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Chapter 1

Flocking physics

The collective motion of living organisms is a spectacular feature of nature. Herds of mammals,
schools of fishes, flocks of birds, swarms of insects and colonies of bacteria are many examples of large
groups of individuals that collectively migrate without leaders, see Fig. 1.1. The emergence of such
collective dynamics, together with the broad range of scales at which they take place, have attracted the
interest of physicists. Questions include: How do individuals spontaneously move together over scales
much larger than the size of the individuals? Do different flocks share common features regardless of
the species of their members? These interrogations are all part of a broader one: Does a physics of
flocking exist?

dynamics can be accurately quantified from the individual to the
population level in the lab, their physical environment can be
systematically controlled, and biological characteristics such as
individual motility can be changed through genetic manipulations
(17, 21, 23).

Materials and Methods
Bacteria Strain and Colony Growth. Wild-type B. subtilis strain 3610 is a
Gram-positive bacterium with a rod-shaped body and multiple flagella,
which generate a propelling force in the direction of its body (21, 22).
They swim with a mean speed about 40 μm∕s in a thin liquid film on the
substrate (24). In our experiments, the bacteria have mean dimensions of
0.72 μm × 7.4 μm (see Fig. S4 E and F).

Colonies grow on soft (0.5%) LB agar substrates. For inoculation, 5 μL of B.
subtilis overnight culture (OD650 ¼ 1) is placed on the agar. The inoculated
gel is stored in an incubator at 30 °C and 90% humidity. After a lag time
of 2 h, a colony starts to expand outward isotropically with a speed 1.4 cm∕
hour (23).

Imaging Procedure. After growing for 1.5 h, the colony (2.1 cm in radius) is
placed under an optical microscope (Olympus IX50 with an LD 60X Phase con-
trast PH2 objective) for measurements. The imaging window (90 × 90 μm2) is
positioned initially at the edge of the colony, and its position in the labora-
tory reference frame is left unchanged throughout the experiments. As the
colony expands, the observed density of bacteria increases as a function of
time due to a gradient of bacterial density from the edge to the interior of
the colony. As shown in Fig. S5, the total number of bacteria Ntotal increases
from 340 to 720 in 35 min, and then Ntotal saturates. The radius of a colony
increases for 0.82 cm in 35 min, from which we estimate the density gradient
near the colony edge is 465∕cm. This means the spatial density variation
within the imaging window is negligible.

At each density condition, we record 60 frame∕s for 100 s, during which
the increase in Ntotal is not significant (about 3%), and the system is in a qua-
sisteady state. As shown in Figs. S6 and S7, the correlation times of density,
velocity, and orientation fluctuations are about 0.2–0.4 s. Therefore, the
number of statistically independent configurations sampled within 100 s is
large enough to yield good statistics.

Image Analysis and Bacteria Tracking. A typical raw image (1;000 × 1;000
pixels) is shown in Fig. S4A. The closely packed bacteria are in such close
proximity in the image that simple procedures such as edge detection and
intensity thresholding cannot separate them. In order to “isolate” a bacte-
rium, we first obtain a background image by smoothing the original image
with a moving Hamming window (7 × 7 pixels), and then the background is
subtracted from the original image. A background-removed image is shown
in Fig. S4B. Then a gradient-based edge-detection algorithm is applied to
extract the edges of a bacterium. A binary image, as shown in Fig. S4C, is
constructed such that only pixels inside the extracted edges are set to be
white. Properties of the resultant white objects, such as center of mass,
orientations, and sizes, are extracted by Matlab functions bwlabel and
regionprops. White objects other than bacteria in binary images (cf.
Fig. S4C) are eliminated by requiring each object to be elongated with an
aspect ratio greater than 4. The final results are plotted on top of the original
image in Fig. S4D, where the centers of mass of the bacteria are shown by red
crosses and edges of the bacteria by blue lines.

To construct bacteria trajectories, we use a standard particle-tracking
algorithm based on a minimum distance criterion between bacteria in suc-
cessive frames. From the trajectories, we compute instantaneous velocities,
~vi . Because flagella are not resolved in our experiments, we cannot distin-
guish cell “head” from “tail” (where flagella connect to cell body) from static
images. In order to determine the orientation vector ŷi uniquely, we assume
the angle difference between ŷ i and velocity ~vi is less than π∕2. All image
analysis and tracking programs are developed in Matlab.

Cluster Identification. First, two bacteria are identified to be connected if the
distance between their center of masses is less than Rd ¼ 5.4 μm and the dif-
ference in their directions of motion is less than Ad ¼ 20 degrees. We then
define clusters recursively: A bacterium belongs to a cluster if it is connected
to any other bacterium belonging to a cluster. Nine representative configura-
tions of clusters are shown in Fig. S1. The majority of the clusters are elon-
gated along the direction of motion.

The two parameters Rd ¼ 5.4 μm and Ad ¼ 20 degrees used to identify
clusters are empirically chosen, based on correlation functions and instanta-
neous fields. We find that, around the chosen values (Rd ¼ 5.4 μm and Ad ¼
20 degrees), the end results depend only weakly on the particular values of
Rd and Ad . As shown in Fig. S3A, the cluster size distributions extracted under
five sets of Rd and Ad are nearly indistinguishable. Higher values for Rd and
Ad lead to slightly greater numbers of large clusters. Further, the cluster-size-

Fig. 5. Anomalous density fluctuations in collectively moving bacteria. (A) Total number of bacteria in the field of view as a function of time. Two snapshots,
corresponding to minimal and maximal instantaneous bacteria density, are shown as insets. (B) The magnitude of the density fluctuations (quantified by the
ratio of ΔN to

ffiffiffiffi
N

p
) against the mean bacterial number N, for interrogation areas of various sizes. Results from three conditions are shown: Ntotal ¼ 343

(squares), Ntotal ¼ 539 (circles), and Ntotal ¼ 718 (triangles). The solid line in B has a slope of 0.25. To obtain the data in B, we define a series of interrogation
areas centered at the imaging window with increasing sizes from Ai ¼ 5.4 × 5.4 μm2 to 90 × 90 μm2. We then construct a temporal record of the number of
bacteria in each interrogation area Ai (similar to the one in A). From these temporal records, we compute the standard deviation ΔNðAiÞ and the mean NðAiÞ
for each Ai .
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They swim with a mean speed about 40 μm∕s in a thin liquid film on the
substrate (24). In our experiments, the bacteria have mean dimensions of
0.72 μm × 7.4 μm (see Fig. S4 E and F).
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subtilis overnight culture (OD650 ¼ 1) is placed on the agar. The inoculated
gel is stored in an incubator at 30 °C and 90% humidity. After a lag time
of 2 h, a colony starts to expand outward isotropically with a speed 1.4 cm∕
hour (23).

Imaging Procedure. After growing for 1.5 h, the colony (2.1 cm in radius) is
placed under an optical microscope (Olympus IX50 with an LD 60X Phase con-
trast PH2 objective) for measurements. The imaging window (90 × 90 μm2) is
positioned initially at the edge of the colony, and its position in the labora-
tory reference frame is left unchanged throughout the experiments. As the
colony expands, the observed density of bacteria increases as a function of
time due to a gradient of bacterial density from the edge to the interior of
the colony. As shown in Fig. S5, the total number of bacteria Ntotal increases
from 340 to 720 in 35 min, and then Ntotal saturates. The radius of a colony
increases for 0.82 cm in 35 min, from which we estimate the density gradient
near the colony edge is 465∕cm. This means the spatial density variation
within the imaging window is negligible.
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in Fig. S4B. Then a gradient-based edge-detection algorithm is applied to
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constructed such that only pixels inside the extracted edges are set to be
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orientations, and sizes, are extracted by Matlab functions bwlabel and
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Fig. S4C) are eliminated by requiring each object to be elongated with an
aspect ratio greater than 4. The final results are plotted on top of the original
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crosses and edges of the bacteria by blue lines.

To construct bacteria trajectories, we use a standard particle-tracking
algorithm based on a minimum distance criterion between bacteria in suc-
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guish cell “head” from “tail” (where flagella connect to cell body) from static
images. In order to determine the orientation vector ŷi uniquely, we assume
the angle difference between ŷ i and velocity ~vi is less than π∕2. All image
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ference in their directions of motion is less than Ad ¼ 20 degrees. We then
define clusters recursively: A bacterium belongs to a cluster if it is connected
to any other bacterium belonging to a cluster. Nine representative configura-
tions of clusters are shown in Fig. S1. The majority of the clusters are elon-
gated along the direction of motion.
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Figure 1.1 | Collective motion in nature. (a) A herd of zebras. Picture by P. Morin. (b) Starling
flocks. Figure from the Collective Behaviour in Biological Systems laboratory, Roma. (c) Bacteria
colony. Figure from [144].
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Chapter 1

1.1 Synthetic active materials

Investigating the dynamics of flocks occuring in the wild is a challenging task, particularly performing
quantitative measurements [1]. Additionally, the many parameters that influence flocking correlate with
a poor control over these parameters. As an alternative to the study of natural flocks, physicists have
therefore turned to the design of simpler flocks that can be handled in the laboratory, and for which
some key parameters can be controlled at will. Thus, they have created synthetic flocks.

The first step has consisted in making motile units in the laboratory: polar active particles that
individually turn energy into directed motion. For twenty years, experimentalists have been very
successful in motorizing a wealth of different elements. In particular, all the constituents of conventional
soft materials have been endowed with the ability to self-propel. Several forms of active colloids [13,
59, 89, 47, 88], emulsions [118], gels [102, 100] and grains [8, 35, 137] are now available to physicists for
laboratory experimentation.

As these various synthetic active particles became easily accessible, it became possible to study
groups of such particles, and hence the testing for the emergence of flocks in these active materials.
Surprisingly, populations of synthetic active particles showed a rich variety of collective behaviors.
Emergent structures with directed collective motion, known as flocks, were revealed to be only one
of the many emergent collective behaviors observed. Some of the prominent collective dynamical
patterns recorded are depicted in Fig. 1.2. Active microtubules are seen to form an active nematics that
constantly evolves and whose topological defects endlessly merge and nucleate, see Fig. 1.2a. Active
Janus colloids show some dynamical phase separation with clustering, given by a balance between
particle aggregation and dissociation, see Fig. 1.2b. Ephemeral clusters of active droplets collectively
move and re-arrange as they collide with each others, see Fig. 1.2c. These few examples show that
several classes of active materials have to be distinguished from one another. Being interested in
flocking, I hereafter restrict my discussion to polar active materials. Polar active materials are made of
motile individuals that move in the same direction on average, thereby forming flocks.7

Figure 4. Top view of a typical experiment. The droplet diameter was 80 µm.
The surfactant concentration was 200 mM l−1 in order to minimize the sensitivity
of the droplet motion to the MO and brMO concentrations. The red arrows
indicate the momentary direction of the droplet motion.

During an experiment, the concentration of brMO gradually builds up from the ‘exhaust’
of the many squirmers in a poorly controllable and spatially inhomogeneous fashion. Since the
majority of the brMO becomes trapped in the MO micelles, its effect is mainly to reduce the
effective concentration of MO in the oil. Figure 3 tells us that by choosing a high surfactant
concentration, where there is almost no sensitivity of the squirmer velocity to the surfactant
density, we can also minimize the sensitivity of the velocity to the concentration of brMO,
thereby minimizing any unwanted (global) crosstalk between the squirmers. This latter property
provides another key feature of our system that makes it particularly suited for experimental
studies of collective motion.

5. Collective behavior

Let us therefore now turn to an investigation of the collective behavior of our squirming
droplets. It is a long-standing debate whether physical effects, such as hydrodynamic
interactions, are sufficient to explain textures observed in the swarming behavior of bacteria
and other micro-organisms, without having to invoke chemotaxis or other genuinely biological
effects [2, 4, 5, 12]. Using our model squirmers instead of bacteria, we can tackle this problem
from the reverse side, asking for the textures we can observe in dense populations of model
squirmers, which are guaranteed to be free of biological interactions. As we will see, there is
indeed considerable structure to be unveiled even for such simple systems.

We restrict ourselves to effectively 2D systems here, not only for the sake of simplicity, but
also because most of the studies to date have concentrated on the 2D case. Our samples were
prepared by creating shallow wells of a few millimeters diameter and a depth just slightly larger
than the droplet diameter in poly-dimethyl-siloxane (PDMS) rubber by standard soft lithography
techniques. Bonding the PDMS to a glass slide resulted in a flat compartment, which in addition
was connected by a narrow channel to a step emulsification unit [27], where droplets were
produced and subsequently transported through the channel into the sample well. Figure 44

shows a typical sample. The red arrows indicate the direction of motion of each droplet.

4 See also the supplementary movie, available at stacks.iop.org/NJP/13/073021/mmedia.

New Journal of Physics 13 (2011) 073021 (http://www.njp.org/)

(c)(a) (b)

Figure 1.2 | Collective behaviors in synthetic active matter. (a) Active nematics with topological
defects. Figure from [100]. (b) Clusters of active Janus colloids. Figure from [51]. (c) Motile clusters
of active droplets. Figure from [118].
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Flocking physics

1.2 Synthetic flocks

Synthetic flocks out of polymers, grains and colloids have been made in laboratory experiments. The
diversity of the size, nature and propulsion mechanism of these motile units echoes the diversity found
in natural flocks. An overview of these systems is the opportunity to stress this variety while bringing
out the unity in the ordering mechanism. I first list these different experiments by insisting on their
differences. Then, I come back on the features they share.

Actin filaments on a motility assay

The motility assay experiments performed by Schaller and co-workers [102] are among the first
realizations of flocks in the laboratory. Actin filaments, proteins of length ∼ 10µm, are made active by
linking them to an array of molecular motors, see Fig. 1.3a. As it happens in cells, adding adenosine
tri-phosphate to the system triggers the molecular motors. Consequently, the filaments start moving
at a typical speed v0 ∼ 5µm/s.

Figures 1.3b-c show that different dynamical states occur upon increasing the filament density ρ.
At low density, the filaments perform persistent random walks and form a homogeneous and isotropic
gas, see Fig. 1.3b. At intermediate density, polar clusters emerge and move through a dilute gaseous
background, see Fig. 1.3c. At high density, a pattern of polar waves that propagate along a common
direction form. Remarkably, the polar clusters and polar waves that emerge in the system can be up
to 500µm in size, orders of magnitudes larger than the filaments. Recently, the authors have provided
a detailed account of multiple-body collision events that highlights the role of alignment interactions
in for emergence of these polar structures [115, 114].

(c)(a) (d)

LETTERS

Polar patterns of driven filaments
Volker Schaller1, Christoph Weber2, Christine Semmrich1, Erwin Frey2 & Andreas R. Bausch1

The emergence of collective motion exhibited by systems ranging
from flocks of animals to self-propelled microorganisms to the
cytoskeleton is a ubiquitous and fascinating self-organization
phenomenon1–12. Similarities between these systems, such as the
inherent polarity of the constituents, a density-dependent transi-
tion to ordered phases or the existence of very large density fluc-
tuations13–16, suggest universal principles underlying pattern
formation. This idea is followed by theoretical models at all levels
of description: micro- or mesoscopic models directly map local
forces and interactions using only a few, preferably simple, inter-
action rules12,17–21, and more macroscopic approaches in the
hydrodynamic limit rely on the systems’ generic symmetries8,22,23.
All these models characteristically have a broad parameter space
with a manifold of possible patterns, most of which have not yet
been experimentally verified. The complexity of interactions and
the limited parameter control of existing experimental systems are
major obstacles to our understanding of the underlying ordering
principles13. Here we demonstrate the emergence of collective
motion in a high-density motility assay that consists of highly
concentrated actin filaments propelled by immobilized molecular
motors in a planar geometry. Above a critical density, the fila-
ments self-organize to form coherently moving structures with
persistent density modulations, such as clusters, swirls and inter-
connected bands. These polar nematic structures are long lived
and can span length scales orders of magnitudes larger than their
constituents. Our experimental approach, which offers control of
all relevant system parameters, complemented by agent-based
simulations, allows backtracking of the assembly and disassembly
pathways to the underlying local interactions. We identify weak
and local alignment interactions to be essential for the observed
formation of patterns and their dynamics. The presented minimal
polar-pattern-forming system may thus provide new insight into
emerging order in the broad class of active fluids8,23,24 and self-
propelled particles17,25.

The molecular system that we consider consists of only a few
components: actin filaments and fluorescently labelled reporter fila-
ments that are propelled by non-processive motor proteins (heavy
meromyosin (HMM)) in the planar geometry of a standard motility
assay26 (Fig. 1). The molecular nature of this approach permits large
system sizes and possibly high particle densities with only a few, easily
adjustable key parameters. To investigate the stability and dynamics
of collective phenomena, the filament density, r, is chosen as control
parameter and is systematically varied.

Depending on r, two phases are discernable: a disordered phase
below a critical density, rc, of ,5 filaments per square micrometre,
and an ordered phase above rc. In the disordered phase at low actin
concentrations, the filaments, with a length of about 10 mm, perform
persistent random walks without any specific directional preference.
Their speed (v05 4.86 0.5 mms21) is set by themotor proteins at the
surface and the adenosine tri-phosphate (ATP) concentration
(cATP5 4mM). The observed directional randomness is thermal in

nature but also reflects the motor distribution and activity at the
surface27.

Increasing the filament density above rc results in a transition to an
ordered phase that is characterized by a polymorphism of different
polar nematic patterns coherently moving at the speed v0 (Fig. 2).
These patterns can be further classified according to their size, orienta-
tional persistence, overall lifetime and assembly/disassembly mechan-
isms: in an intermediate-density regime above rc, moving clusters
(swarms) of filaments appear; in the high-density regime, starting at
a threshold density of r* (,20 filaments per square micrometre),
propagating waves start to form. Both patterns are characterized by
persistent density modulations.

The clusters encountered in the intermediate state move indepen-
dently and have cluster sizes ranging from about 20 mm tomore than
500 mm in diameter (Fig. 2a, b). In general, clusters have an erratic
motion with frequent reorientations of low directional persistence
(Fig. 2a, b and Supplementary Movie 1). The low orientational per-
sistence affects the cluster’s shape but barely influences its tem-
poral stability. The cluster integrity is only affected if collisions with
boundaries or other clusters are encountered. Increasing the filament
density in this intermediate regime not only yields larger clusters but
also a more persistent cluster movement. Individual clusters spon-
taneously emerge from the dilute, disordered background and
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Figure 1 | Schematic of the high-density motility assay. a, The molecular
motor HMM is immobilized on a coverslip and the filament motion is
visualized by the use of fluorescently labelled reporter filaments with a ratio
of labelled to unlabelled filaments of ,1:200 to 1:320. b, For low filament
densities, a disordered phase is found. The individual filaments perform
persistent random walks without any specific directional preferences.
Encounters between filaments lead to crossing events with only slight
reorientations. Scale bar, 50 mm.
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Polar patterns of driven filaments
Volker Schaller1, Christoph Weber2, Christine Semmrich1, Erwin Frey2 & Andreas R. Bausch1

The emergence of collective motion exhibited by systems ranging
from flocks of animals to self-propelled microorganisms to the
cytoskeleton is a ubiquitous and fascinating self-organization
phenomenon1–12. Similarities between these systems, such as the
inherent polarity of the constituents, a density-dependent transi-
tion to ordered phases or the existence of very large density fluc-
tuations13–16, suggest universal principles underlying pattern
formation. This idea is followed by theoretical models at all levels
of description: micro- or mesoscopic models directly map local
forces and interactions using only a few, preferably simple, inter-
action rules12,17–21, and more macroscopic approaches in the
hydrodynamic limit rely on the systems’ generic symmetries8,22,23.
All these models characteristically have a broad parameter space
with a manifold of possible patterns, most of which have not yet
been experimentally verified. The complexity of interactions and
the limited parameter control of existing experimental systems are
major obstacles to our understanding of the underlying ordering
principles13. Here we demonstrate the emergence of collective
motion in a high-density motility assay that consists of highly
concentrated actin filaments propelled by immobilized molecular
motors in a planar geometry. Above a critical density, the fila-
ments self-organize to form coherently moving structures with
persistent density modulations, such as clusters, swirls and inter-
connected bands. These polar nematic structures are long lived
and can span length scales orders of magnitudes larger than their
constituents. Our experimental approach, which offers control of
all relevant system parameters, complemented by agent-based
simulations, allows backtracking of the assembly and disassembly
pathways to the underlying local interactions. We identify weak
and local alignment interactions to be essential for the observed
formation of patterns and their dynamics. The presented minimal
polar-pattern-forming system may thus provide new insight into
emerging order in the broad class of active fluids8,23,24 and self-
propelled particles17,25.

The molecular system that we consider consists of only a few
components: actin filaments and fluorescently labelled reporter fila-
ments that are propelled by non-processive motor proteins (heavy
meromyosin (HMM)) in the planar geometry of a standard motility
assay26 (Fig. 1). The molecular nature of this approach permits large
system sizes and possibly high particle densities with only a few, easily
adjustable key parameters. To investigate the stability and dynamics
of collective phenomena, the filament density, r, is chosen as control
parameter and is systematically varied.

Depending on r, two phases are discernable: a disordered phase
below a critical density, rc, of ,5 filaments per square micrometre,
and an ordered phase above rc. In the disordered phase at low actin
concentrations, the filaments, with a length of about 10 mm, perform
persistent random walks without any specific directional preference.
Their speed (v05 4.86 0.5 mms21) is set by themotor proteins at the
surface and the adenosine tri-phosphate (ATP) concentration
(cATP5 4mM). The observed directional randomness is thermal in

nature but also reflects the motor distribution and activity at the
surface27.

Increasing the filament density above rc results in a transition to an
ordered phase that is characterized by a polymorphism of different
polar nematic patterns coherently moving at the speed v0 (Fig. 2).
These patterns can be further classified according to their size, orienta-
tional persistence, overall lifetime and assembly/disassembly mechan-
isms: in an intermediate-density regime above rc, moving clusters
(swarms) of filaments appear; in the high-density regime, starting at
a threshold density of r* (,20 filaments per square micrometre),
propagating waves start to form. Both patterns are characterized by
persistent density modulations.

The clusters encountered in the intermediate state move indepen-
dently and have cluster sizes ranging from about 20 mm tomore than
500 mm in diameter (Fig. 2a, b). In general, clusters have an erratic
motion with frequent reorientations of low directional persistence
(Fig. 2a, b and Supplementary Movie 1). The low orientational per-
sistence affects the cluster’s shape but barely influences its tem-
poral stability. The cluster integrity is only affected if collisions with
boundaries or other clusters are encountered. Increasing the filament
density in this intermediate regime not only yields larger clusters but
also a more persistent cluster movement. Individual clusters spon-
taneously emerge from the dilute, disordered background and
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Figure 1 | Schematic of the high-density motility assay. a, The molecular
motor HMM is immobilized on a coverslip and the filament motion is
visualized by the use of fluorescently labelled reporter filaments with a ratio
of labelled to unlabelled filaments of ,1:200 to 1:320. b, For low filament
densities, a disordered phase is found. The individual filaments perform
persistent random walks without any specific directional preferences.
Encounters between filaments lead to crossing events with only slight
reorientations. Scale bar, 50 mm.
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ments that are propelled by non-processive motor proteins (heavy
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assay26 (Fig. 1). The molecular nature of this approach permits large
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adjustable key parameters. To investigate the stability and dynamics
of collective phenomena, the filament density, r, is chosen as control
parameter and is systematically varied.
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below a critical density, rc, of ,5 filaments per square micrometre,
and an ordered phase above rc. In the disordered phase at low actin
concentrations, the filaments, with a length of about 10 mm, perform
persistent random walks without any specific directional preference.
Their speed (v05 4.86 0.5 mms21) is set by themotor proteins at the
surface and the adenosine tri-phosphate (ATP) concentration
(cATP5 4mM). The observed directional randomness is thermal in

nature but also reflects the motor distribution and activity at the
surface27.

Increasing the filament density above rc results in a transition to an
ordered phase that is characterized by a polymorphism of different
polar nematic patterns coherently moving at the speed v0 (Fig. 2).
These patterns can be further classified according to their size, orienta-
tional persistence, overall lifetime and assembly/disassembly mechan-
isms: in an intermediate-density regime above rc, moving clusters
(swarms) of filaments appear; in the high-density regime, starting at
a threshold density of r* (,20 filaments per square micrometre),
propagating waves start to form. Both patterns are characterized by
persistent density modulations.

The clusters encountered in the intermediate state move indepen-
dently and have cluster sizes ranging from about 20 mm tomore than
500 mm in diameter (Fig. 2a, b). In general, clusters have an erratic
motion with frequent reorientations of low directional persistence
(Fig. 2a, b and Supplementary Movie 1). The low orientational per-
sistence affects the cluster’s shape but barely influences its tem-
poral stability. The cluster integrity is only affected if collisions with
boundaries or other clusters are encountered. Increasing the filament
density in this intermediate regime not only yields larger clusters but
also a more persistent cluster movement. Individual clusters spon-
taneously emerge from the dilute, disordered background and
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Figure 1 | Schematic of the high-density motility assay. a, The molecular
motor HMM is immobilized on a coverslip and the filament motion is
visualized by the use of fluorescently labelled reporter filaments with a ratio
of labelled to unlabelled filaments of ,1:200 to 1:320. b, For low filament
densities, a disordered phase is found. The individual filaments perform
persistent random walks without any specific directional preferences.
Encounters between filaments lead to crossing events with only slight
reorientations. Scale bar, 50 mm.
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Figure 1.3 | Actin filaments on a motility assay. (a) Sketch of the motility assay experiments.
Actin filaments (F-actin) are linked to molecular motors (HMM). The addition of adenosin tri-phosphate
(ATP) motorizes the filaments. Figure from [102]. (b) Snapshot of a homogeneous and isotropic gas
of filaments at low density. Scale bar: 50µm. Figure from [101]. (c) Snapshot of polar clusters of
filaments propagating through a dilute gas at intermediate density. Scale bar: 50µm. Figure from [102].
(d) Snapshot of polar waves of filaments propagating through a dilute gas at high density. Scale bar:
50µm. Figure from [102].
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Chapter 1

Vibrated polar disks

Inspired by granular media experiments, Deseigne and co-workers [35, 36] designed an experiment
based on self-propelled hard disks. They engineered 4mm-diameter circular grains having two legs of
different materials and geometries, see Fig. 1.4a. Under vertical vibration with acceleration relative to
gravity Γ ∼ 3, these polar disks individually behave as persistent random walkers with a typical speed
v0 ∼ 10mm/s and orientation diffusivity D ∼ 1 s−1. Typical trajectories are shown in Fig. 1.4b.

Collective motion occurs in this system of vibrated polar grains as shown in Fig 1.4c. The emergence
of polar order origins in the hard-core collisions between disks. As shown in Fig. 1.4d, the repeated
collisions lead to alignment of the grains. As the grains are spherical, this experiment evidences that
a polar shape is not necessary to the existence of polar interactions. An other experiment based on
vibrated grains have demonstrated that polar interactions taking place at a distance also give rise to
collective motion [65].

vector over time s, and q(t) peaked around zero. Strikingly, this is

all themore so as s is large: The backwardmotion events apparent

in the secondary peaks at�p present at small s average out as s is
made larger, an indication that during most of these ‘‘backward

events’’ the polarity remains largely unchanged (Fig. 3(e)). Again,

this is only true up to some crossover value of s x 100 beyond

which the distribution of a(s) must gradually become flat. For s
larger than the crossover, one indeed observes a widening of the

distribution. This displacement mostly along the polarity axis is

performed at a fairly well-defined speed: for not too large s, the
distribution of |D~r(t,s)|/s is peaked around a most probable value.

Increasing s from s0 to about the crossover timementioned above,

the distribution keeps the same most probable value and gets

narrower and narrower (Fig. 3(f)). The well-defined most prob-

able value is thus nothing but the average speed hvi. This indicates
again that over these timescales our particles essentially go

straight. The distribution is then essentially Gaussian. For time-

scales larger than the crossover, there is of course a shift of the

‘‘speed’’ towards lower values as expected when the particles enter

the long-time, uncorrelated, diffusive regime.

B. Influence of the vibration amplitude G

We have seen above that our polar disks can be faithfully

described, over scales which average out the stopping and back-

ward events, as moving at a well-defined finite speed hvi while

being subjected to weak rotational diffusion. A direct and accu-

rate measure of the (rather long) persistence length/time of the

trajectories of our particles via, say, the time decay of the auto-

correlation of their polarity, is rendered difficult by the relatively

small size of our system. The data presented in Fig. 3was obtained

in a dish of diameter 40 vibrated at an amplitude of G ¼ 2.8. In

such conditions, the rather straight trajectories will hit the wall

long before their have turned enough to yield a significant decay of

the polarity autocorrelation. To overcome this difficulty, we used

the distribution of (normalized) polarity increments as shown in

Fig. 3(d). Being independent of s at small s, and the mean square

angular increment being linear in s (Fig. 4(a)), it allows to define

the rotational diffusion constantDq as its (half-)variance, and thus

the persistence length as x ¼ hvi/Dq.

The influence of G on Vm,Dq, and x is described in Fig. 4. First

of all, we observe a rather sudden drop in self-propulsion when G

is decreased (Fig. 4(a)): for small amplitude, the drive is too weak

and our polar disks do not move much. Over the range G ˛
[2.7,3.8], on the other hand, the average speed varies little. In

contrast, the rotational diffusion constant Dq, which is easily

captured from the root mean square angular increment

computed on a lag s (Fig. 4(b)), steadily increases with G, with an

Fig. 2 Self-propelled polar disks. (a) Side and bottom views of a polar

disk with the built-in polarity~n. The white part of the particle is made of

copper–berylium, while the grey part is made of nitrile. (b) Side and top

views of the polar disks with their respective polarities. The black scale

bar is 4 mm.

Fig. 3 Statistical properties of the individual motion for G ¼ 2.8. (a)

Sample trajectories of the self-propelled particles. The red arrows indicate

the instantaneous orientation of the polarity. The black arrows indicate

the orientation of the displacement between two successive frames. (b)

Sample trajectories of the isotropic particles. The black arrows indicate

the orientation of the displacement between two successive frames. (c)

Five time series of the displacement component along the polarity. The

signals have been shifted for clarity. The dotted lines indicate the zero.

One clearly observes negative events, corresponding to backwardmotion.

(d) Distribution of the reduced increments of the polarity

orientation gD q ðsÞ over time s for increasing s. The color code in frames

(d,e,f) indicates the value of s as reported on the legend of frame (f). (e)

Distribution of the angle a(s) between the displacement vectorD~r(t,s) and
the polarity ~n(t) for increasing s. (f) Distribution of |D~r(t,s)|/s, the

displacement over a time s, normalized by s for increasing s.
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made larger, an indication that during most of these ‘‘backward

events’’ the polarity remains largely unchanged (Fig. 3(e)). Again,

this is only true up to some crossover value of s x 100 beyond

which the distribution of a(s) must gradually become flat. For s
larger than the crossover, one indeed observes a widening of the

distribution. This displacement mostly along the polarity axis is

performed at a fairly well-defined speed: for not too large s, the
distribution of |D~r(t,s)|/s is peaked around a most probable value.

Increasing s from s0 to about the crossover timementioned above,

the distribution keeps the same most probable value and gets

narrower and narrower (Fig. 3(f)). The well-defined most prob-

able value is thus nothing but the average speed hvi. This indicates
again that over these timescales our particles essentially go

straight. The distribution is then essentially Gaussian. For time-

scales larger than the crossover, there is of course a shift of the

‘‘speed’’ towards lower values as expected when the particles enter

the long-time, uncorrelated, diffusive regime.

B. Influence of the vibration amplitude G

We have seen above that our polar disks can be faithfully

described, over scales which average out the stopping and back-

ward events, as moving at a well-defined finite speed hvi while

being subjected to weak rotational diffusion. A direct and accu-

rate measure of the (rather long) persistence length/time of the

trajectories of our particles via, say, the time decay of the auto-

correlation of their polarity, is rendered difficult by the relatively

small size of our system. The data presented in Fig. 3was obtained

in a dish of diameter 40 vibrated at an amplitude of G ¼ 2.8. In

such conditions, the rather straight trajectories will hit the wall

long before their have turned enough to yield a significant decay of

the polarity autocorrelation. To overcome this difficulty, we used

the distribution of (normalized) polarity increments as shown in

Fig. 3(d). Being independent of s at small s, and the mean square

angular increment being linear in s (Fig. 4(a)), it allows to define

the rotational diffusion constantDq as its (half-)variance, and thus

the persistence length as x ¼ hvi/Dq.

The influence of G on Vm,Dq, and x is described in Fig. 4. First

of all, we observe a rather sudden drop in self-propulsion when G

is decreased (Fig. 4(a)): for small amplitude, the drive is too weak

and our polar disks do not move much. Over the range G ˛
[2.7,3.8], on the other hand, the average speed varies little. In

contrast, the rotational diffusion constant Dq, which is easily

captured from the root mean square angular increment

computed on a lag s (Fig. 4(b)), steadily increases with G, with an

Fig. 2 Self-propelled polar disks. (a) Side and bottom views of a polar

disk with the built-in polarity~n. The white part of the particle is made of

copper–berylium, while the grey part is made of nitrile. (b) Side and top

views of the polar disks with their respective polarities. The black scale

bar is 4 mm.

Fig. 3 Statistical properties of the individual motion for G ¼ 2.8. (a)

Sample trajectories of the self-propelled particles. The red arrows indicate

the instantaneous orientation of the polarity. The black arrows indicate

the orientation of the displacement between two successive frames. (b)

Sample trajectories of the isotropic particles. The black arrows indicate

the orientation of the displacement between two successive frames. (c)

Five time series of the displacement component along the polarity. The

signals have been shifted for clarity. The dotted lines indicate the zero.

One clearly observes negative events, corresponding to backwardmotion.

(d) Distribution of the reduced increments of the polarity

orientation gD q ðsÞ over time s for increasing s. The color code in frames

(d,e,f) indicates the value of s as reported on the legend of frame (f). (e)

Distribution of the angle a(s) between the displacement vectorD~r(t,s) and
the polarity ~n(t) for increasing s. (f) Distribution of |D~r(t,s)|/s, the

displacement over a time s, normalized by s for increasing s.

5632 | Soft Matter, 2012, 8, 5629–5639 This journal is ª The Royal Society of Chemistry 2012

Pu
bl

is
he

d 
on

 1
3 

A
pr

il 
20

12
. D

ow
nl

oa
de

d 
by

 B
ib

lio
th

eq
ue

 D
id

er
ot

 d
e 

Ly
on

 o
n 

16
/0

4/
20

15
 1

3:
04

:0
0.

 

View Article Online
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alignment is controlled by set screws. The vibration is
produced with an electromagnetic servo-controlled shaker
(V455/6-PA1000L,LDS), the accelerometer for the control
being fixed at the bottom of the top vibrating disk, em-
bedded in the expanded polystyren. A 400 mm long brass
rod couples the air-bearing slider and the shaker. It is
flexible enough to compensate for the alignment mismatch,
but stiff enough to ensure mechanical coupling. The shaker
rests on a thick wooden plate ballasted with 460 kg of lead
bricks and isolated from the ground by rubber mats
(MUSTshock 100� 100� EP5, Musthane). We have
measured the mechanical response of the whole setup
and found no resonances in the window 70–130 Hz.
Here, we use a sinusoidal vibration of frequency f ¼
115 Hz and vary the relative acceleration to gravity � ¼
2�af2=g. The vibration amplitude a at a peak acceleration
of 1 g at this frequency is 25 �m. Using a triaxial accel-
erometer (356B18,PCB Electronics), we checked that the
horizontal to vertical ratio is lower than 10�2 and that the
spatial homogeneity of the vibration is better than 1%.

Our polar particles are micro-machined copper-
beryllium disks (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically oppo-
site positions [Fig. 1]. These two ‘‘legs,’’ which have
different mechanical response under vibration, endow the
particles with a polar axis which can be determined from
above thanks to a black spot located on their top. Under
proper vibration, they can be set in directed motion (see
below). Of total height h ¼ 2:0 mm, they are sandwiched
between two thick glass plates separated by a gap of H ¼
2:4 mm. We also used, to perform ‘‘null case experi-
ments,’’ plain rotationally invariant disks (same metal,
diameter, and height), hereafter called the ‘‘symmetric’’
particles. We laterally confined the particles in a flower-
shaped arena of internal diameter D ¼ 160 mm [Fig. 1].

The petals avoid the stagnation and accumulation of par-
ticles along the boundaries as reported, for instance, in [11]
by ‘‘reinjecting’’ them into the bulk. A CCD camera with a
spatial resolution of 1728� 1728 pixels and standard
tracking software is used to capture the motion of the
particles at a frame rate of 20 Hz. In the following, the
unit of time is set to be the period of vibration and the unit
length is the particle diameter. Within these units, the
resolution on the position ~r of the particles is better than
0.1, that on the orientation ~n is of the order of 0.05 rad and
the lag separating two images is �0 ¼ 5:75. Measuring the
long-time averaged spatial density map (for various num-
bers of particles), we find that this density field slightly
increases near the boundaries, but is constant to a few
percent in a region of interest (ROI) of diameter 20d.
This provides an additional check of the spatial homoge-
neity of our setup.
We first performed experiments with 50 particles, i.e., at

a surface fraction small enough so that collisions are rare
and the individual dynamics can be investigated. For large
acceleration, the polar particles describe random-walk-like
trajectories with short persistence length. Decreasing �,
they show more and more directed motion, and the persis-
tence length quickly exceeds the system size. This is in
contrast with the symmetric particles which retain the same
shortly correlated individual walk dynamics for all � val-
ues [Figs. 2(a) and 2(b)].
More precisely, individual velocities ~viðtÞ�

½~riðtþ�0Þ� ~riðtÞ�=�0 measured within the ROI have a
well-defined most probable or mean value vtyp ’ 0:025

(b)(a)
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FIG. 2 (color online). Individual dynamics for � ¼ 2:7.
(a) Typical portions of polar particles trajectories inside the
ROI. Black and grey (red) arrows indicate ~vt

i and ~nti at selected
times. The domain area is about 15� 15d. (b) The same for
symmetric particles. (c) Probability distribution function (PDF)
with counterpropagating waves with a common linear polariza-
tion (lin-lin) of �, the angle between ~vt

i and ~nti. (d) Variation of
angular diffusion coefficient D� with �.

FIG. 1 (color online). Collective motion of self-propelled
disks. Bottom left panel: a sketch of our polar particles. Main
panel: a snapshot of an ordered regime observed in our flower-
shape domain. The dark gray reveals the local alignment be-
tween particles {both perfect alignment [light grey (red)] and
pergect antialignment [dark grey (blue)]}. The intrinsic polarity
of the particles is indicated by the black arrows.
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investigate the interplay between these two transitions. But one

can already conclude that confined active flows are like any

confined flows: boundaries cannot be ignored, and it is hard to

disentangle the intrinsic ‘‘bulk’’ properties of active fluids from

those resulting from the inevitable presence of boundaries.

VI. Summary and discussion

Our results constitute, to our knowledge, the first study of a well-

controlled experimental system in which ‘‘self-propelled’’ objects

are able to move collectively over scales as large as the system

size. The dynamics of our particles, although nominally three-

dimensional and complicated, are well accounted for by a two-

dimensional description in terms of persistent random walks.

Their binary collisions are not simple inelastic aligning ones, but

are spatio-temporally extended events during which multiple

actual collisions happen, leading eventually to a weak but clear

effective alignment.

At the collective level, we showed how to avoid the accumu-

lation of particles near the boundary walls by adopting flower-

shaped arenas whose petals help reinject particles in the bulk.

This trick is of course not perfect, and we do observe higher

average densities near the walls, so that care must be taken in

defining a region of interest in which the density is nearly

constant although different from the nominal packing fraction.

We presented the results of three sets of experiments conducted

near ‘‘optimal’’ densities such that well-developed collective

motion is observed, in which orientational order is established on

scales comparable to the system size. In these most ordered

regimes, we recorded clear, unambiguous evidence of ‘‘giant

number fluctuations’’, a signature feature of orientationally-

ordered phases in active matter. Note that in the case of a clear

phase separation between dense clusters and a gaseous state—e.g

the inelastic collapse of dissipative grains—one would also

record ‘‘anomalous’’ density fluctuations; but these are essen-

tially tied to the presence of well defined interfaces between the

two phases, at odd with the present observations.

From the wealth of numerical studies of models of active

matter, where periodic boundary conditions are often adopted, it

is easy to forget about the inevitable role played by walls when

investigating collective motion. Here, in addition to the subtle

effects about the effective packing fraction recorded in the region

of interest, we showed that at densities slightly larger than those

used in the regimes where giant number fluctuations were

recorded, the boundaries ‘‘come back’’ in the problem by driving

macroscopic vortical flows.

The experiments we conducted have also shown some clear

limitations of our setup: even though we used two domain sizes,

finite-size effects remain strong and difficult to estimate, which

rules out any statement about the (asymptotic) nature of the

Fig. 10 Emergence of confinement-induced milling and its relation to polar order. (a) Temporal evolution of the ortho-radial ordering parameter P(t)

and the polar ordering parameterJ(t). (b) Zoom on a time window during which two inversion processes occur (vertical dashed lines). (c,d,e) Successive

snapshots of the system with, from left to right, the inversion process from a clockwise (hPi < 0) to an anti-clockwise hPi > 0 large scale vortex. The

packing fraction f ¼ 0.58.
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(b)

almost linear behavior in the G-range over which steady pro-

pulsion occurs (Fig. 4(c)). This indicates that the main effect of G

is on the strength of the angular noise. As a consequence, the

persistence length x becomes large as G is decreased within the

steady propulsion range [2.7,3.8], but falls back for too small G

values (Fig. 4(d)).

IV. Binary collisions

Having characterized the motion of our particles, we now turn to

a statistical description of their binary collisions using trajecto-

ries recorded when only few particles are evolving in the system

(typically 50 particles in a domain of diameter �40). As already

stated, most models for the collective motion of objects moving

on a substrate involve more or less explicit alignment rules. For

elongated, rod-like particles, inelastic collisions immediately lead

to alignment. Here, given that our particles interact by collisions

of their circular top part, no such direct alignment occurs.

Rather, encounters typically consist of multiple collisions each

followed by some rebounds (Fig. 5(a) and ESI†43). It is thus by

no means clear a priori that even some effective, average align-

ment takes place during collisions of two of our particles.

A. Defining collisions, their duration, and their spatial extent

Given that encounters of two of our particles typically involve

many actual collisions, sometimes occurringmore frequently than

our sampling rate, we studied the statistics of encounters defined

by the total space–time event during which two particles, initially

far apart, have had their centers stay closer from each other than

some threshold distance dc. To insure that these events are ‘‘real’’

collisions, this distance criterion was supplemented by the

condition that the polarities of the twoparticles at the beginningof

the encounter indicate that their distance is likely to decrease.

Obviously, the dc chosenmust be larger than 1, but not too large

otherwise encounters may not cease. To use a unique, objective

value of dc, we calculated hsci, themean duration of encounters, as

a function of dc, over a set of a few thousands events. The resulting

curve shows a plateau-like behavior in the range dc˛ [1.5–1.9], the

middle of which can be defined as being the inflection point d*c x
1.7 (Fig. 5(c)). Furthermore, thiswell-defined value, aroundwhich

the statistics of encounters do not vary significantly, does not vary

muchwhenG is changedwithin the useful range [2.7,3.8]. It is thus

adopted in the following to define encounters. Once encounters

thus defined, their spatial extension Drc can be estimated as the

distance between the mid point of the particle centers at the

beginning and at the end of the encounter (Fig. 5(b)) We find

the encounter sizes distributed roughly algebraically with an

exponent of the order of 3, whereas the encounter durations sc are
distributed roughly exponentially. The influence of G on these

distributions remains rather weak, with experimentally-observed

means decreasing slowly with G (Fig. 5(d–f)).

B. Alignment properties

In spite of their complicated space–time structure, and of the

intrinsically chaotic/noisy character of the particle dynamics, the

binary encounters possess a remarkable property: the sum of

the polarities of the two particles changes very little between the

beginning and the end of the encounter. The distribution of the

angle b characterizing this (see Fig. 5(b)) sharply peaks at around

0 (Fig. 6(a)).

In the following, we thus assume that b ¼ 0, and neglect the

dependence of the encounter statistics on the impact coefficient,

so that all the information related to alignment is encoded in the

conditional probability of qout, the outgoing angle of the polar-

ities, on qin, the incoming angle (Fig. 5(b)). All this information is

represented in the scatter plot of qout vs qin (Fig. 6(b,d)). A first

striking fact is that most encounters actually do not change the

polarities at all: most points of the scatter plot are located near

the diagonal qout ¼ �qin; the distribution of |qout � qin| sharply

peaks near zero (Fig. 6(c)). In the (qin,qout) scatter plot, apart

from the highly populated diagonal region, most of the remain-

ing points are located near the qout ¼ 0 axis (near-perfect, Vicsek-

style alignment) or in the triangular region between this axis and

the qout ¼ �qin diagonal (reduced outgoing angle, but not perfect

alignment) (see Fig. 6(b,d)). Anti-alignment or ‘‘nematic’’ inter-

actions similar to that represented in Fig. 5(a) (bottom) can be

seen, but they remain rare.

Thus, all in all, about 70% of binary encounters amount to no

effective interaction. Among the 30% remaining ones, most are

strongly aligning, with a few outliers. So far, our system seems to

be rather close to the Vicsek model: our particles can be

considered, on some coarse-grained timescale, to be moving at

constant speed. Via the shaking amplitude G, we have good

control on the effective rotational diffusion constant Dq. And

Fig. 4 Self propulsion (a) characteristic speed hvi defined by the most

probable value of kD~r(s)/s vs. G for s # 100. (b) Mean square angular

increment computed on a lag time s versus s, for vibration amplitude G ˛
[2.7–3.7]. (c) Diffusion coefficient Dq of the orientation of the polarity vs.

G. (d) Persistence length x ¼ hvi/Dq vs. G. Symbols (+) and (B) indicate

two different experimental runs with different experimental conditions,

such as ambient humidity, fine positioning of the top glass plate, etc. The

data analyzed in this paper for the small system corresponds to the run

labelled (+).
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collective motion. Below, J(t) in fact represents the modulus of

this velocity-based order parameter, properly normalized to be 1

for perfectly aligned particles:

JðtÞ ¼
�

D~riðt; 50Þ
kD~riðt; 50Þk

�����
����

����
����;

where D~ri(t,50) is the displacement performed by particle i

between t and t + 50, and h$i denotes the average over time steps t

and particles i.

Time series ofJ(t) show that decreasing G from 3.7 to 2.7, the

system reaches more and more ordered states, albeit never

perfectly ordered ones as expected in a finite system with hard

walls (Fig. 8(e)). The most ordered regimes exhibit very large

fluctuations of the order parameter over very long timescales as

shown also in the corresponding histograms of values taken by

J(t) (Fig. 8(c)).

As a matter of fact, our limited range of usable G values did not

allow us to reach regimes well inside the ordered phase, as shown,

e.g., by the variation with G of Jm, the most probable value of

the order parameter (Fig. 8(d)). In both experiments Ea and Eb,

J reaches values of the order of 0.5 for G ¼ 2.8, but starts falling

back for smaller G values. In the experiment on the large system

Eb, the rise a Jm seems steeper than in experiment Ea, but the

two curves are in fact difficult to compare given that the two

experiments possess different averaged packing fractions in their

ROI.

Thus it is not clear from the variation of the order parameter

alone whether our system, in its most ordered regime (G ¼ 2.8),

has reached the ordered phase or is still influenced by the tran-

sitional region. A direct measurement of the spatial and temporal

correlation functions of the Eulerian velocity field suggests,

though, that the ordered phase is indeed reached. The Eulerian

Fig. 8 Emergence of collective motion: (a) snapshot taken in a regime with long-range collective motion. The color code is red (reps. blue) for perfectly

aligned (reps. anti-aligned) neighbors. (b) Time-averaged packing fraction hf(r,t)it versus the distance r to the center of the vibrating plate for G ˛ [2.7–

3.7]. The size of the region of interest (ROI) is chosen in order to ensure uniformity of the packing fraction inside the ROI and indicated by the vertical

dashed line. The ROI in the small system has a radius of 10 particles diameters. We also checked that the packing fraction inside the ROI is stationary.

(Same color code as in (c)) (c) Distribution of the order parameter J for G ˛ [2.7–3.7], (color code as indicated in the legend). (d) Most probable value

Jm of the order parameter as a function of G for both the smaller experiment Ea (blackB) and the larger one, Eb, (red +). Inset:FROI as a function of G

for the same experiments. (e) Temporal evolution of the order parameter J(t) for four different vibration amplitudes G ¼ 3.6, 3.3, 3.1, 2.8.

Table 1 Main characteristics of the sets of experiments described

Experiment Arena used # of particles f typical fROI

Ea small 890 0.47 0.39
Eb large 3830 0.42 0.26
Ec small 1090 0.58 0.19
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(c)

investigate the interplay between these two transitions. But one

can already conclude that confined active flows are like any

confined flows: boundaries cannot be ignored, and it is hard to

disentangle the intrinsic ‘‘bulk’’ properties of active fluids from

those resulting from the inevitable presence of boundaries.

VI. Summary and discussion

Our results constitute, to our knowledge, the first study of a well-

controlled experimental system in which ‘‘self-propelled’’ objects

are able to move collectively over scales as large as the system

size. The dynamics of our particles, although nominally three-

dimensional and complicated, are well accounted for by a two-

dimensional description in terms of persistent random walks.

Their binary collisions are not simple inelastic aligning ones, but

are spatio-temporally extended events during which multiple

actual collisions happen, leading eventually to a weak but clear

effective alignment.

At the collective level, we showed how to avoid the accumu-

lation of particles near the boundary walls by adopting flower-

shaped arenas whose petals help reinject particles in the bulk.

This trick is of course not perfect, and we do observe higher

average densities near the walls, so that care must be taken in

defining a region of interest in which the density is nearly

constant although different from the nominal packing fraction.

We presented the results of three sets of experiments conducted

near ‘‘optimal’’ densities such that well-developed collective

motion is observed, in which orientational order is established on

scales comparable to the system size. In these most ordered

regimes, we recorded clear, unambiguous evidence of ‘‘giant

number fluctuations’’, a signature feature of orientationally-

ordered phases in active matter. Note that in the case of a clear

phase separation between dense clusters and a gaseous state—e.g

the inelastic collapse of dissipative grains—one would also

record ‘‘anomalous’’ density fluctuations; but these are essen-

tially tied to the presence of well defined interfaces between the

two phases, at odd with the present observations.

From the wealth of numerical studies of models of active

matter, where periodic boundary conditions are often adopted, it

is easy to forget about the inevitable role played by walls when

investigating collective motion. Here, in addition to the subtle

effects about the effective packing fraction recorded in the region

of interest, we showed that at densities slightly larger than those

used in the regimes where giant number fluctuations were

recorded, the boundaries ‘‘come back’’ in the problem by driving

macroscopic vortical flows.

The experiments we conducted have also shown some clear

limitations of our setup: even though we used two domain sizes,

finite-size effects remain strong and difficult to estimate, which

rules out any statement about the (asymptotic) nature of the

Fig. 10 Emergence of confinement-induced milling and its relation to polar order. (a) Temporal evolution of the ortho-radial ordering parameter P(t)

and the polar ordering parameterJ(t). (b) Zoom on a time window during which two inversion processes occur (vertical dashed lines). (c,d,e) Successive

snapshots of the system with, from left to right, the inversion process from a clockwise (hPi < 0) to an anti-clockwise hPi > 0 large scale vortex. The

packing fraction f ¼ 0.58.
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Figure 1.4 | Vibrated polar disks. (a) Photograph of the polar disks. Scale bar: 4mm. Figure
from [36]. (b) Persistent random walks performed by vibrated polar disks at low density. Each color
codes for a different disk. Figure from [36]. (c) Snapshot of a polar flock. The color codes for the
local alignment between self-propelled grains: from perfect alignment in red to perfect anti-alignment
in blue. Figure from [35]. (d) The trajectories of vibrated disks during a collision reveal the alignment
of their direction of motion. Figure from [35]. (e) The vibration acceleration Γ is a convenient control
parameter. Top: the orientation diffusivity of individual grains increases with Γ. Bottom: the decrease
of polarization with Γ reveals that collective motion is altered. Figures from [36].

The density is, as for the actin-filament experiment, a key parameter of the system. While grains
barely interact and form a gas at low density, they display collective motion at high density. Re-
cently, the authors have investigated the regime near close-packing of the disks [10]. The emergence of
crystalline order does not suppress collective motion and the system form a flowing crystal. Another
convenient control parameter is the vibration acceleration Γ. Interestingly, changing Γ has a strong
impact on the grains dynamics, see Fig. 1.4e. At the individual level, increasing Γ yields an increase in
the orientation diffusivity D. Importantly, this higher randomization translates, at the collective level,
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Flocking physics

into a lowering of alignment between particles: collective motion is reduced.

Electrically-powered colloids

As of today, two different experimental systems based on electrically-powered colloidal particles
display flocking. One of this system was developed in the group of Denis Bartolo [13]. It consists in
assemblies of spherical colloids powered by a DC electric field. Figure 1.5 shows a typical colloidal flock.
It forms a polar liquid whose colloids move in a common direction while no position order is present. I
thoroughly describe this model experiment in Chapter 2, as it is at the foundations of my work.

Figure 1.5 | Spherical colloids powered by a DC electric-field. Top: snapshot of a flock assembled
from self-propelled colloids. Their instantaneous direction of motion is indicated by blue arrows (1/10
are shown for clarity). Scale bar: 250µm. Bottom: close-up. Scale bar: 50µm.

A more recent proposition is due to Yan and co-workers [138]. They use Janus colloids of radius
∼ 3µm made of a silica and a titanium hemispheres. These colloids are powered by an AC electric
field whose direction does not impose the particle direction of motion, see Fig. 1.6a. The control of the
oscillation frequency does not only tune the propulsion velocity (v0 ∼ 30µm/s, see Fig. 1.6a) but also
changes the pair interactions between colloids. By favoring alignment interactions (Fig. 1.6b), Yan and
co-workers successfully recovered macroscopic polar phases, see Fig. 1.6c.
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Chapter 1
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Figure 3 | Time evolution in the swarming state. a, Representative 2D snapshot of a polar wave at a given time, migrating in the direction indicated by the
arrow. Initial particle area fraction φ0 =0.13. b, Kymogram showing the propagation of the wave in panel a, with the vertical axis representing time (t) and
the horizontal axis representing translation along the direction of migration x. Colour coding denotes averaged local area fraction φ(x), ranging from 0 to
0.2. The constant slope indicates a constant travelling velocity of the wavefront. c, Illustration of the final state with multiple vortices in a dilute sample
(φ0 =0.04). Shown is the vorticity map ωz(r), normalized by 〈|ωz(r)|〉 and overlaid with streamlines. d, Vortices with the same polarity merge. Top panels:
experimental images; bottom panels: corresponding ωz(r) and velocity field. The time di�erence between successive images is 7.0 s. Colour coding is the
same as in c. Scale bars are 200 µm in a–c and 40 µm in d. e, Time evolution of in-plane average particle speed 〈|v|〉 (unit: µm s−1) and average magnitude
of enstrophy 〈Ωz〉 (unit: s−2), for the sample shown in c.

kink in the chain (Supplementary Movie 7). These effects give
the impression that the whole chain follows a trail when moving,
but eventually the kink rounds due to the weak rigidity of the
chain. This finite rigidity is also responsible for the nearly circular
shape of continuously rotating rings, the active analogue of closed
loops predicted for equilibrium dipolar polymerization23. Lastly,
the cluster state (Fig. 2g and Supplementary Movie 8) is likewise
observed when salt is added to tune the dipolar interaction to the
appropriate range (Supplementary Fig. 3).

Beyond these predicted local arrangements, swarm states exhibit
an intriguing hierarchical time dependence as they evolve to larger-
scale structures. Initially, small coherent groups of particles nucleate
in different locations and move in random directions. These
collide and merge into huge waves (Fig. 3a and Supplementary
Movie 9) sweeping over the field of view, a process involving tens
of thousands of spheres heading in the same direction. Moreover,
the wavefront propagates at a constant speed (Fig. 3b) up to
1.4 times faster than individual spheres in the wave, typical of a
shockwave2. This shockwave arises as the polar wave continually
recruits new particles from the random, dilute phase to the front
of its directional migration. A simple phenomenological model
captures the observed shockwave speed (Supplementary Fig. 4).
These waves are transient: collisions between waves lead to vortices
(Supplementary Fig. 5). In a dense system (initial area fraction
φ0 = 0.13), giant vortices emerge as the final state (Supplementary
Movie 10). But in systemswith lower particle density (φ0 =0.04), the

polar state is so transient that multiple vortices form immediately
after the electric field is turned on, after which the system evolves
to many isolated, stable vortices (Fig. 3c). Vortices with the same
polarity merge over time (Fig. 3d) while neighbouring vortices
with opposite polarities do not annihilate: by sharing a common
flow in-between, they maintain stable configurations. Figure 3e
quantifies the time evolution of a typical dilute systemby the average
particle speed 〈|v|〉 in the image plane and the average magnitude
of enstrophy 〈Ωz〉 (ref. 24). 〈|v|〉 quickly rises to steady state as
particle motions become coordinated and the number of collisions
diminishes. 〈Ωz〉 first increases sharply, signifying the formation of
numerous vortices, but gradually decreases as vortices merge. The
stable final configuration presents neighbouring vortices all with
opposite polarities.

The exact origin of vortex formation is yet unclear. Previous
simulations demonstrated that two-particle alignment can generate
a vortex state if combined with long-range attraction25. A possible
source for this would be electrophoretic flow: in this high-frequency
range, where Janus particles swim with their metallic sides forward,
opposite to regular ICEP15 observed at low frequency, the particles
may pump flow from the x–y plane to the z axis and create a long-
range hydrodynamic attraction.

Time evolution of the clustering process is also interesting to
consider. Supplementary Fig. 6a shows a typical time sequence.
Qualitatively it is reminiscent of classical phase separation
processes19 (Supplementary Fig. 6b): clusters grow either by
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Figure 1 | Examples of collective active states formed by spheres with
imbalanced, o�-centred charges. a, The strategy is to program dual electric
charges shifted from the sphere centre onto opposing hemispheres. Their
signs (positive and negative) are colour coded (red and blue), their relative
magnitude is indicated by the respective dot size, and black arrows indicate
the swimming direction of the spheres. b–d, Representative 3D simulated
structures of active chains (b), swarms (c) and clusters (d). White
hemispheres represent the leading sides and red hemispheres the trailing
sides. The blue arrow in c marks the global direction of the swarm.

particles perpendicular to the field, a phenomenon known as
induced-charge electrophoresis (ICEP)15. Second, the differential
dielectric responses lead to different dipole moments for the leading
and trailing hemispheres, providing the opportunity to achieve
the imbalanced electrostatics that we have envisioned. Given that
these dipoles are all located in and oriented perpendicular to the
sample plane, the resulting dipole–dipole interactions are isotropic
in the plane and act analogously to charge–charge interactions, so
our previous predictions should apply in this experimental system.
More importantly, the frequency-dependent dielectric response
makes it possible to simultaneously control not only the imbalance
between the dipole moments of the two hemispheres, but also the
swimming force, and even the direction of self-propulsion, by a
single parameter, the electric-field frequency f . We calculate the
dielectric spectra for both hemispheres as well as the interactions
between the hemispheres in Fig. 2b,c, taking into account both
the intrinsic material properties and the response of ions in the
electric double layer22 (see Supplementary Discussion 1). The
dependence of particle velocity on frequency is also measured
(Supplementary Fig. 1 and Supplementary Discussion 2), showing
that particles undergo a reversal in swimming direction as the
frequency is increased.

By varying the electric-field frequency, we realize all the regimes
predicted by the heuristic arguments of Fig. 1a. First, when f is
low (∼kHz), dipolar interactions are negligible due to strong ionic
screening effects, hence the particlesmove and collide randomly and
isotropically16 (Fig. 2d and Supplementary Movie 4). As f increases
moderately to 20–50 kHz (Supplementary Movies 5 and 6), ionic
screening is largely reduced, such that colloids can interact with
each other through dipolar interactions. At the same time, the
particles reverse their swimming directions, with their metallic side
facing forwards. Therefore, the condition for swarming is fulfilled:
the repulsion between the leading, metallic hemispheres dominates
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Figure 2 | Experimental realization of the predicted active states from the
same Janus colloidal spheres. a, Experimental set-up: Janus spheres are
allowed to sediment in water between two electrodes. An a.c. electric field
E is applied in the z-direction to cause particles to swim in the x–y plane.
b, Calculated real and imaginary dipole coe�cients K (solid and dashed
lines, respectively) plotted against frequency f for dielectric (blue) and
metallic (red) hemispheres. Frequencies indicated by vertical lines are used
in the experiments (5 kHz, 30 kHz and 1 MHz, respectively). c, Calculated
dipolar interaction U’AB at contact for di�erent interaction pairs shown on
the right, normalized by the interaction between two purely metallic
hemispheres at infinite frequency. d–g, Illustrative images of gas (d),
swarms (e), chains (f) and clusters (g) observed experimentally. Images
d–f are obtained in deionized water at the frequencies marked in b and c.
The cluster phase (g) is obtained in 0.1 mM NaCl solution at f =40 kHz.
Scale bars are 5 µm in d–f and 30 µm in g.

(Fig. 2c). Particles align during binary collisions (statistics shown
in Supplementary Fig. 2) and further organize into coherent
swarms (Fig. 2e). Finally, once the frequency reaches the megahertz
range (Fig. 2f), ions barely follow the rapidly oscillating field, and
the inherent material response dominates. The strong, opposite
dipoles of the metallic and dielectric hemispheres yield head-to-
tail attraction, producing the active chains predicted in Fig. 1a.
Collisions between active chains lead to temporary alignment,
but chain flexibility precludes their collective polar swarms that
have been seen in other systems9. For each individual chain,
any particle along it tends to align its orientation with those of
adjacent particles in front and behind through the interactions
between their shifted dipoles, so that chains remain straight unless
perturbed by their environment. Collision of the leading particle
with another chain or an obstacle reorients that particle and initiates
a new straight segment along a different direction, creating a

2
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Figure 1 | Examples of collective active states formed by spheres with
imbalanced, o�-centred charges. a, The strategy is to program dual electric
charges shifted from the sphere centre onto opposing hemispheres. Their
signs (positive and negative) are colour coded (red and blue), their relative
magnitude is indicated by the respective dot size, and black arrows indicate
the swimming direction of the spheres. b–d, Representative 3D simulated
structures of active chains (b), swarms (c) and clusters (d). White
hemispheres represent the leading sides and red hemispheres the trailing
sides. The blue arrow in c marks the global direction of the swarm.

particles perpendicular to the field, a phenomenon known as
induced-charge electrophoresis (ICEP)15. Second, the differential
dielectric responses lead to different dipole moments for the leading
and trailing hemispheres, providing the opportunity to achieve
the imbalanced electrostatics that we have envisioned. Given that
these dipoles are all located in and oriented perpendicular to the
sample plane, the resulting dipole–dipole interactions are isotropic
in the plane and act analogously to charge–charge interactions, so
our previous predictions should apply in this experimental system.
More importantly, the frequency-dependent dielectric response
makes it possible to simultaneously control not only the imbalance
between the dipole moments of the two hemispheres, but also the
swimming force, and even the direction of self-propulsion, by a
single parameter, the electric-field frequency f . We calculate the
dielectric spectra for both hemispheres as well as the interactions
between the hemispheres in Fig. 2b,c, taking into account both
the intrinsic material properties and the response of ions in the
electric double layer22 (see Supplementary Discussion 1). The
dependence of particle velocity on frequency is also measured
(Supplementary Fig. 1 and Supplementary Discussion 2), showing
that particles undergo a reversal in swimming direction as the
frequency is increased.

By varying the electric-field frequency, we realize all the regimes
predicted by the heuristic arguments of Fig. 1a. First, when f is
low (∼kHz), dipolar interactions are negligible due to strong ionic
screening effects, hence the particlesmove and collide randomly and
isotropically16 (Fig. 2d and Supplementary Movie 4). As f increases
moderately to 20–50 kHz (Supplementary Movies 5 and 6), ionic
screening is largely reduced, such that colloids can interact with
each other through dipolar interactions. At the same time, the
particles reverse their swimming directions, with their metallic side
facing forwards. Therefore, the condition for swarming is fulfilled:
the repulsion between the leading, metallic hemispheres dominates
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Figure 2 | Experimental realization of the predicted active states from the
same Janus colloidal spheres. a, Experimental set-up: Janus spheres are
allowed to sediment in water between two electrodes. An a.c. electric field
E is applied in the z-direction to cause particles to swim in the x–y plane.
b, Calculated real and imaginary dipole coe�cients K (solid and dashed
lines, respectively) plotted against frequency f for dielectric (blue) and
metallic (red) hemispheres. Frequencies indicated by vertical lines are used
in the experiments (5 kHz, 30 kHz and 1 MHz, respectively). c, Calculated
dipolar interaction U’AB at contact for di�erent interaction pairs shown on
the right, normalized by the interaction between two purely metallic
hemispheres at infinite frequency. d–g, Illustrative images of gas (d),
swarms (e), chains (f) and clusters (g) observed experimentally. Images
d–f are obtained in deionized water at the frequencies marked in b and c.
The cluster phase (g) is obtained in 0.1 mM NaCl solution at f =40 kHz.
Scale bars are 5 µm in d–f and 30 µm in g.

(Fig. 2c). Particles align during binary collisions (statistics shown
in Supplementary Fig. 2) and further organize into coherent
swarms (Fig. 2e). Finally, once the frequency reaches the megahertz
range (Fig. 2f), ions barely follow the rapidly oscillating field, and
the inherent material response dominates. The strong, opposite
dipoles of the metallic and dielectric hemispheres yield head-to-
tail attraction, producing the active chains predicted in Fig. 1a.
Collisions between active chains lead to temporary alignment,
but chain flexibility precludes their collective polar swarms that
have been seen in other systems9. For each individual chain,
any particle along it tends to align its orientation with those of
adjacent particles in front and behind through the interactions
between their shifted dipoles, so that chains remain straight unless
perturbed by their environment. Collision of the leading particle
with another chain or an obstacle reorients that particle and initiates
a new straight segment along a different direction, creating a

2
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Figure S2. Quantifying binary collision events in the swarm phase. a, Snapshots of a 

representative collision sampled at 5 equally separated time points, showing the tendency of 

collision to promote transient alignment between two colliding particles. Arrows indicate the 

instantaneous orientation of each particle (director ). Time difference between two subsequent 

snapshots is 0.7 s. Scale bar: 5 µm. b, Statistics of the collision events, quantified by the time 

evolution of the probability distribution of , the angle between the orientations of the two 

colliding swimmers (inset). Color coding corresponds to the borders of the panels in a. We only 

count effective collisions: two particles initially head towards a common point and are separated 

by less than 3D (D the particle diameter).  
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2.  Dependence of the particle velocity on the electric field frequency and strength 

 

Figure S1. Dependence of the particle swimming velocity on electric field frequency and 

strength. a, Dependence of particle velocity v on frequency f in an 0.1 mM NaCl solution. The 

electric field strength is kept constant at 8.33 104 V/m. At low frequency, a Janus particle swims 

with its dielectric side facing forward, a phenomenon known as induced-charge electrophoresis 

(ICEP, unshaded area). At high frequency, the Janus particle reverses its swimming direction, with 

the metallic side facing forward, a phenomenon called reversed ICEP (rICEP, shaded area). b, 

Dependence of particle velocity v on the square of the applied voltage, U2, in an 0.1 mM NaCl 

solution. The frequency is set to 500 kHz, i.e., in the rICEP region. The velocity v scales 

quadratically with electric field strength, like the reported dependence for conventional ICEP15. 

 

 Supplementary Fig. S1a shows the frequency dependence of particle velocity in an 0.1 mM 

NaCl solution. Our measurement is limited to above ~10 kHz by the strong electrohydrodynamic 

flows in the whole system and to below 4 MHz by the capacitance of the chamber. At low 

frequency, a metallodielectric Janus particle swims with its dielectric side forward. Such induced-
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Figure 1.6 | Electrically-powered colloids. (a) Active Janus colloids. Top: sketch of the experimen-
tal setup. An AC electric-field E is applied to Janus colloids confined between two electrodes. Bottom:
the speed of the colloids is tuned by varying the electric-field frequency f . Figures from [138]. (b)
Binary alignment interactions. Top: subsequent snapshots showing a collision between two colloids.
f ∼ 30 kHz. Scale bar: 5µm. Bottom: statistics from ∼ 104 collisions reveal a transient alignment
effect as the green, blue and purple curves have a peak at θ = 0. Figures from [138]. (c) Snapshots of
the polar phase. Left: a polar flock propagates through a gas of colloids. Scale bar: 200µm. Right: a
close-up on the polar flock shows that particles, that move towards their dark hemisphere, are aligned.
Scale bar: 5µm. Figures from [138].

Generic features in the emergence of flocks

A few principles underlying flocking can be identified from these synthetic-flock experiments. First,
alignment interactions are a key ingredient for the emergence of flocks. Polar interactions between
individuals are necessary for the emergence of large-scale polar structures. Such interactions can take
place between geometrically non-polar units, as self-propulsion itself already singles out a direction.
Second, density is a control parameter of major importance. As the number of individual increases,
interactions become more frequent, therefore promoting the emergence of flocks. Finally, orientation
diffusivity of individuals competes with alignment interactions. The formation of flocks is hindered by
the randomization of the directions of motion at the individual level.

1.3 Flocks as active ferromagnets

The major importance of alignment interactions between particles to allow for flocking was actually
pointed out at the very beginning of active matter physics. In 1995, Vicsek and co-workers proposed
to describe flocks as active ferromagnets: ferromagnets where each spin moves along the direction it
points to. More precisely, they constructed a Heisenberg-like model by considering collections of spins
interacting with each other via ferromagnetic couplings [129]. The seminal work by Vicsek has not only
participate in the soar of active matter research but it has also served as a paradigm in the study of
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polar active matter. For these reasons, it is worth recalling the main features of the Vicsek model: its
equations of motions and phase diagram will prove to be of great relevance in the study of colloidal
flocks.

Equations of motion in the Vicsek model

The Vicsek model consists in an assembly of pointwise particles at density ρ that move off-lattice at
a constant speed v0. The position r̂i of the particle i evolves according to a discrete-time scheme of
step ∆t:

ri(t+∆t) = ri(t) + v0∆tv̂i(t), (1.1)

where v0 is the particle speed and v̂i = (cos θi, sin θi) is the direction of motion of particle i. Interactions
between particles do not alter the speed of the particles, but they act as torques that change the particle
orientation θi. The angular dynamics is overdamped and given by:

θi(t+∆t) = arg
(
⟨v̂j(t)⟩j∈D(ri,R)

)
+ ηξi(t), (1.2)

which means that particle i changes its orientation to align with neighbor particles that belong to a
disk of radius R centered at ri(t). However, this goal is not perfectly met: the change in orientation is
also subject to some random noise of strength η. More precisely, ξi(t) is a random variable uniformly
distributed in the interval [−π π] with correlations ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′). Figure 1.7 illustrates
the dynamics of Eqs. (1.1) and (1.2). For clarity, it only shows how a single particle evolves from one
time to the next, while, in the Vicsek model, all particles synchronously update their positions and
orientations.

(c)(a) (b)

Figure 1.7 | Alignment in the Vicsek model. (a) The red particle that initially moves at v (red
arrow) interacts with its neighbors. It aims at aligning with their mean direction of motion (dashed red
arrow). (b) The red particle imperfectly aligns with its neighbors. (c) The red particle moves along
its new direction of motion.

Flocking transition in the Vicsek model

The Vicsek model has three independent control parameters. The time step ∆t and the interaction
range R are conveniently chosen as units of time and length. The particle speed v0, the noise strength η
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and the density ρ remain as control parameters. Studies of the Vicsek model have focused on the role of η
and ρ. In particular, the noise strength η plays a role similar to the temperature in equilibrium systems.
As for many equilibrium phase transitions, ordering occurs upon decreasing the noise strength in the
Vicsek model. This is also reminiscent of the vibrated grain experiments, see Fig. 1.4. Figures 1.8a-c
show snapshots from my simulations of the three different phases found. These simulations of the
Vicsek model are conducted at density ρ = 0.5 and velocity v0 = 0.5. At high noise strength, particles
move in all directions with equal probabilities, see Fig. 1.8c. The system is homogeneous and isotropic:
it forms a gas. Below a threshold noise strength η∗, the rotational symmetry is spontaneously broken.
A dense flock emerges, see Fig. 1.8b. This flock is made of particles that move in average in the same
direction. This flock coexists with an gas phase. While particles are continuously exchanged between
the two phases, the flock is a stationary structure that behaves as a traveling wave. Finally, at low
noise strength, a flock that spans the whole system forms, see Fig. 1.8a. This flock is homogeneous
both in density and orientational order: all spins move in average in the same direction. As this active
ferromagnet lacks any positionning order, it is commonly referred to as a polar liquid.

(c)(a) (b) (d) (e)

η

lower the transitional noise amplitude �t. Indeed, for �tv0 of
the order of or not much smaller than the interaction range r0
and in the low-density limit ��1 /r0

d, the system can be seen
as a dilute gas in which particles interact by short-range or-
dering forces only. In this regime, the persistence length of
an isolated particle �i.e., the distance traveled before its ve-
locity loses correlation with its initial direction of motion�
varies as v0 /�. To allow for an ordered state, the noise am-
plitude should be small enough so that the persistence length
remains larger than the average interparticle distance, i.e.,
1 /�1/d. Thus the transition noise amplitude is expected to
behave as

�t � v0�1/d. �10�

In �5�, it was indeed found that �t��� with �� 1
2 in two

dimensions. Our own data �Figs. 8�a�–8�c�� now confirm Eq.
�10� for both the angular and vectorial noise in two and three
spatial dimensions, down to very small � values. The data
deviate from the square-root behavior as the average inter-
particle distance becomes of the order of or smaller than the
interaction range.

Finally, we also investigated the transition line when v0 is
varied �Fig. 8�d��. For the vectorial noise case, at fixed den-
sity, the threshold noise value �t is almost constant �data
obtained at �= 1

2 , not shown�. For the angular noise, in the
small-v0 limit where the above mean-field argument does not

apply, we confirm the first-order character of the phase tran-
sition down to v0�0.05 for both angular and vectorial noise
�Figs. 9�b� and 9�d��. For even smaller values of v0, the
investigation becomes numerically too costly �see the next
subsection�. Note that �t seems to be finite when v0→0+, a
limit corresponding to the XY model on a randomly con-
nected graph. Still, for angular noise, the large-velocity limit
is also difficult to study numerically. Again, we observe that
the transition is discontinuous as far as we can probe it, i.e.,
v0=20 �Figs. 9�a� and 9�b��.

E. Special limits and strength of finite-size effects

We now discuss particular limits of the models above to-
gether with the relative importance of finite-size effects. Re-
call that these are quantified by the estimated value of the
crossover size L� beyond which the transition appears dis-
continuous. All the following results have been obtained for
d=2. Partial results in three dimensions indicate that the
same conclusions should hold there. Keep in mind that in all
cases reported the transition is discontinuous. We are just
interested here in how large a system one should use in order
to reach the asymptotic regime.

Figure 10�a� shows that finite-size effects are stronger for
angular noise than for vectorial noise for all densities � at
which we are able to perform these measurements. Note in
particular that, at �=2, the density originally used by Vicsek
et al., L��128 for angular noise, while it is very small for
vectorial noise, confirming the observation made in Sec.
III A.

In the small-� limit, the discontinuous character of the
transition appears later and later, with L� roughly diverging
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FIG. 8. �Color online� Asymptotic phase diagrams for the tran-
sition to collective motion. �a� Two space dimensions: threshold
amplitude �t for angular noise as a function of density � at v0

=0.5. Inset: Log-log plot to compare the low-density behavior with
the mean-field predicted behavior �t��� �dashed red line�. �b� As
in �a�, but with vectorial noise dynamics. �c� Noise-density phase
diagram in three dimensions for vectorial noise dynamics at fixed
velocity v0=0.5. In the log-log inset the transition line can be com-
pared with the predicted behavior �t��1/3 �dashed red line�. �d�
Two space dimensions: threshold amplitude �t for angular noise as
a function of particle velocity v0 at fixed density �=1 /2 �black
circles� and 1/8 �red triangles�. The horizontal dashed line marks the
noise amplitude considered in Ref. �39� �see Sec. III F�.
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the discontinuous character of the transition was argued to
disappear in the limit of small v0 �39�. We now address the
problem of the nature of the transition in full detail.

Even though there is no rigorous theory for finite-size
scaling �FSS� for out-of-equilibrium phase transitions, there
exists now ample evidence that one can safely rely on the
knowledge gained in equilibrium systems �41–43�. The FSS
approach �44,45� involves the numerical estimation of vari-
ous moments of the order parameter distribution as the linear
system size L is systematically varied. Of particular interest
are the variance

���,L� = Ld���2�t − ���t
2�

and the so-called Binder cumulant

G��,L� = 1 −
��4�t

3��2�t
2 , �8�

where �·�t indicates time average. The Binder cumulant is
especially useful in the case of continuous phase transitions,
because it is one of the simplest ratios of moments which
takes a universal value at the critical point �t, where all the
curves G�� ,L�, obtained at different system sizes L, cross
each other. At a first-order transition point, on the other hand,
the Binder cumulant exhibits a sharp drop toward negative
values �46�. This minimum is due to the simultaneous con-
tributions of the two phases coexisting at threshold. More-
over, it is easy to compute that G�� ,L��2 /3 in the ordered
phase, while for a disordered state with a continuous rota-

tional symmetry one has G�� ,L��1 /3 in d=2 and G�� ,L�
�4 /9 in d=3.

A. Overture

As an overture, we analyze systems of moderate size in
two dimensions �N�104 particles� at the density �=2, typi-
cal of the initial studies by Vicsek et al., but with the slightly
modified update rule �2� and for both angular and vectorial
noise. The microscopic velocity is set to v0=0.5.

For angular noise, the transition looks indeed continuous,
as found by Vicsek et al. On the other hand, the time-
averaged scalar order parameter ���t displays a sharp drop
for vectorial noise, and the Binder cumulant exibits a mini-
mum at the transition point, indicating a discontinuous phase
transition �Figs. 1�a� and 1�b��. Simultaneously, the variance
is almost � peaked. The difference between the two cases is
also recorded in the probability distribution function �PDF�
of � which is bimodal �phase coexistence� in the vectorial
noise case �Figs. 1�c� and 1�d��.

The qualitative difference observed upon changing the
way noise is implemented in the dynamics is, however, only
a finite-size effect. As shown in �38�, the transition in the
angular noise case reveals its asymptotic discontinuous char-
acter provided large enough system sizes L are considered
�Figs. 2�a� and 2�b��. Remaining for now at a qualitative
level, we show in Fig. 2�c� a typical time series of the order
parameter for the angular noise case in a large system in the
transition region. The sudden jumps from the disordered
phase to the ordered one and vice versa are evidence for
metastability and phase coexistence.

Note that the system size beyond which the transition re-
veals its discontinuous character for the angular noise case at
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Figure 1.8 | The Vicsek model: phases, first-order transition, phase diagram. (a) Homoge-
neous polar-ordered flock at low noise strength η. ρ = 0.5, v0 = 0.5 and L = 128R. (b) Heterogeneous
phase at the onset of collective motion. A band-shaped polar-ordered flock propagates through a gas.
ρ = 0.5, v0 = 0.5 and L = 128R. (c) Homogeneous and isotropic gas of particles at high noise strength.
ρ = 0.5, v0 = 0.5 and L = 128R. (d) The polarization sharply decreases upon increasing the noise
strength η. The discontinuity of the Vicsek transition is unveiled in large systems L ≥ 256R. ρ = 2
and v0 = 0.5. Figure from [23]. (e) Phase diagram of the Vicsek model in the density-noise plane.
Flocks emerge at high density ρ and small noise strength η. Figure from [23].

To monitor the transition between the disordered and ordered phases, the relevant order parameter
to consider is the polarization:

Π = ⟨v̂i⟩i . (1.3)

The polarization is nothing but the magnetization of Vicsek’s moving spins. Its modulus |Π| equals 1
when the system is perfectly ordered and all particles move exactly in the same direction. At the
contrary, |Π| vanishes when the particles form an isotropic gas. Figure 1.8d shows the evolution of |Π|
with η. Importantly, the polarization increases sharply at η∗: the flocking transition is discontinuous.
The first order nature of this transition, which has been debated for many years, origins in the phase
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coexistence at the onset of collective motion, see Fig. 1.8b. The band-shaped flock can therefore be
seen as a droplet of polar liquid coexisting with a gas phase.

As mentioned above, the particle density is an other control parameter in the Vicsek model. As
it was observed in experiments on synthetic flocks, increasing the density favors the emergence of
flocks. The full two-dimensional phase diagram of the Vicsek model is shown in Fig. 1.8e. Basically,
the transition to collective motion is set by the competition between alignment interactions and the
randomization of particle orientations due to the noise. By pointing out the key ingredients necessary
to allow for flocking, the Vicsek model has won its paradigmatic status.

1.4 Flocks as spontaneously flowing liquids

If the Vicsek model correctly accounts for flocking, its phenomenology presents some intriguing as-
pects. Two features are particularly surprising when having in mind analogous equilibrium models.
First is the coexistence phase where a flock propagates through a disordered background. No such het-
erogeneous state exists in ferromagnets. Second is the very existence of the polar liquid phase. Indeed,
at equilibrium, long-range order that relies on the breaking of a continuous symmetry is impossible
in dimension 2. This is in essence the Mermin-Wagner theorem [79]. The polar liquid in the Vicsek
model displays, however, true long-range order [30]. Ordered active states appear to be fundamentally
different from their passive counterparts, thereby making the limit v0 → 0 singular.

Such features have not only been observed in the Vicsek model, but also in a wide variety of models
and systems that display flocking. These observations suggest that the formation of a heterogeneous
phase at the onset of flocking as well as the true long-range order in flocks are robust to the details of
their microscopic mechanisms. Hydrodynamics provides the general framework best suited to find their
origins and test their universal nature. Toner and Tu have introduced the analogous of Navier-Stokes
equations for flocks [122]. By doing so, they have proposed a complementary perspective on the study
of flocking. While Vicsek had compared flocks to active ferromagnets, Toner and Tu have considered
flocks as spontaneously flowing liquids.

Hydrodynamics of flocks

Based on symmetry arguments, Toner and Tu have established the hydrodynamic equations for
flocking [122, 66]. As in any hydrodynamic theory, the focus is on large time and length scales. In
writing the equations that rule the dynamics of the density field ρ and the velocity field v, Toner and
Tu have limited to gradients of order 2. The Toner and Tu equations for flocking read:

∂tρ+∇(ρv) = 0, (1.4)
∂tv + Λ[∇vv] = U(ρ, |v|)v +D[∇∇v] + FP + f . (1.5)

Equation (1.4) translates mass conservation. Equation (1.5) includes additional terms with respect
to the Navier-Stokes equation. On the left-hand side of Eq. (1.5), all convective-like contributions
are cast into Λ[∇vv] = λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(|v|2). On the right-hand side, the viscous
contributions read D[∇∇] = D1∇(∇ · v) + D2(v · ∇)2v + D3∇2v. The pressure term FP tends to
suppress density fluctuations. The random force f accounts for fluctuations. It is a Gaussian white
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noise with zero mean and correlations:

⟨fi(r, t)fj(r′, t′)⟩ = ηδijδ(r− r′)δ(t− t′), (1.6)

where i and j denote Cartesian components and η is a constant.
The crucial term in Eq. (1.5) is U(ρ, |v|)v which governs the existence of collective motion. For

a collective moving state with velocity v0 to be favored, U(ρ, |v|) has to change sign from positive to
negative values at |v| = v0. A Landau-like force meets this requirement:

U(ρ, |v|)v = (a2 − a4|v|2)v, (1.7)

where a2 and a4 may depend on ρ. When a2 > 0 and a4 > 0, a non-zero local velocity is promoted.
This contribution thus accounts at the hydrodynamic level for microscopic alignment interactions. The
transition to collective motion upon increasing density is captured by keeping a4(ρ) > 0 while taking
a2(ρ) ∝ ρ−ρ⋆. As ρ approaches ρ⋆ from above, a2(ρ) ∝ ρ−ρ⋆ vanishes and v0 =

√
a2/a4 continuously

goes to 0: a homogeneous polar liquid with arbitrarily small velocity can form. Below the critical
density ρ⋆, the sole homogeneous stationary state is a gas with v = 0.

Heterogeneous polar phases: theoretical predictions

The continuous nature of the flocking transition suggested by the previous analysis is somewhat
misleading. Indeed, Eqs. (1.4) and (1.5) may also admit stationary but heterogeneous solutions. The
coexistence between a flock and a gas in the Vicsek model suggests that such solutions do exist.
Occuring at the onset of collective motion, this coexistence greatly impacts the nature of the transition.
Motivated by such considerations, Caussin, Solon and co-workers have looked for propagative solutions
of Toner and Tu equations [19, 109]. More precisely, they have looked for constant-speed (cF) waves
with a homogeneous structure transverse to their propagation direction. By reducing the problem to
the study of a dynamical system, they have evidenced that only three heterogeneous states exist. The
profiles in the propagating direction of the current W = ρv of these three states are shown in Fig. 1.9.

_Z ¼ − dH
dW

: (6)

This change of variable greatly simplifies the investigation
of the fixed points of the dynamical system now defined
by Eqs (5)–(6) [20]. It has at least two fixed points: (0,0)
and ðWH;FðWHÞÞ. A conventional linear stability analysis
shows that (0,0) is always a saddle point. Conversely, the
second fixed point ðWH;FðWHÞÞ calls for a more careful
discussion. It undergoes a Hopf bifurcation as WH −WF
changes sign, as can be seen on the eigenvalues of the
Jacobian matrices (see the Supplemental Material [16]).
This bifurcation, which we will thoroughly characterize
elsewhere [21], is supercritical (subcritical) if c < c�
(c > c�), where the critical velocity c� is defined implicitly
by H000ðWHÞ ¼ 0. Both the bifurcation line and c� can be
computed analytically and are shown in Fig. 2(b). More
importantly, regardless of its sub- or supercritical nature the
Hopf bifurcation results in an unstable spiral trajectory
which can lead the system toward a cyclic attractor. We now
describe how these limit cycles are explored in the (W, Z)
plane, and relate these nonlinear trajectories to the mor-
phologies of the band patterns.
Polar smectic phase or periodic orbits.— To gain more

quantitative insight, we consider large-amplitude cycles in
the limit of small D [22]. For small W, Eq. (5) implies that
the system quickly relaxes toward the curve Z ¼ FðWÞ in a
time ∼D−1. Close to the origin, the dynamics is controlled
by the linear properties of the saddle point (0,0), which
defines two well-separated scales. It can be easily shown
that the stable direction is nearly horizontal, it is associated
with a fast relaxation at the rate τ−1− ∼D−1ðc − λ=cÞ.

Conversely, the unstable direction is nearly tangent to
the curve Z ¼ FðWÞ, and corresponds, again in the
small-D limit, to a much slower growth at the rate
τ−1þ ∼ ðρc − ρ⋆Þ=ðc − λ=cÞ. The shape of large-amplitude
cycles immediately follows from this discussion and from
the parabolic shape of FðWÞ. Let us start from the left of the
cycle, point A in Fig. 3(a), close to the origin. We callWmin
the abscissa of this point, which is the minimum value ofW
in the cycle. As noted above, the trajectory first remains
near the parabola Z ¼ FðWÞ. If A is close enough to the
origin, this part of the cycle is explored slowly, in a time
∼τþ. Then the trajectory approaches the unstable point
ðWH;FðWHÞÞ. It therefore leaves the parabola and starts
spiraling, at a point labeled B in Fig. 3(a) [B is here defined
as the point where the trajectory deviates from the Z ¼
FðWÞ curve by 5%]. It finally crosses the parabola again, at
point C, and _W changes sign; see Eq. (5).W then decreases
and the system quickly goes back to point A in a time
typically set by ∼τ−. To further check this picture we have
numerically computed the phase portraits of Eqs. (5) and
(6), Fig. 3(a) (dotted lines). The typical periodic orbit
shown in Fig. 3(a) (solid line) is in excellent agreement
with the scenario described above. From this analysis, we
infer the shape of the steadily propagating band pattern
Wðx − ctÞ. As anticipated, periodic orbits correspond to a
polar smectic phase composed of equally spaced bands, in
qualitative agreement with the experimental pictures
reported in [6], and Fig. 1(a). The numerical shape of a
smectic pattern is shown in Fig. 3(b). It is composed of
strongly asymmetric excitations, which reflects the time-
scale separation in the underlying dynamical system close
to the origin; the large-amplitude bands are composed of a

(a) (c) (e)

(f)(b) (d)

FIG. 3 (color online). (a) Dashed lines: dynamical system trajectories, for P0 ¼ 1, ρc ¼ 0.1, λ ¼ 0.5, ξ ¼ 4,D ¼ 0.1, c ¼ 0.9. ρ⋆ was
chosen such thatWH ≳WF. Thick line: stable limit cycle. Thin line: Z ¼ FðWÞ curve. (b) Polar smectic corresponding to the limit cycle
shown in (a). (c) Homoclinic orbit; same parameters as in (a) but for a lower value of ρ⋆. (d) Solitonic band corresponding to the limit
cycle shown in (c). (e)HðWÞ, solid line, plotted for P0 ¼ 1, ρc ¼ 1, λ ¼ 1, ξ ¼ 10, and D ¼ 50. The dashed lines show the positions of
WF and WH. The values of c and ρ⋆ give rise to a heteroclinic cycle [16]. (f) Polar-liquid droplet for the same values of the parameters
as in (e); see also the Supplemental Material [16].
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Figure 1.9 | Heterogeneous polar flocks predicted from hydrodynamics. (a) Peridodic travelling
waves. Figure from [19]. (b) Solitonic band propagating through a gas. Figure from [19]. (c) A polar
liquid droplet. Figure from [19].

16



Flocking physics

Some key points of Caussin’s work deserve to be mentioned here.
(i) The three heterogeneous states depicted in Fig. 1.9 can coexist. Indeed, for some parameter sets

(ρ, cF), several patterns are solutions of Eqs. (1.4) and (1.5). The pattern selection problem remains to
be elucidated. This is a difficult task as microscopic details play a role in this process [17].

(ii) Importantly, the three heterogeneous states are all stable below ρ⋆. Coexistence with a homo-
geneous gas can occur, which explains the first order nature of the flocking transition as observed in
the Vicsek model.

(iii) Of particular interest, is the solitonic structure of Fig. 1.9b, which is reminiscent of the hetero-
geneous state at the onset of flocking in the Vicsek model. Not only the theory by Caussin qualitatively
accounts for such heterogeneous phases, but it also brings quantitative predictions that benefit from
the generic nature of the hydrodynamic approach, as first suggested by Bertin and co-workers [5]. As
an example, the finite flock of Fig. 1.9b has an exponential tail with a characteristic length:

LF =
v0
a2

⎡
⎣

cF
v0

− v0
2cF

(
1 +

βρg
v20

)

ρ⋆ − ρg

⎤
⎦ , (1.8)

where ρg is the density of the gas phase that coexists with the finite flock and the coefficient β comes
from taking FP = −β∇ρ for the pressure contribution. All the other coefficients were introduced above.
Interestingly, the length of the flock can be arbitrarily large as ρg gets closer to ρ⋆. Equation (1.8)
does not only capture the shape of Vicsek finite flocks. It also correctly accounts for colloidal synthetic
flocks, as we shall see in Chapter 4.

Homogeneous polar liquid: theoretical predictions

The precise phenomenology at the onset of collective motion is expected to bear no influence on the
properties of the polar liquid, in particular deep in the ordered phase , when ρ ≫ ρ⋆. Starting from
Eqs. (1.4) and (1.5), Toner and Tu have extensively studied the polar liquid phase [122, 123, 127, 119].
They have singled out three major characteristics of the polar liquid.

(i) They have evidenced that the polar liquid exhibits true long-range order in dimension 2, unlike
equilibrium systems. This result involves highly technical derivations. It was obtained going beyond
the linear approximation of Eqs. (1.4) and (1.5) around the polar liquid state by taking fluctuation and
non-linear contributions into account.

(ii) The polar liquid displays giant density fluctuations. The variance of the number of particles N
increases with ⟨N⟩ according to ∆N2 ∝ ⟨N⟩γ with γ = 1.6 within the polar liquid. This increase is
faster than if the central theorem applied as γ = 1 in this case.

(iii) Underlying these giant density fluctuations, are sound modes very specific to the polar liquid
state. Indeed, these sound modes originate from the interplay between mass conservation and the
Goldstone mode related to the spontaneous breaking of the rotational symmetry.

Experimental characterization: the current status

The hydrodynamic approach of flocking has kept its promise. It has unveiled some general features of
flocks that equilibrium considerations would not allow. Both this generality and originality demonstrate

17



Chapter 1

that a physics of flocking does exist. This would be all the more exciting if the theoretical predictions
were corroborated by experimental observations on real flocks. In introducing synthetic flocks, the
emphasis was on the microscopic mechanisms that give rise to the emergence of collective motion. At
the light of the hydrodynamics predictions, it is worth going back to these very same experimental
systems and look for the expected universal characteristics.

Onset of collective motion. At the onset of collective motion, the emergence of heterogeneous states
is a usual phenomenon. Clusters and waves of collectively moving filaments are found in the motility
assay experiments by Schaller and co-workers [102], see Figs. 1.3c and 1.3d. These polar structures
co-exist with homogeneous gas of filaments moving in random directions. Yan and co-workers have also
reported polar waves of active colloids that propagate through a gas, see 1.6c. Finally, flocks assembled
from colloidal rollers [13] display the exact band-shape structures predicted by hydrodynamics theories
(see Fig. 1.9) and found in the Vicsek model (see Fig. 1.8). This is discussed in more details in Chapter 2.

These observations therefore support the existence, in real flocks, of stable propagative heterogenous
density excitations as the ones considered by Caussin and co-workers. A thorough quantitative study
of the structures found in these experiments remains undone. Such a study would be of great interest.
It could help understand the pattern selection process, hence the emergence of heterogeneous flocks.
It could also lead to the finding of new polar states: genuine two-dimensionnal dynamical phases or
simple transient excitations, for instance.

Polar liquid state. Regarding the characterization of the polar liquid phase, many efforts have
been devoted to the measurements of the density fluctuations. Virtually all synthetic flocks have been
reported to display giant density fluctuations. Unfortunately, the accuracy and confidence in these
measurements are somehow limited. For example, the density fluctuations measured in the vibrated
disk experiments are in good agreement with the theoretical prediction, see Fig. 1.10a. However, the
system is not deep in the ordered phase (see Fig. 1.4e) and the proximity of the transition to collective
motion may also affect density fluctuations through the nucleation of droplets [35]. In the motility assay
experiments, a homogeneous polar liquid actually never forms. Measurements of density fluctuations
were performed within a subsystem that consisted in a polar cluster of size ∼ 1mm instead. Though in
quantitative agreement with Toner and Tu predictions (see Fig. 1.10b), the measured giant fluctuations
could also have a different origin. The stability of these clusters may rely on cohesive interactions
and these polar structure may not belong to the class of Toner and Tu fluids for which the expectation
γ = 1.6 hold. The measure of density fluctuations within flocks assembled from colloidal rollers has met
a similar fate [48]. As shown in Fig. 1.10c, giant density fluctuations have been evidenced. However,
despite very good statistics, the determination of γ lacks the precision necessary to compare with the
Toner and Tu prediction.

In the similar context of active nematics, the measure of density fluctuations has revealed to be as
much difficult. Even the very convincing data by Nishiguchi and co-workers [87] are somewhat irregular
as density fluctuations escape from a mere algebraic increase. Since density fluctuations resist accurate
experimental measurements, it may be worth investigating some of the other features of Toner and Tu
polar liquids. Following this idea, a thorough characterization of the polar liquid has recently been
performed on colloidal flocks assembled from colloidal rollers [48]. I discuss in more details some of
the results from [48] in Chapter 2. One of the main findings is that density and velocity fluctuations
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propagate according to the Toner and Tu theory. More generally, all the measurements in [48] show
an excellent agreement with the linear theory by Toner and Tu. This agreement actually questions the
possibility to experimentally demonstrate the true long-range order within flocks, or, from a dual point
of view, the relevance of Toner and Tu fluctuating hydrodynamics to describe real flocks.
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velocity field is here defined on a grid with a square mesh of size 1

� 1. At each time step the local Eulerian velocity is the average of

the instantaneous velocity of the particles, the center of which is

inside one element of this mesh. For small-enough G values,

correlations in space remain strong up to scales where the

correlation function is cut-off by the system size, signaling that

order is established on scales as large as possible (Fig. 9(a)).

Similarly, the temporal autocorrelation function decays very

slowly (logarithmically?) for small G values and is only cut-off at

very large timescales (Fig. 9(b)).

D. Giant number fluctuations

The orientationally-ordered phases of active matter systems are

endowed with specific yet universal properties such as long-range

correlations, superdiffusion, and strong density fluctuations.1,18

The latter, also called ‘‘giant number fluctuations’’, are the better

known, probably because they are rather easy to measure: one

simply records, in subsystems containing on average n particles,

the variance Dn2 of the fluctuations in time of this number. For

normal, equilibrium, systems, and/or for non-interacting parti-

cles Dn2 scales like n at large n (as long as, of course, n � N, the

total number of particles in the system). But for orientationally-

ordered active systems, one expects Dn2 � ng with g > 1.

A generic simple argument by Ramaswamy et al.,48 links a q�2

divergence in the structure factor, calculated in some linear,

mean-field approximation, to g ¼ 1/2 + 1/d where d is the space

dimension. This is expected to hold for so-called ‘‘active

nematics’’, and was indeed measured there,21 but not for collec-

tions of polar particles as considered here. In this case, fluctua-

tions must be taken into account, which has been done in the RG

calculation by Toner and Tu.27 This calculation, which relies on

assumptions,28 predicts g ¼ 8/5 for d ¼ 2, a number consistent

with numerical results obtained on the Vicsek model.22

We measured number fluctuations in both experiments Ea and

Eb for G ¼ 2.8. Given the variations of local average packing

fraction described above, we used for n the mean number of

particles actually recorded in each box in which particles were

counted. This actually allowed us to use boxes slightly outside

the ROI for better statistics without any detectable problems. As

expected, Dn2 varies algebraically with n until it levels off at large

n due to finite-size effects (Fig. 9(c)). The effective scaling

exponent, measured over two decades, is g ¼ 1.40 � 0.01 for

experiment Ea and g ¼ 1.44 � 0.01 for experiment Eb. This is

close and below the expected theoretical value 1.6, in agreement

with the observation that the asymptotic value is approached

from below as the system size increases.21

E. Intermittent confinement-induced milling

Experiment Ec illustrates some of the consequences of increasing

the density of particles. With a nominal packing fraction f ¼
0.58, the ROI being fixed as previously to a diameter of 20, we

observe an effective packing fraction inside the ROI fROI ¼ 0.19

suggesting a stronger concentration of the particles along the

boundaries, which cannot be ‘‘ignored’’ anymore: the time series

of J in the ordered state observed at G ¼ 3 show an intermittent

behavior between values of the order of 0.6 and values in the

range [0,0.3] (Fig. 10(a–b)). These low values do not indicate

a disordered state. Rather, they are the trace of a milling

configuration, i.e. a system-wide vortex obviously resulting from

the domain shape (Fig. 10(c–e) and ESI†49). This can be quan-

tified by calculating the macroscopic angular momentum

P ðtÞ ¼ h~ni ðtÞ _~eqi ðtÞii;where ~eqi(t) is the azimuthal unit vector

associated with qi, the angular position of particle i in polar

coordinates. Time series of J and P reveal that the system

switches intermittently between clockwise and counterclockwise

milling: P changes sign from time to time, but never dwells long

around zero. The usual order parameter J, in fact, takes large

values mostly during these reversal events (Fig. 10(a–b)).

The transition scenario we have observed in experiments Ea

and Eb and described in the previous section is thus strongly

modified. Here when G is decreased, one first observes the onset

of collective motion, as in the previous case, but soon they

organize into system size vortices and the transition towards

polar order is interrupted. Further investigations are required to

Fig. 9 Finite-size effects. (a) Spatial correlationCv(r) of the Eulerian velocity field~v(~r,t) for G¼ 2.8 for the small (black curves) and the large (red curves)

systems at three different vibration amplitudes G as indicated in the legend. (b) Temporal correlationCv(t) of~v(~r,t) for G¼ 2.8 for the small (black curves)

and large (red curves) systems at three different vibration amplitude G as indicated in the legend. (c) Fluctuations DN2 of the number of particles as

a function of the average number of particles N in boxes of increasing size for the small (black B) and large (red +) systems.
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Movie S1). To enable the quantitative comparison with existing
theories of collective motion, it is mandatory to observe the local
density fluctuations in such a phase where the overall density can
still be considered to be homogenous (Fig. S3), yet still coherently
moving filaments are observable. In these homogenous ordered
phases, the fluctuations of the fluorescence intensity ΔI grow far
more rapidly than expected for systems in thermal equilibrium and
are found to be proportional to I0.8. The observed scaling expo-
nent of 0.8 is a generic feature of the system and highly conserved
upon variations of the filament density and the filament lengths
(Fig. 1D).
The occurrence of these anomalously large fluctuations in the

ordered phase is intimately related to the lifetime of local density
fluctuations δI that can be quantified by their autocorrelation
function C(t) = <δI(T + t) δI(T)>r. In the homogenous ordered
phase, C(t) decays according C(t) ∼ t−1 on short timescales. For
longer timescales, however, C(t) shows a pronounced exponen-
tial contribution (Fig. 1E). It is this exponential contribution that
discriminates the ordered state from the disordered state, where
C(t) decays according to C(t) ∼ t−1 for all times. Thus, the
fluctuations in the ordered phase are not only anomalously large

in magnitude, they are also very persistent. Although the exact
functional dependence is different, the occurrence of long time
tails is in agreement with the theoretic predictions (30).
However, what exactly is responsible for these intriguing sta-

tistical properties that sharply discriminate the ordered from the
disordered phase? Plainly, the main difference between the two
phases is the emergence of coherent currents of collectively
moving filaments (Fig. 2A). To investigate this coupling between
order and density, we calculate the coarse-grained velocity field
v(r,t) of the collectively moving particles with a particle image
velocimetry scheme (6, 12). Indeed, the dynamic properties of
the velocity field and the density field are closely related: qual-
itatively, at points where the velocity field converges and has
a sink, material is accumulated and the density increases—and at
points where the velocity field has a source, material is trans-
ported away and the density locally decreases (Fig. 2 B and C and
Movie S1).
The change in density as a response to local defects is only one

part of the coupling between the density and the velocity field.
The sinks and sources in the velocity field are not stationary ei-
ther. They not only constantly dissolve and emerge, but generically

Fig. 1. Collectively moving filaments show anomalously huge fluctuations in the particle density. A schematically shows the motility assay experiments where
highly concentrated actin filaments are propelled by HMMmotor proteins. At low F-actin concentrations, the filaments move independently from one another
and no collective motion develops (B). Above a critical density, a phase of collectively moving filaments emerges (C) that is characterized by anomalously high
fluctuations in the particle density. These fluctuations can be quantified by recording the temporal fluctuations of the fluorescence intensity ΔI (for details, see
Materials and Methods). D shows ΔI as a function of the mean intensity <I>. For systems obeying the central limit theorem, these fluctuations should scale
according toΔI α I0.5—and in the absence of collectivemotion, this is the case (D, gray data points). In the presence of phase boundaries between dense and dilute
regions, like it is the case in the density wave regime, thefluctuations scale likeΔI α I1.0 (D, black data points). Already slightly above the critical density, where the
individual filaments move collectively, but the overall density is still homogeneous, the fluctuations are anomalously large with thefluctuations scaling according
to ΔI α I0.8 (D, blue, red, and green data points). These fluctuations are long-lived, as can be seen from the autocorrelation C(t) = <δI(T), δI (T + t)> of the local
densityfluctuations δI (E). In the absence of collectivemotion, densityfluctuations decorrelate diffusively according to C(t)∼ t−1 (E, red data points); in the ordered
phase, an additional exponential contribution for long times is found (E, blue data points). Parameters: gray: filament density: ρ = 3 ± 1 μm−2; filament length: l =
6.8 μm; red: ρ = 12 ± 2 μm−2; l = 6.8 μm; blue: ρ = 16 ± 2 μm−2; l = 6.8 μm; green: ρ = 30 ± 2 μm−2; l = 1.1 μm; black: ρ = 24 ± 2 μm−2; l = 6.8 μm. (Scale bars: 50 μm.)

div(v)density �uctuations δI
B

T = 34 sec
CA

mean

high

low

0

sink

source

Fig. 2. Fluctuations in the particle density arise from the coupling between density and velocityfield. Local densityfluctuations of collectivelymovingfilaments
(A) are quantified by the local deviation δI from themean fluorescence intensity (B). At sources, wherematerial moves away from [div(v) < 0], the local density is
reduced; at sinks [div(v) > 0] the local density is increased (C). The filament density was adjusted to ρ = 12 ± 2 μm−2, and the average filament length was 6.8 μm.
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alignment is controlled by set screws. The vibration is
produced with an electromagnetic servo-controlled shaker
(V455/6-PA1000L,LDS), the accelerometer for the control
being fixed at the bottom of the top vibrating disk, em-
bedded in the expanded polystyren. A 400 mm long brass
rod couples the air-bearing slider and the shaker. It is
flexible enough to compensate for the alignment mismatch,
but stiff enough to ensure mechanical coupling. The shaker
rests on a thick wooden plate ballasted with 460 kg of lead
bricks and isolated from the ground by rubber mats
(MUSTshock 100� 100� EP5, Musthane). We have
measured the mechanical response of the whole setup
and found no resonances in the window 70–130 Hz.
Here, we use a sinusoidal vibration of frequency f ¼
115 Hz and vary the relative acceleration to gravity � ¼
2�af2=g. The vibration amplitude a at a peak acceleration
of 1 g at this frequency is 25 �m. Using a triaxial accel-
erometer (356B18,PCB Electronics), we checked that the
horizontal to vertical ratio is lower than 10�2 and that the
spatial homogeneity of the vibration is better than 1%.

Our polar particles are micro-machined copper-
beryllium disks (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically oppo-
site positions [Fig. 1]. These two ‘‘legs,’’ which have
different mechanical response under vibration, endow the
particles with a polar axis which can be determined from
above thanks to a black spot located on their top. Under
proper vibration, they can be set in directed motion (see
below). Of total height h ¼ 2:0 mm, they are sandwiched
between two thick glass plates separated by a gap of H ¼
2:4 mm. We also used, to perform ‘‘null case experi-
ments,’’ plain rotationally invariant disks (same metal,
diameter, and height), hereafter called the ‘‘symmetric’’
particles. We laterally confined the particles in a flower-
shaped arena of internal diameter D ¼ 160 mm [Fig. 1].

The petals avoid the stagnation and accumulation of par-
ticles along the boundaries as reported, for instance, in [11]
by ‘‘reinjecting’’ them into the bulk. A CCD camera with a
spatial resolution of 1728� 1728 pixels and standard
tracking software is used to capture the motion of the
particles at a frame rate of 20 Hz. In the following, the
unit of time is set to be the period of vibration and the unit
length is the particle diameter. Within these units, the
resolution on the position ~r of the particles is better than
0.1, that on the orientation ~n is of the order of 0.05 rad and
the lag separating two images is �0 ¼ 5:75. Measuring the
long-time averaged spatial density map (for various num-
bers of particles), we find that this density field slightly
increases near the boundaries, but is constant to a few
percent in a region of interest (ROI) of diameter 20d.
This provides an additional check of the spatial homoge-
neity of our setup.
We first performed experiments with 50 particles, i.e., at

a surface fraction small enough so that collisions are rare
and the individual dynamics can be investigated. For large
acceleration, the polar particles describe random-walk-like
trajectories with short persistence length. Decreasing �,
they show more and more directed motion, and the persis-
tence length quickly exceeds the system size. This is in
contrast with the symmetric particles which retain the same
shortly correlated individual walk dynamics for all � val-
ues [Figs. 2(a) and 2(b)].
More precisely, individual velocities ~viðtÞ�

½~riðtþ�0Þ� ~riðtÞ�=�0 measured within the ROI have a
well-defined most probable or mean value vtyp ’ 0:025

(b)(a)
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FIG. 2 (color online). Individual dynamics for � ¼ 2:7.
(a) Typical portions of polar particles trajectories inside the
ROI. Black and grey (red) arrows indicate ~vt

i and ~nti at selected
times. The domain area is about 15� 15d. (b) The same for
symmetric particles. (c) Probability distribution function (PDF)
with counterpropagating waves with a common linear polariza-
tion (lin-lin) of �, the angle between ~vt

i and ~nti. (d) Variation of
angular diffusion coefficient D� with �.

FIG. 1 (color online). Collective motion of self-propelled
disks. Bottom left panel: a sketch of our polar particles. Main
panel: a snapshot of an ordered regime observed in our flower-
shape domain. The dark gray reveals the local alignment be-
tween particles {both perfect alignment [light grey (red)] and
pergect antialignment [dark grey (blue)]}. The intrinsic polarity
of the particles is indicated by the black arrows.
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on a single master curve solely parameterized by the particle fraction,
w‘, away from the band: P s,tð Þ~1{w?=w s,tð Þ. As it turns out, this
relation corresponds to particle-number conservation in a system
where density and polarization waves propagate steadily at a velocity
v0 (ref. 22 and Supplementary Methods). This observation unambigu-
ously demonstrates that the band state corresponds to a genuine sta-
tionary flocking phase of colloidal active matter.
On further increasing the area fraction to more than w0< 23 1022,

transient bands eventually catch upwith themselves along the periodic
direction and form a homogeneous polar phase (Fig. 2d and Supp-
lementary Video 4) in which the velocity distribution condenses on a
single orientation ofmotion (Fig. 4a, to be contrastedwith the perfectly

isotropic distribution for fractions less than wc in Fig. 1b). Conversely,
the roller positions are weakly correlated, as evidenced by the shape of
the pair-distribution function, which is similar to that found in low-
density molecular liquids (Fig. 4b).We also emphasize that the density
fluctuations are normal at all scales (Fig. 4c). This is experimental
observation of a polar-liquid phase of active matter. The existence of
a polar-liquid phase was theoretically established yet had not been
observed in any prior experiment involving active materials. Until
now, collective motion has been found to occur in the form of patterns
with marked density, orientational heterogeneities or both7,10,13,14,16.
Furthermore, in contrast with the present observations, giant density
fluctuations are considered to be a generic feature of the uniaxially
ordered states of liquids comprising self-propelled particles2,3,17. We
resolve this apparent contradiction below and quantitatively explain
our experimental observations.
From a theoretical perspective, the main advantage offered by the

rollers is that their interactions are clearly identified. We show in
Supplementary Methods how to establish the equations of motion of
Quincke rollers interacting through electrostatic and far-field hydro-
dynamic interactions. They take a compact form both for the position
ri and the orientation p̂i of the ith particle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heff ri{rj,p̂i,p̂j
� �

Here p̂i makes an angle hi with the x axis, and a dot denotes a time
derivative. In dilute systems, the particle interactions do not affect their
propulsion speed, yet the electric field and flow field compete to align
the p̂i with them.This competition results in an effective potential,Heff,
for the p̂i. At leading order in a/r

Heff r,pi,pj
� �

~A rð Þp̂i.p̂jzB rð Þp̂i .̂r
zC rð Þp̂i. 2r̂r̂{Ið Þ.p̂j

where A(r) is a positive function and thus promotes the alignment of
the neighbouring rollers, I is the identitymatrix, r̂r̂ is the outer product
of r̂ with itself, and a dot denotes tensor contraction. Importantly, A is
dominated by a hydrodynamic interaction, which arises from a hydro-
dynamic-rotlet singularity screened over distances of the order of the
chamber height23. The function B(r) is also short ranged and accounts
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Figure 2 | Transition to directed collectivemotion. a, Dark-field pictures of a
roller population that spontaneously forms a macroscopic band propagating
along the racetrack. E0/EQ5 1.39, w05 1022. Scale bar, 5mm. b–d Close-up
views. The arrows correspond to the roller displacement between two
subsequent video frames (180 frames s21). b, Isotropic gas. w05 63 1024.

c, Propagating band. w05 1022. d, Homogeneous polar liquid.
w05 1.83 1021. Scale bar, 500mm. e, Modulus of the average polarization,P0,
plotted versus the area fraction, w0. Collective motion occurs as w0 exceeds
wc5 33 1023. wc is independent of E0. Error bars, 1 s.d. e | | (or eH) is the unit
vector oriented along the tangent (or the normal) of the racetrack confinement.
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Figure 1 | Single-roller dynamics. a, Sketch of theQuincke rotation and of the
self-propulsion mechanisms of a colloidal roller characterized by its electric
polarization, P, and superposition of ten successive snapshots of colloidal
rollers. Time interval, 5.6ms; scale bar, 50mm. b, Probability distribution of the
velocity vector (v | | , vH) for isolated rollers: v | | corresponds to the projection of
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v | | . The probability distribution involvesmore than 1.43 105measurements of
instantaneous speed. c, Roller velocity, v0, plotted versus the field amplitude,E0.
Inset, v20 versus E

2
0. The black dots represent the maximum of the probability

distribution. Error bars, 1 s.d.
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Fig. S1. Comparison between fluctuations in the fluorescence intensity and in the number of particles. The image in A shows the fluorescence intensity I as
a function of the number of labeled filaments N in the field of view for coherently moving structures in the motility assay. In the investigated parameter
regime, the fluorescence intensity is directly proportional to the number of particles. Likewise, the temporal fluctuations of both quantities are similar in
magnitude and duration (B). As a consequence, also the fluctuations scale with roughly the same exponent as shown in C and D. The filament density was
adjusted to ρ = 12 ± 2 μm−2 and the average filament length was 1.1 μm.
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Fig. S2. Density fluctuations for different parameter sets. A shows the normalized fluctuations of the fluorescence intensity ΔI as a function of the corre-
sponding mean intensity <I>. B–D show the same data rescaled by <I>0.8 and <I>0.5, respectively. In the disordered phase where no collective motion is
observed, the fluctuations scale according to ΔI ∼ <I>0.5 (gray data points). The phase boundaries between the dilute and disordered background and the
collectively moving filaments that occur in the density waves regime trivially lead to large density fluctuations of the order of ΔI ∼ <I>1 (black data points).
However, already when the overall filament density is still homogeneous, the collective motion is characterized by anomalously large fluctuations that scale
according to ΔI ∼ <I>0.8. The scaling exponent is highly robust upon parameter variations: The red data points correspond to a filament density of ρ = 12 ±
2 μm−2 and an average filament length of 6.8 μm; the blue data points correspond to a filament density of ρ = 16 ± 2 μm−2 and an average filament length of
6.8 μm; and the green data points correspond to a filament density ρ = 30 ± 2 μm−2 and an average filament length of 1.1 μm.
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Fig. S1. Comparison between fluctuations in the fluorescence intensity and in the number of particles. The image in A shows the fluorescence intensity I as
a function of the number of labeled filaments N in the field of view for coherently moving structures in the motility assay. In the investigated parameter
regime, the fluorescence intensity is directly proportional to the number of particles. Likewise, the temporal fluctuations of both quantities are similar in
magnitude and duration (B). As a consequence, also the fluctuations scale with roughly the same exponent as shown in C and D. The filament density was
adjusted to ρ = 12 ± 2 μm−2 and the average filament length was 1.1 μm.
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collectively moving filaments that occur in the density waves regime trivially lead to large density fluctuations of the order of ΔI ∼ <I>1 (black data points).
However, already when the overall filament density is still homogeneous, the collective motion is characterized by anomalously large fluctuations that scale
according to ΔI ∼ <I>0.8. The scaling exponent is highly robust upon parameter variations: The red data points correspond to a filament density of ρ = 12 ±
2 μm−2 and an average filament length of 6.8 μm; the blue data points correspond to a filament density of ρ = 16 ± 2 μm−2 and an average filament length of
6.8 μm; and the green data points correspond to a filament density ρ = 30 ± 2 μm−2 and an average filament length of 1.1 μm.
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Fig. S8. Cluster size distributions as a function of the filament density. In A, the cumulative cluster size distribution P(a) is plotted as a function of the cluster
area a for three different filament densities. For low densities (cyan), the cluster sizes are approximately exponentially distributed. For higher overall filament
densities, the probability for finding large clusters increases compared with the exponential distribution (light and dark blue). In A, the area a of the identified
cluster is chosen as measure for the cluster size. Noteworthy in the case of the quasi-2D motility assay, the area a of the cluster is equivalent to the sum of the
fluorescence intensity of the cluster I (Fig. S4). Consequently, plotting the area a as function of the fluorescence intensity I yields a linear relationship (B).
Physically, this means that the filament packing inside a cluster is independent of its size. The average filament length was 6.8 μm.

Movie S1. Collective motion at homogeneous filament densities. The left panel shows collectively moving filaments in high-density motility assay experi-
ments. The right panel shows the corresponding velocity field and its color-coded divergence div(v). The dark colors correspond to sources in the velocity field
where material is transported away from. The filament density was adjusted to ρ = 12 ± 2 μm−2, and the average filament length was 6.8 μm.
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Movie S1). To enable the quantitative comparison with existing
theories of collective motion, it is mandatory to observe the local
density fluctuations in such a phase where the overall density can
still be considered to be homogenous (Fig. S3), yet still coherently
moving filaments are observable. In these homogenous ordered
phases, the fluctuations of the fluorescence intensity ΔI grow far
more rapidly than expected for systems in thermal equilibrium and
are found to be proportional to I0.8. The observed scaling expo-
nent of 0.8 is a generic feature of the system and highly conserved
upon variations of the filament density and the filament lengths
(Fig. 1D).
The occurrence of these anomalously large fluctuations in the

ordered phase is intimately related to the lifetime of local density
fluctuations δI that can be quantified by their autocorrelation
function C(t) = <δI(T + t) δI(T)>r. In the homogenous ordered
phase, C(t) decays according C(t) ∼ t−1 on short timescales. For
longer timescales, however, C(t) shows a pronounced exponen-
tial contribution (Fig. 1E). It is this exponential contribution that
discriminates the ordered state from the disordered state, where
C(t) decays according to C(t) ∼ t−1 for all times. Thus, the
fluctuations in the ordered phase are not only anomalously large

in magnitude, they are also very persistent. Although the exact
functional dependence is different, the occurrence of long time
tails is in agreement with the theoretic predictions (30).
However, what exactly is responsible for these intriguing sta-

tistical properties that sharply discriminate the ordered from the
disordered phase? Plainly, the main difference between the two
phases is the emergence of coherent currents of collectively
moving filaments (Fig. 2A). To investigate this coupling between
order and density, we calculate the coarse-grained velocity field
v(r,t) of the collectively moving particles with a particle image
velocimetry scheme (6, 12). Indeed, the dynamic properties of
the velocity field and the density field are closely related: qual-
itatively, at points where the velocity field converges and has
a sink, material is accumulated and the density increases—and at
points where the velocity field has a source, material is trans-
ported away and the density locally decreases (Fig. 2 B and C and
Movie S1).
The change in density as a response to local defects is only one

part of the coupling between the density and the velocity field.
The sinks and sources in the velocity field are not stationary ei-
ther. They not only constantly dissolve and emerge, but generically

Fig. 1. Collectively moving filaments show anomalously huge fluctuations in the particle density. A schematically shows the motility assay experiments where
highly concentrated actin filaments are propelled by HMMmotor proteins. At low F-actin concentrations, the filaments move independently from one another
and no collective motion develops (B). Above a critical density, a phase of collectively moving filaments emerges (C) that is characterized by anomalously high
fluctuations in the particle density. These fluctuations can be quantified by recording the temporal fluctuations of the fluorescence intensity ΔI (for details, see
Materials and Methods). D shows ΔI as a function of the mean intensity <I>. For systems obeying the central limit theorem, these fluctuations should scale
according toΔI α I0.5—and in the absence of collectivemotion, this is the case (D, gray data points). In the presence of phase boundaries between dense and dilute
regions, like it is the case in the density wave regime, thefluctuations scale likeΔI α I1.0 (D, black data points). Already slightly above the critical density, where the
individual filaments move collectively, but the overall density is still homogeneous, the fluctuations are anomalously large with thefluctuations scaling according
to ΔI α I0.8 (D, blue, red, and green data points). These fluctuations are long-lived, as can be seen from the autocorrelation C(t) = <δI(T), δI (T + t)> of the local
densityfluctuations δI (E). In the absence of collectivemotion, densityfluctuations decorrelate diffusively according to C(t)∼ t−1 (E, red data points); in the ordered
phase, an additional exponential contribution for long times is found (E, blue data points). Parameters: gray: filament density: ρ = 3 ± 1 μm−2; filament length: l =
6.8 μm; red: ρ = 12 ± 2 μm−2; l = 6.8 μm; blue: ρ = 16 ± 2 μm−2; l = 6.8 μm; green: ρ = 30 ± 2 μm−2; l = 1.1 μm; black: ρ = 24 ± 2 μm−2; l = 6.8 μm. (Scale bars: 50 μm.)

div(v)density �uctuations δI
B

T = 34 sec
CA

mean

high

low

0
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source

Fig. 2. Fluctuations in the particle density arise from the coupling between density and velocityfield. Local densityfluctuations of collectivelymovingfilaments
(A) are quantified by the local deviation δI from themean fluorescence intensity (B). At sources, wherematerial moves away from [div(v) < 0], the local density is
reduced; at sinks [div(v) > 0] the local density is increased (C). The filament density was adjusted to ρ = 12 ± 2 μm−2, and the average filament length was 6.8 μm.

Schaller and Bausch PNAS | March 19, 2013 | vol. 110 | no. 12 | 4489

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

investigate the interplay between these two transitions. But one

can already conclude that confined active flows are like any

confined flows: boundaries cannot be ignored, and it is hard to

disentangle the intrinsic ‘‘bulk’’ properties of active fluids from

those resulting from the inevitable presence of boundaries.

VI. Summary and discussion

Our results constitute, to our knowledge, the first study of a well-

controlled experimental system in which ‘‘self-propelled’’ objects

are able to move collectively over scales as large as the system

size. The dynamics of our particles, although nominally three-

dimensional and complicated, are well accounted for by a two-

dimensional description in terms of persistent random walks.

Their binary collisions are not simple inelastic aligning ones, but

are spatio-temporally extended events during which multiple

actual collisions happen, leading eventually to a weak but clear

effective alignment.

At the collective level, we showed how to avoid the accumu-

lation of particles near the boundary walls by adopting flower-

shaped arenas whose petals help reinject particles in the bulk.

This trick is of course not perfect, and we do observe higher

average densities near the walls, so that care must be taken in

defining a region of interest in which the density is nearly

constant although different from the nominal packing fraction.

We presented the results of three sets of experiments conducted

near ‘‘optimal’’ densities such that well-developed collective

motion is observed, in which orientational order is established on

scales comparable to the system size. In these most ordered

regimes, we recorded clear, unambiguous evidence of ‘‘giant

number fluctuations’’, a signature feature of orientationally-

ordered phases in active matter. Note that in the case of a clear

phase separation between dense clusters and a gaseous state—e.g

the inelastic collapse of dissipative grains—one would also

record ‘‘anomalous’’ density fluctuations; but these are essen-

tially tied to the presence of well defined interfaces between the

two phases, at odd with the present observations.

From the wealth of numerical studies of models of active

matter, where periodic boundary conditions are often adopted, it

is easy to forget about the inevitable role played by walls when

investigating collective motion. Here, in addition to the subtle

effects about the effective packing fraction recorded in the region

of interest, we showed that at densities slightly larger than those

used in the regimes where giant number fluctuations were

recorded, the boundaries ‘‘come back’’ in the problem by driving

macroscopic vortical flows.

The experiments we conducted have also shown some clear

limitations of our setup: even though we used two domain sizes,

finite-size effects remain strong and difficult to estimate, which

rules out any statement about the (asymptotic) nature of the

Fig. 10 Emergence of confinement-induced milling and its relation to polar order. (a) Temporal evolution of the ortho-radial ordering parameter P(t)

and the polar ordering parameterJ(t). (b) Zoom on a time window during which two inversion processes occur (vertical dashed lines). (c,d,e) Successive

snapshots of the system with, from left to right, the inversion process from a clockwise (hPi < 0) to an anti-clockwise hPi > 0 large scale vortex. The

packing fraction f ¼ 0.58.
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alignment is controlled by set screws. The vibration is
produced with an electromagnetic servo-controlled shaker
(V455/6-PA1000L,LDS), the accelerometer for the control
being fixed at the bottom of the top vibrating disk, em-
bedded in the expanded polystyren. A 400 mm long brass
rod couples the air-bearing slider and the shaker. It is
flexible enough to compensate for the alignment mismatch,
but stiff enough to ensure mechanical coupling. The shaker
rests on a thick wooden plate ballasted with 460 kg of lead
bricks and isolated from the ground by rubber mats
(MUSTshock 100� 100� EP5, Musthane). We have
measured the mechanical response of the whole setup
and found no resonances in the window 70–130 Hz.
Here, we use a sinusoidal vibration of frequency f ¼
115 Hz and vary the relative acceleration to gravity � ¼
2�af2=g. The vibration amplitude a at a peak acceleration
of 1 g at this frequency is 25 �m. Using a triaxial accel-
erometer (356B18,PCB Electronics), we checked that the
horizontal to vertical ratio is lower than 10�2 and that the
spatial homogeneity of the vibration is better than 1%.

Our polar particles are micro-machined copper-
beryllium disks (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically oppo-
site positions [Fig. 1]. These two ‘‘legs,’’ which have
different mechanical response under vibration, endow the
particles with a polar axis which can be determined from
above thanks to a black spot located on their top. Under
proper vibration, they can be set in directed motion (see
below). Of total height h ¼ 2:0 mm, they are sandwiched
between two thick glass plates separated by a gap of H ¼
2:4 mm. We also used, to perform ‘‘null case experi-
ments,’’ plain rotationally invariant disks (same metal,
diameter, and height), hereafter called the ‘‘symmetric’’
particles. We laterally confined the particles in a flower-
shaped arena of internal diameter D ¼ 160 mm [Fig. 1].

The petals avoid the stagnation and accumulation of par-
ticles along the boundaries as reported, for instance, in [11]
by ‘‘reinjecting’’ them into the bulk. A CCD camera with a
spatial resolution of 1728� 1728 pixels and standard
tracking software is used to capture the motion of the
particles at a frame rate of 20 Hz. In the following, the
unit of time is set to be the period of vibration and the unit
length is the particle diameter. Within these units, the
resolution on the position ~r of the particles is better than
0.1, that on the orientation ~n is of the order of 0.05 rad and
the lag separating two images is �0 ¼ 5:75. Measuring the
long-time averaged spatial density map (for various num-
bers of particles), we find that this density field slightly
increases near the boundaries, but is constant to a few
percent in a region of interest (ROI) of diameter 20d.
This provides an additional check of the spatial homoge-
neity of our setup.
We first performed experiments with 50 particles, i.e., at

a surface fraction small enough so that collisions are rare
and the individual dynamics can be investigated. For large
acceleration, the polar particles describe random-walk-like
trajectories with short persistence length. Decreasing �,
they show more and more directed motion, and the persis-
tence length quickly exceeds the system size. This is in
contrast with the symmetric particles which retain the same
shortly correlated individual walk dynamics for all � val-
ues [Figs. 2(a) and 2(b)].
More precisely, individual velocities ~viðtÞ�

½~riðtþ�0Þ� ~riðtÞ�=�0 measured within the ROI have a
well-defined most probable or mean value vtyp ’ 0:025

(b)(a)
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FIG. 2 (color online). Individual dynamics for � ¼ 2:7.
(a) Typical portions of polar particles trajectories inside the
ROI. Black and grey (red) arrows indicate ~vt

i and ~nti at selected
times. The domain area is about 15� 15d. (b) The same for
symmetric particles. (c) Probability distribution function (PDF)
with counterpropagating waves with a common linear polariza-
tion (lin-lin) of �, the angle between ~vt

i and ~nti. (d) Variation of
angular diffusion coefficient D� with �.

FIG. 1 (color online). Collective motion of self-propelled
disks. Bottom left panel: a sketch of our polar particles. Main
panel: a snapshot of an ordered regime observed in our flower-
shape domain. The dark gray reveals the local alignment be-
tween particles {both perfect alignment [light grey (red)] and
pergect antialignment [dark grey (blue)]}. The intrinsic polarity
of the particles is indicated by the black arrows.
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on a single master curve solely parameterized by the particle fraction,
w‘, away from the band: P s,tð Þ~1{w?=w s,tð Þ. As it turns out, this
relation corresponds to particle-number conservation in a system
where density and polarization waves propagate steadily at a velocity
v0 (ref. 22 and Supplementary Methods). This observation unambigu-
ously demonstrates that the band state corresponds to a genuine sta-
tionary flocking phase of colloidal active matter.
On further increasing the area fraction to more than w0< 23 1022,

transient bands eventually catch upwith themselves along the periodic
direction and form a homogeneous polar phase (Fig. 2d and Supp-
lementary Video 4) in which the velocity distribution condenses on a
single orientation ofmotion (Fig. 4a, to be contrastedwith the perfectly

isotropic distribution for fractions less than wc in Fig. 1b). Conversely,
the roller positions are weakly correlated, as evidenced by the shape of
the pair-distribution function, which is similar to that found in low-
density molecular liquids (Fig. 4b).We also emphasize that the density
fluctuations are normal at all scales (Fig. 4c). This is experimental
observation of a polar-liquid phase of active matter. The existence of
a polar-liquid phase was theoretically established yet had not been
observed in any prior experiment involving active materials. Until
now, collective motion has been found to occur in the form of patterns
with marked density, orientational heterogeneities or both7,10,13,14,16.
Furthermore, in contrast with the present observations, giant density
fluctuations are considered to be a generic feature of the uniaxially
ordered states of liquids comprising self-propelled particles2,3,17. We
resolve this apparent contradiction below and quantitatively explain
our experimental observations.
From a theoretical perspective, the main advantage offered by the

rollers is that their interactions are clearly identified. We show in
Supplementary Methods how to establish the equations of motion of
Quincke rollers interacting through electrostatic and far-field hydro-
dynamic interactions. They take a compact form both for the position
ri and the orientation p̂i of the ith particle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heff ri{rj,p̂i,p̂j
� �

Here p̂i makes an angle hi with the x axis, and a dot denotes a time
derivative. In dilute systems, the particle interactions do not affect their
propulsion speed, yet the electric field and flow field compete to align
the p̂i with them.This competition results in an effective potential,Heff,
for the p̂i. At leading order in a/r

Heff r,pi,pj
� �

~A rð Þp̂i.p̂jzB rð Þp̂i .̂r
zC rð Þp̂i. 2r̂r̂{Ið Þ.p̂j

where A(r) is a positive function and thus promotes the alignment of
the neighbouring rollers, I is the identitymatrix, r̂r̂ is the outer product
of r̂ with itself, and a dot denotes tensor contraction. Importantly, A is
dominated by a hydrodynamic interaction, which arises from a hydro-
dynamic-rotlet singularity screened over distances of the order of the
chamber height23. The function B(r) is also short ranged and accounts
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Figure 2 | Transition to directed collectivemotion. a, Dark-field pictures of a
roller population that spontaneously forms a macroscopic band propagating
along the racetrack. E0/EQ5 1.39, w05 1022. Scale bar, 5mm. b–d Close-up
views. The arrows correspond to the roller displacement between two
subsequent video frames (180 frames s21). b, Isotropic gas. w05 63 1024.

c, Propagating band. w05 1022. d, Homogeneous polar liquid.
w05 1.83 1021. Scale bar, 500mm. e, Modulus of the average polarization,P0,
plotted versus the area fraction, w0. Collective motion occurs as w0 exceeds
wc5 33 1023. wc is independent of E0. Error bars, 1 s.d. e | | (or eH) is the unit
vector oriented along the tangent (or the normal) of the racetrack confinement.
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Figure 1 | Single-roller dynamics. a, Sketch of theQuincke rotation and of the
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instantaneous speed. c, Roller velocity, v0, plotted versus the field amplitude,E0.
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distribution. Error bars, 1 s.d.

RESEARCH LETTER

9 6 | N A T U R E | V O L 5 0 3 | 7 N O V E M B E R 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013

Figure 1.10 | Giant density fluctuations in synthetic flocks. (a) Giant density fluctuations are
measured in flocks assembled from self-propelled polar disks. Red crosses and black circles are data
from diferent experiments. Figures from [35] and [36]. (b) Giant density are measured in polar clusters
of actin filaments (green, red and blue data points). Conversely, normal fluctuation are measured in
the gas phase (grey data points). Figures from [101]. (c) Giant density are measured in polar liquids
of self-propelled colloids. Figure from [48].

1.5 Flocks in challenging environments

All the works mentioned so far have intended to describe flocks in their essence: the focus was on
their intrinsic structure and dynamics. In order to complement our understanding of flocking, need is
to go beyond such a primary characterization and address how flocks interacts with their surroundings.
To this regards, two settings immediately come in mind:

(i) the response of flocks to external fields.
(ii) the propagation of flocks through quenched disorder.
Indeed, describing the response of a material to external perturbations and the changes of its

properties in the presence of disorder are crucial interrogations of condensed matter. As well, the
physics of flocking through such challenging environments is worth being investigating. It would allow
to further testing how theoretical developments accurately describe real flocks. From a more practical
perspective, the robustness of flocks to external perturbations and disorder is of major importance
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Chapter 1

to the exploitation of these active materials. Any future application that would rely on polar liquids
requires to control their behaviors in involved situations.

In this thesis, I investigate how synthetic flocks behave in the presence of an external field and
how they propagate through quenched disorder. No experimental work has addressed these situations
before. This is all the more surprising than the few numerical and theoretical related studies have
drawn interesting conclusions and have suggested surprising behaviors.

Response of flocks to external fields

Building on the analogy with ferromagnetism, Czirók, Stanley and Vicsek have adapted the original
Vicsek model to investigate flocking in the presence of an external field [30]. He has considered a
homogeneous and stationary field h that tends to align particles in a given direction ĥ. This field
thus plays the role of a magnetic field acting on Vicsek’s moving spins. More precisely, the update of
orientation of particle i now follows:

θi(t+∆t) = arg

⎛
⎝v0

∑

j∈D(ri,R)

v̂j(t) + hĥ

⎞
⎠+ ηξi(t), (1.9)

where the notations are the same than in Eq. (1.2).
Figure 1.11 shows that the polarization Π|(η, h) increases with the amplitude of the external field

h for all values of the noise strength η. The increase of Π at small h defines the susceptibility:

χ(η) = lim
h→0

Π(η, h)−Π(η, 0)

h
. (1.10)

Unfortunately, Czirók and co-workers have focused on the susceptibility of the gas phase [30] and they
have sparsely scanned the low-h regime, see Fig. 1.11.1382 A Czirók et al

Figure 6. φ versus the amplitude of the applied external field h, for � = 2, L = 100 and
η = 0.3, 0.9, 1.5, 2.1, 2.7, 3.3, 3.5 and 4.5 (from top to bottom).

systems only, it is interesting to check its applicability when the equation of motion cannot
be derived from a Hamiltonian.

A natural way to introduce an external field in the model is by changing rule (2) for

〈ϑ〉S(i) = �

( ∑
j

xj ∈S(i)

vj + he

)
(14)

where e is an arbitrary unit vector and the parameter h controls the strength of the
perturbation.

In the numerical studies we set the density of the particles to � = 2, and study φ as
a function of η and h. Typical results for systems of L = 100 are plotted in figure 6.
The curves parametrized by various η intersect the h = 0 axis at the same values found
in section 2, so for h = 0 the original model is recovered. In general, φ is increased for
increasing h, and the results can be summarized by means of critical exponents δ, γ∗, γ ′

∗
and susceptibility χ(η) defined in a manner similar to the case of classical magnets:

χ(η) = lim
h→0

φ(η, h) − φ(η, h = 0)

h
(15)

φ ∼ h1/δ for η > ηc (16)

and

χ(η) ∼




(
η − ηc

ηc

)−γ∗
for η > ηc

(
ηc − η

ηc

)−γ ′
∗

for η < ηc .
(17)

We distinguish the critical exponents γ∗ and γ ′
∗ from the exponent γ defined by the

singularity of σ(η), since in this case γ �= γ∗ �= γ ′
∗ (as will be demonstrated later).

To determine δ, we plot the obtained φ(η) curves on a double logarithmic plot (see
figure 7(a)). We see that for large values of φ the system saturates (φ > φsat ≈ 0.1), while
for low values of φ the finite-size noise dominates (φ < φnoise ≈ 0.03, for L = 100). Thus,
we expect that the relation

φ(η, h) = χ(η)h1/δ (18)

Figure 1.11 | Response to an external field in the Vicsek model. Polarization ϕ with respect to
the external field h for various nois strength η. From top to bottom, η decreases. Figure from [30].
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More recently, Kyriakopoulos, Ginelli and Toner have thoroughly studied the longitudinal response of
the polar liquid by combining hydrodynamics theory and numerical simulations of the Vicsek model [66].
They have shown that the static response of 2-dimensional flocks to small homogeneous external field
is given by:

χ ∝
{
h−2/3, h≫ hc(L)

L4/5, h≪ hc(L),
(1.11)

where L is the system size, and the critical field amplitude hc(L) ∝ L−6/5. Equation (1.11) implies that,
in the limit of infinite systems, the susceptibility diverges at vanishing h. In finite system, however, the
susceptibility saturates and the polarization linearly increases at small h.
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Figure 2. (color online) Linear regime. (a)-(b) Order parameter change vs. the

applied field amplitude in the linear regime for different system sizes (the cyan arrow

indicates increasing system sizes): a) For d = 2 L = 32, 64, 128, 256, 512. (b) For d = 3

L = 40, 60, 80, 100, 120. The dashed lines mark the linear relation δΦ ∼ h. Error bars

measure data standard errors (see text). (c) d = 2 Response at fixed h – as shown

by the red arrows in panel (a) – and different system sizes in the linear regime. The

dashed black line marks a power law with the predicted slope 0.8. (d) Same as in (c),

but for d = 3. The dashed black line marks a power law with the predicted slope 0.4.

All graphs are in a double logarithmic scale.

curve, as shown in Fig. 3c-d.

To summarize, numerical simulations are in good agreement with our theoretical

predictions, at least in d = 2. Results in d = 3 are prone to larger errors and obviously

explore a more limited range of linear sizes, but nevertheless are still compatible with

our predictions.

We also performed a few additional numerical studies of response (not shown here)

with different parameter values (but still in the TT phase), and in the ordered phase of

the so-called topological Vicsek model [29], confirming the generality of these results.

It is also worth commenting on the way the external field is implemented in the

microscopic Vicsek equations (38). In Ref. [5] it was argued that different microscopic

implementations could lead to different response, and in particular it was recommended

to choose one by which the external field was normalized by the local order parameter
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We also performed a few additional numerical studies of response (not shown here)

with different parameter values (but still in the TT phase), and in the ordered phase of

the so-called topological Vicsek model [29], confirming the generality of these results.

It is also worth commenting on the way the external field is implemented in the
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Figure 1. (color online) Size-asymptotic regime – Order parameter change vs. the

applied field amplitude for different system sizes. a) For d = 2, from bottom to top,

L = 32, 64, 128, 256, 512, 1024. The dashed red line marks the expected asymptotic

power law behavior δΦ ∼ h1/3, while the dashed blue line marks the upper bound for

the d = 2 equilibrium response δΦ ∼ h1/15. In the inset: Absolute difference between

the measured effective exponent νeff (see text) and its expected asymptotic value ν as

a function of system size. The dashed black lines marks a power law decay as 1/
√

L.

(b) For d = 3, from bottom to top, L = 40, 60, 80, 100, 120. The dashed red line marks

the expected asymptotic power law behavior δΦ ∼ h3/4, while the dashed blue line

correspond to the d = 3 equilibrium response δΦ ∼ h1/2. Inset: d = 3 data as in the

inset of panel (a). The dashed black lines marks a power law decay as L−1.5. Error

bars measure standard errors (see text). All graphs are in a double logarithmic scale.

while there is a lower limit set by our numerical precision in evaluating responses of the

order of 10−4 or smaller. Nevertheless, our numerical simulations reveal in both d = 2

(Fig. 2a) and d = 3 (Fig. 2b) a linear growth of the response over more than one decade

in the field amplitude h, especially for small system sizes.

By selecting a single h value lying in the linear regime for all accessible system

sizes L, one is also able to test the saturation exponent gamma, δΦ ∼ hLγ . This is

done in Figs. 2c-d, where response values at different linear sizes L are compared to the

predicted power-law with (respectively) γ = 4/5 for d = 2 and γ = 2/5 in d = 3. We

obtain a good agreement in d = 2 (the best linear fit being γ = 0.79(5), while data in

d = 3 is less clear, in rough agreement with the expected power-law behavior only for

sizes L ≥ 60, with a best linear fit of γ = 0.48(7).

We finally consider the full range of accessible external fields values in Fig. 3a-

b, which shows data for the accessible range of external field values in both two and

three dimensions. Fields h larger than hs ≈ 0.1, of course, are out of the small field

regime and show saturation effects, while due to statistical fluctuations we have been

unable to obtain reliable estimates for external fields smaller than h ≈ 10−4. Within

this range, comparison with the predicted scaling (2) (as given by the dashed lines) is

overall satisfactory, especially in d = 2. By a proper rescaling, making use of the three

scaling exponents (3), we can also collapse our data at different sizes on roughly a single

Figure 1.12 | Response to an external field in the Vicsek model. (a) Linear increase of polar-
ization for low external field h. The color codes for the system size. Figure from [66]. (b) The increase
of polarization goes as L4/5 for a fixed low value of h. Here h = 3 × 10−4. Figure from [66]. (c) The
non-trivial scaling at high h of Eq. (1.11) is found for large system size (L = 1024 pink data points).
Figure from [66].

These theoretical predictions have been confirmed by performing a finite-size analysis of simulations
of the Vicsek model. Figure 1.12a shows that the polarization increases linearly with h in the low-h
regime. In this regime, the slopes display the exact scaling that is expected with L, see Fig. 1.12b. The
non-trivial scaling χ ∝ h−2/3 at large h is also supported by the numerical simulations, see Fig. 1.12c.
To obtain this result, very large system sizes, up to L = 1024R (R being the interaction range), had to
be investigated.

Obviously, any real flock has a finite size. To this respect, the finite size effects uncovered by
Kyriakopoulos and co-workers are very important. Understanding, and ultimately predicting, the
response of real flocks requires to deal with these effects. As it will be shown in Chapter 3, confinement
plays a crucial role in the response of synthetic flocks assembled from colloidal rollers. The presence
of impenetrable boundaries yield an even richer phenomenology than the one found out in numerical
simulations where periodic boundary conditions have always been considered [30, 66].
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Chapter 1

Flocking through quenched disorder

A few numerical works have addressed flocking in disordered media [25, 96, 142, 32]. Strikingly, all the
studies concerned with quenched disorder have reported some very non-trivial phenomenologies [25, 96,
32]. Figure 1.13 gives a highlight of their results. Chepizhko and co-workers have considered a Vicsek-
like model where the particles not only align with their neighbors but also interact with point-wise
obstacles so as to move away from them [25]. Figure 1.13a shows the polarization for various pairs of
the control parameters: the obstacle density ρo and the noise strength η. In the presence of disorder,
an optimal noise strength exists that maximizes the polarization.

(c)(a) (b)

Optimal Noise Maximizes Collective Motion in Heterogeneous Media
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We study the effect of spatial heterogeneity on the collective motion of self-propelled particles (SPPs).

The heterogeneity is modeled as a random distribution of either static or diffusive obstacles, which the

SPPs avoid while trying to align their movements. We find that such obstacles have a dramatic effect on

the collective dynamics of usual SPP models. In particular, we report about the existence of an optimal

(angular) noise amplitude that maximizes collective motion. We also show that while at low obstacle

densities the system exhibits long-range order, in strongly heterogeneous media collective motion is quasi-

long-range and exists only for noise values in between two critical values, with the system being

disordered at both large and low noise amplitudes. Since most real systems have spatial heterogeneities,

the finding of an optimal noise intensity has immediate practical and fundamental implications for the

design and evolution of collective motion strategies.

DOI: 10.1103/PhysRevLett.110.238101 PACS numbers: 87.18.Gh, 05.65.+b, 87.18.Hf

Most examples of natural systems, if not all, where
collective motion occurs in the wild, take place in hetero-
geneous media. Examples can be found at all scales.
Microtubules driven by molecular motors form complex
patterns inside the cell where the space is filled by organ-
elles and vesicles [1]. Bacteria exhibit complex collective
behaviors, e.g., swarming, in heterogeneous environments
such as the soil or highly complex tissues such as in the
gastrointestinal tract [2]. At a larger scale, herds of mam-
mals migrate long distances traversing rivers, forests, etc.
[3]. Despite these evident facts, little is known at both
levels, experimental as well as theoretical, about the
impact that a heterogeneous medium may have on the
self-organized collective motion [4]. For instance, most
collective motion experiments have been performed on
homogeneous arenas [4], from microtubules moving on a
carpet of fixed molecular motors [5], bacteria swarming on
surfaces [6,7], to marching locusts [8], and including fab-
ricated self-propelled particle systems [9,10]. Not surpris-
ingly, most theoretical efforts have also focused on
homogeneous media [4,11], from the pioneering work of
Vicsek et al. [12] to the detailed study of symmetries and
large-scale patterns in self-propelled particle systems
[13–21], where the transition to collective motion is
reduced to the competition between a local aligning inter-
action and a noise.

Here, we show through a simple model that the presence
of even few heterogeneities, which can be either static or
diffusive, changes qualitatively the collective motion dy-
namics. In particular, we find that there is an optimal noise
amplitude that maximizes collective motion, while in a
homogeneous medium, such an optimal does not exist,
see Fig. 1. For weakly heterogeneous media (i.e., low
obstacle densities), we observe that the transition to

collective motion exhibits a unique critical point below
which, the system exhibits long-range order, as in homo-
geneous media. For strongly heterogeneous media (high
obstacle densities), we find, on the contrary, that there are
two critical points, with the system being disordered at
both, large and low noise amplitudes, and exhibiting only
quasi-long-range order in between these critical points.
The finding of an optimal noise that maximizes self-
organized collective motion may help to understand
and design migration and navigation strategies in either
static or fluctuating heterogeneous media, which in turn
may shed some light on the adaptation and evolution of
stochastic components in natural systems that exhibit
collective motion, for instance, concerning the bacterial
tumbling rate.
Model definition.—We consider a continuum time model

for Nb self-propelled particles (SPPs) moving in a two-
dimensional space, with periodic boundary conditions, of

FIG. 1 (color online). Optimal noise amplitude. Order parame-
ter r as a function of noise strength � and obstacle density �o.
Data corresponding to L ¼ 140, Do ¼ 0, and �b ¼ 1.
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FIG. 5. (Colour online) Plot of average normalised velocity
versus noise strength shown for L = 100 and different den-
sity of the rotators. While V decreases monotonically with
increasing η for the clean system, in the presence of the rota-
tors, a certain amount of noise maximizes the ordering.

zero noise to transfer the information of one sub-flock to
another. Similar phenomena has earlier been reported in
Ref. [12].
Linearised hydrodynamics - Long-distance and long-

time properties of the SPPs with quenched obstacles
could also be characterised using a hydrodynamic de-
scription of the model. The relevant hydrodynamic vari-
ables for this model are: (i) SPP density ρ(r, t) which
is a globally conserved quantity, and (ii) velocity v(r, t)
which is a broken symmetry parameter in the ordered
state. These variables could be obtained by suitable
coarsening of corresponding discrete variables in the mi-
croscopic model [8]. Following the phenomenology of the
system [7, 8], we write the hydrodynamic equations of
motion for the density and the velocity fields as

∂tρ + ∇ · (vρ) = Dρ∇2ρ, (5)

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(v2)

= (α1 − α2v
2)v − ∇P + DB∇(∇ · v) + DT ∇2v

+ D2(v · ∇)2v +
ρo

ρ
ζ + f . (6)

f represents the annealed noise term that provides a ran-
dom driving force. We assume this as a white Gaussian
noise with the correlation

〈fi(r, t)fj(r
′, t′)〉 = ∆δijδ(r − r′)δ(t − t′) (7)

where ∆ is a constant, and dummy indices i, j denote
Cartesian components. The effect of obstacles is con-
tained in the term ρo

ρ ζ in Eq. (6), where ρo represents

obstacle density, and ζ(r, t) signifies the obstacle field.
We assume the correlation

〈ζi(r, t)ζj(r
′, t′)〉 = ζ2δijδ(r − r′). (8)

The noise ζ(r, t) is quenched in time; therefore, there is
no time dependence in Eq. (8). For ζ = 0, Eqs. (5)-(8)
represents the Toner-Tu [8] model.

Now we check whether a broken symmetry state of the
SPPs in presence of the obstacle field survive to small

fluctuations in the hydrodynamic fields. In the hydrody-
namic limit, a linearised study of Eqs. (5)-(6) alongwith
the correlations in Eqs. (7)-(8) gives spatially Fourier
transformed equal-time correlation functions for the den-
sity

Cρρ(q, t) =
1

q2

{
ζ2ρ2

oaρ(θ)

b(θ)q2 + d(θ)
+ ∆Aρ(θ)

}
, (9)

and the velocity

Cvv(q, t) =
1

q2

{
ζ2ρ2

oav(θ)

b(θ)q2 + d(θ)
+ ∆Av(θ)

}
. (10)

The parameters aρ,v, Aρ,v, b and d depend on the spe-
cific microscopic model and on the angle θ between the
wave number q and the flocking direction. The detailed
calculation for Eqs. (9)-(10) is given in Appendix B. For
ζ = 0, our result matches with the earlier prediction
by Toner and Tu [8], where the two structure factors
diverges as 1/q2 for small q. However, for ζ �= 0, we
find that the structure factors have strong direction de-
pendence and possess another divergence of O(1/q2) for
small q. Appearance of such additional fluctuation break
the usual LRO present in clean system and lead the sys-
tem to QLRO state in the presence of quenched inhomo-
geneities. Therefore, our linearised hydrodynamics cal-
culation agrees with the numerical predictions for the
AMQR.

In summary, we have studied the effect of random
quenched rotators on the flocking state of polar SPPs.
These rotators are one kind of obstacles that rotate the
orientation of the SPPs. We find that, for small density
of the rotators, the usual LRO of the clean polar SPPs
is destroyed, and a QLRO state prevails. With further
increase in density of the rotators, a continuous QLRO
to disorder state transition takes place in the system.
Our linearised hydrodynamical analysis predicts the ap-
pearance of an extra 1/q2 divergence in the presence of
quenched inhomogeneities that destroys the usual LRO of
polar SPPs in 2D. In equilibrium systems with random
quenched obstacles, ordered state does not exist below
four dimensions [17, 18]. However, as compared to the
equilibrium system, in our model for polar self-propelled
particles with quenched rotators, we find QLRO in two-
dimensions. Our prediction of QLRO in polar SPPs in
the presence of quenched obstacles agrees with earlier
observations [12, 21].

In Ref. [12], a LRO to QLRO state transition has been
shown at a non-zero density of obstacles; however, in the
presence of random quenched rotators, we find the QLRO
state only, because of the intrinsic difference in the nature
of obstacles. However, similar to their results, we note
the existence of an optimal noise for which the system
attains maximum ordering in the presence of quenched
rotators. Our model can be applied in natural systems
like a shoal of fishes moving in sea in the presence of
vortices. An experiment on a collection of three-spined
sticklebacks (fishes) living in a shallow water-pool [22],

location of the order-disorder transition ( p N1 * ( )− )
for finite systems. Using the finite size analysis again,
we find that there exists a phase transition (figure 2(c)
(blue filled circles, red dashed line)) occurring at a
non-zero value of the topological disorder fraction.
For a specific value of the repulsive interaction,
( 10 1ϵ = − ), and temperature (T 10 2= − ), this turns
out to be p N1 * ( ) 0.13(4)− → ∞ = (figure 2(c)
(black solid line)). Finally, we find that there is an
optimal repulsive magnitude, where collective motion
is enhanced in the presence of disorder, that is
reflected in the non-monotonic behavior in
figure 2(d). This behavior is consistent with previous
studies for systems without disorder [33] and is not to
be confused with optimal noise assisted swarming in
the presence of obstacles [27] as here we focus on how
the inter-agent repulsion can be tuned to optimally
enable swarming.

Intuitively one can understand the nature of this
non-monotonic behavior from the following argu-
ment. When an agent becomes temporarily stuck at a
defect (i.e. a missing bond) other agents can also
become stuck at that same location with little energy
cost and they can pile up at a lattice defect. As the
repulsive magnitude is increased agents will tend to

avoid regions where the agent number density is high
(equation (2)). At moderate values of repulsion agents
can avoid sites that are temporarily occupied by
another agent, causing the local number density per
lattice site to decrease. If a lattice site near a missing
bond is occupied the repulsive interaction between the
two agents makes it less favorable for them to occupy
the same lattice site. Thus, the local repulsive interac-
tion is, in someway,mediating the local bond disorder
and allowing agents to avoid lattice defects more effi-
ciently, which can be seen in the peak in figure 2(d).
However, as the repulsive interaction is further
increased individual agent motion will become more
randomized because any movement toward another
agent will be highly unlikely as can be seen in
figure 2(d) even for the case where this is no lattice dis-
order ( p1 0− = ) for log( ) 0ϵ ⩾ . We will explore
these dynamicsmore in a following publication.

Now we can clearly see that repulsive interactions
restore the ability of the agents to swarm collectively in
a finite amount of disorder, it is now interesting to
speculate to which universality class our system
belongs to. We probe this question by utilizing finite
size scaling analysis to extract the critical exponents of
the relevant thermodynamic quantities. We fix our

Figure 2. (a)Global alignment, in the absence of repulsion, asmeasured by equation (3) as a function of the disorder fraction in the
lattice for different densities ( 0.8ρ = (red), ρ=1.0 (blue), ρ=2.0 (green)). (b)Global alignment for a system of agents that interact
with both a local alignment and repulsive fields for ρ=1.0 and (5.0 10 3ϵ = ∗ − (black), 10−2 (red), 5.0 10 2∗ − (green), 10−1 (blue)).
(c) Finite system size critical disorder fraction ( p N1 * ( )− ) for systemswithout/with repulsion ( 0ϵ = (greenfilled circles))
( 10 1ϵ = − (bluefilled circles)) with finite size scalingfits (red dashed line) and (black dashed line). (d) The order parameter for
particular values of the disorder fraction ( p1 0− = (red), 0.10 (blue), 0.20 (green)) over the the log of the repulsion strength. All
further log data is to the base 10 unless stated otherwise. (See supplementary information formore simulation details available at
stacks.iop.org/pb/12/046008/mmedia.)
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Figure 1.13 | Optimized flocking through quenched disorder. (a) Polarization r ≡ Π with
respect to the obstacle density ρo and noise strength η. An optimal noise regarding flocking exists
for any disorder ρo ̸= 0. Figure from [25]. (b) Polarization V ≡ Π with respect to noise strenght η
for various density of quenched rotators cr. In the presence of quenched rotators, an optimal noise
exists that maximizes the polarization. Figure from [32]. (c) Polarization ⟨v⟩ ≡ Π with respect to the
repulsion between colloids ϵ for three different value of disorder density. Red: no disorder. Blue: 1
broken bond out of 10. Green: 1 broken bond out of 5. When disorder is present, the repulsion between
particles can be optimally tuned to favor flocking. Figure from [96].

A recent work by Das, Kumar and Mishra has also disclosed such a non-monotonic behavior [32].
Das and co-workers have considered an adaptation of the Vicsek model in which particles interact with
quenched polar obstacles. These obstacles act as rotators that bear a constant random orientation along
which neighboring particles would tend to align. Figure 1.13b shows that an optimal noise strength η
exists with regards to polar order for any obstacle density cr ̸= 0.

Quint and Gopinathan have introduced an on-lattice Vicsek-like model where stationary disorder
is introduced in the form of broken bonds [96]. Not only the motion is forbidden along these broken
bonds, but the transfer of information is also disrupted. One of the main conclusions of this work is
that flocking can benefit from well-tune repulsive interactions between particles. Figure 1.13c shows
that an optimal repulsion strength ϵ exists that maximizes the polarization when a finite number of
bonds are missing.

Interestingly, quenched disorder and orientational noise do not play symmetric roles, even though
particles are motile and therefore sample in time different local realizations of disorder. In all these
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Flocking physics

works, increasing disorder at fixed noise strength always reduces order in the system, see Fig. 1.13. As
a matter of fact, quenched disorder and annealed noise alter flocking in fundamentally different ways.
Das and co-workers have evidenced that long-range order was suppressed by the quenched rotators.
Instead, quasi-long-ranged order is found in the system for small disorder densities. Figure 1.14 shows
the algebraic decay of the polarization with increasing system sizes that attests to this fact.

2

LRO of the clean SPPs and lead the system to QLRO
state.

We consider a collection of Ns polar SPPs distributed
over a 2D square substrate. Each particle moves with a
fixed speed vs along its orientation φ. Individual SPP
tries to reorient itself along the mean orientation of all
the neighbouring SPPs (including itself) within an inter-
action radius Rs. However, ambience noise leads to orien-
tational perturbation. Moreover, there are Nr immobile
rotators randomly distributed on the substrate. Each ro-
tator possesses an intrinsic orientation ϕ, which can take
any random value in the range [−π, π] and remains fixed.
Therefore, the rotators are quenched in time, and we call
these as random quenched rotators (RQRs). Each RQR
rotates the orientations of the SPPs within an interaction
radius Rr by an angle determined by ϕ and SPP-RQR
interaction strength µ. The update rules governing posi-
tion ri and orientation φi of the ith SPP are as follows:

ri (t + 1) = ri (t) + vi (t) , (1)

φi (t + 1) = 〈φj (t)〉j∈Rs + µ〈ϕj〉j∈Rr + ∆ψ, (2)

where vi (t) = vs (cos φi (t) , sin φi (t)) is the velocity of
the particle i at time t, 〈φ〉Rs and 〈ϕ〉Rr represent the
mean orientation of all the SPPs and the RQRs, re-
spectively, within the interaction radii. Fluctuation in
orientation of SPPs because of ambience noise is repre-
sented by an additive noise term ∆ψ distributed within
η [−π, π], where noise strength η ∈ [0, 1]. We call this
model as ‘active model with quenched rotators (AMQR)’,
which reduces to the celebrated Vicsek model (VM) [1]
for µ = 0 or in the clean system, i.e., Nr = 0.

We numerically simulate the collection of Ns SPPs
spread over the L × L (L ∈ [50, 300]) 2D substrate
with periodic boundary condition. Initially the parti-
cles are chosen to have random velocity, but with con-
stant speed vs. The density of the SPPs is defined as
cs = Ns/L2. Similarly, the density of the RQRs is given
by cr = Nr/L2. We distribute these rotators uniformly
on the substrate, and randomly assign intrinsic orienta-
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FIG. 1. (Colour online) (a) In the presence of quenched
rotators, V decreases algebraically with Ns. The error bars
indicate standard error in mean. The solid lines show respec-
tive fits. (b) Plot of V vs. scaled system size Ns/N

γ
s on log-log

scale, where γ is a function of cr. The data show nice scaling
for 0 < cr ≤ 0.0125, but deviate for cr ≥ 0.0125. Symbols for
different cr are same in (a) and (b).
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FIG. 2. (Colour online) Steady state snapshots are shown
for L = 150 and different cr as indicated on the respective
panels. The colour bar indicates orientation of the SPPs.
The rotators with random intrinsic orientation are not shown
for the clarity of the picture.

tion ϕ ∈ [−π, π]. In this system, the position and the
velocity of all the SPPs are updated simultaneously fol-
lowing Eqs. (1)-(2). At every time step, we use OpenMP
Application Program Interface for parallel updation pro-
cedure of all the SPPs.

In this letter, we consider SPP density cs = 1.0, self-
propulsion speed vs = 1.0 and SPP-RQR interaction
strength µ = 1.0. Moreover, we take Rs = Ro = 1 for
simplicity. In the absence of the rotators [1], the system
shows disorder to order transition with decreasing noise
strength η. For a given cs, the clustering of the SPPs de-
pends on η. We keep the noise strength fixed at η = 0.1
to ensure sufficient number of interactions amongst the
flocks of SPPs and the rotators. The ordering of the sys-
tem is measured in terms of the conventional absolute
value of the average normalised velocity [1]

V = 〈 1

Nsvs
|

Ns∑

i=1

vi|〉 (3)

of the entire system. Here 〈·〉 indicates an average over
many realisations and time in the steady state. V varies
from zero to unity for disorder to order state transition.
For the reported data, we start the averaging of observ-
ables after 3×105 updates to assure the steady state, and
averaging is done for next 5 × 105 updates. For better
averaging, upto 30 realisations are used.
Quasi-long range order - We calculate V for different

cr, and study its variation with the system size. As shown
in Fig. 1(a), in the clean system, V does not change with
system size; consequently, the system possesses a non-
zero V in the thermodynamic limit. Therefore, the clean
system remains in the LRO state, which is a well-known
phenomenon [8]. However, in the presence of the RQRs,
V decreases algebraically with Ns following

V = A(cr)N
−ν(cr)
s , (4)

where both A and ν are functions of the rotator density
for a fixed noise strength. Therefore, in the thermody-
namic limit, V of the system with RQRs reduces to zero,
and the system remains in a QLRO state. For further
increase in cr, the AMQR shows a continuous QLRO-
disorder state transition. In Fig. 2, we show snapshots

Figure 1.14 | Quasi-long-ranged order in flocks with quenched disorder. The polarization V
decreases algebraically with increasing the system size 1/NS in the presence of quenched rotators. The
obstacle density increases from top to bottom. Black circles: no disorder. Figure from [32].

The occurrence of quasi-long-ranged order of flocks with quenched disorder has been very recently
demonstrated analytically [121, 120]. Toner and co-workers have considered the hydrodynamic equa-
tions of flocking (1.4) and (1.5) in the presence of quenched disorder in place of the annealed disorder
given by Eq. (1.6). In the case of a quenched disorder, the random force f of Eq. (1.5) is therefore static
and only depends on space. More precisely, f is Gaussian with zero mean and spatial correlations in
the direction transverse to the flock propagation given by:

⟨
f⊥(r)f⊥(r

′)
⟩
= ∆δ(r− r′), (1.12)

where ∆ denotes the quenched disorder strength. Toner and co-workers have proved that any small
amount of quenched disorder ∆ > 0 destroys long-ranged order of flocks in dimension 2. Quasi-long-
ranged order occurs instead, making the flocks still more robust to quenched disorder than equilibrium
systems.

In contrast with Toner’s prediction, Chepizhko and co-workers have reported a transition from true
long-ranged order to quasi long-ranged order occcuring at a finite disorder density [25]. This difference
in phenomenology stresses that the precise nature of the disorder matters. Repulsive obstacles and
polar obstacles do not alter flocking the same way. Flocking through quenched disorder could cover a
rich variety of behaviors.

23



Chapter 1

1.6 Organization of this thesis

As exemplified by the disorder-induced suppression of long-ranged order, dramatic changes can arise
in flocks’ behavior when they evolve in complex environments. In this thesis, I build on the realization
of synthetic flocks from self-propelled colloids [13, 12] to explore the thrilling physics of flocking. I
experimentally investigate how flocking occurs in challenging environments. This thesis is organized as
follows.

Chapter 2: A model experiment for flocking

In Chapter 2, I introduce synthetic flocks assembled from motile colloids. I first show how to make
colloidal rollers out of bare plastic microbeads. Then, I discuss the pair interactions between these
colloidal rollers. Alignment interactions are evidenced and increasing the roller density yields the same
phenomenology as in the Vicsek model, see Figs. 1.8 and 1.15. Finally, the homogeneous flocks that
form at high densities is shown to be an actual representative of Toner and Tu polar liquids.
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Figure 1.15 | A model experiment for flocking.

Chapter 3: Collective stubbornness resisting opposing flows

In Chapter 3, I investigate the response of colloidal flocks to longitudinal perturbations. I show
how to take advantage of the microfluidic device where the synthetic flocks are manipulated to apply
external drives. Second, I probe the response of colloidal polar liquids to longitudinal fields. Remark-
ably, colloidal flocks can sustain opposing fields. This robustness is made possible by the presence of
boundaries that confine the flock laterally. A detail examination of the flock dynamics reveals a buckled
pattern that leans on these walls, see Fig. 1.16. A minimal hydrodynamic theory correctly accounts for
these observations. Over a finite range of field amplitude, buckled flocks that resist opposing fields are
shown to be stable. Finally, the non-linear response of flocks to external fields is exploited to realize
autonomous oscillators. Most of this work has been published in the article “Flowing active liquids
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in a pipe: Hysteretic response of polar flocks to external fields”, which is reproduced at the end of
Chapter 3.

h

θ

Figure 1.16 | Collective stubbornness resisting opposing flows.

Chapter 4: Colloidal rollers in microfluidic forests

In Chapter 4, I study the dynamics of flocks in the presence of quenched disorder. First, small
cylindrical posts are shown to act on particles through repulsive torques. The dynamics of individual
self-propelled colloids in heterogeneous environments is then investigated. A localization scenario à la
Lorentz is recovered upon increasing the obstacle density. Finally, I address the robustness of colloidal
flocks to quenched disorder. Melting of flocks occur upon increasing disorder. The dynamics of flocks
is dramatically altered near the transition. The random distribution of obstacles yields the emergence
of a network of rivers along which the flocks preferentially propagate, see Fig. 1.17. The emergence of
these favored routes is rationalized within the hydrodynamic framework. This network results from the
competition between disorder and the flock orientation elasticity (D3 in Eq. (1.5)). While disorder tends
to randomly stir the flocks, their elasticity prevent changes of direction to occur on small lengthscales.

JF/(ρv0)

Figure 1.17 | Colloidal rollers in heterogeneous environments.
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Chapter 2

A model experiment for flocking

From grains to emulsions and gels, all soft materials have successfully been motorized this past decade
[35, 102, 118, 117, 100]. In particular, several strategies have been developed to turn passive colloids
into self-propelled bodies. Here, I focus on colloidal rollers: colloids that are made active by use of the
Quincke rotation mechanism. In this chapter, I first present the Quincke rotation and its application to
colloids. Then, from this motorization principle, I show how interactions between colloidal rollers can
be rationalized hence collective motion. Finally, I give some insights into the resulting colloidal flocks
to show that they constitute genuine Toner-and-Tu fluids. The experimental system that I am about
to describe was first introduced in [13]. The experimental set-up was primarily developped by Antoine
Bricard [11] and Nicolas Desreumaux [37], while Jean-Baptiste Caussin worked out the theoretical
description of the system [17]. In the following sections, I also provide additional results from my own
work which are denoted by a star symbol ⋆.

2.1 Colloids made active

2.1.1 Quincke rotors ⋆

To make colloids active, we take advantage of an electro-hydrodynamic instability first introduced by
Georg Quincke in 1896 [95]. The Quincke mechanism sets into rotation an insulating body immersed
in a conductive liquid. Figure 2.1a shows the original sketch of Quincke’s set-up. A DC electric field
is applied to a cylinder immersed in a conductive liquid. Spontaneous rotation of the cylinder occurs
under specific conditions [78].

Though it was first envisioned by Quincke at the macro-scale, the Quincke rotation is a scale-free
mechanism that also applies to the micro-scale. To present the Quincke rotation, I will rely on an
experimental realization of 10µm-diameter rotors. These rotors are shown in Fig. 2.1b. They were
made in a process of 2-photon lithography from SU8 photoresist by Gazton Vizsnyiczai and Roberto
Di Leonardo. When a DC electric field E0 is applied to a rotor, it is polarized due to charge transport
within the fluid, see Fig. 2.1c. As the resulting dipole P is opposite to the electric field, fluctuations
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Figure 2.1 | Quincke rotors. (a) Schematic of the original macro-scale rotor from Quincke [95]. The
electrodes C1 and C2, of diameter 3.5 cm were spaced by 1.5 cm. (b) Micrograph of nine SU8 Quincke
rotors, see from above. (c) Below the Quincke threshold, for E0 < EQ, the dipole P stays anti-aligned
with the electric field E0. No rotation occurs. (d) Above the Quincke threshold, for E0 > EQ, P and
E0 make a finite angle. A steady rotation at speed Ω occurs. (e) The rotor speed Ω increases with
the applied DC electric field E0. Inset: Ω2 varies linearly with E2

0 , in agreement with the theory. (f)
Two time series showing the rotation of a rotor at constant speed Ω = 3.5 rad/s under an electric field
E0 = 2V/µm. The rotation occurs either clockwise (top) or counter-clockwise (bottom) with equal
probability.

of its orientation lead to a finite electric torque P × E0 that favors the rotor rotation. Conversely,
viscous friction tends to suppress any rotation. The result of the competition between viscous friction
and electric torqued depends on the field amplitude. Below a threshold EQ, the fluctuations are
overdamped and the system is stable: no rotation occurs, see Fig. 2.1c. Above EQ, the system is
unstable and the rotor reaches a new steady state with a constant rotation speed Ω, see Fig. 2.1d. Ω

is set by the electric field amplitude: Ω ∝
√(

E0
EQ

)2
− 1. Figure 2.1e shows that the measured increase

of the rotation speed with the electric field amplitude perfectly matches this prediction. An important
feature of Quincke rotation is that the direction of rotation is random. This randomness stems from the
initial fluctuation of the dipole orientation P that initiates the rotation. As a consequence, the rotor
has equal probability to rotate clockwise or counter-clockwise, as illustrated by the two time series of
Fig. 2.1f.
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2.1.2 Quincke rollers

The Quincke mechanism is directly applicable to induce the rotation of insulating spheres dispersed
in a conducting liquid. We use Polystyrene colloids of radius a = 2.4µm dispersed in a mixture of
dioctyl sulfosuccinate sodium salt (AOT) and hexadecane. We control the conductivity of the liquid
σl through the concentration of salt. Typically we use [AOT] = 0.15mol/l. As shown in Fig. 2.2a, the
colloidal solution is confined between two electrodes spaced by H = 110µm. Applying a DC electric
field above the Quincke threshold leads to the rotation of the colloids. In our experiments, we let the
colloids settle on the bottom electrode where they start to roll.

ẑ

x̂

Ω
(a)

(b)

(c) (d) (e)
E0 P

x̂

ŷ

ΩE0 P vH

Figure 2.2 | Quincke rollers. (a) Schematics of colloidal rollers. Top: Quincke mechanism powers
the rotation of colloids. Bottom: at the bottom of the microfluidic chamber, rotation of the colloids
is converted into translation. (b) Superimposed snapshots of colloidal rollers. They move at constant
speed in various directions. Scale bar: 50µm. (c) Histogram of the roller’s velocities. (d) The roller
speed v0 increases with the electric field E0. Inset: v20 increases linearly with E2

0 as predicted by
the theory. (e) Velocity autocorrelation function ⟨v̂(t0)v̂(t0 + t)⟩t0 . The orientation of the rollers is
randomized at a typical rate of D ∼ 0.8 s−1.

Typical trajectories of such Quincke rollers are shown in Fig. 2.2b. These superimposed snapshots
reveal two main features. First, the colloids move at constant speed v0, as the distance traveled between
two subsequent frames appears constant. Second, they move in various directions. More quantitatively,
Fig. 2.2c shows the two-dimensional histogram of the velocities of the Quincke rollers. This histogram
is isotropic and peaked along a circle of radius v0. As for the rotors, the amplitude of the electric field
E0 sets the rotation speed and thus v0. Figure 2.2d shows that the rollers’ speed increases with E0 as:

v0 =
a

τ

µ̃t
µr

√(
E0

EQ

)2

− 1, (2.1)

where a is the roller radius, τ is the time of charge relaxation within the fluid and µ̃t and µr are mobility
coefficients. µr = 1/(8πηa3) where η is the liquid viscosity. EQ is the Quincke threshold under which
no motion occurs:

EQ =

[
4πϵla

3

(
χ∞ +

1

2

)
µrτ

]−1/2

=

√
8

3
η
σl
ϵlϵp

. (2.2)
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The Quincke threshold depends on the material properties of both the fluid and the insulating sphere.
η is the fluid viscosity, σl is the fluid conductivity, ϵl and ϵp are the dielectric constants of the liquid
and the colloid respectively and χ∞ = (ϵp − ϵl)/(ϵp + 2ϵl). The second equality follows from taking
µr = 1/(8πηa3) (thus neglecting the change of µr due to the proximity of the bottom electrode).
Figures 2.2c and 2.2d demonstrate that the rollers’ dynamics results from the Quincke motorization.
However, the trajectories displayed in Fig. 2.2b show a feature that is not captured by the Quincke
mechanism: rollers do not propel along straight lines but seem to diffuse orientionally. We quantify
this orientation diffusivity by measuring the velocity orientation correlations ⟨v̂(t0)v̂(t0 + t)⟩t0 , see
Fig. 2.2e. The decorellation is exponential with a typical rate D ∼ 0.8 s−1. We note that Brownian
diffusion would yield orders of magnitude lower re-orientation rates DB ∼ 4× 10−3 s−1. The origin of
the roller orientation diffusivity thus remains unclear. It could be due to surface heterogeneities as well
as the Brownian diffusion of the surface charges involved in the Quincke mechanism. In the latter case,
a rough estimate of the roller orientation diffusivity gives D ∼ 0.1− 1 s−1 by considering ion clouds of
size 100− 10 nm.

To sum up, we use the Quincke mechanism to make colloids active. Our colloidal rollers behave as
persistent random walkers with speed v0 and orientation diffusivity D. Therefore, the equations of
motion of roller i take the simple form:

∂ri
∂t

= v0v̂i, (2.3)

∂θi
∂t

=
√
2Dξi, (2.4)

where ri(t) is the position of roller i, v̂i(t) = (cos θi(t), sin θi(t)) its direction of motion and ξi(t) is a
white noise with zero mean and unit variance. Colloidal rollers behave individually like active Brownian
particles.

2.2 From active colloids to colloidal flocks

Dense assemblies of colloidal rollers form active phases of matter that display collective motion:
flocks. In this section, I provide a comprehensive picture of the formation of colloidal flocks. The
formation of flocks from colloidal rollers is rationalized by understanding the interactions between pairs
of rollers. This is done in two steps: elucidating the perturbations caused by a roller to its surrounding
electric field and hydrodynamic flow on one end, and elucidating the individual response of a roller to
electric fields and hydrodynamic flows on the other.

2.2.1 Roller’s response to perturbations ⋆

To establish the response of rollers to perturbations of both electric and hydrodynamic fields, we
benefit from the versatility of our microfluidic device. The response of colloidal rollers to a hydro-
dynamic forcing is achieved by flowing the hexadecane solution at a constant flow rate within the
microfluidic cell. This situation is depicted in Fig. 2.3a and more information is provided about it
in section 2.4. Given the geometry of the microfluidic cell, a Poiseuille flow h(z)x̂ results in the z
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Figure 2.3 | Individual response of Quincke rollers to tangential hydrodynamic fields. (a)
Schematics of a Quincke roller facing a hydrodynamics flow. Top: side view. Bottom: top view. (b)
Histogram of the roller’s velocities under a hydrodynamics flow of amplitude h∥ = 57µm/s. (c) Average
polarization (blue circles) and normalized speed (red open circles) of the rollers with respect to the flow
amplitude. The black line is the theoretical prediction for the polarization Π(h).

direction. A high precision syringe pump controls the flow amplitude. I refer to the flow amplitude by
evaluating the flow velocity at the height of a colloid radius: h∥ ≡ h(z = a). Figure 2.3b shows that the
bi-dimensional histogram of the roller velocities is biased in the direction of h: colloidal rollers align
with the flow. Remarkably, the interaction with the flow leaves the speed of colloidal rollers unchanged.
More quantitatively, Fig. 2.3c shows that the alignment process is all the more efficient as the solvent
flow strengthens: the polarization of the system Π = ⟨v̂i(t)⟩i,t increases with h∥. It is interesting to
note that the polarization is as high as Π = 0.9 for a flow amplitude h∥ = 0.1 v0.

Following the same scheme, we investigate the response of colloidal rollers to tangential electric fields.
To do so, the two electrodes are positioned to form a wedge as depicted in Fig. 2.4a. This slight tilt
of order α ∼ 1 deg gives rise to a finite in-plane electric field E∥ ∼ E0 sinα. Figure 2.4b shows that
the dynamics of colloidal rollers is altered by this field: they align opposite to E∥. The experimental
setup does not permit measurements as accurate as for the hydrodynamic forcing. Figure 2.4c nonethe-
less unambiguously demonstrates that the polarization of the system increases with the electric field
amplitude.

Based on these two experimental observations, we can infer the following equations of motion for
colloidal rollers under tangential hydrodynamics flows and electric fields:

∂ri
∂t

= v0v̂i, (2.5)

∂θi
∂t

= − ∂

∂θi

[
−µhv̂i · h+ µEv̂i ·E∥

]
+
√
2Dξi. (2.6)
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Figure 2.4 | Individual response of Quincke rollers to tangential electric fields. (a) Schematics
of a Quincke roller facing a tangential electric field. Top: side view. Bottom: top view. (b) Histogram
of the roller’s velocities under a tangential electric field E∥ = 0.6 × 10−3E0. (c) Average polarization
(blue circles) and normalized speed (red open circles) of the rollers with respect to the magnitude of
the tangential electric field. The black line is the theoretical prediction for the polarization Π(h).

In this expression, µh and µE are positive mobility coefficients linked to the alignment with a flow and
the anti-alignment with the in-plane electric field, respectively. Given the quality of the data shown in
Fig 2.3c, an accurate evaluation of µh is possible. In the absence of tangential electric field, Eq. (2.6)
is the analogous of the Langevin equation describing the re-orientation dynamics of a magnetic spin in
an external magnetic field at finite temperture. It is readily solved to get an estimate of the average
polarization: Π(h) = I1(µhh/D)

I0(µhh/D) , where I0 and I1 are modified Bessel functions of the first kind. By
fitting the data with this prediction, we get:

µh = 0.075µm−1. (2.7)

I have demonstrated experimentally how the colloidal rollers respond to perturbations of the hydro-
dynamic and electric fields. This question was originally adressed theoretically in [13]. As a matter
of fact, Eqs. (2.5) and (2.6) can be derived from the Stokes and Maxwell equations only. Expressions
of the mobility coefficients µh and µE in terms of microscopic parameters also follow from this theo-
retical treatment [13, 17]. Estimations of their numerical values gives µE ∼ 2 × 103 (V/µm)−1/s and
µh = 0.085µm−1 in excellent agreement with the experimental data of Figs. 2.3c and 2.4c.

2.2.2 Roller-roller interactions

We now know that colloidal rollers align with hydrodynamic flows and anti-align with in-plane electric
fields. To understand how the rollers interact with each others, one last concern needs to be elucidated:
how does a single roller perturbs these fields? The in-plane perturbation of the electric field from a
roller can be qualitatively captured by a simple line of argument which is illustrated in Fig. 2.5. Let
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Figure 2.5 | Electrostatic interactions between Quincke rollers. (a) Schematic of a colloidal
roller (grey circle) with an electric dipole P sitting on an electrode together with its image P∗. How
does the roller perturbs the electric field in the z = a plane? (b) The orthogonal component of P
yields no tangential field, while the orthogonal component of P∗ gives rise to a monopolar field in the
z = a plane. (c) The monopolar field due to P∗ points toward the colloid. A neighbour colloid (brown
circle) anti-aligns with this field, hence being repulsed. (d) The longitudinal components of P and
P∗ both contribute to a non-vanishing E∥ in the z = a plane. The resulting field is the superposition
of a uniform field (e) and a dipolar field (f). (e) The uniform field, originating from the longitudinal
components of P and P∗, points in the direction opposite to the colloid velocity (black arrow). As
a neighbor colloid (brown circle) anti-aligns with this field, it aligns to move in the same direction.
(f) The dipolar field, originating from the longitudinal components of P and P∗, results in a dipolar
coupling between rollers. Two neighbor colloids (brown circles) are shown to align within this field.

us consider a roller laying on the bottom electrodes, see Fig. 2.5a. As the roller bears an electric
dipole P, the proximity of the electrode requires considering its image P∗ to satisfy the condition of a
vanishing tangential field at the electrode. This situation is depicted in Fig. 2.5a. The goal is now to
evaluate the tangential component of the electric field E∥ at a height z = a from the electrode. To do
so, it is convenient to separate the contributions of the orthogonal components of P and P∗ from the
contributions of their longitudinal components. As shown by the schematic of Fig. 2.5b, the orthogonal
component of P yields no tangential electric field at z = a, while the orthogonal component of P∗

yields a monopolar field, Fig. 2.5c. The longitudinal components of P and its image both contribute
to a non-vanishing tangential field at z = a, Fig. 2.5d. They give rise to a field E∥ which is the
superposition of a uniform field, Fig. 2.5e, and dipolar field, Fig. 2.5f (this last decomposition being
hard to see schematically).

The electrostatic interactions between rollers can be readily inferred from Fig. 2.5. As the monopolar
field points towards the colloid, a neighbor roller would tend to align its direction of motion with the
center-to-center line so as to move away from the colloid, see Fig. 2.5c. Thus the monopolar field yields
to repulsion between colloids. The same reasoning applies to the uniform component of the field which
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leads to alignment (Fig. 2.5e), as well as to the dipolar component (Fig. 2.5f).

This analysis was rigorously performed analitically in [13], together with the same treatment regarding
hydrodynamic interactions. Deriving the hydrodynamic perturbations involves hydrodynamic images
somewhat more complex than their electrostatic counterparts. Ultimately, the equations governing the
microscopic dynamics of interacting colloidal rollers were derived. The equations of motion of the roller
i take the following form:

∂ri
∂t

= v0v̂i, (2.8)

∂θi
∂t

= −1

τ

∂

∂θi

∑

j ̸=i

H(ri − rj, v̂i, v̂j) +
√
2Dξi(t), (2.9)

where the sum runs over all neighbor rollers j, and H is an effective potential describing the pair
interactions between rollers. H is established by injecting the expressions for the fields E∥ and h
created by a neighbor roller in Eq. (2.6). This procedure leads to the following expression for H, where
contributions of the same symmetries have been grouped together:

H(r, v̂i, v̂j) = A(r)v̂j · v̂i +B(r)r̂ · v̂i + C(r)v̂j · (2r̂r̂− I) · v̂i. (2.10)

A(r), B(r) and C(r) are dimensionless prefactors which weight the alignment, repulsion, and dipolar
interactions, respectively. A(r), B(r) and C(r) not only contain the contributions of electrostatic inter-
actions described in Figs. 2.5e, 2.5c, 2.5f, but also contributions from the hydrodynamic interactions.
Their detailed expressions are given below, discriminating between the electrostatic contributions in
red and the hydrodynamic contributions in blue:

A(r) = A1

(a
r

)3
Θ(r) +A2

(a
r

)5
Θ(r), (2.11)

B(r) = B1

(a
r

)4
Θ(r), (2.12)

C(r) = C1

(a
r

)3
Θ(r) + C2

(a
r

)5
Θ(r) + C3

(a
r

)2
. (2.13)

A1, A2, B1, C1, C2 and C3 are coefficients that depend on microscopic parameters [13]. Θ(r) is a
screening function that reaches zero at a typical distance r ∼ H. Indeed all interactions between
colloidal rollers are short-ranged and screened over a distance set by the gap between the two confining
electrodes. The only long-range interaction is a dipolar interaction that stems from hydrodynamic
interactions [38]. The value of C3 is, however, orders of magnitude smaller than the other coefficients.
It turned out that, unlike what was first conjectured in [13], this interaction plays no role [48]. Neglecting
this long-range contribution in the theoretical developments discussed in Chapters 3 and 4 leads to very
convincing agreements with experimental measurements [84, 82].

2.2.3 Colloidal flocks

Colloidal rollers interact with each other. Equations (2.11), (2.12) and (2.13) show that one of the
dominant interactions is a ferromagnetic coupling that promotes alignment among rollers. As for the
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Figure 2.6 | Colloidal flocks. (a) Colloidal flocks formed into a racetrack. Scale bar: 5mm. (b)
Snapshots of the three phases displayed by assemblies of colloidal rollers. As the roller density is
increased, colloidal flocks from. Scale bar: 200µm. (c) Polarization of the system with respect to the
roller area fraction.

Vicsek model introduced in Chapter 1, the interactions compete with the rotational diffusion. Thus,
we can expect that ordered phases emerge when the interactions overcome rotational diffusion. As we
have no control over rotational diffusion, it is most easily achieved increasing the roller density. To
do so, we confine the colloidal rollers to racetracks by patterning the bottom electrode, see Fig. 2.6a.
Typically, we use either Scotch tape (Fig. 2.6) or photo-lithography techniques with 2µm-thick S1818
photoresist to make this patterning, see section 2.4. As this layer is electrically insulating, only the
colloids inside the racetrack are made active.

Increasing the density of rollers within such racetracks, flocks form [13]. Two different polar ordered
phases are found. Typical snapshots of this phases are shown in Fig. 2.6b. At intermediate densities
the flock has a finite extent and propagates through an homogeneous and isotropic gas of rollers. The
flock itself is heterogeneous, as both the density and the polar order decrease from its head to its tail.
At high densities, ρ > 1.8%, polar order spans the entire racetrack. The colloidal flock is homogeneous
and is highly polarized: it forms an active polar liquid. More quantitatively, Fig. 2.6c shows that the
polarization of the system increases with the roller density and that the polarization of the polar liquid
is always Π > 0.85.

2.3 Colloidal flocks as prototypical Toner-Tu fluids

Assemblies of colloidal rollers display the same qualitative phenomenology as the Vicsek model pre-
sented in Chapter 1. At the macroscopic level, the colloidal-roller polar liquid is akin to the sponta-
neously flowing liquids described by Toner and Tu hydrodynamics. Some specific features of the roller
polar liquid, however, are not accounted for within these theoretical frameworks. First, among the
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interactions between rollers is a long-range contribution, the C3 term in Eq. (2.13). Given the small
strength of this dipolar coupling, we expect that this contribution can be neglected in the descrip-
tion of colloidal flocks, but this needs to be checked further. Second, our colloidal flocks are confined
into finite cells. Flocks that spontaneously form into racetracks as the one shown in Fig. 2.6a are
expected to propagate either clockwise or counter-clockwise. This could be significantly different from
the continuous symmetry breaking of Toner and Tu fluids. The confinement-induced constraints on
the propagation direction could make the symmetry discrete Z2. A question then arises: are colloidal
flocks prototypical Toner and Tu fluids [122] or prototypical active Ising magnets [111]?

To answer this question, it is necessary to go beyond the macroscopic characterization of colloidal
flocks first performed in [13]. More recently, Delphine Geyer has conducted a thorough experimental
characterization of the spontaneous density and velocity fluctuations within colloidal polar liquids [48].
As it turns out, colloidal flocks behave as generic Toner and Tu fluids. Here, I will discuss some
of Delphine Geyer’s results that support this statement. Finally, I will provide the hydrodynamic
equations of colloidal roller polar liquids.

2.3.1 Experiments

Goldstone modes in confined colloidal flocks

The continuous symmetry breaking of flocks results in Goldstone modes for the transverse velocities,
with respect to the flock propagation direction. Delphine Geyer has measured the transverse velocity
auto-correlations and found that these correlations decay algebraically. Figure 2.7a shows the decrease
of the transverse velocity auto-correlation both in the transverse and orthogonal directions together
with their best power law approximations. Their slow decay are markers of the corresponding Goldstone
modes which prove that confinement does not suppress the continuous symmetry degeneracy at scales
smaller than W .

Sound propagation in colloidal flocks

Going beyond the static description of the polar liquid, Geyer has also measured their dynamics. She
has uncovered the propagation of two sound modes within colloidal roller polar liquid, confirming a
two-decade-old theoretical prediction by Toner and Tu [122, 124]. Figure 2.7b shows the speed of sound
c(θ), where θ is the angle of sound propagation with respect to the flock direction of motion. Some
of the hydrodynamic coefficients of the flocks can be inferred from these measurements. The sound
propagation in the longitudinal direction θ = 0 gives access to the convective coefficient λ1 in the Toner
and Tu hydrodynamics presented in Chap. 1. The propagation of sounds in the transverse direction
is only governed by the compressibility β−1 of the polar liquid, involved in the pressure term of Toner
and Tu hydrodynamics. The propagation of sound in any direction θ is given by the interplay between
these two components. Figure 2.7b shows that the interpolation predicted by the theory between
θ = 0 and θ = π/2 (solid line) perfectly fits the direct measurements (circles). More generally, Geyer’s
work proposes a generic method to perform the spectroscopy of any liquid with spontaneous symmetry
breaking. This technique gives access to numerical estimations of all the hydrodynamic coefficients,
without the need for any microscopic considerations. By performing such a spectroscopy on colloidal
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Figure 2.7 | Colloidal flocks as prototypical Toner and Tu fluids. (a) Transverse velocity auto-
correlations. Black lines: best power-laws. (b) Polar plot of the speed of the sound c(θ) in a colloidal
flock at ρ = 0.11. Circles: direct measurements. Solid line: analytical prediction from the Toner and Tu
linear theory and the measurements at θ = 0 and θ = π/2. (c) Giant density fluctuations in colloidal
flocks.

flocks, Geyer has shown that, at the scales of the experiments discussed in this manuscript, the linear
Toner and Tu theory correctly captures the dynamics of colloidal roller polar liquids.

Giant density fluctuations in colloidal flocks ⋆

Among the hallmarks of Toner and Tu fluids are the giant density fluctuations that originate form
the interplay between self-propulsion and splay fluctuations. Together with Geyer, we have performed
accurate measurements of the density fluctuations within roller flocks. We have eventually rectified the
prediction of normal density fluctuations made in [13]. Figure 2.7c shows that density fluctuations are
unambiguously anomalous: ∆N2 ∝ ⟨N⟩α with 1.5 < α < 2. These measurements, unfortunately, do
not allow us to distinguish between the predictions from the linear Toner and Tu theory (α = 2) and
their renormalization group prediction (α = 1.6 [49]). A discussion of the giant density fluctuations in
colloidal flocks can be found in [48], which is reproduced in Appendix.

2.3.2 Hydrodynamics of colloidal flocks

The above experiments provide strong evidence that colloidal-roller liquids form a genuine Toner
and Tu fluid. From a complementary perspective, the hydrodynamics of colloidal roller polar liquid
was theoretically established in [13] by means of standard kinetic theory procedures, starting from
the microscopic equations of motion Eqs. (2.8) and (2.9). Importantly, the resulting equations in-
deed correspond to Toner-and-Tu-like equations. Of particular interest for the discussion presented in
Chapters 3 and 4 is the hydrodynamic description of strongly polarized flocks. Within this limit, the
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hydrodynamics of colloidal polar liquids read similar to Eqs. (1.4) and (1.5):

∂tρ+∇(ρv) = 0, (2.14)

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(|v|2) = U(ρ, |v|) +DB∇(∇ · v) +DT∇2v +O(∇ρ). (2.15)

The expressions of the hydrodynamics coefficients are shown in the Table below. A few remarks are
in order. First, most of these coefficients are tensors. The polar liquid is anisotropic with different
properties in the longitudinal and transverse directions, the dynamics along these two directions being
coupled. Second, all these hydrodynamics coefficients can be expressed from microscopic parameters
[13]. In particular, α1 and α2 stem from the ferromagnetic interaction between rollers of Eq. (2.11).
These alignment interactions thus favor the polar ordering of the liquid through U(ρ, |v|) and also
contribute to the bending stiffness DT . The repulsive interaction of Eq. (2.12) contributes to the
pressure-like term O(∇ρ). This term (not detailed for the sake of simplicity) promotes the homoge-
nization of the liquid. The short-range dipolar coupling of Eq. (2.13) yields the coefficient γ within this
hydrodynamic framework. Finally, in the Table, the operator Pv = (1 + v4/v40)I − 2v2vv/v40 reduces
to twice the projector on the transverse direction P = I − v̂v̂ in the limit of very polarized flocks for
which |v| = v0. These operators arise because torques dominate the dynamics of interacting rollers at
the microscale, see Eqs. (2.8) and (2.9).

λ1 λ2 λ3 U(ρ, |v|) DB DT

Polarized flocks |v|2
v20

(
|v|2
v20

− 1
)

vv−|v|2I
v20

(α1ρ−D)− α1ρ
|v|4
v40

2γρPv (α2 − γ)ρPv

Extremely polarized flocks 1 0 0 0 4γρP 2(α2 − γ)ρP

In the works presented in Chapters 2 and 3, we complement these equations to account for challenging
environments by adding an external drive and a random force field respectively. Importantly, in these
works as well as in Geyer’s work (reproduced in Appendix), the linear Toner and Tu theory correctly
accounts for virtually all experimental observations. Whether invoking the more involved renormaliza-
tion group theory is necessary to correctly describe real realizations of flocks is still unsure. Testing
the limit of Toner and Tu linear theory and the breakdown of hydrodynamics remains an experimental
challenge to date.

2.4 Performing quantitative measurements on flocks

Synthetic flocks assembled from colloidal rollers are among the most promising model experiments
to study flocking for two main reasons. At a fundamental level, we have just seen that colloidal flocks
are prototypical realizations of Toner and Tu fluids. From a more practical perspective, colloidal flocks
are assembled from up to million of colloids thus offering a unique opportunity to perform quantitative
analysis on large scale populations in the laboratory.

2.4.1 Microfluidic devices to handle colloidal flocks

Colloidal flocks are manipulated within microfluidic devices. Figure 2.8 shows a sketch of a typical
device. Two glass slides are spaced by a hollow double-sided tape which defines a microfluidic pool.
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The inner surface of each glass slide is covered with a thin layer of indium tin oxide which makes them
electrically conducting. A power supply is connected to the sides of the electrodes to apply a DC
electric field in the ẑ direction. Colloids are flown inside the device through microfluidic connections.
They are realized by drilling holes in the upper glass slide and connecting tubes using plastic blocks.

Colloids are confined within racetrack channels by patterning the bottom electrode prior to assem-
bling the device. The patterning consists in covering some parts of the electrode with an insulating
material. Even though colloids cover the whole bottom surface upon injection, only the ones laying on
the conducting oxide are motorized, see Fig. 2.8b. The patterns were originally made from tape [13, 12].
We now pattern photoresist by mean of UV lithography instead.

(a) (b)

Conducting tape

Double-sided tape

Photorestist

ITO-coated glass slide

Inlet tube Outlet tube

PMMA block

Microf luidic
connections

Electric wire
x̂

ŷẑ ŷ

ẑ

PS colloids

Figure 2.8 | Microfluidic device. (a) Exploded view of the device. (b) Side view of the device. The
sketch is not at scale. The photoresist layer is only 2µm-thick while the colloid diameter is 4.8µm.
The double-sided tape is 110µm-thick.

By handling colloidal flocks within such devices, we inherit from the versatility of microfabrication
and the adaptability of microfluidics. In my thesis, I have taken advantage of this framework mainly
in two ways:

(i) Controlling the microfluidic flow within the device. By connecting a high-precision syringe
pump to the inlet of the device, a controlled flow of solvent can be applied. I have used this control
to investigate the response of individual rollers to an external perturbation. I have combined this
control to the channeling of the solvent flow in order to investigate the response of flocks in to external
perturbations. More details about this adaptation can be found in Chapter 3. The basic idea is to
pattern the double-sided tape to create channels instead of a bare pool.

(ii) Introducing micron-sized obstacles. UV lithography makes the creation of small features very
easy. To study the behavior of flocks in heterogeneous environments, we positioned cylindrical posts of
10µm diameter in a controlled way. I come back to this adaptation in Chapter 4.
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2.4.2 Keeping tracks of large populations of colloids

A million colloids form a flock within a racetrack of width 2mm and length 10 cm at a packing fraction
ρ = 10%. Following the microscopic dynamic of every single colloid within such a huge population is
obviously impossible. However, by recording 4Mpx microscope images at high frequency (190Hz), we
are able to measure the instantaneous position and velocity of about 104 colloids in a few millimeter-
square domain. The basic strategy has been introduced by J. C. Crocker and D. G. Grier [29]. It consists
in two steps. First, the colloids are located in every images. Second, the trajectory are build by linking
the positions between two subsequent images based on proximity criteria. Figure 2.9 illustrates that
this process allows to successfully keep track of thousands of colloidal rollers.

(b)

(a)

(c)

Figure 2.9 | Detecting and tracking thousands of colloids. (a) Microscope image of a colloidal
flocks. 7877 colloids are detected and tracked. The positions (red circles) and instantaneous velocities
(blue arrows) are shown. 1/10 of the velocities are shown for better visibility. The channel is 0.5mm
width. 3mm of the channel is imaged. (b) Close-up on the colloidal flock. The positions (red circles)
are shown. All colloids are successfully detected. (c) Close-up on the colloidal flock. The velocities
(blue arrows) are shown. All colloids are successfully tracked.

The positions of the colloids are determined using the algorithm implemented by P. Lu [72] that
searches for local maxima in intensity. I have adapted the C++ code to allow for a background
subtraction prior to the execution of the detection routine. This feature is convenient to detect colloids
in bright field imaging. It also avoids that obstacles are detected in place of colloids. Using Lu’s code
is very advantageous as it is very fast compared to other equivalent algorithms.
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The tracking of the colloids is performed using the algorithm written in Matlab by D. Blair and E.
Dufresne [7]. I have slightly modified the original code to make some subroutines faster. A shown in
Fig. 2.9c, this tracking algorithm works perfectly to follow the dynamics of all the colloids.

2.5 Conclusion: colloidal flocks to unveil the physics of flocking

Colloids are motorized by taking advantage of an electro-hydrodynamics instability within microflu-
idic devices. These active colloids behave as active Brownian particles in dilute systems while polar-
ordered flocks emerge in dense systems. Experiments have proved that these flocks are prototypical
polar liquids, as introduced two decades ago by Toner and Tu [122]. This system presents several
assets. In particular, it gives a unique opportunity to perform quantitative measurements on flocks
made of millions of particles. In addition, this active-colloid system is tractable theoretically. Starting
from first principles, accurate descriptions of the particle dynamics can be formulated. This theoretical
framework spans from the scale of individual particles to the macroscale with the hydrodynamics de-
scriptions of flocks. In Chapters 3 and 4, I take advantage of the versatility of this model experimental
system to address some fundamental questions regarding the physics of flocking.
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Collective stubbornness resisting opposing
flows

As the design of new active materials with emergent collective behaviors has concentrated most
efforts in the field, the response of active materials to external perturbations has been overlooked so far
[66, 44]. Manipulating colloidal rollers within microfluidic devices offers a chance to probe the response
of spontaneously flowing liquids to external perturbations.

In Chapter 2, I showed that isolated colloidal rollers are docile: they roll preferentially in the
direction set by the external flows as exemplified in Fig. 2.3. More quantitatively, the orientation
dynamics of an isolated roller subject to a homogeneous shear flow is the exact analogous to that of a
classical spin in a magnetic field. To better assess the reach of this result, it is worth having in mind the
analogy between polar active matter and ferromagnetism first proposed by Vicsek [129]. Within this
context, the velocity of an isolated colloidal roller is the analogous of a spin. From a collective point
of view, the transition from an isotropic gas of colloidal rollers to a flock is akin to the transition from
a paramagnet to a ferromagnet. In monitoring this transition, the average velocity of rollers plays the
role of the system magnetization. The results of Chapter 2 complement this analogy: the analogous
of an external magnetic field is the solvent flow for colloidal rollers. From this perspective, studying
the response of flocks, active ferromagnets, would first start with the elucidation of their magnetization
curve.

In the following sections, I elucidate how confined active fluids with broken rotational symmetry
respond to external fields. First, I provide experimental insights into the response of the two ordered
phases assembled from colloidal rollers: the finite flocks and the polar liquids. In stark contrast with
individual rollers, polar liquids display an hysteretic response and can proceed against external flows.
Secondly, the collective stubbornness of flocks is theoretically explained using an active hydrodynamic
description that relies on experimental observations. I show that transverse confinement and bending
elasticity act together to protect the direction of collective motion against external flows. Finally, I
demonstrate how the hysteretic response of colloidal flocks to external flows can be used to realize
autonomous active clocks from confined colloidal flocks.
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3.1 How to experimentally test the response of flocks?

Two different polar ordered phases are found upon increasing the roller density, as already introduced
in Fig. 2.6. At intermediate densities, i.e. at the onset of collective motion, flocks have a finite extent.
They correspond to polar-liquid drops that coexist with a gas of rollers. As depicted in Fig. 3.1a,
these flocks are heterogeneous as both the density and polar order decrease from their heads to their
tails. Such finite flocks not only form within racetrack channels (Fig. 2.6a) but also within rectangular
channels. This slab geometry is very convenient to study the response of flocks, as a homogeneous field
is easily achieved through the entire channel by flowing solvent as illustrated in Fig. 3.1b. Following the
notation introduced in Chapter 2, we note h∥ the solvent velocity evaluated at the height of a roller.

(a) (c)

(b)
Flow

J
‖(

x
,t

)
(µ

m
/s

)

x̂

ŷ

x̂

ŷ

Figure 3.1 | Response of finite colloidal flocks to longitudinal flows. (a) Snapshot of a finite
flock confined in a rectangular channel. Channel width is 1mm. (b) Sketch of the microfluidic device.
Finite flocks are confined in a rectangular channel. A homogeneous and stationary solvent flow is
applied through the channel. (c) Heatmap of the longitudinal roller current J∥(x, t). After an opposing
solvent flow is set within the channel (t = 0 s, dashed horizontal line), the flock breaks apart (t = 1.5 s)
and eventually reverses to flow along the flow direction (t = 2.6 s).

Figure 3.1c shows the evolution of the longitudinal roller current J∥(x, t) = ⟨ρv · x̂⟩y after an
opposing longitudinal field h∥ has been established in the channel. The flock resists the field for a few
seconds and keeps on propagating along its initial direction. At t = 1.5 s the flock breaks apart: its
head still move against the external field while its body reverses its direction to flow along the field
direction. Eventually, the head reverses its motion at t = 2.6 s. This complex response originates from
the intrinsically heterogeneous structure of these finite flocks which makes the interpretation of the
experiments too difficult to draw general conclusions.

By increasing the roller density within racetracks, the finite flock gets larger and larger until its
head reaches its tail. A polar liquid then forms with uniform density and polar order, see Fig. 3.2a.
Unfortunately, the microfluidics device where colloidal flocks are handled does not allow to realize a
uniform longitudinal field along the whole polar liquid. Instead, a uniform longitudinal field h∥ was
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Figure 3.2 | Response of colloidal polar liquids to longitudinal flows. (a) Snapshot of a polar
liquid confined in a racetrack channel. Channel width is 0.5mm. (b) Sketch of the microfluidic device.
Polar liquids are confined in a racetrack channel. A homogeneous and stationnary solvent flow is
applied through one of the straight branch of the channel. (c) Heatmap of the longitudinal roller
current J∥(x, t). The homogeneous polar liquid displays a steady response to an opposing solvent flow.

applied within a single straight part of the racetrack. This configuration is depicted in Fig. 3.2b.
Solvent is flown through an assymetric channel that consists in two branches of different lengths. As
the hydrodynamic resistance increases with the branch length, the solvent flow is weaker in the longest
branch than it is in the smallest one. I have adjusted the geometry so that the residual flow in the long
branch is only 1/20 of the flow in the small branch.

Figure 3.2c shows the evolution of the longitudinal roller current J∥(x, t) under a constant and
opposing external field. Unlike the response of finite flocks shown in Fig. 3.1c, Fig. 3.2c reveals no
evolution in the polar liquid dynamics. The polar liquid displays a steady response to longitudinal
fields, therefore making this setup advantageous to quantitatively investigate the response of flocks to
external fields.

3.2 Hysteretic behavior of confined flocks

3.2.1 Hysteretic response of colloidal flocks

As for any magnet, characterizing the response of an active ferromagnet starts with the establishment
of its magnetization curve. To do so, the solvent flow was systematically varied within the channel and
the polarization of the polar liquid Π = ⟨v̂i(t)⟩i,t was measured. Figure 3.3a shows the evolution of
the longitudinal polarization Π∥ = Π · x̂ upon cycling the strength of the external longitudinal field h∥.
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2 hc

(a) (b)

(c)

h

h(c)

x̂

ŷ

x̂
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(b)

Figure 3.3 | Bistability of colloidal polar liquids. (a) Magnetization curve of a colloidal flock
confined in a 0.5mm-wide channel. (b) Snapshot of a colloidal polar liquid propagating against a
longitudinal flow h∥ = −36µm/s. The flock polarization is Π = 0.98 x̂. Channel width is 0.5mm. (c)
Snapshot of a colloidal polar liquid propagating along a longitudinal flow h∥ = −34µm/s. The flock
polarization is Π = −0.98 x̂. Channel width is 0.5mm.

This figure displays a closed loop: polar liquids have an hysteretic response to external fields. Over a
finite range of field amplitudes, flocks are bistable. They can either flow in the direction imposed by the
external field, Fig. 3.3b, or opposite to the field, Fig. 3.3c. However, flocks can not overcome opposing
fields of any strength. For field amplitudes higher than the coercive field hc, flocks can only flow in the
direction set by the external field. A flock that initially propagates against the field eventually flips its
direction of motion under such a strong perturbation. Remarkably, prior to this reversal, the decrease
in the flock polarization is minute, see Fig. 3.3.

3.2.2 Confinement-induced stubbornness

In stark contrast to isolated rollers, flocks are stubborn and can resist opposing fields. The collective
stubbornness of polar liquids is all the more surprising that a uniform rotation of all the roller velocities
would yield no elastic penalty. The colloidal flocks are, however, confined within finite channels. A
uniform rotation of the roller velocities would cause them to hit the side walls, which in turn would
induce finite wavelength distortion of polar order. Confinement is therefore expected to play a crucial
role in the hysteretic response of flocks.

To test for this hypothesis, the response of polar liquids confined in racetracks of width varying from
W = 0.175mm to W = 3mm were investigated. Figure 3.4a shows that the coercive field hc decreases
with increasing W . The more confined the flock is, the more robust it is.

Understanding how confinement protects the spontaneous flows of flocks requires looking at their
dynamics in more details and inspecting the inner structure of the flocks. Figure 3.4b shows snapshots
of polar liquids confined in channel of widths W = 175µm, W = 250µm and W = 500µm while facing
an opposing field of amplitude |h∥| ≃ hc(W ). These snapshots reveal oscillating patterns of the polar
liquids: flocks resist opposing fields by buckling their spontaneous flow. Again, confinement is of major
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(a) (b) (c)
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hθ

Figure 3.4 | Confinement-induced hysteresis. (a) The coercive field hc decreases with increasing
confinement width W . (b) Snapshots of polar liquids confined in channels of width W = 175µm,
W = 250µm and W = 500µm, and resisting opposing fields of amplitudes slightly below hc(W ). The
spontaneous flows of polar liquids display a buckled pattern. (c) The wavelength of the buckled pattern
λb increases with the confinement width W . The dashed line indicates that λb ∼ 2W .

importance as the buckling wavelength λb seems to increase with W . More quantitatively, Fig. 3.4c
shows that the buckling wavelength is set by the confinement width to λB ∼ 2W .

To account for the phenomenology revealed by the experiments as well as to prove the relevance of
our findings beyond the specifics of colloidal rollers, we derived a minimal theory starting from the
Toner and Tu equations of flocking in the presence of an external field:

∂tρ+∇ · (ρv) = 0, (3.1)

and

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(|v|2) =αv − β|v|2v −∇P (3.2)

+DB∇(∇ · v) +DT∇2v +D2(v · ∇)2v

+ µ̃hh∥.

Equations (3.1) and (3.2) only differ from the Toner an Tu equations introduced in Chapter 1 by the
addition of the external field contribution µ̃hh∥. The coefficient µ̃h follows directly from our quantitative
knowledge of the individual response of rollers: µ̃h = µhv0/2, where µh is the mobility coefficient given
by Eq. (2.7). Solving the full Toner and Tu equations with the addition of an external field and the
presence of boundaries is well beyond the scope of the project. Instead, we have used the experimental
observations to make the problem simpler. Figures 3.4b and 3.4c suggest looking for velocity field
solutions v(x, t) that are superpositions of only two modes:

v(x, t) = vx(t)x̂+ vy(t) cos(qx− ωt)ŷ, (3.3)

the first mode is a uniform flow along the longitudinal direction. The second mode, of amplitude vy(t),
is a buckling mode with a wavevector constrained by our experimental measurements to q = π/W ,

47



Chapter 3
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+ =

vx

vy

Reversed flows

Buckled flows

Figure 3.5 | Hydrodynamic theory captures the bistable response of flocks. (a) Sketches of
the two modes of the velocity field and a superposition. (b) Force-field F plotted in the (vx, vy) plane
for h = −120x̂µm/s. Dark crosses highlight unstable fixed points. Blue circles highlight stable fixed
point. The blue star highlights the stable buckled state sketched below. (c) Phase diagram predicted
by the two-mode theory. The blue star denotes the configuration that corresponds to (b).

see Fig. 3.5a. By injecting the ansatz Eq. (3.3) into the Toner and Tu equations, and neglecting
contributions of frequencies higher than q that arise from nonlinear contributions, the theory reduces
to the study of a dynamical system:

∂tV = F(V, h), (3.4)

where V = [vx, vy], and F is a force field that depends on V, h, W and other hydrodynamics coefficients.
A typical force field is shown in Fig. 3.5b for W = 0.5mm and h = −120x̂µm/s. Looking for the stable
fixed points F = [0, 0] gives the stable velocity field configurations. In Fig. 3.5b, a stable fixed point
is found with vx > 0 and vy ̸= 0 which corresponds to a buckled flow of polar liquids moving opposite
to the external field. This situation, sketched in Fig. 3.5b, corresponds to the buckled configurations
recorded experimentally and shown in Fig. 3.4b.

The salient predictions of the model are summarized in the phase diagram of Fig. 3.5c. In particular,
buckled patterns are predicted for external field amplitudes higher than the buckling threshold given
by:

µ̃hhb = DTv0q
2 +O(DTq

2/α). (3.5)

This buckling threshold is set by the competition between the polar liquid elasticityDT and confinement
q. As W increases, q decreases, hb decreases, and stable buckled pattern occurs at lower h. This
configuration is found to be stable over a finite range of field amplitudes. The buckled state becomes
eventually unstable when the coercive field hc is reached. This limit reads:

µ̃hhc = (2/
√
243)αv0

(
1 + 2DTq

2/α
)3/2

. (3.6)

Alignment interactions (α) act together with elasticity (DT) and confinement (q = π/W ) to protect the
flow of the polar liquid against the opposing field. The model correctly accounts for our experimental
result: the more confined the flock is, the more robust it is.
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Given the very general Toner and Tu framework used to obtain the phase diagram of Fig. 3.5c, we
expect that it correctly describes the static response of any polar liquid.The pattern selection remains,
however, to be elucidated.

3.2.3 Emergent oscillators

Going beyond the fundamental understanding of polar liquid bistability, we take advantage of this
property to engineer an autonomous clock. More precisely, the hysteretic response of flocks to external
field (Fig. 3.3) offers the opportunity to realize oscillators based on the oscillation-relaxation mechanism
first proposed by Van der Pool [128]. Figure 3.6a shows the spontaneous oscillations of a polar liquid
droplet confined in a circular well under a uniform and stationary field h = hx̂. As the droplet
moves along the circular boundary, it experiences an increasing longitudinal field h∥ and reverses when
h∥ = hc. Here, the time-dependence is achieved by exploiting the mobility of the flock together with
the geometry of confinement.

(a)

(b)

(c)

Time t (s)0 0.5 1 1.5 2

Flow ↓ Flow ↓Flow ↑Flow reversal Flow reversal

h

Time t (s)0 3 6

h

hh hh hh

x̂

ŷ

Flow → Flow ←Flow reversal

E

Figure 3.6 | Spontaneous active fluid oscillators. (a) Time series showing snapshots of a droplet of
polar liquid confined in a circular well of radius R = 0.5mm. Under a steady and homogeneous solvent
flow, the flock spontaneously oscillates. (b) Time series showing snapshots of a finite flock confined
in a rectangular channel of width W = 1mm. (c) Sketch of the local fields that confine the flock and
yield its periodic motion.

Spontaneous oscillations of flocks can even be achieved without any hydrodynamic actuation. For
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example, a finite flock confined in a rectangular channel undergoes an oscillatory motion, see Fig. 3.6b.
This dynamics finds its origin in the response of flocks to longitudinal fields. The insulating layer of
photoresist used to confine the rollers generates local fields that are sketched in Fig. 3.6c. The bounces
of the flock at the ends of the channel result from these fields. Actually, the bare confinement of the
flock is made possible by these local fields of amplitudes higher than hc.

These very simple realizations of oscillators achieved within microfluidics devices are a first step
towards more involved functionalities as the ones recently proposed by the group of Jörn Dunkel [135,
45, 134]. Indeed, our efforts to understand the fundamentals of the response of active materials to
perturbations is also of technological relevance. On one hand, the future uses of active materials
strongly depend on their robustness against external perturbations. On the other hand, the design of
new functionalities based on active materials would benefit from the coupling between their emergent
properties, external actuation and internal patterning.
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Flowing active liquids in a pipe:
Hysteretic response of polar flocks to
external fields

We investigate the response of colloidal flocks to external fields. We first show that individ-
ual colloidal rollers align with external flows as would a classical spin with magnetic fields.
Assembling polar active liquids from colloidal rollers, we experimentally demonstrate their
hysteretic response: confined colloidal flocks can proceed against external flows. We theo-
retically explain this collective robustness, using an active hydrodynamic description, and
show how orientational elasticity and confinement protect the direction of collective motion.
Finally, we exploit the intrinsic bistability of confined active flows to devise self-sustained
microfluidic oscillators.

I Introduction

For centuries, applying an external pressure difference has remained the only solution to flow a liquid
in a pipe. Over the last ten years, by engineering soft materials from self-propelled units we have learned
how to drive fluids from within [102, 100, 133, 13, 88, 28, 138, 132, 136, 145]. The generic strategy
consists in assembling orientationally ordered liquids from self-propelled particles [76, 130, 124]. From a
fundamental perspective, significant efforts have been devoted to explaining the emergence of collective
motion in ensembles of interacting motile bodies, and the flow patterns of the resulting polar and
nematic phases [145, 76, 130, 124]. However, we still lack basic understanding of these non-equilibrium
materials. One of the major questions that remains to be elucidated is the response of active phases
to external fields [30, 66]. The situation is all the more unsatisfactory because, from an applied
perspective, the potential of active fluids as smart materials will be chiefly determined by their ability
to sustain their spontaneous flows against external perturbations.
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Here, combining experiments and theory, we elucidate how confined active fluids with broken rota-
tional symmetry respond to external fields. Our experiments are based on colloidal rollers self-assembled
into polar flocks, i.e. active liquids with orientational order akin to that of a ferromagnet [13, 12, 84].
We first demonstrate that isolated colloidal rollers align their direction of motion with an external flow
as would classical spins with a magnetic field. In contrast, we establish that the response of polar liquids
is intrinsically non-linear. When confined in channels, transverse confinement and bending elasticity
act together to protect the direction of collective motion against external flows. We close this paper
showing how the resulting hysteretic relation between the flock velocity and external flows results in
the spontaneous oscillations of confined polar-liquid droplets.

II Response of motile colloids to external flows: Alignment with ex-
ternal fields

In our experiments, we exploit the so-called Quincke mechanism to motorize inert colloidal particles
and turn them into self-propelled particles [13]. We recall the motorization principle in Appendix VI.i,
and provide details about the experimental set-up in Appendix VI.ii. In brief, we observe the 2D
motion of colloidal rollers of diameter 2a = 4.8µm confined in 50mm× 16mm× 0.1mm channels filled
with hexadecane oil, as illustrated in Fig. 3.7a. They behave as persistant random walkers moving at a
constant speed v0 = 0.98 ± 0.1mm/s, and having a rotational diffusivity D = 1.5 s−1 [83]. As a result,
the distribution of the roller velocities is isotropic and narrowly peaked on a circle of radius v0, see
Fig. 3.7b.

We investigate their individual response to external flows by injecting a fresh hexadecane solution at
constant flow rate. Given the aspect ratio of the fluidic channel, the flow varies only in the z direction
along which it has a Poiseuille profile, Fig. 3.7a. We denote h the magnitude of the hexadecane flow
evaluated at z = a along the x̂ direction. Over a wide range of h, the speed of the rollers is virtually
unchanged, see Figs. 3.7b and 3.7c. Their orientational distribution is however strongly biased. As seen
in Fig. 3.7b, the average roller velocity points in the direction of the flow and the angular fluctuations
are reduced upon increasing h. More quantitatively this behavior is very well captured by the following
equations of motion:

∂tri(t) = v0v̂i, (3.7)

∂tθi(t) = −µh sin θi +
√
2Dξi(t), (3.8)

where the ri(t) and v̂i ≡ (cos θi(t), sin θi(t)) are respectively the positions and velocity orientations of
the colloids. µ is a constant mobility coefficient and ξ(t) is a Gaussian white noise of unit variance.
Eq. (3.8) corresponds to the over-damped Langevin dynamics of a classical spin coupled to a constant
magnetic field. We henceforth use this magnetic analogy and define the average roller magnetization as
V = ⟨v̂i⟩i. Eq. (3.8) is readily solved and used to measure the rotational mobility µ = 0.08µm−1 from
the magnetization curve in Fig. 3.7d. This value is in excellent agreement with the estimate derived
from first principles in [13] and has a sign opposite to that of the colloidal surfers studied in [90].
Isolated rollers align with a flow field as would uncoupled XY spins with a magnetic field.
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Figure 3.7 | Isolated colloidal rollers align with external flows as XY spins with magnetic fields. (a)
Sketch of the microfluidic setup. Top: top view. Bottom: side view. Colloidal rollers (black dots) of
diameter 2a = 4.8µm and speed v (blue arrow) are confined in a 50mm × 16mm × 0.1mm channel.
Hexadecane is injected through the channel at a constant flow rate. A Poiseuille flow results in the
ẑ direction (green arrows). The strength of the external field h is defined as the magnitude of the
hexadecane flow at a distance z = a from the bottom wall. (b) Probability density function of the roller
velocities for three different hexadecane flows Ph(v). The dashed circles are guidelines corresponding to
v = v0. When h = 0, the distribution is isotropic and strongly peaked around v = v0. When h ̸= 0, the
distributions are biased along the direction of h, resulting in finite average velocities (blue arrows). (c)
Superimposed images of a colloidal roller in a hexadecane flow (h = +60µm/s). Time interval between
two pictures: 30 ms. The roller reorients at constant speed along the flow direction. Scale bar: 100µm.
(d) Blue circles: Magnetization curve V(h) of the noninteracting rollers. Red open circles: time and
ensemble average of the normalized roller speed ⟨|ṙi(t)|⟩i,t/v0. The rotational mobility µ = 0.08µm−1

is evaluated from the best fit of the magnetization curve with the theoretical formula (dark solid line):
V = I1(µh/D)/I0(µh/D), where In is the modified Bessel function of order n.
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III Robustness to external fields: Hysteretic response of polar liquids

III.i Experiments

In the absence of external flows, ferromagnetic orientational order emerges over system-spanning
length scales when increasing the roller packing fraction ρ above 10−2 [13]. A homogeneous polar
liquid then forms and spontaneously flows through the microchannels as illustrated in Fig. 3.8a and
Supplementary video 1. We now address the response of this active ferromagnet to external fields
taking advantage of the coupling between the roller velocity and the surrounding fluid flows. To do so,
we assemble a polar liquid confining hundreds of thousands of rollers in a race-track pattern of width
W = 0.5mm (the area fraction is set to ρ = 0.1). Once a homogeneous and stationary polar order is
established, we study its longitudinal response by applying a uniform flow along one of the two straight
parts of the channel as sketched in Fig. 3.8a, and detailed in Appendix VI.ii. For the sake of clarity, we
henceforth refer to the hexadecane flow field evaluated at z = a as the external field h = hx̂. Fig. 3.8b
shows that applying a field h along the direction of V reduces the transverse velocity fluctuations of
collective motion. In stark contrast to the individual response, Fig. 3.8b also shows that collective
motion can occur in the direction opposite to the external field with a high level of ordering. But this
robustness has a limit. Increasing |h| above hc = 63µm/s, the rollers abruptly change their direction
of motion and align with h. As quantitatively demonstrated in Fig. 3.8c, this behavior translates into
a strong hysteresis of the magnetization curve V(h) upon cycling the magnitude of the external field.

We now elucidate the origin of this collective robustness, or more precisely, what sets the magnitude
of the coercive field hc in this active ferromagnet. We thus focus on the regime where V ·h < 0, and leave
the discussion of the case where V · h > 0 to Appendix VI.iii. In an infinite system hc should vanish
as the polar-liquid flow stems from the spontaneous breaking of a continuous rotational symmetry.
In this active system, however, orientation is intimately coupled to mass transport. Therefore, the
homogeneous rotation of the roller velocity is forbidden by the confining boundaries: reversing the
direction of the flock requires finite wave-length distortions. As shown in Fig. 3.8d, this picture is
supported by the very sharp increase of hc measured when decreasing the channel width.

To gain a more quantitative insight, we inspect the inner structure of the roller flow field. Supple-
mentary video 2 and Fig. 3.9a both show that applying a field in the upstream direction causes finite
wave-length distortions dominated by bending deformations. We introduce the Fourier transform of
the roller flow field as v(q, t) = ⟨vi(t) exp[iq · ri(t)]⟩i, and plot in Fig. 3.9b the time-averaged spectrum
of the bending modes along the q = (qx, 0) direction: B(qx) = ⟨|vy(qx, t)|2⟩t. The bending deforma-
tions are dominated by spatial oscillations at a well-defined wave-length λB. Fig. 3.9c indicates that
confinement sets λB = 2W , see also Supplementary video 3. Increasing the magnitude of the field
strongly increases the amplitude of the bending oscillations until |h| = hc, Fig. 3.9d. As exemplified in
Supplementary video 4, the bending waves are then destabilized into vortices leading to flow reversal.
Subsequently, the external field stabilizes a strongly polarized homogeneous polar liquid flowing in the
direction of h. We stress that the reversal of the flow is completed without resorting to local melting.
Orientational order is locally preserved regardless of the direction and magnitude of the external field.
The weak decrease of the magnetization curve seen in Fig. 3.8c in the negative V ·h region chiefly stems
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Figure 3.8 | Non-linear response of polar liquids to longitudinal external fields. (a) Sketch of the
microfluidic geometry. The rollers are confined in a photolithographied race-track (black). A constant
hexadecane flow is applied to the rollers by means of an additional microfluidic channel (green). Top
picture: close-up on the homogeneous polar liquid flowing in a race-track of width W = 0.5mm when
h = 0. In this experiment, the polar liquid spontaneously flows along the clockwise direction as indicated
by the instantaneous particle velocities (the velocity of one roller out of ten is plotted, blue arrows).
Scale bar: 100µm. (b) Probability density function of the roller velocities in the polar-liquid state. At
h = 0, the distribution is biased revealing the spontaneous symmetry breaking of the roller orientation.
At h = +60µm/s transverse velocity fluctuations are reduced. At h = −60µm/s, the polar liquid
cruises against the external field and velocity fluctuations are enhanced. The speed of the rollers v0 (red
dotted circles) is left unchanged by the external field. (c) Magnetization curve V ·x̂(h) of the polar liquid.
Upon cycling the external field h (dark arrows) the active ferromagnet displays an hysteretic behavior.
The coercive field hc is defined as the width of the hysteresis loop. Top panel: close-up showing the
minute decrease of the magnetization prior to reversal. (d) The coercive field hc decreases with the
channel width W (green dots). (e) Theoretical prediction hc(W ) = (2/

√
243)αv0

(
1 + 2DTq

2/α
)3/2. As

a technical remark, we note that the limit W → ∞ is not relevant. Our two-mode model is intrinsically
based on the scale separation between the variations of the longitudinal and transverse components of
v: vx varies over the scale of the channel length while vy varies over the channel width. Unconfined
polar liquids cannot resist to external fields.
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Figure 3.9 | Bending deformations of a polar liquid flowing against an external field. (a) Snapshots
of polar liquids flowing against external fields of increasing magnitude. The color indicates the angle
of the instantaneous velocity of the rollers θ. As |h| increases, a bending-oscillation pattern grows.
W = 0.25mm. Scale bar: 100µm. (b) The time-average spectra of the bending modes along q = (qx, 0)
(B(qx) = ⟨|vy(qx, t)|2⟩t) are plotted for three different confinement widths W = 0.5, 0.25, 0.175mm.
The values of h are taken just before flow reversal: h = 62, 93, 119µm/s, respectively. λB is defined
by the wavelength where B is maximal. (c) Variations of λB with W . Dashed line: λB = 2W . (d)
Variations of the amplitude of the bending mode at q = 2π/λB with |h|. The bending deformations
at λB increase when increasing |h|. The vertical lines indicate the values of hc(W ) for the three
experiments. Error bars: 1 sd (time statistics).
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from the constrained oscillations of the spontaneous flow.

III.ii Theory

We use a hydrodynamic description of the polar liquid to theoretically account for the bistability
of the spontaneous flows and for the variations of the coercive field hc(W ) with confinement. The
Toner-Tu equations are the equivalents of the Navier-Stokes equations for polar active liquids. They
describe the dynamics of the velocity v(r, t) and density fields ρ(r, t). In the presence of an external
driving field h(r, t), they take the generic form:

∂tρ+∇ · (ρv) = 0, (3.9)

and

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(|v|2) (3.10)

= αv − β|v|2v −∇P
+DB∇(∇ · v) +DT∇2v +D2(v · ∇)2v + µhh

These phenomenological equations involve a number of hydrodynamic coefficients which we do not
describe here (see e.g. [124] for a comprehensive discussion). The only two parameters relevant to
the following discussion are: (i) the convective coefficient λ1 which translates the lack of translational
invariance of the system: the rollers drag on a fixed substrate defining a specific frame. (ii) DT and D2

which are two elastic constants of the broken symmetry fluid. DT and D2 both hinder the orientational
distortions of the velocity field.

Describing the flow-reversal dynamics and the underlying spatiotemporal patterns would require
solving the strongly non-linear system given by Eqs. (3.9) and (3.10). This task goes far beyond the
scope of this article. Here, we instead exploit our experimental observations to construct a minimal
model. As Fig. 3.9 indicates that a single bending mode of wavevector q = π/W x̂ dominates the
deformations of the velocity and density fields, we make a simplifying ansatz writing: v(x, t) = vx(t)x̂+
vy(t) cos(qx − ωt)ŷ, and neglect all contributions from spatial frequencies higher than π/W . We also
ignore density fluctuations and restrain our analysis to longitudinal external fields h = −hx̂. Within
this two-mode approximation, Eq. (3.9) is always satisfied and Eq. (3.10) reduces to the dynamical
system:

∂tV = F(V, h) (3.11)

for the amplitudes of the two coupled velocity modes: V(t) = (vx(t), vy(t)). The generalized force
F(V, h) = (Fx, Fy) is given by

Fx =

[
α− β

(
v2x +

1

2
v2y

)]
vx − h (3.12)

Fy =

[(
α−DTq

2
)
−D2q

2v2x − β

(
v2x +

3

4
v2y

)]
vy (3.13)

These equations are completed by the relation (ω− λ1qvx)vy = 0 defining the oscillation frequency ω.

57



Article

|h| (µm/s)0 1.9 120 hc=161

vx

vy

vx

vy

vx

vy

vx

vy

hb
h h h

(a) (b) (c) (d)

Figure 3.10 | Two-mode theory of the hysteretic response. We look for stationary solutions of the
hydrodynamics of polar liquids taking the form v = vx(t)x̂ + vy(t) cos(qx − ωt)ŷ. The problem then
reduces to studying a dynamical system: ∂tV = F(V, h) where V = (vx, vy). (a) Force-field F(V, h =
0) in the absence of external field, plotted for W = 0.5mm. The blue circles correspond to stable
fixed points where F = 0. The crosses indicate the position of saddle points. A trivial unstable point
is located at (0, 0), not shown. (b) Force-field F(V, h) at finite h. The star symbol indicates the
stationary position of the dynamical system. When |h| < hB, the system stays in the stable fixed point
corresponding to a uniform longitudinal flow in the direction opposite to h as sketched in the bottom
panel. (c) Increasing |h| the homogeneous solution of (b) becomes unstable. Another stable point
emerges between two saddle points and corresponds to the buckled flow sketched in the bottom panel.
Such stable buckled flows are consistent with the experimental observations of Fig. 3.9. (d) At |h| = hc
the topmost saddle point collides with the stable fixed point (superimposed cross and dot symbols).
As a result, the only stable conformation corresponds to a flow aligned with h.
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To gain more intuition on the physical meaning of the dynamical system, we plot the force field
F(vx, vy) in Fig. 3.10 for four values of h. Anticipating on the comparison with our measurements, we
use the parameter values estimated in [13] and recalled in Appendix VI.iv. Looking for fixed points
in the absence of external field, F(V, h = 0) = 0, we find five solutions for V when α > DTq

2, see
Fig. 3.10a 1. The trivial solution (0, 0) is obviously unstable and corresponds to a fluid at rest. The
four other solutions are given by (0, vy,±) = ±

(
0, 2

√
(α−DTq2)/(3β)

)
and (vx,±, 0) = ±

(√
α/β, 0

)

as illustrated in Fig. 3.10a. The former are saddle points while the latter are linearly stable fixed points
corresponding to the two possible homogeneous flows at speed v0 =

√
α/β along the ±x̂ directions.

It is worth noting that the force field focuses the position of the dynamical system along a closed
line connecting the four fixed points thereby making the dynamics of V almost one dimensional, see
Fig. 3.10a.

The bistability of the flow at finite h, viz the existence of a finite coercive field, is understood from
the dynamics of the fixed points in phase space. Upon increasing h the dynamical system, and therefore
the active flow, explore three different states labeled with a star symbol in Figs. 3.10b, 3.10c and 3.10d:

(i) We start from a polar liquid flowing in the +x̂ direction, and an opposing external field h = −hx̂,
with h > 0. As sketched in Fig. 3.10b, this state where V = (v0 − h/(2α), 0) corresponds to a
polar fluid uniformly flowing against the external field. This situation remains stable until h reaches
hb = DTv0q

2+O(DTq
2/α), Fig. 3.10b. Above this value, the homogeneous flow is unstable to buckling,

and the stable point V = (v0 − h/(2α), 0) becomes a saddle point.
(ii) Yet, the flow is not reversed. The system indeed reaches one of the two new stable fixed points

with vy ̸= 0. They both correspond to homogeneously buckled conformations, see Fig. 3.10c. This
prediction is consistent with the buckled patterns observed prior to flow reversal shown in Fig. 3.9 and
Supplementary videos 2 and 3.

(iii) Further increasing h, the buckled state approaches the topmost saddle point. The two points
eventually merge at a critical value hc corresponding to Fig. 3.10d. The only stable conformation then
corresponds to a situation where V = (−vx, 0). The flow is reversed and aligns along the direction
prescribed by h. hc defines the value of the coercive field.

The value of hc is determined analytically by the merging condition between the saddle and the
fixed point, see Fig. 3.10d. We find that hc stems from the competition between the external field
and all the velocity-alignment terms (α and DT): hc = (2/

√
243)αv0

(
1 + 2DTq

2/α
)3/2. Our model

correctly predicts that the stability of the flows opposing an external field is enhanced when further
confining the polar liquid, i.e increasing q = π/W . Remarkably, this simplified picture also provides a
reasonable estimate of the magnitude of the coercive field, see Figs. 3.8d, and 3.8e.

In summary, we have established the bistability of polar active fluids. Their hysteretic response orig-
inates from buckled flow patterns stabilized by orientational elasticity. We expect this phenomenology
to apply to all confined active fluids with uniaxial orientational order. Our theory builds on the obser-
vation of a single set of buckling modes. Explaining the pattern-selection process remains, however, a
significant technical challenge.

1We focus on the situation where α > DTq
2. In the case of extreme confinement where this condition is not met, flow

reversal can occur only via local melting.
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IV Application: Spontaneous oscillations of polar-liquid droplets

We close this article exploiting the intrinsic multistability of polar-liquid flows and demonstrating
emergent functionalities in active microfluidics [135, 45, 134]. The existence of a hysteresis loop in the
response function provides a very natural design strategy for spontaneous oscillators via the relaxation-
oscillation mechanism [86]. Simply put, and having mechanical devices in mind, relaxation oscillations
stem from the coupling between a system with a hysteretic “force-velocity” relation and a harmonic
spring. This minimal design rule is transposed to active fluids by confining them in curved containers,
and applying a constant and homogeneous external field h = hx̂. As illustrated in Supplementary video
5, and in the image sequence of Fig. 3.11a, the colloids form a polar-liquid droplet that spontaneously
glides along the confining boundary in an oscillatory fashion. We denote α the polar angle defining the
position along the confining disc, and v(α, t) the azimuthal component of the velocity field averaged
over the radial direction. Fig. 3.11b shows the variations of the velocity field v(α, t). The oscillatory
dynamics of the polar-liquid droplets is clearly periodic with well-defined period and amplitude both
decreasing with the magnitude of the stationary external field, Figs. 3.11c, and 3.11d.

We now explain these collective oscillations as the periodic exploration of the four states (i), (ii), (iii)
and (iv) along the hysteresis loop established in Fig. 3.8c and sketched in 3.11e . The key observation
is that the droplet follows the boundary of the circular chamber. The droplet hence experiences a
longitudinal field of magnitude h∥(α) = h sinα which either favors or hinders its motion. The peri-
odic exploration of the hysteresis loop is supported by Fig. 3.11e. Fig. 3.11e shows the distribution
P (vCoM, h∥), where vCoM is the polar-liquid velocity evaluated at the center of mass of the droplet
αCoM. The support of this distribution corresponds to the rectangular shape of the velocity-field re-
lation measured in Fig. 3.8 for a straight channel. The droplet spends most of its time exploring the
stable horizontal branches and quickly jumps from one stable conformation to the other along the ver-
tical ones. We can gain more intuition on this oscillatory dynamics describing the four states one at a
time:

In state (i), the head of the flock is located at α < 0 and v(α) · h < 0. The flock proceeds in the
direction opposite to the azimutal component of the external field. The system moves toward the left
of the bottom branch of the hysteresis loop, Fig. 3.11e. As the flock moves toward the negative α
direction, the field strength |h∥| increases and reaches the maximal value hc at an angle −αc. The
system then reaches the left vertical branch of the response curve and hence becomes unstable, state
(ii). The flock bends and reverses its direction to reach the upper branch of the response curve, state
(iii). When the flock proceeds in the positive α region, it experiences an increasingly high field in the
direction opposite to its motion. As h∥ = hc the flock reaches the right vertical branch of the response
curve at the maximal angle +αc (state iv), thereby leading the system back to state (i). The hysteresis
loop is periodically explored.

This oscillatory motion relates to the conventional relaxation-oscillation picture as follows: the re-
sponse curve (h,V) plays the role of the force-velocity relation in a mechanical system, and the angle-
dependent longitudinal flow plays the role of the harmonic spring.
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Figure 3.11 | Spontaneous oscillations of a polar-liquid droplet. (a) Subsequent pictures of a polar
liquid droplet oscillating spontaneously in a circular chamber of radius R = 0.5mm. The green arrows
indicate the direction of h. The color of the particles indicates the instantaneous direction of their
velocity θ. The polar-liquid droplet reverses its motion when it reaches a critical angle ±αc along the
curved boundary. h = 485µm/s. (b) Time variations of the radial average of the active-liquid flow
v(α, t) showing a well defined period T and amplitude αc of oscillations. The four states defined in (a)
are indicated in the close-up view. (c) The critical angle αc is reduced when increasing the magnitude
of the external field h. R = 2.3mm. (d) The period of the oscillations T is reduced when increasing the
magnitude of the external field h. R = 2.3mm. (e) Density of probability P (vCoM, h∥). The support
of this probability is defined by the hysteresis cycle. Dashed line: sketch of the dynamical response of
the polar liquid. Arrows: direction of the cycle exploration. The four states defined in (a) correspond
to the four branches of the hysteresis loop.
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V Conclusion

In conclusion, we have established that colloidal rollers respond to external flows as classical spins
to magnetic fields. Assembling active fluids with broken orientational symmetry from these elementary
units, we have experimentally demonstrated, and theoretically explained, the hysteretic response of
polar-active-fluid flows. We have shown how confinement and bending elasticity act together to protect
emergent flows against external fields. Finally, we have effectively exploited the bistability of active
flows to engineer active-fluid oscillators with frequency and amplitude set by the geometry of the
container. Together with the virtually unlimited geometries accessible to microfabrication, the intrinsic
nonlinearity of active flows offer an effective framework for the design of emergent microfluidic functions
[135, 45, 134].

VI Appendix

VI.i Motorizing colloidal rollers.

Our experiments are based on colloidal rollers, see [13]. We turn inert polystyrene colloids of diameter
a = 4.8µm into self-propelled bodies by taking advantage of the so-called Quincke electro-rotation
mechanism [95, 78]. Applying an electric field to an insulating body immersed in a conducting fluid
results in a dipolar distribution of its surface charges. Increasing the magnitude of the electric field, E0,
above the Quincke threshold EQ destabilizes the dipole orientation, which in turn makes a finite angle
with the electric field. A net electric torque builds up and competes with viscous friction to power the
spontaneous rotation of the colloids at constant angular velocity. As sketched in Fig. 3.7a, the colloids
are let to sediment on a flat electrode, rotation is then readily converted into translational motion at
constant speed v0 in the direction opposite to the charge dipole. The direction of motion is randomly
chosen and freely diffuses as a result of the spontaneous symmetry breaking of the surface-charge
distribution.

VI.ii Methods

We disperse commercial polystyrene colloids (Thermo Scientific G0500) in a mixture of hexadecane
and AOT with concentration [AOT ] = 0.13mol/L. We inject this solution into microfluidic chambers
made of two electrodes spaced by a 110µm-thick scotch tape. The electrodes are glass slides, coated with
indium tin oxide (Solems, ITOSOL30, thickness: 80 nm). A voltage amplifier (TREK 609E-6) applies
a DC electric field between the two electrodes. We image the system with a Nikon AZ100 microscope
with a 3.6X magnification and record videos with a CMOS camera (Basler Ace) at framerate up to
380Hz. We use conventional techniques to detect and track all particles [29, 72, 7]. To confined the
colloidal rollers inside racetracks, we pattern the bottom electrode by mean of photolithography using
a 2µm-thick layer of UV photoresist (Microposit S1818) as in [84]. The geometry of the microfluidic
device is detailed in Fig. 3.12. We study the response of rollers to external field, by injecting a fresh
hexadecane solution at a controlled flow-rate using a high-precision syringe pump (Cetoni neMESYS).
Each measurement was done at least 60 seconds after the relaxation of the flow pattern in the main
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Figure 3.12 | Schematics of the microfluidic device. (a) Top view. The photoresist pattern is shown
in red color. The racetrack along which the active-liquid flows corresponds to the white path. The
geometry of the fluidic channel corresponds to the black solid lines. The flow direction is indicated
with a green arrow. The two bottom pictures show the solvent flow field measured by particle image
velocimetry seeding the hexadecane oil with colloids. Due to the imbalance between the two hydro-
dynamic resistances, the residual flow in the bottom branch is negligible (right picture) compared to
the flow in the observation window (left picture). Scale bar: 500 µm (b) Side view in the A-B section
defined in (a). Two ITO coated glass slides are assembled with a double-sided tape. The colloids roll
on the bottom ITO surface and are confined by the photoresist pattern (red color). (c) Side view in
the C-D section as defined in (b). The hexadecane flow has a Poiseuille profile along the z-direction.

branch of the racetrack. The construction of the hysteresis loop in Fig. 3.8b corresponds to a seven-hour
long experiment.

VI.iii Non-linear response of the ordered phase: V · h > 0

We discuss here the strengthening of orientational order when V · h > 0. We plot in Fig. 3.13a the
variations of δV ≡ |V(h) − V(h = 0)| in this regime. At small h, V responds linearly to the external
field. However, the increase of δV(h) becomes sub-linear for field amplitudes as small as h = 3×10−2v0.
The simplest possible explanation of this anomalous attenuation is that V is a bounded quantity which
is maximal and equals 1 when all the rollers move along the very same direction. A second and more
involved explanation was put forward in [66]. For finite systems, a crossover from linear response at small
h to the anomalous scaling law δV(h) ∼ h1/3 was predicted from renormalization group analysis [66].
As shown in Fig. 3.13a, this scaling law is consistent with our experiments for system sizes ranging from
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Figure 3.13 | Non-linear response of a polar liquid flowing in the same direction as the external field.
(a) The increase of δV ≡ |V(h) − V(h = 0)| is linear at small h and consistent with a h1/3 scaling at
high h. This behavior is compatible with the theoretical predictions of [66] based on renormalization
group calculations. (b) Finite-size scaling of δV(h,W ). Unlike what would be expected from the RG
theory of [66], all plots do not collapse on the same master curve.

W = 0.175mm to W = 0.5mm. However, the finite size scaling shown in Fig. 3.13b fails to ascertain
this explanation. Disentangling the two effects would require operating closer to the transition toward
collective motion where the fluctuations of V are more prominent. Such a regime cannot be achieved
in our experiment due to the strongly first-order nature of the transition toward collective motion.

VI.iv Hydrodynamic parameters of the roller fluid

We recall the estimates of the hydrodynamic parameters relevant to the computation of the coercive
field hc. Starting from the Stokes and Maxwell equations describing the microscopic dynamics of the
colloids, we established in [13] the hydrodynamics of colloidal-roller liquids. The results of this kinetic
theory are summarized in Table 3.1. We determined the value of µh following the same procedure, and
found µh = 1

2µv0, where µ is the rotational mobility measured in Fig. 3.7.

α β DT D2 µh
50 s−1 50mm−2s1 2× 10−3mm2s−1 0 40 s−1

Table 3.1 | Values of the hydrodynamic coefficients of the colloidal-roller liquid.
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Chapter 4

Colloidal rollers in microfluidic forests

The effects of defects on material properties are crucial in condensed matter physics. For example,
the robustness of ferromagnetic order remains a topic of high interest in industrial applications, like
data storage, which drive intense research efforts. In the same way, virtually all applications of active
materials would also require that their intrinsic properties survive the complexity of their operating
environments. By combining experiments on colloidal rollers, numerical simulations of active particles,
and hydrodynamic theory, I address the dynamics of self-propelled particles in crowded environments.
I first present how to realize microfluidic forests by positioning obstacles that create a repulsive torque
on rollers. I demonstrate that individual colloidal rollers exploring random forests form a Lorentz gas:
they undergo a transition from diffusive to localized dynamics upon increasing the obstacle density.
This transition originates from the underlying percolation transition of the forest. In contrast, disorder
yields spectacular changes in the collective dynamic of flocks far below the percolation threshold. I
demonstrate that, upon increasing disorder, flocking is suppressed in the form of a first-order phase
transition generic to all polar active materials. Near the transition, a sparse network of flowing rivers
emerges. I elucidate how disorder competes with the bending elasticity of the polar flock to channel
the spontaneous flow along this network.

4.1 Wandering of individual rollers in microfluidic forests

Understanding how random walkers explore random media has enabled physicists to understand a
host of transport phenomena: from conduction in metals to protein transport in the crowded intracel-
lular medium. Forty years ago, De Gennes used the ant-in-a-maze analogy to illustrate this physical
paradigm [33]. From a somehow dual perspective, colloidal rollers may be thought as robotic “ants”
whose dynamics in disordered media require to be elucidated. The questions I address are: how long
would a creature wander in a forest before finding its way out? Are some forests impossible to es-
cape? These seemingly naive questions expand the concept of diffusion and localization in crowded
media to self-propelled particles. This situation is obviously relevant both to living creatures exploring
their natural habitats (from ants to bacteria), and to man-made autonomous machines operating in
heterogeneous environments.
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4.1.1 What would a microfluidic forest be?

Obstacles are introduced within the microfluidic channel by taking advantage of the versatility of UV
lithography. Figure 4.1a shows an obstacle of radius b = 5µm made of 2µm-thick photoresist. It lies
on the bottom electrode where the colloids roll. Interestingly, colloidal rollers interact with obstacles
at a distance, see Fig. 4.1a. As a roller approaches the obstacle, it reorients to move away from it. This
repulsive interaction is quantitatively characterized in Fig. 4.1b. The scattering angle α decreases with
increasing impact parameters d/b. The interaction between the roller and the obstacle is rather weak:
a head-to-head collision (d/b = 0) leads to a deflection as small as α = 60 deg. This interaction has
also a finite range of about six obstacle radii. Furthermore, the reorientation of the roller takes place
at constant speed as shown by the inset of Fig. 4.1b.

The origin of this repulsive interaction can be captured from simple arguments. An obstacle is
nothing but a small electrically insulating post. Consequently, it distorts the surrounding electric field,
as shown in Fig. 4.1c. By symmetry, the resulting in-plane component E∥ is radial. Any electrophoretic
flow that could arise due to the obstacle [85, 141] would also be axisymmetric. In Chapter 2, the response
of individual rollers to in-plane perturbations has been elucidated. Accordingly, the obstacle-induced
tangential flows and electric fields lead a roller to reorient and align in the radial direction. This
situation is the analogous of the electrostatic repulsion between two rollers, depicted in Fig. 2.5.
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Figure 4.1 | Roller-obstacle interaction. (a) Superimposed snapshots showing a collision between
a roller and an obstacle of radius b = 5µm. (b) The scattering angle α decreases with the impact
parameter d/b. Inset: normalized roller velocity with respect to the distance to the obstacle. (c)
Sketches of the obstacle-induced flow and electric field, and the resulting repulsive interaction with a
roller. Top: side view. Bottom: top view.

4.1.2 Active Lorentz gas

Microfluidic forests are formed by randomly positioning obstacles within the channel, see Fig. 4.2.
To investigate how an individual roller explores such forests, I have performed a series of experiments
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(e)

(f)

0.1 0.3 0.6 φo

Figure 4.2 | Colloidal rollers explore random forests. Increasing the obstacle packing fraction ϕo
slows down the exploration of space of individual rollers. 2 s-long trajectories are shown in pink. The
obstacles are 5µm radius. Scale bars: 500µm.

varying the obstacle packing fraction ϕo while keeping the density of rollers far below the onset of
collective motion. Figure 4.2 shows 2 s-long trajectories of rollers within microfluidic forests of increasing
densities ϕo = 0.1, ϕo = 0.3 and ϕo = 0.6. As ϕo increases, the roller trajectories are tighter. Not so
surprisingly, the denser the forest, the slower the exploration of space by the rollers.

This simple result hides, however, much more complexity regarding the roller dynamics. In particular,
two scenarios could explain the slowing down of the exploration of space by the rollers. These two
scenarios exclude each other and yield very distinct particle dynamics at long times. They are sketched
in Fig. 4.3. The first scenario consists in a dynamics à la Lorentz. In a model proposed by Lorentz
in 1905 [71], particles move ballistically between hard-core obstacles. At contact, the particles are
reflected specularly which randomizes their direction of motion. This behavior is sketched in Fig. 4.3a.
The resulting long-time dynamics depends on the obstacle density. Above the percolation threshold,
when the void between obstacles does not span the entire system, particles are trapped in compact
regions of space. Their long-time dynamics is localized. Below the percolation threshold, for any
obstacle packing fraction, the long-time dynamics of the particles is diffusive. Increasing the forest
density merely reduces the particle diffusivity.

A recent work by Peruani and coworkers [26] has reported a very different phenomenology. In this
numerical work, the authors have studied the dynamics of active particles being deflected by soft-core
obstacles. No localization transition was recorded and the asymptotic dynamics of particles revealed
to be subdiffusive rather than diffusive. This long-time dynamics was explained by the fact that the
particles get trapped for long times by some obstacle arrangements: they follow closed trajectories
while escaping from time to time from a trap to an other, see Fig. 4.3b. The subdiffusive dynamics
of particles was supported by the measurements of the trapping time distribution that was argued to
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(a) (b)
Lorentz gas

H. A. Lorentz 1905
Active particles

O. Chepizhko et al. 2013

Main features:
•reflection on hard-core obstacles
•diffusion below the percolation threshold
•localization above the percolation threshold

Main features:
•deflection by soft-core obstacles
•diffusion and subdiffusion
•no localization

Figure 4.3 | Two possible dynamics for particles exploring random forests. (a) Lorentz gas [71].
Particles moving ballistically are reflected specularly on hard-core obstacles. (b) Long-time trapping
of active particles [26]. Active particles moving at constant speed are deflected by soft-core obstacles.

asymptotically follow a power-law such that the mean trapping time was diverging faster than ln(t) [26].

Having in mind these two scenarios, to unveil the exploration dynamics of random forests by colloidal
rollers necessitates going beyond the qualitative analysis of Fig. 4.2. The roller dynamics is quantita-
tively captured by the mean squared displacement ∆r2(t) = ⟨|ri(t0+ t)− ri(t0)|2⟩t0,i, where ri(t) is the
position of roller i at time t. Figure 4.4a shows the mean squared displacements of rollers for obstacle
packing fractions ranging from ϕo = 0 to ϕo = 0.7. These measurements reveal that the long-time
roller dynamics depend on ϕo. At low obstacle densities, rollers diffuse, as already demonstrated in
Chapter 2 for ϕo = 0. At high obstacles densities, the mean squared displacements saturate: rollers
are localized into compact regions of space. This localization seems to occur at ϕo ∼ 0.5, therefore
reflecting the percolation transition of the obstacle forest that takes place at ϕ∗o = 0.518 (for obstacles
of effective radius b+ a to account for the finite size of the rollers). At intermediate obstacle densities,
the roller dynamics appear subdiffusive which is confirmed by the measure of the growth exponent α,
defined as ∆r2(t) ∼ tα. Figure 4.4b shows that α takes values in-between 0 and 1 for intermediate
obstacle packing fractions.

Figures 4.4a and 4.4b suggest that the particle dynamics continuously goes from normal diffusion
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Figure 4.4 | Active Lorentz gas. (a) Mean squared displacements of colloidal rollers exploring random
forest of various densities ϕo. (b) Growth exponent α, defined as ∆r2(t) ∼ tα. The blue circles are
values of αmeasured from the region delimited by the two vertical lines in (a). The solid line corresponds
to the Lorentz gas scenario predicted by numerical simulations. (c) Mean squared displacements of
active particles from simulations. Dashed lines are guides to the eyes and show evolutions with growth
exponents α = 2, α = 1 and α = 0. Inset: average particle density around a pair of obstacles (white).
Both repulsion at a distance and hard-core exclusion were implemented here. The density of obstacles
is ρ = 0.65/ℓ2, where ℓ is the interaction range. The color codes for variations of the hard-core radius
b. It goes from b = 0.5ℓ (light grey) to b = 0.9ℓ (dark blue).

to subdiffusion to localized dynamics upon increasing disorder. However, the experiments do not give
access to very large time and length scales. The roller behaviors we observe could be their genuine
asymptotic dynamics or a crossover. To complement our experimental measurements, David Lopes
Cardozo has performed numerical simulations that closely relate to the experiments. He has probed
the asymptotic dynamics of active particles propelling at constant speed and interacting with obstacles
via repulsive torques. One of the conclusion of this numerical investigation, is that this system displays
a localization transition à la Lorentz provided that the hard-core exclusion by the obstacles is also
accounted for. The asymptotic dynamics is either diffusive (below ϕ∗o) or localized (above ϕ∗o), see
Figs. 4.4b and 4.4c. Genuine subdiffusion only occurs exactly at ϕ∗o.

By combining experiments on colloidal rollers and extensive numerical simulations, we have explained
how random repelling obstacles hinders and ultimately localizes the motion of robotic “ants”. While at
small obstacle densities the rollers explore space as would random walkers, the obstacles significantly
slow down their dynamics and ultimately limit their exploration to finite regions of space. This be-
haviour is analogous to that found in a model introduced by Lorentz to account for the transport of
electrons in metals. While both repulsion at a distance and hard-core exclusion reduce the particle
diffusivity, the localization of the particle trajectories only occurs due to hard-core interactions. In
other words, “ants” would spend more time to escape a dense forest, and they would always succeed
in finding a way out as long as an exit path exists. This work has been published in the article un-
titled “Diffusion, subdiffusion and localisation of active colloids in random post lattices” [83] which is
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reproduced on page 75.

4.2 Flocking through microfluidic forests

Having explained the dynamics of individual rollers within heterogeneous environments, I now turn
my attention to the emergence and propagation of colloidal flocks through disorder. How does disorder
hinder collective motion?

4.2.1 Destruction of colloidal flocks in disordered environments

The robustness of colloidal flocks to heterogeneous environments is addressed by confining rollers
within rectangular channels patterned with random arrays of obstacles, see Fig. 4.5. The roller packing
fraction is set to ρ = 1%, above the onset of collective motion in an obstacle-free channel. A flock thus
propagates bouncing back and forth at the two ends of its confining channel. The roller density is kept
constant and the obstacle packing fraction ϕo is increased.

x̂

ŷ

Figure 4.5 | Colloidal flock in disordered environment. Top: snapshot of a full rectangular channel
where a colloidal flock propagates through a disordered environment. Channel width is 1mm. Bottom:
close-up on the head of a colloidal flock that propagates through a random array of obstacles (blue
circles). Scale bar: 200µm.

Figure 4.6a shows that the longitudinal current of rollers J∥ decreases upon increasing the obstacle
packing fraction. Above ϕ∗o = 4%, the current vanishes: no flock form within the channel. The
suppression of collective motion is rationalized by looking at the orientation diffusivity D of the rollers.
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Figure 4.6 | Destruction of colloidal flocks. (a) The roller current decreases with increasing disorder.
(b) The orientation diffusivity of the rollers increases linearly with the obstacle packing fraction ϕo.
(c) The flock amplitude AF defined as the roller current at the head of the flock, reveals a discontinuity
at ϕ∗o at which collective motion is suppressed. (d) The length of the flock LF measured from the
experiment (yellow circles) decreases with increasing disorder. The measures are in agreement with the
prediction from hydrodynamic arguments (dark crosses).

From the previous section, we know that the roller dynamics is always diffusive within this range of
obstacle densities. Moreover, increasing the obstacle density increases the orientation diffusivity D.
This expectation is confirmed in Fig. 4.6b where D is shown to linearly increase with ϕo.

From this perspective, the suppression of collective motion upon increasing disorder is similar to
a Vicsek transition. The combination of the roller motility and quenched disorder effectively acts like
a time-dependent angular noise that eventually overcomes interactions between rollers at ϕ∗o. Vicsek
transition being first order, at first glance the rather smooth decrease shown by the roller current below
ϕ∗o might look surprising (Fig. 4.6a). A carefull analysis, however, reveals the discontinuous nature of
the disorder induced suppression of flocks. Figure 4.6c show that polar order at the head of the flock
abruptly vanishes at ϕ∗o. A quantitative comparison with a Vicsek transition was made possible thanks
to the theoretical prediction for the flock lengths LF by Caussin and coworkers [19] from hydrodynamic
arguments, see Eq. (1.8). Figure 4.6d shows that this prediction quantitatively agrees with the direct
measurement of the extent of the flocks. Undoubtebly, disorder causes the flock to melt in a Vicsek-like
fashion.

4.2.2 Distortion of colloidal flocks in disordered environments

Disorder-induced melting is robust to the obstacle arrangement. Figure 4.7b shows a flock propagat-
ing through a crystalline forest of obstacles. Unlike the random arrays considered thus far (Fig. 4.7a),
the obstacles now lie on a square lattice, whose main axis is tilted by an angle of 45 deg with respect to
the flock propagation direction (Fig. 4.7b). This configuration results in little difference regarding the
suppression of flocking. Figure 4.7c shows the variations of the roller density at the head of the flock
ρF with respect to the mean roller density ρ within the channel. The data obtained with disordered
and crystalline forests of the same obstacle packing fraction ϕo = 3% are very close to each others.
This result further support the Vicsek-like suppression of collective motion: whatever the obstacle ar-
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Figure 4.7 | Distortion of colloidal flocks. (a) Snapshot of the head of a colloidal flock propagating
through a random forest of obstacles. Scale bar: 100µm. (b) Snapshot of the head of a colloidal
flock propagating through a crystalline forest of obstacles. Scale bar: 100µm. (c) Variations of the
roller density at the head of the flock ρF with the mean roller density ρ for random (red circles) and
crystalline (orange squares) arrays of obstacles with a packing fraction ϕo = 3%. (d) Heatmap of
the roller current within a flock that propagates through a random array of obstacles with a packing
fraction slightly below ϕ∗o. A sparse and tortuous network of flowing rivers emerges. Scale bar: 100µm.
(e) Heatmap of the roller current within a flock that propagates through a crystalline array of obstacles
with a packing fraction slightly below ϕ∗o. The spontaneous flow remains homogeneous. The obstacles
only induce small depleted wakes. Scale bar: 100µm.

rangement, quenched heterogeneities yield the increase of rotational diffusivity, hence the destruction
of flocks.

A careful examination of the inner structures of the flocks reveals, however, a striking difference.
Figures 4.7d and 4.7e show fields of the roller current averaged over the time spent by the flocks in
the observation window. The flock that propagates through the disordered forest is very heteroge-
neous (Fig. 4.7d) while the flock that propagates through the crystalline forest is quite homogeneous
(Fig. 4.7e). Importantly, both the flocks considered in Figs. 4.7d and 4.7e are the smallest flocks that
form before a small increase in ϕo leads to their destruction. We explained this difference by providing
a hydrodynamic description of flocking through quenched disorder [84]. In particular, this theory is
qualitatively consistent with the emergence of a sparse and tortuous network of flowing rivers in the
disordered configuration. Here, I give a simple overview of this theory. The hydrodynamic equations
for extremely polarized flocks (see Eqs. (2.14) and (2.15) and the Table in Section 2.3.2) read in the
presence of disorder:

∂tρ+∇ · (ρv) = 0, (4.1)

∂tv + (v · ∇)v = P · [4γ∇(∇ · ρv) + 2(α2 − γ)∇2(ρv)− β∇ρ+ Fo]. (4.2)
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In these equations, α2 and γ are elastic constants and β−1 is the compressibility. Disorder alters the
flock dynamics through the random force field Fo(r). Since obstacles exert a finite-range repulsive
torque on rollers, the disorder contribution takes the form:

Fo(r) = −βo∇ϕo(r), (4.3)

where βo is a positive constant that gives the strength of this random force and ϕo(r) is the local
obstacle density. This expression implies that the flock would preferentially flow towards the valleys of
the disorder landscape. This obstacle induced focusing is, however, limited by the repulsion between
rollers at the origin of the pressure term −β∇ρ in Eq. (4.2). Indeed, the fluctuations of density in the
direction transverse to the propagation direction are given by:

|δρ|2(q) =
(
βo
β

)2

ϕo, (4.4)

and do not depend on the modulus of the transverse wave vector q = [0, qy].

Interestingly, the emergence of a sparse and tortuous river network is rationalized by looking at the
bending fluctuations of the flock. For a flock that propagates along the direction x̂, v = vxx̂ + δvyŷ
and the bending fluctuations read in Fourier space:

|δvy|2(q) =
β2oϕo

v2o + 4q2x(α2 − γ)2ρ2

(
qy
qx

)2

. (4.5)

where · stands for average over disorder, and q = [qx, qy] is a quasi longitudinal wavevector. Disorder
enhances bending fluctuations. Conversely, elasticity reduces bending fluctuations and in particular
suppresses the small wavelength contributions.

(a) (b) (c)

Figure 4.8 | Channeling of the flock. (a) At low disorder, a flock (pink) propagates through a
disorder landscape with three hills (grey disks). (b) Increasing disorder yields the distortion of the
flock. (c) Bending elasticity suppresses short wavelength distortions. As a result, the flock flows
through a subset of the valleys of the disorder landscape. A sparse network of flowing rivers forms.

Figure 4.8 illustrates the consequence of this competition. The increase of disorder from Fig. 4.8a
to 4.8b makes the flock to distort. The elasticity prevents such a bending and the flock can not explore
all the valleys in the disorder landscape, see Fig. 4.8c. Therefore, the flock only propagates through a
subset of all the valleys, hence the emergence of the sparse network of flowing rivers of Fig. 4.7c. In
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contrast, crystalline obstacle arrangements make Fo identically zero, therefore predicting no fluctuation
for the velocity field v in agreement with the homogeneous current map of Fig. 4.7c.

As a concluding remark, flowing rivers are also observed above ϕ∗o, in particular at high roller
density. None of them, however, spans the entire channel. Amélie Chardac, who has just joined
the group, is currently investigating this regime where, despite the absence of macroscopic transport,
collective motion locally prevails.

4.2.3 Conclusion

We have investigated how colloidal flocks can form and propagate in heterogeneous environments.
Obstacles prevent flocking by randomizing the direction of motion of the rollers. Consequently, ap-
parently small obstacle densities, way below the percolation threshold, are enough to inhibit collective
motion. Orientation diffusivity is found to be the good parameter to monitor the robustness of flocks.
If the obstacle density controls the emergence of collective motion, the fluctuations in their relative
positions change the propagation pattern of the spontaneous flow. Disordered arrangements of obsta-
cles yield very heterogeneous flows of the flocks caused by their elastic resistance to bending. From
the perspective of designing robotic swarms and flows, these findings may guide the implementation
of interaction laws between robots that enhance their autonomous behavior efficiency. This work has
been published in the article “Distortion and destruction of colloidal flocks in disordered environments”
[84] which is reproduced on page 91.
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Diffusion, subdiffusion, and localization of
active colloids in random post lattices

Combining experiments and theory, we address the dynamics of self-propelled particles
in crowded environments. We first demonstrate that motile colloids cruising at constant
speed through random lattices undergo a smooth transition from diffusive, to subdiffusive,
to localized dynamics upon increasing the obstacle density. We then elucidate the nature of
these transitions by performing extensive simulations constructed from a detailed analysis
of the colloid-obstacle interactions. We evidence that repulsion at a distance and hard-
core interactions both contribute to slowing down the long-time diffusion of the colloids.
In contrast, the localization transition stems solely from excluded-volume interactions and
occurs at the void-percolation threshold. Within this critical scenario, equivalent to that
of the random Lorentz gas, genuine asymptotic subdiffusion is found only at the critical
density where the motile particles explore a fractal maze.

I Introduction

From intracellular transport to the motion of living creatures in natural habitats, virtually all in-
stances of active transport at small scales occur in crowded environments, see e.g. [92, 57]. These
observations together with potential applications of synthetic active matter, have resulted in a surge
of interest in self-propulsion through heterogeneous media [146, 3]. However, apart from rare ex-
ceptions [14, 26, 143], most studies have focused on the two-body interactions between self-propelled
particles and isolated obstacles or walls [67, 146, 3, 107, 116, 39, 6].

In contrast, a different line of research has been devoted to the dynamics of ballistic tracers and
random walkers in extended crowded media, see e.g. [9, 60, 80, 55]. From a theoretical perspective,
the gold standard is the Random Lorentz Gas model, where passive tracers move ballistically, or
diffuse, through a random lattice of hard-core obstacles [71]. The salient features of this minimal
model have been quantitatively explained, from transient subdiffusion, to the localization transition
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occurring at the void percolation threshold, see [58, 2, 46, 62, 113] and references therein. From
an experimental perspective, the Lorentz localization scenario has been qualitatively confirmed only
very recently using Brownian colloids [108]. However, unlike passive colloids, self-propelled particles
couple to their environment not only via their position, but also via their intrinsic orientation, which
chiefly dictates their active dynamics. As a consequence the interactions between motile bodies and
fixed obstacles can result in counterintuitive behaviors such as collision and avoidance at constant
speed [99, 27, 84]. Considering the dynamics of self-propelled particles steadily moving in random
lattices of repelling obstacle, Chepizhko et al found a phenomenology which qualitatively differs from
that of the Lorentz gas [26]. Numerical simulations indeed suggest that active particles undergo genuine
subdiffusion as a result of transient trapping over a range of obstacle densities while localization was not
reported. In any realistic setting both reorientation at a distance and excluded volume would affect the
particle trajectories. However, until now no experiment has addressed the localization of self-propelled
bodies in crowded environments. We rectify this situation

In this article, we combine quantitative experiments and extensive numerical simulations to elucidate
the dynamics of self-propelled particles in disordered lattices. We first investigate the trajectories of
non-interacting active colloids moving at constant speed through repelling obstacles. We quantitatively
demonstrate how disorder hinders their diffusion and ultimately confines their trajectories to compact
regions. The very nature of this localization transition is then identified by disentangling the contribu-
tions of finite-range deflection and hard-core repulsion. We evidence that both excluded volume and
deflection at a distance result in finite-time subdiffusion. However at long times, deflection at a distance
merely renormalizes the particle diffusivity while hard-core repulsion results in a localization transition
à la Lorentz, from diffusive to fully localized behavior.

II Experiments

II.i Exploration of random lattices by colloidal rollers.

The experimental setup is thoroughly described in Appendix V.i. Briefly, by taking advantage of
the so-called Quincke electro-rotation, we turn polystyrene beads of radius a = 2.4µm immersed in
hexadecane (viscosity η ∼ 2mPa/s) into self-propelled colloidal rollers [95, 78, 70, 13]. The basic
mechanism of Quincke electro-rotation is recalled in Appendix V.ii. When let to sediment on a flat
surface, the colloids roll at constant speed v0 = 225µm/s along a direction v̂ which diffuses on the unit
circle with an angular diffusivity D = 1.5 s−1. Note that thermal diffusion would yield a much lower
value of the order of ∼ 5× 10−3 s−1. We believe the particle roughness to be chiefly responsible for the
spontaneous orientational diffusivity of the rollers. Disorder is introduced by adding UV-lithographied
cylindrical posts of radius b = 10µm on the surface, see Fig. 4.9 and [84]. The obstacles are placed
at random and can overlap. The obstacle density, defined as the number of obstacle centers per unit
area, is varied from ρ = 0 to ρ = 1.1/(πb2). We focus on a situation opposite to [84], where we
considered high roller densities leading to collective flocking motion in dilute obstacle lattices. Here,
in all experiments, we minimize the interactions between the rollers by keeping their packing fraction
far below the onset of collective motion [13, 12]. In this regime the rollers behave as independent
persistent random walkers [13, 12]. We simultaneously track the trajectories of ∼ 100 colloids in
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Figure 4.9 | Colloidal rollers in random obstacle lattices. (a) Top panel: Superimposed pictures taken
at equal time intervals of a colloidal roller deflected by a lithographied post of radius b = 10µm. Note
that the direction of motion is changed at constant speed. Bottom panel: Radial density of colloidal
rollers propelling around an isolated obstacle. Circles: Experiments. Dark lines: Simulated radial
densities. Solid line: Bℓ/v0 = 5, dashed line: Bℓ/v0 = 100 as defined in (4.7). ℓ is defined as the value
where the density plateaus. In all our experiments we find ℓ ∼ 2b. Error bars: binning size. (b), (c)
and (d) Trajectories of colloidal rollers (red and yellow) superimposed to the pictures of the obstacle
lattices. Scale bar: 500µm. Total time: 300 s. (b) ρ = 0.21/(πb2), the trajectories form a single
percolating cluster. (c) ρ = 0.45/(πb2), the trajectories form disconnected clusters. The largest cluster
(in red) percolates through the observation region. (d) ρ = 0.89/(πb2), none of the disconnected clusters
percolate, and no macroscopic transport is observed. The largest cluster of maximal dimension lc is
colored in red. (e) Variations of the normalized maximal cluster size with the obstacle density. L is the
width of the observation window. The dashed line indicates the critical density ρc. Experimental errors
on the determination of the cluster sizes are smaller than the figure markers. Defining a statistical error
on this extremal quantity would require a number of independent realisations beyond our experimental
reach.
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Figure 4.10 | From active diffusion to localization. (a) Probability distribution function of the roller
speed for three obstacle densities. ρ = 0.21/(πb2), ρ = 0.45/(πb2) and ρ = 0.89/(πb2). The three
distributions are peaked at the same typical speed value: v0 = 250µm/s. (b) The angular diffusivity
D increases with the obstacle fraction. D is measured as the inverse of the time of half decorrelation
of the velocity autocorrelation shown in the inset. Error bars: 1 sd. Inset: Autocorrelation function
of the instantaneous orientation of the rollers velocity VACF = ⟨v̂(t0) · v̂(t0 + t)⟩t0 . (c) Mean squared
displacements of the rollers as a function of time. The colors indicate the obstacle density. The rollers
are localized in finite regions at high obstacle densities. (d) Variations of the dynamical exponent α
defined as ∆r2 ∼ tα. α is estimated using power-law fits of the mean squared displacements. For
each obstacle density, independent fits have been performed in 7 intervals of width v0t/(2b) = 50 in the
shaded region in (c). α represents the mean of the fitted exponents and error bars represents one σ.
The vertical dashed line indicates the value of the critical density ρc defined in the last section. The
horizontal dashed lines indicates the value α = 0.66 corresponding to an ideal overlapping Lorentz gas.

a square observation window of size L = 2.4mm, and all quantities reported below correspond to
ensemble and time averages. The trajectories are recorded at 188 fps over 5 minutes. During this time
interval, particles rolling along straight lines would move over distances of about half a meter.

As illustrated in Fig. 4.9a the obstacles repel the rollers at a finite distance while leaving their
speed unchanged. We stress that this behavior is typical of active particles and cannot be observed
with passive colloids at thermal equilibrium. The range of the interaction, ℓ ∼ 2b, is measured from
the roller density around isolated obstacles, Fig. 4.9a. Appendix V.ii provides a detailed analysis of
the roller-obstacle interaction (see also the Supplementary Informations of [84] for a thorough experi-
mental characterization). Typical trajectories in random lattices are shown in Figs. 4.9b, c, d, and in a
Supplementary Video. At low obstacle densities, the rollers freely propagate through the entire system.
The ensemble of their trajectories forms a single connected cluster covering most of the free space left
around the obstacles. Increasing ρ, the trajectories form disconnected and increasingly sparse clusters:
a finite fraction of the colloids remains trapped in compact regions. The extent of the largest cluster
is plotted for all obstacles densities in Fig. 4.9e. In agreement with our qualitative observations, above
ρ = 0.45/(πb2) none of the colloids is observed to cruise through the entire field of view, and the extent
of the largest cluster decreases very sharply at ρc ∼ 0.75/(πb2).
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II.ii Localization of colloidal-roller trajectories.

The obstacles clearly hinder the exploration of space by the active colloids. However, unlike the
situation theoretically considered in [143], the rollers do not behave as Active Brownian Particles.
They rarely contact the obstacles, and are not slowed down by the collisions. The distribution of their
instantaneous speed is peaked at the same value, v0 = 250µm/s, for all obstacle densities, Fig. 4.10a.
Even more surprisingly, the distribution broadens towards high speeds as ρ increases. This observation
alone would imply a faster exploration of space at high obstacle densities in obvious contrast with our
experimental observation, Figs. 4.9b, c, and d. We therefore conclude that disorder predominantly
impedes the motion of the rollers by altering their orientational dynamics.

In Figs. 4.10b, we plot the roller orientational diffusivity D, defined as the inverse of the velocity
decorrelation time, Fig. 4.10b inset. D increases linearly with ρ. This scaling is expected for uncor-
related collisions with scatterers all contributing identically to the deflection of the roller trajectories.
Within this simple picture the reduction of the cluster size would merely translate the algebraic decay
of the translational diffusivity: DT ∼ v20/D, see e.g. [77, 3, 75]. However, the inspection of the mean
squared displacements, ∆r2, in Fig. 4.10c invalidates this hypothesis.

At small times, the colloids undergo ballistic motion, however we do not find a universal scaling of
the MSDs at long times. The growth exponent α defined as ∆r2 ∼ tα is a decreasing function of the
obstacle density, Fig. 4.10d. Increasing ρ from 0 to ρc, the long-time dynamics smoothly evolves from
normal diffusion (α = 1) to subdiffusion (α < 1). Above ρc the dynamics slows down abruptly and
the rollers undergo a localization transition (α = 0). The rollers propelling at constant speed, this rich
behavior is necessarily encoded in the long-time decay of the orientational correlations, and therefore
cannot be captured by a mere description in terms of an effective orientational diffusivity [56, 74].

The central question we aim at answering now is whether the continuous evolution from normal
diffusion, to subdiffusion, to localization, is an asymptotic behavior or a finite-time trend. Recent
simulations of active particles ignoring excluded volume contributions indicate that finite-range repul-
sion bend the trajectories to form long-live closed orbits. This dynamical trapping results in genuine
asymptotic subdiffusion [26]. In contrast, within the geometrical picture of the Lorentz gas, subdiffu-
sion should be only observed over finite time scales diverging only at a critical obstacle fraction ϕL

1.
At ϕL, the asymptotic value of α would discontinuously jump from 1 to 0 thereby reflecting a transition
toward a fully localized dynamics [58, 2, 143].

Clear anticorrelations typical of trapped trajectories are seen in Fig. 4.10b inset, yet they are not
sufficient to distinguish between the two possible scenarios [56]. Elucidating the exact nature of the
localization transition requires accessing much longer time-scales out of range of our experiments. We
resolve this situation by confronting our findings to extensive numerical simulations.

1Here ϕL is defined as ϕL = ρLπb
2, where b in the hard-core radius and ρL, the critical number density for obstacles

of radius b. Note that ϕL is not the area covering fraction which is given by 1− exp(−ϕL)
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III Numerical simulations

III.i Roller-obstacle interactions

Let us first build a simplified phenomenological description of the roller dynamics. Details on
the numerical resolution of this model are given in Appendix V.i. We need to capture three central
features: (i) the obstacles repel the active colloids isotropically, (ii) the interaction range is finite, (iii)
collisions consist in reorientations at constant speed. We also discard spontaneous angular diffusion
as it yields minute corrections to the obstacle scattering contributions as ρπb2 > 0.1, see Fig. 4.10b.
Assuming pairwise additive interactions, these observations are sufficient to introduce a general form
for the equations of motion of both the roller position r and orientation v̂ = (cos θ, sin θ):

∂tr = v0v̂(θ) (4.6)

∂tθ = −∂θ
∑

j

B(δrj)δ̂rj · v̂ (4.7)

where rj is the position of the jth obstacle, and δrj = rj − r. For sake of simplicity B(δrj) is chosen
to be a positive constant, B, for δrj < ℓ and 0 otherwise. We present in Appendix V.ii a series of
experiments complemented by a microscopic theoretical model which ascertains this phenomenological
description.

Before presenting the results of our simulations, let us gain some insight into the roller-obstacles
scattering. (4.6) reflects motion at constant speed along v̂. (4.7) has a simple meaning: the rollers turn
their back to the obstacles in a typical time B−1. In agreement with the trajectory shown in Fig. 4.9a,
a roller interacting with an obstacle experiences a torque which orients its velocity in the direction
opposite to the vector connecting the roller to the obstacle center. One important comment is in order.
The repelling torques cannot fully exclude the active particles from the interaction regions. Take for
instance two obstacles with overlapping interaction disks. In the overlap region, the two repulsive
torques compete to bend the particle trajectory in opposite directions. As a result, there always exist a
finite channel between the obstacles through which the particle can almost freely proceed as illustrated
in Fig. 4.11. Such interaction-free channels would not exist if the particles were repelled by an isotropic
force (as opposed to an isotropic torque).

III.ii Strong Repulsion Torque and Overlapping Lorentz Gas

The particle dynamics is parametrized by a single dimensionless number that compares the time
spent in the vicinity of an obstacle (ℓ/v0), and the reorientation time B−1. In order to see whether
repulsion torques can yield subdiffusion and localization as observed in our experiments, it is worth
analysing first the asymptotic case where Bℓ/v0 ≫ 1. The MSD corresponding to Bℓ/v0 = 100 are
plotted in Fig. 4.12a. At short times (short distances), the dynamics is ballistic. At intermediate time
scales, as in the experiments, we observe a continuous slowing down of the dynamics in the form of
subdiffusion as ρ increases. However a careful inspection of the long-time dynamics reveals that this
apparent subdiffusion is merely a transient behavior. Fig. 4.12b shows how the instantaneous value of
the exponent α(ρ, t) evolves with time and obstacle density, where α(ρ, t) = d

d log t log∆r
2. The α(ρ)

curves converge toward a step function as t → ∞. For ρ < ρc = 0.3725, α(ρ) converges to 1. The
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Figure 4.11 | Channeling through the obstacles. Ensemble of numerical particle trajectories crossing
two obstacles through a narrow channel. Bℓ/v0 = 5. The initial velocity is transverse to the line
joining the centers of the two discs. The black trajectory indicates the direction of propagation. Note
that particle trajectories nearly equidistant to the obstacles are hardly deflected. All trajectories are
spanned at constant speed.

particles undergo normal diffusion at long times. Conversely, for ρ > ρc, α → 0 and particle motion
is localized. As it turns out, the active-particle dynamics is genuinely subdiffusive only at ρ = ρc
which corresponds to a fixed point of the α(ρ, t) curves. At ρc, ∆r2 ∼ tαc with αc = 0.6 ± 0.02, see
Fig. 4.12b. Surprisingly, both the value of this anomalous exponent and of ρcπℓ2 = 1.17 suggest that
this localization transition belongs to the universality class of the overlapping Lorentz gas model [71, 2].
The predictions of the overlapping Lorentz gas would be αc = 0.66, and ρcπℓ2 = 1.13. This hypothesis
is further confirmed by Fig. 4.12c, which shows the collapse of the MSD curves when time and distances
are suitably rescaled by the distance to the critical density ϵ = (ρ−ρc)/ρc using the Lorentz hyperscaling
relations [2, 58].

The universality of the Lorentz localization transition stems from an underlying percolation transi-
tion [113]. Localization occurs as the voids separating impenetrable obstacles stop percolating through
the system. In contrast, we have neglected the hard-core repulsion from the obstacles in (4.6) and (4.7),
and the repelling torques cannot fully exclude active particles from the interaction regions. However,
in practice, when Bℓ/v0 = 100 the channels allowing the penetration of the interaction discs become so
narrow that we do not observe a single obstacle-crossing event in our simulations, see Fig. 4.12a inset.
The particles merely penetrate the interaction discs over minute distances of the order of v0/B = ℓ/100
before being strongly repelled. This small yet finite penetration explains the slight discrepancies with
the values of the critical density and exponent compared to the ideal Lorentz gaz scenario [108, 103].
Both αc and ρc exceed the Lorentz-gas value by 10%. The latter difference consistently corresponds to
smaller hard-core particles of radius ℓ − 2(v0/B). Is this localization scenario relevant to our experi-
ments? In order to answer this question, we now need testing the robustness of this phenomenology to
finite repulsion strength.
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Figure 4.12 | Localization transition in the large repulsion limit: Bℓ/v0 = 100. (a) Numerical mean
squared displacements of the active particles. The color codes for the obstacle density. Dashed lines
correspond to power laws with exponents 2, 1 and 0. Inset: normalized density map of the active
particles around two overlapping interaction discs (log-scale histogram). (b) Instantaneous dynamical
exponent plotted versus the obstacle density. The different colors correspond to measurements of α at
increasing times (expressed in unit of ℓ/v0). The dashed lines locate the localization transition. (c)
Scaled MSDs. ρc and αc are measured from (b) and ϵ = (ρ−ρc)/ρc. β and ν correspond to the classical
percolation exponents. The theoretical values for the overlapping Lorentz gas yield 2(ν−β/2)/αc = 4.2.
The best collapse is obtained for 2(ν − β/2)/αc = 4.5. This discrepancy is very likely to stem from the
finite penetration in the obstacles.
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Figure 4.13 | No localization at finite repulsion: Bℓ/v0 = 5. (a) Numerical mean squared displacements
of the active particles. The color indicates the obstacle density. The dashed lines correspond to power
laws with exponents 2, 1 and 0. Inset: normalized density map of the active particles around two
overlapping interaction discs (log-scale histogram). (b) Time variations of the instantaneous dynamical
exponent at different obstacle densities. All exponents converge toward α = 1 at long time. The
asymptotic dynamics corresponds to normal diffusion.

III.iii Finite Repulsion: Diffusion Through Disorder

The comparison between the numerical and experimental densities around isolated obstacles indi-
cates that Bℓ/v0 = 5 correctly approximates the repulsion strength of the lithographied obstacles, see
Fig. 4.9a. The MSDs corresponding to Bℓ/v0 = 5 are plotted in Fig. 4.13a. Surprinsingly, although
Bℓ/v0 > 1, they show a stark difference with the strong repulsion limit discussed in the previous sec-
tion. From ρπℓ2 = 0.95 to ρπℓ2 = 7.8, where the interaction disks cover about 99.96% of the simulation
box, we do not observe any sign of localization. Whereas repulsion still results in subdiffusion at inter-
mediate time scales, the instantaneous dynamical exponent α converges to 1 at long times even for the
highest obstacle densities, Fig. 4.13b. Disorder does not yield asymptotic subdiffusion, and only slows
down the rollers motion by reducing their translational diffusivity.

Repulsion at finite B fails in building effective barriers as illustrated in Fig. 4.13a inset. For
Bℓ/v0 = 5, we see that the width of the channel going through a pair of obstacles compares to the
inter-obstacle distance thereby preventing any form of long-time trapping. As a result, at long times,
neither localization nor subdiffusion can be achieved as both processes rely on the formation of traps
with diverging escape times [9].

III.iv Origin of the Localization Transition in Colloidal-Roller Experiments

We infer from the above analysis that the localization transition must arise from the excluded-volume
interactions as it cannot stem from hydrodynamic and electrostatic repulsions alone. In order to test
this final hypothesis, we add steric repulsion to the finite-range repulsion torque (keeping Bℓ/v0 = 5).
Given the observations reported before, a simple implementation of steric interactions is achieved in
adding a repulsion torque of magnitude B = 100v0/ℓ and range b < ℓ to (4.7).

We do recover the experimental phenomenology which turns out to be qualitatively similar to that
of the Lorentz model, Figs. 4.14a and 4.14b. For packing fractions (computed with the hard core radius)
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Figure 4.14 | Disentangling the roles of hard-core interactions and finite-range repulsion. (a) Numerical
mean squared displacements of the active particles. The color indicates the value of ρπb2 and each
curve corresponds to a different value of b at constant ρ = 2.05/(πℓ2) and B = 5v0/ℓ. The three
dashed lines correspond to power laws with exponents 2, 1 and 0. Inset: Normalized histogram of
the roller density (log-scale histogram). (b) Time variations of the instantaneous dynamical exponent
corresponding to the MSD plotted in (a). Localization occurs only above the percolation threshold of
the hard-core obstacles, viz for ρπb2 > ϕL.

smaller than the critical fraction at the Lorentz transition, ρπb2 < ϕL, a ballistic regime is followed by
a transient subdiffusive dynamics. However, we see that at long times the dynamics ultimately crosses
over toward pure diffusion . Approaching ϕL the extent of the transient regime diverges and yields
asymptotic subdiffusion with α = 0.5 ± 0.02. Above ϕL the particles explore finite regions of space
and α converges to 0. The gross features of the dynamics are well captured by a Lorentz scenario,
as further confirmed by taking into account the finite size of the rollers when computing the critical
fraction: ρcπ(b + a)2 = ϕL. This correction gives ρcπb2 = 0.73 where we expect 0.5 < α(ρc) < 0.66
from our simulations. Both values are in excellent agreement with our experimental findings, as shown
in Figs. 4.9e and 4.10d.

IV Conclusion

We have combined quantitative experiments and extensive simulations to elucidate the dynamics of
active particles in random lattices of repelling obstacles. We conclude from this analysis that both
repulsion at a distance and excluded volume hinders the exploration of random lattices in the form
of transient subdiffusion. We show that active colloids cruising through disordered lattices provide a
prototypical realization of a random Lorentz gas undergoing a genuine localization transition at the
void percolation threshold.
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V Appendix

V.i Experimental and Numerical Methods

Experiments

The rollers are fluorescent Polystyrene colloids of diameter 2a = 4.8µm dispersed in a 0.11 mol.L−1

AOT-hexadecane solution (Thermo scientific G0500). The suspension is injected in a wide microfluidic
chamber made of two parallel glass slides coated by a conducting layer of Indium Tin Oxyde (ITO)
(Solems, ITOSOL30, thickness: 80 nm) [13]. The two electrodes are assembled with double-sided scotch
tape of homogeneous thickness (110µm). The colloids are confined in a 1 cm× 1 cm square chambers,
by walls made of a positive photoresist resin (Microposit S1818, thickness: 2 µm). Identical cylindrical
obstacles of radius b = 10µm made of the same material are included in the chambers. Their position is
uniformly distributed with a density ρ. Therefore the obstacles can overlap. This geometry is achieved
by means of conventional UV lithography.

The colloids are observed at a 4.8X magnification with a fluorescent Nikon AZ100 microscope. The
movies are recorded with a CMOS camera (Basler ACE) at frame rates of 188 fps. The particles are
detected to sub-pixel accuracy, and the particle trajectories and velocities are reconstructed using the
Crocker and Grier algorithm [29] using an improved version of the Blair and Dusfresne MATLAB code.
Measurements are performed in 2.4mm× 2.4mm observation windows.

The Quincke electro-rotation of the colloids is controlled by applying a homogeneous electric field
transverse to the two electrodes E = E0ẑ. The field is applied with a voltage amplifier (TREK 609E-
6). All the reported results correspond to an electric field E0 = 1.1EQ, where EQ is the Quincke
electro-rotation threshold EQ = 0.9V/µm.

Simulations

We numerically solve Eqs. (4.6) and (4.7) using a forward Euler integration scheme with an adaptive
time step. The time step δt is chosen to be δt = 10−3/B × min[1, 1/

∑
j δ̂rj · v̂] in Eq. 4.7. The

summation over the obstacles is performed by first updating the list of the obstacles interacting with
each self-propelled particle. ℓ and v0 set the length and time units. Simulations are performed in
200 × 200 or 1000 × 1000 square boxes. The code is parallelised assigning one trajectory to each
independent core. Statistics are performed on 320 to 3200 noninteracting particles for a number of
independent realizations of disorder ranging from 1 (low densities) to 128 (high densities). Typical
simulations are launched on 32 to 128 independent cores for hours to weeks on Intel E5-2670 sandy
bridge octacore 2.60GHz processors.
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V.ii Roller-Obstacle Interactions

In this appendix, we first review the self-propulsion of the colloidal rollers. Then, combining ex-
periments and theory, we explain the response of the rollers to external electric and hydrodynamic
driving fields. We finally exploit this result to account for the effective repelling interactions with the
cylindrical obstacles.

Quincke Motorization

The principle of the Quincke motorization is thoroughly discussed in [13] and [78]. Briefly, when a
homogeneous DC electric field is applied to an insulating sphere immersed in a conducting fluid, the
conduction charges in the solution polarize the solid surface. For fluids and insulating bodies with
standard permittivities, the orientation of the resulting electric dipole points in the direction opposite
to the electric field. This situation turns out to be unstable above a critical field amplitude EQ. Above
EQ any infinitesimal perturbation of the dipole orientation is exponentially amplified. The finite angle
made by the electric dipole P with the electric field E0 results in a net electric torque ϵl

ϵ0
P × E0,

where ϵl is the liquid permittivity, Fig. 4.15. Ignoring inertia, mechanical equilibrium is reached when
the rotational viscous drag acting on the sphere balances the electric torque. Angular momentum
conservation then reads ηΩ = ϵl

ϵ0
P × E0, where Ω is the angular velocity, and η the drag coefficient.

Similarly, charge conservation implies the balance between the Ohmic current and the advection of the
free charges by the rotation of the sphere. Together these conservation laws set the rotation speed of
the sphere to:

Ω = Ω0

√(
E0

EQ

)2

− 1, (4.8)

when E0 > EQ, and to 0 otherwise. Ω0 is the inverse of the so-called Maxwell relaxation time of the
free charges [78]. In our experiments this time scale is typically of the order of 1 ms, which explains
the highspeed motion of the colloids. Indeed, when the insulating bead is let to sediment on a solid
surface, the above reasoning still applies, and rotation is trivially converted into rolling motion [13].
Applying an electric field also gives rise to electrophoretic forces that act together with gravity to keep
the roller in contact with the bottom electrode. As opposed to the colloidal rollers used in [40] which
undergo stronger slip on the solid surface, in our experiments, the rolling coefficient is close to unity.

We stress that Quincke rotation stems from a spontaneous symmetry breaking of the surface-charge
distribution. Therefore the direction of rotation is not prescribed by the external field and can freely
rotate around the E0 axis.

Dynamical response of Colloidal Rollers to Electric and Flow Fields: Experiments and
Theory

In our experiment each obstacle locally alters the direction and the magnitude of the electric field due
to their permittivity mismatch with the solvent, and possibly to their net electric charge. In addition,
these local heterogeneities of the electric field are very likely to induce electroosmotic flows past the
electrodes, see e.g. [141, 85]. The specifics of the resulting electric and hydrodynamics perturbations
goes far beyond the scope of this article; however given the axisymmetric shape of the posts, we can

86



Diffusion, subdiffusion, and localization of active colloids in random post lattices

Figure 4.15 | Sketch of a colloidal roller propelling near an obstacle. Top panel: Side view. Bottom
panel: Top view. The tilted electric dipole at the surface of the roller stems from the Quincke instability.
The resulting electric torque drives the roller at constant speed v0. The dielectric obstacle induces radial
perturbations to the electric field (red dashed lines), and to the fluid-velocity field (blue dashed line).

readily infer that both perturbations have a radial symmetry, see Fig. 4.15. The in-plane components
of these perturbations can have two consequences on the roller motion: (i) The colloids can be advected
by the flow, and, or, pulled by field gradients. This effect is found to be negligible. In our experiments
the roller speed is hardly modified as they approach the obstacles, Figs. 4.9a and 4.10a. (ii) The rollers
can experience external torques which reorient their electric dipole and velocity, in agreement with
the bending of the roller trajectory shown in Fig. 4.9a. Moreover, the out-of- plane component of the
electric field increases near the obstacle leading to a broadening of the velocity distribution at high
ρπb2, see Fig. 4.10a.

In order to establish a quantitative description of the roller-obstacle repulsion, we combine theory
and dedicated experiments. In [13], starting from the Maxwell and Stokes equations we derived the
equations of motion of a Quincke roller subject to a flow field u∥ parallel to the solid surface and to an
electric field of the form E = E0ẑ+ δE. They take the simple form:

∂tr = v0v̂, (4.9)
∂tv̂ = (1− v̂v̂) ·

(
µH∂zu∥ − µEδE

)
, (4.10)

where µH and µE are two positive mobility coefficients, and where both the local shear ∂zu∥ and
the perturbation δE are evaluated at z = a. Given our experimental findings, we ignore the small
corrections to the roller speed that could be caused by transverse perturbations of the electric field and
by flow advection (i.e. at z = a we assume |u| ≪ v0 and δE ·E0 ≪ E0 ).
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Figure 4.16 | (a) Sketch of a colloidal roller driven by a Poiseuille flow. (b) The speed of the roller is
hardly modified by the flow (red open symbols), while the projection of the roller velocity on the flow
direction x̂ monotonically increases with the flow (blue filled symbols). (c) PDF of the roller velocity
for u∥ = 0.12mm/s. Note that the distribution remains axisymmetric even at non-zero flow. (d) Sketch
of a colloidal roller driven by an electric field. A longitudinal electric field −δEx̂ is applied by tilting
the top electrode. (e) As in (b), the speed of the roller is hardly modified (red open symbols) while
the projection of the roller velocity on the x̂-direction monotonically increases with δE evaluated at
z = a (blue filled symbols). (f) PDF of the roller velocity for u∥ = 0.12mm/s. Note again that the
distribution remains axisymmetric even at non-zero δE.

Let us stress that Eqs. (4.9) and (4.10) conform to our experimental findings with two additional
experiments. In order to probe the response of colloidal rollers to fluid flows, we apply a Poiseuille flow
in an obstacle-free channel, see Fig. 4.16a. We first confirm that the orientational response dominates
over advection: the speed of the rollers, measured in a gas of noninteracting particles, hardly increases
with the flow (open symbols in Fig. 4.16b). In contrast, as the fluid velocity increases we observe
that: (i) the orientational distribution is increasingly asymmetric, Fig. 4.16c, and (ii) the projection
of the average velocity on the flow direction increases monotonically, filled symbols in Fig. 4.16b. The
same type of experiment is repeated with electrodes having a wedge geometry, see Figs. 4.16d. In
this geometry, we add a homogeneous longitudinal perturbation to the electric field. Again, the roller
speed is unmodified while the angular response is prominent, see Figs. 4.16e and 4.16f. This set of
experiments unambiguously confirm that Eqs. (4.9) and (4.10) correctly describe the roller dynamics
in external driving fields.
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Effective Interactions with Cylindrical Obstacles

We finally exploit these results to derive the interaction rules with cylindrical obstacles (Eqs. (4.6)
and (4.7) in the main text). Let us consider an obstacle located at the origin. At a point r both u∥
and δE are radial vectors, and therefore Eq. 4.10 can then be recast in the form:

∂tv̂ = B(r)(1− v̂v̂) · r̂, (4.11)

where B(r) =
(
µH∂zu∥ − µEδE

)
·r̂. Projecting this equation on the x-axis readily yields Eq. 4.7. Again

the specific expression of B(r) is a complex function of the post shape and of the material properties.
B(r) is measured to be positive (repulsion) and to quickly decay with r, with a typical range ℓ set by
the obstacle size, Fig. 4.9a. Therefore, for sake of simplicity, we approximate the expression of B(r)
by a step function of width ℓ. As a final comment we emphasize that Eqs. (4.6) (4.7), and (4.11) do
not depend on the specifics of the roller-obstacle interactions and hold for any short-range repulsion
mechanisms primarily acting on the particle orientation.
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Distortion and destruction of colloidal
flocks in disordered environments

How do flocks, herds and swarms proceed through disordered environments? This ques-
tion is not only crucial to animal groups in the wild, but also to virtually all applications
of collective robotics, and active materials composed of synthetic motile units [64, 131, 4,
105, 102, 35, 118, 100, 117, 13, 91, 16, 73, 88]. In stark contrast, appart from very rare
exceptions [25, 97, 96], our physical understanding of flocking has been hitherto limited to
homogeneous media [76, 130, 21]. Here we explain how collective motion survives to geo-
metrical disorder. To do so, we combine experiments on motile colloids cruising through
random microfabricated obstacles, and analytical theory. We explain how disorder and
bending elasticity compete to channel the flow of polar flocks along sparse river networks
akin those found beyond plastic depinning in driven condensed matter [98]. Further in-
creasing disorder, we demonstrate that collective motion is suppressed in the form of a
first-order phase transition generic to all polar active materials.

We use the experimental system introduced in [13, 12], which consists in colloidal rollers powered by
the so-called Quincke electro-rotation mechanism [95], see Methods and Supplementary Methods. The
motile colloids experience both hydrodynamic and electrostatic interactions which promote alignement
of their translational velocity [13, 12]. When the roller packing fraction, ρ, exceeds 3×10−3, these polar
interactions overcome rotational diffusion and macroscopic collective motion emerges [13, 12]. In the
homogeneous slab geometry shown in Fig. 4.17a, a seven-millimeter-long flock spontaneously forms and
cruises through a dilute ensemble of rollers moving isotropically, see Supplementary Video 1. The flock
has a sharp front, a long tail, and endlessly cruises at a constant speed along the x-axis, bouncing back
and forth on the confining walls. The flock speed cF is found to be equal to the speed of an isolated
roller v0 = 1.4± 0.1mm s−1.

Can flocks propagate in disorder media? How does this broken-symmetry phase survive to geomet-
rical disorder? In order to answer these questions, we include randomly distributed circular obstacles of
radius a = 5µm in the microfluidic channel. When the obstacle packing fraction ϕo is small, collective
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Figure 4.17 | Emergence and suppression of collective motion. a, Stitched fluorescent images of
a 7 mm-long colloidal flock cruising in a rectangular channel. Total number of colloids: 8,500. Dotted
rectangle: region in which the velocity measurements of panel b are performed. Scale bar: 1 mm.
b, Close-up on the head of a colloidal swarm propagating past random obstacles (black dots). The
arrows are located at the colloid positions and point along the orientation of their velocity. Obstacle
packing fraction: ϕo = 2.45× 10−2. Scale bar: 100µm. c, Flocking phase diagram in the (ρ, ϕo) plane.
The symbols represent the variations of ϕ⋆o with ρ. Error bars: smaller than the symbols (Defined
as the difference between the minimal value of ρ above which flocking was observed and the maximal
value below which isotropic motion only was observed). d, The x-component of the roller current is
normalized by J0 measured in an obstacle-free channel. Jx/J0 is plotted as a function of the fraction of
obstacles. Orientational order is suppressed in the shaded region. Error bars: 1 sd (17 different flocks).
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motion still emerges according to the same nucleation and propagation scenario, see Fig. 4.17b and
Supplementary Video 2. However as ϕo exceeds a critical value, ϕ⋆o, the obstacle collisions suppress any
form of global orientational order and macroscopic transport. Correlated motion persists only at short
scales, as illustrated in Supplementary Video 3. As expected, dense flocks are more robust to disorder
and ϕ⋆o monotonically increases with the roller fraction ρ, Fig. 4.17c.

In all that follows, the sole control parameter of our experiments is the obstacle fraction ϕo. The
roller fraction is set to a constant value above the flocking threshold in a obstacle-free channel, ρ =
(1.02 ± 0.06) × 10−2. A natural order parameter for the flocking transition is the magnitude Jx of
the roller current J(r, t) projected on the x-axis, and averaged over time and space. Accordingly Jx
monotonically decreases with ϕo and vanishes at ϕ⋆o, Fig. 4.17d.

Our first goal is to elucidate this loss of orientational order. To do so, we consider the evolution
of the flock morphology along the propagation direction upon increasing disorder. This morphology
can be equivalently captured by the variations of the local density, current, or polarization fields as
demonstrated in a Supplementary Note. For sake of clarity we focus here on the roller current as
the main observable. The flock speed cF is unaltered by disorder and remains very close to the roller
velocity for all ϕo < ϕ⋆o, Fig. 4.18a. Therefore the time variations of Jx(t) ≡ ⟨x̂ · J(x = 0, y, t)⟩y,
the longitudinal current averaged over the transverse direction, give an accurate description of the
coarse-grained shape of the flocks, see Fig. 4.18b. Three important results are in order: the decrease
of the flock length, LF, echoes that of the global order parameter and vanishes rather smoothly at ϕ⋆o,
Fig. 4.18c. However, as shown in Fig. 4.18d, the maximal current amplitude, AF, undergoes a sharp
drop and cancels discontinuously at ϕ⋆o. Finally, at ϕ⋆o, the flocks are intermittent: they repeatedly form
and propagate steadily, before spontaneously vanishing and nucleating again. A featureless isotropic
state coexists in time with a phase-separated flocking state where macroscopic excitations as large
as 1mm propagate in the channel. Altogether these three observations firmly evidence that disorder
suppresses the flocking state in the form of a first-order non-equilibrium transition.

However, the obstacles do not merely reduce the extent of the flocks down to their extinction but
also trigger qualitative changes in their inner structure. The snapshots of the roller current J(r, t)
at four subsequent times in Fig. 4.19a demonstrate that the flocks are strongly heterogeneous spatial
patterns, see also Supplementary Video 4. We characterize the local flock morphology by introducing
the current field Jflock(r) = ⟨J(r, t)⟩t∈∆tF averaged over the time interval ∆tF taken by the flock to
cross the observation window. At low ϕo, we observe that colloid-depleted wakes as large as ∼ 50µm
form downstream each obstacle, see Fig. 4.19b upper panel. However, as ϕo increases, the competition
between alignment interactions and multiple-obstacle scattering, causes the redistribution of the roller
current into a static river network, Fig. 4.19b. Virtually no collective motion occurs in the closed regions
surrounded by the flowing rivers (black regions in Fig. 4.19b). The extent of the regions where the flow
is suppressed can significantly exceed both the typical inter obstacle-distance and the depletion-wake
size. Importantly, upon increasing ϕo, the river network becomes increasingly sparse and different from
the region of space left around the mere superposition of uncorrelated wakes. Comparing the areas of
these two very different geometries allows us to quantify the sparsity of the river networks in Fig. 4.19c.
In addition, the networks also become increasingly tortuous as demonstrated by the fast increase of
the orientational fluctuations of Jflock with ϕo in Fig. 4.19d. Above ϕ⋆o orientational order survives
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Figure 4.18 | Flock morphology. a, Flock speed normalized by the roller speed plotted as function
of the obstacle fraction. Error bars: 1 sd (17 flocks per data point). b, Spatial variations of the
longitudinal current. The shape of the steadily propagating flock is readily inferred from the temporal
variations of the current averaged in a 25µm×1mm rectangular region. The flock width LF is defined as
the width of J(t) at 2/3 of the maximal amplitude AF. c, Yellow symbols: Flock length plotted versus
the obstacle fraction (averaged over 17 different flocks). Error bars: 1 sd. Black symbols: Analytical
prediction of the flock length, see Supplementary Note. Shaded region: isotropic phase. d, Maximal
amplitude of the longitudinal current plotted versus the obstacle fraction (averaged over 17 different
flocks). Shaded region: isotropic phase. Note that at ϕ⋆o both a flock state and a homogeneous isotropic
state coexist. Error bars: 1 sd.
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to disorder in finite and short-lived rivers. Any form of macroscopic transport is suppressed as these
transient channels are isotropically distributed and do not percolate through the entire system, see Sup-
plementary Video 3 and Supplementary Note. We close this discussion by stressing that these emergent
river networks are strikingly similar to that encountered above the plastic depinning threshold when
driving an ensemble of elastically-coupled particles through quenched disorder (from vortex lattices in
type-II superconductors, to driven colloids and grains) [61, 53, 126, 69, 42, 125, 93, 98, 139].

In order to elucidate the physics underlying the suppression of collective motion and the emergence
of channelling networks, we first need a quantitative description of the roller-obstacle interactions. As
a roller approaches an obstacle its direction of motion is repelled at a distance yet its speed remains
unchanged, Figs. 4.20a and 4.20b. The roller-obstacle and roller-roller repulsions stem from the same
physical mechanisms [13]: a dielectric obstacle causes a local radial perturbation of the electric field
E = E0ẑ used to power the Quincke rotation. As a result, a short-range repulsive torque reorients
the roller velocity in the direction opposite to the obstacle, see Supplementary Note. This interaction
has the same symmetry as that numerically considered in [25, 26]. The scattering plots shown in
Fig. 4.20c and Supplementary Note, demonstrate that the repulsive torques are weak and short ranged.
A head-on collision merely deflects the initial roller orientation by an angle of 60◦. As a consequence,
up to ϕo = 0.1, the trajectories in the isotropic phase remain diffusive at long times, and are fully
characterized by their rotational diffusivity D, which linearly increases with ϕo, Fig. 4.20d.

We can now account for the first-order nature of the flocking transition. The linear increase of
D suggests simplifying the interactions between the rollers and the obstacles as uncorrelated binary
collisions with random scatterers [26]. Within this Boltzmann approximation, we can generalize the
kinetic theory valid at the onset of collective motion, which we introduced in [13]. We show in a
Supplementary Note that the roller-obstacle and roller-roller interactions decouple. Increasing the
obstacle fraction solely renormalizes the angular noise acting on the rollers, even when they interact in
the flock phase. We then readily conclude that the transition to collective motion should belong to the
very same universality class as the first order flocking transition found in all motile-spin models, starting
from the seminal Vicsek model [129, 52, 110]. We quantitatively test the relevance of this scenario, by
comparing in Fig. 4.18c, the measured flock length to our theoretical prediction for the shape of such
non-linear excitations as detailed in a Supplementary Note. The unambiguous agreement confirms our
theoretical explanation: weak quenched disorder triggers a generic Vicsek-like discontinuous transition
from collective to isotropic motion.

However this appealing scenario cannot capture the emergence of channeling networks at high ob-
stacle fractions. We now theoretically account for these spatial fluctuations by describing the strongly
polarized region close to the flock front in the high ϕo regime. Therefore, rather than describing the
obstacles as point-wise scatterers, we here consider small spatial fluctuations around a homogeneous
obstacle density field. The resulting hydrodynamic equations, derived in a Supplementary Note, are
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Figure 4.19 | Flocking through river networks. a, Four subsequent snapshots of the magnitude
|J(x, y, t)| of the current field. Coarse graining over 25µm × 25µm bins. Time average over 0.05 s
ϕo/ϕ

⋆
o = 0.5. The rollers flow along preferred channels. Scale bar: 200µm. b, Magnitude of the flock

current Jflock plotted for four different obstacle packing fractions. At low ϕo colloid-depleted wakes form
downstream the obstacles. As ϕo increases, a channel network forms and becomes increasingly sparse
and tortuous. Coarse graining over 12.5µm× 12.5µm bins. Scale bar: 200µm. c, Circles: Area of the
flowing region normalized by the area of the observation window. Error bars: 1 sd (17 flocks per data
point). Dashed line: area fraction of the region left around the superposition of spatially uncorrelated
wakes. This quantity is computed knowing the fraction of space occupied by a random ensemble of
patches having the shape of the wake formed downstream an isolated obstacle: 1 − exp (−ρoawake),
where ρo is the obstacle density and awake the wake area [63]. d, The orientational fluctuations of Jflock

sharply increase at the onset of flock destruction. They are defined as δθ2Jflock = A−1
∫
θ2Jflock(r) dr,

where A is the area of the observation region, and Jflock/Jflock ≡ (cos θJflock , sin θJflock). Error bars: 1
sd (17 flocks per data point).
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Figure 4.20 | Roller-obstacle scattering. a, Superimposed picture of a roller colliding an obstacle
of radius a = 5µm. b is the impact parameter, α is the scattering angle. Time interval between each
picture: 6.7 ms. E0/EQ = 1.8. Scale bar: 50 µm. b, Roller velocity normalized by v0 as a function
of the distance to the obstacle. Same parameters as in a. c, Scattering angle α plotted versus the
normalized impact parameter b/a defined in a. E0/EQ = 2. Error bar: 1 sd. d, Rotational diffusivity
defined as the decorrelation time of the roller velocity plotted as a function of the obstacle packing
fraction, see Methods. E0/EQ = 2.
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analogous to the Navier-Stokes equations for a polar active fluid:

∂tρ+∇ · (ρΠ) = 0, (4.12)
∂tΠ+ v0Π · ∇Π = P· [−β∇ρ+ α2∆(ρΠ) (4.13)

+ γ∆̃ · (ρΠ) + Fo] ,

where we introduce the local polarization Π(r, t) ≡ J(r, t)/[v0ρ(r, t)], and P = I−ΠΠ. The convective
term on the l.h.s. of Eq. 4.13 stems from self-propulsion, β∇ρ is a pressure term due to the repulsive
interactions between the rollers, and α2 and γ are the elastic constants of this polar liquid (∆̃ is an
anisotropic second-order operator). Finally disorder is captured by the quenched force field Fo(r) =
−β0∇ϕo(r) which focalizes the rollers in the valleys of an effective potential given by the local obstacle-
density field ϕo(r). The linear response of Π = x̂+δθŷ provides a physical insight into the formation of
sparse flowing channels. Within this approximation, the orientational fluctuations are readily computed
from Eqs. (4.12) and (4.13):

|δθq|2 =
β2oϕo

v2o + q2x(α2 − γ)2ρ2

(
qy
qx

)2

(4.14)

where · stands for average over disorder, and q is a quasi longitudinal wave vector, see Supplementary
Note. Eq. (4.14) establishes that the polarization fluctuations are set by the competition between
random stirring, self-propulsion and bending elasticity. Importantly, orientational fluctuations increase
at all scales with the number of obstacles. However, the bending stiffness (α2− γ) suppresses the small
wavelength fluctuations required to explore the valleys of ϕo(r) which become increasingly branched and
curved as the number of obstacles increases. This competition therefore selects a small subset of all the
possible paths and consistently accounts for the formation of sparse and tortuous river networks upon
increasing disorder. This scenario is further confirmed by experiments performed in periodic lattices
of obstacles. By construction, these arrangements display minute density fluctuations. Therefore,
the random stirring force in Eq. (4.13) is expected to be vanishingly small compared to an equally
dense disordered medium. In agreement with our prediction, we find that no river network emerges in
periodic lattices, see Supplementary Figure S7 and Supplementary Video 5. This scenario is expected
to qualitatively hold beyond linear response. In addition, as it does not depend on the specifics of the
colloidal rollers it must be relevant to any flock made of motile bodies obstructed by repelling obstacles,
from living-creature groups to swarming robots to soft-active materials.

Methods

We use fluorescent Polystyrene colloids of diameter 4.8µm dispersed in a 0.15 mol.L−1 AOT-hexadecane
solution (Thermo scientific G0500). The suspension is injected in a wide microfluidic chamber made of
two parallel glass slides coated by a conducting layer of Indium Tin Oxyde (ITO) (Solems, ITOSOL30,
thickness: 80 nm) [13]. The two electrodes are assembled with double-sided scotch tape of homogeneous
thickness (110µm). The colloids are confined in a 1mm× 15mm channel, by walls made of a positive
photoresist resin (Microposit S1818, thickness: 2 µm). Identical cylindrical obstacles of radius 5µm
made of the same material are included in the main channel. Their position is uniformly distributed
with a density ρo, and the obstacle fraction is defined as ϕo = πa2ρo in the main text. Note that some
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of the obstacles overlap. This geometry is achieved by means of conventional UV lithography. More
details about the design of the microfluidic device are provided in the Supplementary Methods.

The Quincke electro-rotation of the colloids is controlled by applying a homogeneous electric field
transverse to the two electrodes E = E0ẑ. The field is applied with a voltage amplifier (TREK
609E-6). All the reported results correspond to an electric field E0 = 2EQ, where EQ is the Quincke
electro-rotation threshold EQ = 1V/µm. All the measurements are performed when a steady state is
reached for all the observables. The colloids are observed with a 7.2X magnification with a fluorescent
Nikon AZ100 microscope. The movies are recorded with a CMOS camera (Basler ACE) at frame
rates of 380 fps. The particles are detected to sub-pixel accuracy, and the particle trajectories and
velocities are reconstructed using the Crocker and Grier algorithm [29]. Measurements are performed
in a 1.22mm × 0.75mm observation window. All measurements have been systematically repeated
for 15 to 18 different flocks crossing the same field of view (different initial conditions). In addition
we have used four different realization of the disordered arrangements of obstacles. The observation
window was set close to the midpoint of the main channel where all the morphological quantities have
reached their stationary values. Measurements performed further away from the walls yield identical
results.

All the colloids roll at constant speed v0 = 1.4±0.1mm s−1. When isolated, their direction of motion
freely diffuses on the unit circle with a diffusivity D = 1.6 ± 0.1 s−1. D is defined as the exponential
decorrelation rate of the velocity orientation in a isotropic phase, ⟨v̂i(0) · v̂i(t)⟩i ∼ exp(−Dt), where v̂i

is the velocity orientation of the ith roller.

The current field J(r, t) is computed by summing the instantaneous roller velocities in 12.5µm ×
12.5µm binning windows. The flock current Jflock(r) is computed by averaging J(r, t) over time. The
flowing-path network is defined as the ensemble of points where Jflock exceeds 11µm/s. This value has
been chosen as the typical average current in the wake left behind an isolated obstacle. None of the
results discussed in this letter qualitatively depends on this specific threshold value. The current-free
regions referred to in the main text are associated with local current value smaller than this threshold
(black areas in Fig. 4.19b).

Supplementary Informations
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I Supplementary Methods

We sketch the microfluidic device used to handle the colloidal rollers in Fig. 4.21. The polysterene (PS)
colloid solution is flown in a one-centimeter wide channel made of double sided tape. The thickness of
the adhesive film (dark grey) sets the gap between the two electrodes: 110µm. Both the rectangular
chamber and the cylindrical obstacles are made of an insulating resin (blue color). The pattern is
achieved using conventional UV lithography. The obstacles are located at random positions with
possible overlap as seen in the close-up picture of a colloid-free channel. The thickness of the insulating
resin is about 2µm. The diameters of the colloids and of the obstacles are respectively 4.8µm and
10µm. Due to the local perturbation to the orientation and magnitude of the electric field in the
vicinity of the insulating walls and obstacles, the colloids are electrostatically repelled from the regions
covered by the resin patterns.

II Supplementary Note 1: Flocking-through-disorder experiments

II.i Global flock morphology: current, density and polarization fields

A flock, by definition, corresponds to a region of space where orientational order exists. The amplitude of
a flock, and its extent along the propagation direction, can be measured from three different observables:
the local current Jx(r, t) introduced in the main text, the local packing fraction of rollers ρ(r, t), and
the local polarization field Π(r, t) defined as Jx(r, t) ≡ v0ρ(r, t)Π(r, t). Π quantifies the local amount of
orientational order regardless of the local area fraction of rollers ρ(r, t). As shown in Fig. 4.22 their time
variations averaged over the channel width convey the same information about the flock morphologies.
More quantitatively, the flock length, and the maximal amplitude measured from these three observables
are plotted versus ϕo in Fig. 4.22. The trends are perfectly consistent. The discontinuity of the
amplitude drop at ϕ⋆o is even extremely pronounced for the polarization variable.

II.ii Isotropy of the current field above ϕ⋆
o

Above ϕ⋆o, by definition, all the global order parameters quantifying orientational order vanish. How-
ever, the rollers do not merely form an uncorrelated gaz phase. As emphasized in the main text,
collective motion locally persists along extended yet finite paths. However these paths do not allow any
macroscopic transport as they are isotropically oriented and only have a finite life time. The global
isotropy of the current in this disordered regime is demonstrated in Fig. 4.23. In Figs. 4.23a and 4.23b,
we first recall the typical morphology of the flock-current field below and above ϕ⋆o. Above ϕ⋆o, Jflock

is defined as Jflock(r) = ⟨J(r, t)⟩t∈∆tF , where the time interval ∆tF is kept equal to that measured at
ϕ⋆o. In Figs. 4.23c and 4.23d, we plot the flock-current correlation function: ⟨Jflock(r

′) · Jflock(r
′ + r)⟩r′ .

Whereas they are clearly anisotropic in the flocking regime, all orientational features are lost in the
high-disorder limit.
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x
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TOP VIEW SIDE VIEW

x
z

E0

Confining walls

Obstacle Insulating Photoresist
ITO-coated glass slide
PS colloid

Adhesive filminlet outlet

Figure 4.21 | Sketch of the microfluidic device. Top view. A one-centimeter wide channel is
used to flow the colloidal solution. The rectangular chamber is delimited by an insulating lithographied
resin, and includes cylindrical obstacles of radius 5 microns on the bottom ITO-coated glass slide. The
picture of a colloid-free device shows a typical distribution of obstacles. Scale bar: 100 µm. Side view.
The colloids roll on the bottom electrode, the obstacles electrostatically repel the approaching rollers.
An adhesive film (double-sided scotch tape) sets the gap between the electrodes.
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Figure 4.22 | Three different probes of orientational order: current, polarization and density.
a, Time variations of the local current averaged over the microfluidic-channel width. Note that the
distance between two subsequent peaks is not a constant as the observation window is not perfectly
centered on the microfluidic channel. b, Time variations of the local polarization averaged over the
microfluidic-channel width. c, Time variations of the local roller density averaged over the microfluidic-
channel width. d, Flock length measured from the current signal as defined in the main text plotted
versus the obstacle fraction. e, Same plot for the flock length measured from the polarization signal.
f, Same plot for the flock length measured from the density signal. g, Flock-current amplitude plotted
versus the obstacle fraction. h, Same plot for the flock-polarization amplitude. h, Same plot for the
flock-density amplitude.
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normalized flock-current correlations for ϕo/ϕ⋆o = 1.1. The current correlations are isotropic.

II.iii Obstacle-Roller Scattering and Effective Diffusion

Fig. 4.24a shows six scattering diagrams corresponding to six different electric-field amplitudes. The
scattering angle is plotted versus the impact parameter b normalized by the obstacle radius a, as defined
in Fig. 4a in the main document. The range of the obstacle-roller interaction is defined as the value
of the impact parameter where the scattering angle vanishes. This range hardly depends on the field
magnitude. However, repeating the same experiments with obstacle of increasing size, we find that the
repulsion range is proportional to the obstacle radius, Fig. 4.24b.
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Figure 4.24 | Single-roller scattering. a, Scattering angle plotted as a function of the normalized
impact parameter for six different field amplitudes. Error bars: 1sd, shown only for E0/EQ = 2 for
sake of clarity. b, Circles: repulsion range plotted as a function of the obstacle diameter. Solid line:
straight line of slope 3.

103



Article

III Supplementary Note 2: Flocking-through-disorder theory

III.i Equations of motion of interacting colloidal rollers in a homogeneous media

Starting from the Stokes and Maxwell equations, we established in [13] the equations of motion of
colloidal particles propelled by the Quincke mechanism. After lengthy algebra, they can be recast into
a compact form. The rollers propel at a constant speed, undergo rotational diffusion with a diffusivity
D, and interact via effective torques deriving from the angular potential H(r; p̂i, p̂j):

∂tri(t) = v0p̂i, (4.15)

∂tθi(t) = −∂θi
∑

j ̸=i

H(ri − rj ; p̂i, p̂j) +
√
2Dξi(t), (4.16)

where ri(t) and p̂i(t) = (cos θi(t), sin θi(t)) are respectively the position and the orientation of the
ith roller. The ξi(t)s are delta-correlated Gaussian white noises of unit variance, and the effective
interaction reads:

H(r; p̂i, p̂j) = A(r)p̂i · p̂j +B(r)p̂i · r+ C(r)p̂j · (2rr− I) · p̂i. (4.17)

A(r), B(r) and C(r) decay exponentially over a distance H of the order of the microfludic-channel
height. They all have the same functional form: X(r) = τ−1

X r−nX exp(−r/H), with X = A, B, C and
nX > 3. The characteristic relaxation times τX are all of the order ∼ a/vo where a is the colloid radius.
Their quantitative expressions and the estimate of their strengths are provided in [13, 12]. We neglect
here an additional genuinely long-range interaction associated with a very small coupling constant and
which plays no role in the following discussions given the system sizes we consider.

The three terms of the effective potential are not specific to colloidal rollers, rather they correspond
to the first terms of a systematic multipolar expansion of any effective-interaction potential [18]. The
physical meaning of these three terms is clear: A(r) quantifies the strength of the polar interaction
promoting the alignment of the roller velocities. This interaction stems from hydrodynamic and elec-
trostatic interactions as well. B(r) corresponds to repulsive interactions. This term is minimized when
the direction of the roller i points in the direction opposite to rj − ri. This interaction stems from
electrostatics. C(r) combines both hydrodynamic and electrostatic contributions. This third term
indicates that the roller i is also prone to align its velocity with a dipolar field centered on the roller j.

III.ii Roller-obstacle interactions

Let us now consider an insulating circular post located at r = 0. This dielectric material deforms the
external electric field E = E0ẑ used to trigger the Quincke rotation of the colloids. The calculation of
the electric-field disturbance induced by a dielectric immersed in a conducting fluid is provided in [13].
Regardless of its specific form, we know that the range of the perturbation is screened over a scale
comparable to the distance H between the two electrodes. In addition the obstacle being axisymmetric
the perturbation must be radial in the xy-plane, and point toward the center of the dielectric obstacle
lithographed on the positive electrode, Fig. 4.25.
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�E

p̂
r

Figure 4.25 | Single-roller scattering. Sketch of a roller (small grey disc) interacting with an obstacle
(large blue disc). Dotted line: trajectory. δE: in-plane component of the electric field perturbation.

An effective torque of the form ∂θ(p̂ ·E) aligns the roller orientation in the direction opposite to the
xy-components of the electric field. Therefore the equations of motion of an isolated roller interacting
with a cylindrical obstacle are:

∂tr(t) = v0p̂, (4.18)
∂tθ(t) = −∂θHo(r; p̂), (4.19)

where the effective repulsion potential has the same form as the roller-roller repulsion:

Ho(r; p̂) = Bo(r)p̂ · r. (4.20)

Bo(r) has the same form as B(r) defined in the previous section: Bo(r) ∼ exp(−r/H)/r4. The above
equations are of course complemented by a hard-core repulsive interaction between the rollers and the
insulating post.

III.iii Flocking transition in weak quenched disorder

Kinetic theory

We first outline how to construct the hydrodynamic equations ruling the temporal evolution of the
density and current fields in the presence of a dilute ensemble of weak scatterers. We use here a
conventional kinetic-theory framework reviewed e.g. in [76]. We first write a conservation equation
for the one-point distribution ψ(r, θ, t), i.e. the probability to find a particle at position r with an
orientation p̂ = (cos θ, sin θ):

∂tψ(r, θ, t) + v0p̂ · ∇ψ(r, θ, t)−D∂2θψ(r, θ, t) = −∂θJint(r, θ, t) + So(r, θ, t) (4.21)

For interaction-free particles moving in a homogeneous media, the r.h.s of the above equation vanishes
and ψ is merely advected due to self-propulsion, and diffuses in the θ direction due to the angular noise
acting on the rollers’ direction. The angular current Jint, and So(r, θ, t) account for the roller-roller and
the roller-obstacle interactions respectively. Starting from the microscopic equations Eqs. (4.15),(4.16)
and (4.17), we derived the functional form of Jint(r, θ, t) in [13]. Briefly, as the range of the effective
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potential H is of the order of 40 colloid radii, in a homogeneous isotropic phase, each colloid interacts
on average with ∼ 20 neighbors. This large number is even a decade larger when a flock forms, which
suggests using a mean field description to establish the functional form of Jint. More precisely, assuming
that the two points correlation function factorizes: ψ(2)(r, p̂; r′, p̂′) = ψ(r, p̂)ψ(r′, p̂′) and vanishes for
|r− r′| < 2a (to account for the finite size of the rollers), Jinttakes the form:

Jint = −ψ(r, θ)
∫

|r−r′|>2a
dθ′dr′ψ(r′, p̂′)∂θH(r− r′; θ, θ′) (4.22)

Two different approximations are used to compute the So term in Eq. (4.21). Let us first ignore the
specifics of the roller obstacle interactions, and consider a simplified description of the scattering process.
Following [26], we focus first on the asymptotic limit of an infinitely dilute ensemble of uncorrelated
scatterers, and use a Boltzmann-like approximation. We make the molecular chaos hypothesis and
restrain ourselves to binary collisions. Within this framework, at large scales, scattering can be described
without loss of generality as a change in the orientation θ by an increment ±ϵ upon collision. Provided
that the persistence length of a free roller exceeds the typical inter-obstacle distance, which is the case
in our experiments, collisions occur at a rate 2v0ϕoa/(πa

2
o) which yields in the small-ϵ limit:

So = (D′ϕo)∂2θψ(r, θ, t), (4.23)

where D′ = 1
2v0aϵ

2/(πa2o). The obstacle interactions renormalize the angular diffusivity of the particle
which increases in an affine fashion with ϕo in agreement with our experimental findings in the isotropic
phases:

D(ϕo) = D +D′ϕo (4.24)

At large scales, the particle motility converts the collisions with a quenched ensemble of scatterers
into a time-dependent angular noise. This scenario is the exact analogous of that observed in a dilute
Lorentz gaz where ballistic particles undergo elastic collisions on fixed scatterers.

Given the mean-field description for the roller interactions, and the Boltzmann description of the
obstacle scattering, the two types of interactions decouple in Eq. (4.21). Consequently, Eqs. (4.21),
(4.22), and (4.23) suggest that the emergence, and suppression, of collective motion in dilute disordered
media should belong to the same first-order universality class as the Vicsek transition between a gas
and an orientationally ordered state. We recall that the seminal Vicsek model concerns a 2D ensemble
of motile spins interacting via ferromagnetic interactions competing with a time-dependent angular
noise [129, 52]. Upon decreasing the noise amplitude, the spins undergo a first order transition from an
isotropic to a polar state, see e.g. [52, 110] and references therein. The first order nature of the transition
arises from the nucleation and subsequent steady propagation of nonlinear band-like excitations akin to
the colloidal flocks reported in this letter. The global suppression of polar order found in our experiments
is therefore strongly expected to be triggered by the increase of rotational diffusion resulting from
random scattering processes. We further confirm this hypothesis below, by constructing a hydrodynamic
description of the roller flocks cruising through disorder.

Hydrodynamic theory

In order to confirm the relevance of our main hypothesis, namely the Boltzmann approximation to
account for interaction with the random scatterers, we first derive the equations of motion of the
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hydrodynamic variables ρ(r, t) ≡
∫
ψ(r, θ) dθ and J(r, t) ≡

∫
p̂(θ)ψ(r, θ)dθ close to an isotropic state.

Within this hydrodynamic framework we are able to make a quantitative prediction regarding the
extent of the flocking patterns and to compare them to our experimental findings.

We complement mass conservation:

∂tρ(r, t) +∇ · J(r, t) = 0, (4.25)

by the time evolution of the current field. Multiplying Eq. (4.21) by p̂, averaging over ψ and keeping
only the leading order terms in a gradient expansion yields a relation between ρ, J and the local nematic
tensor Q, defined as: ρQ = ⟨p̂p̂− 1

2I⟩, see [13] for more technical details, or [76]:

∂tJ+ v20∇ ·
[
ρ

(
Q+

1

2
I
)]

= −D(ϕo)J+ α1ρ(I− 2Q) · J− β
v0
2
(I− 2Q) · ρ∇ρ (4.26)

where α1 and β are hydrodynamic coefficients defined by the spatial averages of A(r) and B(r), defined
in Eq. (4.17). A self-consistent hydrodynamic description of the polar active fluid, requires expressing
the local nematic tensor as a function of ρ and J. As we are here interested in describing the onset
of collective motion, we use a closure relation valid close to an isotropic state. Following the approach
reviewed in [94] we write down a dynamical equation for the Q field, ignore its temporal variations,
discard higher order angular multipoles of the distribution function and consistently restrain ourselves
to the lowest order gradient terms. We are then left with a generic form akin to the Toner and Tu
equation originally inferred from symmetry considerations [122]:

∂tJ+
3α1

8D(ϕo)
J · ∇J =

[
α1ρ−D(ϕo)−

α2
1

2v20D(ϕo)
J2

]
J− v0

2
(v0 + βρ)∇ρ (4.27)

− 5α1

8D(ϕo)
(∇ · J)J+

5α1

16D(ϕo)
∇(J2) +

α1β

2v0D(ϕo)
(∇ρ · J)J+O(∇2)

We shall stress that all the hydrodynamic coefficients are computed from the microscopic equation of
motion and can be quantitatively measured, or estimated, from our experiments [12]. This equation is
the analogous of that derived in [13], replacing the bare rotational diffusivity D, by D(ϕo) = D+D′ϕo.

Flock morphologies

In order to compute the shape of the colloidal flocks we look for localized solutions of Eqs. (4.25) and
(4.27) which are homogeneous along the y-direction and steadily propagate along the x-direction with
a velocity c: J(r, t) = J(x− ct)x̂, ρ(r, t) = ρ(x− ct). By doing so, mass conservation, Eq. (4.25), takes
the form of a local relation between ρ and J

ρ(z) = ρ∞ +
J(z)

c
(4.28)

where z = x− ct, and ρ∞ is the fraction of active particles in the isotropic region away from the flock.
Similarly, (4.27) reduces to a non-linear ordinary differential equation:

D[J ]J̈(z) + F [J ]J̇(z) +H[J ]J(z) = 0, (4.29)
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where

H[J ] = [α1ρ∞ −D(ϕo)] +
α1

c
J − α2

1

2v0D(ϕo)
J2, (4.30)

F [J ] =
[
c− v0

2c
(v0 + βρ∞)

]
−
[

3α1

8D(ϕo)
+
v0β

2c2

]
J +

α1β

2v0cD(ϕo)
J2. (4.31)

The second-order term D[J ]J̈(z) comes from the O(∇2) terms in Eq. (4.27), it has a lengthy expression
which we do not report here as it is useless to compute the flock length.

Eq. (4.29) can be readily written in the form of a dynamical system, and describing the shape of
propagating patterns amounts to describe the cycles of this dynamical system, i.e. the periodic solutions
of (4.29). We showed in [19, 109] that homoclinic cycles correspond to solitonic band-shape flocks. The
typical extent of these localized excitations is estimated by looking at the linear stability of Eq. (4.29)
around a homogeneous and isotropic state (J(z) = 0). As first pointed out in [5], when propagating
solutions exist the resulting linear system has one stable and one unstable eigenvalues corresponding
respectively to the width of the flock front, and to the extent of its long tail which is a good approxima-
tion of the flock length LF, see Fig. S2. In the weakly polarized tail the second-order term in Eq. (4.29)
remains much smaller than the two others, consistently with the quasi isotropic approximation used
to derive Eq. (4.27). Therefore, after straightforward algebra, discarding subdominant corrections in
D[0], we predict the relation:

LF =
v0
α1

[
c
v0

− v0
2c (1 +

βρ∞
v0

)

ρc(ϕo)− ρ∞

]
, (4.32)

where ρc(ϕo) = (D +D′ϕo)/α1. The above equation relates the flock length, LF, the area fraction in
the surrounding gaz phase, ρ∞, the strength of the roller repulsion, β, and of the alignment terms, α1

at the hydrodynamic level. ρc(ϕo) compares the strength of the alignment interactions to the angular
diffusion which impedes orientational order. It corresponds to the roller fraction above which Eq. (4.27)
would predict a mean-field transition toward collective motion (i.e. ignoring all the gradient terms).
Eq. (4.32) indicates that the macroscopic band length results from the amplification of the microscopic
length scale v0/α1 (of the order of the colloid size) by a factor [ρc(ϕo)− ρ∞]−1 which can be arbitrarily
large as the roller fraction in the gas approaches ρc.

In order to test this prediction, we measure: (i) c which is equal to v0 in all our experiments,
Fig. 2a. (ii) D′ from the slope of the linear increase of D with ϕo in Fig. 4d, and (iii) the density
ρ∞ in the isotropic phase through which the flocks propagate. In addition, in [12], we measured the
value of α1 from the continuous bifurcation from a gas to a vortex state in circular confinements,
and found α1 = 3 × 10−3 s−1. We are hence left with the theoretical prediction with no free fitting
parameter. In Fig. 2.c, which we reproduce below, we find an excellent agreement with our experimental
measurements.

Given the number of simplifications needed to derive the hydrodynamic model, this agreement
confirms the robustness of our results, and our main conclusion: the emergence and suppression of
collective motion induced by a dilute ensemble of obstacles is a genuine non-equilibrium first order
transition. This transition falls in the same universality class as the flocking transition of the Vicsek
type.
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Figure 4.26 | Variations of the flock length with the obstacle fraction. Comparison of the
measured flock length to the theoretical prediction given by Eq. (4.32).

III.iv Emergence of flowing-channel networks

The theory introduced in the previous section is unable to capture the inner structure of the colloidal
flocks. The sole spatial feature of disorder included in this 0th order model is the mean obstacle
fraction. However, Eq. (4.27) could be modified to account for the spatial heterogeneities of the obstacle
distribution by replacing ϕo by its local value ϕo(r) defined at a scale much larger than the typical inter-
obstacle distance. This modified model would endow the rollers with a higher rotational diffusivity,
hence a smaller translational diffusivity, in the regions where the obstacle density is large. A direct
consequence would be the accumulation of the colloids in the regions where the obstacles are the most
concentrated. This prediction is in total contradiction with our experimental observations. In order to
go beyond this oversimplified picture, we need to more accurately account for the impact of the spatial
heterogeneity of disorder.

Hydrodynamics of a strongly polarized flock of rollers: homogeneous media

A major limitation of the current kinetic theories of polar active matter is that they fail in providing a
unified hydrodynamic description valid at all densities and polarizations. As a matter of fact they all rely
on closure approximations which are either valid in the weakly polarized or, conversely, in the strongly
polarized limit. As we now aim at describing the spatial structure of the flock front which is strongly
polarized, Fig. 4.22, we use a closure relation which is different from that used in the previous section
to model nearly isotropic states. We neglect the possible local melting of orientational order and solely
focus on the orientational fluctuations of the polarization field Π = J/(v0ρ) close to the head of the
flock. In fact, we make the following ansatz for the one-point function ψ(r, θ, t) = ρ(r, t)δ(p̂−Π(r, t)).
This ansatz implies that Q = ΠΠ− 1

2I, and the hydrodynamic equation Eq. (4.26) takes a simple form
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at leading order in a gradient expansion:

∂tΠ+ v0Π · ∇Π = P ·
[
−β∇ρ+ α2∇2(ρΠ) + γ∆̃ · (ρΠ)

]
(4.33)

where the projection operator P = I−ΠΠ constrains the modulus of Π to be a constant, and

∆̃ =

(
∂xx − ∂yy 2∂xy

2∂xy ∂yy − ∂xx

)
. (4.34)

All the terms in Eq. (4.33) have a clear physical meaning. The l.h.s is the convective derivative of the
polarization which is advected due to self-propulsion. The first term on the r.h.s is a pressure term.
β∇ρ results from the repulsive interactions between the rollers. Finally, the two positive hydrodynamic
coefficients α2 and γ measure the (anisotropic) stiffness of this broken symmetry fluid. α2 stems from
the alignment interactions, whereas γ derives from the dipolar term in Eq. (4.17). This equation is a
simplified version of the hydrodynamic theory provided in [13] where weak local melting was allowed.
It is reminiscent of the Toner and Tu theory in the strongly polarized limit yet it includes an additional
anisotropic term. We show below that the emergent network of preferred flowing routes is not specific
to this anisotropic addition, and is therefore expected to be a robust large-scale feature of any polar
liquid flowing through repelling obstacles.

Hydrodynamics of a strongly polarized flock of rollers: heterogeneous media

We now generalize Eq. (4.33) to include the effect of disorder. We here model disorder within another
asymptotic approximation. In the same spirit as our roller-roller interaction theory, in the limit of
high obstacle density we provide a mean-field description of the So term in Eq. (4.21) and write it as
So ≡ −∂θJo(r, θ, t), where the angular current Jo results from the angular advection of the probability
density ψ(r, θ, t) by the repulsive torques defined in Eq. (4.19). The net torque felt by a roller at r and
oriented along θ is

∫
ϕo(r

′)∂θHo(r− r′; θ)dr′, where we ϕo(r) is the local packing fraction of obstacles.
The resulting current is:

Jo = −ψ(r, θ)
∫
dr′ϕo(r′)∂θHo(r− r′; θ) (4.35)

We then follow the same procedure as in the previous section and establish the hydrodynamic equation
of the polarization field. We multiply Eq. (4.21) by p̂, and integrate it over θ using the polar closure
ansatz: ψ(r, θ, t) = ρ(r, t)δ(p̂−Π(r, t)) and obtain:

∂tΠ+ v0Π · ∇Π = P ·
[
−β∇ρ+ α2∇2(ρΠ) + γ∆̃ · (ρΠ) + Fo

]
. (4.36)

The only modification to Eq. (4.33) is the additional random-force term Fo which accounts for the
coupling of the polar fluid to disorder. Remarkably this random-force field derives from a potential:
the local obstacle density.

Fo(r) = −βo∇ϕo, (4.37)

where βo is a positive constant which quantifies the strength or the repelling torque. For a uniform set
of spatially uncorrelated obstacles, Fo(r) is a quenched random field of zero mean and variance:

Fo(r)Fo(r′) = β2oϕo∇∇δ(r− r′), (4.38)
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where X denotes the average over disorder of the X observable.
This term has also a very clear physical meaning: Fo focalizes the polar liquid in the valleys of the

potential defined by ϕo. We elucidate below how the pressure arising from the roller repulsion and the
effective elasticity stemming from the alignment interactions compete with disorder to set the spatial
structure of this polar liquid.

Response to a quenched random field and formation of sparse river networks

The full analytical description of an active fluid randomly stirred by quenched disorder goes far beyond
the scope of this article. However a clear physical insight can be gained from a linearized theory.
Let us compute the linear response of the density and polarization fields to a static perturbation Fo.
The unperturbed state is assumed to be homogeneously flowing along the x̂ direction. We introduce
the angular deviation δθ(r) defined as Π(r) = x̂ + δθ(r)ŷ + O(δθ2), and the density perturbation
ρ(r) = ρ̄+ δρ(r). The linearized version of the mass-conservation equation and Eq. (4.33) are:

∂tδρ+ v0∂xδρ+ (v0ρ̄)∂yδθ = 0, (4.39)

∂tδθ + v0∂xδθ = −β∂yδρ+ (α2ρ̄)∆δθ + (γρ̄)(∂yy − ∂xx)δθ + 2γ∂xyδρ+ F⊥, (4.40)

where F⊥ = Fo · ŷ is the component of the random force field in the direction transverse to the mean
spontaneous flow. Let us first briefly sketch the stability of this linear system, without going in the
details of the calculation which are unimportant to the network formation. The isotropic elasticity
(α2 term) stabilizes both the splay and the bend deformations of the polarization field. Conversely
the anisotropic contribution (γ terms) further stabilizes the splay modes while destabilizing the bend
modes. However there always exists a finite range of hydrodynamic coefficients yielding a fully stable
dynamics at all wave-lengths provided that α2/γ < ρ̄ is sufficiently small. Our estimate from the
microscopic parameter values yields α2/γ ∼ 1/10 [12], which is indeed smaller that the colloid fraction
at the flock front. In addition the transverse confinement of the polar flock in a rectangular geometry
further suppresses any form of orientational instability. Consistently, we do not observe any sign of
spontaneous destruction of polar order, or any density modulation for flock cruising in obstacle-free
channels. Therefore, at this stage, we shall focus on the regime where Eqs. (4.39) and (4.40) are linearly
stable.

As we are interested in the statistics of the static structure of the flock, we ignore the transient and
readily solve the linear response in Fourier space introducing the Fourier modes δθ(r) = δθq exp(iq · r),
δρ(r) = δρq exp(iq · r), F⊥ = F⊥

q exp(iq · r). The resulting density and orientational fluctuations are:

|δρq|2 =
ρ̄2q2y(

v0q2x − βρ̄q2y
)2

+ (α2 − γ)2
(
q3x − qxq2y

)2 |F⊥
q |2 (4.41)

and

|δθq|2 =
q2x(

v0q2x − βρ̄q2y
)2

+ (α2 − γ)2
(
q3x − qxq2y

)2 |F⊥
q |2 (4.42)

These equations indicate that the random force field promotes both density and orientational fluctua-
tions. However these fluctuations are hindered by the effective orientational elasticity, the active-fluid
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pressure and self-propulsion. The consequences of these competitions are very clear when looking at
the transverse and quasi longitudinal modes.
(i) Transverse fluctuations: q = qyŷ. Disorder cannot excite any stationary transverse angular
mode (pure splay mode), but yields generic density fluctuations. Using Eqs. (4.41), and (4.37) we find:

|δρq|2 =
(
βo
β

)2

ϕo (4.43)

At all wave-lengths the density fluctuations are set by the competition between the obstacle repulsion
which focalizes the rollers in the valley of the potential ϕo and the inter-roller repulsion that bounds
the maximal local density.
(ii) Longitudinal fluctuations: qx ≫ qy. The quasi longitudinal modes corresponds to bend excita-
tions of the polarization field. Again, using Eqs. (4.42), and (4.37) we find:

|δθq|2 =
β2oϕo

v2o + q2x(α2 − γ)2ρ̄2

(
qy
qx

)2

(4.44)

In the small-q limit the amplitude of the orientational fluctuations is mostly set by the competition
between self-propulsion and obstacle repulsion. This scaling translates a simple phenomenon, for a
given obstacle strength the magnitude of the angular perturbation is an increasing function of the
time spent in the interaction region. As this time decreases linearly with v0, angular fluctuations are
obviously expected to decay with βo/v0. The faster the rollers the less time they feel the obstacle
repulsion. The second term in the denominator of Eq. (4.44) has a very different origin, and provides a
qualitative explanation for the emergence of sparse river networks. The focalization of the rollers in the
valleys of ϕo is restrained by the bending elasticity of the polar liquid. The higher α2, and the smaller
γ, the stiffer are the bending modes. In addition, as in all broken symmetry fluid, the mode having the
smallest wave-lengths are the stiffest. Therefore even though the random force field drives the rollers
along its minima, some of its valleys are much more difficult to flow in as they require a strong bend of
the flow lines. The higher the obstacle fraction the more tortuous the valleys of ϕo(r), thereby limiting
the number of paths allowed by the bending stiffness of the active fluid. At the linear-response level
the angular fluctuations scale with ϕo.

Of course the geometry of a sparse network cannot be quantitatively captured by a mere linear
analysis, yet it has allowed us to single out the very mechanisms responsible for their formation.

III.v Disorder-induced melting and emergent river networks: a robust picture

We shall now stress on the robustness of our two main results: (i) the suppression of flocking motion
observed in our experiments falls in the same class as the first order Vicsek transition, and (ii) the inner
structure of the flocks is that of an increasingly sparse river network. These two results do not rely
on any feature specific to colloidal-roller fluids (Quincke propulsion, electrostatic and hydrodynamic
interactions, colloidal scale, etc). They apply to any polar active material cruising through repelling
obstacles.

However, we have focused on situations where the obstacles renormalize the bare diffusivity of
isolated rollers. At higher obstacle fraction, or much stronger repulsion, a qualitative change in the
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dynamic of motile particles occurs: they do not diffuse at long times, but rather undergo sub-diffusive
motion due to long-time trappings as reported in [26]. The generalization of our results to this limit
goes far beyond the scope of this paper. In this case, both the very nature of the suppression of
orientational order together with the existence of genuine long-range orientational order in 2D remains
an open question in this regime [121, 120].

IV Supplementary Note 3: Flocking through periodic lattices

We close this supplementary not by reporting a series of additionnal experiments conducted in ordered
lattices of obstacles, see Supplementary Video 5. The obstacles have the same diameter as in the
main text (10µm), but form a square lattice with the (1, 1) axis parallel to the direction of the main
channel, Fig. 4.27a. As in disordered geometries, we find that collective motion is sharply suppressed
upon increasing the obstacle fraction ϕo, or decreasing the roller density ρ. Irrespective whether the
obstacles form a periodic lattice or not, the emergence of collective motion is a first order transition
relying on the nucleation and growth of macroscopic band-like excitations. The discontinuity of the
transition in both geometries is clearly seen in Fig. 4.27b, which shows how the flock amplitude, ρF
varies as a function of the mean roller density ρ. Interestingly, we observe that flocks are more robust
to random obstacles; colloidal flocks are found at smaller densities of colloids in disordered media. This
observation is very consistent with a nucleation picture. In a disordered ensemble of obstacles, a flock
can nucleate and grow from a region where the obstacle density is locally small. The flock can then
propagate through the river network separating the regions of high obstacle density. For the same
value of ϕo, no such low-obstacle density region exist in a periodic lattice and no flock is then seen to
propagate.

In addition a very strong qualitative difference exist in this ordered geometry. No sparse river
network forms. The inner structure and dynamics of the flock remain very homogeneous in the direction
transverse to the mean flow, even at the onset of melting, see Fig. 4.27c. The rollers flow through the
entire region left around the mere superposition of depleted wakes centered on the obstacle postions.
This result is very consistent with the model introduced in the previous section to account for the
emergence of river networks in disordered media. When described at scales larger than the lattice
spacing, the obstacle-density field is uniform. Therefore the random stirring term in Eq. (4.36) vanishes,
hence it cannot result in the bending of the roller flow. Conversely, in random media local fluctuations
in the obstacle density drive the roller into increasingly sparse and tortuous valleys as ϕo increases
yielding a markedly different geometry of the flock current, see Fig. 4.27d.
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Figure 4.27 | Flocking through a periodic lattice of obstacles. a, Close-up on the head of a
colloidal swarm propagating past a square lattice of obstacles (black dots). The arrows are located
at the colloid positions and point along the orientation of their velocities. Obstacle packing fraction:
ϕo = 3 × 10−2. Scale bar: 100µm. b, Variations of the amplitude of the flock ρF as a function of
the mean roller fraction. ρF is the difference between the maximal density at the flock front and the
density away from the flock in the isotropic phase. See Fig. 4.22. c, Map of the normalized flock-current
JF(r)/(ρv0) at the onset of melting in a periodic lattice (ϕo = 3 × 10−2, ρ = 7.76 × 10−3). No sparse
network forms. The region where the rollers flow corresponds to the area left by the mere superposition
of depleted wakes centered on the obstacle postions. d, Comparison with the map of the normalized
flock-current JF(r)/(ρv0) at the onset of melting in a random lattice (ϕo = 3× 10−2, ρ = 1.0× 10−2).
A river network forms. The geometry of the flowing route is very different from c.

V Description of the supplementary videos

1. Supplementary video 1: A colloidal flock emerges from a population of ∼ 9, 000 colloids propelling
in a 5mm× 1mm obstacle-free channel. The flock coexists with a gas phase where all the rollers
propel themselves along random directions. Colloid diameter: 4.8µm. Field amplitude E0 =
2V/µm.

2. Supplementary video 2: A colloidal-roller flock cruises coherently through a random ensemble
of circular obstacles placed in a 15mm × 1mm rectangular chamber. ϕo = 2 × 10−2. The flock

114



Distortion and destruction of colloidal flocks in disordered environments

coexists with an isotropic phase. Colloid diameter: 4.8µm. Obstacle diameter: 10µm. Field
amplitude E0 = 2V/µm.

3. Supplementary video 3: Colloidal rollers propelling themselves through a random ensemble of
circular obstacles placed in a 15mm × 1mm rectangular chamber. ϕo = 5 × 10−2. No large-
scale collective motion can emerge. Colloid diameter: 4.8µm. Obstacle diameter: 10µm. Field
amplitude E0 = 2V/µm.

4. Supplementary video 4: Evolution of the local roller current |J(x, y, t)| as a flock crosses the field
of view. The rollers are focalized along a self-organized network of sparse flowing routes. Dark
red color: no current, light red color: maximal current value. ϕo = 2× 10−2. Obstacle diameter:
10µm. Field amplitude E0 = 2V/µm. The current is defined as in Fig. 3a.

5. Supplementary video 5: A colloidal-roller flock cruises coherently through a square lattice of
circular obstacles placed in a 15mm×1mm rectangular chamber. Obstacle fraction: ϕo = 3×10−2.
Roller fraction: ρ = 1.0 × 10−2. Colloid diameter: 4.8µm. Obstacle diameter: 10µm. Field
amplitude E0 = 2V/µm.

115



Article

116



Appendix

Sounds and hydrodynamics of polar active
fluids

Spontaneously flowing liquids have been suc-
cessfully engineered from a variety of biologi-
cal and synthetic self-propelled units [102, 100,
133, 34, 87, 41, 35, 13, 24, 65, 88]. Together
with their orientational order, wave propagation
in such active fluids have remained a subject of
intense theoretical studies [122, 123, 127, 106,
104, 112]. However, the experimental observa-
tion of this phenomenon has remained elusive.
Here, we establish and exploit the propagation
of sound waves in colloidal active materials with
broken rotational symmetry. We demonstrate
that two mixed modes coupling density and ve-
locity fluctuations propagate along all directions
in colloidal-roller fluids. We then show how the
six materials constants defining the linear hy-
drodynamics of these active liquids can be mea-
sured from their spontaneous fluctuation spec-
trum, while being out of reach of conventional
rheological methods. This active-sound spec-
troscopy is not specific to synthetic active ma-
terials and could provide a quantitative hydro-
dynamic description of herds, flocks and swarms
from inspection of their large-scale fluctuations
[21, 50, 15, 20].

We exploit the so-called Quincke mechanism to mo-
torize inert colloidal particles and turn them into self-
propelled rollers [95, 78, 68, 13]. When rolling on a

solid surface they interact via velocity-alignment inter-
actions triggering a flocking transition as their area
fraction exceeds ρ0 = 0.02 [13]. As illustrated in
Fig. 3.7a and Supplementary Video 1, millions of rollers
interacting in a microfluidic channel self-organize to
move coherently along the same direction, all propelling
with the same average velocity ⟨νi⟩ = ν0x̂, Figs. 28a
and 28b. However, the flock does not move as a rigid
body. Instead, it forms a homogeneous active liquid
with strong orientational and little positional order,
Figs. 28b, 28c. Let us note ν∥i and ν⊥i the longitudinal
and transverse components of the velocity fluctuations:
νi = (ν0 + ν

∥
i )x̂ + ν⊥i ŷ. The correlations of the longi-

tudinal component, C∥(r), and of the liquid structure,
are both short ranged and decay over few particle radii,
Figs. 28c, 28d. In stark contrast, the correlations of the
transverse velocity modes, C⊥(r), are anisotropic and
decay algebraically, Figs. 28e and 28f. This algebraic
decay demonstrates that the transverse velocity fluctu-
ations are soft modes associated with the spontaneous
symmetry breaking of the roller orientations [124, 76].
In addition, self-propulsion couples these soft orienta-
tional modes to density fluctuations, thereby causing
the giant number fluctuations illustrated in Fig. 28g.
Such anomalous fluctuations are common to all orienta-
tionally ordered active fluids, see e.g. [124, 76, 87] and
references therein. The density-fluctuation measure-
ments, and the discrepancy with [13] are thoroughly
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discussed in Supplementary Note 1.
Altogether these results establish that colloidal

rollers self-assemble into a prototypical polar active
fluid. Their ability to support underdamped sound
modes, regardless whether the dynamics of their micro-
scopic units is overdamped, is one of the most remark-
able, yet unconfirmed, theoretical prediction for active
fluids with broken rotational symmetry [122, 127, 124,
76]. We provide below an experimental demonstra-
tion of this counterintuitive prediction, and establish
a generic method to measure the material constants of
active fluids from their sound spectrum.

Let us consider the spatial Fourier components,
ρq(t) and vq(t), of the density and transverse velocity
fields, where q = q(cos θ, sin θ) is a wave vector making
an angle θ with the mean flow direction, see Methods.
We show in Figs. 29a and 29b that the time correlations
of ρq and vq oscillate over several periods before being
damped, thereby demonstrating that both density and
velocity waves propagate in the active liquid, see also
Supplementary Videos 2 and 3. We emphasize, that
we here consider the propagation of linear waves as op-
posed to the density fronts, or bands, seen at the onset
of collective motion [76, 102, 31, 13]. In Fig. 29c the
power spectra |ρq,ω|2 and |vq,ω|2 evaluated at θ = π/4
both display two peaks located at identical oscillation
frequencies ω±. They define the frequencies of two
mixed modes involving both density and velocity fluc-
tuations intimately coupled by the mass-conservation
relation: ∂tρ(r, t)+∇·[ρ(r, t)v(r, t)] = 0. Repeating the
same analysis for all wave lengths, we readily infer the
dispersion relations ω = ω±(q) of the two sound modes
as illustrated in Fig. 29d. They both propagate in a
dispersive fashion. Two speeds of sound can however
be unambiguously defined at long wave lengths where:
ω = c±q. Remarkably, both modes propagate in all di-
rections and their dispersion relation strongly depends
on θ, Figs. 29d, 29e and 29f. In particular, we find that
the speed of sound c±(θ) varies non-monotonically as
shown in the polar plot of Fig. 29g. Measuring the an-
gular variations of the speed-of-sound in active liquids
with different area fractions, ρ0, we find that the shape
of the c±(θ) curves is preserved, Figs. 29g, 29h, 29i and
does not depend on the channel geometry, see Supple-
mentary Note 2. Sound propagates faster in denser
liquids.

We now exploit these wave spectra to infer the hy-
drodynamics of the active-roller liquids from their spon-

taneous fluctuations. The Navier-Stokes equations de-
scribing the flows of isotropic Newtonian liquids merely
involve two material constants: density and viscosity.
In contrast, in the absence of momentum conserva-
tion, and given their intrinsic anisotropy, the hydrody-
namics of polar active liquids involve at least fourteen
material constants, see e. g. [124, 66] and Supplemen-
tary Note 3. We here focus on the linear dynamics
of the density and velocity fields around a homoge-
neous and steady flow along the x̂ direction. We note
ρ(r, t) the fluctuations of the density field around ρ0,
and v(r, t) = [u0 + u(r, t)] x̂+v(r, t)ŷ the local velocity
field. As detailed in Supplementary Note 3, they evolve
according to:

∂tρ+ ρ0∂yv + u0∂xρ = D′∂2xρ, (45)

∂tv + λ1u0∂xv = −σ∂yρ+D⊥∂
2
yv +D∥∂

2
xv

+ u0Dρ∂
2
xyρ, (46)

u = −D
′

ρ0
∂xρ. (47)

Eq. (45) corresponds to mass conservation, and Eq. (46)
describes the slow dynamics of the soft transverse-
velocity mode. Eq. (47) indicates that u(r, t) is a fast
mode. Longitudinal fluctuations quickly relax at all
scales and are slaved to ∂xρ(r, t), see Supplementary
Note 3 and [122, 76, 81]. The linear hydrodynam-
ics of the active fluid is therefore fully prescribed by
the emergent flow speed u0(ρ0

), Fig. 30a, and six ma-
terial constants all having a clear physical meaning.
D′ is a diffusion constant readily measured from the
linear relation between longitudinal velocity fluctua-
tions and density gradients defined by Eq. (47) and
confirmed by Fig 30b. λ1 measures how fast velocity
waves are convected by the mean flow and would be
equal to one if momentum were conserved [123]. σ
is the active-liquid compressibility. D⊥ and D∥ can
either be thought as viscosities, or orientational elas-
tic constants. Finally Dρ stems for the couplings be-
tween orientational and positional degrees of freedom
between the active units. Looking for plane-wave solu-
tions of Eqs. (45) and (46), we readily infer the disper-
sion relations of mixed density and velocity waves. In
the long-wave-length limit, they take the compact form
predicted in [123]: ω =

[
c±(θ)q +O(q2)

]
+ i∆ω±(θ),

where c± is the speed of sound and the imaginary
part ∆ω±(θ) = O(q2) corresponds to the widths of the
power spectra exemplified in Fig. 29c. The angular
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variations of the speed of sound are given by:

2c±(θ) = (1 + λ1)u0 cos θ (48)

±
√
(λ1 − 1)

2
u20 cos

2 θ + 4σρ0 sin
2 θ.

This prediction is in excellent agreement with the
speed of sound measurements showed in Figs. 29g, 29h,
and 29i for three different densities. As the mean-
flow speed u0(ρ0) is measured independently, fitting our
data requires only two unknown functional parameters
σ(ρ0) and λ1(ρ0). The variations of c±(θ) therefore pro-
vide a direct measurement of the active-fluid compress-
ibility and advection coefficients, Figs. 30c and 30d.
The consistency of this method is further established
by repeating the same measurements in two different
channel geometries, and comparing the density depen-
dence of the hydrodynamic coefficients with the kinetic-
theory predictions of [13, 12, 84], see Supplementary
Note 3. Figure 30c shows a good agreement for the
variations of σ(ρ0) over a range of densities. As in stan-
dard liquids, the compressibility increases with ρ0. In
the case of λ1 the agreement is also satisfactory but not
as accurate, see Fig.30d. Nonetheless theory predicts
the correct order of magnitude, and more importantly
the absence of variations of λ1 with ρ0. We now mea-
sure the elastic constants of the active fluid from the
damping of the sound waves. Their damping time is set
by the inverse of the spectral widths ∆ω± = q2∆±(θ),
where the expression of the angular functions ∆±(θ) is
given in Supplementary Note 3. Fig. 30e agrees with
the q2 scaling behavior, and we show in Fig. 30f that
the angular variations of ∆±(θ) are correctly fitted by
the linear hydrodynamic theory. Given the shape of
the power spectra, Fig. 29f, measuring ∆± at small θ
is out of reach of our experiments at high packing frac-
tions. We therefore focus on two high angle values.
For θ = π/2 and θ = π/4, the spectral widths take the
simple forms: ∆ω±(π/2) = q2D⊥/2 and ∆ω±(π/4) =
q2

[
1
4 (D⊥ +D∥ +D′)± (ρ0Dρu0)/

√
4σρ0

]
, as detailed

in Supplementary Note 3. A quadratic fit of ∆ω±(π/2)
therefore provides a direct measure of D⊥, Fig. 30e.
Similarly, a quadratic fit of [∆ω+(π/4)+∆ω−(π/4)] =
1
2 (D⊥ + D∥ + D′)q2 gives the value of (D⊥ + D∥) as
D′ = 4 × 10−6 mm2/s is four orders of magnitude
smaller than D⊥ ∼ D∥ ∼ 10−2 mm2/s, see Fig 30b.
The measured values of the elastic constants D⊥ and
D∥ are shown in Figs. 30g and 30h for different packing
fractions. Their order of magnitude, Fig. 30e, and more
importantly their linear increase with ρ0, Figs. 30g

and 30h, are consistent with kinetic theory which also
predicts that D′ should be vanishingly small. In prin-
ciple, Dρ could be measured for any polar active liquid
from the value of ∆ω+(θ) − ∆ω−(θ) ∼ Dρq

2. In the
specific case of the colloidal rollers, kinetic theory pre-
dicts that Dρ should be independent of ρ. The preci-
sion of our measurements is however not sufficient for
an accurate estimate of the variations of ∆ω± with the
roller fraction. For all fractions below ρ0 = 0.24 we find
Dρ = 1 ± 0.5 10−2 mm2/s. Analysing the spontaneous
fluctuations of the polar active fluids, we have mea-
sured all its six materials constants, thereby providing
a full description of its linear hydrodynamics.

Before closing this letter, two comments are in or-
der. Firstly, the q2 damping of the sound modes implies
a ∆N2 ∼ N2 scaling for the number fluctuations [76].
While giant number fluctuations are consistently found
in all our experiments, linear theory overestimates their
amplitude, see Fig. 28g. This last observation might
suggest that the largest scales accessible in our ex-
periments are smaller but not too far from the onset
of hydrodynamic breakdown predicted in [122, 123].
Secondly, we here focus on homogeneous active mate-
rials. A natural extension to this work concerns sound
propagation in more complex active media such as mi-
crofluidic lattices [112], or curved surfaces [104] where
topologically-protected chiral sound modes are theoret-
ically predicted.

In conclusion, two decades after the seminal predic-
tions of Toner and Tu, we have experimentally demon-
strated that the interplay between motility and soft ori-
entational modes results in sound-wave propagation in
colloidal active liquids. We have exploited this counter-
intuitive phenomenon to lay out a generic spectroscopic
method, which could give access to the material con-
stants of all active materials undergoing spontaneous
flows. Active-sound spectroscopy applies beyond syn-
thetic active materials [22, 140], and could be used to
quantitatively describe large-scale flocks, schools, and
swarms as continuous media [21, 50, 15, 20].
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Figure 28 | Colloidal rollers self-assemble into a spontaneously-flowing liquid. a, Close up on a mi-
crofluidic channel including ∼ 3 × 106 colloidal rollers forming a homogeneous polar liquid. The color of the
particles indicates the value of the angle, θi, between their instantaneous velocity and the direction of the mean
flow. Five trajectories illustrate the typical motion of the rollers. ρ0 = 0.11. Scale bar: 100µm. b, Probability
density function of the roller velocities, νi(t), (ensemble and time integration). All the rollers propel along the
same average direction. ρ0 = 0.24 as in all following panels. c, The color indicates the value of the density pair
correlation function g(x, y) evaluated at positions (x, y). Structural correlations are short ranged and display
only weak anisotropy. d, Cuts along the flow direction of the pair distribution functions, g(x, 0) [54], and of the
longitudinal velocity correlations C∥(x, 0), where C∥(r) ≡ ⟨ν∥i (t)ν

∥
j (t)⟩(ri−rj)=r,t/⟨(ν∥i )2(t)⟩i,t. Both structural,

and longitudinal- velocity correlations decay over few particle radii. e, Correlations of the transverse velocity
fluctuations (ensemble and time average): C⊥(r) ≡ ⟨ν⊥i (t)ν⊥j (t)⟩(ri−rj)=r,t/⟨(ν⊥i )2(t)⟩i,t. The transverse fluctua-
tions are long ranged and strongly anisotropic. f, The correlations of the transverse velocity fluctuations, C⊥(r),
decay algebraically in both directions. The solid lines correspond to best algebraic fits: C⊥(x, 0) ∼ x−0.84, and
C⊥(0, y) ∼ y−0.76. g, Giant number fluctuations. Variance, ∆N2(ℓ), of the number of particles measured in
square regions of size ℓ. ∆N2(ℓ) is plotted as a function of the average number of particle N(ℓ) for five different
polar active liquids of average area fractions ρ0 = 0.12, 0.18, 0.18, 0.24, 0.30, 0.39 labeled by colors of increasing
darkness. Solid lines: scaling ∆N2(ℓ) ∼ N(ℓ) corresponding to normal density fluctuations as in equilibrium
fluids, and ∆N2(ℓ) ∼ N2(ℓ) scaling law predicted from linear hydrodynamic theory, see e.g. [76]. Details about
number fluctuation measurements and power-law fit values are provided in Supplementary Note 1.
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Figure 29 | Sound modes in polar active fluids. a, Two-time autocorrelations of the density fluctuations of
wave vector q, with q = 0.52µm−1, for two different directions of propagations, θ = 0 and θ = π/8. ρ0 = 0.11.
b, Two-time autocorrelations of the transverse velocity fluctuations for the same wave vectors as in a. ρ0 = 0.11.
c, Density (red) and velocity (blue) power spectra for q = 0.39 and θ = π/4. The two spectra have two peaks
located at the same frequency ω± and have identical width ∆ω±. Both spectra reflect the propagation of the
same mixed modes combining velocity and density excitations. ρ0 = 0.11. d, e and f, Full power spectra of
the transverse velocity fluctuations ⟨|vq,ω|2⟩/⟨|vq=0,ω=0|2⟩. They clearly show the dispersion relations of the
mixed sound modes along three different directions θ = π/4, θ = π/2 and θ = π/8. The dashed line in panel
d corresponds to the cut showed in c. Sound modes propagate in a non dispersive fashion only at small qs.
ρ0 = 0.11. g, h and i, Polar plots of the speed of sound, c±(θ) = limq→0[ω ± (θ)/q] measured from the slope
at q = 0 of the dispersion relations. Experimental data: Red dots (resp. blue dots) correspond to c+(θ) (resp.
c−(θ)). Solid lines: theoretical fits from Eq. (48). The roller area fractions are ρ0 = 0.11 in g, ρ0 = 0.18 in h,
and ρ0 = 0.24 in i.
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Figure 30 | Active-fluid spectroscopy. Red dots: experimental data. Blue line: best linear fit. Dashed line
theoretical prediction with no free fitting parameter deduced from kinetic theory, see Supplementary Note 3.
The hydrodynamic description of the active fluid is inferred from: a, Variations of the mean-flow speed with the
mean area fraction. Error bar: 100µm/s, 1std. Denser fluids flow faster. b, Parametric plot of the longitudinal
velocity fluctuations |uq|2 varrying linearly with (qx|ρq|2) for three propagation angles. The slope gives a measure
of D′ = 4 × 10−6 mm2/s. The offset at qx = 0 comes from the noise acting on the u mode, see Supplementary
Note 3. c,d, The compressibility coefficient, σ and advection coefficient, λ1, are plotted versus the mean area
fraction ρ0. Both quantities are measured from the best fit of the speed of sound (Figs. 29g, 29h, 29). The
error bars defined applying the uncertainty-propagation formula on σ = c±(π/2)2/ρ0 and λ1 = c+(0)/c−(0).
The uncertainties on c and ρ0 are respectively 100µm/s and 0.02. e, Spectral width ∆ω±(π/2) of the modes
propagating at θ = π/2 plotted versus q (log-log plot). ∆ω±(π/2) grows quadratically with q. Error bars:
10Hz estimated comparing several Lorentzian fits. Solid line: best quadratic fit. The bare prediction from the
simplified kinetic theory overestimates ∆ω±(π/2) by a factor of 3. The possible origins of this overestimate are
discussed in Supplementary Note 3. f, Polar plot of the spectral width normalized by q2 and averaged over all
wave vectors ∆± = ⟨∆ω±(θ)/q2⟩q. Red (resp. Blue) dots: experimental data corresponding to ∆+ (resp. ∆−).
Solid lines: best fits using the relation ∆± = 1

4 [−(D′+D⊥+D∥)−(D′+D∥−D⊥) cos(2θ)±Dρu0
√
ρ0/σ sin(2θ)],

see Supplementary Note 3. g, Variations of the elastic constant D⊥ with ρ0. D⊥ is measured from the quadratic
fit shown in e, see main text. Error bars defined as the 0.95 confidence interval of the quadratic fit in e. The
elastic constant increases linearly with the particle density. h, Variations of the average elastic constant D∥+D⊥
with ρ0. D⊥+D⊥ measured from the quadratic fit of ∆ω+(π/4)+∆ω−(π/4), see main text. Error bars defined
as in g.
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Methods

We use Polystyrene colloids of diameter 2a = 4.8µm
dispersed in a 0.15 mol.L−1 AOT-hexadecane solu-
tion (Thermo scientific G0500). The suspension is in-
jected in a wide microfluidic channel made of two par-
allel glass slides coated by a conducting layer of In-
dium Tin Oxyde (ITO) (Solems, ITOSOL30, thick-
ness: 80 nm) [13]. The two electrodes are assembled
with double-sided scotch tape of homogeneous thick-
ness (H = 110µm). More details about the design of
the microfluidic device are provided in the Supplemen-
tary Figure 5.

The colloids are confined in a 2mm × 30mm race
track. The walls are made of a positive photoresist
resin (Microposit S1818, thickness: 2 µm). This geom-
etry is achieved by means of conventional UV lithog-
raphy. After injection the colloids are let to sediment
onto the positive electrode. Once a monolayer forms,
Quincke electro-rotation is achieved by applying a ho-
mogeneous electric field transverse to the two electrodes
E = E0ẑ. The field is applied with a voltage amplifier
(TREK 609E-6). All reported results correspond to
an electric field E0 = 2EQ, where EQ is the Quincke
electro-rotation threshold EQ = 1V/µm. The colloids
are electrostatically repelled from the regions covered
by the resin film thereby confining the active liquid
in the racetrack. Upon applying E0 the rollers pro-
pel instantly and quickly self-organize into a sponta-
neously flowing colloidal liquid. All measurements are
performed after the initial density heterogeneities have
relaxed and a steady state is reached for all the observ-
ables. The waiting time is typically of the order of 10

minutes.
The colloids are observed with a 9.6x magnifica-

tion with a fluorescent Nikon AZ100 microscope. The
movies are recorded with a 4Mpix CMOS camera
(Basler ACE) at frame rates of 500 fps. The particles
are detected with a one pixel accuracy, and the particle
trajectories and velocities are reconstructed using the
Crocker and Grier algorithm [29]. Measurements are
performed in a 1146µm× 286µm observation window.
The individual particle velocities are averaged over 4
subsequent frames.

The spatial Fourier transform of the density and
transverse velocity fields are respectively defined as:

ρq(t) =
∑

i

eiq[xi(t) cos θ+yi(t) sin θ], (49)

vq(t) =
∑

i

νi(t)e
iq[xi(t) cos θ+yi(t) sin θ], (50)

where xi(t) and yi(t) are the instantaneous particle
coordinates. The sum is performed over all detected
particles. Time Fourier transforms are then performed
using the MATLAB implementation of the FFT algo-
rithm. The positions of the maxima, ω±, and the width
∆ω± of the velocity power spectra are determined by
fitting the |vq(ω)|2 curve by the sum of two Lorentzian
functions.

Code avaibility

Matlab scripts used in this work are avaible from the
corresponding author upon reasonnable request.

Data avaibility

The data that support the findings of this study are
avaible upon request from the corresponding author.

Supplementary videos legends

Supplementary video 1. An active polar liquid composed of ∼ 3×106 colloidal rollers flows in a microflu-
idic racetrack. We show the trajectories of five particles, and the instantaneous orientation of their velocity
(black arrows). They fluctuate around the average direction of the emergent flow. The polar liquid does not
move like a rigid body, the particles rearrange. The area fraction of the colloids is ρ0 = 0.11. Colloid diameter:
4,8 µm. Field amplitude: E0 = 2V/µm. Movie recorded at 500 fps, played at 30 fps.
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Supplementary video 2. An active polar liquid composed of ∼ 3 × 106 colloids flows in a microfluidic
racetrack. The color indicates the magnitude of the velocity-component transverse to the mean flow. Blue
particles are moving up, red particles are moving down. Transverse velocity fluctuations propagate through the
polar liquid. The area fraction of the colloids is ρ0=0,11. Colloid diameter: 4,8 µm. Field amplitude: E0=2
V/µm. Movie recorded at 500 fps, played at 20 fps.

Supplementary video 3. Density field of a polar liquid flowing in a microfluidic racetrack. The density
field is defined in the Voronoi cells centred on the particles. The color of the cells indicates the inverse of the
cell area, and therefore corresponds to the local colloid density. The density fluctuations propagate in different
directions when the polar liquid flows. The area fraction of the colloids is ρ0=0,11. Colloid diameter: 4,8 µm.
Field amplitude: E0=2 V/µm. Movie recorded at 500 fps, played at 20 fps.

Supplementary Note 1 : Giant density fluctuations

1 Colloidal roller liquids display giant density fluctuations

Giant number fluctuations are one of the most remarkable features of active liquids with uniaxial orientational
order [76, 124]. This phenomenon has been consistently reported for a variety of experimental systems ranging
from shaken grains, to bacteria suspensions and motility assays, see [87] for a comprehensive list and a critical
assessment of the available measurements and simulations. Even though there is no doubt about the existence
of giant number fluctuations in ordered liquids assembled from motile particles, their measurement is extremely
delicate as subject to a number of possible artefacts. The determination of the exact scaling law relating the
fluctuations, ∆N2(ℓ), of the number of particles in a box of size ℓ to the average number N(ℓ) goes beyond the
scope of this letter. We however unambiguously establish that the number fluctuations in polar active liquids
assembled from colloidal rollers are giant. Performing measurements on six different polar liquids of average
packing fractions comprised between ρ = 0.12 and ρ = 0.39, we find ∆N2 ∼ Nα with 1.46 < α < 2.04, as
detailed below.

Number fluctuations are all measured in steady state, and in the most homogeneous region of our device.
The homogeneity of the polar liquid was checked by measuring the time average density field in the entire
observation window as illustrated in Fig. 31a. Number fluctuations are computed only in regions of space where
the static spatial heterogeneities are less than 10%. The statistics is accumulated over 5,000 frames. The number
of particules is counted in square boxes of increasing length. The results of the number statistics are shown
separately for each experiment in Figs. 31b to 31g. A power law fit of the data is performed for values of
N larger than 10. The values of the α exponent are systematically found to be larger than 1 establishing the
existence of giant number fluctuations in all roller fluids. Importantly, we stress that this anomalous scaling
does not originate from the static heterogeneities of the density field. The static fluctuations of ∆N2 are found
to be between one and two orders of magnitude smaller than the dynamical fluctuations.

The unambiguous existence of giant number fluctuations calls for a critical discussion of the conflicting
measurement reported in [13].
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Figure 31 | Giant number fluctuations. a, Time averaged density field of a polar liquid with
an average area fraction of ρ0 = 0.12. The color on the heat map indicates the local value of the
time averaged area fraction. Dashed line: region where the number fluctuations are computed.The
corresponding x and y averaged density profiles are plotted respectively below and on the right hand
side of the density plot. b-g, Number fluctuations ∆N2 plotted versus the average number of particles
N for average area fractions of ρ0 = 0.119, ρ0 = 0.182, ρ0 = 0.183, ρ0 = 0.236, ρ0 = 0.300 and ,
ρ0 = 0.397. Solid line bets power law fit and value of the fitted power law.

2 Critical discussion of the results published in [13]

In [13] using the same experimental system (aside from minor technical differences: slightly different AOT salt
concentration, different gap between the electrodes and use of another insulating layer to confine the colloids),
polar liquids assembled from colloidal rollers were reported to display normal density fluctuations. This con-
clusion was erroneous and certainly due to a poorer statistics. The results reported in Fig. 4c from [13] are
reproduced in Fig. 32a below. The quality of the data does not make it possible to distinguish between any
value of α comprised between 1 (dashed line) and 1.2 (Solid line and best power-law fit).

We have also analysed two additional experiments published in [13], including the polar-liquid movie pre-
sented in Supplementary Video 4 from [13] and corresponding to ρ0 = 0.18. The number fluctuations computed
over the entire ensemble of available frames using the same algorithm as in the present study are plotted in
Figs. 31b and 31c. Again the number fluctuations significantly deviates from a normal behavior. The values
of the α exponents are consistent with that found in the present study. From this complementary analysis, we
rectify the conclusion drawn in [13] and conclude that colloidal roller fluids display the giant number fluctuations
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Figure 32 | Giant number fluctuations, comparison with the results from [13]. a, Number
fluctuations ∆N2 plotted versus the average number of particles N . Average area fractions of ρ0 =
0.095. These data correspond to that of Fig. 4c in [13]. Dashed line: normal fluctuations ∆N2 ∼ N .
Solid line: best power law fit giving ∆N2 ∼ Nα with α = 1.15. b and c Number fluctuations
∆N2 plotted versus the average number of particles N measured from two different movies including
Supplementary Video 4 from [13] (average area fractions of ρ0 = 0.18). The number fluctuations are
found to be giant with exponents α = 1.29 and α = 1.42.

typical to all uniaxial active liquids.

We conclude this critical discussion, by addressing the theoretical explanation put forward in [13] to justify
the apparent lack of anomalous number fluctuations. The microscopic theory of roller interactions includes
long range hydrodynamic interactions that were predicted to damp splay and density fluctuations at long wave
lengths. Our speed of sound measurements indicate that these long-range interactions do not have any impact
on the roller dynamics at the scale of our experiments. As a matter of fact, this damping term would result
in a dispersion relation scaling as ω ∼ const as q → 0. This prediction is not supported by our experimental
measurements, Fig. 2 in the main text. The reason for this discrepancy is very likely to be due to the very
small magnitude of the long-range hydrodynamic interactions having a strength set by the ratio a/H = 2×10−2

between the colloid radius a and the distance between the two electrodes H. Probing the potential impact of
these hydrodynamic interactions would require performing experiments at much larger scales out of reach of our
current setup.

Supplementary Note 2 : Independence of the material parameters on
the channel geometry

In order to ascertain that the material parameters measured by active-sound spectroscopy correspond to bulk
properties. We conducted a series of two experiments in microfluidc channels of width 1 mm and 2 mm. Figs. 33a
and 33a indicates that the velocity fluctuation spectra are not altered by confinement. Accordingly, the angular
variations of the speed of sound measured in the two channels are indistinguishables within our experimental
accuracy. Fitting the speed of sound with the Toner Tu prediction gives λ1 = 0.75±0.1 and σ = 1.1±0.1 (mm/s)2.
All measurements reported in the main text correspond to experiments performed in 2 mm-wide channels and
therefore correspond to bulk properties.
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Figure 33 | Impact of confinement on sound propagation a, Power spectrum of the transverse
velocity fluctuations ⟨|vq,ω|2⟩/⟨|vq=0,ω=0|2⟩, in a channel of width 1 mm. θ = π/4 and ρ0 = 0.06. b,
Power spectrum of the transverse velocity fluctuations ⟨|vq,ω|2⟩/⟨|vq=0,ω=0|2⟩, in a channel of width 2
mm. θ = π/4 and ρ0 = 0.07. c, Polar plots of the speed of sound, c±(θ) = limq→0[ω± (θ)/q] measured
from the slope at q = 0 of the dispersion relations. Experimental data: dots (1 mm wide channel),
triangles (2 mm wide channel). Solid lines: theoretical fits. Same experimental conditions as in a and
b.

Supplementary Note 3: Hydrodynamic theory of polar active liquids

1 Toner and Tu hydrodynamics

We recall below the hydrodynamic description of polar flocks, also termed polar active liquids, as first introduced
by Toner and Tu in [122] and reviewed in [124, 76]. These active materials are associated with two hydrodynamic
fields: the liquid density ρ(r, t), and the local velocity field v(r, t). ρ(r, t) is a slow variable because particle
number is conserved, while v(r, t) is a slow variable only in the polar-liquid phase where rotational symmetry
is spontaneously broken. As a matter of fact, we are dealing here with an instance of dry active matter where
momentum is not conserved [76]. In the case of active colloids propelling on a substrate, the solid surface acts as a
momentum sink. Toner and Tu constructed a set of phenomenological equations of motion using only symmetry
and conservation principles. Since then, these equations have been confirmed by kinetic theories constructed
both from minimalistic and realistic microscopic models [5, 43, 13]. For a 2D active liquid, in their most general
form, Toner and Tu equations read:

∂tρ+∇ · (vρ) = D∆ρ, (51)

and,

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(|v|2) = a2v − a4|v|2v − σ1∇ρ− σ2 (v · ∇ρ)v
+DB∇ (∇ · v) +DT∇2v +D2 (v · ∇)

2
v

+Dρ1∆ρv +Dρ2

[
(v · ∇)

2
ρ
]
v +Dρ3∇ (v · ∇ρ) .

(52)

Eqs. (51) and (52) include 14 unknown materials constants which a priori all depend on ρ. Before recalling
the physical meaning of these lengthy equations, we note that the last three terms were neglected in [122]. We
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keep them here as they are allowed by symmetry and are of the same order in a gradient expansion. The λis
are all convective coefficients. λ2 = λ3 = 0 and λ1 = 1 is a normal, passive fluid. The a2 and a4 terms are the
usual Ginsburg Landau term allowing for spontaneous symmetry breaking. Their ratio sets the magnitude of
the mean flow speed in the ordered phase. The DB, DT and D2 terms in Eq. (52) are the anisotropic elastic
(Frank) constants of this broken symmetry fluid. The Dρs couple density and elastic deformations. D is the
translation diffusion of the active particles which we neglect below.

2 Linear fluctuations

We are interested in describing the linear fluctuations of the density and velocity fields in a homogeneous polar
liquid of average density ρ = ρ0 + δρ and velocity v(r, t) = [u0 + u(r, t)] x̂ + v(r, t)ŷ. Once linearized around
this steady state, the three equations of motion take the form:

∂tρ+ ρ0 (∂xu+ ∂yv) + u0∂xρ = 0, (53)

∂tu+ λ1u0∂xu+ λ2u0 (∂xu+ ∂yv) + 2λ3u0∂xu = −2a4u
2
0u− σ∂xρ (54)

+ (DT +DB +D2u
2
0)∂xxu+DB∂xyv +DT∂yyu

+ u0(Dρ1 +Dρ3 + u20Dρ2)∂xxρ+Dρ1u0∂yyv,

∂tv + λ1u0∂xv + 2λ3u0∂yu = −σ∂yρ+Dρ3u0∂xyρ (55)

+ (DT +DB)∂yyv +DB∂xyu+ (D2u
2
0 +DT)∂xxv,

We have also ignored the anisotropy of the liquid compressibility by setting σ2 = 0 and noted σ1 = σ as it will
play no role in all that follows. Eq. (54) indicates that longitudinal velocity fluctuations relax in a finite time of
the order 1/(2a4u20). In the hydrodynamic limit the variations of u are therefore slaved to ρ and v. Focusing on
time scales larger than 1/(2a4u

2
0), and length scales larger than λ1/(2a4u0), Eq. (54) readily simplifies into:

u = − σ

2a4u20
∂xρ+O(∇2). (56)

This relation is verified in our experiments, see Fig. 3b in the main text. Plugging Eq. (56) into Eqs. (53)
and (55), the linear dynamics of the only two slow modes take the much simpler form:

∂tρ+ ρ0 (∂yv) + u0∂xρ = D′∂2xρ (57)

∂tv + λ1u0∂xv = −σ∂yρ+D⊥∂
2
yv +D∥∂

2
xv + u0Dρ∂

2
xyρ (58)

where,

D⊥ = DT +DB (59)

D∥ = D2u
2
0 +DT (60)

Dρ = Dρ3 −
λ3σ

a4u20
(61)

D′ =
σρ0
2a4u20

(62)

While D′ is measured from the linear relation between density and longitudinal-velocity fluctuations, Fig. 3b,
a more careful analysis of the fluctuation spectra is required to measure the values of the five other material
constant characterizing the linear hydrodynamics of the polar fluid: λ1, σ, D⊥, D∥, and Dρ.
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3 Dispersion relations of the slow modes

Let us look for for plane-wave solutions of the two linear equations defined by Eqs. (57) and (58). Writing the
wave amplitudes ρ(q, ω) and v(q, ω), where ω is the frequency and q = q(cos θ, sin θ) is the wave vector, we find
that they obey the matrix equation:

iω

[
ρ(q, ω)
v(q, ω)

]
= M ·

[
ρ(q, ω)
v(q, ω)

]
. (63)

The response matrix M is defined as M = iqC− q2D, where

C =

(
u0 cos(θ) ρ0 sin(θ)
σ sin(θ) λ1u0 cos(θ)

)
, (64)

and
D =

(
D′ cos2 θ 0

1
2u0Dρ sin(2θ) D∥ cos2(θ) +D⊥ sin2(θ)

)
. (65)

The eigenvectors of the linear system defined by Eq. (63) are mixed modes coupling density and transverse
velocity fluctuations. Their dispersion relations are defined by the eigenvalues ω±(q, θ) of M(q) which take a
simple form in the limit of small wavevectors:

ω±(q, θ) =
[
c±(θ)q +O(q3)

]
+ i∆ω±(q, θ). (66)

The associated eigenmodes correspond to non-dispersive plane waves propagating with a phase velocity c± and
attenuated over a time 2π/(∆ω±).

4 Speed of sound

Unlike sound waves in isotropic passive liquids, c± depends on the direction of propagation θ. As predicted first
by Toner and Tu [122], we find:

2c±(θ) = (1 + λ1)u0 cos θ ±
√

(λ1 − 1)
2
u20 cos

2 θ + 4σρ0 sin
2 θ. (67)

The non-monotonic angular variations of the speed of sound are in excellent agreement with our experimental
findings, see Figure 2 g,h,i in the main text. Analysing the angular variations of the speed of sound, we infer both
the convective coefficient λ1 and the compressibility σ, see Fig. 3c. As thoroughly explained below, measuring
the orientational elasticity of the polar liquid requires inspecting the damping dynamics, or equivalently the
spectral width of the density and velocity fluctuations.

5 Sound-wave damping and measurement of the orientational-elasticity constants

Let us consider the linear response of the polar liquid to a random white noise ξ = (ξρ(r, t), ξv(r, t)). ξρ is
conserved while ξv is a non conserved random force field acting respectively on ρ and v. In Fourier space the
stochastic equations of motion are:

iω

[
ρ(q, ω)
v(q, ω)

]
= M ·

[
ρ(q, ω)
v(q, ω)

]
+ ξ(q, ω). (68)

The power spectra of both ρ and v are easily computed from Eq. (68) and take the same functional form:

|v(q, ω)|2 =
α+

(ω − c+q)2 +∆ω2
+

+
α−

(ω − c−q)2 +∆ω2
−

(69)
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where the noise variance sets the values of the amplitude factors α± which are irrelevant to all that follows.
The velocity spectrum is the sum of two Lorentzian functions peaked along the dispersion relations ω = c±(θ)q.
This low-q theory accurately predicts the non-dispersive part of the dispersion relation, but obviously fails
in describing wave dispersion at short wave lengths, Figs. 2d,e,f. The spectral width ∆ω± is computed from
Eq. (63):

∆ω±(q, θ) =
q2

4

[
−(D′ +D⊥ +D∥)− (D′ +D∥ −D⊥) cos(2θ)±Dρu0

√
ρ0
σ

sin(2θ)

]
+O(q3) (70)

This expression is rather complex, yet it is clear that the spectral width of the sound modes is set by the
elastic constants of the broken symmetry fluid. Their values and their variations with the average fluid density
are easily computed when inspecting the two cases corresponding to θ = π/2 and θ = π/4.

Transverse waves: θ = π/2

The case of sound waves propagating along the transverse direction θ = π/2 is straightforward. The two
dispersion relations are symmetric, see Fig. 2e, the two speeds of sound are opposite, c±(π/2) = ±√

σρ0, and
their spectral width grows quadratically with q2 as expected:

∆ω±(π/2) =
1

2
D⊥q

2. (71)

High-q distortions are more effectively suppressed by the alignment interactions between the active particles, or
equivalently by orientational elasticity. Fitting the variations of ∆ω±(π/2) by a quadratic function provides a
direct measurement of D⊥. Repeating the same procedure for all densities we find that D⊥ increases linearly
with ρ0. The denser the polar liquid, the stiffer.

Oblique waves: θ = π/4

Repeating the same analysis at θ = π/4, we find that the two sound modes propagate at c±(π/4) =
(u0±√

σρ0)√
2

.
The spectral width of the two modes grows again as q2, and are related to the elastic constants by

∆ω+

(π
4

)
+∆ω−

(π
4

)
=

(
D⊥ +D∥ +D′) q2, (72)

and

∆ω+

(π
4

)
−∆ω−

(π
4

)
=
ρ0Dρu0√
σρ0

q2. (73)

Fitting ∆ω+

(
π
4

)
+∆ω−

(
π
4

)
by a quadratic function of the wave vector provides a direct measurement of the

average elastic constant
(
D⊥ +D∥ +D′), see Eq. (72). As shown in the main text, we find a value 4 orders of

magitude larger than that of D′ which can therefore be neglected. As D⊥ is known from the previous analysis
at θ = π/2, D∥ is readily deduced from the quadratic fit of ∆ω+

(
π
4

)
+∆ω−

(
π
4

)
.

The last material constant to be determined is Dρ. In principle, it could be measured by fitting ∆ω+

(
π
4

)
−

∆ω−
(
π
4

)
by a quadratic function of q, as both u0 and σ were already measured independently (from velocity and

sound speed measurements, see Fig. 34 and Eq. (67)). In the specific case of our colloidal-roller experiments, the
precision of our measurements of ∆ω± prevents us from determining D∥. Nonetheless, this last material constant
can be estimated exploiting our quantitative understanding of the colloidal-roller interactions as explained.
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6 Colloidal-roller hydrodynamics

Microscopic dynamics

We briefly recall the kinetic-theory framework used to derive of the Toner and Tu equations for the polar-liquid
phase of colloidal rollers. In [13], starting from the Maxwell and Stokes equations, and after lengthy algebra, we
showed that the rollers propel at constant speed, ν0, and interact via their orientational degree of freedom only.
Noting ri the position of their center of mass, and θi the orientation of their velocity νi(t) = ν0(cos θi, sin θi),
their translational and angular dynamics can be recast into the compact form:

∂tri(t) = ν0ν̂i, (74)

and
∂tθi(t) = −∂θi

∑

j ̸=i

H(ri − rj ; θi, θj) +
√

2DRξi(t) (75)

where the ξi are uncorrelated Gaussian white noises of unit variance, and where the effective interaction potential
H is given by

H(ri − rj ; θi, θj) = A(r)ν̂i · ν̂j +B(r)ν̂i · r+ C(r)ν̂j · (2r̂r̂− I) · ν̂i. (76)

This functional form turns out to be very generic [18] and corresponds to the first three terms of a systematic
multipolar expansion of the angular interactions. In the specific case of interacting rollers the three kernels A(r),
B(r) and C(r) can be approximated within a far field approximation for the hydrodynamic and electrostatic
interactions:

A(r) = A1

(a
r

)3

Θ(r) +A2

(a
r

)5

Θ(r), (77)

B(r) = B1

(a
r

)4

Θ(r), (78)

C(r) = C1

(a
r

)3

Θ(r) + C2

(a
r

)5

Θ(r) + C3

(a
r

)2

. (79)

The A term in Eq. (76) is akin to a ferromagnetic coupling, and stems both from hydrodynamic (A1) and
electrostatic interactions (A2). The B term is a repelling torque that originates from the electrostatic interactions
between the electrostatic dipoles formed by the surface charges of the rollers. Finally, the C term promotes
alignment of the roller i along a dipolar field centered on roller j. This term has three different origins. The C1

and C2 terms have the same microscopic origin as A1 and A2, while C3 stems from the finite size of the rollers
and vertical confinement which altogether result in genuinely long-range interactions. All other interactions are
indeed screened over a distance set by the channel height H. For the sake of simplicity, we approximate the
screening function Θ(r) by a step function Θ(r) = 1 if r ≤ H/π and Θ(r) = 0 otherwise.

All the scalar coefficients in Eqs. (77), (78) and (79) have units of inverse time scales, and are all of the
order of the so-called Maxwell relaxation rate τ−1 ∼ 3 kHz [78, 13]. Rotational diffusion was measured from
the exponential decay of the correlations of the roller orientation in the gas phase [13, 12, 84]. Within our
experimental conditions, we find [84]:

A1 = A2 = B1 = C1 ∼ τ−1 (80)

C2 ∼ 1.7τ−1 (81)

C3 ∼ (4.5× 10−2)τ−1 (82)

DR ∼ 3 s−1 (83)

As C3 is a thousand times smaller that all the other interaction strengths, we henceforth neglect this contribution
to Eq. (79). This simplification is further supported by the very good agreement between our measurements
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Figure 34 | Roller speed. Red dots: Variations of the roller speed with the roller area fraction ρ0.
Blue line: best linear fit.

and our hydrodynamic theory described in the main text. The last two parameters needed to fully specify the
dynamics of the rollers are the screening distance H = 110µm, and the roller speed ν0. Our simplified model
predicts a constant roller speed at all densities. To go beyond this approximation we measured the variations of
ν0 with the average density ρ0 and use this relation as a phenomenological law Fig. 34.

Kinetic theory of the polar-liquid phase

We now outline the construction of the hydrodynamic equations for the density and velocity fields in the polar-
liquid phase. We use here a conventional kinetic-theory framework reviewed e.g. in [76]. We first write a
conservation equation for the one-point distribution function ψ(r, θ, t), viz the probability to find a particle at
position r with an orientation θ:

∂tψ(r, θ, t) + ν0ν̂ · ∇ψ(r, θ, t)−DR∂
2
θψ(r, θ, t) = ∂θIint(r, θ, t) (84)

For interaction-free particles moving in a homogeneous media, the r.h.s of the above equation would vanish. ψ
would be merely advected due to self-propulsion, and would diffuse in the θ direction due to angular noise. The
angular current Jint accounts for the roller-roller interactions. Starting from the microscopic equations of motion,
Eqs. (74) and (75), we derived the functional form of Jint(r, θ, t) in [13]. In brief, as the range of the effective
potential H is of the order of 40 colloid radii, even at the lowest colloid fraction, each particle interacts on average
with ∼ 200 neighbors. This large number suggests using a mean-field description to establish the functional
form of Jint. We therefore assume that the two-point function factorizes as: ψ(2)(r, θ; r′, θ′) = ψ(r, θ)ψ(r′, θ′)
and vanishes for |r− r′| < 2a, in order to account for the finite size of the rollers. Jint then takes the form:

Jint = −ψ(r, θ)
∫

|r−r′|>2a

dθ′dr′ψ(r′, θ′)∂θH(r− r′; θ, θ′) (85)

Integrating the above equation over θ, we recover the mass conservation relation:

∂tρ(r, t) +∇ · J(r, t) = 0, (86)

where the roller current J(r, t) and velocity fields are defined as J ≡ ν0
∫
dθ ν̂ψ(r, θ, t), and J ≡ ρv. The

dynamical evolution of J(r, t) is obtained by multiplying Eq. 84 by v̂ and integrating it over the angular variable.
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At leading order in a systematic gradient expansion it takes the form:

∂tJ+ v20∇ ·
[
ρ

(
Q+

1

2
I
)]

=−DRJ+ α1ρ(I− 2Q) · J− β
v0
2
(I− 2Q) · ρ∇ρ

+ α2ρ(I− 2Q) ·∆J+ γ2ρ(I− 2Q) · ∆̃J, (87)

where

∆̃ =

(
∂xx − ∂yy 2∂xy

2∂xy ∂yy − ∂xx

)
, (88)

and where α1 = 0.5 τ−1 and the elastic constant α2 = Ha
7 τ−1 stem for the velocity-alignment interactions at

the microscopic level (A terms in Eq. (75)). β = a
2 τ

−1 originates from the repulsive interactions (B terms in
Eq. (75)). finally the anisotropic elasticity constant γ2 results from the C terms in Eq. (75) which couple the
roller orientations and relative positions.

At this stage, we do not have a closed set of hydrodynamic equations but only a relation between ρ, J and
the local nematic tensor Q, defined as: ρQ = ⟨ν̂ν̂ − 1

2 I⟩. An additional closure relation is required to establish
the hydrodynamic theory of this active material.

Hydrodynamic theory

Deep in the polar-liquid phase we assume Gaussian fluctuations of the velocity field. This ansatz imposes the
relation

Q =
1

ν60
v4

(
vv − ν20

2
I
)
. (89)

Using this relation in Eq. (87) we find the hydrodynamic equation of the polar liquid formed by interacting
colloidal rollers. Once linearized around a homogeneous flow field v = (u0 + u)x̂ + vŷ it takes the very same
form as the linearized Toner and Tu equations:

∂tρ+ ρ0∂yv + u0∂xρ = D′∂2xρ (90)

∂tv + λ1u0∂xv = −σ∂yρ+D⊥∂
2
yv +D∥∂

2
xv + u0Dρ∂

2
xyρ (91)

where all the hydrodynamic coefficients are now defined from the microscopic interaction parameters:

λ1 =
u20
ν20

(92)

σ =
a2

2τ
u0(ρ0) (93)

D⊥ =
5Haρ0
14τ

(94)

D∥ =
3Haρ0
14τ

(95)

Dρ =
D⊥ −D∥

ρ0
(96)

D′ = 0 (97)

Eqs. (90) to (97) fully prescribe the linear hydrodynamic equations of colloidal-roller liquids. Several com-
ments are in order. All material constants depend on the liquid density. However deep in the polar phase the
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polar liquid flows at a speed indistinguishable from the individual roller speed ν0 and λ1 ∼ constant. D′ is
vanishingly small in agreement with our experimental measurements. D′ is indeed measured to be 4 orders of
magnitude smaller than all the other elastic constants, see Fig. 3. D⊥, D∥ and Dρ are related by Eq. (96). The
value of D∥, which we cannot measure directly, can thus be inferred from D⊥ and Dρ

These predictions are confronted to our spectroscopy method in Figure 3 in the main document and validate
the relevance of active-sound spectroscopy to infer the material constants of broken-symmetry active materials
from their fluctuation spectra.

Critical discussion of the kinetic theory

We highlight in this section the numerous assumptions required to derive the hydrodynamic equations for the
colloidal-roller liquid starting from the microscopic description of the Quincke phenomenon, at the single-colloid
level [13]. Despite these numerous approximations the convective coefficient (λ1), and the compressibility (σ) of
the active fluid are correctly predicted. The elastic constants are however overestimated. Kinetic theory only
provides the correct orders of magnitude and more importantly their variations with ρ0. A better theory should
address the following issues:

1. Quincke rotation near a conducting wall. Our description of the Quincke mechanism is classically per-
formed in the limit of vanishingly small Debye length. This approximation might be too severe when, as
in our experiments, the colloids lie on a charged surface.

2. Orientational interactions. When describing the interactions between Quincke rollers, we neglect the in-
teraction forces, and focus on the interactions torques. Simply put we assume the roller velocity ν0 to be
a constant, and the roller velocity to be slaved to their orientation. This approximation is theoretically
justified by the fact that the Quincke mechanism results from a spontaneous symmetry breaking. There-
fore, the single-colloid orientation is slaved to a soft-mode. In practice, we do observe fluctuations of ν0
of the order of 10%. An improved theory should take into account the interaction forces as well.

3. Far-field interactions. The disturbances to the electric and hydrodynamic fields induced by the rollers
were computed in the far-field limit. The resulting interactions are therefore an approximate of the actual
interactions which also include near-field contributions.

4. Interaction range. Both the hydrodynamic and electric field induced by the roller motion are exponentially
screened over a distance of the order of the channel height H. In our theory we approximate this screening
by a step function.

5. Mean-field approximation in the kinetic theory. Another severe approximation is the mean-field assumption
used to factorize the two-point function as ψ(2)(r, θ, t; r′, θ′, t) = ψ(r, θ, t)ψ(r′, θ′, t). This approximation
is especially questionable deep in the ordered phase where we do observe local structural correlations.

6. Gaussian approximation. In order to close the hierarchy of equations for all the angular moments of ψ,
we had to resort to a Gaussian approximation for the angular fluctuations of the roller orientation.

These approximations are numerous, and some are uncontrolled. The fair agreement with our measure-
ments points toward a remarkable robustness of this simplified model. Going beyond these approximations is a
significant challenge for active matte theorists.
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Experimental setup
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Figure 35 | Sketch of the microfluidic device. Top view. A one-centimeter wide channel is used
to flow the PS colloids. A pattern in the shape of a racetrack confines the rollers. The picture shows
a snapshot of a polar liquid flowing along the racetrack. Scale bar: 100 µm. The observation window
shows only a small part of the colloidal liquid. Side view. The colloids roll on the bottom electrode,
the obstacles electrostatically repel the rollers. An adhesive film (double-sided scotch tape) sets the
gap between the electrodes.
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Summary Directed collected motion within herds, swarms and flocks, is a phenomenon that takes
place at all scales in living systems. Physicists have rationalized the emergence of such collective be-
havior. They have described these systems as active materials. These materials are assembled from
self-propelled units that spontaneously move in the same direction. By experimentally studying syn-
thetic flocks, this work uncovers some properties of polar active materials in situations that disfavor
their self-organization: their dynamics in disordered environments and their response to external per-
turbations.

Colloidal rollers with alignment interactions are confined within microfluidic devices. At high den-
sity, they spontaneously form a flock which is characterized by the emergence of orientational long-
ranged order. These colloidal flocks are prototypical realizations of polar active matter.

We have studied the response of a polar active liquid assembled from colloidal rollers. We have
shown that they display a hysteretic response to longitudinal perturbations. We have theoretically
accounted for this non-linear behavior. We have used this behavior to realize autonomous microfluidic
oscillators.

We have also studied the dynamics of colloidal flocks that propagate through heterogeneous envi-
ronments. Randomly positioned obstacles focalize flocks along favored channels that form a sparse and
tortuous network. Increasing disorder leads to the destruction of flocks. We have demonstrated that
the suppression of collective motion is a discontinuous transition generic to all polar active materials.

Résumé Le déplacement cohérent dirigé au sein de troupeaux, d’essaims, de nuées, prend place à
toutes les échelles du vivant. En cherchant à rationaliser l’émergence de tels mouvements collectifs,
les physiciens ont décrit ces assemblées comme des matériaux actifs. Ces matériaux sont formés de
constituants auto-propulsés qui se déplacent spontanément dans une direction commune. Cette thèse
expérimentale s’appuie sur la réalisation de troupeaux synthétiques pour explorer les propriétés de la
matière active polaire dans des situations défavorables à son auto-organisation : leur dynamique en
milieux désordonnés et leur réponse à des perturbations externes.

Des rouleurs colloïdaux aux interactions d’alignement sont confinés au sein de dispositifs microflu-
idiques. Au-delà d’une densité seuil, ils forment un troupeau caractérisé par l’émergence d’un ordre en
orientation de longue portée. Ces troupeaux colloïdaux font office de prototypes de la matière active
polaire.

Nous avons étudié la réponse d’un liquide actif polaire assemblé à partir de rouleurs colloïdaux.
Nous avons montré que face à une perturbation longitudinale leur réponse est hystérétique. Nous avons
expliqué théoriquement ce comportement non-linéaire et l’avons exploité pour réaliser des oscillateurs
microfluidiques autonomes.

Nous avons également étudié la dynamique de troupeaux colloïdaux qui se propagent dans des
environnements hétérogènes. La présence d’obstacles distribués aléatoirement focalise les troupeaux le
long de chemins privilégiés qui forment un réseau épars et tortueux. Augmenter le désordre conduit à
la destruction du troupeau. Nous avons démontré que la suppression du mouvement collectif consiste
en une transition discontinue, générique à tous les matériaux actifs polaires.
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