, Now suppose that E and F are weak*-closed subspaces of B(L p (µ)) and B(L p (?)) respectively

. , A weak*-closed subspace E of B(L p ) is said to have the weak* p-OAP if there exist a net of weak*-continuous finite-rank maps T i : E ? E such that (id ? T i )x ? x, ?x ? B( p ) ¯ ?E

G. An, J. Lee, and Z. Ruan, On p-approximation properties for p-operator spaces, J. Funct. Anal, vol.259, issue.4, pp.933-974, 2010.

M. Bo?-zejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A, vol.3, issue.6, pp.297-302, 1984.

B. Blackadar, Theory of C *-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, Encyclopaedia of Mathematical Sciences, vol.122, 2006.

P. Nathanial, Brown and Narutaka Ozawa. C *-algebras and finitedimensional approximations, Graduate Studies in Mathematics, vol.88, 2008.

F. Frank and . Bonsall, Some nuclear Hankel operators, Aspects of mathematics and its applications, vol.34, pp.227-238, 1986.

M. D. Choi and E. G. Effros, Nuclear C *-algebras and the approximation property, Amer. J. Math, vol.100, issue.1, pp.61-79, 1978.

M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math, vol.96, issue.3, pp.507-549, 1989.

V. Chepoi and M. F. Hagen, On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes, J. Combin. Theory Ser. B, vol.103, issue.4, pp.428-467, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01199910

V. Chepoi, Graphs of some CAT(0) complexes, Adv. in Appl. Math, vol.24, issue.2, pp.125-179, 2000.

M. Cowling, The predual of the space of convolutors on a locally compact group, Bull. Austral. Math. Soc, vol.57, issue.3, pp.409-414, 1998.

M. Daws, p-operator spaces and Figà-Talamanca-Herz algebras, J. Operator Theory, vol.63, issue.1, pp.47-83, 2010.

J. Decannì-ere and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math, vol.107, issue.2, pp.455-500, 1985.

A. Derighetti, Convolution operators on groups, Lecture Notes of the Unione Matematica Italiana. Springer, vol.11, 2011.

A. Defant and K. Floret, Tensor norms and operator ideals, 1993.

T. De-laat and M. Salle, Strong property (T) for higher-rank simple Lie groups, Proc. Lond. Math. Soc, vol.111, issue.3, pp.936-966, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219515

M. De-la-salle, Operator space valued Hankel matrices, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01219522

B. Dorofaeff, Weak amenability and semidirect products in simple Lie groups, Math. Ann, vol.306, issue.4, pp.737-742, 1996.

M. Daws and N. Spronk, On convoluters on L p-spaces, Studia Math, vol.245, issue.1, pp.15-31, 2019.

G. Edward, E. Effros, and . Christopher-lance, Tensor products of operator algebras, Adv. Math, vol.25, issue.1, pp.1-34, 1977.

G. Edward, Z. Effros, and . Ruan, Operator spaces, Monographs. New Series. The Clarendon Press, vol.23, 2000.

P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, vol.92, pp.181-236, 1964.

G. B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, 1995.

A. Figà-talamanca, Translation invariant operators in L p, Duke Math. J, vol.32, pp.495-501, 1965.

E. Guentner and N. Higson, Weak amenability of CAT(0)-cubical groups, Geom. Dedicata, vol.148, pp.137-156, 2010.

I. Gelfand and M. A. Naimark, On the imbedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S, vol.12, issue.54, pp.197-213, 1943.

A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo, vol.8, pp.1-79, 1953.

M. Gromov, Hyperbolic groups, Essays in group theory, vol.8, pp.75-263, 1987.

U. Haagerup, Group C *-algebras without the completely bounded approximation property, J. Lie Theory, vol.26, issue.3, pp.861-887, 2016.

U. Haagerup, An example of a nonnuclear C *-algebra, which has the metric approximation property, Invent. Math, vol.50, issue.3, p.79, 1978.

U. Haagerup and T. De-laat, Simple Lie groups without the approximation property, Duke Math. J, vol.162, issue.5, pp.925-964, 2013.

U. Haagerup and T. De-laat, Simple Lie groups without the approximation property II, Trans. Amer. Math. Soc, vol.368, issue.6, pp.3777-3809, 2016.

S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol.80, 1978.

C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc, vol.154, pp.69-82, 1971.

C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble), vol.23, issue.3, pp.91-123, 1973.

U. Haagerup and J. Kraus, Approximation properties for group C *algebras and group von Neumann algebras, Trans. Amer. Math. Soc, vol.344, issue.2, pp.667-699, 1994.

U. Haagerup, S. Knudby, and T. De-laat, A complete characterization of connected Lie groups with the approximation property, Ann. Sci. ´ Ec. Norm. Supér, vol.49, issue.4, pp.927-946, 2016.

U. Haagerup, T. Steenstrup, and R. Szwarc, Schur multipliers and spherical functions on homogeneous trees, Internat. J. Math, vol.21, issue.10, pp.1337-1382, 2010.

P. Jolissaint, A characterization of completely bounded multipliers of Fourier algebras, Colloq. Math, vol.63, issue.2, pp.311-313, 1992.

, Eberhard Kirchberg. C *-nuclearity implies CPAP. Math. Nachr, vol.76, pp.203-212, 1977.

A. W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol.140, 2002.

V. Richard, J. R. Kadison, and . Ringrose, Fundamentals of the theory of operator algebras, vol.I, 1997.

V. Lafforgue, Un renforcement de la propriété (T), Duke Math. J, vol.143, issue.3, pp.559-602, 2008.

C. Lance, On nuclear C *-algebras, J. Functional Analysis, vol.12, pp.157-176, 1973.

V. Lafforgue and M. Salle, Noncommutative L p-spaces without the completely bounded approximation property, Duke Math. J, vol.160, issue.1, pp.71-116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01144654

H. Leptin, Sur l'algèbre de Fourier d'un groupe localement compact

, C. R. Acad. Sci. Paris Sér. A-B, vol.266, pp.1180-1182, 1968.

C. Le-merdy, Factorization of p-completely bounded multilinear maps, Pacific J. Math, vol.172, issue.1, pp.187-213, 1996.

G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, issue.3

. Springer-verlag, , 1991.

T. Mei and M. Salle, Complete boundedness of heat semigroups on the von Neumann algebra of hyperbolic groups, Trans. Amer. Math. Soc, vol.369, issue.8, pp.5601-5622, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01219526

N. Mizuta, A Bo? zejko-Picardello type inequality for finitedimensional CAT(0) cube complexes, J. Funct. Anal, vol.254, issue.3, pp.760-772, 2008.

G. J. Murphy, C *-algebras and operator theory, 1990.

N. Ozawa, Weak amenability of hyperbolic groups, Groups Geom. Dyn, vol.2, issue.2, pp.271-280, 2008.

V. V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, 2003.

G. Pisier, Completely bounded maps between sets of Banach space operators, Indiana Univ. Math. J, vol.39, issue.1, pp.249-277, 1990.

G. Pisier, Similarity problems and completely bounded maps, Lecture Notes in Mathematics, vol.1618

G. Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol.294, 2003.

H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups, vol.22, 2000.

. Zhong-jin-ruan, Subspaces of C *-algebras, J. Funct. Anal, vol.76, issue.1, pp.217-230, 1988.

M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc, vol.71, issue.3, pp.585-617, 1995.

J. Serre, Trees, 1980.

S. S. Marek, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math, vol.37, issue.3, pp.255-262, 1980.

M. Takesaki, On the cross-norm of the direct product of C *algebras, Tôhoku Math. J, vol.16, issue.2, pp.111-122, 1964.

I. Vergara, The p-approximation property for simple Lie groups with finite center, J. Funct. Anal, vol.273, issue.11, pp.3463-3503, 2017.
URL : https://hal.archives-ouvertes.fr/ensl-01894544

I. Vergara, Radial Schur multipliers on some generalisations of trees, Studia Math, 2018.
URL : https://hal.archives-ouvertes.fr/ensl-01894550

. John-von-neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann, vol.102, issue.1, pp.370-427, 1930.

J. Wysocza´nskiwysocza´nski, A characterization of radial Herz-Schur multipliers on free products of discrete groups, J. Funct. Anal, vol.129, issue.2, pp.268-292, 1995.