Czajak, R. C. Desrosiers, M. A. Martin et al., attenuated simian immunodeficiency virus vaccines elicit potent resistance against a challenge with a human immunodeficiency virus type 1 chimeric virus, Journal of virology, vol.71, pp.8141-8148, 1997.

J. B. Angel, J. P. Routy, C. Tremblay, D. Ayers, R. Woods et al., A randomized controlled trial of HIV therapeutic vaccination using ALVAC with or without Remune, AIDS, vol.25, pp.731-739, 2011.

D. L. Birx, L. D. Loomis-price, N. Aronson, J. Brundage, C. Davis et al., Efficacy testing of recombinant human immunodeficiency virus (HIV) gp160 as a therapeutic vaccine in early-stage HIV-1-infected volunteers. rgp160 Phase II Vaccine Investigators, The Journal of infectious diseases, vol.181, pp.881-889, 2000.

G. Voss, K. Manson, D. Montefiori, D. I. Watkins, J. Heeney et al., Prevention of disease induced by a partially heterologous AIDS virus in rhesus monkeys by using an adjuvanted multicomponent protein vaccine, Journal of virology, vol.77, pp.1049-1058, 2003.

A. D. Kelleher, M. Roggensack, A. B. Jaramillo, D. E. Smith, A. Walker et al., Safety and immunogenicity of a candidate therapeutic vaccine, p24 virus-like particle, combined with zidovudine, Thesis References 119 asymptomatic subjects. Community HIV Research Network Investigators, vol.12, pp.175-182, 1998.

V. Finessi, F. Nicoli, E. Gallerani, F. Sforza, M. Sicurella et al., Effects of different routes of administration on the immunogenicity of the Tat protein and a Tat-derived peptide, Human vaccines & immunotherapeutics, vol.11, pp.1489-1493, 2015.

D. C. Montefiori, C. Karnasuta, Y. Huang, H. Ahmed, P. Gilbert et al., Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials. The Journal of infectious diseases, vol.206, pp.431-441, 2012.

J. M. Kovacs, J. P. Nkolola, H. Peng, A. Cheung, J. Perry et al., HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.12111-12116, 2012.

J. Gorman, C. Soto, M. M. Yang, T. M. Davenport, M. Guttman et al., Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design, Nature structural & molecular biology, vol.23, pp.81-90, 2016.

J. Huang, G. Ofek, L. Laub, M. K. Louder, N. A. Doria-rose et al., Broad and potent neutralization of HIV-1 by a gp41-specific human antibody, Nature, vol.491, pp.406-412, 2012.

X. Wu, Z. Y. Yang, Y. Li, C. M. Hogerkorp, W. R. Schief et al., Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science, vol.329, pp.856-861, 2010.

B. Moldt, E. G. Rakasz, N. Schultz, P. Y. Chan-hui, K. Swiderek et al., Highly potent HIVspecific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.18921-18925, 2012.

N. Rao, The Pursuit of a HIV Vaccine-Trials, Challenges and Strategies, J AIDS Clin Res, vol.5, 2014.

C. Zhao, Z. Ao, and X. Yao, Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection, p.4, 2016.

R. J. O'connell, J. H. Kim, L. Corey, and N. L. Michael, Human immunodeficiency virus vaccine trials. Cold Spring Harb Perspect Med, vol.2, p.7351, 2012.

S. E. Frey, L. Peiperl, M. J. Mcelrath, S. Kalams, P. A. Goepfert et al., Phase I/II randomized trial of safety and immunogenicity of LIPO-5 alone, ALVAC-HIV (vCP1452) alone, and ALVAC-HIV (vCP1452) prime/LIPO-5 boost in healthy, HIV-1-uninfected adult participants, vol.21, pp.1589-1599, 2014.

F. Martinon, K. Kaldma, R. Sikut, S. Culina, G. Romain et al., Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates, Hum Gene Ther, vol.20, pp.1291-1307, 2009.

M. A. Kutzler and D. B. Weiner, DNA vaccines: ready for prime time?, Thesis References, vol.9, pp.776-788, 2008.

J. B. Ulmer, J. J. Donnelly, S. E. Parker, G. H. Rhodes, P. L. Felgner et al., Heterologous protection against influenza by injection of DNA encoding a viral protein, Science, vol.259, pp.1745-1749, 1993.

G. Gray, S. Buchbinder, and A. Duerr, Overview of STEP and Phambili trial results: two phase IIb test-of-concept studies investigating the efficacy of MRK adenovirus type 5 gag/pol/nef subtype B HIV vaccine, Current opinion in HIV and AIDS, vol.5, pp.357-361, 2010.

G. E. Gray, M. Allen, Z. Moodie, G. Churchyard, L. G. Bekker et al., Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study, Lancet Infect Dis, vol.11, pp.507-515, 2011.

S. M. Hammer, M. E. Sobieszczyk, H. Janes, S. T. Karuna, M. J. Mulligan et al., Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine, N Engl J Med, vol.369, pp.2083-2092, 2013.

J. Lisziewicz, N. Bakare, S. A. Calarota, D. Banhegyi, J. Szlavik et al., Single DermaVir immunization: dose-dependent expansion of precursor/memory T cells against all HIV antigens in HIV-1 infected individuals, PloS one, vol.7, p.35416, 2012.

S. A. Calarota, A. Dai, J. N. Trocio, D. B. Weiner, F. Lori et al., IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine, vol.26, pp.5188-5195, 2008.

S. P. Buchbinder, D. V. Mehrotra, A. Duerr, D. W. Fitzgerald, R. Mogg et al., Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial, Lancet, vol.372, pp.1881-1893, 2008.

H. Hu, M. A. Eller, S. Zafar, Y. Zhou, M. Gu et al., Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.13439-13444, 2014.

S. Rerks-ngarm, P. Pitisuttithum, S. Nitayaphan, J. Kaewkungwal, J. Chiu et al., Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand, N Engl J Med, vol.361, pp.2209-2220, 2009.

M. J. Mcelrath, S. C. De-rosa, Z. Moodie, S. Dubey, L. Kierstead et al., HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis, Lancet, vol.372, pp.1894-1905, 2008.

A. Harari, P. A. Bart, W. Stohr, G. Tapia, M. Garcia et al., An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses, The Journal of experimental medicine, vol.205, pp.63-77, 2008.

D. H. Barouch and L. J. Picker, Novel vaccine vectors for HIV-1, Nature reviews. Microbiology, vol.12, pp.765-771, 2014.

A. Kaur, H. B. Sanford, D. Garry, S. Lang, S. A. Klumpp et al., Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus, Virology, vol.357, pp.199-214, 2007.

, rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. The Journal of experimental medicine, vol.205, pp.1701-1714, 2008.

J. J. Lum, D. J. Schnepple, Z. Nie, J. Sanchez-dardon, G. L. Mbisa et al., Differential effects of interleukin-7 and interleukin-15 on NK cell anti-human immunodeficiency virus activity, Journal of virology, vol.78, pp.6033-6042, 2004.

N. Cieri, B. Camisa, F. Cocchiarella, M. Forcato, G. Oliveira et al., IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors, Blood, vol.121, pp.573-584, 2013.

B. Su, J. Wang, G. Zhao, X. Wang, J. Li et al., Sequential administration of cytokine genes to enhance cellular immune responses and CD4 (+) T memory cells during DNA vaccination, Human vaccines & immunotherapeutics, vol.8, pp.1659-1667, 2012.

F. Melchionda, T. J. Fry, M. J. Milliron, M. A. Mckirdy, Y. Tagaya et al., Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool, The Journal of clinical investigation, vol.115, pp.1177-1187, 2005.

M. S. Wyand, K. Manson, D. C. Montefiori, J. D. Lifson, R. P. Johnson et al., Protection by live, attenuated simian immunodeficiency virus against heterologous challenge, Journal of virology, vol.73, pp.8356-8363, 1999.

M. R. Reynolds, J. B. Sacha, A. M. Weiler, G. J. Borchardt, C. E. Glidden et al., The TRIM5{alpha} genotype of rhesus macaques affects acquisition of simian immunodeficiency virus SIVsmE660 infection after repeated limiting-dose intrarectal challenge, Journal of virology, vol.85, pp.9637-9640, 2011.

M. Lopker, J. Easlick, S. Sterrett, J. M. Decker, H. Barbian et al., Heterogeneity in neutralization sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine challenge stock, Journal of virology, vol.87, pp.5477-5492, 2013.

R. W. Buckheit, . Jr, K. Watson, V. Fliakas-boltz, J. Russell et al., SJ-3366, a unique and highly potent nonnucleoside reverse transcriptase inhibitor of human immunodeficiency virus type 1 (HIV-1) that also inhibits HIV-2, Antimicrobial agents and chemotherapy, vol.45, pp.393-400, 2001.

R. Shibata, M. Kawamura, H. Sakai, M. Hayami, A. Ishimoto et al., Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells, Journal of virology, vol.65, pp.3514-3520, 1991.

E. B. Stephens, S. Mukherjee, M. Sahni, W. Zhuge, R. Raghavan et al., A cell-free stock of simian-human immunodeficiency virus that causes AIDS in pig-tailed macaques has a limited number of amino acid substitutions in both SIVmac and HIV-1 regions of the genome and has offered cytotropism, vol.231, pp.313-321, 1997.

G. B. Karlsson, M. Halloran, J. Li, I. W. Park, R. Gomila et al., Characterization of molecularly cloned simian-human immunodeficiency viruses causing rapid CD4+ lymphocyte depletion in rhesus monkeys, Journal of virology, vol.71, pp.4218-4225, 1997.

K. A. Reimann, J. T. Li, R. Veazey, M. Halloran, I. W. Park et al., A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys, Journal of virology, vol.70, pp.6922-6928, 1996.

, Thesis References, vol.123

K. A. Reimann, J. T. Li, G. Voss, C. Lekutis, K. Tenner-racz et al., An env gene derived from a primary human immunodeficiency virus type 1 isolate confers high in vivo replicative capacity to a chimeric simian/human immunodeficiency virus in rhesus monkeys, Journal of virology, vol.70, pp.3198-3206, 1996.

R. Sadjadpour, T. S. Theodore, T. Igarashi, O. K. Donau, R. J. Plishka et al., Induction of disease by a molecularly cloned highly pathogenic simian immunodeficiency virus/human immunodeficiency virus chimera is multigenic, Journal of virology, vol.78, pp.5513-5519, 2004.

J. C. Grivel, R. J. Shattock, and L. B. Margolis, Selective transmission of R5 HIV-1 variants: where is the gatekeeper?, J Transl Med, vol.9, 2011.
DOI : 10.1186/1479-5876-9-s1-s6

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/1479-5876-9-S1-S6

L. Margolis and R. Shattock, Selective transmission of CCR5-utilizing HIV-1: the 'gatekeeper' problem resolved?, Nature reviews. Microbiology, vol.4, pp.312-317, 2006.

K. Matsuda, K. Inaba, Y. Fukazawa, M. Matsuyama, K. Ibuki et al., In vivo analysis of a new R5 tropic SHIV generated from the highly pathogenic SHIV-KS661, a derivative of SHIV-89, Virology, vol.6, pp.134-143, 2010.

S. H. Ho, L. Shek, A. Gettie, J. Blanchard, and C. Cheng-mayer, V3 loop-determined coreceptor preference dictates the dynamics of CD4+-T-cell loss in simian-human immunodeficiency virus-infected macaques, Journal of virology, vol.79, pp.12296-12303, 2005.

R. J. Song, A. L. Chenine, R. A. Rasmussen, C. R. Ruprecht, S. Mirshahidi et al., Molecularly cloned SHIV1157ipd3N4: a highly replication-competent, mucosally transmissible R5 simianhuman immunodeficiency virus encoding HIV clade C Env, Journal of virology, vol.80, pp.8729-8738, 2006.
DOI : 10.1128/jvi.00558-06

URL : https://jvi.asm.org/content/80/17/8729.full.pdf

N. B. Siddappa, R. Song, V. G. Kramer, A. L. Chenine, V. Velu et al., Neutralization-sensitive R5-tropic simian-human immunodeficiency virus SHIV-2873Nip, which carries env isolated from an infant with a recent HIV clade C infection, Journal of virology, vol.83, pp.1422-1432, 2009.
DOI : 10.1128/jvi.02066-08

URL : https://jvi.asm.org/content/83/3/1422.full.pdf

R. E. Haaland, P. A. Hawkins, J. Salazar-gonzalez, A. Johnson, A. Tichacek et al., Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1, PLoS pathogens, vol.5, p.1000274, 2009.

J. F. Salazar-gonzalez, M. G. Salazar, B. F. Keele, G. H. Learn, E. E. Giorgi et al., Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection, The Journal of experimental medicine, vol.206, pp.1273-1289, 2009.

S. Gnanakaran, T. Bhattacharya, M. Daniels, B. F. Keele, P. T. Hraber et al., Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections, PLoS pathogens, 2011.
DOI : 10.1371/journal.ppat.1002209

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1002209&type=printable

Y. Liu, M. E. Curlin, K. Diem, H. Zhao, A. K. Ghosh et al., Env length and N-linked glycosylation following transmission of human immunodeficiency virus Type 1 subtype B viruses, Virology, vol.374, pp.229-233, 2008.
DOI : 10.1016/j.virol.2008.01.029

URL : https://doi.org/10.1016/j.virol.2008.01.029

B. Chohan, D. Lang, M. Sagar, B. Korber, L. Lavreys et al., Selection for human immunodeficiency virus type 1 envelope glycosylation variants Thesis References 124 with shorter V1-V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels, Journal of virology, vol.79, pp.6528-6531, 2005.

G. Q. Del-prete, B. Ailers, B. Moldt, B. F. Keele, J. D. Estes et al., Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins, Cell host & microbe, vol.16, pp.412-418, 2014.

M. Asmal, C. Luedemann, C. L. Lavine, L. V. Mach, H. Balachandran et al., Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes, Virology, vol.475, pp.37-45, 2015.

M. J. Deymier, Z. Ende, A. E. Fenton-may, D. A. Dilernia, W. Kilembe et al., Heterosexual Transmission of Subtype C HIV-1 Selects Consensus-Like Variants without Increased Replicative Capacity or Interferon-alpha Resistance, PLoS pathogens, vol.11, p.1005154, 2015.

M. Humbert, R. A. Rasmussen, R. Song, H. Ong, P. Sharma et al., SHIV-1157i and passaged progeny viruses encoding R5 HIV-1 clade C env cause AIDS in rhesus monkeys, Retrovirology, vol.5, p.94, 2008.

T. W. Chun, L. Carruth, D. Finzi, X. Shen, J. A. Digiuseppe et al., Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection, Nature, vol.387, pp.183-188, 1997.

L. Gillim-ross, A. Cara, and M. E. Klotman, HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages, Viral Immunol, vol.18, pp.190-196, 2005.

J. Kelly, M. H. Beddall, D. Yu, S. R. Iyer, J. W. Marsh et al., Human macrophages support persistent transcription from unintegrated HIV-1 DNA, Virology, vol.372, pp.300-312, 2008.

S. Pang, Y. Koyanagi, S. Miles, C. Wiley, H. V. Vinters et al., High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients, Nature, vol.343, pp.85-89, 1990.

D. A. Eckstein, M. P. Sherman, M. L. Penn, P. S. Chin, C. M. De-noronha et al., HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4+ T cells, The Journal of experimental medicine, vol.194, pp.1407-1419, 2001.

V. Le-douce, G. Herbein, O. Rohr, and C. Schwartz, Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage, Retrovirology, vol.7, p.32, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00663900

T. W. Chun, D. Engel, M. M. Berrey, T. Shea, L. Corey et al., Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection, Proceedings of the National Academy of Sciences of the United States of America, vol.95, pp.8869-8873, 1998.

N. Chomont, M. El-far, P. Ancuta, L. Trautmann, F. A. Procopio et al., HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nature medicine, vol.15, pp.893-900, 2009.

T. Pierson, J. Mcarthur, and R. F. Siliciano, Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy, Annu Rev Immunol, vol.18, pp.665-708, 2000.

J. D. Siliciano, J. Kajdas, D. Finzi, T. C. Quinn, K. Chadwick et al., Long-term follow-up studies confirm the Thesis References 125 stability of the latent reservoir for HIV-1 in resting CD4+ T cells, Nature medicine, vol.9, pp.727-728, 2003.

A. Kumar, W. Abbas, and G. Herbein, HIV-1 latency in monocytes/macrophages, Viruses, vol.6, pp.1837-1860, 2014.

V. Natarajan, M. Bosche, J. A. Metcalf, D. J. Ward, H. C. Lane et al., HIV-1 replication in patients with undetectable plasma virus receiving HAART. Highly active antiretroviral therapy, Lancet, vol.353, pp.119-120, 1999.

B. Ramratnam, J. E. Mittler, L. Zhang, D. Boden, A. Hurley et al., The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy, Nature medicine, vol.6, pp.82-85, 2000.

G. Gras and M. Kaul, Molecular mechanisms of neuroinvasion by monocytesmacrophages in HIV-1 infection, Retrovirology, vol.7, p.30, 2010.

T. W. Chun, D. C. Nickle, J. S. Justement, J. H. Meyers, G. Roby et al., Persistence of HIV in gutassociated lymphoid tissue despite long-term antiretroviral therapy, The Journal of infectious diseases, vol.197, pp.714-720, 2008.

E. Eisele, . Siliciano, and F. Robert, Redefining the Viral Reservoirs that Prevent HIV-1 Eradication, Immunity, vol.37, pp.377-388, 2012.

L. K. Schrager and M. P. Souza, Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy, JAMA, vol.280, pp.67-71, 1998.

T. W. Chun, R. T. Davey, . Jr, M. Ostrowski, J. Shawn-justement et al., Relationship between pre-existing viral reservoirs and the reemergence of plasma viremia after discontinuation of highly active anti-retroviral therapy, Nature medicine, vol.6, pp.757-761, 2000.

C. C. Carter, L. A. Mcnamara, A. Onafuwa-nuga, M. Shackleton, J. T. Riddell et al., HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells, Cell host & microbe, vol.9, pp.223-234, 2011.
DOI : 10.1016/j.chom.2011.02.005

URL : https://doi.org/10.1016/j.chom.2011.02.005

A. Battistini and M. Sgarbanti, HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies, Viruses, vol.6, pp.1715-1758, 2014.
DOI : 10.3390/v6041715

URL : https://www.mdpi.com/1999-4915/6/4/1715/pdf

F. Sallusto, D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.401, pp.708-712, 1999.
DOI : 10.1038/35005534

URL : https://www.nature.com/articles/35005534.pdf

Y. Han, K. Lassen, D. Monie, A. R. Sedaghat, S. Shimoji et al., Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes, Journal of virology, vol.78, pp.6122-6133, 2004.
DOI : 10.1128/jvi.78.12.6122-6133.2004

URL : https://jvi.asm.org/content/78/12/6122.full.pdf

X. Wu, Y. Li, B. Crise, and S. M. Burgess, Transcription start regions in the human genome are favored targets for MLV integration, Science, vol.300, pp.1749-1751, 2003.
DOI : 10.1126/science.1083413

R. Taube and M. Peterlin, Lost in Transcription: Molecular Mechanisms that Control HIV Latency, Viruses, vol.5, pp.902-927, 2013.
DOI : 10.3390/v5030902

URL : http://www.mdpi.com/1999-4915/5/3/902/pdf

T. Lenasi, X. Contreras, and B. M. Peterlin, Transcriptional interference antagonizes proviral gene expression to promote HIV latency, Cell host & microbe, vol.4, pp.123-133, 2008.
DOI : 10.1016/j.chom.2008.05.016

URL : https://doi.org/10.1016/j.chom.2008.05.016

Y. Han, Y. Lin, W. An, J. Xu, H. ;. Yahg et al., Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough, Cell Host Microbe, vol.4, p.126, 2008.
DOI : 10.1016/j.chom.2008.06.008

URL : https://doi.org/10.1016/j.chom.2008.06.008

I. H. Greger, F. Demarchi, M. Giacca, and N. J. Proudfoot, Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter, Nucleic Acids Res, vol.26, pp.1294-1301, 1998.

R. Easley, R. Van-duyne, W. Coley, I. Guendel, S. Dadgar et al., Chromatin dynamics associated with HIV-1 Tat-activated transcription, Biochim Biophys Acta, vol.1799, pp.275-285, 2010.
DOI : 10.1016/j.bbagrm.2009.08.008

URL : http://europepmc.org/articles/pmc2838975?pdf=render

E. Verdin, P. Paras, and . Jr, Van Lint, C. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation, The EMBO journal, vol.12, pp.3249-3259, 1993.

M. Lusic, A. Marcello, A. Cereseto, and M. Giacca, Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter, The EMBO journal, vol.22, pp.6550-6561, 2003.
DOI : 10.1093/emboj/cdg631

URL : http://emboj.embopress.org/content/22/24/6550.full.pdf

C. Van-lint, Role of chromatin in HIV-1 transcriptional regulation, Adv Pharmacol, vol.48, pp.121-160, 2000.

C. Van-lint, S. Emiliani, M. Ott, and E. Verdin, Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation, The EMBO journal, vol.15, pp.1112-1120, 1996.

U. Mbonye and J. Karn, Transcriptional control of HIV latency: Cellular signaling pathways, epigenetics, happenstance and the hope for a cure, Virology, pp.328-339, 2014.

J. J. Coull, F. Romerio, J. Sun, J. L. Volker, K. M. Galvin et al., The Human Factors YY1 and LSF Repress the Human Immunodeficiency Virus Type 1 Long Terminal Repeat via Recruitment of Histone Deacetylase 1, Journal of virology, vol.74, pp.6790-6799, 2000.

G. He and D. M. Margolis, Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat, Molecular and cellular biology, vol.22, pp.2965-2973, 2002.

M. Tyagi and J. Karn, CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency, The EMBO journal, vol.26, pp.4985-4995, 2007.
DOI : 10.1038/sj.emboj.7601928

URL : http://emboj.embopress.org/content/26/24/4985.full.pdf

C. Marban, S. Suzanne, F. Dequiedt, S. De-walque, L. Redel et al., Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing, The EMBO journal, vol.26, pp.412-423, 2007.

V. Le-douce, L. Colin, L. Redel, T. Cherrier, G. Herbein et al., LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing, Nucleic Acids Res, vol.40, pp.1904-1915, 2012.

S. Williams, L. Chen, C. Kwon, E. Ruiz-jarabo, and W. Greene, NF-?B p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation, EMBO J, vol.25, pp.139-149, 2006.

H. Zhong, M. J. May, E. Jimi, and S. Ghosh, The phosphorylation status of nuclear NFkappa B determines its association with CBP/p300 or HDAC-1, Mol Cell, vol.9, pp.625-636, 2002.

Y. K. Kim, C. F. Bourgeois, C. Isel, M. J. Churcher, and J. Karn, Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation, Molecular and cellular biology, vol.22, pp.4622-4637, 2002.

U. R. Mbonye, G. Gokulrangan, M. Datt, C. Dobrowolski, M. Cooper et al., Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes, PLoS pathogens, vol.9, 2013.

M. Barboric, J. Kohoutek, J. P. Price, D. Blazek, D. H. Price et al., Interplay between 7SK snRNA and oppositely charged regions in HEXIM1 direct the inhibition of P-TEFb, The EMBO journal, vol.24, pp.4291-4303, 2005.

A. A. Michels, A. Fraldi, Q. Li, T. E. Adamson, F. Bonnet et al., Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. The EMBO journal, vol.23, pp.2608-2619, 2004.

Z. Yang, Q. Zhu, K. Luo, and Q. Zhou, The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription, Nature, vol.414, pp.317-322, 2001.

V. T. Nguyen, T. Kiss, A. A. Michels, and O. Bensaude, 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes, Nature, vol.414, pp.322-325, 2001.

X. Contreras, M. Barboric, T. Lenasi, and B. M. Peterlin, HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription, PLoS pathogens, vol.3, pp.1459-1469, 2007.

P. Wei, M. E. Garber, S. M. Fang, W. H. Fischer, and K. A. Jones, A novel CDK9associated C-type cyclin interacts directly with HIV-1 Tat and mediates its highaffinity, loop-specific binding to TAR RNA, Cell, vol.92, pp.451-462, 1998.

M. Ott, A. Dorr, C. Hetzer-egger, K. Kaehlcke, M. Schnolzer et al., Tat acetylation: a regulatory switch between early and late phases in HIV transcription elongation, Novartis Foundation Symposium, vol.259, pp.223-225, 2004.

T. Mahmoudi, M. Parra, R. G. Vries, S. E. Kauder, C. P. Verrijzer et al., The SWI/SNF Chromatin-remodeling Complex Is a Cofactor for Tat Transactivation of the HIV Promoter, Journal of Biological Chemistry, vol.281, 2006.

A. Dorr, V. Kiermer, A. Pedal, H. Rackwitz, P. Henklein et al., Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain, The EMBO journal, vol.21, pp.2715-2723, 2002.

C. Tréand, I. Du-chéné, V. Brès, R. Kiernan, R. Benarous et al., Requirement for SWI/SNF chromatin-remodeling complex in Tatmediated activation of the HIV-1 promoter, The EMBO journal, vol.25, pp.1690-1699, 2006.

S. Pagans, A. Pedal, B. J. North, K. Kaehlcke, B. L. Marshall et al., SIRT1 Regulates HIV Transcription via Tat Deacetylation, vol.3, p.41, 2005.

L. Muniz, S. Egloff, B. Ughy, B. E. Jady, and T. Kiss, Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat, PLoS pathogens, vol.6, p.1001152, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00611875

S. C. Sedore, S. A. Byers, S. Biglione, J. P. Price, W. J. Maury et al., Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR, Nucleic Acids Res, vol.35, pp.4347-4358, 2007.

D. D. Richman, D. M. Margolis, M. Delaney, W. C. Greene, D. Hazuda et al., The challenge of finding a cure for HIV infection, Science, vol.323, pp.1304-1307, 2009.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

M. L. Yeung, M. Benkirane, and K. T. Jeang, Small non-coding RNAs, mammalian cells, and viruses: regulatory interactions? Retrovirology, vol.4, p.74, 2007.

A. Kumar and K. T. Jeang, Insights into cellular microRNAs and human immunodeficiency virus type 1 (HIV-1), Thesis References, vol.216, p.128, 2008.

R. Triboulet, B. Mari, Y. L. Lin, C. Chable-bessia, Y. Bennasser et al., Suppression of microRNAsilencing pathway by HIV-1 during virus replication, Science, vol.315, pp.1579-1582, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00138482

T. L. Sung and A. P. Rice, miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1, PLoS pathogens, vol.5, p.1000263, 2009.

X. Wang, L. Ye, W. Hou, Y. Zhou, Y. J. Wang et al., Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection, Blood, vol.113, pp.671-674, 2009.

L. E. Davis, B. L. Hjelle, V. E. Miller, D. L. Palmer, A. L. Llewellyn et al., Early viral brain invasion in iatrogenic human immunodeficiency virus infection, Neurology, vol.42, pp.1736-1739, 1992.

A. Jordan, D. Bisgrove, and E. Verdin, HIV reproducibly establishes a latent infection after acute infection of T cells in vitro, The EMBO journal, vol.22, pp.1868-1877, 2003.

S. Hakre, L. Chavez, K. Shirakawa, and E. Verdin, HIV latency: experimental systems and molecular models, FEMS microbiology reviews, vol.36, pp.706-716, 2012.

R. Van-duyne, C. Pedati, I. Guendel, L. Carpio, K. Kehn-hall et al., The utilization of humanized mouse models for the study of human retroviral infections, Retrovirology, vol.6, p.76, 2009.

T. Hatziioannou and D. T. Evans, Animal models for HIV/AIDS research, Nature reviews. Microbiology, vol.10, pp.852-867, 2012.

G. K. Sahu, K. Lee, J. Ji, V. Braciale, S. Baron et al., A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ Tlymphocytes, Virology, vol.355, pp.127-137, 2006.

M. Tyagi, R. J. Pearson, and J. Karn, Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction, Journal of virology, vol.84, pp.6425-6437, 2010.

A. Marini, J. M. Harper, and F. Romerio, An in vitro system to model the establishment and reactivation of HIV-1 latency, J Immunol, vol.181, pp.7713-7720, 2008.

A. Bosque and V. Planelles, Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells, Blood, vol.113, pp.58-65, 2009.

H. C. Yang, S. Xing, L. ;. Shan, K. O'connell, J. Dinoso et al., Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation, The Journal of clinical investigation, vol.119, pp.3473-3486, 2009.

W. J. Swiggard, C. Baytop, J. J. Yu, J. Dai, C. Li et al., Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli, Journal of virology, vol.79, pp.14179-14188, 2005.

U. O'doherty, W. J. Swiggard, and M. H. Malim, Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding, Journal of virology, vol.74, pp.10074-10080, 2000.

S. Saleh, A. Solomon, F. Wightman, M. Xhilaga, P. U. Cameron et al., CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency, Blood, vol.110, pp.4161-4164, 2007.

K. G. Lassen, A. M. Hebbeler, D. Bhattacharyya, M. A. Lobritz, and W. C. Greene, A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs, PloS one, vol.7, p.129, 2012.

C. A. Spina, J. Anderson, N. M. Archin, A. Bosque, J. Chan et al., An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients, PLoS pathogens, issue.9, 2013.

B. Burke, H. J. Brown, M. D. Marsden, G. Bristol, D. N. Vatakis et al., Primary cell model for activation-inducible human immunodeficiency virus, Journal of virology, vol.81, pp.7424-7434, 2007.

N. M. Archin, J. M. Sung, C. Garrido, N. Soriano-sarabia, and D. M. Margolis, Eradicating HIV-1 infection: seeking to clear a persistent pathogen, Nature reviews. Microbiology, vol.12, pp.750-764, 2014.

M. J. Pace, L. Agosto, E. H. Graf, and U. Doherty, HIV reservoirs and latency models, Virology, vol.411, pp.344-354, 2011.

A. R. Cillo, M. D. Sobolewski, R. J. Bosch, E. Fyne, M. Piatak et al., Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.7078-7083, 2014.

J. H. Kim, J. L. Excler, and N. L. Michael, Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection, Annu Rev Med, vol.66, pp.423-437, 2015.

K. M. Bruner, N. N. Hosmane, and R. F. Siliciano, Towards an HIV-1 cure: measuring the latent reservoir, Trends in microbiology, vol.23, pp.192-203, 2015.

M. Massanella and D. D. Richman, Measuring the latent reservoir in vivo, The Journal of clinical investigation, vol.126, pp.464-472, 2016.

F. A. Procopio, R. Fromentin, D. A. Kulpa, J. H. Brehm, A. G. Bebin et al., A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals, vol.2, pp.874-883, 2015.

J. B. Dinoso, S. Y. Kim, A. M. Wiegand, S. E. Palmer, S. J. Gange et al., Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.9403-9408, 2009.

A. Crotti, M. Lusic, R. Lupo, P. M. Lievens, E. Liboi et al., Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression, Blood, vol.109, pp.5380-5389, 2007.

A. Mosoian, A. Teixeira, A. A. High, R. E. Christian, D. F. Hunt et al., Novel function of prothymosin alpha as a potent inhibitor of human immunodeficiency virus type 1 gene expression in primary macrophages, Journal of virology, vol.80, pp.9200-9206, 2006.

Y. Wang and A. P. Rice, Interleukin-10 inhibits HIV-1 LTR-directed gene expression in human macrophages through the induction of cyclin T1 proteolysis, Virology, vol.352, pp.485-492, 2006.

N. Tanaka, Y. Hoshino, J. Gold, S. Hoshino, F. Martiniuk et al., Interleukin-10 induces inhibitory C/EBPbeta through STAT-3 and represses HIV-1 transcription in macrophages, Am J Respir Cell Mol Biol, vol.33, pp.406-411, 2005.

R. Jochmann, M. Thurau, S. Jung, C. Hofmann, E. Naschberger et al., O-linked N-acetylglucosaminylation of Sp1 inhibits the human immunodeficiency virus type 1 promoter, Journal of virology, vol.83, pp.3704-3718, 2009.

J. L. Buescher, F. Duan, J. Sun, R. W. Price, and T. Ikezu, OTK18 levels in plasma and cerebrospinal fluid correlate with viral load and CD8 T-cells in normal and AIDS patients, J Neuroimmune Pharmacol, vol.3, pp.230-235, 2008.

A. Savarino, A. Mai, S. Norelli, S. El-daker, S. Valente et al., Shock and kill" effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence, Retrovirology, vol.6, p.52, 2009.

H. J. Stellbrink, J. Van-lunzen, M. ;. Westby, E. O'sullivan, C. Schneider et al., Effects of interleukin-2 plus highly active antiretroviral therapy on HIV-1 replication and proviral DNA (COSMIC trial), AIDS, vol.16, pp.1479-1487, 2002.

J. M. Prins, S. Jurriaans, R. M. Van-praag, H. Blaak, R. Van-rij et al., Immuno-activation with antiCD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy, AIDS, vol.13, pp.2405-2410, 1999.

F. X. Wang, Y. Xu, J. Sullivan, E. Souder, E. G. Argyris et al., IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART, The Journal of clinical investigation, vol.115, pp.128-137, 2005.

J. Rullas, M. Bermejo, J. Garcia-perez, M. Beltan, N. Gonzalez et al., Prostratin induces HIV activation and downregulates HIV receptors in peripheral blood lymphocytes, Antivir Ther, vol.9, pp.545-554, 2004.

L. Shan, K. Deng, N. S. Shroff, C. M. Durand, S. A. Rabi et al., Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation, Immunity, vol.36, pp.491-501, 2012.

S. Swingler, A. M. Mann, J. Zhou, C. Swingler, and M. Stevenson, Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein, PLoS pathogens, vol.3, pp.1281-1290, 2007.

C. L. Day, D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley et al., PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression, Nature, vol.443, pp.350-354, 2006.

A. Varela-rohena, P. E. Molloy, S. M. Dunn, Y. Li, M. M. Suhoski et al., Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor, Nature medicine, vol.14, pp.1390-1395, 2008.

I. A. Maksakova, D. L. Mager, and D. Reiss, Keeping active endogenous retroviral-like elements in check: the epigenetic perspective, Cell Mol Life Sci, vol.65, pp.3329-3347, 2008.

P. Jern and J. M. Coffin, Effects of retroviruses on host genome function, Annu Rev Genet, vol.42, pp.709-732, 2008.

J. Minardi-da-cruz, D. Singh, A. Lamara, and Y. Chebloune, Small Ruminant Lentiviruses (SRLVs) Break the Species Barrier to Acquire New Host Range, Viruses, vol.5, pp.1867-1884, 2013.

T. B. Crawford, D. S. Adams, W. Cheevers, and L. C. Cork, Chronic arthritis in goats caused by a retrovirus, Science, vol.207, pp.997-999, 1980.

S. Villet, B. A. Bouzar, T. Morin, G. Verdier, C. Legras et al., MaediVisna Virus and Caprine Arthritis Encephalitis Virus Genomes Encode a Vpr-Like but No Tat Protein, Journal of virology, vol.77, pp.9632-9638, 2003.

T. Morin, F. Guiguen, B. A. Bouzar, S. Villet, T. Greenland et al., Clearance of a Productive Lentivirus Infection in Calves Experimentally Inoculated with Caprine Arthritis-Encephalitis Virus, Journal of virology, vol.77, pp.6430-6437, 2003.

M. D. Gorrell, M. R. Brandon, D. Sheffer, R. J. Adams, and O. Narayan, Ovine lentivirus is macrophagetropic and does not replicate productively in T lymphocytes, Journal of virology, vol.66, pp.2679-2688, 1992.

R. Peluso, A. Haase, L. Stowring, M. Edwards, and P. Ventura, A Trojan Hosre Mechanism for the spread of Visna virus in Monocytes, Virology, vol.147, pp.231-236, 1985.

E. Sanna, M. P. Sanna, C. G. Vitali, G. Renzoni, L. Sanna et al., Proviral DNA in the brains of goats infected with caprine arthritisencephalitis virus, J Comp Pathol, vol.121, pp.271-276, 1999.

Z. Q. Liu, S. Muhkerjee, M. Sahni, C. Mccormick-davis, K. Leung et al., Derivation and biological characterization of a molecular clone of SHIV(KU-2) that causes AIDS, neurological disease, and renal disease in rhesus macaques, Virology, vol.260, pp.295-307, 1999.

M. Shingai, O. K. Donau, S. D. Schmidt, R. Gautam, R. J. Plishka et al., Most rhesus macaques infected with the CCR5-tropic SHIV(AD8) generate cross-reactive antibodies that neutralize multiple HIV-1 strains, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.19769-19774, 2012.

M. J. Deymier, D. T. Claiborne, Z. Ende, H. K. Ratner, W. Kilembe et al., Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning, Virology, pp.454-461, 2014.

L. S. Kierstead, S. Dubey, B. Meyer, T. W. Tobery, R. Mogg et al., Enhanced rates and magnitude of immune responses detected against an HIV vaccine: effect of using an optimized process for isolating PBMC. AIDS research and human retroviruses, vol.23, pp.86-92, 2007.

M. Kozak, A consideration of alternative models for the initiation of translation in eukaryotes, Critical reviews in biochemistry and molecular biology, vol.27, pp.385-402, 1992.

M. Kozak, The scanning model for translation: an update, The Journal of cell biology, vol.108, pp.229-241, 1989.

S. Morita, T. Kojima, and T. Kitamura, Plat-E: an efficient and stable system for transient packaging of retroviruses, Gene therapy, vol.7, pp.1063-1066, 2000.
DOI : 10.1038/sj.gt.3301206

URL : https://www.nature.com/articles/3301206.pdf

G. Meyers, Characterization of the sequence element directing translation reinitiation in RNA of the calicivirus rabbit hemorrhagic disease virus, Journal of virology, vol.81, pp.9623-9632, 2007.

D. G. Gibson, Programming biological operating systems: genome design, assembly and activation, Nature methods, vol.11, pp.521-526, 2014.
DOI : 10.1038/nmeth.2894

Y. Nishimura, M. Shingai, R. Willey, R. Sadjadpour, W. R. Lee et al., Generation of the pathogenic R5-tropic simian/human immunodeficiency virus SHIVAD8 by serial passaging in rhesus macaques, Journal of virology, vol.84, p.132, 2010.

R. Gautam, Y. Nishimura, W. R. Lee, O. Donau, A. Buckler-white et al., Pathogenicity and mucosal transmissibility of the R5-tropic simian/human immunodeficiency virus SHIV(AD8) in rhesus macaques: implications for use in vaccine studies, Journal of virology, vol.86, pp.8516-8526, 2012.

S. Gupta, E. S. Clark, J. M. Termini, J. Boucher, S. Kanagavelu et al., DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers, Journal of virology, vol.89, pp.4158-4169, 2015.
DOI : 10.1128/jvi.02904-14

URL : http://europepmc.org/articles/pmc4442371?pdf=render

M. C. Hanson, W. Abraham, M. P. Crespo, S. H. Chen, H. Liu et al., Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membraneproximal external region peptides, vol.33, pp.861-868, 2015.

A. Berzi, N. Varga, S. Sattin, P. Antonazzo, M. Biasin et al., Pseudo-mannosylated DC-SIGN ligands as potential adjuvants for HIV vaccines, Viruses, vol.6, pp.391-403, 2014.
DOI : 10.3390/v6020391

URL : http://www.mdpi.com/1999-4915/6/2/391/pdf

R. P. Johnson, Live attenuated AIDS vaccines: hazards and hopes, Nature medicine, vol.5, pp.154-155, 1999.
DOI : 10.1038/5515

T. W. Baba, Y. S. Jeong, D. Pennick, R. Bronson, M. F. Greene et al., Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques, Science, vol.267, pp.1820-1825, 1995.

T. W. Baba, V. Liska, A. H. Khimani, N. B. Ray, P. J. Dailey et al., Live attenuated, multiply deleted simian immunodeficiency virus causes AIDS in infant and adult macaques, Nature medicine, vol.5, pp.194-203, 1999.
DOI : 10.1038/8859

URL : https://www.nature.com/articles/nm0599_590c.pdf

M. P. Rubinstein, N. A. Lind, J. F. Purton, P. Filippou, J. A. Best et al., IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response, Blood, vol.112, pp.3704-3712, 2008.

D. J. Shedlock, C. Tingey, L. Mahadevan, N. Hutnick, E. L. Reuschel et al., Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity, vol.2, pp.196-215, 2014.
DOI : 10.3390/vaccines2020196

URL : http://www.mdpi.com/2076-393X/2/2/196/pdf

R. A. Dubie, S. Maksaereekul, B. L. Shacklett, D. Lemongello, K. S. Cole et al., Co-immunization with IL-15 enhances cellular immune responses induced by a vif-deleted simian immunodeficiency virus proviral DNA vaccine and confers partial protection against vaginal challenge with SIVmac251, Virology, vol.386, pp.109-121, 2009.
DOI : 10.1016/j.virol.2009.01.007

URL : https://doi.org/10.1016/j.virol.2009.01.007

H. X. Liao, C. Y. Tsao, S. M. Alam, M. Muldoon, N. Vandergrift et al., Antigenicity and immunogenicity of transmitted/founder, consensus, and chronic envelope glycoproteins of human immunodeficiency virus type 1, Journal of virology, vol.87, pp.4185-4201, 2013.

L. Stevceva, M. Moniuszko, and M. G. Ferrari, Utilizing IL-12, IL-15 and IL-7 as Mucosal Vaccine Adjuvants, Letters in drug design & discovery, vol.3, pp.586-592, 2006.
DOI : 10.2174/157018006778194655

URL : http://europepmc.org/articles/pmc1868013?pdf=render

I. L. Kozyrev, T. Miura, T. Haga, T. Kuwata, and M. Hayami, Construction of SIV/HIV1 chimeric viruses having the IL-5 gene and determination of their ability to replicate and produce IL-5, Archives of virology, vol.146, pp.1051-1062, 2001.

T. Haga, T. Kuwata, I. Kozyrev, T. B. Kwofie, M. Hayami et al., Construction of an SIV/HIV type 1 chimeric virus with the human interleukin 6 gene and its monkey and human cells, AIDS research and human retroviruses, vol.16, pp.577-582, 2000.

T. Kuwata, T. Miura, T. Haga, I. Kozyrev, and M. Hayami, Construction of chimeric simian and human immunodeficiency viruses that produce interleukin 12, AIDS research and human retroviruses, vol.16, pp.465-470, 2000.
DOI : 10.1089/088922200309124

B. Muller, J. Daecke, O. T. Fackler, M. T. Dittmar, H. Zentgraf et al., Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative, Journal of virology, vol.78, pp.10803-10813, 2004.
DOI : 10.1128/jvi.78.19.10803-10813.2004

URL : http://jvi.asm.org/content/78/19/10803.full.pdf

S. Pang, D. Yu, D. S. An, G. C. Baldwin, Y. Xie et al., Human immunodeficiency virus Env-independent infection of human CD4(-) cells, Journal of virology, vol.74, pp.10994-11000, 2000.
DOI : 10.1128/jvi.74.23.10994-11000.2000

URL : https://jvi.asm.org/content/74/23/10994.full.pdf

W. Pluymers, P. Cherepanov, D. Schols, E. De-clercq, and Z. Debyser, Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein, Virology, vol.258, pp.327-332, 1999.

T. R. Smith, K. Schultheis, W. B. Kiosses, D. H. Amante, J. M. Mendoza et al., DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response, Mol Ther Methods Clin Dev, 2014.

I. A. Cockburn, R. Amino, R. K. Kelemen, S. C. Kuo, S. W. Tse et al., In vivo imaging of CD8+ T cellmediated elimination of malaria liver stages, vol.110, pp.9090-9095, 2013.

E. B. Stephens, Z. Q. Liu, G. W. Zhu, I. Adany, S. V. Joag et al., Lymphocyte-tropic simian immunodeficiency virus causes persistent infection in the brains of rhesus monkeys, Virology, vol.213, pp.600-614, 1995.

V. H. Gattone, C. Tian, W. Zhuge, M. Sahni, O. Narayan et al., SIVassociated nephropathy in rhesus macaques infected with lymphocyte-tropic SIVmac239. AIDS research and human retroviruses, vol.14, pp.1163-1180, 1998.

J. E. Clements, R. C. Montelaro, M. C. Zink, A. M. Amedee, S. Miller et al., Cross-protective immune responses induced in rhesus macaques by immunization with attenuated macrophage-tropic simian immunodeficiency virus, Journal of virology, vol.69, pp.2737-2744, 1995.

P. Blancou, N. Chenciner, R. Ho-tsong-fang, V. Monceaux, M. C. Cumont et al., Simian immunodeficiency virus promoter exchange results in a highly attenuated strain that protects against uncloned challenge virus, Journal of virology, vol.78, pp.1080-1092, 2004.

P. E. Mangeot, D. Negre, B. Dubois, A. J. Winter, P. Leissner et al., Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells, Journal of virology, vol.74, pp.8307-8315, 2000.

P. Cannon, S. H. Kim, C. Ulich, and S. Kim, Analysis of Tat function in human immunodeficiency virus type 1-infected low-level-expression cell lines U1 and ACH2, Journal of virology, vol.68, 1993.

K. Kitamura, S. R. Zaki, P. W. Greer, S. D. Sinha, and T. M. Folks, Tumor necrosis factor-alpha induces circular forms of human immunodeficiency virus type-1 DNA in the persistently infected low-level expressing cell line, ACH-2, Virus research, vol.27, pp.113-118, 1993.

N. M. Archin, A. L. Liberty, A. D. Kashuba, S. K. Choudhary, J. D. Kuruc et al., Thesis References, p.134

, Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy, Nature, vol.487, pp.482-485, 2012.

S. Matalon, T. A. Rasmussen, and C. A. Dinarello, Histone deacetylase inhibitors for purging HIV-1 from the latent reservoir, Mol Med, vol.17, pp.466-472, 2011.

N. M. Archin, K. S. Keedy, A. Espeseth, H. Dang, D. J. Hazuda et al., Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors, AIDS, vol.23, pp.1799-1806, 2009.

T. A. Rasmussen, O. Schmeltz-sogaard, C. Brinkmann, F. Wightman, S. R. Lewin et al., Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation, Human vaccines & immunotherapeutics, vol.9, pp.993-1001, 2013.

G. Jiang and S. Dandekar, Targeting NF-kappaB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency, AIDS research and human retroviruses, vol.31, pp.4-12, 2015.

M. Stoszko, E. De-crignis, C. Rokx, M. M. Khalid, C. Lungu et al., Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal, vol.3, pp.108-121, 2016.

V. E. Walker-sperling, C. W. Pohlmeyer, P. M. Tarwater, and J. N. Blankson, The Effect of Latency Reversal Agents on Primary CD8+ T Cells: Implications for Shock and Kill Strategies for Human Immunodeficiency Virus Eradication, vol.8, pp.217-229, 2016.

J. B. Whitney, A. L. Hill, S. Sanisetty, P. Penaloza-macmaster, J. Liu et al., Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys, Nature, vol.512, pp.74-77, 2014.

F. Hodel, M. Patxot, T. Snäkä, and A. Ciuffi, HIV-1 latent reservoir: size matters, Future Virology, vol.11, pp.785-794, 2016.

E. Y. Kim, R. Lorenzo-redondo, S. J. Little, Y. S. Chung, P. K. Phalora et al., Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection, PLoS pathogens, vol.10, p.1004281, 2014.

E. Herrera-carrillo, W. A. Paxton, and B. Berkhout, The search for a T cell line for testing novel antiviral strategies against HIV-1 isolates of diverse receptor tropism and subtype origin, J Virol Methods, vol.203, pp.88-96, 2014.

N. Dejucq, G. Simmons, and P. R. Clapham, T-cell line adaptation of human immunodeficiency virus type 1 strain SF162: effects on envelope, vpu and macrophage-tropism, The Journal of general virology, vol.81, pp.2899-2904, 2000.

T. Kwofie and T. Miura, Increased Virus Replication and Cytotoxicity of Nonpathogenic Simian Human Immuno Deficiency Viruses-NM-3rN After Serial Passage in a Monkey-Derived Cell Line. Annals of medical and health sciences research, vol.3, pp.55-61, 2013.

H. Akiyama, M. Ishimatsu, T. Miura, M. Hayami, and E. Ido, Construction and infection of a new simian/human immunodeficiency chimeric virus (SHIV) containing the integrase gene of the human immunodeficiency virus type 1 genome and analysis of its adaptation to monkey cells, Microbes and infection, vol.10, pp.531-539, 2008.

H. Akiyama, E. Ido, W. Akahata, T. Kuwata, T. Miura et al., Construction and in vivo infection of a new simian/human immunodeficiency virus chimera containing the reverse transcriptase gene and the 3' half of the genomic region of human immunodeficiency virus type 1. The Journal of general virology, Thesis References, vol.84, p.135, 2003.

A. Alexaki, Y. Liu, and B. Wigdahl, Cellular reservoirs of HIV-1 and their role in viral persistence, Current HIV research, vol.6, p.388, 2008.

J. K. Jadlowsky, J. Y. Wong, A. C. Graham, C. Dobrowolski, R. L. Devor et al., Negative elongation factor is required for the maintenance of proviral latency but does not induce promoter-proximal pausing of RNA polymerase II on the HIV long terminal repeat, Molecular and cellular biology, vol.34, pp.1911-1928, 2014.

M. Juganaru, R. Reina, E. Grego, M. Profiti, and S. Rosati, LTR promoter activity of SRLV genotype E, strain Roccaverano, Veterinary research communications, vol.2010, p.34

B. Murphy, V. Mcelliott, N. Vapniarsky, A. Oliver, and J. Rowe, Tissue tropism and promoter sequence variation in caprine arthritis encephalitis virus infected goats, Virus research, vol.151, pp.177-184, 2010.

B. S. Razooky, A. Pai, K. Aull, I. M. Rouzine, and L. S. Weinberger, A hardwired HIV latency program, Cell, vol.160, pp.990-1001, 2015.

J. M. Billingsley, P. A. Rajakumar, M. A. Connole, N. C. Salisch, S. Adnan et al., Characterization of CD8+ T cell differentiation following SIVDeltanef vaccination by transcription factor expression profiling, PLoS pathogens, vol.11, p.1004740, 2015.

M. Iglesias-ussel, L. Marchionni, and F. Romerio, Isolation of microarray-quality RNA from primary human cells after intracellular immunostaining and fluorescenceactivated cell sorting, J Immunol Methods, vol.391, pp.22-30, 2013.

V. A. Evans, N. Kumar, A. Filali, F. A. Procopio, O. Yegorov et al., Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells, PLoS pathogens, issue.9, p.1003799, 2013.

P. Mohammadi, J. Di-iulio, M. Munoz, R. Martinez, I. Bartha et al., Dynamics of HIV latency and reactivation in a primary CD4+ T cell model, PLoS pathogens, vol.10, 2014.

P. A. Luciw, E. Pratt-lowe, K. E. Shaw, J. A. Levy, and C. Cheng-mayer, Persistent infection of rhesus macaques with T-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (SHIV), Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.7490-7494, 1995.

P. A. Luciw, C. P. Mandell, S. Himathongkham, J. Li, T. A. Low et al., Fatal immunopathogenesis by SIV/HIV-1 (SHIV) containing a variant form of the HIV-1SF33 env gene in juvenile and newborn rhesus macaques, Virology, vol.263, pp.112-127, 1999.

T. Igarashi, Y. Endo, G. Englund, R. Sadjadpour, T. Matano et al., Emergence of a highly pathogenic simian/human immunodeficiency virus in a rhesus macaque treated with anti-CD8 mAb during a primary infection with a nonpathogenic virus, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.14049-14054, 1999.

M. B. Feinberg and J. P. Moore, AIDS vaccine models: challenging challenge viruses, Nature medicine, vol.8, pp.207-210, 2002.

J. M. Harouse, A. Gettie, R. C. Tan, J. Blanchard, and C. Cheng-mayer, Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs, Science, vol.284, pp.816-819, 1999.

M. Peeters, K. Fransen, E. Delaporte, M. Van-den-haesevelde, G. M. Gershy-damet et al., Isolation and characterization of a new chimpanzee lentivirus (simian immunodeficiency virus isolate cpz-ant) from a wild-captured chimpanzee, AIDS, vol.6, pp.447-451, 1992.

M. Peeters, C. Honore, T. Huet, L. Bedjabaga, S. Ossari et al., Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in Gabon, AIDS, vol.3, pp.625-630, 1989.

F. Van-heuverswyn, Y. Li, C. Neel, E. Bailes, B. F. Keele et al., Human immunodeficiency viruses: SIV infection in wild gorillas, Nature, 2006.

F. Barre-sinoussi, J. Chermann, F. Rey, M. Nugeyre, S. Chamaret et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science, vol.220, pp.868-871, 1983.

V. Terzieva, Regulatory T Cells and HIV-1 Infection, Viral Immunol, vol.21, pp.285-292, 2008.

B. Sigurdsson and P. A. Palsson, Visna of sheep; a slow, demyelinating infection, Br. J. Exp. Pathol, vol.39, pp.519-528, 1958.

B. Sigurdsson, P. A. Palsson, and A. Tryggvaddottir, Transmission experiments with maedi, J. Infect. Dis, vol.93, pp.166-175, 1953.

H. E. Gendelman, O. Narayan, S. Kennedy-stoskopf, P. G. Kennedy, Z. Ghotbi et al., Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages, J. Virol, vol.58, pp.67-74, 1986.

M. D. Gorrell, M. R. Brandon, D. Sheffer, R. J. Adams, and O. Narayan, Ovine lentivirus is macrophagetropic and does not replicate productively in T lymphocytes, J. Virol, vol.66, pp.2679-2688, 1992.

J. E. Clements and M. C. Zink, Molecular biology and pathogenesis of animal lentivirus infections, Clin. Microbiol. Rev, vol.9, pp.100-117, 1996.

A. Fun, A. M. Wensing, J. Verheyen, and M. Nijhuis, Human immunodeficiency virus Gag and protease: Partners in resistance, Retrovirology, 2012.

J. Konvalinka, H. G. Krausslich, and B. Muller, Retroviral proteases and their roles in virion maturation, Virology, pp.403-417, 2015.

J. Minardi-da-cruz, D. Singh, A. Lamara, and Y. Chebloune, Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range, Viruses, vol.5, pp.1867-1884, 2013.

S. G. Sarafianos, B. Marchand, K. Das, D. M. Himmel, M. A. Parniak et al., Structure and function of HIV-1 reverse transcriptase: Molecular mechanisms of polymerization and inhibition, J. Mol. Biol, vol.385, pp.693-713, 2009.

P. Luciw, Human Immunodeficiency Viruses and Their Replication, pp.1881-1952, 1996.

Y. Vaishnav and F. Wong-staal, The Biochemistry of AIDS, Annu. Rev. Biochem, vol.60, pp.577-630, 1991.

K. H. Kalland, A. M. Szilvay, K. A. Brokstad, W. Saetrevik, and G. Haukenes, The human immunodeficiency virus type 1 Rev protein shuttles between the cytoplasm and nuclear compartments, Mol. Biol. Cell, vol.14, pp.7436-7444, 1994.

B. E. Meyer and M. H. Malim, The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm, Genes Dev, vol.8, pp.1538-1547, 1994.

T. J. Daly, K. S. Cook, G. S. Gray, T. E. Maione, and J. R. Rusche, Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro, Nature, vol.342, pp.816-819, 1989.

M. Fukuda, S. Asano, T. Nakamura, M. Adachi, M. Yoshida et al., CRM1 is responsible for intracellular transport mediated by the nuclear export signal, Nature, vol.390, pp.308-311, 1997.
DOI : 10.1038/36894

J. H. Simon and M. H. Malim, The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes, J. Virol, vol.70, pp.5297-5305, 1996.

R. A. Fouchier, J. H. Simon, A. B. Jaffe, and M. H. Malim, Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins, J. Virol, vol.70, pp.8263-8269, 1996.

J. H. Simon, D. L. Miller, R. A. Fouchier, and M. H. Malim, Virion incorporation of human immunodeficiency virus type-1 Vif is determined by intracellular expression level and may not be necessary for function, Virology, vol.248, pp.182-187, 1998.

R. Goila-gaur and K. Strebel, HIV-1 Vif, APOBEC, and intrinsic immunity, Retrovirology, 2008.
DOI : 10.1186/1742-4690-5-51

URL : https://retrovirology.biomedcentral.com/track/pdf/10.1186/1742-4690-5-51

A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, vol.418, pp.646-650, 2002.

B. A. Desimmie, K. A. Delviks-frankenberrry, R. C. Burdick, D. Qi, T. Izumi et al., Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all, J. Mol. Biol, vol.426, pp.1220-1245, 2014.
DOI : 10.1016/j.jmb.2013.10.033

URL : http://europepmc.org/articles/pmc3943811?pdf=render

R. K. Holmes, M. H. Malim, and K. N. Bishop, APOBEC-mediated viral restriction: Not simply editing?, Trends Biochem. Sci, vol.32, pp.118-128, 2007.
DOI : 10.1016/j.tibs.2007.01.004

S. Kim, K. Ikeuchi, R. Byrn, J. Groopman, and D. Baltimore, Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci, vol.86, pp.9544-9548, 1989.

E. N. Pawlak and J. D. Dikeakos, HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion, Biochim. Biophys. Acta, vol.1850, pp.733-741, 2015.

V. Piguet, L. Wan, C. Borel, A. Mangasarian, N. Demaurex et al., HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes, Nat. Cell. Biol, vol.2, pp.163-167, 2000.
DOI : 10.1038/35004038

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1475706

K. M. Atkins, L. Thomas, R. T. Youker, M. J. Harriff, F. Pissani et al., HIV-1 Nef binds PACS-2 to assemble a multikinase cascade that triggers major histocompatibility complex class I (MHC-I) down-regulation: analysis using short interfering RNA and knock-out mice, J. Biol. Chem, vol.283, pp.11772-11784, 2008.

J. D. Dikeakos, K. M. Atkins, L. Thomas, L. Emert-sedlak, I. J. Byeon et al., Small molecule inhibition of HIV-1-induced MHC-I down-regulation identifies a temporally regulated switch in Nef action, Mol. Biol. Cell, vol.21, pp.3279-3292, 2010.

C. H. Hung, L. Thomas, C. E. Ruby, K. M. Atkins, N. P. Morris et al., HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I, Cell Host Microbe, vol.1, pp.121-133, 2007.
DOI : 10.1016/j.chom.2007.03.004

URL : https://doi.org/10.1016/j.chom.2007.03.004

M. R. Schaefer, E. R. Wonderlich, J. F. Roeth, J. A. Leonard, and K. L. Collins, HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells, PLoS Pathog, 2008.

S. A. Swann, M. Williams, C. M. Story, K. R. Bobbitt, R. Fleis et al., HIV-1 Nef blocks transport of MHC class I molecules to the cell surface via a PI 3-kinase-dependent pathway, Virology, vol.282, pp.267-277, 2001.

G. Matthias, T. F. Oliver, and P. Matija, Structure-function relationships in HIV-1 Nef, EMBO Rep, vol.2, pp.580-585, 2001.

W. W. Roth, M. Khan, R. Geleziunas, H. G. Stringer, J. A. Zuberi et al., Functionally-impaired HIV-1 Nef alleles from a mother-child transmission pair, Int. J. Mol. Sci, vol.3, pp.1058-1072, 2002.
DOI : 10.3390/i3101058

URL : https://www.mdpi.com/1422-0067/3/10/1058/pdf

A. Jere, M. Fujita, A. Adachi, and M. Nomaguchi, Role of HIV-1 Nef protein for virus replication in vitro, vol.12, pp.65-70, 2010.

O. Fackler, X. Lu, J. Frost, M. Geyer, B. Jiang et al., Peterlin, M. p21-activated kinase 1 plays a critical role in cellular activation by Nef, Mol. Biol. Cell, vol.20, pp.2619-2627, 2000.

D. Wolf, V. Witte, B. Laffert, K. Blume, E. Stromer et al., HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals, Nat. Med, vol.7, pp.1217-1224, 2001.

B. Groschel and F. Bushman, Cell cycle arrest in G2/M promotes early steps of infection by human immunodeficiency virus, J. Virol, vol.79, pp.5695-5704, 2005.

E. A. Cohen, From arrest to escape: HIV-1 Vpr cuts a deal, Cell Host Microbe, vol.15, pp.125-127, 2014.

T. Murakami and Y. Aida, Visualizing Vpr-induced G2 arrest and apoptosis, PloS ONE, 2014.

V. Philippon, . Matsuda, and M. Essex, Transactivation is a conserved function among primate lentivirus Vpr proteins but is not shared by Vpx, J. Hum. Virol, vol.2, pp.167-174, 1999.

M. Mirani, I. Elenkov, S. Volpi, N. Hiroi, G. Chrousos et al., HIV-1 protein Vpr suppresses IL-12 production from human monocytes by enhancing glucocorticoid action: Potential implications of Vpr coactivator activity for the innate and cellular immunity deficits observed in HIV-1 infection, J. Immunol, vol.169, pp.6361-6368, 2002.

J. Hoch, S. M. Lang, M. Weeger, C. Stahl-hennig, C. Coulibaly et al., vpr deletion mutant of simian immunodeficiency virus induces AIDS in rhesus monkeys, J. Virol, vol.69, pp.4807-4813, 1995.

S. M. Lang, M. Weeger, C. Stahl-hennig, C. Coulibaly, G. Hunsmann et al., Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus, J. Virol, vol.67, pp.902-912, 1993.

A. B. Bouzar, F. Guiguen, T. Morin, S. Villet, C. Fornazero et al., Specific G2 arrest of caprine cells infected with a caprine arthritis encephalitis virus expressing vpr and vpx genes from simian immunodeficiency virus, Virology, vol.309, pp.41-52, 2003.

A. B. Bouzar, S. Villet, T. Morin, A. Rea, L. Genestier et al., Simian immunodeficiency virus Vpr/Vpx proteins kill bystander noninfected CD4+ T-lymphocytes by induction of apoptosis, Virology, vol.326, pp.47-56, 2004.

Y. Jin, G. Arrode-brusé-s, N. Halloway, O. Narayan, and Y. Chebloune, Changes of biological properties and pathogenesis of CAEV chimeras expressing Nef and Vpx/Vpr accessory proteins in infected goats, Retrovirology, 2009.

B. R. Cullen, HIV-1 auxiliary proteins: Making connections ina dying cell, Cell, vol.93, pp.685-692, 1998.

M. Emerman and M. Malim, HIV-1 regulatory/accessory genes: Key to unraveling viral and host cell biology, Science, vol.280, pp.1880-1884, 1998.

J. Garcia, D. Harrich, L. Pearson, R. Mitsuyasu, and R. Gaynor, Functional domains required for Tat-induced transcriptional activation of the HIV-1 long terminal repeats, EMBO J, vol.7, pp.3143-3147, 1988.

J. Hauber, M. Malim, and B. R. Cullen, Mutational analysis of the conserved basic domain of human immunodeficiency virus Tat protein, J. Virol, vol.63, pp.1181-1187, 1989.

H. Tang, K. Kuhen, and F. Wong-staal, Lentivirus replication and regulation, Annu. Rev. Genet, vol.33, pp.133-170, 1999.

S. Arya, C. Guo, S. Josephs, and F. Wong-staal, Trans-activator gene of human T-lymphotropic virus type III (HTLV-III), Science, vol.229, pp.69-73, 1985.

M. J. Saltarelli, R. Schoborg, S. L. Gdovin, and J. E. Clements, The CAEV tat gene transactivates the viral LTR and is necessary for efficient viral replication, Virology, vol.197, pp.35-44, 1993.

C. Neuveut, R. Vigne, J. E. Clements, and J. Sire, The visna transcriptional activator Tat: Effects on the viral LTR and on cellular genes, Virology, vol.197, pp.236-244, 1993.

L. M. Carruth, J. Hardwick, B. A. Morse, and J. E. Clements, Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains, J. Virol, vol.68, pp.6137-6146, 1994.

S. Villet, C. Faure, B. A. Bouzar, T. Morin, G. Verdier et al., Lack of trans-activation function for Maedi Visna virus and Caprine arthritis encephalitis virus Tat proteins, Virology, vol.307, pp.317-327, 2003.

S. Villet, B. A. Bouzar, T. Morin, G. Verdier, C. Legras et al., Maedi-Visna virus and caprine arthritis encephalitis virus genomes encode a Vpr-Like but No Tat protein, J. Virol, vol.77, pp.9632-9638, 2003.

A. Rea-boutrois, S. Villet, T. Greenland, P. Mehlen, Y. Chebloune et al., Small ruminant lentivirus Tat protein induces apoptosis in caprine cells in vitro by the intrinsic pathway, Virology, vol.383, pp.93-102, 2009.

A. Rea-boutrois, G. Pontini, T. Greenland, P. Mehlen, Y. Chebloune et al., Legras-Lachuer, C. Caprine arthritis-encephalitis virus induces apoptosis in infected cells in vitro through the intrinsic pathway, Virology, vol.375, pp.452-463, 2008.

P. M. Sharp and B. H. Hahn, Origins of HIV and the AIDS pandemic. Cold Spring Harb, Perspect. Med, 2011.

C. Delaugerre, F. Oliveira, C. Lascoux-combe, J. C. Plantier, and F. Simon, HIV-1 group N: Travelling beyond Cameroon, Lancet, vol.378, 1894.

J. C. Plantier, M. Leoz, J. E. Dickerson, F. Oliveira, F. Cordonnier et al., A new human immunodeficiency virus derived from gorillas, Nat. Med, vol.15, pp.871-872, 2009.

A. Vallari, V. Holzmayer, B. Harris, J. Yamaguchi, C. Ngansop et al., Confirmation of putative HIV-1 group P in Cameroon, J. Virol, vol.85, pp.1403-1407, 2011.

D. 'arc, M. Ayouba, A. Esteban, A. Learn, G. H. Boue et al., Origin of the HIV-1 group O epidemic in western lowland gorillas, Proc. Natl. Acad. Sci, vol.112, pp.1343-1352, 2015.

G. M. Shaw, E. Hunter, and . Hiv-transmission, Cold Spring Harb. Perspect. Med, 2012.

G. Touloumi and A. Hatzakis, Natural history of HIV-1 infection, Clin. Dermatol, vol.18, pp.389-399, 2000.

D. T. Mitchell, Investigations into Jaagziekte or Chronic Catarrhal Pneumonia of Sheep. Directory Veterinary Education Research: Union of South Africa, p.585, 1915.

P. A. Palsson, Maedi and visna in sheep, Front. Biol, vol.44, pp.17-43, 1976.

H. Marsh, Progressive pneumonia in sheep, J. Am. Vet. Med. Assoc, vol.62, pp.458-473, 1923.

G. Gislason, Thaettir urn Indutning Bdfjar og Karak~Ilsjdkdbma.; Icelandic Department of Agricultural Publication, pp.235-254, 1947.

P. A. Palsson and . Maedi-visna, J. Clin. Pathol, vol.6, pp.115-120, 1972.

H. Stunzi, H. F. Buchi, H. L. Leroy, and W. Leeman, Endemische arthritis chronic a bei zeiegen, Schw. Arch. Tier, vol.106, pp.778-788, 1959.

D. Stavrou, N. Deutschlander, and E. Dahme, Granulomatous encephalomyelitis in goats, J. Comp. Pathol, vol.79, pp.393-396, 1969.

L. C. Cork, W. J. Hadlow, T. B. Crawford, J. R. Gorham, and R. C. Piper, Infectious leukoencephalomyelitis of young goats, J. Infect. Dis, vol.129, pp.134-141, 1974.

T. B. Crawford, D. S. Adams, W. Cheevers, and L. C. Cork, Chronic arthritis in goats caused by a retrovirus, Science, vol.207, pp.997-999, 1980.

O. Narayan, J. E. Clements, J. D. Strandberg, L. C. Cork, and D. E. Griffin, Biological characterization of the virus causing leukoencephalitis and arthritis in goats, J. Gen. Virol, vol.50, pp.69-79, 1980.

R. Peluso, A. Haase, L. Stowring, M. Edwards, and P. Ventura, A trojan hosre mechanism for the spread of visna virus in monocytes, Virology, vol.147, pp.231-236, 1985.

H. E. Gendelman, O. Narayan, S. Molineaux, J. E. Clements, and Z. Ghotbi, Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow, Proc. Natl. Acad. Sci, vol.82, pp.7086-7090, 1985.

M. D. Lairmore, G. Y. Akita, H. I. Russell, and J. C. Demartini, Replication and cytopathic effects of ovine lentivirus strains in alveolar macrophages correlate with in vivo pathogenicity, J. Virol, vol.61, pp.4038-4042, 1987.

O. Narayan, S. Kennedy-stoskopf, D. Sheffer, D. E. Griffin, and J. E. Clements, Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages, Infect. Immun, vol.41, pp.67-73, 1983.

B. A. Blacklaws, Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus, Comp. Immunol. Microbiol. Infect. Dis, vol.35, pp.259-269, 2012.

, Vet. Sci, vol.2015, issue.2

M. L. Carrozza, M. Mazzei, P. Bandecchi, M. Arispici, and F. Tolari, In situ PCR-associated immunohistochemistry identifies cell types harbouring the Maedi-Visna virus genome in tissue sections of sheep infected naturally, J. Virol. Methods, vol.107, pp.121-127, 2003.

E. Sanna, M. P. Sanna, C. G. Vitali, G. Renzoni, L. Sanna et al., Proviral DNA in the brains of goats infected with caprine arthritis-encephalitis virus, J. Comp. Pathol, vol.121, pp.271-276, 1999.

G. Pautrat and P. Filippi, Evidence for the production of a fusion factor during in vitro infection of sheep choroid plexus cells by visna virus, C. R. Seances Soc. Biol. Fil, vol.173, pp.811-817, 1979.

L. Sihvonen and P. Veijalainen, Kinetics of maedi virus production in sheep choroid plexus cells, Vet. Microbiol, vol.6, pp.1-8, 1981.

S. Ryan, L. Tiley, I. Mcconnell, and B. Blacklaws, Infection of dendritic cells by the Maedi-Visna lentivirus, J. Virol, vol.74, pp.10096-10103, 2000.

E. Lechat, N. Milhau, P. Brun, C. Bellaton, T. Greenland et al., Goat endothelial cells may be infected in vitro by transmigration of caprine arthritis-encephalitis virus-infected leucocytes, Vet. Immunol. Immunopathol, vol.104, pp.257-263, 2005.

B. F. Keele, E. E. Giorgi, J. F. Salazar-gonzalez, J. M. Decker, K. T. Pham et al., Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection, Proc. Natl. Acad. Sci. USA, vol.105, pp.7552-7557, 2008.

H. Schuitemaker, M. Koot, N. A. Kootstra, M. W. Dercksen, R. E. De-goede et al., Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population, J. Virol, vol.66, pp.1354-1360, 1992.

J. M. Mccune, The dynamics of CD4+ T-cell depletion in HIV disease, Nature, vol.410, pp.974-979, 2001.

K. A. Khan, W. Abbas, A. Varin, A. Kumar, V. Di-martino et al., HIV-1 Nef interacts with HCV Core, recruits TRAF2, TRAF5 and TRAF6, and stimulates HIV-1 replication in macrophages, J. Innate Immun, vol.5, pp.639-656, 2013.

A. Brown, H. Zhang, P. Lopez, C. A. Pardo, and S. Gartner, In vitro modeling of the HIV-1 macrophage reservoir, J. Leukoc. Biol, vol.80, pp.1127-1135, 2006.

S. Aquaro, R. Calio, J. Balzarini, M. Bellocchi, E. Garaci et al., Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir, Antiviral Res, vol.55, pp.209-225, 2002.

S. Crowe, T. Zhu, and W. Muller, The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection, J. Leukoc. Biol, vol.74, pp.635-641, 2003.

O. Lambotte, Y. Taoufik, M. De-goer, C. Wallon, C. Goujard et al., Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy, J. Acquir. Immune Defic. Syndr, vol.23, pp.114-119, 2000.

T. Zhu, D. Muthui, S. Holte, D. Nickle, F. Feng et al., Evidence for Human Immunodeficiency Virus Type 1 Replication In Vivo in CD14+ Monocytes and Its Potential Role as a Source of Virus in Patients on Highly Active Antiretroviral Therapy, J. Virol, vol.76, pp.707-716, 2002.

V. Le-douce, G. Herbein, O. Rohr, and C. Schwartz, Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage, Retrovirology, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00663900

M. C. Zink, J. A. Yager, and J. D. Myers, Pathogenesis of caprine arthritis encephalitis virus. Cellular localization of viral transcripts in tissues of infected goats, Am. J. Pathol, vol.136, p.843, 1990.

J. E. Clements, M. C. Zink, O. Narayan, and D. Gabuzda, Lentiviral infection of macrophages, Immunol. Ser, vol.60, pp.589-600, 1994.

C. M. Coleman and L. Wu, HIV interactions with monocytes and dendritic cells: Viral latency and reservoirs, Retrovirology, 2009.

K. Lore, A. Smed-sorensen, J. Vasudevan, J. Mascola, and R. A. Koup, Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells, J. Exp. Med, vol.201, pp.2023-2033, 2005.

A. Smed-sörensen, K. Loré, J. Vasudevan, M. K. Louder, J. Andersson et al., Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells, J. Virol, vol.79, pp.8861-8869, 2005.

L. Burleigh, P. Lozach, C. Schiffer, I. Staropoli, V. Pezo et al., Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells, J. Virol, vol.80, pp.2949-2957, 2006.

T. B. Geijtenbeek, D. S. Kwon, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven et al., DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells, Cell, vol.100, pp.587-597, 2000.

V. A. Evans, N. Kumar, A. Filali, F. A. Procopio, O. Yegorov et al., Myeloid dendritic cells induce HIV1 latency in non-proliferating CD4+ T cells, PLoS Pathog, issue.9, p.1003799, 2013.

K. L. Banks, D. S. Adams, T. C. Mcguire, and J. Carlson, Experimental infection of sheep by caprine arthritis-encephalitis virus and goats by progressive pneumonia virus, Am. J. Vet. Res, vol.44, pp.2307-2311, 1983.

C. Leroux, J. C. Cruz, and J. F. Mornex, SRLVs: A genetic continuum of lentiviral species in sheep and goats with cumulative evidence of cross species transmission, Curr. HIV Res, vol.8, pp.94-100, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01608649

B. M. Karr, Y. Chebloune, K. Leung, and O. Narayan, Genetic characterization of two phenotypically distinct North American ovine lentiviruses and their possible origin from caprine arthritis-encephalitis virus, Virology, vol.225, pp.1-10, 1996.

C. Shah, J. B. Huder, J. Boni, M. Schonmann, J. Muhlherr et al., Direct evidence for natural transmission of small-ruminant lentiviruses of subtype A4 from goats to sheep and vice versa, J. Virol, vol.78, pp.7518-7522, 2004.

F. Guiguen, L. Mselli-lakhal, J. Durand, J. Du, C. Favier et al., Experimental infection of Mouflon-domestic sheep hybrids with caprine arthritis-encephalitis virus, Am. J. Vet. Res, vol.61, pp.456-461, 2000.

T. Morin, F. Guiguen, B. A. Bouzar, S. Villet, T. Greenland et al., Clearance of a Productive Lentivirus Infection in Calves Experimentally Inoculated with Caprine Arthritis-Encephalitis Virus, J. Virol, vol.77, pp.6430-6437, 2003.

E. Erhouma, F. Guiguen, Y. Chebloune, D. Gauthier, L. M. Lakhal et al., Small ruminant lentivirus proviral sequences from wild ibexes in contact with domestic goats, J. Gen. Virol, vol.89, pp.1478-1484, 2008.

G. Pisoni, G. Bertoni, M. Puricelli, M. Maccalli, and P. Moroni, Demonstration of coinfection with and recombination by caprine arthritis-encephalitis virus and maedi-visna virus in naturally infected goats, J. Virol, vol.81, pp.4948-4955, 2007.

D. S. Adams, P. Klevjer-anderson, J. L. Carlson, T. C. Mcguire, and J. R. Gorham, Transmission and control of caprine arthritis-encephalitis virus, Am. J. Vet. Res, vol.44, pp.1670-1675, 1983.

A. Knight and M. Jokinen, Caprine arthritis-encephalitis, Compend. Contin. Educ. Pract. Vet, vol.4, pp.263-269, 1982.

S. Lloyd, Goat medicine and surgery, Br. Vet. J, vol.138, pp.70-85, 1982.

D. M. Sherman and . Cae, Caprine arthritis encephalitis-a growing concern, DGJ, vol.61, pp.93-95, 1983.

S. Preziuso, G. Renzoni, T. E. Allen, E. Taccini, G. Rossi et al., Colostral transmission of maedi visna virus: sites of viral entry in lambs born from experimentally infected ewes, Vet. Microbiol, vol.104, pp.157-164, 2004.

L. C. Cork, O. Narayan, J. Strandberg, J. E. Clements, and D. Griffin, Viral leukoencephalomyelitisarthritis of goats: Pathogenesis of the persistent viral infection, J. Neuropath. Exp. Neur, 1980.

E. Rimstad, N. E. East, M. Torten, J. Higgins, E. Derock et al., Delayed seroconversion following naturally acquired caprine arthritis-encephalitis virus infection in goats, Am. J. Vet. Res, vol.54, pp.1858-1862, 1993.

L. C. Cork, Pathology and epidemiology of lentiviral infection of goats. Maedi-Visna and Related Diseases, Pé tursson, pp.119-127, 1990.

E. Daas, T. Moudgil, and R. Meyer, Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection, N. Engl. J. Med, vol.324, pp.961-964, 1991.

M. Piatak, M. Saag, and L. Yang, High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR, Science, vol.259, pp.1749-1754, 1993.

S. Mehandru, M. A. Poles, K. Tenner-racz, A. Horowitz, A. Hurley et al., Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract, J. Exp. Med, pp.761-770, 0200.

N. Saksena and S. Potter, Reservoirs of HIV-1 in vivo: implications for antiretroviral therapy, AIDS Rev, vol.5, pp.3-18, 2003.

M. Busch, Z. El-amad, H. Sheppard, and M. Ascher, Primary HIV-1 infection, N. Engl. J. Med, vol.325, pp.733-735, 1991.

, Vet. Sci, vol.2015, issue.2

S. Clark, M. Saag, and W. Decker, High titers of cytopathic virus in plasma of patients with symptomatic primary infection, N. Engl. J. Med, vol.324, pp.954-960, 1991.

B. Tindall and D. Cooper, Primary HIV infection: Host responses and intervention strategies, AIDS, vol.5, pp.1-14, 1991.

P. Gupta, L. Kingsley, J. Armstrong, M. Ding, M. Cottrill et al., Enhanced expression of human immunodeficiency virus type 1 correlates with development of AIDS, Virology, vol.196, pp.586-595, 1993.

D. Henrad, J. Philips, L. Muenz, W. A. Blattner, D. Wiesner et al., Natural history of HIV-1 cell free viremia, J. Am. Med. Assoc, vol.274, pp.554-558, 1995.

S. Jurriaans, B. Van-german, G. J. Weverling, D. Van-strijp, P. Nara et al., The natural history of HIV-1 infection: Virus load and virus phenotype independent determinants of clinical course? Virology, vol.204, pp.223-233, 1994.

A. Cozzi-lepri, C. Sabin, and P. Tezzotti, Is there a general tendency for rate of CD41 lymphocyte count decline to speed up during HIV infection? Evidence from the Italian Seroconversion Study, J. Infect. Dis, vol.175, pp.775-780, 1997.

W. Lang, H. Perkins, R. Anderson, R. Royce, and N. Jewell, Patterns of T lymphocyte changes with human immunodeficiency virus infection: From seroconversion to the development of AIDS, J. Acquir. Immune Defic. Syndr, vol.2, pp.63-69, 1989.

A. N. Phillips, C. A. Lee, J. Elford, G. Janossy, A. Timms et al., Serial CD4 lymphocyte counts and development of AIDS, Lancet, vol.337, pp.389-392, 1991.

G. Touloumi, A. Hatzakis, P. S. Rosenberg, T. R. O'brien, and J. J. Goedert, Effects of age at seroconversion and baseline HIV-RNA level on the loss of CD41 cells among persons with hemophilia, AIDS, vol.12, pp.1691-1697, 1998.

P. Lewthwaite and E. Wilkins, Natural history of HIV/AIDS, vol.33, pp.10-13, 2005.

P. Lewthwaite and E. Wilkins, Natural history of HIV/AIDS, vol.37, pp.333-337, 2009.

M. Dean, M. Carrington, C. Winkler, G. A. Huttley, M. W. Smith et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, vol.273, pp.1856-1862, 1996.

A. A. Al-jabri, Mechanisms of host resistance against HIV infection and progression to AIDS, Sultan Qaboos Univ. Med. J, vol.7, pp.82-96, 2007.

S. Crowe, J. Carlin, K. Steward, and C. R. Lucas, Predictive value of CD4 lymphocyte numbers for the development of opportunistic infections and malignacies in HIV-infected persons, J. Acquir. Immune Defic. Syndr, vol.4, pp.770-776, 1991.

D. R. Hoover, C. Rinaldo, Y. He, J. Phair, and J. Fahey,

N. M. Graham, Long-term survival without clinical AIDS after CD4+ cell fall below 200 × 10 6 /L, AIDS, vol.9, pp.145-152, 1995.

A. Mocroft, M. Johnson, C. Sabin, M. Lipman, J. Elford et al., Staging system for clinical AIDS patients, Lancet, vol.346, pp.12-17, 1995.

R. Orenstein, Presenting Syndromes of Human Immunodeficiency Virus, pp.1097-1102, 2002.

B. M. O'sullivan, F. W. Eaves, S. A. Baxendell, and K. J. Rowan, Leucoencephalomyelitis of goat kids, Aust. Vet. J, vol.54, pp.479-483, 1978.

D. S. Adams, T. B. Crawford, and P. Klevjer-anderson, A pathogenetic study of the early connective tissue lesions of viral caprine arthritis-encephalitis, Amer. J. Pathol, vol.99, pp.257-278, 1980.

B. Sigurdsson and P. A. Palsson, Visna of sheep. A slow demyelinating infection, Brit. J. Exp. Pathol, vol.39, pp.519-528, 1958.

R. M. Ruprecht, T. W. Baba, V. Liska, N. B. Ray, L. N. Martin et al., Oral transmission of primate lentiviruses, J. Infect. Dis, vol.179, pp.408-412, 1999.

N. F. Parrish, F. Gao, H. Li, E. E. Giorgi, H. J. Barbian et al., Phenotypic properties of transmitted founder HIV-1, Proc. Natl. Acad. Sci, vol.110, pp.6626-6633, 2013.

M. Pope, M. Betjes, N. Romani, H. Hirmand, P. Cameron et al., Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1, Cell, vol.78, pp.389-398, 1994.

M. Neutra, A. Frey, and J. Kraehenbuhl, Epithelial M cells: Gateways for mucosal infection and immunization, Cell, vol.86, pp.345-348, 1996.

F. Hladik and T. J. Hope, HIV infection of the genital mucosa in women, Curr. HIV/AIDS Rep, vol.6, pp.20-28, 2009.

D. J. Stieh, D. Maric, Z. L. Kelley, M. R. Anderson, H. Z. Hattaway et al., Vaginal challenge with an SIV-based dual reporter system reveals that infection can occur throughout the upper and lower female reproductive tract, PLoS Pathog, 2014.

S. Dandekar, Pathogenesis of HIV in the Gastrointestinal tract, Curr HIV/AIDS Rep, vol.4, pp.10-15, 2007.

R. S. Veazey, Getting to the Guts of HIV Pathogenesis, J. Exp. Med, pp.697-700, 0200.

T. Macdonald and J. Spencer, Lymphoid cells and tissues of the gastrointestinal tract, pp.1-23, 1994.

H. Schieferdecker, R. Ullrich, H. Hirseland, .. ;. Zeitz, and M. , T cell differentiation antigens on lymphocytes in the human intestinal lamina propria, J. Immunol, vol.149, pp.2816-2822, 1992.

J. Brenchley, T. Schacker, L. Ruff, D. A. Price, J. H. Taylor et al., CD4+T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract, J. Exp. Med, pp.749-759, 0200.

R. S. Veazey, P. Marx, and A. Lackner, Importance of the state of activation and/or differentiation of CD4+ T cells in AIDS pathogenesis, Trends Immunol, vol.23, pp.128-129, 2002.

J. Mattapallil, D. Douek, B. Hill, Y. Nishimura, M. Martin et al., Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection, Nature, vol.434, pp.1093-1097, 2005.

A. A. Lackner, M. Mohan, and R. S. Veazey, The Gastrointestinal Tract and AIDS Pathogenesis, Gastroenterology, vol.136, pp.1966-1978, 2009.

A. A. Lackner, M. M. Lederman, and B. Rodriguez, HIV pathogenesis: The host. Cold Spring Harb, Perspect. Med, 2012.

P. D. Katsikis, Y. M. Mueller, and F. Villinger, The cytokine network of acute HIV Infection: A promising target for vaccines and therapy to reduce viral set-point?, PLoS Pathog, 2011.

S. G. Deeks, HIV Infection, inflammation, immunosenescence, and aging, Annu. Rev. Med, vol.62, pp.141-155, 2011.

D. Elbirt, K. Mahlab-guri, S. Bezalel-rosenberg, H. Gill, M. Attali et al., HIV-associated neurocognitive disorders (HAND), Isr. Med. Assoc. J, vol.17, pp.54-59, 2015.

A. V. Albright, S. S. Soldan, and F. Gonzalez-scarano, Pathogenesis of human immunodeficiency virus-induced neurological disease, J. Neurovirol, vol.9, pp.222-227, 2003.

F. Gonzalez-scarano and J. Martin-garcia, The neuropathogenesis of AIDS, Nat. Rev. Immunol, vol.5, pp.69-81, 2005.

M. Kaul and S. A. Lipton, Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis, Proc. Natl. Acad. Sci, vol.96, pp.8212-8216, 1999.

K. A. Lindl, D. R. Marks, D. L. Kolson, and K. L. Jordan-sciutto, HIV-associated neurocognitive disorder: Pathogenesis and therapeutic opportunities, J. Neuroimmune Pharmacol, vol.5, pp.294-309, 2010.

R. W. Price, B. Brew, J. Sidtis, M. Rosenblum, A. C. Scheck et al., The brain in AIDS: Central nervous system HIV-1 infection and AIDS dementia complex, Science, vol.239, pp.586-592, 1988.

V. Valcour, P. Sithinamsuwan, S. Letendre, and B. Ances, Pathogenesis of HIV in the Central Nervous System, Curr. HIV/AIDS Rep, vol.8, pp.54-61, 2011.

F. Fieni, J. Rowe, K. Van-hoosear, C. Burucoa, S. Oppenheim et al., Presence of caprine arthritis-encephalitis virus (CAEV) proviral DNA in genital tract tissues of superovulated dairy goat does, Theriogenology, vol.59, pp.1515-1523, 2003.

G. Petursson, N. Nathanson, G. Georgsson, H. Panitch, and P. A. Palsson, Pathogenesis of visna Sequential virologic, serologic and pathologic studies, Lab. Invest, vol.35, pp.402-412, 1976.

D. S. Adams, T. B. Crawford, and P. Klevjer-anderson, A pathogenetic study of the early connective tissue lesions of viral caprine arthritis-encephalitis, Am. J. Pathol, vol.99, pp.257-278, 1980.

O. Narayan and L. C. Cork, Lentiviral diseases of sheep and goats: Chronic pneumonia leukoencephalomyelitis and arthritis, Rev. Infect. Dis, vol.7, pp.89-98, 1985.

L. C. Cork and W. C. Davis, Ultrastructural features of viral leukoencephalomyelitis of goats, Lab. Invest, vol.32, pp.359-365, 1975.

T. M. Ellis, W. F. Robinson, and G. E. Wilcox, The pathology and aetiology of lung lesions in goats infected with caprine arthritis-encephalitis virus, Aust. Vet. J, vol.65, pp.69-73, 1988.

B. Sigurdsson, H. Grimsson, P. A. Palsson, and . Maedi, a chronic, progressive infection of sheep's lungs, J. Infect. Dis, vol.90, pp.233-241, 1952.

R. C. Cutlip, H. D. Lehmkuhl, K. A. Brogden, and S. R. Bolin, Mastitis associated with ovine progressive pneumonia virus infection in sheep, Am. J. Vet. Res, vol.46, pp.326-328, 1985.

P. R. Clapham and A. Mcknight, HIV-1 receptors and cell tropism, Brit. Med. Bull, vol.58, pp.43-59, 2001.

N. Michael, Host genetic influences on HIV-1 pathogenesis, Curr. Opin. Immunol, vol.11, pp.466-474, 1999.

H. Crespo, P. Já-uregui, I. Glaria, L. Sanjose, L. Polledo et al., Mannose receptor may be involved in small ruminant lentivirus pathogenesis, Vet. Res, 2012.

H. Crespo, R. Reina, I. Glaria, H. Ramí-rez, X. De-andré-s et al., de André s, D. Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection, Vet. Res, 2011.

O. Narayan, J. Wolinsky, J. E. Clements, J. Strandberg, D. Griffin et al., Slow virus replication: The role of macrophages in the persistence and expression of visna viruses of sheep and goats, J. Gen. Virol, vol.59, pp.345-356, 1982.

M. Chen, S. Westmoreland, E. Ryzhova, G. J. Martin, S. Soldan et al., Gonzá lez-Scarano, F. Simian immunodeficiency virus envelope compartmentalizes in brain regions independent of neuropathology, J. Neurovirol, vol.12, pp.73-89, 2006.

P. Liu, L. Hudson, M. Tompkins, T. Vahlenkamp, and R. Meeker, Compartmentalization and evolution of feline immunodeficiency virus between the central nervous system and periphery following intracerebroventricular or systemic inoculation, J. Neurovirol, vol.12, pp.307-321, 2006.

S. Zá-rate, P. Kosakovsky, and F. Shapshak, Comparative study of methods for detecting sequence compartmentalization in human immunodeficiency virus type 1, J. Virol, vol.81, pp.6643-6651, 2007.

H. Ramirez, R. Reina, L. Bertolotti, A. Cenoz, M. Hernandez et al., Study of compartmentalization in the visna clinical form of small ruminant lentivirus infection in sheep, BMC Vet. Res, 2012.

B. Korber, K. Kunstman, B. Patterson, M. Furtado, M. Mcevilly et al., Genetic differences between blood-and brain-derived viral sequences from human immunodeficiency virus type-1 infected patients: Evidence of conserved elements in the V3 region of the Envelope protein of brain-derived sequences, J. Virol, vol.68, pp.7467-7481, 1994.

I. Hotzel and W. Cheevers, Sequence similarity between the envelope surface unit (SU) glycoproteins of primate and small ruminant lentiviruses, Virus Res, vol.69, pp.47-54, 2000.

D. Mwaengo, R. Grant, J. Demartini, and J. Carlson, Envelope glycoprotein nucleotide sequence and genetic characterization of North American ovine lentiviruses, Virology, vol.238, pp.135-144, 1997.

J. T. Blackard, HIV compartmentalization: a review on a clinically important phenomenon, Curr HIV Res, vol.10, pp.133-142, 2012.

S. G. Deeks, B. Autran, B. Berkhout, M. Benkirane, S. Cairns et al., Towards an HIV cure: A global scientific strategy, Nat. Rev. Immunol, vol.12, pp.607-614, 2012.

S. G. Deeks, T. Wrin, T. Liegler, R. Hoh, M. Hayden et al., Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia, New Engl. J. Med, vol.344, pp.472-480, 2001.

S. K. Choudhary, N. L. Rezk, W. L. Ince, M. Cheema, L. Zhang et al., Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2-/-?c-/-mouse, J. Virol, vol.83, pp.8254-8258, 2009.

T. W. Chun, D. Engel, M. M. Berrey, T. Shea, L. Corey et al., Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection, Proc. Natl. Acad. Sci, vol.95, pp.8869-8873, 1998.

L. E. Davis, B. L. Hjelle, V. E. Miller, D. L. Palmer, A. L. Llewellyn et al., Early viral brain invasion in iatrogenic human immunodeficiency virus infection, Neurology, vol.42, pp.1736-1739, 1992.

T. Chun and A. S. Fauci, Latent reservoirs of HIV: obstacles to the eradication of virus, Proc. Natl. Acad. Sci, vol.96, pp.10958-10961, 1999.

T. Chun and A. S. Fauci, HIV reservoirs: pathogenesis and obstacles to viral eradication and cure, AIDS, vol.26, pp.1261-1268, 2012.

W. Samuel and G. Warner, Host factor regulating post integration latency of HIV, Trends Microbiol, vol.13, pp.137-139, 2005.

I. Du-ché-né, E. Basyuk, Y. Lin, R. Triboulet, A. Knezevich et al., Suv39H1 and HP1? are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency, EMBO J, vol.26, pp.424-435, 2007.

C. Van-lint, Molecular control of HIV-1 postintegration latency: Implications for therapeutic strategies, Retrovirology, 2012.

J. Karn and C. M. Stoltzfus, Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb, Perspect. Med, 2012.

L. Shan and R. F. Siliciano, From reactivation of latent HIV-1 to elimination of the latent reservoir: The presence of multiple barriers to viral eradication, Bioessays, vol.35, pp.544-552, 2013.

J. D. Siliciano and R. F. Siliciano, Recent developments in the search for a cure for HIV-1 infection: Targeting the latent reservoir for HIV-1, J. Allergy Clin. Immun, vol.134, pp.12-19, 2014.

K. Lassen, Y. Han, Y. Zhou, J. Siliciano, and R. F. Siliciano, The multifactorial nature of HIV-1 latency, Trends Mol. Med, vol.10, pp.525-531, 2004.

Q. Zhou and P. Sharp, Novel mechanisms and factors for regulation by HIV-1 Tat, EMBO J, vol.14, pp.321-328, 1995.

A. Jordan, P. Defechereux, and E. Verdin, The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation, EMBO J, vol.20, pp.1726-1738, 2001.

A. A. Osorio, A. Munoz, D. Torres-romero, L. M. Bedoya, N. R. Perestelo et al., Olean-18-ene triterpenoids from Celastraceae species inhibit HIV replication targeting NF-kB and Sp1 dependent transcription, Eur. J. Med. Chem, vol.52, pp.295-303, 2012.

D. H. Dandekar, K. N. Ganesh, and D. Mitra, HIV-1 Tat directly binds to NF?B enhancer sequence: Role in viral and cellular gene expression, Nucleic Acids Res, vol.32, pp.1270-1278, 2004.

D. M. Margolis, M. Somasundaran, and M. R. Green, Human transcription factor YY1 represses human immunodeficiency virus type 1 transcription and virion production, J. Virol, vol.68, pp.905-910, 1994.

M. Tyagi and J. Karn, CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency, EMBO J, vol.26, pp.4985-4995, 2007.

Y. Han, Y. Lin, W. An, J. Xu, H. ;. Yahg et al., Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough, Cell Host Microbe, vol.4, pp.134-146, 2008.

D. M. Powell, M. C. Amaral, J. Y. Wu, T. Maniatis, W. C. Greene et al., Rev-dependent binding of SF2/ASF to the Rev response element: possible role in Rev-mediated inhibition of HIV RNA splicing, Proc. Natl. Acad. Sci, vol.94, pp.973-978, 1997.

J. Brady and F. Kashanchi, Tat gets the "green" light on transcription initiation, Retrovirology, 2005.

M. Barboric and B. M. Peterlin, A New Paradigm in Eukaryotic Biology: HIV Tat and the Control of Transcriptional Elongation, PloS Biol, 2005.

A. Haase, L. Stowring, O. Narayan, D. Griffin, and D. Price, Slow persistant infection caused by visna virus role of host restriction, Science, vol.195, pp.175-177, 1977.

H. Thormar and . Physical, Biological Properties of Visna Virus and Its Relationship to Other Animal Viruses. In Slow, Latent and Temprate Virus Infection; The National Institute of Neurological Disorders and Blindness, pp.335-340, 1966.

H. Thormar, Maedi-visna virus and its relationship to human immunodeficiency virus, AIDS Rev, vol.7, pp.233-245, 2005.

L. A. Pereira, K. Bentley, A. Peeters, M. J. Churchill, and N. J. Deacon, A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter, Nucleic Acids Res, vol.28, pp.663-668, 2000.

J. Gracia, D. Harrich, E. Soultanakis, F. Wu, R. Mitsuyasu et al., Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation, EMBO J, vol.8, pp.765-778, 1989.

D. Harrich, J. Gracia, R. Mitsuyasu, and R. Gaynor, TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes, EMBO J, vol.9, pp.4417-4423, 1990.

H. S. Olsen and C. Rosen, Contribution of the TATA motif to Tat-mediated transcriptional activation of the human immunodeficiency virus gene expression, J. Virol, vol.66, pp.5594-5597, 1992.

Y. M. Danino, D. Even, D. Ideses, and T. Juven-gershon, The core promoter: At the heart of gene expression, Biochim. Biophys. Acta, vol.1849, pp.1116-1131, 2015.

M. S. Dahabieh, M. Ooms, T. Malcolm, V. Simon, and I. Sadowski, Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter, Virology, vol.418, pp.57-66, 2011.

E. Wilhelm, M. C. Doyle, I. Nzaramba, A. Magdzinski, N. Dumais et al., CTGC motifs within the HIV core promoter specify Tat-responsive pre-initiation complexes, Retrovirology, 2012.

K. Miller-jensen, R. Skupsky, P. S. Shah, A. P. Arkin, and D. V. Schaffer, Genetic selection for context-dependent stochastic phenotypes: Sp1 and TATA mutations increase phenotypic noise in HIV-1 gene expression, PLoS Comput. Biol, 2013.

A. Duverger, F. Wolschendorf, M. Zhang, F. Wagner, B. Hatcher et al., An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection, J. Virol, vol.87, pp.2264-2277, 2013.

A. Duverger, J. Jones, J. May, F. Bibollet-ruche, F. A. Wagner et al., Determinants of the establishment of human immunodeficiency virus type 1 latency, J. Virol, vol.83, pp.3078-3093, 2009.

, Vet. Sci, vol.2015, issue.2

K. A. Jones, J. T. Kadonaga, P. A. Luciw, and R. Tjian, Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1, Science, vol.232, pp.755-759, 1986.

K. Rittner, The human immunodeficiency virus long terminal repeat includes a specialised initiator element which is required for Tat responsive transcription, J. Mol. Biol, vol.248, pp.562-580, 1995.

E. K. Ross, A. J. Buckler-white, A. B. Rabson, G. Englund, and M. A. Martin, Contribution of NF-?B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: Distinct patterns of viral growth are determined by T-cell types, J. Virol, vol.65, pp.4350-4358, 1991.

M. Dahmus, Phosphorylation of C-terminal domain of RNA polymerase II, Biochim. Biophys. Acta, pp.171-182, 1995.

Y. K. Kim, C. F. Bourgeois, C. Isel, M. J. Churcher, and J. Karn, Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation, Mol. Biol. Cell, vol.22, pp.4622-4637, 2002.

J. Guo and D. H. Price, RNA polymerase II transcription elongation control, Chem. Rev, vol.113, pp.8583-8603, 2013.

J. K. Jadlowsky, J. Y. Wong, A. C. Graham, C. Dobrowolski, R. L. Devor et al., Negative elongation factor is required for the maintenance of proviral latency but does not induce promoter-proximal pausing of RNA polymerase II on the HIV long terminal repeat, Mol. Biol. Cell, vol.34, pp.1911-1928, 2014.

M. Natarajan, G. M. Lester, C. Lee, A. Missra, G. A. Wasserman et al., Negative elongation factor (NELF) coordinates RNA polymerase II pausing, premature termination, and chromatin remodeling to regulate HIV transcription, J. Biol. Chem, vol.288, pp.25995-26003, 2013.

B. Cheng and D. H. Price, Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay, Nucleic Acids Res, vol.36, p.135, 2008.

A. Missra and D. S. Gilmour, Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex, Proc. Natl. Acad. Sci, vol.107, pp.11301-11306, 2010.

J. M. Pagano, H. Kwak, C. T. Waters, R. O. Sprouse, B. S. White et al., Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions, PLoS Genet, 2014.

S. Feng and E. C. Holland, HIV-1 Tat trans-activation requires the loop sequence within tar, Nature, vol.334, pp.165-167, 1988.

J. Gu, N. D. Babayeva, Y. Suwa, A. G. Baranovskiy, D. H. Price et al., Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4, Cell. Cycle, vol.13, pp.1788-1797, 2014.

C. Herrmann and A. Rice, Lentivirus Tat proteins specifically associate with a cellular protein-kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: Candidate for a Tat cofactor, J. Virol, vol.69, pp.1612-1620, 1995.

I. Montanuy, R. Torremocha, C. Hernandez-munain, and C. Sune, Promoter influences transcription elongation: TATA-box element mediates the assembly of processive transcription complexes responsive to cyclin-dependent kinase 9, J. Biol. Chem, vol.283, pp.7368-7378, 2008.

P. Wei, M. E. Garber, S. M. Fang, W. H. Fischer, and K. A. Jones, A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA, Cell, vol.92, pp.451-462, 1998.

Q. Zhou, T. Li, and D. H. Price, RNA polymerase II elongation control, Annu. Rev. Biochem, vol.81, pp.119-143, 2012.

F. Itzen, A. K. Greifenberg, C. A. Bosken, and M. Geyer, Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation, Nucleic Acids Res, vol.42, pp.7577-7590, 2014.

N. F. Marshall and D. Price, Control of formation of two distinct classes of RNA polymerase II elongation complexes, Mol. Biol. Cell, vol.12, pp.2078-2090, 1992.

K. Fujinaga, Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element, Mol. Biol. Cell, vol.24, pp.787-795, 2004.

U. R. Mbonye, G. Gokulrangan, M. Datt, C. Dobrowolski, M. Cooper et al., Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes, PLoS Pathog, 2013.

A. Battistini and M. Sgarbanti, HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies, Viruses, vol.6, pp.1715-1758, 2014.

U. Mbonye and J. Karn, Transcriptional control of HIV latency: Cellular signaling pathways, epigenetics, happenstance and the hope for a cure, Virology, pp.328-339, 2014.

J. Karn, C. M. Tat-;-kuiken, B. Foley, J. W. Mellors, B. Hahn et al., A Novel Regulator of HIV Transcription and Latency, Theoretical Biology and Biophysics Group, pp.2-18, 2000.

J. T. Karn and . Tat, J. Mol. Biol, vol.293, pp.235-254, 1999.

R. F. Siliciano, W. C. Greene, and . Latency, Cold Spring Harb, Perspect. Med, 2011.

K. Strebel, Virus-host interactions: role of HIV proteins Vif, Tat, and Rev, AIDS, vol.17, pp.25-34, 2003.

R. Taube and M. Peterlin, Lost in Transcription: Molecular Mechanisms that Control HIV Latency, Viruses, vol.5, pp.902-927, 2013.

M. Tyagi and M. Bukrinsky, Human immunodeficiency virus (HIV) latency: The major hurdle in HIV eradication, Mol. Med, vol.18, pp.1096-1108, 2012.

S. Lester, G. M. Henderson, and A. J. , Mechanisms of HIV transcriptional regulation and their contribution to latency, Mol. Biol. Int, pp.1-11, 2012.

D. S. Ruelas and W. C. Greene, An integrated overview of HIV-1 latency, Cell, vol.155, pp.519-529, 2013.

S. Gdovin and J. E. Clements, Molecular mechanisms of visna virus Tat: Identification of the targets for transcriptional activation and evidence for a post-transcriptional effect, Virology, vol.188, pp.438-450, 1992.

L. M. Carruth, B. A. Morse, and J. E. Clements, The leucine domain of the visna virus Tat protein mediates targeting to an AP-1 site in the viral long terminal repeat, J. Virol, vol.70, pp.4338-4344, 1996.

B. A. Morse, L. M. Carruth, and J. E. Clements, Targeting of the visna virus Tat protein to AP-1 sites: Interactions with the bZIP domains of fos and jun in vitro and in vivo, J. Virol, vol.73, pp.37-45, 1999.

S. A. Barber, L. Bruett, B. R. Douglass, D. S. Herbst, M. C. Zink et al., Visna virus-induced activation of MAPK is required for virus replication and correlates with virus-induced neuropathology, J. Virol, vol.76, pp.817-828, 2002.

J. L. Hess, J. Small, and J. E. Clements, Sequences in the visna virus long terminal repeat that control transcriptional activity and respond to viral trans-activation: involvement of AP-1 sites in basal activity and trans-activation, J. Virol, vol.63, pp.3001-3015, 1989.

A. Harmache, C. Vitu, P. Russo, M. Bouyac, C. Hieblot et al., The caprine arthritis encephalitis virus tat gene is dispensable for efficient viral replication in vitro and in vivo, J. Virol, vol.69, pp.5445-5454, 1995.

B. G. Murphy, I. Hotzel, D. P. Jasmer, W. C. Davis, D. Knowles et al., , vol.352, pp.188-199, 2006.

T. Sepp and S. E. Tong-starksen, STAT1 pathway is involved in activation of caprine arthritis-encephalitis virus long terminal repeat in monocytes, J. Virol, vol.71, pp.771-777, 1997.

D. Guo, J. D. Dunbar, C. H. Yang, L. M. Pfeffer, and D. B. Donner, Induction of Jak/STAT signaling by activation of the type 1 TNF receptor, J. Immunol, vol.160, pp.2742-2750, 1998.

S. H. Jackson, C. R. Yu, R. M. Mahdi, S. Ebong, and C. E. Egwuagu, Dendritic cell maturation requires STAT1 and is under feedback regulation by suppressors of cytokine signaling, J. Immunol, vol.172, pp.2307-2315, 2004.

E. M. Coccia, N. Del-russo, E. Stellacci, U. Testa, G. Marziali et al., STAT1 activation during monocyte to macrophage maturation: role of adhesion molecules, Int. Immunol, vol.11, pp.1075-1083, 1999.

R. Reina, E. Grego, L. Bertolotti, D. De-meneghi, and S. Rosati, Genome analysis of small-ruminant lentivirus genotype E: a caprine lentivirus with natural deletions of the dUTPase subunit, vpr-like accessory gene, and 70-base-pair repeat of the U3 region, J. Virol, vol.83, pp.1152-1155, 2009.

S. C. Barros, V. Andresdottir, and M. Fevereiro, Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences, Arch. Virol, vol.150, pp.201-213, 2005.

T. Oskarsson, H. S. Hreggvidsdottir, G. Agnarsdottir, S. Matthiasdottir, M. H. Ogmundsdottir et al., Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence, J. Virol, vol.81, pp.4052-4057, 2007.

G. Agnarsdottir, H. Thorsteinsdottir, T. Oskarsson, S. Matthiasdottir, B. S. Haflidadottir et al., The long terminal repeat is a determinant of cell tropism of maedi-visna virus, J. Gen. Virol, vol.81, pp.1901-1905, 2000.

B. Murphy, V. Mcelliott, N. Vapniarsky, A. Oliver, and J. Rowe, Tissue tropism and promoter sequence variation in caprine arthritis encephalitis virus infected goats, Virus Res, vol.151, pp.177-184, 2010.

A. O. Adedeji, B. Barr, E. Gomez-lucia, and B. Murphy, A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease, Viruses, vol.5, 2005.

B. Murphy, C. Hillman, D. Castillo, N. Vapniarsky, and J. Rowe, The presence or absence of the gamma-activated site determines IFN gamma-mediated transcriptional activation in CAEV promoters cloned from the mammary gland and joint synovium of a single CAEV-infected goat, Virus Res, vol.163, pp.537-545, 2012.

U. Mbonye and J. Karn, Control of HIV latency by epigenetic and non-epigenetic mechanisms, Curr. HIV Res, vol.9, pp.554-567, 2011.

G. J. Narlikar, H. Fan, and R. E. Kingston, Cooperation between complexes that regulate chromatin structure and transcription, Cell, vol.108, pp.475-487, 2002.

A. Wolffe, Nucleosome positioning and modification: chromatin structures that potentiate transcription, Trends Biochem. Sci, vol.19, pp.240-244, 1994.

D. D. Richman, D. M. Margolis, M. Delaney, W. C. Greene, D. Hazuda et al., The challenge of finding a cure for HIV infection, Science, vol.323, pp.1304-1307, 2009.

C. Van-lint, S. Emiliani, M. Ott, and E. Verdin, Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation, EMBO J, vol.15, pp.1112-1120, 1996.

E. Verdin, DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1, J. Virol, vol.65, pp.6790-6799, 1991.

E. Verdin, P. Paras, and . Jr, Van Lint, C. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation, EMBO J, vol.12, pp.3249-3259, 1993.

J. J. Coull, F. Romerio, J. Sun, J. L. Volker, K. M. Galvin et al., The Human Factors YY1 and LSF Repress the Human Immunodeficiency Virus Type 1 Long Terminal Repeat via Recruitment of Histone Deacetylase 1, J. Virol, vol.74, pp.6790-6799, 2000.

K. Imai and T. Okamoto, Transcriptional Repression of Human Immunodeficiency Virus Type 1 by AP-4, J. Biol. Chem, vol.281, pp.12495-12505, 2006.

G. Jiang, A. Espeseth, D. J. Hazuda, and D. M. Margolis, c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter, J. Virol, vol.81, pp.10914-10923, 2007.

G. He and D. M. Margolis, Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat, Mol. Biol. Cell, vol.22, pp.2965-2973, 2002.

S. Williams, L. Chen, C. Kwon, E. Ruiz-jarabo, and W. Greene, NF-?B p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation, EMBO J, vol.25, pp.139-149, 2006.

K. S. Keedy, N. M. Archin, A. T. Gates, A. Espeseth, D. J. Hazuda et al., A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression, J. Virol, vol.83, pp.4749-4756, 2009.

G. Nabel and D. Baltimore, An inducible transcription factor activates expression of human immunodeficiency virus in T cells, Nature, vol.326, pp.711-713, 1987.

A. Dorr, V. Kiermer, A. Pedal, H. Rackwitz, P. Henklein et al., Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain, EMBO J, vol.21, pp.2715-2723, 2002.

T. Mahmoudi, M. Parra, R. G. Vries, S. E. Kauder, C. P. Verrijzer et al., The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter, J. Biol. Chem, vol.281, 2006.

,. C. Tré, I. Du-ché-né, V. Brè-s, R. Kiernan, R. Benarous et al., Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter, EMBO J, vol.25, pp.1690-1699, 2006.

E. Agbottah, L. Deng, L. O. Dannenberg, A. Pumfery, and F. Kashanchi, Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription, Retrovirology, 2006.

M. Ott, M. Geyer, and Q. Zhou, The control of HIV transcription: Keeping RNA Polymerase II on track, Cell Host Microbe, vol.10, pp.426-435, 2011.

E. Col, The Histone Acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J. Biol. Chem, vol.276, pp.28179-28184, 2001.
DOI : 10.1074/jbc.m101385200

URL : http://www.jbc.org/content/276/30/28179.full.pdf

S. Pagans, A. Pedal, B. J. North, K. Kaehlcke, B. L. Marshall et al., SIRT1 Regulates HIV Transcription via Tat Deacetylation, 2005.
DOI : 10.1371/journal.pbio.0030041

URL : https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0030041&type=printable

N. Sakane, H. Kwon, S. Pagans, K. Kaehlcke, Y. Mizusawa et al., Activation of HIV Transcription by the Viral Tat Protein Requires a Demethylation Step Mediated by Lysine-specific Demethylase 1 (LSD1/KDM1), PLoS Pathog, 2011.

M. Ott, A. Dorr, C. Hetzer-egger, K. Kaehlcke, M. Schnolzer et al., Tat acetylation: a regulatory switch between early and late phases in HIV transcription elongation, Novartis Found. Symp, vol.259, pp.182-193, 2004.

S. Pagans, S. E. Kauder, K. Kaehlcke, N. Sakane, S. Schroeder et al., The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription, Cell. Host Microbe, vol.7, pp.234-244, 2010.
DOI : 10.1016/j.chom.2010.02.005

URL : https://doi.org/10.1016/j.chom.2010.02.005

A. Sabo, M. Lusic, A. Cereseto, and M. Giacca, Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription, Mol. Biol. Cell, vol.28, pp.2201-2212, 2008.

J. Friedman, W. Cho, C. K. Chu, K. S. Keedy, N. M. Archin et al., Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of zeste 2, J. Virol, vol.85, pp.9078-9089, 2011.

D. Enderle, C. Beisel, M. B. Stadler, M. Gerstung, P. Athri et al., Polycomb preferentially targets stalled promoters of coding and noncoding transcripts, Genome Res, vol.21, pp.216-226, 2011.

K. Imai, H. Togami, and T. Okamoto, Involvement of Histone H3 Lysine 9 (H3K9) Methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294, J. Biol. Chem, vol.285, pp.16538-16545, 2010.

W. Abbas and G. Herbein, Molecular Understanding of HIV-1 Latency, Adv. Virol, pp.1-14, 2012.

J. Groen, K. Morris, and . Chromatin, Non-Coding RNAs, and the Expression of HIV, Viruses, vol.5, pp.1633-1645, 2013.

A. Kumar, W. Abbas, and G. Herbein, HIV-1 latency in monocytes/macrophages, Viruses, vol.6, pp.1837-1860, 2014.
DOI : 10.3390/v6041837

URL : https://www.mdpi.com/1999-4915/6/4/1837/pdf

E. Eisele and R. F. Siliciano, Redefining the viral reservoirs that prevent HIV-1 eradication, Immunity, vol.37, pp.377-388, 2012.
DOI : 10.1016/j.immuni.2012.08.010

URL : https://doi.org/10.1016/j.immuni.2012.08.010

T. A. Rasmussen, M. Tolstrup, A. Winckelmann, L. Ostergaard, and O. S. Sogaard, Eliminating the latent HIV reservoir by reactivation strategies: Advancing to clinical trials, Hum. Vaccin. Immunother, vol.9, pp.790-799, 2013.

K. M. Barton, B. D. Burch, N. Soriano-sarabia, and D. M. Margolis, Prospects for treatment of latent HIV, Clin. Pharmacol. Ther, vol.93, pp.46-56, 2013.

C. M. Durand, J. N. Blankson, and R. F. Siliciano, Developing strategies for HIV-1 eradication. Trends Immuno, vol.33, pp.554-562, 2012.

N. M. Archin, A. L. Liberty, A. D. Kashuba, S. K. Choudhary, J. D. Kuruc et al., Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy, Nature, vol.487, pp.482-485, 2012.

Y. Levy, I. Sereti, G. Tambussi, J. P. Routy, J. D. Lelievre et al., Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: Results of a phase I/IIa randomized, placebo-controlled, multicenter study, Clin. Infect. Dis, vol.55, pp.291-300, 2012.

C. L. Strong, H. P. Guerra, K. R. Mathew, N. Roy, L. R. Simpson et al., Damaging the integrated HIV proviral DNA with TALENs, PloS ONE, 2015.

L. Mariyanna, P. Priyadarshini, H. Hofmann-sieber, M. Krepstakies, N. Walz et al., Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase, PloS ONE, 2012.

I. Sarkar, I. Hauber, J. Hauber, and F. Buchholz, HIV-1 proviral DNA excision using an evolved recombinase, Science, vol.316, pp.1912-1915, 2007.

J. and C. , Introduction of Acquired CCR5 Deficiency with Zinc Finger Nuclease-Modified Autologous CD4 T Cells (SB-728-T) Correlates with Increases in CD4 Count and Effects on Viral Load in HIV-Infected Subjects, Proceedings of 19th Conference on Retroviruses and Opportunistic Infections, pp.5-8, 2012.

J. Lalezari, A Single Infusion of Zinc Finger Nuclease CCR5 Modified Autologous CD4 T Cells (SB-728-T) Increases CD4 Counts and Leads to Decrease in HIV Proviral Load in an Aviremic HIV-Infected Subject, Proceedings of 19th Conference on Retroviruses and Opportunistic Infections, pp.5-8, 2012.

K. Allers, G. Hutter, J. Hofmann, C. Loddenkemper, K. Rieger et al., Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation, Blood, vol.117, pp.2791-2799, 2011.

G. Hutter and S. Ganepola, Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells, ScientificWorldJournal, vol.11, pp.1068-1076, 2011.

G. Hutter, D. Nowak, M. Mossner, S. Ganepola, A. Mussig et al., Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation, N. Engl. J. Med, vol.360, pp.692-698, 2009.

H. Mens, M. Kearney, A. Wiegand, W. Shao, K. Schonning et al., HIV-1 continues to replicate and evolve in patients with natural control of HIV infection, J. Virol, vol.84, pp.12971-12981, 2010.

K. A. O'connell, T. P. Brennan, J. R. Bailey, S. C. Ray, R. F. Siliciano et al., Control of HIV-1 in elite suppressors despite ongoing replication and evolution in plasma virus, J. Virol, vol.84, pp.7018-7028, 2010.

J. Rosenblatt, B. Glotzbecker, H. Mills, B. Vasir, D. Tzachanis et al., PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine, J. Immunother, vol.34, pp.409-418, 2011.

S. A. Yukl, E. Boritz, M. Busch, C. Bentsen, T. W. Chun et al., Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient, PLoS Pathog, 2013.

T. J. Henrich, Z. Hu, J. Z. Li, G. Sciaranghella, M. P. Busch et al., Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation, J. Infect. Dis, vol.207, pp.1694-1702, 2013.

T. J. Henrich, .. E. Hanhauser, M. N. Sirignano, J. Z. Li, M. Lichterfeld et al., HIV-1 Rebound Following Allogeneic Stem Cell Transplantation and Treatment Interruption, Proceeding of 21st Conference on Retroviruses and Opportunistic Infections, pp.3-6, 2014.

P. Frange, A. F. Avettand-fenoel, E. Bellaton, D. Deschamps, M. Angin et al., HIV-1 Virological Remission for More Than 11 Years after Interruption of Early Initiated Antiretroviral Therapy in A Perinatally-Infected Child, Proceedings of IAS 2015-8th IAS Conference on HIV Pathogenesis, Treatment and Prevention, 2015.

D. Persaud, H. Gay, C. Ziemniak, Y. H. Chen, M. Piatak et al., Absence of detectable HIV-1 viremia after treatment cessation in an infant, N. Engl. J. Med, vol.369, pp.1828-1835, 2013.

A. Saez-cirion, C. Bacchus, L. Hocqueloux, V. Avettand-fenoel, I. Girault et al., Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study, PLoS Pathog, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01420534

D. Klatzmann, F. Barre-sinoussi, and M. Nugeyre, Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes, Science, vol.225, pp.59-63, 1984.

D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, D. Guetard et al., T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature, vol.312, pp.767-768, 1984.

, Vet. Sci, vol.2015, issue.2

D. D. Ho, T. Rota, and M. Hirsch, Infection of monocyte/macrophages by human T lymphotropic virus type III, J. Clin. Invest, vol.77, pp.1712-1715, 1986.

N. Chomont, M. El-far, P. Ancuta, L. Trautmann, F. A. Procopio et al., HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat. Med, vol.15, pp.893-900, 2009.

W. J. Swiggard, C. Baytop, J. J. Yu, J. Dai, C. Li et al., Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli, J. Virol, vol.79, pp.14179-14188, 2005.

C. Chanel, I. Staropoli, F. Baleux, A. Amara, A. Valenzuela-fernandez et al., Low levels of co-receptor CCR5 are sufficient to permit HIV envelope-mediated fusion with resting CD4 T cells, AIDS, vol.16, pp.2337-2340, 2002.
URL : https://hal.archives-ouvertes.fr/pasteur-00166869

D. A. Eckstein, M. L. Penn, Y. D. Korin, D. D. Scripture-adams, J. A. Zack et al., HIV-1 actively replicates in naive CD4(+) T cells residing within human lymphoid tissues, Immunity, vol.15, pp.671-682, 2001.

T. Chu, L. M. Carruth, and D. Finzi, Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection, Nature, vol.387, pp.183-188, 1997.

J. D. Siliciano, J. Kajdas, D. Finzi, T. C. Quinn, K. Chadwick et al., Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells, Nat. Med, vol.9, pp.727-728, 2003.

D. Finzi, J. Balnkson, and J. Siliciano, Latent infection of CD4+T cells provides a mechanism for life long persistence of HIV-1, even in patients on effective combination therapy, Nat. Med, vol.5, pp.512-517, 1999.

J. Siliciano and R. F. Siliciano, Latency and viral persistence in HIV-1 infection, J. Clin. Invest, vol.106, pp.823-825, 2000.

J. Blankson, D. Persaud, and R. F. Siliciano, The challenge of viral reservoirs in HIV-1 infection, Annu. Rev. Med, vol.53, pp.557-593, 2002.

K. C. Williams and W. F. Hickey, Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS, Annu. Rev. Neurosci, vol.25, pp.537-562, 2002.

G. A. Garden, Microglia in human immunodeficiency virus-associated neurodegeneration, Glia, vol.40, pp.240-251, 2002.

P. D. Smith, G. Meng, J. F. Salazar-gonzalez, and G. M. Shaw, Macrophage HIV-1 infection and the gastrointestinal tract reservoir, J. Leukoc. Biol, vol.74, pp.642-649, 2003.

R. Shen, G. Meng, C. Ochsenbauer, P. R. Clapham, J. Grams et al., Stromal down-regulation of macrophage CD4/CCR5 expression and NF-?B activation mediates HIV-1 non-permissiveness in intestinal macrophages, PLoS Pathog, 2011.

W. Abbas, M. Tariq, M. Iqbal, A. Kumar, and G. Herbein, Eradication of HIV-1 from the Macrophage Reservoir: An Uncertain Goal? Viruses, vol.7, pp.1578-1598, 2015.

A. Alexaki, Y. Liu, and B. Wigdahl, Cellular reservoirs of HIV-1 and their role in viral persistence, Curr. HIV Res, vol.6, pp.388-400, 2008.

N. K. Saksena, B. Wang, L. Zhou, M. Soedjono, Y. S. Ho et al., HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV/AIDS 2010, vol.2, pp.103-122

A. T. Haase, K. Henry, and M. Zupancic, Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, vol.274, pp.985-989, 1996.

H. Crespo, L. Bertolotti, M. Juganaru, I. Glaria, D. De-andres et al., Small ruminant macrophage polarization may play a pivotal role on lentiviral infection, Vet. Res, 2013.

L. R. Gray, M. Roche, J. K. Flynn, S. L. Wesselingh, P. R. Gorry et al., Is the central nervous system a reservoir of HIV-1?, Curr. Opin. HIV AIDS, vol.9, pp.552-558, 2014.

M. Churchill and A. Nath, Where does HIV hide? A focus on the central nervous system, Curr. Opin. HIV AIDS, vol.8, pp.165-169, 2013.

D. W. Williams, M. Veenstra, P. J. Gaskill, S. Morgello, T. M. Calderon et al., Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders, Curr. HIV Res, vol.12, pp.85-96, 2014.

D. Lawrence and E. Major, HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microb. Infect, vol.4, pp.301-308, 2002.

S. Hong and W. A. Banks, Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications, Brain. Behav. Immun, vol.45, pp.1-12, 2015.

J. Benavides, C. Garcia-pariente, M. Fuertes, M. C. Ferreras, J. F. Garcia-marin et al., Maedi-visna: the meningoencephalitis in naturally occurring cases, J. Comp. Pathol, vol.140, pp.1-11, 2009.

J. Benavides, M. Fuertes, C. Garcia-pariente, M. C. Ferreras, J. F. Garcia-marin et al., Natural cases of visna in sheep with myelitis as the sole lesion in the central nervous system, J. Comp. Pathol, vol.134, pp.219-230, 2006.

S. A. Yukl, S. Gianella, E. Sinclair, L. Epling, Q. Li et al., Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy, J. Infect. Dis, vol.202, pp.1553-1561, 2010.

N. Cerf-bensussan and D. Guy-grand, Intestinal intraepithelial lymphocytes. Gastroenterol. Clin. North. Am, vol.20, pp.549-576, 1991.

T. Schneider, H. U. Jahn, W. Schmidt, E. O. Riecken, M. Zeitz et al., Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Berlin diarrhea/wasting syndrome study group, Gut, vol.37, pp.524-529, 1995.

M. Olech, P. Kubis, C. Lipecka, A. Junkuszew, T. M. Gruszecki et al., Presence of specific antibodies and proviral DNA of small ruminant lentiviruses in lambs in their first weeks of life, Bull. Vet. Inst. Pulawy, vol.58, pp.507-511, 2014.

P. Grossi, C. Giudice, I. Bertoletti, G. Cioccarelli, E. Brocchi et al., Immunohistochemical detection of the p27 capsid protein of caprine arthritis-encephalitis virus (CAEV) in bone-marrow cells of seropositive goats, J. Comp. Pathol, vol.133, pp.197-200, 2005.

A. P. Ravazzolo, C. Nenci, H. Vogt, A. Waldvogel, G. Obexer-ruff et al., Viral load, organ distribution, histopathological lesions, and cytokine mRNA expression in goats infected with a molecular clone of the caprine arthritis encephalitis virus, Virology, vol.350, pp.116-127, 2006.

S. Lambert-niclot, R. Tubiana, C. Beaudoux, G. Lefebvre, F. Caby et al., Detection of HIV-1 RNA in seminal plasma samples from treated patients with undetectable HIV-1 RNA, AIDS, vol.26, pp.971-975, 2012.

A. G. Marcelin, R. Tubiana, S. Lambert-niclot, G. Lefebvre, S. Dominguez et al., Detection of HIV-1 RNA in seminal plasma samples from treated patients with undetectable HIV-1 RNA in blood plasma, AIDS, vol.22, pp.1677-1679, 2008.

S. Taylor, R. Van-heeswijk, and R. Hoetelmans, Concentration of nevirapine, lamivudine and stavudine in semen of HIV-1 infected men, AIDS, pp.1979-1984, 2000.

P. M. Sheth, C. Kovacs, K. S. Kemal, R. B. Jones, J. M. Raboud et al., Persistent HIV RNA shedding in semen despite effective antiretroviral therapy, AIDS, vol.23, pp.2050-2054, 2009.

L. Tortorec, A. Dejucq-rainsford, and N. , HIV infection of the male genital tract-consequences for sexual transmission and reproduction, Int. J. Androl, vol.33, pp.98-108, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00516571

N. Dejucq-rainsford and B. Jegou, Viruses in semen and male genital tissues-consequences for the reproductive system and therapeutic perspectives, Curr. Pharm. Des, vol.10, pp.557-575, 2004.

A. S. Lasheeb, J. King, J. K. Ball, R. Curran, C. L. Barratt et al., Semen characteristics in HIV-1 positive men and the effect of semen washing, Genitourin. Med, vol.73, pp.303-305, 1997.

J. Pudney and D. Anderson, Orchitis and human immunodeficiency virus type 1 infected cells in reproductive tissues from men with the acquired immune deficiency syndrome, Am. J. Pathol, vol.139, pp.149-160, 1991.

B. Muciaccia, A. Filippini, E. Ziparo, F. Colelli, C. D. Baroni et al., Testicular germ cells of HIV-seropositive asymptomatic men are infected by the virus, J. Reprod. Immunol, vol.41, pp.81-93, 1998.

B. Muciaccia, S. Corallini, E. Vicini, F. Padula, L. Gandini et al., HIV-1 viral DNA is present in ejaculated abnormal spermatozoa of seropositive subjects, Hum. Reprod, vol.22, pp.2868-2878, 2007.

S. R. Galvin and M. S. Cohen, Genital tract reservoirs, Curr. Opin. HIV AIDS, vol.1, pp.162-166, 2006.

M. E. Bull, G. H. Learn, S. Mcelhone, J. Hitti, D. Lockhart et al., Monotypic human immunodeficiency virus type 1 genotypes across the uterine cervix and in blood suggest proliferation of cells with provirus, J. Virol, vol.83, pp.6020-6028, 2009.

A. Si-mohamed, M. D. Kazatchkine, I. Heard, C. Goujon, T. Prazuck et al., Selection of drug-resistant variants in the female genital tract of human immunodeficiency virus type 1-infected women receiving antiretroviral therapy, J. Infect. Dis, vol.182, pp.112-122, 2000.

A. Ahmad, M. Z. Dubreil, L. Chatagnon, G. Khayli, Z. Theret et al., Goat uterine epithelial cells are susceptible to infection with Caprine Arthritis Encephalitis Virus (CAEV) in vivo, Vet. Res, 2012.

A. Lamara, F. Fieni, L. Mselli-lakhal, D. Tainturier, and Y. Chebloune, Efficient replication of caprine arthritis-encephalitis virus in goat granulosa cells, Virus Res, vol.79, pp.165-172, 2001.

A. Lamara, F. Fieni, L. Mselli-lakhal, D. Tainturier, and Y. Chebloune, Epithelial cells from goat oviduct are highly permissive for productive infection with caprine arthritis-encephalitis virus (CAEV), Virus Res, vol.87, pp.69-77, 2002.

A. Ahmad, M. Z. Fieni, F. Guiguen, F. Larrat, M. Pellerin et al., Cultured early goat embryos and cells are susceptible to infection with caprine encephalitis virus, Virology, vol.353, pp.307-315, 2006.

A. Lamara, F. Fieni, G. Chatagnon, M. Larrat, L. Dubreil et al., Caprine arthritis encephalitis virus (CAEV) replicates productively in cultured epididymal cells from goats, Comp. Immunol. Microbiol. Infect. Dis, vol.36, pp.397-404, 2013.

A. Ahmad, M. Z. Fieni, F. Pellerin, J. L. Guiguen, F. Cherel et al., Detection of viral genomes of caprine arthritis-encephalitis virus (CAEV) in semen and in genital tract tissues of male goat, Theriogenology, vol.69, pp.473-480, 2008.

A. P. Turchetti, J. J. Paniago, L. F. Da-costa, J. C. Da-cruz, G. F. Braz et al., Distribution of caprine arthritis encephalitis virus provirus, RNA, and antigen in the reproductive tract of one naturally and seven experimentally infected bucks, Theriogenology, vol.80, pp.933-939, 2013.

F. Fieni, J. L. Pellerin, C. Roux, N. Poulin, G. Baril et al., Can caprine arthritis encephalitis virus (CAEV) be transmitted by in vitro fertilization with experimentally infected sperm?, Theriogenology, vol.77, pp.644-651, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01129585

A. Alimohammadi, R. Coker, R. Miller, D. Mitchell, J. Williamson et al., Genotypic variants of HIV-1 from peripheral blood and lungs of AIDS patients, AIDS, vol.11, pp.831-832, 1997.

N. White, D. Israel-biet, R. Coker, D. Mitchell, J. Weber et al., Different resistance mutations can be detected simultaneously in the blood and the lung of HIV-1 infected individuals on antiretroviral therapy, J. Med. Virol, pp.352-357, 2004.

S. K. Cribbs, J. Lennox, A. M. Caliendo, L. A. Brown, and D. M. Guidot, Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages, AIDS Res. Hum. Retroviruses, vol.31, pp.64-70, 2015.

S. Almodovar, The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS, Viral Immunol, vol.27, pp.186-199, 2014.

C. T. Costiniuk and M. A. Jenabian, The lungs as anatomical reservoirs of HIV infection, Rev. Med. Virol, vol.24, pp.35-54, 2014.

L. Bruggeman, M. Ross, and N. Tanji, Renal epithelium is a previously unrecognized site of HIV-1 infection, J. Am. Soc. Nephrol, pp.2079-2087, 2000.

D. Marras, L. Bruggeman, and F. Gao, Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy, Nat. Med, pp.522-526, 2002.

M. Blasi, B. Balakumaran, P. Chen, D. R. Negri, A. Cara et al., Renal epithelial cells produce and spread HIV-1 via T-cell contact, AIDS, vol.28, pp.2345-2353, 2014.
DOI : 10.1097/qad.0000000000000398

URL : http://europepmc.org/articles/pmc4721518?pdf=render

G. Canaud, N. Dejucq-rainsford, V. Avettand-fenoel, J. P. Viard, D. Anglicheau et al., The kidney as a reservoir for HIV-1 after renal transplantation, J. Am. Soc. Nephrol, vol.25, pp.407-419, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01121764

P. G. Stock, B. Barin, H. Hatano, R. L. Rogers, M. E. Roland et al., Reduction of HIV persistence following transplantation in HIV-infected kidney transplant recipients, Am. J. Transplant, vol.14, pp.1136-1141, 2014.

T. N. Mcneilly, A. Baker, J. K. Brown, D. Collie, G. Maclachlan et al., Role of alveolar macrophages in respiratory transmission of visna/maedi virus, J. Virol, vol.82, pp.1526-1536, 2008.

T. N. Mcneilly, P. Tennant, L. Lujan, M. Perez, and G. D. Harkiss, Differential infection efficiencies of peripheral lung and tracheal tissues in sheep infected with Visna/maedi virus via the respiratory tract, J. Gen. Virol, vol.88, pp.670-679, 2007.

Z. Zang, N. Watt, J. Hopkins, G. Harkiss, and C. Woodall, Quantitative analysis of Maedi Visna virus DNA load in peripheral blood monocytes and alveolar macrophages, J. Virol. Methods, pp.13-20, 2000.

N. J. Watt, N. Macintyre, D. Collie, D. Sargan, and I. Mcconnell, Phenotypic analysis of lymphocyte populations in the lungs and regional lymphoid tissue of sheep naturally infected with maedi visna virus, Clin. Exp. Immunol, vol.90, pp.204-208, 1992.

K. M. Patton, R. J. Bildfell, M. L. Anderson, C. K. Cebra, and B. A. Valentine, Fatal Caprine arthritis encephalitis virus-like infection in 4 Rocky Mountain goats (Oreamnos americanus), J. Vet. Diagn. Invest, vol.24, pp.392-396, 2012.
DOI : 10.1177/1040638711435503

URL : https://journals.sagepub.com/doi/pdf/10.1177/1040638711435503

G. Arrode-brusé-s, R. Hegde, Y. Jin, Z. Liu, O. Narayan et al., Immunogenicity of a lentiviral-based DNA vaccine driven by the 5?LTR of the naturally attenuated caprine arthritis encephalitis virus (CAEV) in mice and macaques, vol.30, pp.2956-2962, 2012.

Y. Chebloune, M. Moussa, G. Arrode-bruses, and J. Gagnon, Cowpox helped against smallpox; will the goat lentivirus (Caprine Arthritis Encephalitis Virus) help against HIV-1?, AIDS Res. Hum. Retroviruses, 2015.
DOI : 10.1089/aid.2015.0010

URL : http://europepmc.org/articles/pmc4458750?pdf=render