Skip to Main content Skip to Navigation
Theses

Filtering and uncertainty propagation methods for model-based prognosis

Résumé : Les travaux présentés dans ce mémoire concernent le développement de méthodes de pronostic à base de modèles. Le pronostic à base de modèles a pour but d'estimer le temps qu'il reste avant qu'un système ne soit défaillant, à partir d'un modèle physique de la dégradation du système. Ce temps de vie restant est appelé durée de résiduelle (RUL) du système.Le pronostic à base de modèle est composé de deux étapes principales : (i) estimation de l'état actuel de la dégradation et (ii) prédiction de l'état futur de la dégradation. La première étape, qui est une étape de filtrage, est réalisée à partir du modèle et des mesures disponibles. La seconde étape consiste à faire de la propagation d'incertitudes. Le principal enjeu du pronostic concerne la prise en compte des différentes sources d'incertitude pour obtenir une mesure de l'incertitude associée à la RUL prédite. Les principales sources d'incertitude sont les incertitudes de modèle, les incertitudes de mesures et les incertitudes liées aux futures conditions d'opération du système. Afin de gérer ces incertitudes et les intégrer au pronostic, des méthodes probabilistes ainsi que des méthodes ensemblistes ont été développées dans cette thèse.Dans un premier temps, un filtre de Kalman étendu ainsi qu'un filtre particulaire sont appliqués au pronostic de propagation de fissure, en utilisant la loi de Paris et des données synthétiques. Puis, une méthode combinant un filtre particulaire et un algorithme de détection (algorithme des sommes cumulatives) a été développée puis appliquée au pronostic de propagation de fissure dans un matériau composite soumis à un chargement variable. Cette fois, en plus des incertitudes de modèle et de mesures, les incertitudes liées aux futures conditions d'opération du système ont aussi été considérées. De plus, des données réelles ont été utilisées. Ensuite, deux méthodes de pronostic sont développées dans un cadre ensembliste où les erreurs sont considérées comme étant bornées. Elles utilisent notamment des méthodes d'inversion ensembliste et un observateur par intervalles pour des systèmes linéaires à temps discret. Enfin, l'application d'une méthode issue du domaine de l'analyse de fiabilité des systèmes au pronostic à base de modèles est présentée. Il s'agit de la méthode Inverse First-Order Reliability Method (Inverse FORM).Pour chaque méthode développée, des métriques d'évaluation de performance sont calculées dans le but de comparer leur efficacité. Il s'agit de l'exactitude, la précision et l'opportunité.
Complete list of metadatas

Cited literature [152 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01936060
Contributor : Abes Star :  Contact
Submitted on : Tuesday, November 27, 2018 - 11:25:53 AM
Last modification on : Friday, June 26, 2020 - 2:30:07 PM
Document(s) archivé(s) le : Thursday, February 28, 2019 - 1:43:22 PM

File

thERobinson.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01936060, version 1

Citation

Elinirina Iréna Robinson. Filtering and uncertainty propagation methods for model-based prognosis. Automatic Control Engineering. Conservatoire national des arts et metiers - CNAM, 2018. English. ⟨NNT : 2018CNAM1189⟩. ⟨tel-01936060⟩

Share

Metrics

Record views

250

Files downloads

358