. Bibliographie-[ackland, Simple n-body potentials for the noble metals and nickel, Philosophical Magazine A, vol.56, issue.6, pp.735-756, 1987.

. Agrawal, Elasticity size effects in zno nanowires-a combined experimental-computational approach, Nano letters, vol.8, issue.11, pp.3668-3674, 2008.

. Aitken, The effect of size, orientation and alloying on the deformation of az31 nanopillars, Journal of the Mechanics and Physics of Solids, vol.2, issue.0, pp.208-223, 2015.

[. Amodeo, Atomistic simulations of compression tests on ni3al nanocubes, Materials Research Letters, vol.2, issue.3, pp.140-145, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01557260

[. Amodeo, Dislocation reactions, plastic anisotropy and forest strengthening in mgo at high temperature, Mechanics of Materials, vol.2, pp.62-73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01557259

[. Angelo, Trapping of hydrogen to lattice defects in nickel. Modelling and Simulation in, Materials Science and Engineering, vol.1, issue.3, p.289, 1995.

[. Asadi, Effect of vacancy defects on generalized stacking fault energy of fcc metals, Journal of Physics : Condensed Matter, vol.2, issue.0, p.115404, 2014.

R. J. Asaro and S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Materialia, vol.53, issue.12, pp.3369-3382, 2005.

A. Aslanides and V. Pontikis, Atomistic calculation of the interaction between an edge dislocation and a free surface, Philosophical magazine letters, vol.78, issue.5, pp.377-383, 1998.

. Asthana, In situ observation of size-scale effects on the mechanical properties of zno nanowires, Nanotechnology, vol.2, issue.0, p.265712, 2011.

[. Barber, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software (TOMS, vol.1, issue.9, pp.469-483, 1996.

. Baskes, Trapping of hydrogen to lattice defects in nickel. Modelling and Simulation in Materials Science and Engineering, vol.1, p.651, 1997.

B. H. Salah, Atomistic simulation of face-centered cubic metallic nanospheres under uniaxial compression, 8th Multiscale Materials Modeling (MMM) international conference, pp.9-14, 2016.

B. H. Salah, Influence of surface atomic structure on the mechanical response of aluminum nanospheres under compression, Computational Materials Science, vol.2, issue.0, pp.273-278, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01637721

B. H. Salah, Molecular dynamics simulation of face-centered cubic metallic nanospheres under uniaxial compression, International Conference on Plasticity, pp.3-9, 2017.

B. H. Salah, Molecular dynamics simulation of face-centered cubic metallic nanospheres under uniaxial compression, TMS 2017 146th Annual Meeting and Exhibition, vol.2, 2017.

. Bernal, Effect of growth orientation and diameter on the elasticity of gan nanowires. a combined in situ tem and atomistic modeling investigation, Nano letters, vol.11, issue.2, pp.548-555, 2010.

. Bernstein, N. Tadmor-;-bernstein, and E. Et-tadmor, Tight-binding calculations of stacking energies and twinnability in fcc metals, Physical Review B, vol.69, issue.9, p.94116, 2004.

[. Bian, Atomistic deformation mechanisms in twinned copper nanospheres, Nanoscale research letters, vol.2, issue.0, pp.1-7, 2014.

. Bian, J. Wang-;-bian, and G. Wang, Atomistic deformation mechanisms in copper nanoparticles, Journal of Computational and Theoretical Nanoscience, vol.10, issue.9, pp.2299-2303, 2013.

F. Birch, The effect of pressure upon the elastic parameters of isotropic solids, according to murnaghan's theory of finite strain, Journal of Applied Physics, vol.9, issue.4, pp.279-288, 1938.

S. Brenner, Growth and properties of" whiskers, Science, vol.1, issue.2, pp.569-575, 1958.

S. S. Brenner, Tensile strength of whiskers, Journal of Applied Physics, vol.27, issue.12, pp.1484-1491, 1956.

[. Brochard, Elastic limit for surface step dislocation nucleation in face-centered cubic metals : Temperature and step height dependence, Acta Materialia, vol.2, issue.0, pp.4182-4190, 2010.

G. Burek, M. J. Burek, and J. R. Greer, Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating, Nano letters, vol.10, issue.1, pp.69-76, 2009.

[. Chen, Nanocrystalline iron at high pressure, Journal of Applied Physics, vol.89, issue.9, pp.4794-4796, 2001.

[. Chen, Deformation twinning in nanocrystalline aluminum, Science, vol.300, issue.5623, pp.1275-1277, 2003.

[. Cherian, Size dependence of the bulk modulus of semiconductor nanocrystals from firstprinciples calculations, Physical Review B, vol.2, issue.0, p.235321, 2010.

[. Clark, Size dependence of the pressure-induced ? to ? structural phase transition in iron oxide nanocrystals, Nanotechnology, vol.16, issue.12, p.2813, 2005.

[. Corcoran, Anomalous plastic deformation at surfaces : nanoindentation of gold single crystals, Physical Review B, vol.1, issue.9, p.16057, 1997.

T. H. Courtney, Mechanical Behavior of Materials : Second Edition, 2005.

[. Cuenot, Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Physical Review B, vol.69, issue.16, p.165410, 2004.

[. Cui, Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in fcc micropillars, International Journal of Plasticity, vol.2, issue.0, pp.279-292, 2014.

M. S. Daw and M. I. Baskes, Embedded-atom method : Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, vol.29, issue.12, p.6443, 1984.

. Fuente, Dislocation emission around nanoindentations on a(001)fccmetalsurfacestudiedbyscanningtunnelingmicroscopyandatomisticsimulations, Physical review letters, vol.88, issue.3, p.36101, 2002.

G. Dehm, Miniaturized single-crystalline fcc metals deformed in tension : New insights in size-dependent plasticity, Progress in Materials Science, vol.54, issue.6, pp.664-688, 2009.

[. Deneen, In situ deformation of silicon nanospheres, Journal of materials science, vol.41, issue.14, pp.4477-4483, 2006.

[. Nowak, Fracturing a nanoparticle, Philosophical Magazine, vol.87, issue.1, pp.29-37, 2007.

[. Diao, Surface-stress-induced phase transformation in metal nanowires, Nature materials, vol.2, issue.0, pp.656-660, 2003.

[. Dimiduk, Size-affected singleslip behavior of pure nickel microcrystals, Acta Materialia, vol.2, issue.0, pp.4065-4077, 2005.

D. ;. Dou, R. Dou, and B. Derby, A universal scaling law for the strength of metal micropillars and nanowires, Scripta Materialia, vol.61, issue.5, pp.524-527, 2009.

[. Du, Construction and application of multielement eam potential (ni-al-re) in ?/? ni-based single crystal superalloys, Modelling and Simulation in Materials Science and Engineering, vol.21, issue.1, p.15007, 2012.

J. A. El-awady-;-el-awady and B. Escaig, Unravelling the physics of size-dependent dislocationmediated plasticity, L'activation thermique des déviations sous faibles contraintes dans les structures hc et cc par. physica status solidi (b), vol.6, pp.463-474, 1968.

B. Escaig, Sur le glissement dévié des dislocations dans la structure cubiquè a faces centrées, Journal de Physique, vol.29, issue.2-3, pp.225-239, 1968.

Y. Feruz and D. Mordehai, Towards a universal sizedependent strength of face-centered cubic nanoparticles, Acta Materialia, vol.103, pp.433-441, 2016.

[. Figueroa, Mechanical properties of irradiated nanowires-a molecular dynamics study, Journal of Nuclear Materials, vol.2, issue.0, pp.677-682, 2015.

. Foiles, Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys, Physical Review B, vol.33, issue.12, pp.0-1, 1950.

[. Frick, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars, Materials Science and Engineering : A, vol.489, issue.1, pp.319-329, 2008.

[. Frøseth, The influence of twins on the mechanical properties of nc-al, Acta Materialia, vol.52, issue.8, pp.2259-2268, 2004.

. Bibliographie-[gerberich, A boundary constraint energy balance criterion for small volume deformation, Acta materialia, vol.53, issue.8, pp.2215-2229, 2005.

[. Gerberich, Superhard silicon nanospheres, Journal of the Mechanics and Physics of Solids, vol.51, issue.6, pp.979-992, 2003.

[. Gilbert, Compressibility of zinc sulfide nanoparticles, Physical Review B, vol.74, issue.11, p.115405, 2006.

[. Greer-et-de-hosson-;-greer, J. R. Et-de-hosson, and J. T. , Plasticity in smallsized metallic systems : Intrinsic versus extrinsic size effect, Progress in Materials Science, vol.56, issue.6, pp.654-724, 2011.

[. Gu, Unexpected high stiffness of ag and au nanoparticles, Physical review letters, vol.100, issue.4, p.45502, 2008.

N. ;. Gu, R. Gu, and A. Et-ngan, Size effect on the deformation behavior of duralumin micropillars, Scripta Materialia, vol.68, issue.11, pp.861-864, 2013.

[. Guo, Mechanical properties of nanoparticles : basics and applications, Journal of Physics D : Applied Physics, vol.2, issue.0, p.13001, 2014.

E. Hall, The deformation and ageing of mild steel : Iii discussion of results, Proceedings of the Physical Society. Section B, vol.64, issue.9, p.747, 1951.

P. Hirel-;-hirel, Etude par simulationsàsimulationsà l'´ echelle atomique de la formation de boucles de dislocationàdislocationà partir d'irrégularités de surface d'un métal contraint, 2008.

[. Hirel, Effects of temperature and surface step on the incipient plasticity in strained aluminium studied by atomistic simulations, Scripta Materialia, vol.57, issue.12, pp.1141-1144, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00175884

[. Hirel, , 2008.

, Determination of activation parameters for dislocation formation from a surface in fcc metals by atomistic simulations, Physical Review B, vol.78, issue.6, p.64109

J. P. Hirth, J. Et-lothe, and W. G. Hoover, Canonical dynamics : equilibrium phase-space distributions, Physical review A, vol.31, issue.3, p.1695, 1982.

W. F. Hosford, The mechanics of crystals and textured polycrystals, vol.4, 1993.

. Issa, In situ investigation of mgo nanocube deformation at room temperature, Acta Materialia, vol.2, issue.0, pp.295-304, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137607

J. , G. Jennings, A. Greer, and J. , Tensile deformation of fib-less singlecrystalline copper pillars, Philos. Mag, vol.91, pp.115-119, 2010.

J. , G. Jennings, A. T. Greer, and J. R. , Heterogeneous dislocation nucleation from surfaces and interfaces as governing plasticity mechanism in nanoscale metals, Journal of Materials Research, vol.26, issue.22, pp.2803-2814, 2011.

J. , G. Jennings, A. T. Greer, and J. R. , Tensile deformation of electroplated copper nanopillars, Philosophical Magazine, pp.1108-1120, 2011.

[. Jennings, Size effects in single crystalline cu nano-pillars fabricated without the use of fib, Phys. Rev. Lett, vol.2, issue.0, p.135503, 2010.

[. Jiang, Enhanced bulk modulus and reduced transition pressure in ?-fe2o3 nanocrystals, Europhysics Letters), vol.1, issue.9, p.620, 1998.

[. Jing, Surface effects on elastic properties of silver nanowires : contact atomic-force microscopy, Physical Review B, vol.73, issue.23, p.235409, 2006.

K. Johnson-;-johnson, J. Kang, and H. Hwang, Mechanical deformation study of copper nanowire using atomistic simulation, Nanotechnology, vol.12, issue.3, p.295, 1974.

[. Kiener, On the importance of sample compliance in uniaxial microtesting, Scripta Materialia, vol.2, issue.0, pp.148-151, 2009.

. Bibliographie-[kiener, A further step towards an understanding of size-dependent crystal plasticity : In situ tension experiments of miniaturized single-crystal copper samples, Acta Materialia, vol.56, issue.3, pp.580-592, 2008.

J. Greer-;-kim and J. R. Greer, Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale, Acta Materialia, vol.57, issue.17, pp.5245-5253, 2009.

M. Kiritani, Story of stacking fault tetrahedra, Materials chemistry and physics, vol.50, issue.2, pp.133-138, 1997.

[. Landefeld, Compression experiments on ? 0-nanoparticles. ISRN Nanomaterials, 2012.

[. Lee, Reversible cyclic deformation mechanism of gold nanowires by twinningdetwinning transition evidenced from in situ tem, Nature communications, vol.5, issue.15, pp.4404-4415, 2009.

[. Li, Twinnability predication for fcc metals, Journal of Materials Science & Technology, vol.2, issue.0, pp.97-100, 2011.

C. Li and G. Xu, Critical conditions for dislocation nucleation at surface steps, Philosophical Magazine, vol.86, issue.20, pp.2957-2970, 2006.

. Li, C. Xu-;-li, and G. Xu, Geometrical effect on dislocation nucleation at crystal surface nanostructures. Engineering analysis with boundary elements, vol.31, pp.443-450, 2007.

. Li, X. Li, and H. Gao, Atomistic modelling of deformation and failure mechanisms in nanostructured materials, National Science Review, vol.4, p.9, 2014.

[. Li, Ultrathin single-crystallinesilicon cantilever resonators : fabrication technology and significant specimen size effect on young's modulus, Applied Physics Letters, vol.83, issue.15, pp.3081-3083, 2003.

. Liang, Size-dependent elasticity of nanowires : nonlinear effects, Physical Review B, vol.2, issue.0, p.241403, 2005.

[. Liao, Formation mechanism of wide stacking faults in nanocrystalline al, 2004.

, Applied Physics Letters, vol.84, issue.18, pp.3564-3566

[. Liao, Deformation twins in nanocrystalline al, Applied physics letters, vol.83, issue.24, pp.5062-5064, 2003.

[. Liao, Deformation mechanism in nanocrystalline al : Partial dislocation slip, Applied physics letters, vol.83, issue.4, pp.632-634, 2003.

. Liu, . Shen, Q. Liu, and S. Shen, On the large-strain plasticity of silicon nanowires : Effects of axial orientation and surface, International Journal of Plasticity, vol.38, pp.146-158, 2012.

[. Liu, Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Modelling and Simulation in, Materials Science and Engineering, vol.12, issue.4, p.665, 2004.

[. Lu, Size-dependent and orientationdependent young's modulus of silicon nanowires, International Conference on Experimental Mechnics 2008 and Seventh Asian Conference on Experimental Mechanics, 2008.

[. Luan, B. Robbins-;-luan, and M. O. Robbins, The breakdown of continuum models for mechanical contacts, Nature, vol.435, issue.7044, pp.929-932, 2005.

[. Maaß, Ultrahigh strength of dislocation-free ni3al nanocubes, Small, vol.8, issue.12, pp.1869-1875, 2012.

[. Michler, , 2007.

, Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature, Applied physics letters, vol.90, issue.4, p.43123

. Shenoy, R. E. Miller, and V. B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, vol.11, issue.3, p.139, 2000.

[. Mishin, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Physical Review B, vol.1, issue.5, p.3393, 1999.

[. Mishin, Structural stability and lattice defects in copper : Ab initio, tight-binding, and embedded-atom calculations, Physical Review B, vol.63, issue.22, p.224106, 2001.

. Misra, A. Misra, and L. Thilly, Structural metals at extremes, MRS bulletin, vol.35, issue.12, pp.965-977, 2010.

[. Mook, Compressive stress effects on nanoparticle modulus and fracture, Physical Review B, vol.75, issue.21, p.214112, 2007.

[. Mordehai, Nanoindentation size effect in single-crystal nanoparticles and thin films : A comparative experimental and simulation study, Acta Materialia, vol.59, issue.6, pp.2309-2321, 2011.

[. Mordehai, Size effect in compression of single-crystal gold microparticles, Acta Materialia, vol.59, issue.13, pp.5202-5215, 2011.

F. Murnaghan-;-murnaghan, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences, vol.30, issue.9, pp.244-247, 1944.

F. R. Nabarro, Theory of crystal dislocations, 1967.

N. , Diameter-dependent electromechanical properties of gan nanowires, Nano letters, vol.6, issue.2, pp.153-158, 2006.

N. ;. Ng, K. Ng, and A. Et-ngan, Breakdown of schmid's law in micropillars, Scripta Materialia, vol.59, issue.7, pp.796-799, 2008.

N. ;. Ng, K. Ng, and A. Et-ngan, Stochastic nature of plasticity of aluminum micro-pillars, Acta Materialia, vol.56, issue.8, pp.1712-1720, 2008.

. Nowak, , 2009.

, situ fracture of silicon nanoparticles. Microscopy and Microanalysis, vol.15, p.722

. Nowak, Small size strength dependence on dislocation nucleation, Scripta Materialia, vol.2, issue.0, pp.819-822, 2010.

[. Oh, In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal, Nature materials, vol.8, issue.2, p.95, 2009.

[. Park, Mechanics of crystalline nanowires, MRS bulletin, vol.2, issue.0, pp.178-183, 2009.

N. Petch, The cleavage strengh of polycrystals, J. of the Iron and Steel Inst, vol.174, pp.25-28, 1953.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, vol.117, issue.1, pp.1-19, 1995.

G. Purja-pun and Y. Et-mishin, Development of an interatomic potential for the ni-al system, Philosophical Magazine, vol.89, pp.3245-3267, 2009.

[. Qi, Different mechanical properties of the pristine and hydrogen passivated zno nanowires, Computational Materials Science,4, vol.6, issue.2, pp.303-306, 2009.

[. Rekhi, Experimental and theoretical investigations on the compressibility of nanocrystalline nickel, Journal of materials science, vol.36, issue.19, pp.4719-4721, 2001.

[. Sadeghian, On the size-dependent elasticity of silicon nanocantilevers : impact of defects, Journal of Physics D : Applied Physics, vol.2, issue.0, p.72001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594970

[. Sadeghian, Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability, Applied Physics Letters, vol.94, issue.22, p.221903, 2009.

[. Sadeghian, Effects of size and defects on the elasticity of silicon nanocantilevers, Journal of Micromechanics and Microengineering, vol.2, issue.0, p.64012, 2010.

. Sander and D. Sander, Surface stress : implications and measurements. Current Opinion in Solid State and Materials Science, vol.7, pp.51-57, 2003.

. Segall, Corroboration of a multiscale approach with all atom calculations in analysis of dislocation nucleation from surface steps, Philosophical Magazine, vol.86, issue.32, pp.5083-5101, 2006.

[. Senger, Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading, Scripta Materialia, vol.58, issue.7, pp.587-590, 2008.

K. Shreiber and D. Mordehai, Dislocation-nucleationcontrolled deformation of ni3al nanocubes in molecular dynamics simulations. Modelling and Simulation in, Materials Science and Engineering, vol.23, issue.8, p.85004, 2015.

[. Stan, Diameterdependent radial and tangential elastic moduli of zno nanowires, Nano Letters, vol.7, issue.12, pp.3691-3697, 2007.

[. Stan, Contact-resonance atomic force microscopy for nanoscale elastic property measurements : Spectroscopy and imaging, Ultramicroscopy, vol.109, issue.8, pp.929-936, 2009.

[. Stauffer, Strain-hardening in submicron silicon pillars and spheres, Acta Materialia, vol.60, issue.6, pp.2471-2478, 2012.

A. Stukowski, Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Modelling and Simulation in, Materials Science and Engineering, vol.18, issue.1, p.15012, 2010.

A. Stukowski and K. Et-albe, Dislocation detection algorithm for atomistic simulations, Modelling and Simulation in Materials Science and Engineering, vol.18, issue.2, p.25016, 2010.

A. Stukowski and K. Et-albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in, Materials Science and Engineering, vol.18, issue.8, p.35012, 2010.

[. Stukowski, Automated identification and indexing of dislocations in crystal interfaces, Modelling and Simulation in Materials Science and Engineering, vol.20, issue.8, p.85007, 2012.

[. Swope, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules : Application to small water clusters, The Journal of Chemical Physics, vol.76, issue.1, pp.637-649, 1982.

E. Tadmor-et-bernstein-;-tadmor and N. Bernstein, A first-principles measure for the twinnability of fcc metals, Journal of the Mechanics and Physics of Solids, vol.52, issue.11, pp.2507-2519, 2004.

H. ;. Tadmor, E. Tadmor, and S. Hai, A peierls criterion for the onset of deformation twinning at a crack tip, Journal of the Mechanics and Physics of Solids, vol.51, issue.5, pp.765-793, 2003.

[. Thilly, In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors : the case of indium antimonide, Philosophical Magazine, vol.92, pp.3315-3325, 2012.

[. Uchic, Sample dimensions influence strength and crystal plasticity, Science, vol.305, issue.5686, pp.986-989, 2004.

. Van-swygenhoven, Stacking fault energies and slip in nanocrystalline metals, Nature materials, vol.3, issue.6, pp.399-403, 2004.

. Van-swygenhoven, Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Materialia, vol.54, issue.7, pp.1975-1983, 2006.

. Vergeles, Adhesion of solids, Physical Review E, vol.1, issue.9, p.2626, 1997.

B. Verlet and L. , Computer"experiments"on classical fluids. i. thermodynamical properties of lennard-jones molecules, Physical review, vol.159, issue.1, p.98, 1967.

C. A. Volkert and E. T. Et-lilleodden, Size effects in the deformation of sub-micron au columns, Philosophical Magazine, vol.86, pp.5567-5579, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00513658

G. Z. Voyiadjis and M. Et-yaghoobi, Size and strain rate effects in metallic samples of confined volumes : Dislocation length distribution, Scripta Materialia, vol.130, pp.182-186, 2017.

[. Wagner, Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition, Journal of Physics : Condensed Matter, vol.2, issue.0, p.155302, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00975449

[. Wang, Compressive behavior of crystalline nanoparticles with atomic-scale surface steps, Materials Research Express, vol.2, issue.0, p.15006, 2015.

L. Wang, G. Wang, and X. Li, Size dependency of the elastic modulus of zno nanowires : Surface stress effect, Applied Physics Letters, vol.91, issue.23, p.231912, 2007.

L. Wang, G. Wang, and X. Li, Predicting young's modulus of nanowires from first-principles calculations on their surface and bulk materials, Journal of Applied Physics, vol.104, issue.11, p.113517, 2008.

[. Wang, Effect of native oxides on the elasticity of a silicon nano-scale beam, Solid State Communications, vol.145, issue.7, pp.351-354, 2008.

[. Wang, Wurtzite-totetragonal structure phase transformation and size effect in zno nanorods, Journal of Applied Physics, vol.2, issue.0, p.23512, 2010.

[. Weygand, Threedimensional dislocation dynamics simulation of the influence of sample size on the stressstrain behavior of fcc single-crystalline pillars, Materials Science and Engineering : A, vol.483, pp.188-190, 2008.

[. Wu, Mechanical properties of ultrahigh-strength gold nanowires, Nature materials, vol.2, issue.0, p.525, 2005.

[. Wu, New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals, Physical review letters, vol.100, issue.9, p.95701, 2008.

G. Wulff, Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen, Zeitschrift für Kristallographie-Crystalline Materials,3, vol.4, issue.16, pp.449-530, 1901.

[. Xu, Mechanical properties of zno nanowires under different loading modes, Nano Research, vol.2, issue.0, pp.271-280, 2010.

[. Xu, A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of al nanopillars, International Journal of Plasticity, vol.2, issue.0, pp.116-127, 2013.

W. Xu and L. P. Dávila, Size dependence of elastic mechanical properties of nanocrystalline aluminum, Materials Science and Engineering : A, vol.692, pp.90-94, 2017.

M. Yaghoobi and G. Z. Voyiadjis, Size effects in fcc crystals during the high rate compression test, Acta Materialia, vol.121, pp.190-201, 2016.

[. Yamakov, Deformation twinning in nanocrystalline al by molecular-dynamics simulation, Acta Materialia, vol.5, issue.0, pp.5005-5020, 2002.

[. Yamakov, Dislocation processes in the deformation of nanocrystalline aluminium by moleculardynamics simulation, Nature materials, vol.1, issue.1, pp.45-49, 2002.

Y. , Impact of atomic-scale surface morphology on the size dependent yield stress of gold nanoparticles, Journal of Physics D : Applied Physics, vol.2, issue.0, 2017.

[. Yu, Preparation and properties characterization of nanocrystalline al, Materials Engineering, vol.10, issue.3, pp.251-253, 2008.

. Bibliographie-[yu, Size-dependent mechanical properties of mg nanoparticles used for hydrogen storage, Applied Physics Letters, vol.2, issue.0, p.261903, 2015.

[. Zhang, Atomistic simulation of tensile deformation behavior of ?5t i l tg r a i nb, vol.2, p.5919, 2014.

[. Zheng, Phase boundary effects on the mechanical deformation of core/shell cu/ag nanoparticles, Journal of Materials Research, vol.24, issue.07, pp.2210-2214, 2009.

[. Zheng, Surface effects in various bending-based test methods for measuring the elastic property of nanowires, Nanotechnology, vol.2, issue.0, p.205702, 2010.

L. Huang-;-zhou and H. Huang, Are surfaces elastically softer or stiffer ?, Applied Physics Letters, vol.84, issue.11, pp.1940-1942, 2004.

[. Zhu, Mechanical properties of vapor-liquid-solid synthesized silicon nanowires, Nano letters, vol.9, issue.11, pp.3934-3939, 2009.

[. Zimmerman, Generalized stacking fault energies for embedded atom fcc metals. Modelling and Simulation in, Materials Science and Engineering, vol.8, issue.2, p.103, 2000.

L. Zuo and A. Et-ngan, Molecular dynamics study on compressive yield strength in ni3al micro-pillars, Philosophical magazine letters, vol.86, issue.6, pp.355-365, 2006.