N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, and L. L. Green,

P. A. Newman, Optimization with variable-fidelity models applied to wing design, 1999.

R. L. Alpert, Ceiling Jet Flows, pp.429-454, 2016.

I. Andrianakis, I. R. Vernon, N. Mccreesh, T. J. Mckinley, and J. E. ,

R. N. Oakley, M. Nsubuga, R. G. Goldstein, and . White, Bayesian history matching of complex infectious disease models using emulation : a tutorial and a case study on hiv in uganda, PLoS computational biology, vol.11, issue.1, p.1003968, 2015.

B. Ankenman, B. L. Nelson, and J. Staum, Stochastic kriging for simulation metamodeling, Operations Research, vol.58, issue.2, pp.371-382, 2010.

L. Arnold and S. Arnold, Multi-factorial analysis of the smoke layer height, SFPE Europe, vol.8, issue.4, 2017.

S. Au and J. L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Engineering Mechanics, vol.16, issue.4, pp.19-23, 2001.

Z. Siu-kui-au, S. Wang, and . Lo, Compartment fire risk analysis by advanced

, Monte Carlo simulation. Engineering Structures, vol.29, issue.9, pp.2381-2390, 2007.

D. Azzimonti, J. Bect, C. Chevalier, and D. Ginsbourger, Quantifying uncertainties on excursion sets under a Gaussian random field prior, SIAM/ASA Journal on Uncertainty Quantification, vol.4, issue.1, pp.850-874, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01103644

D. Azzimonti, D. Ginsbourger, C. Chevalier, J. Bect, . Et-yann et al., Adaptive design of experiments for conservative estimation of excursion sets, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01379642

, SIAM Conference on Uncertainty Quantification, 2016.

J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Et et al., Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, vol.22, pp.773-793, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00689580

J. Bect, F. Bachoc, and D. Ginsbourger, A supermartingale approach to Gaussian process based sequential design of experiments, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01351088

R. Benassi, J. Bect, E. Et, and . Vazquez, Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion, Carlos A. Coello Coello, éditeur, Learning and Intelligent Optimization, pp.176-190, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00607816

A. Boukouvalas, Emulation of random output simulators, 2010.

A. Boukouvalas and D. Cornford, Learning heteroscedastic Gaussian processes for complex datasets, Aston University, 2009.

C. Brooks, A. I. Forrester, A. J. Keane, and E. S. Shahpar, Multi-fidelity design optimisation of a transonic compressor rotor, 9 th European Conf. Turbomachinery Fluid Dynamics and Thermodynamics, 2011.

P. Carlotti and D. Lamalle, Sensitivity to boundary conditions for simulation of fire plume in enclosure, Association Française de la Mécanique (AFM), éditeur, 21 emes congrés français de mécanique (CFM 2013), 2013.

R. Chen, Y. Hung, W. Wang, and S. Yen, Contour estimation via two fidelity computer simulators under limited resources, Computational Statistics, vol.28, issue.4, pp.1813-1834, 2013.

C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny et al., Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set, Technometrics, vol.56, issue.4, pp.455-465, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00641108

N. Chopin, A sequential particle filter method for static models, Biometrika, vol.89, issue.3, pp.539-552, 2002.
DOI : 10.1093/biomet/89.3.539

D. A. Cohn, Z. Ghahramani, and M. I. Jordan, Active learning with statistical models, Journal of artificial intelligence research, vol.4, pp.129-145, 1996.
DOI : 10.1613/jair.295

URL : https://jair.org/index.php/jair/article/download/10158/24082

N. Courrier, P. Boucard, and B. Soulier, The use of partially converged simulations in building surrogate models, Advances in Engineering Software, vol.67, pp.186-197, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01376461

D. Dennis, S. Cox, and . John, Sdo : A statistical method for global optimization, Multidisciplinary Design Optimization : State-of-the-Art, pp.315-329, 1997.

C. Currin, T. Mitchell, M. Morris, D. Et, and . Ylvisaker, Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments, Journal of the American Statistical Association, vol.86, issue.416, pp.953-963, 1991.

M. De-lozzo, Substitution de modèle et approche multifidélité en expérimentation numérique, Journal de la Société Française de Statistique, vol.156, issue.3, pp.21-55, 2015.

S. Demeyer, N. Fischer, D. Et, and . Marquis, Surrogate model based sequential sampling estimation of conformance probability for computationally expensive systems : application to fire safety science, Journal de la Société Française de Statistique, vol.158, issue.1, pp.111-138, 2017.

T. Desautels, A. Krause, J. W. Et, and . Burdick, Parallelizing explorationexploitation tradeoffs in Gaussian process bandit optimization, The Journal of Machine Learning Research, vol.15, issue.1, pp.4053-4103, 2014.

D. Drysdale, An introduction to fire dynamics, 2011.
DOI : 10.1002/9781119975465

URL : http://cds.cern.ch/record/1418850/files/9780470319031_TOC.pdf

V. Dubourg, B. Sudret, and J. Bourinet, Reliability-based design optimization using kriging surrogates and subset simulation, vol.44, pp.673-690, 2011.
DOI : 10.1007/s00158-011-0653-8

URL : https://hal.archives-ouvertes.fr/hal-00587311

D. Duffie and P. Glynn, Efficient Monte-Carlo simulation of security prices, The Annals of Applied Probability, vol.5, issue.4, pp.897-905, 1995.
DOI : 10.1214/aoap/1177004598

URL : https://doi.org/10.1214/aoap/1177004598

K. Elsayed, Optimization of the cyclone separator geometry for minimum pressure drop using co-kriging, Powder Technology, vol.269, pp.409-424, 2015.

T. M. Michael, K. C. Emmerich, B. Giannakoglou, and . Naujoks, Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels, IEEE Transactions on Evolutionary Computation, vol.10, issue.4, pp.421-439, 2006.

A. Aziz-ezzat, A. Pourhabib, and Y. Ding, Sequential design for functional calibration of computer models, Technometrics, pp.0-0, 2017.

K. Fang, K. J. Dennis, P. Lin, Y. Winker, and . Zhang, Uniform design : theory and application, Technometrics, vol.42, issue.3, pp.237-248, 2000.
DOI : 10.2307/1271079

F. Fleuret and D. Geman, Graded learning for object detection, Proceedings of the IEEE workshop on Statistical and Computational Theories of Vision, vol.2, pp.544-549, 1999.

I. J. Alexander, A. J. Forrester, and . Keane, Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, vol.45, issue.1-3, pp.50-79, 2009.

I. J. Alexander, A. Forrester, . Sóbester, A. J. Et, and . Keane, Multi-fidelity optimization via surrogate modelling, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.463, pp.3251-3269, 2007.

I. J. Alexander, A. Forrester, . Sóbester, A. J. Et, and . Keane, Engineering Design via Surrogate Modelling : A Practical Guide, 2008.

P. Frazier, W. Powell, S. Et, and . Dayanik, The knowledge-gradient policy for correlated normal beliefs, INFORMS Journal on Computing, vol.21, issue.4, pp.599-613, 2009.
DOI : 10.1287/ijoc.1080.0314

URL : http://www.castlelab.princeton.edu/Papers/FrazierPowell_CorrelatedKnowledgeGradient10232008.pdf

V. Vikram, . Garg, H. Roy, and . Stogner, Hierarchical latin hypercube sampling, Journal of the American Statistical Association, vol.112, issue.518, pp.673-682, 2017.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Dunson, Aki Vehtari, et Donald B. Rubin. Bayesian data analysis, 2013.

M. B. Giles, Multilevel Monte Carlo path simulation, Operations Research, vol.56, issue.3, pp.607-617, 2008.

D. Ginsbourger, J. Janusevskis, and . Et-rodolphe-le-riche, Dealing with asynchronicity in parallel Gaussian process based global optimization, 4 th International Conference of the ERCIM WG on computing & statistics (ERCIM'11), 2010.
URL : https://hal.archives-ouvertes.fr/hal-00507632

D. Ginsbourger, R. Le-riche, and L. Carraro, Kriging Is Well-Suited to Parallelize Optimization, pp.131-162, 2010.
URL : https://hal.archives-ouvertes.fr/emse-00436126

R. Girdziusas, R. Le-riche, F. Viale, and D. Ginsbourger, Parallel budgeted optimization applied to the design of an air duct, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00723427

C. María-giselle-fernández-godino, N. Park, R. T. Kim, and . Haftka, Review of multi-fidelity models, 2016.

T. Gneiting, Nonseparable, stationary covariance functions for space-time data, Journal of the American Statistical Association, vol.97, issue.458, pp.590-600, 2002.

T. Gneiting and A. E. Raftery, Strictly proper scoring rules, prediction, and estimation, Journal of the American Statistical Association, vol.102, issue.477, pp.359-378, 2007.

T. Gneiting, W. Kleiber, and M. Schlather, Matérn cross-covariance functions for multivariate random fields, Journal of the American Statistical Association, vol.105, issue.491, pp.1167-1177, 2010.

J. Goh, D. Bingham, J. P. Holloway, M. J. Grosskopf, and C. C. ,

E. Kuranz and . Rutter, Prediction and computer model calibration using outputs from multifidelity simulators, Technometrics, vol.55, issue.4, pp.501-512, 2013.

J. González, Z. Dai, P. Hennig, N. Et, and . Lawrence, Batch Bayesian optimization via local penalization, éditeurs, Proceedings of the 19 th International Conference on Artificial Intelligence and Statistics, vol.51, pp.648-657, 2016.

B. Robert, . Gramacy, K. H. Herbert, and . Lee, Bayesian treed Gaussian process models with an application to computer modeling, Journal of the American Statistical Association, vol.103, issue.483, pp.1119-1130, 2008.

E. Guillaume, Effets du feu sur les personnes

, G020284/C672X01/CEMATE/1, Laboratoire National de métrologie et d'Essais, 2006.

B. Guo, X. Chen, and M. Liu, Construction of latin hypercube designs with nested and sliced structures, Statistical Papers, pp.1-14, 2017.

H. Haario, E. Saksman, J. Et, and . Tamminen, An adaptive Metropolis algorithm, Bernoulli, vol.7, issue.2, pp.223-242, 2001.

M. Hage-hassan, G. Remy, G. Krebs, C. Marchand, and L. Dupré, et Professor Dr Guillaume Crevecoeur. Radial output space mapping for electromechanical systems design, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol.33, issue.3, pp.965-975, 2014.

X. He, Z. G. Peter, and . Qian, Nested orthogonal array-based latin hypercube designs

, Biometrika, vol.98, issue.3, pp.721-731, 2011.

R. Xu-he, E. Tuo, and . Wu, Optimization of multi-fidelity computer experiments via the EQIE criterion, Technometrics, vol.59, issue.1, pp.58-68, 2017.

S. Heinrich, Multilevel Monte Carlo methods, Svetozar Margenov, Jerzy Wa?niewski, et Plamen Yalamov, éditeurs, Large-Scale Scientific Computing : 3 rd International Conference, pp.58-67, 2001.

T. Michael, . Horrell, L. Michael, and . Stein, Half-spectral space-time covariance models, Spatial Statistics, vol.19, pp.90-100, 2017.

S. Hostikka, T. Korhonen, and . Et-olavi-keski-rahkonen, Two-model monte carlo simulation of fire scenarios, Fire Safety Science, vol.8, pp.1241-1252, 2005.

D. Huang, T. T. Allen, W. I. Notz, and R. A. Miller, Sequential kriging optimization using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization, vol.32, pp.369-382, 2006.

A. Jentzen, E. Peter, and . Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.465, pp.649-667, 2009.

M. E. Johnson, L. M. Moore, and D. Ylvisaker, Minimax and maximin distance designs, Journal of Statistical Planning and Inference, vol.26, issue.2, pp.131-148, 1990.

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.

K. Kandasamy, G. Dasarathy, J. B. Oliva, and J. Schneider, et Barnabas Poczos. Multi-fidelity Gaussian process bandit optimisation, 2016.

C. Marc, . Kennedy, O. Anthony, and . Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society : Series B (Statistical Methodology), vol.63, issue.3, pp.425-464, 2001.

C. Marc, . Kennedy, O. Anthony, and . Hagan, Predicting the output from a complex computer code when fast approximations are available, Biometrika, vol.87, issue.1, pp.1-13, 2000.

R. P. Kennedy, C. A. Cornell, R. D. Campbell, S. Kaplan, and H. F. Perla, Probabilistic seismic safety study of an existing nuclear power plant, Nuclear Engineering and Design, vol.59, issue.2, pp.315-338, 1980.

K. Kersting, C. Plagemann, P. Pfaff, W. Et, and . Burgard, Most likely heteroscedastic Gaussian process regression, Proceedings of the 24 th international conference on Machine learning, ICML '07, pp.393-400, 2007.

M. Hong-seok-kim, . Koc, J. Et, and . Ni, A hybrid multi-fidelity approach to the optimal design of warm forming processes using a knowledge-based artificial neural network, International Journal of Machine Tools and Manufacture, vol.47, issue.2, pp.211-222, 2007.

D. Kong, N. Johansson, P. Van-hees, S. Lu, S. Et et al.,

, Monte Carlo analysis of the effect of heat release rate uncertainty on available safe egress time, Journal of Fire Protection Engineering, vol.23, issue.1, pp.5-29, 2012.

X. Kong, M. Ai, . Et-kwok-leung, and . Tsui, Design for sequential follow-up experiments in computer emulations, Technometrics, vol.0, issue.0, pp.1-9, 2016.

S. Koziel, D. E. Ciaurri, and . Et-leifur-leifsson, Surrogate-based methods, pp.33-59, 2011.

S. Koziel, L. Leifsson, I. Couckuyt, and T. Dhaene, Robust variable-fidelity optimization of microwave filters using co-kriging and trust regions. Microwave and Optical Technology Letters, vol.55, pp.765-769, 2013.

Y. Kuya, K. Takeda, X. Zhang, and A. I. Forrester, Multifidelity surrogate modeling of experimental and computational aerodynamic data sets, AIAA journal, vol.49, issue.2, pp.289-298, 2011.
DOI : 10.2514/1.j050384

T. Labopin-richard and V. Picheny, Sequential design of experiments for estimating percentiles of black-box functions, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01316263

G. Loic-le, Multi-fidelity Gaussian process regression for computer experiments, 2013.

L. Gratiet and C. Cannamela, Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes, Technometrics, vol.57, issue.3, pp.418-427, 2015.

L. Garnier, Recursive co-kriging model for design of computer experiments with multiple levels of fidelity, International Journal for Uncertainty Quantification, vol.4, issue.5, pp.365-386, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108813

. Olivier-le-maître, M. Omar, and . Knio, Spectral methods for uncertainty quantification : with applications to computational fluid dynamics, 2010.

J. Stephen, A. Leary, . Bhaskar, A. J. Et, and . Keane, A knowledge-based approach to response surface modelling in multifidelity optimization, Journal of Global Optimization, vol.26, issue.3, pp.297-319, 2003.

L. Leifsson, S. Koziel, S. Et, and . Ogurtsov, Low-fidelity model mesh density and the performance of variable-resolution shape optimization algorithms, Procedia Computer Science, vol.9, pp.842-851, 2012.

L. Li, Sequential Design of Experiments to Estimate a Probability of Failure, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00765457

C. Lin, Y. Ferng, and W. Hsu, Investigating the effect of computational grid sizes on the predicted characteristics of thermal radiation for a fire

, Applied Thermal Engineering, vol.29, pp.2243-2250, 2009.

J. L. Loeppky, J. Sacks, and W. J. Welch, Choosing the sample size of a computer experiment : A practical guide, Technometrics, vol.51, issue.4, pp.366-376, 2009.

J. C. David and . Mackay, Information-based objective functions for active data selection, Neural Computation, vol.4, issue.4, pp.590-604, 1992.

A. Marrel, B. Iooss, S. Da-veiga, and M. Ribatet, Global sensitivity analysis of stochastic computer models with joint metamodels, Statistics and Computing, vol.22, issue.3, pp.833-847, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00232805

J. Mateu, G. Fernández-avilés, and E. Montero, On a class of nonstationary, compactly supported spatial covariance functions, Stochastic Environmental Research and Risk Assessment, vol.27, issue.2, pp.297-309, 2013.

. Bibliographie,

K. Mcgrattan and . Blaza-toman, Quantifying the predictive uncertainty of complex numerical models, Metrologia, vol.48, issue.3, p.173, 2011.

K. Mcgrattan, R. Mcdermottand, S. Hostikka, J. E. Et, and . Floyd, Fire dynamics simulator (version 5), user's guide. National Institute of Standards and Technology (NIST), 2010.

K. Mcgrattan, S. Hostikka, R. Mcdermott, J. Floyd, C. Weinschenk et al., Fire Dynamics Simulator-Technical Reference Guide-Volume 1 : Mathematical Model

M. Gaithersburg and U. , , 2014.

M. D. Mckay, R. J. Beckman, and W. J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

M. D. Morris and T. J. Mitchell, Exploratory designs for computational experiments, Journal of Statistical Planning and Inference, vol.43, issue.3, pp.381-402, 1995.

V. Moutoussamy and S. Nanty, et Benoît Pauwels. Emulators for stochastic simulation codes. ESAIM : Proceedings and Surveys, vol.48, pp.116-155, 2015.

, Life-threatening components of fire-Guidelines for the estimation of time to compromised tenability in fires, norme ISO 13571, 2012.

J. E. Oakley, D. Benjamin, and . Youngman, Calibration of stochastic computer simulators using likelihood emulation, Technometrics, vol.59, issue.1, pp.80-92, 2017.

O. Anthony and . Hagan, A Markov property for covariance structures, Statistics Research Report, 1998.

J. Christopher, . Paciorek, J. Mark, and . Schervish, Spatial modelling using a new class of nonstationary covariance functions, Environmetrics, vol.17, issue.5, pp.483-506, 2006.

G. Pang, P. Perdikaris, W. Cai, and G. E. Karniadakis, Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization, Journal of Computational Physics, vol.348, pp.694-714, 2017.

A. Pasanisi and A. Dutfoy, An industrial viewpoint on uncertainty quantification in simulation : Stakes, methods, tools, examples
URL : https://hal.archives-ouvertes.fr/hal-01518664

É. Boisvert, Uncertainty Quantification in Scientific Computing, pp.27-45, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01518681

P. Perdikaris and G. E. Karniadakis, Model inversion via multi-fidelity Bayesian optimization : a new paradigm for parameter estimation in haemodynamics, and beyond, Journal of The Royal Society Interface, vol.13, issue.118, 2016.

P. Perdikaris, D. Venturi, J. O. Royset, and G. E. Karniadakis,

, Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields. Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.471, p.2015, 2179.

V. Picheny and D. Ginsbourger, A nonstationary space-time Gaussian process model for partially converged simulations, SIAM/ASA Journal on Uncertainty Quantification, vol.1, issue.1, pp.57-78, 2013.

V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, and N. Kim, Adaptive designs of experiments for accurate approximation of a target region, Journal of Mechanical Design, vol.132, issue.7, p.71008, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00319385

V. Picheny, D. Ginsbourger, Y. Richet, and G. Caplin, Quantile-based optimization of noisy computer experiments with tunable precision, Technometrics, vol.55, issue.1, pp.2-13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00578550

L. Pronzato, G. Werner, and . Müller, Design of computer experiments : space filling and beyond, Statistics and Computing, vol.22, issue.3, pp.681-701, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685876

Z. G. Peter and . Qian, Nested latin hypercube designs, Biometrika, vol.96, issue.4, pp.957-970, 2009.

Z. G. Peter, C. F. Qian, and . Wu, Bayesian hierarchical modeling for integrating lowaccuracy and high-accuracy experiments, Technometrics, vol.50, issue.2, pp.192-204, 2008.

Z. G. Peter, H. Qian, C. F. Wu, and . Wu, Gaussian process models for computer experiments with qualitative and quantitative factors, Technometrics, vol.50, issue.3, pp.383-396, 2008.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, Journal of Computational Physics, vol.335, pp.736-746, 2017.

P. Ranjan, D. Bingham, and G. Michailidis, Sequential experiment design for contour estimation from complex computer codes, Technometrics, vol.50, issue.4, pp.527-541, 2008.

C. Edward-rasmussen, K. I. Christopher, and . Williams, Gaussian processes for machine learning, 2006.

G. Rennen, Efficient approximation of black-box functions and Pareto sets, 2009.

B. Gijs-rennen, E. R. Husslage, . Van-dam, . Dick-den, and . Hertog, Nested maximin latin hypercube designs. Structural and Multidisciplinary Optimization, vol.41, pp.371-395, 2010.

C. P. Robert, Monte Carlo Methods, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00415940

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statistical science, vol.4, issue.4, pp.409-423, 1989.

T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments, Springer Series in Statistics, 2003.

L. Schueremans, Probabilistic evaluation of structural unreinforced masonry, 2001.

W. Scott, P. Frazier, and W. Powell, The correlated knowledge gradient for simulation optimization of continuous parameters using Gaussian process regression

, SIAM Journal on Optimization, vol.21, issue.3, pp.996-1026, 2011.

J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning algorithms

É. Weinberger, Advances in Neural Information Processing Systems, vol.25, pp.2951-2959, 2012.

N. Srinivas, A. Krause, M. Sham, M. W. Kakade, and . Seeger, Gaussian process optimization in the bandit setting : No regret and experimental design. arXiv, 2009.

M. L. Stein, Interpolation of Spatial Data : Some Theory for Kriging, Springer Series in Statistics, 1999.

M. L. Stein, Space-time covariance functions, Journal of the American Statistical Association, vol.100, issue.469, pp.310-321, 2005.

L. Michael and . Stein, Rietz lecture : When does the screening effect hold ? The Annals of Statistics, vol.39, pp.2795-2819, 2010.

G. Tata-subba-rao and . Terdik, A space-time covariance function for spatio-temporal random processes and spatio-temporal prediction (kriging), 2013.

K. Swersky, J. Snoek, and R. P. Adams, Multi-task Bayesian optimization

C. J. In, L. Burges, M. Bottou, Z. Welling, K. Q. Ghahramani et al., éditeurs, Advances in Neural Information Processing Systems, vol.26, pp.2004-2012, 2013.

B. Tang, Orthogonal array-based latin hypercubes, Journal of the American statistical association, vol.88, issue.424, pp.1392-1397, 1993.

A. Thenon, V. Gervais, and . Et-mickaële-le-ravalec, Multi-fidelity meta-modeling for reservoir engineering-application to history matching, Computational Geosciences, vol.20, issue.6, pp.1231-1250, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01453246

A. Thiry-muller, Guide de bonnes pratiques pour les études d'ingénierie du désenfumage dans les établissements recevant du public, 2017.

C. F. Rui-tuo, D. Wu, and . Yu, Surrogate modeling of computer experiments with different mesh densities, Technometrics, vol.56, issue.3, pp.372-380, 2014.

B. Van-weyenberge, X. Deckers, R. Caspeele, B. Et, and . Merci, Development of a full probabilistic qra method for quantifying the life safety risk in complex building designs, Performance based codes and fire safety design methods, pp.1-12, 2016.

E. Vazquez and J. Bect, A sequential Bayesian algorithm to estimate a probability of failure, IFAC Proceedings Volumes, vol.42, pp.546-550, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00368158

J. Villemonteix, E. Vazquez, E. Et, and . Walter, An informational approach to the global optimization of expensive-to-evaluate functions, Journal of Global Optimization, vol.44, issue.4, p.509, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00354262

J. Moresh and . Wankhede, Multi-fidelity strategies for lean burn combustor design, 2012.

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, and T. J. Mitchell,

M. D. Morris, Screening, predicting, and computer experiments, Technometrics, vol.34, issue.1, pp.15-25, 1992.

B. J. Williams, J. L. Loeppky, L. M. Moore, and M. S. Macklem, Batch sequential design to achieve predictive maturity with calibrated computer models

, Quantification of Margins and Uncertainties, vol.96, pp.1208-1219, 2011.

S. Xiong, Z. G. Peter, C. F. Qian, and . Wu, Sequential design and analysis of high-accuracy and low-accuracy computer codes, Technometrics, vol.55, issue.1, pp.37-46, 2013.

J. Xu, X. Duan, Z. Wang, and . Et-liang-yan, A general construction for nested latin hypercube designs, Statistics & Probability Letters, 2017.

J. Yang, M. Liu, E. Dennis, and K. J. Lin, Construction of nested orthogonal latin hypercube designs, Statistica Sinica, vol.24, issue.1, pp.211-219, 2014.

Q. Zhou, Y. Wang, S. Choi, P. Jiang, X. Shao et al., A sequential multi-fidelity metamodeling approach for data regression. Knowledge-Based Systems, vol.134, pp.199-212, 2017.

D. Zimmerman, C. Pavlik, A. Ruggles, and M. P. Armstrong, An experimental comparison of ordinary and universal kriging and inverse distance weighting, Mathematical Geology, vol.31, issue.4, pp.375-390, 1999.

E. Zio, The Monte-Carlo simulation method for system reliability and risk analysis, vol.39, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00777141