A. Prat and C. M. Perou, Deconstructing the molecular portraits of breast cancer, Mol. Oncol, vol.5, pp.5-23, 2011.
DOI : 10.1016/j.molonc.2010.11.003

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/j.molonc.2010.11.003

S. Guiu, Molecular subclasses of breast cancer: How do we define them? The IMPAKT 2012 working group statement, Ann. Oncol, vol.23, pp.2997-3006, 2012.

G. Viale, The current state of breast cancer classification, Ann. Oncol, vol.23, 2012.

J. Arnal, Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications, Physiol. Rev, vol.97, pp.1045-1087, 2017.
DOI : 10.1152/physrev.00024.2016

URL : https://hal.archives-ouvertes.fr/hal-01533249

K. Tryfonidis, D. Zardavas, B. S. Katzenellenbogen, and M. Piccart, Endocrine treatment in breast cancer: Cure, resistance and beyond, Cancer Treat. Rev, vol.50, pp.68-81, 2016.
DOI : 10.1016/j.ctrv.2016.08.008

S. R. Johnston, Changes in Estrogen Receptor, Progesterone Receptor, and pS2 Expression in Tamoxifen-resistant Human Breast Cancer, Cancer Res, vol.55, pp.3331-3338, 1995.

M. Dowsett, Endocrine-Related Cancer, vol.8, pp.191-195, 2001.

Z. Li, Luminal B breast cancer: patterns of recurrence and clinical outcome, Oncotarget, vol.7, pp.65024-65033, 2016.
DOI : 10.18632/oncotarget.11344

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=11344&path%5B%5D=35910

V. N. Gajulapalli, V. L. Malisetty, S. K. Chitta, and B. Manavathi, Oestrogen receptor negativity in breast cancer: a cause or consequence?, Biosci. Rep, vol.36, p.432, 2016.
DOI : 10.1042/bsr20160228

URL : http://www.bioscirep.org/content/36/6/e00432.full.pdf

J. Kurebayashi, T. Otsuki, T. Moriya, and H. Sonoo, Hypoxia reduces hormone responsiveness of human breast cancer cells, Jpn J Cancer Res, vol.92, pp.1093-1101, 2001.
DOI : 10.1111/j.1349-7006.2001.tb01064.x

P. N. Span and J. Bussink, Biology of hypoxia, Semin. Nucl. Med, vol.45, pp.101-109, 2015.

P. Vaupel, M. Hockel, and A. Mayer, Detection and characterization of tumor hypoxia using pO2 histography, Antioxid Redox Signal, vol.9, pp.1221-1235, 2007.
DOI : 10.1089/ars.2007.1628

B. Muz, P. De-la-puente, F. Azab, and A. K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia, p.83, 2015.

D. Haaahaa and R. A. Weieeg, Reiee Hallaaks of Caaee : The Neet Geeeatio, Cell, vol.144, pp.646-674, 2011.

L. Schito and G. L. Semenza, Hypoxia-Inducible Factors: Master Regulators of Cancer Progression, Trends in Cancer, vol.2, pp.758-770, 2016.

P. H. Maxwell, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis, Nature, vol.399, pp.271-275, 1999.

W. G. Kaelin and P. J. Ratcliffe, Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway, Mol. Cell, vol.30, pp.393-402, 2008.

M. Y. Koh, R. Lemos, X. X. Liu, and G. Powis, The hypoxia associated factor (HAF) switches cells from HIF-1? to HIF-2? dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion.pdf, Cancer Res, vol.71, pp.4015-4042, 2011.

M. Y. Koh and G. Powis, Passing the baton: The HIF switch, Trends Biochem. Sci, vol.37, pp.364-372, 2012.

J. Cho, D. Kim, S. Lee, and Y. Lee, Cobalt chloride-induced estrogen receptor alpha down

A. Skibinski and C. Kuperwasser, The origin of breast tumor heterogeneity, Oncogene, vol.34, pp.5309-5316, 2015.

C. M. Perou, Molecular portraits of human breast tumours, Nature, vol.406, pp.747-752, 2000.

T. Sørlie, Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.10869-10874, 2001.

N. Platet, A. M. Cathiard, M. Gleizes, and M. Garcia, Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion, Crit. Rev. Oncol. Hematol, vol.51, pp.55-67, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00144757

K. Dahlman-wright, International Union of Pharmacology. LXIV. Estrogen receptors, Pharmacol. Rev, vol.58, pp.773-781, 2006.

C. K. Osborne, Steroid hormone receptors in breast cancer management, Breast Cancer Res. Treat, vol.51, pp.227-238, 1998.

D. L. Wickerham, The use of tamoxifen and raloxifene for the prevention of breast cancer. Recent Results Cancer Res. Fortschritte Krebsforsch, Progres Dans Rech. Sur Cancer, vol.181, pp.113-119, 2009.

V. C. Jodaa and B. W. Omalle, Seletie estogee-receptor modulators and antihormonal resistance in breast cancer, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.25, pp.5815-5824, 2007.

R. Clarke, J. J. Tyson, and J. M. Dixon, Endocrine resistance in breast cancer-An overview and update, Mol. Cell. Endocrinol. 418 Pt, vol.3, pp.220-234, 2015.

E. A. Musgrove and R. L. Sutherland, Biological determinants of endocrine resistance in breast cancer, Nat. Rev. Cancer, vol.9, pp.631-643, 2009.

V. N. Gajulapalli, V. L. Malisetty, S. K. Chitta, and B. Manavathi, Oestrogen receptor negativity in breast cancer: a cause or consequence?, Biosci. Rep, vol.36, 2016.

J. S. Carroll, Genome-wide analysis of estrogen receptor binding sites, Nat. Genet, vol.38, pp.1289-1297, 2006.

W. Welboren, ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands, EMBO J, vol.28, pp.1418-1428, 2009.

C. S. Ross-innes, Differential oestrogen receptor binding is associated with clinical outcome in breast cancer, Nature, vol.481, pp.389-393, 2012.

K. M. Jozwik and J. S. Carroll, Pioneer factors in hormone-dependent cancers, Nat. Rev. Cancer, vol.12, pp.381-385, 2012.

S. Badve, Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, vol.24, pp.157-167, 2011.

E. Lim, Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers, Nat. Med, vol.15, pp.907-913, 2009.

G. Molyneux, BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells, Cell Stem Cell, vol.7, pp.403-417, 2010.

G. Toillo and M. J. Ssallee, ERRRR?heee aae the ppogeeitos? Hooe eeptos aad aaaa cell heterogeneity, J. Mammary Gland Biol. Neoplasia, vol.20, pp.63-73, 2015.

T. Kuukasjärvi, J. Kononen, H. Helin, K. Holli, and J. Isola, Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.14, pp.2584-2589, 1996.

F. Miralles, G. Posern, A. Zaromytidou, and R. Treisman, Actin dynamics control SRF activity by regulation of its coactivator MAL, Cell, vol.113, pp.329-342, 2003.

G. C. Pipes, E. E. Creemers, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes Dev, vol.20, pp.1545-1556, 2006.

S. Medjkane, C. Perez-sanchez, C. Gaggioli, E. Sahai, and R. Treisman, Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis, Nat. Cell Biol, vol.11, pp.257-268, 2009.

K. S. Purrington, Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer, Carcinogenesis, vol.35, pp.1012-1019, 2014.

I. Gurbuz, J. Ferralli, T. Roloff, R. Chiquet-ehrismann, and M. B. Asparuhova, SAP domaindependent Mkl1 signaling stimulates proliferation and cell migration by induction of a distinct gene set indicative of poor prognosis in breast cancer patients, Mol. Cancer, vol.13, p.22, 2014.

S. Lindström, Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk, Nat. Commun, vol.5, p.5303, 2014.

G. Kerdivel, Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines, Mol. Cell. Endocrinol, vol.390, pp.34-44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061363

G. Flouriot, The actin/MKL1 signalling pathway influences cell growth and gene expression through large-scale chromatin reorganization and histone post-translational modifications, Biochem. J, vol.461, pp.257-268, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063933

R. C. Gentleman, Bioconductor: open software development for computational biology and bioinformatics, Genome Biol, vol.5, p.80, 2004.

J. M. Wettenhall and G. K. Smyth, limmaGUI: a graphical user interface for linear modeling of microarray data, Bioinforma. Oxf. Engl, vol.20, pp.3705-3706, 2004.

G. Yu, L. Wang, Y. Han, and Q. He, clusterProfiler: an R package for comparing biological themes among gene clusters, Omics J. Integr. Biol, vol.16, pp.284-287, 2012.

J. Quintin, Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities, Mol. Cell. Biol, vol.34, pp.2418-2436, 2014.

G. Palierne, Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment, Mol. Endocrinol. Baltim. Md, vol.30, pp.709-732, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357623

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinforma. Oxf. Engl, vol.25, pp.2078-2079, 2009.

J. Feng, T. Liu, B. Qin, Y. Zhang, and X. S. Liu, Identifying ChIP-seq enrichment using MACS, Nat. Protoc, vol.7, pp.1728-1740, 2012.

T. Liu, Cistrome: an integrative platform for transcriptional regulation studies, Genome Biol, vol.12, p.83, 2011.

T. Barrett, NCBI GEO: archive for high-throughput functional genomic data, Nucleic Acids Res, vol.37, pp.885-890, 2009.

S. Lamouille, J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol, vol.15, pp.178-196, 2014.

S. C. Stadler and C. D. Allis, Linking epithelial-to-mesenchymal-transition and epigenetic modifications, Semin. Cancer Biol, vol.22, pp.404-410, 2012.

W. L. Tam and R. A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer, Nat. Med, vol.19, pp.1438-1449, 2013.

T. Sorlie, Repeated observation of breast tumor subtypes in independent gene expression data sets, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.8418-8423, 2003.

P. S. Ray, FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer, Cancer Res, vol.70, pp.3870-3876, 2010.

J. Frasor, Profiling of estrogen up-and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype, Endocrinology, vol.144, pp.4562-4574, 2003.

K. Ovaska, Integrative analysis of deep sequencing data identifies estrogen receptor early response genes and links ATAD3B to poor survival in breast cancer, PLoS Comput. Biol, vol.9, p.1003100, 2013.

M. J. Fullwood, An oestrogen-receptor-alpha-bound human chromatin interactome, Nature, vol.462, pp.58-64, 2009.

C. Y. Mclean, GREAT improves functional interpretation of cis-regulatory regions, Nat. References

K. Ragunathan, G. Jih, and D. Moazed, Epigenetic inheritance uncoupled from sequence-specific recruitment, Science, vol.348, p.1258699, 2015.

A. H. Peters, D. O'carroll, H. Scherthan, K. Mechtler, S. Sauer et al., Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability, Cell, vol.107, pp.323-337, 2001.

S. Matoba, Y. Liu, F. Lu, K. A. Iwabuchi, L. Shen et al., Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation, Cell, vol.159, pp.884-895, 2014.

J. Antony, F. Oback, L. W. Chamley, B. Oback, and G. Laible, Transient JMJD2B-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos, Mol. Cell. Biol, vol.33, pp.974-983, 2013.

W. Zhang, J. Li, K. Suzuki, J. Qu, P. Wang et al.,

B. Lehnertz, Y. Ueda, A. A. Derijck, U. Braunschweig, L. Perez-burgos et al., Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin, Curr. Biol, vol.13, pp.1192-1200, 2003.

N. Feldman, A. Gerson, J. Fang, E. Li, Y. Zhang et al., G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis, vol.8, pp.188-194, 2006.

R. D. Hawkins, G. C. Hon, L. K. Lee, Q. Ngo, R. Lister et al., Distinct epigenomic landscapes of pluripotent and lineage-committed human cells, Cell Stem Cell, vol.6, pp.479-491, 2010.

E. Meshorer and T. Misteli, Chromatin in pluripotent embryonic stem cells and differentiation, Nat. Rev. Mol. Cell. Biol, vol.7, pp.540-546, 2006.

D. C. Kraushaar and K. Zhao, The epigenomics of embryonic stem cell differentiation, Int. J. Biol. Sci, vol.9, pp.1134-1144, 2013.

S. Efroni, R. Duttagupta, J. Cheng, H. Dehghani, D. J. Hoeppner et al., Global transcription in pluripotent embryonic stem cells, Cell Stem Cell, vol.2, pp.437-447, 2008.

Y. Loh, W. Zhang, X. Chen, J. George, and H. H. Ng, Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells, Genes Dev, vol.21, pp.2545-2557, 2007.

A. H. Peters, S. Kubicek, K. Mechtler, R. J. O'sullivan, A. A. Derijck et al., Partitioning and plasticity of repressive histone methylation states in mammalian chromatin, Mol. Cell, vol.12, pp.1577-1189, 2003.

O. G. Mcdonald, H. Wu, W. Timp, A. Doi, and A. P. Feinberg, Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition, Nat. Struct. Mol. Biol, vol.18, pp.867-874, 2011.

G. Flouriot, G. Huet, F. Demay, F. Pakdel, N. Boujrad et al., The actin/MKL1 signalling pathway influences cell growth and gene expression through large-scale chromatin reorganization and histone post-translational modifications, Biochem. J, vol.461, pp.257-268, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063933

G. J. Pageau, L. L. Hall, S. Ganesan, D. M. Livingston, and J. B. Lawrence, The disappearing Barr body in breast and ovarian cancers, Nat. Rev. Cancer, vol.7, pp.628-633, 2007.

R. B. Slee, C. M. Steiner, B. S. Herbert, G. H. Vance, R. J. Hickey et al., Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability, Oncogene, vol.31, pp.3244-3253, 2012.

M. Braig, S. Lee, C. Loddenkemper, C. Rudolph, A. H. Peters et al., Oncogene-induced senescence as an initial barrier in lymphoma development, Nature, vol.436, pp.660-665, 2005.

P. Khanal, G. Kim, S. C. Lim, H. J. Yun, K. Y. Lee et al., Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer, FASEB J, vol.27, pp.4606-4618, 2013.

G. Liu, A. Bollig-fischer, B. Kreike, M. J. Van-de-vijver, J. Abrams et al., Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer, Oncogene, vol.28, pp.4491-4500, 2009.

A. Salminen, K. Kaarniranta, and A. Kauppinen, Hypoxiainducible histone lysine demethylases: Impact on the aging process and age-related diseases, Aging Dis, vol.7, pp.180-200, 2016.

J. C. Black, E. Atabakhsh, J. Kim, K. M. Biette, C. Van et al., Hypoxia drives transient site-specific copy gain and drugresistant gene expression, Genes Dev, vol.29, pp.1018-1031, 2015.
DOI : 10.1101/gad.259796.115

URL : http://genesdev.cshlp.org/content/29/10/1018.full.pdf

C. Jehanno, G. Flouriot, F. Nicol-beno??tbeno??t, Y. L. Page, P. L. Goff et al., Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer, Breast Dis, vol.36, pp.47-59, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01367146

N. Gilbert, S. Boyle, H. Sutherland, J. De-las-heras, J. Allan et al., Formation of facultative heterochromatin in the absence of HP1, EMBO J, vol.22, pp.5540-5550, 2003.

J. Zhu, M. Adli, J. Y. Zou, G. Verstappen, M. Coyne et al., Genome-wide chromatin state transitions associated with developmental and environmental cues, Cell, vol.152, pp.642-654, 2013.
DOI : 10.1016/j.cell.2012.12.033

URL : https://doi.org/10.1016/j.cell.2012.12.033

J. Kim and H. Kim, Recruitment and biological consequences of histone modification of H3K27me3 and H3K9me3, ILAR J, vol.53, pp.232-239, 2012.

N. A. Hathaway, O. Bell, C. Hodges, E. L. Miller, D. S. Neel et al., Dynamics and memory of heterochromatin in living cells, Cell, vol.149, pp.1447-1460, 2012.

A. V. Probst and G. Almouzni, Pericentric heterochromatin: dynamic organization during early development in mammals, Differentiation, vol.76, pp.15-23, 2008.
DOI : 10.1111/j.1432-0436.2007.00220.x

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl et al., Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, vol.137, pp.356-368, 2009.

M. R. Hübner and D. L. Spector, Chromatin dynamics, Annu. Rev. Biophys, vol.39, pp.471-489, 2010.

A. Bulut-karslioglu, I. A. De-la-rosa-velázquez, F. Ramirez, M. Barenboim, M. Onishi-seebacher et al., Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells, Mol. Cell, vol.55, pp.277-290, 2014.
DOI : 10.1016/j.molcel.2014.05.029

URL : https://doi.org/10.1016/j.molcel.2014.05.029

V. Guasconi, L. L. Pritchard, L. Fritsch, L. D. Mesner, C. Francastel et al., Preferential association of irreversibly silenced E2F-target genes with pericentromeric heterochromatin in differentiated muscle cells, Epigenetics, vol.5, pp.704-709, 2010.

K. Hiragami-hamada, S. Soeroes, M. Nikolov, B. Wilkins, S. Kreuz et al., Dynamic and flexible H3K9me3 bridging via HP1? dimerization establishes a plastic state of condensed chromatin, Nat. Commun, vol.7, p.11310, 2016.
DOI : 10.1038/ncomms11310

URL : http://www.nature.com/articles/ncomms11310.pdf

R. T. Kamakaka, Heterochromatin: proteins in flux lead to stable repression, Curr. Biol, vol.13, pp.317-326, 2003.
DOI : 10.1016/s0960-9822(03)00236-7

URL : https://doi.org/10.1016/s0960-9822(03)00236-7

F. Nicol-beno??tbeno??t, P. Le-goff, Y. Le-dréan, F. Demay, F. Pakdel et al., Epigenetic memories: structural marks or active circuits?, Cell. Mol. Life Sci, vol.69, pp.2189-2203, 2012.

J. Huang and S. L. Berger, The emerging field of dynamic lysine methylation of non-histone proteins, Curr Opin Genet Dev, vol.18, pp.152-158, 2008.

T. Cheutin, A. J. Mcnairn, T. Jenuwein, D. M. Gilbert, P. B. Singh et al., Maintenance of stable heterochromatin domains by dynamic HP1 binding, Science, vol.299, pp.721-725, 2003.
DOI : 10.1126/science.1078572

I. B. Dodd, M. A. Micheelsen, K. Sneppen, and G. Thon, Theoretical analysis of epigenetic cell memory by nucleosome modification, Cell, vol.129, pp.813-822, 2007.
DOI : 10.1016/j.cell.2007.02.053

URL : https://doi.org/10.1016/j.cell.2007.02.053

A. V. Probst, E. Dunleavy, and G. Almouzni, Epigenetic inheritance during the cell cycle, Nat. Rev. Mol. Cell. Biol, vol.10, pp.192-206, 2009.
DOI : 10.1038/nrm2640

D. Moazed, Mechanisms for the inheritance of chromatin states, Cell, vol.146, pp.510-518, 2011.

B. Zhu and D. Reinberg, Epigenetic inheritance: uncontested?, Cell Res, vol.21, pp.435-441, 2011.
DOI : 10.1038/cr.2011.26

URL : https://www.nature.com/articles/cr201126.pdf

C. Hodges and G. R. Crabtree, Dynamics of inherently bounded histone modification domains, Proc. Natl. Acad. Sci. USA, vol.109, pp.13296-13301, 2012.
DOI : 10.1073/pnas.1211172109

URL : http://www.pnas.org/content/109/33/13296.full.pdf

D. David-rus, S. Mukhopadhyay, J. L. Lebowitz, and A. M. Sengupta, Inheritance of epigenetic chromatin silencing, J Theor Biol, vol.258, pp.112-120, 2009.
DOI : 10.1016/j.jtbi.2008.12.021

URL : http://europepmc.org/articles/pmc3034166?pdf=render

M. M. Müller, B. Fierz, L. Bittova, G. Liszczak, and T. W. Muir, A two-state activation mechanism controls the histone methyltransferase Suv39h1, Nat. Chem. Biol, vol.12, pp.188-193, 2016.

K. Müller-ott, F. Erdel, A. Matveeva, J. P. Mallm, A. Rademacher et al., Rippe, Specificity, propagation, and memory of pericentric heterochromatin, Mol. Syst. Biol, vol.10, p.746, 2014.

F. Erdel and E. C. Greene, Generalized nucleation and looping model for epigenetic memory of histone modifications, Proc. Natl. Acad. Sci. USA, vol.113, pp.4180-4189, 2016.
DOI : 10.1073/pnas.1605862113

URL : http://www.pnas.org/content/113/29/E4180.full.pdf

J. C. Black, A. Allen, C. Van-rechem, E. Forbes, M. Longworth et al., Conserved antagonism between JMJD2A/KDM4A and HP1? during cell cycle progression, Mol. Cell, vol.40, pp.736-748, 2010.

S. H. Park, S. E. Yu, Y. G. Chai, and Y. K. Jang, CDK2dependent phosphorylation of Suv39H1 is involved in control of heterochromatin replication during cell cycle progression, Nucl. Acids Res, vol.42, pp.6196-6207, 2014.

I. M. Krouwels, K. Wiesmeijer, T. E. Abraham, C. Molenaar, N. P. Verwoerd et al., A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain, J. Cell. Biol, vol.170, pp.537-549, 2005.

M. Lachner, D. O'carroll, S. Rea, K. Mechtler, and T. Jenuwein, Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins, Nature, vol.410, pp.116-120, 2001.

A. J. Bannister, P. Zegerman, J. F. Partridge, E. A. Miska, J. O. Thomas et al., Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain, Nature, vol.410, pp.120-124, 2001.

J. Nakayama, J. C. Rice, B. D. Strahl, C. D. Allis, and S. I. , Grewal, Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly, Science, vol.292, pp.110-113, 2001.

S. Haldar, A. Saini, J. S. Nanda, S. Saini, and J. Singh, Role of Swi6/HP1 self-association-mediated recruitment of Clr4/Suv39 in establishment and maintenance of heterochromatin in fission yeast, J. Biol. Chem, vol.286, pp.9308-9320, 2011.

T. Wang, C. Xu, Y. Liu, K. Fan, Z. Li et al., Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3, vol.7, p.52977, 2012.

M. Melcher, M. Schmid, L. Aagaard, P. Selenko, G. Laible et al., Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression, Mol. Cell Biol, vol.20, pp.3728-3741, 2000.

D. Canzio, E. Y. Chang, S. Shankar, K. M. Kuchenbecker, M. D. Simon et al., Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly, Mol. Cell, vol.41, pp.67-81, 2011.

V. B. Teif, N. Kepper, K. Yserentant, G. Wedemann, and K. Rippe, Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays, J. Phys. Condens. Matter, vol.27, p.64110, 2015.

P. J. Mulligan, E. F. Koslover, and A. J. Spakowitz, Thermodynamic model of heterochromatin formation through epigenetic regulation, J. Phys. Condens. Matter, vol.27, p.64109, 2015.

A. M. Azzaz, M. W. Vitalini, A. S. Thomas, J. P. Price, M. J. Blacketer et al., Human heterochromatin protein 1? promotes nucleosome associations that drive chromatin condensation, J. Biol. Chem, vol.289, pp.6850-6861, 2014.

B. R. Caré and H. A. Soula, Impact of receptor clustering on ligand binding, BMC Syst. Biol, vol.5, p.48, 2011.

C. Delisi and F. W. Wiegel, Effect of nonspecific forces and finite receptor number on rate constants of ligand-cell bound-receptor interactions, Proc. Natl. Acad. Sci. USA, vol.78, pp.5569-5572, 1981.

B. Goldstein, R. G. Posner, D. C. Torney, J. Erickson, D. Holowka et al., Competition between solution and cell surface receptors for ligand. Dissociation of hapten bound to surface antibody in the presence of solution antibody, Biophys. J, vol.56, pp.955-966, 1989.

B. Goldstein and M. Dembo, Approximating the effects of diffusion on reversible reactions at the cell surface: ligandreceptor kinetics, Biophys. J, vol.68, pp.1222-1230, 1995.

M. Gopalakrishnan, K. Forsten-williams, M. A. Nugent, and U. C. Täuber, Effects of receptor clustering on ligand dissociation kinetics: theory and simulations, Biophys. J, vol.89, pp.3686-3700, 2005.

B. C. Lagerholm and N. L. Thompson, Theory for ligand rebinding at cell membrane surfaces, Biophys. J, vol.74, pp.1215-1228, 1998.

D. Shoup and A. Szabo, Role of diffusion in ligand binding to macromolecules and cell-bound receptors, Biophys. J, vol.40, pp.33-39, 1982.

H. G. Chin, D. Patnaik, P. O. Estéve, S. E. Jacobsen, and S. Pradhan, Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis, Biochemistry, vol.45, pp.3272-3284, 2006.

B. D. Fodor, S. Kubicek, M. Yonezawa, R. J. O'sullivan, R. Sengupta et al., Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells, Genes Dev, vol.20, pp.1557-1562, 2006.
DOI : 10.1101/gad.388206

URL : http://genesdev.cshlp.org/content/20/12/1557.full.pdf

J. C. Rice, S. D. Briggs, B. Ueberheide, C. M. Barber, J. Shabanowitz et al., Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains, Mol. Cell, vol.12, pp.1591-1598, 2003.
DOI : 10.1016/s1097-2765(03)00479-9

URL : https://doi.org/10.1016/s1097-2765(03)00479-9

P. Sassone-corsi, When metabolism and epigenetics converge, Science, vol.339, pp.148-150, 2013.
DOI : 10.1126/science.1233423

A. Bancaud, S. Huet, N. Daigle, J. Mozziconacci, J. Beaudouin et al., Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin, EMBO J, vol.28, pp.3785-3798, 2009.

F. Erdel, K. Müller-ott, M. Baum, M. Wachsmuth, and K. Rippe, Dissecting chromatin interactions in living cells from protein mobility maps, Chromosome Res, vol.19, pp.99-115, 2011.
DOI : 10.1007/s10577-010-9155-6

URL : https://link.springer.com/content/pdf/10.1007%2Fs10577-010-9155-6.pdf

R. J. Ellis, Macromolecular crowding: an important but neglected aspect of the intracellular environment, Curr. Opin. Struct. Biol, vol.11, pp.114-119, 2001.
DOI : 10.1016/s0959-440x(00)00239-6

D. Muramatsu, H. Kimura, K. Kotoshiba, M. Tachibana, Y. Shinkai et al., Pericentric H3K9me3 formation by HP1 interaction-defective histone methyltransferase Suv39h1, Cell. Struct. Funct, 2016.
DOI : 10.1247/csf.16013

URL : https://www.jstage.jst.go.jp/article/csf/41/2/41_16013/_pdf

J. Johnson, C. A. Brackley, P. R. Cook, and D. Marenduzzo, A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction, J. Phys. Condens. Matter, vol.27, p.64119, 2015.
DOI : 10.1088/0953-8984/27/6/064119

URL : https://www.pure.ed.ac.uk/ws/files/24472450/JPCM15JohnsonAccepted.pdf

C. A. Brackley, S. Taylor, A. Papantonis, P. R. Cook, and D. Marenduzzo, Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization, Proc. Natl. Acad. Sci. USA, vol.110, pp.3605-3616, 2013.
DOI : 10.1073/pnas.1302950110

URL : http://www.pnas.org/content/110/38/E3605.full.pdf

K. Sneppen, M. A. Micheelsen, and I. B. Dodd, Ultrasensitive gene regulation by positive feedback loops in nucleosome modification, Mol. Syst. Biol, vol.4, p.182, 2008.
DOI : 10.1038/msb.2008.21

URL : http://msb.embopress.org/content/4/1/182.full.pdf

F. Tessadori, M. C. Chupeau, Y. Chupeau, M. Knip, R. Germann et al., Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells, J. Cell. Sci, vol.120, pp.1200-1208, 2007.
DOI : 10.1242/jcs.000026

URL : http://jcs.biologists.org/content/120/7/1200.full.pdf

S. Henikoff, Conspiracy of silence among repeated transgenes, BioEssays, vol.20, pp.532-535, 1998.
DOI : 10.1002/(sici)1521-1878(199807)20:7<532::aid-bies3>3.0.co;2-m

A. Pecinka, N. Kato, A. Meister, A. V. Probst, I. Schubert et al., Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana, J. Cell. Sci, vol.118, pp.3751-3758, 2005.
DOI : 10.1242/jcs.02498

URL : http://jcs.biologists.org/content/118/16/3751.full.pdf

A. Tsurumi and W. X. Li, Global heterochromatin loss: a unifying theory of aging, Epigenetics, vol.7, pp.680-688, 2012.
DOI : 10.4161/epi.20540

URL : http://www.tandfonline.com/doi/pdf/10.4161/epi.20540?needAccess=true

B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt et al., Global quantification of mammalian gene expression control, Nature, vol.473, pp.337-342, 2011.

L. Bosch-presegué, H. Raurell-vila, A. Marazueladuque, N. Kane-goldsmith, A. Valle et al., Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection, Mol. Cell, vol.42, pp.210-223, 2011.

S. Oehler and B. Müller-hill, High local concentration: a fundamental strategy of life, J. Mol. Biol, vol.395, pp.242-253, 2010.
DOI : 10.1016/j.jmb.2009.10.056

D. Michel, Modeling generic aspects of ideal fibril formation, J. Chem. Phys, vol.144, p.35101, 2016.
DOI : 10.1063/1.4940149

URL : https://hal.archives-ouvertes.fr/hal-01263103

H. Zheng, L. Chen, W. J. Pledger, J. Fang, and J. Chen, p53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression, Oncogene, vol.33, pp.734-744, 2013.
DOI : 10.1038/onc.2013.6

URL : http://europepmc.org/articles/pmc3912226?pdf=render

A. Vaquero, M. Scher, H. Erdjument-bromage, P. Tempst, L. Serrano et al., SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation, Nature, vol.450, pp.440-444, 2007.

G. Flouriot, G. Huet, F. Demay, F. Pakdel, N. Boujrad et al., The actin/MKL1 signalling pathway influences cell growth and gene expression through large-scale chromatin reorganization and histone post-translational modifications, Biochem. J, vol.461, pp.257-268, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063933

M. K. Schuhmacher, S. Kudithipudi, D. Kusevic, S. Weirich, and A. Jeltsch, Activity and specificity of the human SUV39H2 protein lysine methyltransferase, Biochim. Biophys. Acta, vol.1849, pp.55-63, 2015.

L. Hillringhaus, W. W. Yue, N. R. Rose, S. S. Ng, C. Gileadi et al., Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family, J. Biol. Chem, vol.286, pp.41616-41625, 2011.

S. Krishnan and R. C. Trievel, Structural and functional analysis of JMJD2D reveals molecular basis for site-specific demethylation among JMJD2 demethylases, Structure, vol.21, pp.98-108, 2013.

K. Müller-ott, F. Erdel, A. Matveeva, J. P. Mallm, A. Rademacher et al., Rippe, Specificity, propagation, and memory of pericentric heterochromatin, Mol. Syst. Biol, vol.10, p.746, 2014.

L. Bosch-presegué, H. Raurell-vila, A. Marazuela-duque, N. Kane-goldsmith, A. Valle et al., Vaquero, Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection, Mol. Cell, vol.42, pp.210-223, 2011.

F. A. Mallette, F. Mattiroli, G. Cui, L. C. Young, M. J. Hendzel et al., RNF8-and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites, EMBO J, vol.31, pp.1865-1878, 2012.

B. D. Fodor, S. Kubicek, M. Yonezawa, R. J. O&apos;sullivan, R. Sengupta et al., Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells, Genes Dev, vol.20, pp.1557-1562, 2006.

M. Ta, H. Lim, and J. W. Harper, SCF F BXO22 regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitinmediated proteasomal degradation, Mol. Cell. Biol, vol.31, pp.3687-3699, 2011.

C. Van-rechem, J. C. Black, P. Greninger, Y. Zhao, C. Donado et al., A coding single nucleotide polymorphism in lysine demethylase KDM4A increases sensitivity to mTOR inhibitors, Cancer Discov, vol.5, pp.245-254, 2015.

I. Ipenberg, N. Guttmann-raviv, H. P. Khoury, I. Kupershmit, and N. Ayoub, Heat Shock Protein 90 (Hsp90) selectively regulates the stability of KDM4B/JMJD2B histone demethylase, J. Biol. Chem, vol.288, pp.14681-14687, 2013.

J. Antony, F. Oback, L. W. Chamley, B. Oback, and G. Laible, Transient JMJD2B-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos, Mol. Cell. Biol, vol.33, pp.974-983, 2013.

D. T. Brandt, C. Baarlink, T. M. Kitzing, F. Kremmer, J. Ivaska et al., SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of beta1-integrin, Nat Cell Biol, vol.11, pp.557-568, 2009.

S. Busche, A. Descot, S. Julien, H. Genth, and G. Posern, / Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling, J. Cell. Sci, vol.121, pp.1025-1035, 2008.

T. Chiba, T. Saito, K. Yuki, Y. Zen, S. Koide et al., Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma, Int. J. Cancer, vol.136, pp.289-298, 2014.

A. De-donatis, F. Ranaldi, and P. Cirri, Reciprocal control of cell proliferation and migration, Cell. Commun. Signal, vol.8, p.20, 2010.

C. Dong, Y. Wu, Y. Wang, C. Wang, T. Kang et al., Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer, Oncogene, vol.32, pp.1351-1362, 2013.

S. Efroni, R. Duttagupta, J. Cheng, H. Dehghani, D. J. Hoeppner et al.,

K. H. Mckay, T. R. Buetow, T. Gingeras, and E. Misteli, Meshorer, Global transcription in pluripotent embryonic stem cells, Cell Stem Cell, vol.2, pp.437-447, 2008.

C. Esnault, A. Stewart, F. Gualdrini, P. East, S. Horswell et al., Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts, Genes Dev, vol.28, pp.943-958, 2014.

Z. Fan, C. Hao, M. Li, X. Dai, H. Qin et al., MKL1 is an epigenetic modulator of TGF-? induced fibrogenesis, Biochim. Biophys. Acta, vol.1849, pp.1219-1228, 2015.

G. Flouriot, G. Huet, F. Demay, F. Pakdel, N. Boujrad et al., The actin/MKL1 signalling pathway influences cell growth and gene expression through large-scale chromatin reorganization and histone posttranslational modifications, Biochem. J, vol.461, pp.257-268, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063933

S. Guettler, M. K. Vartiainen, F. Miralles, B. Larijani, and R. Treisman, RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding, Mol. Cell. Biol, vol.28, pp.732-742, 2008.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

R. D. Hawkins, G. C. Hon, L. K. Lee, Q. Ngo, R. Lister et al., Distinct epigenomic landscapes of pluripotent and lineage-committed human cells, Cell Stem Cell, vol.6, pp.479-491, 2010.

N. A. Hathaway, O. Bell, C. Hodges, E. L. Miller, D. S. Neel et al., Dynamics and memory of heterochromatin in living cells, Cell, vol.149, pp.1447-1460, 2012.

E. D. Hay, An overview of epithelio-mesenchymal transformation, Acta Anat (Basel), vol.154, pp.8-20, 1995.

T. Hunter, Protein phosphorylated by the RSV transforming function, Cell, vol.22, pp.647-648, 1980.

J. S. Hinson, M. D. Medlin, J. M. Taylor, and C. P. Mack, Regulation of myocardin factor protein stability by the LIM-only protein FHL2, Am. J. Physiol. Heart Circ. Physiol, vol.295, pp.1067-1075, 2008.

K. Hochedlinger, R. Blelloch, C. Brennan, Y. Yamada, M. Kim et al., Reprogramming of a melanoma genome by nuclear transplantation, Genes Dev, vol.18, pp.1875-1885, 2004.

J. Huang, M. M. Lu, L. Cheng, L. J. Yuan, X. Zhu et al., Myocardin is required for cardiomyocyte survival and maintenance of heart function, Proc. Natl. Acad. Sci. USA, vol.106, pp.18734-18739, 2009.

S. Huang and D. E. Ingber, A non-genetic basis for cancer progression and metastasis : self-organizing attractors in cell regulatory networks, Breast Disease, vol.26, pp.27-54, 2006.

S. Huang, On the intrinsic inevitability of cancer : from foetal to fatal attraction, Semin. Cancer Biol, vol.21, pp.183-199, 2011.

S. Huang, The molecular and mathematical basis of Waddington's epigenetic landscape : a framework for postDarwinian biology, Bioessays, vol.34, pp.149-157, 2012.

D. Iliopoulos, H. A. Hirsch, and K. Struhl, An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation, Cell, vol.139, pp.693-706, 2009.

R. Kalluri and R. A. Weinberg, The basics of epithelialmesenchymal transition, J. Clin. Invest, vol.119, pp.1420-1428, 2009.

S. A. Kauffman, The origins of order : self-organization and selection in evolution, 1993.

P. Khanal, G. Kim, S. C. Lim, H. J. Yun, K. Y. Lee et al., Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer, FASEB J, vol.27, pp.4606-4618, 2013.

Y. Kimura, T. Morita, K. Hayashi, T. Miki, and K. Sobue, Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine leiomyosarcoma cells, Cancer Res, vol.70, pp.501-511, 2010.

E. A. Kohn, Y. A. Yang, Z. Du, Y. Nagano, C. M. Van-schyndle et al., Biological responses to TGF-? in the mammary epithelium show a complex dependency on Smad3 gene dosage with important implications for tumor progression, Mol. Cancer Res, vol.10, pp.1389-1399, 2012.

D. C. Kraushaar and K. Zhao, The epigenomics of embryonic stem cell differentiation, Int. J. Biol. Sci, vol.9, pp.1134-1144, 2013.

L. Leitner, D. Shaposhnikov, A. Mengel, A. Descot, S. Julien et al., MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins, J. Cell. Sci, vol.124, pp.4318-4331, 2011.

Y. H. Loh, W. Zhang, X. Chen, J. George, and H. H. Ng, Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells, Genes Dev, vol.21, pp.2545-2557, 2007.

X. Long, R. D. Bell, W. T. Gerthoffer, B. V. Zlokovic, and J. M. Miano, Myocardin is sufficient for a smooth musclelike contractile phenotype, Arterioscler. Thromb. Vasc. Biol, vol.28, pp.1505-1510, 2008.

S. Matoba, Y. Liu, F. Lu, K. A. Iwabuchi, L. Shen et al., Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation, Cell, vol.159, pp.884-895, 2014.

O. G. Mcdonald, H. Wu, W. Timp, A. Doi, and A. P. Feinberg, Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition, Nat. Struct. Mol. Biol, vol.18, pp.867-874, 2011.

C. P. Mack, Signaling mechanisms that regulate smooth muscle cell differentiation, Atherioscler. Thromb. Vasc. Biol, vol.31, pp.1495-1505, 2011.

S. Medjkane, C. Perez-sanchez, C. Gaggioli, E. Sahai, and R. Treisman, Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis, Nat. Cell. Biol, vol.11, pp.257-268, 2009.

E. Meshorer and T. Misteli, Chromatin in pluripotent embryonic stem cells and differentiation, Nat. Rev. Mol. Cell. Biol, vol.7, pp.540-546, 2006.

M. Milyavsky, I. Shats, A. Cholostoy, R. Brosh, Y. Buganim et al., Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect, Cancer Cell, vol.11, pp.133-146, 2007.

F. Miralles, G. Posern, A. I. Zaromytidou, and R. Treisman, Actin dynamics control SRF activity by regulation of its coactivator MAL, Cell, vol.113, pp.329-342, 2003.

T. Morita, T. Mayanagi, and K. Sobu, Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling, J. Cell. Biol, vol.179, pp.1027-1042, 2007.

S. Mouilleron, C. A. Langer, S. Guettler, N. Q. Mcdonald, and R. Treisman, Structure of a pentavalent Gactin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator, Sci. Signal, vol.4, p.40, 2011.

F. Nallet-staub, X. Yin, C. Gilbert, V. Marsaud, S. Ben-mimoun et al., Cell density sensing alters TGF-? signaling in a cell-type-specific manner, independent from Hippo pathway activation, Dev. Cell, vol.32, pp.640-651, 2015.

Y. J. Nam, K. Song, X. Luo, E. Daniel, K. Lambeth et al., Reprogramming of human fibroblasts toward a cardiac fate, Proc. Natl. Acad. Sci. USA, vol.110, pp.5588-5593, 2013.

F. Nicol-benoit, P. Le-goff, Y. Le-dréan, F. Demay, F. Pakdel et al., Epigenetic memories : structural marks or active circuits ?, Cell. Mol. Life Sci, vol.69, pp.2189-2203, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01063617

F. Nicol-benoit, P. Le-goff, and D. Michel, Drawing a Waddington landscape to capture dynamic epigenetics, Biol. Cell, vol.105, pp.576-584, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00920766

M. A. Nieto, Epithelial plasticity : a common theme in embryonic and cancer cells, Science, vol.342, p.1234850, 2013.

J. W. O&apos;connor and E. W. Gomez, Cell adhesion and shape regulate TGF-beta1-induced epithelial-myofibroblast transition via MRTF-A signaling, PLoS One, vol.8, p.83188, 2013.

J. W. O&apos;connor, P. N. Riley, S. M. Nalluri, P. K. Ashar, and E. W. Gomez, Matrix rigidity mediates TGF?1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization, J. Cell. Physiol, vol.230, pp.1829-1839, 2015.

E. N. Olson and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nat. Rev. Mol. Cell. Biol, vol.11, pp.353-365, 2010.
DOI : 10.1038/nrm2890

URL : http://europepmc.org/articles/pmc3073350?pdf=render

G. J. Pageau, L. L. Hall, S. Ganesan, D. M. Livingston, and J. B. Lawrence, The disappearing Barr body in breast and ovarian cancers, Nat. Rev. Cancer, vol.7, pp.628-633, 2007.
DOI : 10.1038/nrc2172

D. Paul and G. H. Schmidt, Immortalization and malignant transformation of differentiated cells by oncogenes in vitro and in transgenic mice, Crit. Rev. Oncog, vol.1, pp.307-321, 1989.

A. O. Pisco and S. Huang, Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse : 'What does not kill me strengthens me, Br. J. Cancer, vol.112, pp.1725-1732, 2015.
DOI : 10.1038/bjc.2015.146

URL : https://www.nature.com/articles/bjc2015146.pdf

K. Podsypanina, Y. C. Du, M. Jechlinger, L. J. Beverly, D. Hambardzumyan et al., Seeding and propagation of untransformed mouse mammary cells in the lung, Science, vol.321, pp.1841-1844, 2008.

P. Ruiz and U. Gnthert, The cellular basis of metastasis, World J. Urol, vol.14, pp.141-150, 1996.

L. Salvany, J. Muller, E. Guccione, and P. Rørth, The core and conserved role of MAL is homeostatic regulation of actin levels, Genes Dev, vol.28, pp.1048-1053, 2014.

M. A. Scharenberg, R. Chiquet-ehrismann, and M. , Asparuhova, Megakaryoblastic leukemia protein-1 (MKL1) : Increasing evidence for an involvement in cancer progression and metastasis, Int. J. Biochem. Cell. Biol, vol.42, pp.1911-1914, 2010.
DOI : 10.1016/j.biocel.2010.08.014

L. J. Schmidt, K. Duncan, N. Yadav, K. M. Regan, A. R. Verone et al., RhoA as a mediator of clinically relevant androgen action in prostate cancer cells, Mol. Endocrinol, vol.26, pp.716-735, 2012.

A. Selvaraj and R. Prywes, Megakaryoblastic leukemia1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation, J. Biol. Chem, vol.278, pp.41977-41987, 2003.
DOI : 10.1074/jbc.m305679200

URL : http://www.jbc.org/content/278/43/41977.full.pdf

A. Selvaraj and R. Prywes, Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent, BMC Mol. Biol, vol.5, p.13, 2004.

P. Speight, H. Nakano, T. J. Kelley, B. Hinz, and A. Kapus, Differential topical susceptibility to TGF ? in intact and injured regions of the epithelium : key role in myofibroblast transition, Mol. Biol. Cell, vol.24, pp.3326-3336, 2013.

J. M. Slack, Conrad Hal Waddington : the last Renaissance biologist ?, Nat. Rev. Genet, vol.3, pp.889-895, 2002.
DOI : 10.1038/nrg933

W. L. Tam and R. A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer, Nat. Med, vol.19, pp.1438-1449, 2013.

M. Tian, J. R. Neil, and W. P. Schiemann, Transforming growth factor-beta and the hallmarks of cancer, Cell Signal, vol.23, pp.951-962, 2011.

C. Tomasetti and B. Vogelstein, Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions, Science, vol.347, pp.78-81, 2015.

S. Varum, A. S. Rodrigues, M. B. Moura, O. Momcilovic, C. A. Easley-4th et al., Energy metabolism in human pluripotent stem cells and their differentiated counterparts, PLoS One, vol.6, p.20914, 2011.
DOI : 10.1371/journal.pone.0020914

URL : https://doi.org/10.1371/journal.pone.0020914

L. Verset, J. Tommelein, X. M. Lopez, C. Decaestecker, M. Mareel et al., Epithelial expression of FHL2 is negatively associated with metastasis-free and overall survival in colorectal cancer, Br. J. Cancer, vol.109, pp.114-120, 2013.

B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz et al., Cancer genome landscapes, Science, vol.339, pp.1546-1558, 2013.
DOI : 10.1126/science.1235122

URL : http://science.sciencemag.org/content/339/6127/1546.full.pdf

D. Wang, P. S. Chang, Z. Wang, L. Sutherland, J. A. Richardson et al., Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor, Cell, vol.105, pp.851-862, 2001.

D. Z. Wang, S. Li, D. Hockemeyer, L. Sutherland, Z. Wang et al., Potentiation of serum response factor activity by a family of myocardin-related transcription factors, Proc. Natl. Acad. Sci. USA, vol.99, pp.14855-14860, 2002.

Z. Wang, D. Z. Wang, G. C. Pipes, and E. N. Olson, Myocardin is a master regulator of smooth muscle gene expression, Proc. Natl. Acad. Sci. USA, vol.100, pp.7129-7134, 2003.
DOI : 10.1073/pnas.1232341100

URL : http://www.pnas.org/content/100/12/7129.full.pdf

Z. Wang, D. Z. Wang, D. Hockemeyer, J. Mcanally, A. Nordheim et al., Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression, Nature, vol.428, pp.185-189, 2004.
DOI : 10.1038/nature02382

M. A. Wozniak, C. Q. Cheng, C. J. Shen, L. Gao, A. O. Olarerin-george et al., Adhesion regulates MAP kinase/ternary complex factor exchange to control a proliferative transcriptional switch, Curr. Biol, vol.22, pp.2017-2026, 2012.
DOI : 10.1016/j.cub.2012.08.050

URL : https://doi.org/10.1016/j.cub.2012.08.050

K. Yamazaki, Y. Masugi, K. Effendi, H. Tsujikawa, N. Hiraoka et al., Upregulated SMAD3 promotes epithelial-mesenchymal transition and predicts poor prognosis in pancreatic ductal adenocarcinoma, Lab. Invest, vol.94, pp.683-691, 2014.
DOI : 10.1038/labinvest.2014.53

URL : https://www.nature.com/articles/labinvest201453.pdf

S. Yang, L. Liu, P. Xu, and Z. Yang, MKL1 inhibits cell cycle progression through p21 in podocytes, BMC Mol. Biol, vol.12, p.1, 2015.
DOI : 10.1186/s12867-015-0029-5

URL : https://bmcmolbiol.biomedcentral.com/track/pdf/10.1186/s12867-015-0029-5

X. Ye, W. L. Tam, T. Shibue, Y. Kaygusuz, F. Reinhardt et al., Distinct EMT programs control normal mammary stem cells and tumourinitiating cells, Nature, vol.525, pp.256-260, 2015.
DOI : 10.1038/nature14897

URL : http://europepmc.org/articles/pmc4764075?pdf=render

Y. Yokoyama, M. Hieda, Y. Nishioka, A. Matsumoto, S. Higashi et al., Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo, Cancer Sci, vol.104, pp.889-895, 2013.

A. I. Zaromytidou, F. Miralles, and R. Treisman, MAL and ternary complex factor use different mechanisms to contact a common surface on the serum response factor DNAbinding domain, Mol. Cell. Biol, vol.26, pp.4134-4148, 2006.
DOI : 10.1128/mcb.01902-05

URL : http://mcb.asm.org/content/26/11/4134.full.pdf

M. Zeisberg and E. G. Neilson, Biomarkers for epithelialmesenchymal transitions, J. Clin. Invest, vol.119, pp.1429-1437, 2009.

A. El-rehim, D. M. Pinder, S. E. Paish, and C. E. , Expression of luminal and basal cytokeratins in human breast carcinoma, J Pathol, vol.203, pp.661-671, 2004.

F. Acconcia, P. Ascenzi, and A. Bocedi, Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol, Mol Biol Cell, vol.16, pp.231-237, 2005.
DOI : 10.1091/mbc.e04-07-0547

URL : http://europepmc.org/articles/pmc539167?pdf=render

M. Adlanmerini, R. Solinhac, and A. Abot, Mutation of the palmitoylation site of estrogen receptor in vivo reveals tissue-specific roles for membrane versus nuclear actions, Proc Natl Acad Sci, vol.111, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01015486

Z. A. Al-safi and A. J. Polotsky, Obesity and Menopause, Best Pract Res Clin Obstet Gynaecol, vol.29, pp.548-553, 2015.

M. W. Alam, C. U. Persson, and S. Reinbothe, HIF2? contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells, Oncotarget, 2016.
DOI : 10.18632/oncotarget.7167

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=7167&path%5B%5D=20415

F. Albright, P. S. , and A. M. , Postmenopausal osteoporosis: Its clinical features, J Am Med Assoc, vol.116, pp.2465-2474, 1941.

S. Ali, D. Metzger, J. Bornert, and P. Chambon, Modulation of transcriptional activation by liganddependent phosphorylation of the human oestrogen receptor A/B region, EMBO, vol.12, pp.1153-1160, 1993.

B. L. Allen and D. J. Taatjes, The Mediator complex: a central integrator of transcription, Nat Rev Mol Cell Biol, vol.16, pp.155-166, 2015.

A. Ropero, A. B. Carrera, and M. P. , Pancreatic insulin content regulation by the Estrogen receptor ER?, PLoS One, 2008.

M. Alvarez-tejado, A. Alfranca, and J. Aragonés, Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension, J Biol Chem, vol.277, pp.13508-13517, 2002.

J. H. Anolik, C. M. Klinge, R. Hilf, and R. A. Bambara, Cooperative Binding of Estrogen Receptor to DNA Depends on Spacing of Binding Sites, Flanking Sequence, and Ligand, Biochemistry, vol.34, pp.2511-2520, 1995.

S. L. Anzick, J. Kononen, and R. L. Walker, AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer, Science (80-), vol.277, pp.965-968, 1997.

J. Arnal, F. Lenfant, and R. Metivier, Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications, Physiol Rev, vol.97, pp.1045-1087, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533249

J. F. Arnal, C. Fontaine, and A. Billon-galés, Estrogen receptors and endothelium, Arterioscler. Thromb. Vasc. Biol, vol.30, pp.1506-1512, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00504272

J. F. Arnal, H. Laurell, and C. Fontaine, Estrogen receptor actions on vascular biology and inflammation: implications in vascular pathophysiology, Climacteric, vol.12, pp.12-19, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00512765

J. B. Arnes, J. S. Brunet, and I. Stefansson, Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer, Clin Cancer Res, vol.11, pp.4003-4011, 2005.

S. Arsenian, B. Weinhold, and M. Oelgeschläger, Serum response factor is essential for mesoderm formation during mouse embryogenesis, EMBO J, vol.17, pp.6289-6299, 1998.

A. M. Arsham, D. R. Plas, C. B. Thompson, C. Simon, and M. , Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1? nor sufficient for HIF-1-dependent target gene transcription, J Biol Chem, vol.277, pp.15162-15170, 2002.

A. M. Arsham, D. R. Plas, C. B. Thompson, and M. C. Simon, Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis, Cancer Res, vol.64, pp.3500-3507, 2004.

M. Asselin-labat, K. D. Sutherland, and H. Barker, Gata-3 is an essential regulator of mammarygland morphogenesis and luminal-cell differentiation, Nat Cell Biol, vol.9, pp.201-209, 2007.

M. L. Asselin-labat, F. Vaillant, and M. Shackleton, Delineating the epithelial hierarchy in the mouse mammary gland, Cold Spring Harbor Symposia on Quantitative Biology, pp.469-478, 2008.

C. Atsriku, D. J. Britton, and J. M. Held, Systematic mapping of posttranslational modifications in human estrogen receptor-alpha with emphasis on novel phosphorylation sites, Mol Cell Proteomics, vol.8, pp.467-480, 2009.

F. Auricchio, A. Migliaccio, and G. Castoria, Direct evidence of in vitro phosphorylationdephosphorylation of the estradiol-17?? receptor. role of Ca2+-Calmodulin in the activation of hormone binding sites, J Steroid Biochem, vol.20, pp.31-35, 1984.

F. Auricchio, A. Migliaccio, D. Domenico, M. , and N. E. , Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system, 1987.

C. Baarlink, H. Wang, and R. Grosse, Nuclear actin network assembly by formins regulates the SRF coactivator MAL, Science, vol.340, pp.864-871, 2013.

S. Badve, D. J. Dabbs, and S. J. Schnitt, Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists, Mod Pathol, vol.24, pp.157-167, 2011.

W. J. Bakker, I. S. Harris, and T. W. Mak, FOXO3a Is Activated in Response to Hypoxic Stress and Inhibits HIF1-Induced Apoptosis via Regulation of CITED2, Mol Cell, vol.28, pp.941-953, 2007.

A. Bandyopadhyay, L. Wang, S. H. Chin, and L. Sun, Inhibition of skeletal metastasis by ectopic ERalpha expression in ERalpha-negative human breast cancer cell lines, Neoplasia, vol.9, pp.113-121, 2007.

J. Baselga, S. Im, and H. Iwata, Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, p.242, 2017.

B. Belandia, R. L. Orford, H. C. Hurst, and M. G. Parker, Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes, EMBO J, vol.21, pp.4094-4103, 2002.

A. Bellizzi, A. Mangia, and A. Chiriatti, RhoA protein expression in primary breast cancers and matched lymphocytes is associated with progression of the disease, Int J Mol Med, vol.22, pp.25-31, 2008.

C. C. Benz, G. K. Scott, and J. C. Sarup, Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu, Breast Cancer Res Treat, vol.24, pp.85-95, 1992.
DOI : 10.1007/bf01961241

G. M. Bernardo, K. L. Lozada, and J. D. Miedler, FOXA1 is an essential determinant of ER expression and mammary ductal morphogenesis, Development, vol.137, pp.2045-2054, 2010.
DOI : 10.1242/dev.043299

URL : http://dev.biologists.org/content/137/12/2045.full.pdf

M. Berry, D. Metzger, and P. Chambon, Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4hydroxytamoxifen, EMBO J, vol.9, pp.2811-2818, 1990.

K. Bhadriraju, M. Yang, A. Ruiz, and S. , Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension, Exp Cell Res, vol.313, pp.3616-3623, 2007.
DOI : 10.1016/j.yexcr.2007.07.002

URL : http://europepmc.org/articles/pmc2064860?pdf=render

A. Billon-galés, C. Fontaine, and C. Filipe, The transactivating function 1 of estrogen receptor alpha is dispensable for the vasculoprotective actions of 17beta-estradiol, Proc Natl Acad Sci U S A, vol.106, pp.2053-2061, 2009.

E. Blazek, G. Mittler, and M. Meisterernst, The mediator of RNA polymerase II, Chromosoma, vol.113, pp.399-408, 2005.

M. T. Bocquel, V. Kumar, and C. Stricker, The contribution of the N-and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific, Nucleic Acids Res, vol.17, pp.2581-2595, 1989.

A. Boudot, G. Kerdivel, and D. Habauzit, Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells, PLoS One, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00605459

P. Bouris, S. S. Skandalis, and Z. Piperigkou, Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells, Matrix Biol, vol.43, pp.42-60, 2015.

J. Bregeon, G. Loirand, P. Pacaud, and M. Rolli-derkinderen, Angiotensin II induces RhoA activation through SHP2-dependent dephosphorylation of the RhoGAP p190A in vascular smooth muscle cells, Am J Physiol Cell Physiol, vol.297, 2009.

C. Bbiske and B. Oomallee, Hooe aatio i the aa glaad. Cold Spig Haa, Peespeet. Biol, vol.2

D. J. Britton, I. R. Hutcheson, and J. M. Knowlden, Bidirectional cross talk between ER?? and EGFR signalling pathways regulates tamoxifen-resistant growth, Breast Cancer Res Treat, vol.96, pp.131-146, 2006.
DOI : 10.1007/s10549-005-9070-2

A. Bruna, O. M. Rueda, and W. Greenwood, A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds, Cell, vol.167, pp.260-274, 2016.
DOI : 10.1016/j.cell.2016.08.041

URL : https://doi.org/10.1016/j.cell.2016.08.041

G. Bunone, P. A. Briand, R. J. Miksicek, and D. Picard, Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation, EMBO J, vol.15, pp.2174-83, 1996.

S. Busche, A. Descot, and S. Julien, Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling, J Cell Sci, vol.121, pp.1025-1035, 2008.
DOI : 10.1242/jcs.014456

URL : http://jcs.biologists.org/content/121/7/1025.full.pdf

S. Busche, E. Kremmer, and G. Posern, E-cadherin regulates MAL-SRF-mediated transcription in epithelial cells, J Cell Sci, vol.123, pp.2803-2812, 2010.
DOI : 10.1242/jcs.061887

URL : http://jcs.biologists.org/content/123/16/2803.full.pdf

J. Butler and J. T. Kadonaga, The RNA polymerase II core promoter: a key component in the regulation of gene expression, Genes Dev, vol.16, pp.2583-2592, 2002.

L. Caizzi, G. Ferrero, and S. Cutrupi, Genome-wide activity of unliganded estrogen receptor-? in breast cancer cells, Proc Natl Acad Sci U S A, vol.111, pp.1-6, 2014.
DOI : 10.1073/pnas.1315445111

URL : http://www.pnas.org/content/111/13/4892.full.pdf

R. A. Campbell, P. Bhat-nakshatri, and N. M. Patel, Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor ?: A new model for anti-estrogen resistance, J Biol Chem, vol.276, pp.9817-9824, 2001.

L. A. Carey, C. M. Perou, and C. A. Livasy, Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study, JAMA, vol.295, p.2492, 2006.

P. Carmeliet, Y. Dor, and J. M. Herbert, Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis, Nature, vol.394, pp.485-90, 1998.

P. Carmeliet and L. Moons, Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions, Nat Med, vol.7, pp.575-83, 2001.

J. S. Carroll, . Meyer, and J. Song, Genome-wide analysis of estrogen receptor binding sites, Nat Genet, vol.38, pp.1289-1297, 2006.

C. , M. A. Sshhade, W. T. Omalley, and B. W. , Steroid receptor family: structure and functions, Endocr Rev, vol.11, pp.201-220, 1990.

M. C. Casimiro, C. Wang, and Z. Li, Cyclin D1 Determines Estrogen Signaling in the Mammary Gland In Vivo, Mol Endocrinol, vol.27, pp.1415-1428, 2013.

D. A. Casolari, M. C. Pereira, D. Garcia, S. A. Nagai, and M. A. , Insulin-like growth factor-1 and 17Betaestradiol down-regulate prostate apoptosis response-4 expression in MCF-7 breast cancer cells, Int J Mol Med, vol.28, pp.337-342, 2011.

G. Castoria, A. Migliaccio, and A. Bilancio, PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells, EMBO J, vol.20, pp.6050-6059, 2001.

T. Caulin-glaser, G. Garcia-cardena, and P. Sarrel, beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization, Circ Res, vol.17, pp.885-892, 1997.

C. Chan, L. A. Martin, and S. Johnston, Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation, J Steroid Biochem Mol Biol, vol.81, pp.333-341, 2002.

E. Chantalat, F. Boudou, and H. Laurell, The AF-1-deficient estrogen receptor ER?46 isoform is frequently expressed in human breast tumors, Breast Cancer Res, vol.18, p.123, 2016.

C. Ginestier, C. Birnbaum, and D. , Breast cancer stem cells: tools and models to rely on, BMC Cancer, vol.9, p.202, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01431957

C. Ginestier, C. Iovino, and F. , Breast cancer cell lines contain functional cancer stem sells with metastatic capacity and a distinct molecular signature, Cancer Res, vol.69, pp.1302-1313, 2009.

R. A. Chaudhri, A. Hadadi, and K. S. Lobachev, Estrogen receptor-alpha 36 mediates the antiapoptotic effect of estradiol in triple negative breast cancer cells via a membrane-associated mechanism, Biochim Biophys Acta-Mol Cell Res, vol.1843, pp.2796-2806, 2014.

R. A. Chaudhri, R. Olivares-navarrete, and N. Cuenca, Membrane estrogen signaling enhances tumorigenesis and metastatic potential of breast cancer cells via estrogen receptor-?36, 2012.

, J Biol Chem, vol.287, pp.7169-7181

J. R. Chen, T. Y. Hsieh, and H. Y. Chen, Absence of estrogen receptor alpha (ESR1) gene amplification in a series of breast cancers in Taiwan, Virchows Arch, vol.464, pp.689-699, 2014.

X. Cheng, Y. Yang, and Z. Fan, MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene 1-12, 2015.

A. C. Chiang and J. Massagué, Molecular Basis of Metastasis, N Engl J Med, vol.359, pp.2814-2823, 2008.

J. Chiu, C. Wen, and J. Wang, Role of estrogen receptors and Src signaling in mechanisms of bone metastasis by estrogen receptor positive breast cancers, J Transl Med, vol.15, p.97, 2017.

J. Cho, J. J. Bahn, and M. Park, Hypoxic activation of unoccupied estrogen-receptor-alpha is mediated by hypoxia-inducible factor-1 alpha, J Steroid Biochem Mol Biol, vol.100, pp.18-23, 2006.
DOI : 10.1016/j.jsbmb.2006.03.002

J. Cho, D. Kim, S. Lee, and Y. Lee, Cobalt chloride-induced estrogen receptor alpha down-regulation involves hypoxia-inducible factor-1alpha in MCF-7 human breast cancer cells, Mol Endocrinol, vol.19, pp.1191-1199, 2005.
DOI : 10.1210/me.2004-0162

URL : https://academic.oup.com/mend/article-pdf/19/5/1191/10718079/mend1191.pdf

L. Ciarloni, S. Mallepell, and C. Brisken, Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development, Proc Natl Acad Sci U S A, vol.104, pp.5455-60, 2007.

L. Cicatiello, C. Scafoglio, and L. Altucci, A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome, J. Mol. Endocrinol, vol.32, pp.719-775, 2004.

?. Cipo, J. H?eea?ko, and J. Ha?ta, Valpoi aaid oeeoes hpoia-induced resistance to apoptosis, Oncol Rep, vol.27, pp.1219-1226

L. A. Cirillo, F. R. Lin, and I. Cuesta, Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4, Mol Cell, vol.9, pp.459-467, 2002.
DOI : 10.1016/s1097-2765(02)00459-8

URL : https://doi.org/10.1016/s1097-2765(02)00459-8

R. Clarke, J. J. Tyson, and J. M. Dixon, Endocrine resistance in breast cancer-An overview and update, Mol Cell Endocrinol, vol.418, pp.220-234, 2015.
DOI : 10.1016/j.mce.2015.09.035

URL : http://europepmc.org/articles/pmc4684757?pdf=render

P. Cloos, J. Christensen, and K. Agger, The putative oncogene GASC1 demethylates tri-and dimethylated lysine 9 on histone H3, Nature, vol.442, pp.307-311, 2006.
DOI : 10.1038/nature04837

K. M. Comerford, T. J. Wallace, and J. Karhausen, Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene, Cancer Res, vol.62, pp.3387-3394, 2002.

C. Cooper, G. Liu, and Y. Niu, Intermittent hypoxia induces proteasome-dependent downregulation of estrogen receptor ? in human breast carcinoma, Clin Cancer Res, 2004.
DOI : 10.1158/1078-0432.ccr-04-1235

URL : http://clincancerres.aacrjournals.org/content/10/24/8720.full.pdf

J. W. Copeland and R. Treisman, The Diaphanous-related Formin mDia1 Controls Serum Response Factor Activity through its Effects on Actin Polymerization, Mol Biol Cell, vol.13, pp.4088-4099, 2002.
DOI : 10.1091/mbc.02-06-0092

URL : http://europepmc.org/articles/pmc133616?pdf=render

J. F. Couse and K. S. Korach, Estrogen receptor null mice: What have we learned and where will they lead us?, Endocr. Rev, vol.20, pp.358-417, 1999.
DOI : 10.1210/er.20.3.358

URL : https://academic.oup.com/edrv/article-pdf/20/3/358/8864683/edrv0358.pdf

J. Cui, K. Germer, and T. Wu, Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells, Cancer Res, vol.72, pp.5625-5634, 2012.
DOI : 10.1158/0008-5472.can-12-1305

URL : http://cancerres.aacrjournals.org/content/72/21/5625.full.pdf

S. Cutrupi and S. Reineri, Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells, Oncogene, vol.31, pp.4420-4420, 2012.

R. J. Deberardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation, Cell Metab, vol.7, pp.11-20, 2008.

G. Deeb, M. M. Vaughan, and I. Mcinnis, Hypoxia-inducible factor-1?? protein expression is associated with poor survival in normal karyotype adult acute myeloid leukemia, Leuk Res, vol.35, pp.579-584, 2011.
DOI : 10.1016/j.leukres.2010.10.020

A. Demichele, A. B. Troxel, and J. A. Berlin, Impact of raloxifene or tamoxifen use on endometrial cancer risk: A population-based case-control study, J Clin Oncol, vol.26, pp.4151-4159, 2008.

P. Dey, P. Jonsson, and J. Hartman, Estrogen receptors ?1 and ?2 have opposing roles in regulating proliferation and bone metastasis genes in the prostate cancer cell line PC3, Mol Endocrinol, vol.26, pp.1991-2003, 2012.

A. E. Dhamad, Z. Zhou, J. Zhou, and Y. Du, Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER?) and Biochemical Characterization of the ER?-Hsp70 Interaction, PLoS One, vol.11, pp.1-19, 2016.

D. Conza, G. , T. Cafarello, S. Loroch, and S. , The mTOR and PP2A Pathways Regulate PHD2 Phosphorylation to Fine-Tune HIF1?? Levels and Colorectal Cancer Cell Survival under Hypoxia, Cell Rep, vol.18, pp.1699-1712, 2017.

R. B. Dickson, M. E. Mcmanaway, and M. E. Lippman, Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth, Science (80-), vol.232, pp.1540-1543, 1986.

L. E. Dobrolecki, S. D. Airhart, and D. G. Alferez, Patient-derived xenograft (PDX) models in basic and translational breast cancer research, Cancer Metastasis Rev, vol.35, pp.547-573, 2016.

S. F. Doisneau-sixou, C. M. Sergio, and J. S. Carroll, Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells, Endocrine-Related Cancer, pp.179-186, 2003.

H. Doktorova, J. Hrabeta, M. A. Khalil, and T. Eckschlager, Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1, Biomed Pap, vol.159, pp.166-177, 2015.

K. M. Dolwick, H. I. Swanson, and C. A. Bradfield, In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition, Proc Natl Acad Sci U S A, vol.90, pp.8566-8570, 1993.

J. Dostie, T. A. Richmond, and R. A. Arnaout, Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements, Genome Res, vol.16, pp.1299-1309, 2006.

A. E. Drummond and J. K. Findlay, The role of estrogen in folliculogenesis, Mol. Cell. Endocrinol, vol.151, pp.57-64, 1999.

R. Du, K. V. Lu, and C. Petritsch, HIF1? Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion, Cancer Cell, vol.13, pp.206-220, 2008.

M. Dutertre and C. L. Smith, Ligand-Independent Interactions of p160/Steroid Receptor Coactivators and CREB-Binding Protein (CBP) with Estrogen Receptor-?: Regulation by Phosphorylation Sites in the A/B Region Depends on Other Receptor Domains, Mol Endocrinol, vol.17, pp.1296-1314, 2003.

J. Eeckhoute, E. K. Keeton, and M. Lupien, Positive cross-regulatory loop ties GATA-3 to estrogen eeepto ?? eepessio i east aaee. Caaee Res :-6483, 2007.

H. Endoh, K. Maruyama, and Y. Masuhiro, Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha, Mol Cell Biol, vol.19, pp.5363-72, 1999.

E. B. Engler-chiurazzi, C. M. Brown, J. M. Povroznik, and J. W. Simpkins, Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury, Prog. Neurobiol, 2015.

H. Escriva, R. Safi, and C. Hänni, Ligand binding was acquired during evolution of nuclear receptors, Proc Natl Acad Sci U S A, vol.94, pp.6803-6808, 1997.

D. H. Fagan, R. R. Uselman, D. Sachdev, and D. Yee, Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: Implications for breast cancer treatment, Cancer Res, vol.72, pp.3372-3380, 2012.

D. H. Fagan and D. Yee, Crosstalk between IGF1R and estrogen receptor signaling in breast cancer, J. Mammary Gland Biol. Neoplasia, vol.13, pp.423-429, 2008.

F. Lima, J. Nofech-mozes, S. Bayani, J. Bartlett, and J. , EMT in Breast Carcinoma-A Review, J Clin Med, vol.5, p.65, 2016.

C. C. Feng, C. C. Lin, and Y. P. Lai, Hypoxia suppresses myocardial survival pathway through HIF-1?IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression, Growth Factors, vol.34, pp.73-86, 2016.

W. Feng, R. Ribeiro, and R. L. Wagner, Hormone-Dependent Coactivator Binding to a Hydrophobic Cleft on Nuclear Receptors, Science (80-), vol.280, pp.1747-1749, 1998.

Y. Feng, D. Manka, K. Wagner, and S. A. Khan, Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice, Proc Natl Acad Sci U S A, vol.104, pp.14718-14741, 2007.

E. J. Filardo, J. A. Quinn, K. I. Bland, and A. R. Frackelton, Estrogen-Induced Activation of Erk-1 and Erk-2 Requires the G Protein-Coupled Receptor Homolog, GPR30, and Occurs via Trans-Activation of the Epidermal Growth Factor Receptor through Release of HB-EGF, Mol Endocrinol, vol.14, pp.1649-1660, 2000.

E. J. Filardo, J. A. Quinn, A. R. Frackelton, and K. I. Bland, Estrogen Action Via the G Protein-Coupled Receptor, GPR30: Stimulation of Adenylyl Cyclase and cAMP-Mediated Attenuation of the Epidermal Growth Factor Receptor-to-MAPK Signaling Axis, Mol Endocrinol, vol.16, pp.70-84, 2002.

R. S. Finn, Targeting Src in breast cancer, Ann. Oncol, vol.19, pp.1379-1386, 2008.

G. Flouriot, H. Brand, and S. Denger, Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hERalpha activation function 1, EMBO J, vol.19, pp.4688-4700, 2000.

G. Flouriot, G. Huet, and F. Demay, The actin/MKL1 signalling pathway influences cell growth and gene expression through large-scale chromatin reorganization and histone post-translational modifications, Biochem J, vol.461, pp.257-68, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063933

G. Fluegen, A. Avivar-valderas, and Y. Wang, Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments, Nat Cell Biol, pp.1-6, 2017.

J. Font-de-mora and M. Brown, AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor, Mol Cell Biol, vol.20, pp.5041-5048, 2000.

A. Foryst-ludwig and U. Kintscher, Metabolic impact of estrogen signalling through ERalpha and ERbeta, J. Steroid Biochem. Mol. Biol, vol.122, pp.74-81, 2010.

J. S. Foster, R. I. Fernando, and N. Ishida, Estrogens Down-regulate p27Kip1 in Breast Cancer Cells through Skp2 and through Nuclear Export Mediated by the ERK Pathway, J Biol Chem, vol.278, pp.41355-41366, 2003.

X. Fu, R. Jeselsohn, and R. Pereira, FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer, Proc Natl Acad Sci, vol.113, pp.6600-6609, 2016.

J. H. Fuady, K. Gutsche, and S. Santambrogio, Estrogen-dependent downregulation of hypoxiainducible factor (HIF)-2` in invasive breast cancer cells, Oncotarget, 2016.

R. Garc??a-becerra, N. Santos, D. , L. Camacho, and J. , Mechanisms of resistance to endocrine 248 therapy in breast cancer: Focus on signaling pathways, miRNAs and genetically based resistance, Int. J. Mol. Sci, vol.14, pp.108-145, 2013.

D. Generali, F. M. Buffa, and A. Berruti, Phosphorylated ERalpha, HIF-1alpha, and MAPK signaling as predictors of primary endocrine treatment response and resistance in patients with breast cancer, J Clin Oncol, vol.27, pp.227-261, 2009.

D. Germain, Estrogen Carcinogenesis in Breast Cancer, Endocrinol. Metab. Clin. North Am, vol.40, pp.473-484, 2011.

D. M. Gilkes, L. Xiang, and S. J. Lee, Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells, Proc Natl Acad Sci U S A, vol.111, pp.384-93, 2014.

I. Girault, F. Lerebours, and S. Amarir, Expression analysis of estrogen receptor ? coregulators in breast carcinoma: Evidence that NCOR1 expression is predictive of the response to tamoxifen, Clin Cancer Res, vol.9, pp.1259-1266, 2003.

S. Goel, Q. Wang, and A. C. Watt, Overcoming Therapeutic Resistance in HER2-Positive Breast Cancers with CDK4/6 Inhibitors, Cancer Cell, vol.29, pp.255-269, 2016.

S. W. Goldstein, J. Bordner, L. R. Hoth, and K. F. Geoghegan, Chemical and biochemical issues related to Xray crystallography of the ligand-binding domain of estrogen receptor alpha, Bioconjug Chem, vol.12, pp.406-419, 2001.

. Gray, F. F. Bartol, and B. J. Tarleton, Developmental biology of uterine glands, Biol Reprod, vol.65, pp.1311-1323, 2001.

S. Green, P. Walter, and V. Kumar, Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A, Nature, vol.320, pp.134-143, 1986.

E. Gregoraszczuk, Involvement of caspase-9 but not caspase-8 in the anti-apoptotic effects of estradiol and 4-OH-Estradiol in MCF-7 human breast cancer cells, Endocr Regul, vol.45, pp.3-8, 2011.

F. Grodstein, M. J. Stampfer, and J. E. Manson, Postmenopausal estrogen and progestin use and the risk of cardiovascular disease, N Engl J Med, vol.335, issue.18, p.1406, 1996.

, N Engl J Med, vol.335, pp.453-461

S. K. Gruvberger-saal, P. Bendahl, and L. H. Saal, Estrogen receptor beta expression is associated with tamoxifen response in ERalpha-negative breast carcinoma, Clin Cancer Res, vol.13, pp.1987-94, 2007.

F. Guidozzi, Sleep and sleep disorders in menopausal women, Climacteric, vol.16, pp.214-223, 2013.

H. Guillaume, M. Yohann, and P. Frédéric, Repression of the Estrogen Receptor-? Transcriptional Activity by the Rho/Megakaryoblastic Leukemia 1 Signaling Pathway, J Biol Chem, vol.284, pp.33729-33739, 2009.

S. Guiu, S. Michiels, and F. André, Molecular subclasses of breast cancer: How do we define them? The IMPAKT 2012 working group statement, Ann. Oncol, vol.23, pp.2997-3006, 2012.

W. Guo, Z. Keckesova, and J. L. Donaher, Slug and Sox9 cooperatively determine the mammary stem cell state, Cell, vol.148, pp.1015-1028, 2012.

D. T. Ross, V. J. Heath, and T. Stein, Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer, Breast Cancer Res, vol.7, pp.143-148, 2005.

J. M. Hall and K. S. Korach, Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells, Mol Endocrinol, vol.17, pp.792-803, 2003.

B. Han, N. Bhowmick, and Y. Qu, FOXC1: an emerging marker and therapeutic target for cancer, Oncogene, vol.36, pp.3957-3963, 2017.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

D. Haaahaa and . Weieeg-ra-reiee-hallaaks-of-caaee, The Neet Geeeatio. Cell :-674

M. Harigopal, J. Heymann, and S. Ghosh, Estrogen receptor co-activator (AIB1) protein expression by automated quantitative analysis (AQUA) in a breast cancer tissue microarray and association with patient outcome, Breast Cancer Res Treat, vol.115, pp.77-85, 2009.

W. R. Harrington, S. H. Kim, and C. C. Funk, Estrogen Dendrimer Conjugates that Preferentially Activate Extranuclear, Nongenomic Versus Genomic Pathways of Estrogen Action, Mol Endocrinol, vol.20, pp.491-502, 2006.

J. Hartman, K. Edvardsson, and K. Lindberg, Tumor repressive functions of esttogee eeepto ?? in SW480 colon cancer cells, Cancer Res, vol.69, pp.6100-6106, 2009.

N. Hasegawa, A. Sumitomo, and A. Fujita, Mediator Subunits MED1 and MED24 Cooperatively Contribute to Pubertal Mammary Gland Development and Growth of Breast Carcinoma Cells, Mol Cell Biol, vol.32, pp.1483-1495, 2012.

N. D. Heintzman, R. K. Stuart, and G. Hon, Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome, Nat Genet, vol.39, pp.311-318, 2007.

Y. Higashimura, T. Kitakaze, and N. Harada, pVHL-mediated degradation of HIF-2? regulates estrogen receptor ? expression in normoxic breast cancer cells, FEBS Lett, pp.2690-2699, 2016.

C. S. Hill, J. Wynne, and R. Treisman, The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF, Cell, vol.81, pp.1159-1170, 1995.

L. Holmquist-mengelbier, E. Fredlund, and T. Lofstedt, Recruitment of HIF-1 alpha and HIF-2 alpha to common target genes is differentially regulated in neuroblastoma: HIF-2 alpha promotes an aggressive phenotype, Cancer Cell, vol.10, pp.413-423, 2006.

K. Hoppe-seyler, F. Bossler, and C. Lohrey, Induction of dormancy in hypoxic human papillomavirus-positive cancer cells, Proc Natl Acad Sci U S A, vol.114, pp.990-998, 2017.

Q. Hu, C. Guo, and Y. Li, LMO7 mediates cell-specific activation of the Rho-myocardin-related transcription factor-serum response factor pathway and plays an important role in breast cancer cell migration, Mol Cell Biol, vol.31, pp.3223-3263, 2011.

P. Huang, V. Chandra, and F. Rastinejad, Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics, Annu Rev Physiol, vol.72, pp.247-72, 2010.

G. Huet, Y. Mérot, L. Dily, and F. , Loss of E-cadherin-mediated cell contacts reduces estrogen receptor alpha (ER?) transcriptional efficiency by affecting the respective contribution exerted by AF1 and AF2 transactivation functions, Biochem Biophys Res Commun, vol.365, pp.304-309, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00195350

A. Hurbin, L. Dubrez, J. Coll, and M. Favrot, Inhibition of apoptosis by amphiregulin via an insulinlike growth factor-1 receptor-dependent pathway in non-small cell lung cancer cell lines, J Biol Chem, vol.277, pp.49127-49133, 2002.

A. Hurtado, K. A. Holmes, and C. S. Ross-innes, FOXA1 is a key determinant of estrogen receptor function and endocrine response, Nat Genet, vol.43, pp.27-33, 2011.

T. Ishikawa, K. I. Nakashiro, and S. K. Klosek, Hypoxia enhances CXCR4 expression by activating HIF1 in oral squamous cell carcinoma, Oncol Rep, vol.21, pp.707-712, 2009.

H. Ishimine, N. Yamakawa, and M. Sasao, N-Cadherin is a prospective cell surface marker of human mesenchymal stem cells that have high ability for cardiomyocyte differentiation, Biochem Biophys Res Commun, vol.438, pp.753-759, 2013.

I. Ito, A. Hanyu, and M. Wayama, Estrogen inhibits transforming growth factor ? signaling by promoting Smad2/3 degradation, J Biol Chem, vol.285, pp.14747-14755, 2010.

H. Iwase and Y. Yamamoto, Clinical benefit of sequential use of endocrine therapies for metastatic breast cancer, Int. J. Clin. Oncol, vol.20, pp.253-261, 2015.

C. Jehanno, G. Flouriot, L. Goff, P. Michel, and D. , A model of dynamic stability of H3K9me3 heterochromatin to explain the resistance to reprogramming of differentiated cells, Biochim Biophys Acta-Gene Regul Mech, vol.1860, pp.184-195, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01467548

C. Jehanno, G. Flouriot, and F. Nicol-benoit, Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer, Breast Dis, vol.36, pp.47-59, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01367146

E. Jensen, On the Mechanism of Estrogen Action, Perspect Biol Med, vol.6, pp.47-60, 1962.

R. Jeselsohn, R. Yelensky, and G. Buchwalter, Emergence of constitutively active estrogen receptor-? mutations in pretreated advanced estrogen receptor-positive breast cancer, Clin Cancer Res, vol.20, pp.1757-67, 2014.

X. Jia, Q. Hong, and L. Lei, Basal and therapy-driven hypoxia-inducible factor-1? confers resistance to endocrine therapy in estrogen receptor-positive breast, Oncotarget, vol.6, pp.8648-8662, 2015.

M. Johannessen, S. Møler, and T. Hansen, The multifunctional roles of the four-and-a-half-LIM only protein FHL2, Cell. Mol. Life Sci, vol.63, pp.268-284, 2006.

A. B. Johnson, N. Denko, and M. C. Barton, Hypoxia induces a novel signature of chromatin modifications and global repression of transcription, Mutat Res-Fundam Mol Mech Mutagen, vol.640, pp.174-179, 2008.

V. C. Jordan, Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions, J. Med. Chem, vol.46, pp.883-908, 2003.

S. Joshi, A. R. Singh, and D. L. Durden, MDM2 regulates hypoxic hypoxia-inducible factor 1? stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner, J Biol Chem, vol.289, pp.22785-22797, 2014.

Y. S. Jug, S. J. Lee, and M. H. Yoo, Estogee eeepto ?? is a oel taaget of the Vo Hippel-Lindau protein and is responsible for the proliferation of VHL-deficient cells under hypoxic conditions, Cell Cycle, vol.11, pp.4462-4473

W. G. Kaelin and P. J. Ratcliffe, Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway, Mol. Cell, vol.30, pp.393-402, 2008.

L. Kanczuga-koda, M. Koda, and J. Tomaszewski, ER? and ER? expression in correlation with Ki67, Bcl-2 and Bak in primary tumors and lymph node metastases of breast cancer: The effect of pre-operative chemotherapy, Oncol Lett, vol.1, pp.1067-1071, 2010.

N. S. Kenneth, S. Mudie, P. Van-uden, and S. Rocha, SWI/SNF regulates the cellular response to hypoxia, J Biol Chem, vol.284, pp.4123-4154, 2009.

G. Kerdivel, A. Boudot, and D. Habauzit, Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines, Mol Cell Endocrinol, vol.390, pp.34-44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061363

F. G. Kern, S. W. Mcleskey, and L. Zhang, Transfected MCF-7 cells as a model for breast-cancer progression, Breast Cancer Res Treat, vol.31, pp.153-165, 1994.

S. Khosla, Update on estrogens and the skeleton, J. Clin. Endocrinol. Metab, vol.95, pp.3569-3577, 2010.

J. Kim, J. Lee, and C. Kim, Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells, Tumor Biol, vol.37, pp.5811-5819, 2016.

M. Y. Kim, E. M. Woo, and Y. Chong, Acetylation of Estrogen Receptor ? by p300 at Lysines 266 and 268 Enhances the Deoxyribonucleic Acid Binding and Transactivation Activities of the Receptor, Mol Endocrinol, vol.20, pp.1479-1493, 2006.

C. M. Klinge, K. A. Riggs, and N. S. Wickramasinghe, Estrogen receptor alpha 46 is reduced in tamoxifen resistant breast cancer cells and re-expression inhibits cell proliferation and estrogen receptor alpha 66-regulated target gene transcription, Mol Cell Endocrinol, vol.323, pp.268-276, 2010.

J. M. Knowlden, I. R. Hutcheson, and D. Barrow, Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: A supporting role to the epidermal growth factor receptor, Endocrinology, vol.146, pp.4609-4618, 2005.

M. Y. Koh, R. Lemos, X. Liu, and G. Powis, The hypoxia associated factor (HAF) switches cells from HIF-1? to HIF-2? dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion.pdf, Cancer Res, vol.71, pp.4015-4042, 2011.

M. Y. Koh and G. Powis, Passing the baton: The HIF switch, Trends Biochem. Sci, vol.37, pp.364-372, 2012.

K. S. Korach, J. F. Couse, and S. W. Curtis, Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes, Recent Prog Horm Res, vol.51, pp.158-159, 1996.

A. Kkust, S. Ggee, and P. Aagos, The hike oestogee eepto seeueeee: hoolog itherbA and the human oestrogen and glucocorticoid receptors, EMBO J, vol.5, pp.891-897

I. Kryczek, S. Wei, and E. Keller, Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis, Am J Physiol Cell Physiol, vol.292, pp.987-995, 2007.

V. Kumar and P. Chambon, The estrogen receptor binds tightly to its responsive element as a ligandinduced homodimer, Cell, vol.55, pp.145-156, 1988.

V. Kumar, S. Green, and G. Stack, Functional domains of the human estrogen receptor, Cell, vol.51, pp.941-951, 1987.

C. Kuperwasser, T. Chavarria, and M. Wu, Reconstruction of functionally normal and malignant human breast tissues in mice, Proc Natl Acad Sci U S A, vol.101, pp.4966-71, 2004.

J. Kurebayashi, T. Otsuki, T. Moriya, and H. Sonoo, Hypoxia reduces hormone responsiveness of human breast cancer cells, Jpn J Cancer Res, vol.92, pp.1093-1101, 2001.

A. Lai, B. Sarcevic, O. W. Prall, and R. L. Sutherland, Insulin/insulin-like growth factor-I and estrogen cooperate to stimulate cyclin E-Cdk2 activation and cell Cycle progression in MCF-7 breast cancer cells through differential regulation of cyclin E and p21(WAF1/Cip1), J Biol Chem, vol.276, pp.25823-25833, 2001.

H. L. Lamarca and J. M. Rosen, Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage, Breast Cancer Res, vol.9, p.304, 2007.

A. W. Lambert, D. R. Pattabiraman, and R. A. Weinberg, Emerging Biological Principles of Metastasis, Cell, vol.168, pp.670-691, 2017.

J. Lane, T. A. Martin, and G. Watkins, The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer, Int J Oncol, vol.33, pp.585-593, 2008.

R. L. Lantin-hermoso, C. R. Rosenfeld, and I. S. Yuhanna, Estrogen acutely stimulates nitric oxide synthase activity in fetal pulmonary artery endothelium, Am J Physiol-Lung Cell Mol Physiol, vol.273, pp.119-126, 1997.

M. Latil, P. Rocheteau, and L. Châtre, Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nat Commun, vol.3, p.903, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00711881

E. Lau, N. Ho, and T. Lee, Cancer stem cells and their microenvironment: Biology and therapeutic implications, Stem Cells Int, 2017.

R. M. Lavinsky, K. Jepsen, and T. Heinzel, Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes, Proc Natl Acad Sci U S A, vol.95, pp.2920-2925, 1998.

L. Dily, F. L. Baù, D. Pohl, and A. , Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation, Genes Dev, vol.28, pp.2151-2162, 2014.

L. Goff, P. Montano, M. M. Schodin, D. J. Katzenellenbogen, and B. S. , Phosphorylation of the human estrogen receptor: Identification of hormone-regulated sites and examination of their influence on transcriptional activity, J Biol Chem, vol.269, pp.4458-4466, 1994.

C. G. Lee, M. C. Carr, and S. J. Murdoch, Adipokines, inflammation, and visceral adiposity across the menopausal transition: A prospective study, J Clin Endocrinol Metab, vol.94, pp.1104-1110, 2009.

J. Lee, A. Tiwari, and V. Shum, Unraveling the regulatory connections between two controllers of breast cancer cell fate, Nucleic Acids Res, vol.42, pp.6839-6849, 2014.

L. Lee, J. Cao, and H. Deng, ER-alpha36, a novel variant of ER-alpha, is expressed in ER-positive and-negative human breast carcinomas, Anticancer Res, vol.28, pp.479-483, 2008.

J. A. Lees, S. E. Fawell, and M. G. Parker, Identification of constitutive and steroid-dependent transactivation domains in the mouse oestrogen receptor, J Steroid Biochem, vol.34, pp.33-39, 1989.

E. Leygue and L. C. Murphy, A bi-faceted role of estrogen receptor ? in breast cancer, Endocr. Relat. Cancer, vol.20, 2013.

J. Li and B. W. Oomallee, Wog J p Reeuies Its Histone Acetyltransferase Activity and SRC, issue.1

, Interaction Domain To Facilitate Thyroid Hormone Receptor Activation in Chromatin, Mol Cell Biol, vol.20, pp.2031-2042

S. Li, S. Chang, and X. Qi, Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells, Mol Cell Biol, vol.26, pp.5797-808, 2006.

Y. Li, J. P. Wang, and R. J. Santen, Estrogen stimulation of cell migration involves multiple signaling pathway interactions, Endocrinology, vol.151, pp.5146-5156, 2010.

X. H. Liao, N. Wang, and L. Y. Liu, MRTF-A and STAT3 synergistically promote breast cancer cell migration, Cell Signal, vol.26, pp.2370-2380, 2014.

E. Lim, F. Vaillant, and D. Wu, Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers, Nat Med, vol.15, pp.907-920, 2009.

S. L. Lin, L. Y. Yan, and X. T. Zhang, ER-?36, a variant of ER-?, promotes tamoxifen agonist action in endometrial cancer cells via the MAPK/ERK and PI3K/Akt pathways, PLoS One, 2010.

X. F. Liu and M. K. Bagchi, Recruitment of Distinct Chromatin-modifying Complexes by Tamoxifencomplexed Estrogen Receptor at Natural Target Gene Promoters in Vivo, J Biol Chem, vol.279, pp.15050-15058, 2004.

Y. Liu, Y. Zhao, and B. Skerry, Foxa1 is essential for mammary duct formation, Genesis, vol.54, pp.277-285, 2016.

D. Fuuta, Y. Kaaazaa, and S. , Redued ell otilit aad eehaaed foal adhesio otat formation in cells from FAK-deficient mice, Nature, vol.377, pp.539-544

S. Loi, B. Haibe-kains, and S. Majjaj, PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer, Proc Natl Acad Sci U S A, vol.107, pp.10208-10221, 2010.

H. F. Luglio, Estrogen and body weight regulation in women: the role of estrogen receptor alpha (ER-?) on adipocyte lipolysis, Acta Med Indones, vol.46, pp.333-341, 2014.

K. E. Luker, Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells, Oncogene, vol.31, pp.4750-4758, 2012.

K. E. Luker and G. D. Luker, Functions of CXCL12 and CXCR4 in breast cancer, Cancer Lett, vol.238, pp.30-41, 2006.

M. Lupien and M. Brown, Cistromics of hormone-dependent cancer, Endocr. Relat. Cancer, vol.16, pp.381-389, 2009.

M. Ller, J. M. Metzger, E. Greschik, and H. , The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus, EMBO J, vol.21, pp.736-748, 2002.

C. X. Ma, R. J. Crowder, and M. J. Ellis, Importance of PI3-kinase pathway in response/resistance to aromatase inhibitors, Steroids. pp, vol.750, p.752, 2011.

Z. Madak-erdogan, K. J. Kieser, and S. H. Kim, Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors, Mol Endocrinol, vol.22, pp.2116-2143, 2008.

. Madureira-p-a, R. Varshochi, and D. Constantinidou, The Forkhead Box M1 Protein Regulates the Transcription of the Estrogen Receptor alpha in Breast Cancer Cells, J Biol Chem, vol.281, pp.25167-76, 2006.

A. Maggi, Liganded and unliganded activation of estrogen receptor and hormone replacement therapies, Biochim Biophys Acta-Mol Basis Dis, vol.1812, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00706529

L. Magnani, E. B. Ballantyne, X. Zhang, and M. Lupien, PBX1 genomic pioneer function drives ER? signaling underlying progression in breast cancer, PLoS Genet, 2011.

P. C. Mahon, K. Hirota, and G. L. Semenza, FIH-1: A novel protein that interacts with HIF-1?? and VHL to mediate repression of HIF-1 transcriptional activity, Genes Dev, vol.15, pp.2675-2686, 2001.

M. C. Mahoney, T. Bevers, E. Linos, and W. C. Willett, Opportunities and strategies for breast cancer prevention through risk reduction, CA Cancer J Clin, vol.58, pp.347-371, 2008.

S. Malik, S. Jiang, and J. P. Garee, Histone Deacetylase 7 and FoxA1 in Estrogen-Mediated Repression of RPRM, Mol Cell Biol, vol.30, pp.399-412, 2010.

S. Malladi, D. G. Macalinao, and J. X. , Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT, Cell, vol.165, pp.45-60, 2016.

S. Mallepell, A. Krust, P. Chambon, and C. Brisken, Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland, Proc Natl Acad Sci U S A, vol.103, pp.2196-2201, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188034

M. Marino and P. Ascenzi, Membrane association of estrogen receptor ? and ? influences 17?estradiol-mediated cancer cell proliferation, Steroids, vol.73, pp.853-858, 2008.

M. Marino, P. Ascenzi, and F. Acconcia, S-palmitoylation modulates estrogen receptor ? localization and functions, Steroids, vol.71, pp.298-303, 2006.

S. Masri, S. Phung, and X. Wang, Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor, Cancer Res, vol.68, pp.4910-4918, 2008.

J. Massagué, TGFbeta in Cancer. Cell, vol.134, pp.215-245, 2008.

J. Massagué and A. C. Obenauf, Metastatic colonization by circulating tumour cells, Nature, vol.529, pp.298-306, 2016.

J. Mathieu, Z. Zhang, and W. Zhou, HIF induces human embryonic stem cell markers in cancer cells, Cancer Res, vol.71, pp.4640-4652, 2011.

P. H. Maxwell, M. S. Wiesener, and G. W. Chang, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis, Nature, vol.399, pp.271-275, 1999.

E. M. Mcinerney, D. W. Rose, and S. E. Flynn, Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation, Genes Dev, vol.12, pp.3357-3368, 1998.

E. M. Miieeee, M. J. Tsai, and B. W. Oomalle, Katzeeelleeogee BS AAalsis of esttogee eepto transcriptional enhancement by a nuclear hormone receptor coactivator, Proc Natl Acad Sci U S A, vol.93, pp.10069-73

E. Mcintyre, E. Blackburn, and P. J. Brown, The complete family of epidermal growth factor receptors and their ligands are co-ordinately expressed in breast cancer, Breast Cancer Res Treat, vol.122, pp.105-110, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535394

S. Medjkane, C. Perez-sanchez, and C. Gaggioli, Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis, Nat Cell Biol, vol.11, pp.257-268, 2009.

S. Medunjanin, A. Hermani, D. Servi, and B. , Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor alpha and is involved in the regulation of receptor activity, J Biol Chem, vol.280, pp.33006-33014, 2005.

Y. Mérott, R. Métivier, and G. Penot, The relative contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor ? transcriptional activity depends upon the differentiation stage of the cell, J Biol Chem, vol.279, pp.26184-26191, 2004.

R. Metivier, Synergism Between ER Transactivation Function 1 (AF-1) and AF-2 Mediated by Steroid Receptor Coactivator Protein-1: Requirement for the AF-1-Helical Core and for a Direct Interaction Between the N-and C-Terminal Domains, Mol Endocrinol, vol.15, pp.1953-1970, 2001.

R. Métivier, G. Penot, and M. R. Hübner, Estrogen receptor-? directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter, Cell, vol.115, pp.751-763, 2003.

R. Métivier, A. Stark, and G. Flouriot, A dynamic structural model for estrogen receptor-? activation by ligands, emphasizing the role of interactions between distant A and E domains, Mol Cell, vol.10, pp.1019-1032, 2002.

D. Metzger, S. Ali, J. M. Bornert, and P. Chambon, Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells, J Biol Chem, vol.270, pp.9535-9542, 1995.

D. Metzger, R. Losson, J. Bornert, and . Marc, Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast, Nucleic Acids Res, vol.20, pp.2813-2817, 1992.

D. S. Micalizzi, S. M. Farabaugh, and H. L. Ford, Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression, J. Mammary Gland Biol. Neoplasia, vol.15, pp.117-134, 2010.

A. Migliaccio, D. Domenico, M. Castoria, and G. , Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells, EMBO J, vol.15, pp.1292-1300, 1996.

A. Migliaccio, M. Pagano, and F. Auricchio, Immediate and transient stimulation of protein tyrosine phosphorylation by estradiol in MCF-7 cells, Oncogene, vol.8, pp.2183-2191, 1993.

A. Migliaccio, A. Rotondi, and F. Auricchio, Calmodulin-stimulated phosphorylation of 17?-estradiol receptor on tyrosine, 1984.

A. Migliaccio, A. Rotondi, and F. Auricchio, Estradiol receptor: phosphorylation on tyrosine in uterus and interaction with anti-phosphotyrosine antibody, EMBO J, vol.5, pp.2867-2872, 1986.

T. W. Miller, M. Pérez-torres, and A. Narasanna, Loss of Phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer, Cancer Res, vol.69, pp.4192-4201, 2009.

M. Mimeault and S. K. Batra, Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer-and metastasis-initiating cells, J Cell Mol Med, vol.17, pp.30-54, 2013.

F. Miralles, G. Posern, A. I. Zaromytidou, and R. Treisman, Actin dynamics control SRF activity by regulation of its coactivator MAL, Cell, vol.113, pp.329-342, 2003.

S. K. Mishra, A. H. Talukder, and A. E. Gururaj, Upstream determinants of estrogen receptor-? regulation of metastatic tumor antigen 3 pathway, J Biol Chem, vol.279, pp.32709-32715, 2004.

B. J. Moeller, R. A. Richardson, and M. W. Dewhirst, Hypoxia and radiotherapy: Opportunities for improved outcomes in cancer treatment, Cancer Metastasis Rev, vol.26, pp.241-248, 2007.

Y. B. Mohamed, Y. L. Orlov, and S. Velkov, An oestrogen-receptor-agr-bound human chromatin interactome, Nature, 2009.

D. R. Mole, C. Blancher, and R. R. Copley, Genome-wide association of hypoxia-inducible factor (HIF)-1a and HIF-2a DNA binding with expression profiling of hypoxia-inducible transcripts, J Biol Chem, vol.284, pp.16767-16775, 2009.

G. Molyneux, F. C. Geyer, and F. A. Magnay, BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells, Cell Stem Cell, vol.7, pp.403-417, 2010.

M. M. Montano, V. Müller, A. Trobaugh, and B. S. Katzenellenbogen, The carboxy-terminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists, Mol Endocrinol, vol.9, pp.814-839, 1995.

H. E. Moon, H. Cheon, and K. H. Chun, Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1?, Oncol Rep, vol.16, pp.929-935, 2006.

D. Moras and H. Gronemeyer, The nuclear receptor ligand-binding domain: structure and function, Curr Opin Cell Biol, vol.10, pp.384-391, 1998.

V. Moreno-manzano, F. J. Rodríguez-jiménez, A. Bonilla, and J. L. , FM19G11, a new hypoxiainducible factor (HIF) modulator, affects stem cell differentiation status, J Biol Chem, vol.285, pp.1333-1342, 2010.

Y. Morine, M. Shimada, and T. Utsunomiya, Hypoxia inducible factor expression in intrahepatic cholangiocarcinoma, Hepatogastroenterology, vol.58, pp.1439-1444, 2011.

S. Mosselman, J. Polman, and R. Dijkema, ER beta: identification and characterization of a novel human estrogen receptor, FEBS Lett, vol.392, issue.96, p.782, 1996.

D. Mottet, V. Dumont, and Y. Deccache, Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells, J Biol Chem, vol.278, pp.31277-85, 2003.

L. C. Murphy, S. L. Simon, and A. Parkes, Altered expression of estrogen receptor coregulators during human breast tumorigenesis, Cancer Res, vol.60, pp.6266-71, 2000.

B. Muz, P. De-la-puente, F. Azab, and A. K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia, vol.83, 2015.

E. Myers, F. Fleming, and T. Crotty, Inverse relationship between ER-beta and SRC-1 predicts outcome in endocrine-resistant breast cancer, Br J Cancer, vol.91, pp.1687-1693, 2004.

I. Mylonis, G. Chachami, and M. Samiotaki, Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1?, J Biol Chem, vol.281, pp.33095-33106, 2006.

A. Nagalingam, M. Tighiouart, and L. Ryden, Med1 plays a critical role in the development of tamoxifen resistance, Carcinogenesis, vol.33, pp.918-930, 2012.

L. Nathan and G. Chaudhuri, Estrogens and atherosclerosis, Annu Rev Pharmacol Toxicol, vol.37, pp.477-515, 1997.

R. I. Nicholson, I. R. Hutcheson, and H. E. Jones, Growth factor signalling in endocrine and antigrowth factor resistant breast cancer, Rev. Endocr. Metab. Disord, vol.8, pp.241-253, 2007.
DOI : 10.1007/s11154-007-9033-5

T. O. Nielsen, F. D. Hsu, and K. Jensen, Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma, Clin Cancer Res, vol.10, pp.5367-5374, 2004.

S. Nik-zainal, H. Davies, J. Staaf, M. Ramakrishna, D. Glodzik et al., Europe PMC Funders Group Landscape of somatic mutations in 560 breast cancer whole genome sequences, vol.534, pp.47-54, 2016.

M. Z. Noman, Y. Messai, and J. Muret, Crosstalk between CTC, Immune System and Hypoxic Tumor Microenvironment, Cancer Microenviron, vol.7, pp.153-160, 2014.
DOI : 10.1007/s12307-014-0157-3

URL : http://europepmc.org/articles/pmc4275540?pdf=render

E. N. Olson and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nat Rev Mol Cell Biol, vol.11, pp.353-65, 2010.
DOI : 10.1038/nrm2890

URL : http://europepmc.org/articles/pmc3073350?pdf=render

A. Ooi, M. Inokuchi, and S. Harada, Gene amplification of ESR1 in breast cancers-fact or fiction? A fluorescence in situ hybridization and multiplex ligation-dependent probe amplification study, J Pathol, vol.227, pp.8-16, 2012.

J. T. Opferman, Attacking canceees AAhilles heel: aatagois of aati-apoptotic BCL-2 family members, FEBS J, pp.2661-2675, 2016.

J. L. Orgaz, C. Herraiz, and V. Sanz-moreno, Rho GTPases modulate malignant transformation of tumor cells, Small GTPases, vol.5, p.983867, 2014.

C. K. Osborne, V. Bardou, and T. A. Hopp, Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer, J Natl Cancer Inst, vol.95, pp.353-61, 2003.

C. K. Osborne, R. Schiff, S. Fuqua, and J. Shou, Estrogen receptor: Current understanding of its activation and modulation, Clin Cancer Res, vol.7, pp.4338-4342, 2001.

T. Oskarsson, S. Acharyya, and X. Zhang, Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs, Nat Med, vol.17, pp.867-74, 2011.

H. U. Osmanbeyoglu, K. N. Lu, and S. Oesterreich, Estrogen represses gene expression through reconfiguring chromatin structures, Nucleic Acids Res, vol.41, pp.8061-8071, 2013.

S. K. Oster, C. Ho, E. L. Soucie, and L. Z. Penn, The myc oncogene: Marvelously complex, Adv. Cancer Res, vol.84, pp.81-154, 2002.

O. Warburg, B. Wind, F. Negelein, and N. , THE METABOLISM OF TUMORS IN THE BODY, The Journal of General Physiology. Biochem Z Biochem Z Biochem Z. Biol Chem, vol.309, pp.397-519, 1923.

M. Padró, R. J. Louie, and B. Lananna, Genome-independent hypoxic repression of estrogen receptor alpha in breast cancer cells. 1-16, 2017.

A. Padron, L. Li, E. M. Kofoed, and F. Schaufele, Ligand-selective interdomain conformations of estrogen receptor-alpha, Mol Endocrinol, vol.21, pp.49-61, 2007.

D. Padua, X. Zhang, and Q. Wang, TGF? Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4, Cell, vol.133, pp.66-77, 2008.

J. Park and J. E. Schwarzbauer, Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition, Oncogene, vol.33, pp.1649-57, 2014.

S. Park, Y. Kim, and A. C. Gao, Hypoxia increases androgen receptor activity in prostate cancer cells, Cancer Res, vol.66, pp.5121-5129, 2006.

S. J. Park, J. G. Kim, and N. D. Kim, Estradiol, TGF-??1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration, Oncol Lett, vol.11, pp.1895-1902, 2016.

Y. M. Park, J. Y. Cho, Y. Koo, . Do, and Y. J. Lee, Effects of inhibiting the proteasomal degradation of estrogen receptor alpha on estrogen receptor alpha activation under hypoxic conditions, Biol Pharm Bull, vol.32, pp.2057-60, 2009.

A. Pedram, M. Razandi, and E. R. Levin, Nature of Functional Estrogen Receptors at the Plasma Membrane, Mol Endocrinol, vol.20, pp.1996-2009, 2006.

C. Péqueux, I. Raymond-letron, and S. Blacher, Stromal estrogen receptor-? promotes tumor growth by normalizing an increased angiogenesis, Cancer Res, vol.72, pp.3010-3019, 2012.

V. Perissi, N. Menini, and E. Cottone, AP-2 transcription factors in the regulation of ERBB2 gene transcription by oestrogen, Oncogene, vol.19, pp.280-288, 2000.

S. Persad and S. Dedhar, The role of integrin-linked kinase (ILK) in cancer progression, Cancer Metastasis Rev, vol.22, pp.375-384, 2003.

N. Pescador, D. Villar, and D. Cifuentes, Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1, PLoS One, 2010.

. Peters, Estrogen receptor domains E and F: role in dimerization and interaction with coactivator RIP-140, Mol Endocrinol, vol.13, pp.286-296, 1999.

C. Plaschka, K. Nozawa, and P. Cramer, Mediator Architecture and RNA Polymerase II Interaction, J Mol Biol, vol.428, pp.2569-2574, 2016.
DOI : 10.1016/j.jmb.2016.01.028

N. Platet, S. Cunat, and D. Chalbos, Unliganded and liganded estrogen receptors protect against cancer invasion via different mechanisms, Mol Endocrinol, vol.14, pp.999-1009, 2000.

I. Poola and V. Speirs, Expression of alternatively spliced estrogen receptor alpha mRNAs is increased in breast cancer tissues, J Steroid Biochem Mol Biol, vol.78, pp.118-120, 2001.

C. Porta, C. Paglino, and A. Mosca, Targeting PI3K/Akt/mTOR Signaling in Cancer, Front Oncol, vol.4, p.64, 2014.

G. Posern, A. Sotiropoulos, and R. Treisman, Mutant Actins Demonstrate a Role for Unpolymerized Actin in Control of Transcription by Serum Response Factor, Mol Biol Cell, vol.13, pp.2001-2015, 2002.

C. Poulard, I. Treilleux, and E. Lavergne, Activation of rapid oestrogen signalling in aggressive human breast cancers, EMBO Mol Med, vol.4, pp.1200-1213, 2012.

A. Prat, B. Adamo, and M. Cheang, Molecular characterization of basal-like and non-basal-like triple-negative breast cancer, Oncologist, vol.18, pp.123-156, 2013.

A. Prat, J. S. Parker, and O. Karginova, Phenotypic and molecular characterization of the claudinlow intrinsic subtype of breast cancer, Breast Cancer Res, vol.12, p.68, 2010.

A. Prat and C. M. Perou, Deconstructing the molecular portraits of breast cancer, Mol. Oncol, vol.5, pp.5-23, 2011.

M. D. Prater, V. Petit, A. Russell, and I. , Mammary stem cells have myoepithelial cell properties, Nat Cell Biol, vol.16, pp.942-950, 2014.

W. B. Pratt and D. O. Toft, Steroid receptor interactions with heat shock protein and immunophilin chaperones, Endocr Rev, vol.18, pp.306-360, 1997.

D. J. Purcell, S. Chauhan, and D. Jimenez-stinson, Novel CARM1 Interacting Protein, DZIP3, is a Transcriptional Coactivator of Estrogen Receptor alpha, Mol Endocrinol me, pp.2015-1083, 2015.

M. E. Quaedackers, C. E. Van-den-brink, P. T. Van-der-saag, and L. G. Tertoolen, Direct interaction between estrogen receptor alpha and NF-kappaB in the nucleus of living cells, Mol Cell Endocrinol, vol.273, pp.42-50, 2007.

D. C. Radisky and M. J. Bissell, NF-kappa B links oestrogen receptor signalling and EMT, Nat Cell Biol, vol.9, pp.361-363, 2007.

S. Radovick, J. E. Levine, and A. Wolfe, Estrogenic regulation of the GnRH neuron, Front. Endocrinol. (Lausanne), vol.3, 2012.

R. Rajhans, S. Nair, and A. H. Holden, Oncogenic potential of the nuclear receptor coregulator proline-, glutamic acid-, leucine-rich protein 1/modulator of the nongenomic actions of the estrogen receptor, Cancer Res, vol.67, pp.5505-5512, 2007.

A. Rapisarda and G. Melillo, Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia, Nat Rev Clin Oncol, vol.9, pp.1-14, 2012.

M. Razandi, A. G. Pedram, and A. , Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane, Mol Cell Biol, vol.23, pp.1633-1679, 2003.

M. Razandi, P. Oh, and A. Pedram, ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions, Mol Endocrinol, vol.16, pp.100-115, 2002.

J. M. Reese, V. J. Suman, and M. Subramaniam, ER?1: characterization, prognosis, and evaluation of treatment strategies in ER?-positive and-negative breast cancer, BMC Cancer, vol.14, p.749, 2014.

C. M. Revankar, A Transmembrane Intracellular Estrogen Receptor Mediates Rapid Cell Signaling, Science (80-), vol.307, pp.1625-1630, 2005.

S. Rey and G. L. Semenza, Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling, Cardiovasc. Res, vol.86, pp.236-242, 2010.

D. Reyes, C. Ballaré, and G. Castellano, Activation of mitogen-and stress-activated kinase 1 is required for proliferation of breast cancer cells in response to estrogens or progestins, Oncogene, vol.33, pp.1570-80, 2014.

E. Rheinbay, P. Parasuraman, and J. Grimsby, Recurrent and functional regulatory mutations in breast cancer, Nature, vol.547, pp.55-60, 2017.

D. R. Robinson, Y. Wu, and P. Vats, Activating ESR1 mutations in hormone-resistant metastatic breast cancer, Nat Genet, vol.45, pp.1446-51, 2013.

H. Rochefort, N. Platet, and Y. Hayashido, Estrogen receptor mediated inhibition of cancer cell invasion and motility: an overview, J Steroid Biochem Mol Biol, vol.65, pp.163-171, 1998.

I. Rogatsky, J. M. Trowbridge, and M. J. Garabedian, Potentiation of human estrogen receptor ? transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex, J Biol Chem, vol.274, pp.22296-22302, 1999.

P. Roger, M. E. Sahla, and S. Makela, Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors, Cancer Res, vol.61, pp.2537-2541, 2001.

A. B. Ropero, P. Alonso-magdalena, I. Quesada, and A. Nadal, The role of estrogen receptors in the control of energy and glucose homeostasis, Steroids, vol.73, pp.874-879, 2008.

C. S. Ross-innes, R. Stark, and A. E. Teschendorff, Differential oestrogen receptor binding is associated with clinical outcome in breast cancer, Nature, vol.481, p.389, 2012.

J. Russo, L. K. Tay, and I. H. Russo, Differentiation of the mammary gland and susceptibility to carcinogenesis, Breast Cancer Res. Treat, vol.2, pp.5-73, 1982.

K. Ryu, C. Park, and Y. Lee, Hypoxia-inducible factor 1 alpha represses the transcription of the estrogen receptor alpha gene in human breast cancer cells, Biochem Biophys Res Commun, vol.407, pp.831-836, 2011.

S. Safe, Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions, Vitam Horm, vol.62, pp.62006-62011, 2001.

S. Saha-roy and R. K. Vadlamudi, Role of Estrogen Receptor Signaling in Breast Cancer Metastasis, Int J Breast Cancer, vol.2012, pp.1-8, 2012.

L. Sánchez-martín, P. Sánchez-mateos, and C. Cabañas, CXCR7 impact on CXCL12 biology and disease, vol.19, pp.12-22, 2013.

N. Sang, D. P. Stiehl, and J. Bohensky, MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300, J Biol Chem, vol.278, pp.14013-14019, 2003.

R. J. Santen, R. X. Song, and Z. Zhang, Long-term estradiol deprivation in breast cancer cells upregulates growth factor signaling and enhances estrogen sensitivity, Endocrine-Related Cancer, 2005.

S. Sati and G. Cavalli, Chromosome conformation capture technologies and their impact in understanding genome function, Chromosoma, vol.126, pp.33-44, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01506418

J. L. Schacter, E. S. Henson, and S. B. Gibson, Estrogen regulation of anti-apoptotic Bcl-2 family member Mcl-1 expression in breast cancer cells, PLoS One, 2014.

M. A. Scharenberg, R. Chiquet-ehrismann, and M. B. Asparuhova, Megakaryoblastic leukemia protein-1 (MKL1): Increasing evidence for an involvement in cancer progression and metastasis, Int. J. Biochem. Cell Biol, vol.42, pp.1911-1914, 2010.

L. Schito and G. L. Semenza, Hypoxia-Inducible Factors: Master Regulators of Cancer Progression, Trends in Cancer, vol.2, pp.758-770, 2016.

J. Schödel, S. Oikonomopoulos, and J. Ragoussis, High-resolution genome-wide mapping of HIFbinding sites by ChIP-seq, Blood, 2011.

J. W. Schwabe, D. Neuhaus, and D. Rhodes, Solution structure of the DNA-binding domain of the oestrogen receptor, Nature, vol.348, pp.458-61, 1990.

G. L. Semenza, Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics, Oncogene, vol.29, pp.625-659, 2010.

G. L. Semenza, Hypoxia-inducible factors in physiology and medicine, Cell, vol.148, pp.399-408, 2012.

G. L. Semenza, HIF-1: upstream and downstream of cancer metabolism, Curr. Opin. Genet. Dev, vol.20, pp.51-56, 2010.

G. L. Semenza, The hypoxic tumor microenvironment: A driving force for breast cancer progression, Biochim. Biophys. Acta-Mol. Cell Res, vol.1863, pp.382-391, 2016.

S. Sentis, L. Romancer, M. Bianchin, and C. , Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity, Mol Endocrinol, vol.19, pp.2671-2684, 2005.

J. Settleman, A nuclear MAL-function links Rho to SRF, Mol. Cell, vol.11, pp.1121-1123, 2003.
DOI : 10.1016/s1097-2765(03)00189-8

URL : https://doi.org/10.1016/s1097-2765(03)00189-8

C. Q. Sheeler, D. W. Singleton, and S. A. Khan, Mutation of serines 104, 106, and 118 inhibits dimerization of the human estrogen receptor in yeast, Endocr Res, vol.29, pp.237-55, 2003.

X. O. Shu, J. F. Dai, and Q. , Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women, Cancer Epidemiol Biomarkers Prev, vol.10, pp.483-488, 2001.

H. Sihto, J. Lundin, and M. Lundin, Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study, Breast Cancer Res, vol.13, p.87, 2011.

S. E. Singletary, Rating the risk factors for breast cancer, Ann Surg, vol.237, pp.474-82, 2003.
DOI : 10.1097/01.sla.0000059969.64262.87

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1514477/pdf

A. Skibinski and C. Kuperwasser, The origin of breast tumor heterogeneity, Oncogene, vol.34, pp.5309-5316, 2015.

K. E. Sleeman, H. Kendrick, and A. Ashworth, CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells, Breast Cancer Res, vol.8, 2005.

C. L. Ssith, Z. Naaaz, and B. W. Oomalle, Coaatiato aad oeppesso egulatio of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen, Mol Endocrinol, vol.11, pp.657-666

Z. Song, Z. Liu, and J. Sun, The MRTF-A/B function as oncogenes in pancreatic cancer, Oncol Rep, vol.35, pp.127-138, 2016.

A. Sotiropoulos, D. Gineitis, J. Copeland, and R. Treisman, Signal-regulated activation of serum response factor is mediated by changes in actin dynamics, Cell, vol.98, pp.81011-81020, 1999.

P. N. Span and J. Bussink, Biology of hypoxia, Semin Nucl Med, vol.45, pp.101-109, 2015.

S. Spicuglia and L. Vanhille, Chromatin signatures of active enhancers, Nucleus, vol.3, pp.126-157, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01614959

H. Stegeman, J. H. Kaanders, and D. L. Wheeler, Activation of AKT by hypoxia: a potential target for hypoxic tumors of the head and neck, BMC Cancer, vol.12, p.463, 2012.

K. K. Steinberg, S. B. Thacker, and S. J. Smith, A meta-analysis of the effect of estrogen replacement therapy on the risk of breast cancer, J Am Med Assoc, vol.265, pp.1985-1990, 1991.

J. D. Stender, K. Kim, and T. H. Charn, Genome-Wide Analysis of Estrogen Receptor DNA Binding and Tethering Mechanisms Identifies Runx1 as a Novel Tethering Factor in Receptor-Mediated Transcriptional Activation, Mol Cell Biol, vol.30, pp.3943-3955, 2010.

J. D. Stender, F. Stossi, and C. C. Funk, The Estrogen-Regulated Transcription Factor PITX1 Coordinates Gene-Specific Regulation by Estrogen Receptor-Alpha in Breast Cancer Cells, Mol Endocrinol, vol.25, pp.1699-1709, 2011.

D. P. Stiehl, M. R. Bordoli, and I. Abreu-rodríguez, Non-canonical HIF-2? function drives autonomous breast cancer cell growth via an AREG-EGFR/ErbB4 autocrine loop, Oncogene, vol.31, pp.2283-2297, 2011.

M. Stoner, Hypoxia Induces Proteasome-Dependent Degradation of Estrogen Receptor alpha in ZR-75 Breast Cancer Cells, Mol Endocrinol, vol.16, pp.2231-2242, 2002.

F. Stossi, V. S. Likhite, J. A. Katzenellenbogen, and B. S. Katzenellenbogen, Estrogen-occupied estrogen receptor represses cyclin G2 gene expression and recruits a repressor complex at the cyclin G2 promoter, J Biol Chem, vol.281, pp.16272-16278, 2006.

A. Ström, J. Hartman, and J. S. Foster, Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D, Proc Natl Acad Sci U S A, vol.101, pp.1566-71, 2004.

K. Subramanian, D. Jia, and P. Kapoor-vazirani, Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase, Mol Cell, vol.30, pp.336-383, 2008.

E. Surmacz, Function of the IGF-I receptor in breast cancer, J. Mammary Gland Biol. Neoplasia, vol.5, pp.95-105, 2000.

J. Q. Svejstrup, P. Vichi, and J. M. Egly, The multiple roles of transcription/repair factor TFIIH, Trends Biochem. Sci, vol.21, pp.346-350, 1996.

C. M. Szego, J. S. Daais, and . Adeeosie, monophosphate in rat uterus: acute elevation by estrogen, Proc Natl Acad Sci U S A, vol.58, pp.1711-1719

S. K. Tan, Z. H. Lin, and C. W. Chang, AP-2? regulates oestrogen receptor-mediated long-range chromatin interaction and gene transcription, EMBO J, vol.30, pp.2569-81, 2011.

T. Tanos, L. J. Rojo, P. Echeverria, and C. Brisken, ER and PR signaling nodes during mammary gland development, Breast Cancer Res, vol.14, p.210, 2012.

J. H. Taube, J. I. Herschkowitz, and K. Komurov, Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes, Proc Natl Acad Sci U S A, vol.107, pp.15449-15454, 2010.

C. Thomas and J. Gustafsson, Estrogen receptor mutations and functional consequences for breast cancer, Trends Endocrinol Metab, vol.26, pp.467-476, 2015.

H. V. Thomas, G. K. Reeves, and T. Key, Endogenous estrogen and postmenopausal breast cancer: A quantitative review, Cancer Causes Control, vol.8, pp.922-928, 1997.

R. Tjian and T. Maniatis, Transcriptional activation: A complex puzzle with few easy pieces, Cell, vol.77, pp.5-8, 1994.

D. Tkocz, N. T. Crawford, and N. E. Buckley, BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers, Oncogene, vol.31, pp.3667-3678, 2012.

D. J. Toft and V. L. Cryns, Minireview: Basal-like breast cancer: from molecular profiles to targeted therapies, Mol Endocrinol, vol.25, pp.199-211, 2011.

C. Tomasetti, B. Vogelstein, and P. M. Dubal, Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions, Science, vol.347, pp.78-81, 2015.

J. Tong, L. Li, B. Ballermann, and Z. Wang, Phosphorylation and activation of RhoA by ERK in response to epidermal growth factor stimulation, PLoS One, 2016.

W. Toy, Y. Shen, and H. Won, ESR1 ligand-binding domain mutations in hormone-resistant breast cancer, Nat Genet, vol.45, pp.1439-1484, 2013.

A. K. Treen, V. Luo, and J. A. Chalmers, Divergent regulation of ER and Kiss genes by 17?-estradiol in hypothalamic ARC versus AVPV models, Mol Endocrinol, vol.30, 2016.

B. J. Trock, H. C. Leena, and R. Clarke, Meta-analysis of soy intake and breast cancer risk, J Natl Cancer Inst, vol.98, pp.459-471, 2006.

K. Tryfonidis, D. Zardavas, B. S. Katzenellenbogen, and M. Piccart, Endocrine treatment in breast cancer: Cure, resistance and beyond, Cancer Treat. Rev, vol.50, pp.68-81, 2016.

Y. P. Tsai and K. J. Wu, Epigenetic regulation of hypoxia-responsive gene expression: Focusing on chromatin and DNA modifications, Int. J. Cancer, vol.134, pp.249-256, 2014.

A. Tsutsumi, H. Okada, and T. Nakamoto, Estrogen induces stromal cell-derived factor 1 (SDF1/CXCL12) production in human endometrial stromal cells: A possible role of endometrial epithelial cell growth, Fertil Steril, vol.95, pp.444-447, 2011.

T. Uchida, F. Rossignol, and M. A. Matthay, Prolonged hypoxia differentially regulates hypoxiainducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha, J Biol Chem, vol.279, pp.14871-14879, 2004.

Y. Umayahara, R. Kawamori, and H. Watada, Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer, J Biol Chem, vol.269, pp.16433-16442, 1994.

M. Vander-heiden, L. Cantley, and C. Thompson, Understanding the Warburg effect: The metabolic Requiremetns of cell proliferation, Science (80), vol.324, pp.1029-1033, 2009.

M. K. Vartiainen, S. Guettler, B. Larijani, and R. Treisman, Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL, Science, vol.316, pp.1749-52, 2007.

G. Viale, The current state of breast cancer classification, Ann Oncol, 2012.

G. P. Vicent, C. Ballaré, and A. S. Nacht, Induction of Progesterone Target Genes Requires Activation of Erk and Msk Kinases and Phosphorylation of Histone H3, Mol Cell, vol.24, pp.367-381, 2006.

I. A. Voutsadakis, Epithelial-Mesenchymal Transition (EMT) and Regulation of EMT Factors by Steroid Nuclear Receptors in Breast Cancer: A Review and in Silico Investigation, J Clin Med, vol.5, p.11, 2016.

P. Walker, J. E. Germond, and M. Brown-luedi, Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes, Nucleic Acids Res, vol.12, pp.8611-8626, 1984.

Q. Wang, D. Sharma, Y. Ren, and J. D. Fondell, A coregulatory role for the TRAP-Mediator complex in androgen receptor-mediated gene expression, J Biol Chem, vol.277, pp.42852-42858, 2002.

W. Wang, S. Goswami, and K. Lapidus, Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors, Cancer Res, vol.64, pp.8585-8594, 2004.

X. Wang, K. Belguise, and N. Kersual, Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2, Nat Cell Biol, vol.9, pp.470-478, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00145547

O. Warburg, Injuring of Respiration the Origin of Cancer Cells, Science (80-), vol.123, pp.309-323, 1956.

R. D. Ward and N. L. Weigel, Steroid receptor phosphorylation: Assigning function to site-specific phosphorylation, BioFactors, vol.35, pp.528-536, 2009.
DOI : 10.1002/biof.66

URL : http://europepmc.org/articles/pmc2788675?pdf=render

A. Wärnmarkt, T. Almlöf, and J. Leers, Differential Recruitment of the Mammalian Mediator Subunit TRAP220 by Estrogen Receptors ER?? and ER?, J Biol Chem, vol.276, pp.23397-23404, 2001.

P. H. Watson, R. T. Pon, and R. Shiu, Inhibition of c-myc Expression by Phosphorothioate Antisense Oligonucleotide Identifies a Critical Role for c-myc in the Growth of Human Breast Cancer, Cancer Res, vol.51, pp.3996-4000, 1991.

K. E. Weis, K. Ekena, and . Thomas, Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein, Mol Endocrinol, vol.10, pp.1388-98, 1996.

R. White, M. Sjöberg, E. Kalkhoven, and M. G. Parker, Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine, EMBO J, vol.16, pp.1427-1435, 1997.

M. Widschwendter, K. D. Siegmund, and H. M. Müller, Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen, Cancer Res, vol.64, pp.3807-3813, 2004.

C. Williams, K. Edvardsson, and . Lewandowski-s-a, A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells, Oncogene, vol.27, pp.1019-1032, 2008.

C. Wilson, L. Qiu, and Y. Hong, The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer, Oncogene, vol.36, pp.2565-2576, 2017.

A. C. Wolff, A. A. Lazar, and I. Bondarenko, Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer, J Clin Oncol, vol.31, pp.195-202, 2013.

A. H. Wu, P. Wan, and J. Hankin, Adolescent and adult soy intake and risk of breast cancer in AsianAmericans, Carcinogenesis, vol.23, pp.1491-1496, 2002.

M. Z. Wu, S. F. Chen, and S. Nieh, Hypoxia drives breast tumor malignancy through a TET-TNF?p38-MAPK signaling axis, Cancer Res, vol.75, pp.3912-3924, 2015.

J. Xie, Y. Xiao, and . Zhu-x-yan, Hypoxia regulates stemness of breast cancer MDA-MB-231 cells, Med Oncol, 2016.

W. Xu, H. Xu, and M. Fang, MKL1 links epigenetic activation of MMP2 to ovarian cancer cell migration and invasion, Biochem Biophys Res Commun, 2017.

J. D. Yager and J. G. Liehr, Molecular mechanisms of estrogen carcinogenesis, Annu Rev Pharmacol Toxicol, vol.36, pp.203-232, 1996.

J. Yang, A. Altahan, and D. T. Jones, Estrogen receptor-? directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer, Proc Natl Acad Sci U S A, vol.112, pp.15172-15179, 2015.

J. Yang, A. M. Jubb, and L. Pike, The histone demethylase JMJD2B is regulated by estrogen receptor ? and hypoxia, and is a key mediator of estrogen induced growth, Cancer Res, vol.70, pp.6456-6466, 2010.

X. Ye, W. L. Tam, and T. Shibue, Distinct EMT programs control normal mammary stem cells and tumour-initiating cells, Nature, vol.525, pp.256-260, 2015.

Y. Ye, Y. Xiao, and W. Wang, ERalpha signaling through slug regulates E-cadherin and EMT, Oncogene, vol.29, pp.1451-1462, 2010.

J. M. Yi, H. Y. Kwon, J. Y. Cho, and Y. J. Lee, Estrogen and hypoxia regulate estrogen receptor alpha in a synergistic manner, Biochem Biophys Res Commun, vol.378, pp.842-846, 2009.

P. Yi, M. D. Driscoll, and J. Huang, The effects of estrogen-responsive element-and ligand-induced structural changes on the recruitment of cofactors and transcriptional responses by ER alpha and ER beta, Mol Endocrinol, vol.16, pp.674-693, 2002.

. Yin-j-wen, Y. Liang, and J. Y. Park, Mediator MED23 plays opposing roles in directing smooth muscle cell and adipocyte differentiation, Genes Dev, vol.26, pp.2192-2205, 2012.

T. Ylikomi, M. T. Bocquel, and M. Berry, Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors, EMBO J, vol.11, pp.3681-94, 1992.

X. Yu, X. Zhang, and I. B. Dhakal, Induction of cell proliferation and survival genes by estradiolrepressed microRNAs in breast cancer cells, BMC Cancer, vol.12, p.29, 2012.

D. Zagzag, Y. Lukyanov, and L. Lan, Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion, Lab Investig, vol.86, pp.1221-1232, 2006.

D. Zhang, P. Jiang, Q. Xu, and X. Zhang, Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth, J Biol Chem, vol.286, pp.17746-17754, 2011.

L. Zhang, J. Cui, and M. Leonard, Silencing MED1 Sensitizes Breast Cancer Cells to Pure AntiEstrogen Fulvestrant In Vitro and In Vivo, PLoS One, 2013.

Q. X. Zhang, Å. Borg, and D. M. Wolf, An estrogen receptor mutant with strong hormoneindependent activity from a metastatic breast cancer, Cancer Res, vol.57, pp.1244-1249, 1997.

S. M. Zhang, I. Lee, and J. E. Maaso, Alohol osuuptio aad east aae isk i the Woeees Health Study, Am J Epidemiol, vol.165, pp.667-76

X. Zhang, A. Krutchinsky, and A. Fukuda, MED1/TRAP220 exists predominantly in a TRAP/Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription, Mol Cell, vol.19, pp.89-100, 2005.

X. Zhang and Z. Wang, Estrogen receptor-alpha variant, ER-alpha36, is involved in tamoxifen resistance and estrogen hypersensitivity, Endocrinology, vol.154, pp.1990-1998, 2013.
DOI : 10.1210/en.2013-1116

URL : https://academic.oup.com/endo/article-pdf/154/6/1990/8979632/endo1990.pdf

Y. Zhang, M. Moerkens, and S. Ramaiahgari, Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes, Breast Cancer Res, vol.13, p.52, 2011.
DOI : 10.1186/bcr2883

URL : https://breast-cancer-research.biomedcentral.com/track/pdf/10.1186/bcr2883

Y. Zhao, K. Zhang, J. P. Giesy, and J. Hu, Families of nuclear receptors in vertebrate models: characteristic and comparative toxicological perspective, Sci Rep, vol.5, p.8554, 2015.

S. Zheng, X. Chen, X. Yin, and B. Zhang, Prognostic significance of HIF-1? expression in hepatocellular carcinoma: a meta-analysis, PLoS One, vol.8, p.65753, 2013.

Y. Zhou, J. Ming, and Y. Xu, ER?1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner, Biochem Biophys Res Commun, vol.457, pp.141-147, 2015.

W. Zundel, C. Schindler, and D. Haas-kogan, Loss of PTEN facilitates HIF-1-mediated gene expression, Genes Dev, vol.14, pp.391-396, 2000.

W. Zwart, V. Theodorou, and M. Kok, Oestrogen receptor-co-factor-chromatin specificity in the transcriptional regulation of breast cancer, EMBO J, vol.30, pp.4764-4776, 2011.