Y. Lu, F. Cottone, S. Boisseau, F. Marty, and D. Galayko,

P. Basset, A nonlinear mems electrostatic kinetic energy harvester for human-powered biomedical devices, Applied Physics Letters, vol.107, issue.25, p.253902, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01521578

Y. Lu, F. Eoghan-o'riordan, S. Cottone, D. Boisseau, E. Galayko et al., A batch-fabricated electret-biased wideband mems vibration energy harvester with frequency-up conversion behavior powering a uhf wireless sensor node, Journal of Micromechanics and Microengineering, vol.26, issue.12, p.124004, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01504353

Y. Lu, P. Basset, and J. Laheurte, Performance evaluation of a longrange rfid tag powered by a vibration energy harvester, IEEE Antennas and Wireless Propagation Letters, vol.16, pp.1832-1835, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01719906

Y. Lu, Y. Capo-chichi, P. Leprince-wang, and . Basset, A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers, Smart Materials and Structures, vol.27, issue.1, p.14001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01721132

Y. Lu, F. Marty, D. Galayko, J. Laheurte, and P. Basset, A power supply module for autonomous portable electronics: ultralow-frequency mems electrostatic kinetic energy harvester with hierarchical comb structure reducing air damping. Microsystems and Nanoengineering, 2018.

Y. Lu, J. Jérôme, F. Cottone, D. Galayko, and P. Basset, An impact-coupled electrostatic kinetic energy harvester and its predictive model taking
URL : https://hal.archives-ouvertes.fr/hal-01931269

Y. Lu, F. Cottone, S. Boisseau, D. Galayko, F. Marty et al., Low-frequency mems electrostatic vibration energy harvester with coronacharged vertical electrets and nonlinear stoppers, Journal of Physics: Conference Series, vol.660, p.12003, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01270683

Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko et al., Low-frequency and ultra-wideband mems electrostatic vibration energy harvester powering an autonomous wireless temperature sensor node, Micro Electro Mechanical Systems (MEMS), pp.33-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01521768

, IEEE, 2016.

Y. Lu, Y. Amroun, P. Leprince-wang, and . Basset, A paper-based electrostatic kinetic energy harvester with stacked multiple electret films made of electrospun polymer nanofibers, Journal of Physics: Conference Series, vol.773, p.12032, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01721092

Y. Lu, F. Marty, D. Galayko, and P. Basset, New comb geometry of capacitive vibration energy harvesters miniaturizing the air damping effect, Micro Electro Mechanical Systems (MEMS), pp.857-860, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01769056

, IEEE, 2017.

Y. Lu, F. Marty, D. Galayko, J. Laheurte, and P. Basset, A mems eveh-assisted long-range rfid tag system for applications with low-frequency vibrations, Multidisciplinary Digital Publishing Institute Proceedings, vol.1, 2017.

Y. Ma-ben-ouanes, H. Lu, P. Samaali, F. Basset, and . Najar, Design and test of a bennet's doubler device with mechanical switches for vibrational energy harvesting, Journal of Physics: Conference Series, vol.773, p.12038, 2016.

Y. Lu, , 2016.

Y. Lu, Outstanding paper finalist, IEEE MEMS, 2017.

Y. Lu, Chinese government award for outstanding self-financed students abroad, 2017.

E. M. Paul-d-mitcheson, K. Yeatman, A. S. Rao, T. C. Holmes, and . Green, Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, vol.96, pp.1457-1486, 2008.

P. Basset, D. Galayko, F. Cottone, R. Guillemet, E. Blokhina et al., Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact, Journal of Micromechanics and Microengineering, vol.24, issue.3, p.35001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01521581

P. Basset, M. Galayko, . Paracha, . Marty, T. Dudka et al., A batch-fabricated and electret-free silicon electrostatic vibration energy harvester, Journal of Micromechanics and Microengineering, vol.19, issue.11, p.115025, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00692939

P. Basset, E. Blokhina, and D. Galayko, Electrostatic kinetic energy harvesting, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01504088

H. Rolf, R. Weber, and . Weber, Internet of things, vol.12, 2010.

B. Warneke, M. Last, B. Liebowitz, and K. Pister, Smart dust: Communicating with a cubic-millimeter computer, Computer, vol.34, issue.1, pp.44-51, 2001.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, Wireless sensor networks for habitat monitoring, Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, pp.88-97, 2002.

A. Christian-c-enz, J. El-hoiydi, V. Decotignie, and . Peiris, Wisenet: an ultralowpower wireless sensor network solution, Computer, vol.37, issue.8, pp.62-70, 2004.

V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, Energy-aware wireless microsensor networks, IEEE Signal processing magazine, vol.19, issue.2, pp.40-50, 2002.

S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, Power sources for wireless sensor networks, European workshop on wireless sensor networks, pp.1-17

. Springer, , 2004.

S. Singh, M. Woo, and C. Raghavendra, Power-aware routing in mobile ad hoc networks, Proceedings of the 4th annual ACM/IEEE international conference on Mobile computing and networking, pp.181-190, 1998.

K. Lahiri, S. Dey, D. Panigrahi, and A. Raghunathan, Battery-driven system design: A new frontier in low power design, Proceedings of the 2002 Asia and South Pacific Design Automation Conference, p.261, 2002.

F. Ongaro, S. Saggini, and P. Mattavelli, Li-ion battery-supercapacitor hybrid storage system for a long lifetime, photovoltaic-based wireless sensor network, IEEE Transactions on Power Electronics, vol.27, issue.9, pp.3944-3952, 2012.

R. J. Yohann, M. Thomas, A. Picot, O. Carer, O. Berder et al., A single sediment-microbial fuel cell powering a wireless telecommunication system, Journal of Power Sources, vol.241, pp.703-708, 2013.

T. Tommasi, A. Chiolerio, M. Crepaldi, and D. Demarchi, A microbial fuel cell powering an all-digital piezoresistive wireless sensor system, Microsystem technologies, vol.20, pp.1023-1033, 2014.

F. Simjee, H. Pai, and . Chou, Everlast: long-life, supercapacitor-operated wireless sensor node, Low Power Electronics and Design, 2006. ISLPED'06. Proceedings of the 2006 International Symposium on, pp.197-202, 2006.

I. Farhan, . Simjee, H. Pai, and . Chou, Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes, IEEE Transactions on power electronics, vol.23, issue.3, pp.1526-1536, 2008.

H. Yang and Y. Zhang, Analysis of supercapacitor energy loss for power management in environmentally powered wireless sensor nodes, IEEE transactions on power electronics, vol.28, issue.11, pp.5391-5403, 2013.

Y. Lu, P. Basset, and J. Laheurte, Performance evaluation of a longrange rfid tag powered by a vibration energy harvester, IEEE Antennas and Wireless Propagation Letters, vol.16, pp.1832-1835, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01719906

K. G. Winston, Z. A. Seah, H. Eu, and . Tan, Wireless sensor networks powered by ambient energy harvesting (wsn-heap)-survey and challenges, Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st International Conference on, pp.1-5, 2009.

F. Yildiz, Potential ambient energy-harvesting sources and techniques, 2009.

O. Brian, M. Regan, and . Grätzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal tio2 films, nature, vol.353, issue.6346, p.737, 1991.

T. Le, K. Mayaram, and T. Fiez, Efficient far-field radio frequency energy harvesting for passively powered sensor networks, IEEE Journal of solid-state circuits, vol.43, issue.5, pp.1287-1302, 2008.

V. Leonov, Thermoelectric energy harvesting of human body heat for wearable sensors, IEEE Sensors Journal, vol.13, issue.6, pp.2284-2291, 2013.

D. Carli, D. Brunelli, D. Bertozzi, and L. Benini, A high-efficiency windflow energy harvester using micro turbine, Power electronics electrical drives automation and motion (SPEEDAM), 2010 international symposium on, pp.778-783, 2010.

P. Steve, R. N. Beeby, . Torah, . Tudor, T. Glynne-jones et al., A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and microengineering, vol.17, issue.7, p.1257, 2007.

J. W. Matiko, . Grabham, M. J. Beeby, and . Tudor, Review of the application of energy harvesting in buildings, Measurement Science and Technology, vol.25, issue.1, p.12002, 2013.

M. Peigney and D. Siegert, Piezoelectric energy harvesting from traffic-induced bridge vibrations, Smart Materials and Structures, vol.22, issue.9, p.95019, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859131

E. Peter-l-green, N. Papatheou, and . Sims, Energy harvesting from human motion and bridge vibrations: An evaluation of current nonlinear energy harvesting solutions, Journal of Intelligent Material Systems and Structures, vol.24, issue.12, pp.1494-1505, 2013.

C. , Y. Sue, and N. Tsai, Human powered mems-based energy harvest devices, Applied Energy, vol.93, pp.390-403, 2012.

G. Walter and . Cady, Piezoelectric vibrators and systems embodying the same for converting the mechanical vibration thereof into electric energy, US Patent, vol.3, p.234, 1968.

D. Oleg, D. Jefimenko, and . Walker, Electrostatic current generator having a disk electret as an active element, IEEE Transactions on Industry Applications, issue.6, pp.537-540, 1978.

C. B. Williams and R. B. Yates, Analysis of a micro-electric generator for microsystems. sensors and actuators A: Physical, vol.52, pp.8-11, 1996.

J. E. Scott-d-moss, I. G. Mcleod, S. C. Powlesland, and . Galea, A bi-axial magnetoelectric vibration energy harvester, Sensors and Actuators A: Physical, vol.175, pp.165-168, 2012.

, Perpetuum Limited. Pmg17 datasheet

. Mide,

. Kinetron,

H. Liu, C. Lee, T. Kobayashi, J. Cho, C. Tay et al., A new s-shaped mems pzt cantilever for energy harvesting from low frequency vibrations below 30 hz. Microsystem technologies, vol.18, pp.497-506, 2012.

Ö. Zorlu, S. Türkyilmaz, A. Muhtaro?lu, and H. Külah, An electromagnetic energy harvester for low frequency and low-g vibrations with a modified frequency up conversion method, Micro Electro Mechanical Systems (MEMS), pp.805-808, 2013.

F. Cottone, . Basset, . Marty, . Galayko, T. Gammaitoni et al., Electrostatic generator with free micro-ball and elastic stoppers for low-frequency vibration harvesting
URL : https://hal.archives-ouvertes.fr/hal-01522178

, Micro Electro Mechanical Systems (MEMS), pp.385-388, 2014.

P. David-f-berdy, B. Srisungsitthisunti, X. Jung, J. F. Xu, D. Rhoads et al., Low-frequency meandering piezoelectric vibration energy harvester, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.59, issue.5, pp.846-858, 2012.

A. Miah, J. Halim, and . Park, A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications, Journal of Applied Physics, vol.115, issue.9, p.94901, 2014.

Y. Naruse, . Matsubara, M. Mabuchi, S. Izumi, and . Suzuki, Electrostatic micro power generation from low-frequency vibration such as human motion, Journal of Micromechanics and Microengineering, vol.19, issue.9, p.94002, 2009.

S. P. Beeby, N. M. Tudor, and . White, Energy harvesting vibration sources for microsystems applications, Measurement science and technology, vol.17, issue.12, p.175, 2006.

M. Renaud, P. Fiorini, R. Van-schaijk, and C. Van-hoof, Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator, Smart Materials and Structures, vol.18, issue.3, p.35001, 2009.

B. Cavallier, H. Berthelot, . Nouira, . Foltete, . Hirsinger et al., Energy harvesting using vibrating structures excited by shock, IEEE Ultrasonics Symposium, vol.2, pp.943-945, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00135762

M. Ferrari, V. Ferrari, M. Guizzetti, and D. Marioli, An autonomous battery-less sensor module powered by piezoelectric energy harvesting with rf transmission of multiple measurement signals, Smart materials and Structures, vol.18, issue.8, p.85023, 2009.

A. Rahimi, Ö. Zorlu, A. Muhtaroglu, and H. Kulah, Fully self-powered electromagnetic energy harvesting system with highly efficient dual rail output, IEEE Sensors Journal, vol.12, issue.6, pp.2287-2298, 2012.

Y. Minakawa, R. Chen, and Y. Suzuki, X-shaped-spring enhanced mems electret generator for energy harvesting, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, pp.2241-2244, 2013.

A. Karami and D. Inman, Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting, Journal of Vibration and Acoustics, vol.133, issue.1, p.11002, 2011.

I. Kim, S. Jin, S. Jang, and H. Jung, A performance-enhanced energy harvester for low frequency vibration utilizing a corrugated cantilevered beam, Smart Materials and Structures, vol.23, issue.3, p.37002, 2014.

W. Liu, M. Han, B. Meng, X. Sun, X. Huang et al., Low frequency wide bandwidth mems energy harvester based on spiral-shaped pvdf cantilever, Science China Technological Sciences, vol.57, issue.6, pp.1068-1072, 2014.

S. Nadig, S. Ardanuç, and A. Lal, Monolithic 2-axis in-plane pzt lateral bimorph energy harvester with differential output, Micro Electro Mechanical Systems (MEMS), pp.1129-1132, 2015.

T. C. Paul-d-mitcheson, E. M. Green, A. Yeatman, and . Holmes, Architectures for vibration-driven micropower generators, Journal of microelectromechanical systems, vol.13, issue.3, pp.429-440, 2004.

Y. Suzuki, D. Miki, M. Edamoto, and M. Honzumi, A mems electret generator with electrostatic levitation for vibration-driven energy-harvesting applications, Journal of Micromechanics and Microengineering, vol.20, issue.10, p.104002, 2010.

J. Zhao, H. Ding, and J. Xie, Electrostatic charge sensor based on a micromachined resonator with dual micro-levers, Applied Physics Letters, vol.106, issue.23, p.233505, 2015.

H. Liu, J. Cho, C. Tay, T. Quan, C. Kobayashi et al., Piezoelectric mems energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power, Journal of Microelectromechanical systems, vol.20, issue.5, pp.1131-1142, 2011.

Y. Lu, X. Wang, X. Wu, J. Qin, and R. Lu, A non-resonant, gravity-induced micro triboelectric harvester to collect kinetic energy from low-frequency jiggling movements of human limbs, Journal of Micromechanics and Microengineering, vol.24, issue.6, p.65010, 2014.

E. Halvorsen, Energy harvesters driven by broadband random vibrations, Journal of Microelectromechanical Systems, vol.17, issue.5, pp.1061-1071, 2008.

J. Rastegar, H. Pereira, and . Nguyen, Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration, Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies, vol.6171, p.617101, 2006.

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang et al., Investigation of multimodal electret-based mems energy harvester with impact
DOI : 10.1109/jmems.2018.2792686

S. Moss, A. Barry, I. Powlesland, S. Galea, and G. Carman, A low profile vibro-impacting energy harvester with symmetrical stops, Applied physics letters, vol.97, issue.23, p.234101, 2010.
DOI : 10.1063/1.3521265

L. Gu and C. Livermore, Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation, Smart Materials and Structures, vol.20, issue.4, p.45004, 2011.
DOI : 10.1088/0964-1726/20/4/045004

S. Moss, . Barry, . Powlesland, G. P. Galea, and . Carman, A broadband vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops, Smart Materials and Structures, vol.20, issue.4, p.45013, 2011.
DOI : 10.1088/0964-1726/20/4/045013

E. Sardini and M. Serpelloni, An efficient electromagnetic power harvesting device for low-frequency applications, Sensors and Actuators A: Physical, vol.172, issue.2, pp.475-482, 2011.
DOI : 10.1016/j.sna.2011.09.013

B. Yang and C. Lee, Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsystem Technologies, vol.16, pp.961-966, 2010.
DOI : 10.1007/s00542-010-1059-z

T. Galchev, K. Kim, and . Najafi, Non-resonant bi-stable frequency-increased power scavenger from low-frequency ambient vibration, Solid-State Sensors, Actuators and Microsystems Conference, pp.632-635, 2009.
DOI : 10.1109/sensor.2009.5285404

T. Galchev, H. Kim, and K. Najafi, Micro power generator for harvesting low-frequency and nonperiodic vibrations, Journal of Microelectromechanical Systems, vol.20, issue.4, pp.852-866, 2011.
DOI : 10.1109/jmems.2011.2160045

URL : http://wims2.org/publications/papers/galchevnajafijmemsaug2011.pdf

T. Galchev, K. Ethem-erkan-aktakka, and . Najafi, A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations, Journal of Microelectromechanical Systems, vol.21, issue.6, pp.1311-1320, 2012.
DOI : 10.1109/jmems.2012.2205901

URL : http://wims2.org/publications/papers/JMEMS_Galchev_Aktakka_2012_final.pdf

S. C. Chang, . Yaul, F. Dominguez-garcia, . O'sullivan, J. H. Otten et al., Harvesting energy from moth vibrations during flight, International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications, pp.3-6, 2009.

A. M. Wickenheiser and . Garcia, Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic excitation, Smart materials and Structures, vol.19, issue.6, p.65020, 2010.
DOI : 10.1088/0964-1726/19/6/065020

S. Möst, . Kluge, G. Heinz, and . Krötz, A new high efficiency bidirectional electromagnetic vibration energy harvester for aeronautical applications, Proc. PowerMEMS, pp.115-118, 2010.

T. Takahashi, M. Suzuki, T. Nishida, Y. Yoshikawa, and S. Aoyagi, Vertical capacitive energy harvester positively using contact between proof mass and electret plate-stiffness matching by spring support of plate and stiction prevention by stopper mechanism, Micro Electro Mechanical Systems (MEMS), pp.1145-1148, 2015.
DOI : 10.1109/memsys.2015.7051167

B. Ando, C. Baglio, . Trigona, L. Dumas, P. Latorre et al., Nonlinear mechanism in mems devices for energy harvesting applications, Journal of Micromechanics and Microengineering, vol.20, issue.12, p.125020, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00555283

F. Cottone, H. Vocca, and L. Gammaitoni, Nonlinear energy harvesting. Physical Review Letters, vol.102, issue.8, p.80601, 2009.

M. Ferrari, M. Ferrari, . Guizzetti, . Andò, C. Baglio et al., Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters, Sensors and Actuators A: Physical, vol.162, issue.2, pp.425-431, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00580565

Y. Chen, D. Vasic, F. Costa, and W. J. Wu, Nonlinear magnetic coupling of a piezoelectric energy harvesting cantilever combined with velocity-controlled synchronized switching technique, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00864508

H. Vocca, I. Neri, F. Travasso, and L. Gammaitoni, Kinetic energy harvesting with bistable oscillators, Applied Energy, vol.97, pp.771-776, 2012.

F. Maiorca, F. Giusa, C. Trigona, B. Andò, A. R. Bulsara et al., Diode-less mechanical h-bridge rectifier for "zero threshold" vibration energy harvesters, Sensors and Actuators A: Physical, vol.201, pp.246-253, 2013.

T. Sato, K. Watanabe, and H. Igarashi, Coupled analysis of electromagnetic vibration energy harvester with nonlinear oscillation, IEEE Transactions on magnetics, vol.50, issue.2, pp.313-316, 2014.

M. Seok, K. Jung, and . Yun, Energy-harvesting device with mechanical frequencyup conversion mechanism for increased power efficiency and wideband operation, Applied Physics Letters, vol.96, issue.11, p.111906, 2010.

R. Masana and . Mohammed-f-daqaq, Exploiting super-harmonic resonances of a bi-stable axially-loaded beam for energy harvesting under low-frequency excitations, ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.999-1008, 2011.

F. Cottone, H. Gammaitoni, . Vocca, V. Ferrari, and . Ferrari, Piezoelectric buckled beams for random vibration energy harvesting. Smart materials and structures, vol.21, p.35021, 2012.
DOI : 10.1088/0964-1726/21/3/035021

B. Ando, S. Baglio, C. Gaetano-l'episcopo, and . Trigona, Investigation on mechanically bistable mems devices for energy harvesting from vibrations, Journal of Microelectromechanical Systems, vol.21, issue.4, pp.779-790, 2012.
DOI : 10.1109/jmems.2012.2192912

C. Xu, Z. Liang, B. Ren, W. Di, H. Luo et al., Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam, Journal of Applied Physics, vol.114, issue.11, p.114507, 2013.
DOI : 10.1063/1.4821644

B. Andò, A. R. Baglio, . Bulsara, . Marletta, S. Medico et al., A double piezo-snap through buckling device for energy harvesting, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, pp.43-45, 2013.

A. Wei-qun-liu, F. Badel, Y. P. Formosa, A. Wu, and . Agbossou, Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester, Smart Materials and Structures, vol.22, issue.12, p.125038, 2013.

P. Cuong, E. Le, and . Halvorsen, Wide tuning-range resonant-frequency control by combining electromechanical softening and hardening springs, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, pp.1352-1355, 2013.

B. William, D. Hobbs, and . Hu, Tree-inspired piezoelectric energy harvesting, Journal of fluids and Structures, vol.28, pp.103-114, 2012.

Q. Zhang, Y. Wang, and E. Kim, Power generation from human body motion through magnet and coil arrays with magnetic spring, Journal of Applied Physics, vol.115, issue.6, p.64908, 2014.
DOI : 10.1063/1.4865792

S. Cheng and D. Arnold, A study of a multi-pole magnetic generator for lowfrequency vibrational energy harvesting, Journal of Micromechanics and Microengineering, vol.20, issue.2, p.25015, 2009.

. Sh-chae, Y. Ju, . Choi, . Jun, . Park et al., Electromagnetic vibration energy harvester using springless proof mass and ferrofluid as a lubricant, Journal of Physics: Conference Series, vol.476, p.12013, 2013.

J. Soon-duck-kwon, K. Park, and . Law, Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations, Smart materials and structures, vol.22, p.55007, 2013.

D. Miki, M. Honzumi, Y. Suzuki, and N. Kasagi, Large-amplitude mems electret generator with nonlinear spring, Micro Electro Mechanical Systems (MEMS), pp.176-179, 2010.
DOI : 10.1109/memsys.2010.5442536

L. Bu, X. Wu, and L. Liu, Collision based capacitive vibration energy harvesting, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, pp.1955-1957, 2010.
DOI : 10.1109/icsict.2010.5667819

T. Masaki, K. Sakurai, T. Yokoyama, M. Ikuta, H. Sameshima et al., Power output enhancement of a vibrationdriven electret generator for wireless sensor applications, Journal of Micromechanics and Microengineering, vol.21, issue.10, p.104004, 2011.
DOI : 10.1088/0960-1317/21/10/104004

S. W. Liu, S. W. Miao, and . Lye, High q and low resonant frequency micro electret energy harvester for harvesting low amplitude harmonic of vibration, Micro Electro Mechanical Systems (MEMS), pp.837-840, 2013.
DOI : 10.1109/memsys.2013.6474373

P. Pillatsch, A. S. Em-yeatman, and . Holmes, A scalable piezoelectric impulse-excited energy harvester for human body excitation, Smart Materials and Structures, vol.21, issue.11, p.115018, 2012.
DOI : 10.1088/0964-1726/21/11/115018

Y. Xue-feng-he, Y. Zhu, J. Cheng, and . Gao, Broadband low-frequency vibration energy harvester with a rolling mass, In Applied Mechanics and Materials, vol.404, pp.635-639, 2013.

Y. Choi, . Ju, . Sh-chae, . Jun, . Park et al., Low frequency vibration energy harvester using spherical permanent magnet with non-uniform mass distribution, Journal of Physics: Conference Series, vol.476, p.12123, 2013.
DOI : 10.1088/1742-6596/476/1/012123

URL : http://iopscience.iop.org/article/10.1088/1742-6596/476/1/012123/pdf

S. Ju and C. Ji, Indirect impact based piezoelectric energy harvester for low frequency vibration, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015.

, 18th International Conference on, pp.1913-1916, 2015.

N. Fondevilla, . Serre, . Peréz-rodríguez, . Mc-acero, H. Cabruja et al., Electromagnetic harvester device for scavenging ambient mechanical energy with slow, variable, and randomness nature, 2011 International Conference on, pp.1-5, 2011.

M. Pozzi and M. Zhu, Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation, Smart Materials and Structures, vol.20, issue.5, p.55007, 2011.

E. Romero, R. O. Neuman, and . Warrington, Kinetic energy harvester for body motion, Proc. PowerMEMS, pp.237-240, 2009.

H. Jiang, . Kiziroglou, E. M. Yates, and . Yeatman, A non-harmonic motion-powered piezoelectric fm wireless sensing system, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on, pp.710-713, 2015.

K. Sasaki, Y. Osaki, J. Okazaki, H. Hosaka, and K. Itao, Vibration-based automatic power-generation system, Microsystem technologies, vol.11, pp.965-969, 2005.

Y. Suzuki, M. Edamoto, N. Kasagi, Y. Kashwagi, and . Morizawa,

, Micro electret energy harvesting device with analogue impedance conversion circuit, Proc. PowerMEMS, vol.8, pp.7-10, 2008.

L. Wang and . Yuan, Vibration energy harvesting by magnetostrictive material, Smart Materials and Structures, vol.17, issue.4, p.45009, 2008.

B. Yang and K. Yun, Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement, Sensors and Actuators A: Physical, vol.188, pp.427-433, 2012.

A. Almusallam, D. Torah, . Zhu, T. Mj, and S. P. Beeby, Screen-printed piezoelectric shoe-insole energy harvester using an improved flexible pzt-polymer composites, Journal of Physics: Conference Series, vol.476, p.12108, 2013.

T. Yamashita, S. Takamatsu, T. Kobayashi, and T. Itoh, Characterization of an all polymer piezoelectric film using a reel-to-reel continuous fiber process, Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2013 Symposium on, pp.1-4, 2013.

E. Lindsay-m-miller, T. Halvorsen, P. Dong, and . Wright, Modeling and experimental verification of low-frequency mems energy harvesting from ambient vibrations, Journal of Micromechanics and Microengineering, vol.21, issue.4, p.45029, 2011.

. Vásquez-quintero, . Briand, . Janphuang, . Jj-ruan, N. F. Lockhart et al., Vibration energy harvesters on plastic foil by lamination of pzt thick sheets, Micro Electro Mechanical Systems (MEMS), pp.1289-1292, 2012.

J. Rastegar and . Murray, Novel two-stage piezoelectric-based electrical energy generators for low and variable speed rotary machinery, Active and Passive Smart Structures and Integrated Systems, vol.7288, p.72880, 2009.

T. Chung, C. Wang, C. Tseng, T. Liu, and P. Yeh, A micro kinetic energy harvester demonstrating energy harvesting from 3-d mechanical motion and power increasing through magnetic-based frequency rectification, ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp.853-858

, American Society of Mechanical Engineers, 2012.

P. Pillatsch, A. S. Em-yeatman, and . Holmes, Magnetic plucking of piezoelectric beams for frequency up-converting energy harvesters, Smart Materials and Structures, vol.23, issue.2, p.25009, 2013.

H. Jiang and . Eric-m-yeatman, A piezoelectric pulse generator for low frequency nonharmonic vibration, Journal of Physics: Conference Series, vol.476, p.12059, 2013.

W. Su and J. Zu, An innovative tri-directional broadband piezoelectric energy harvester, Applied Physics Letters, vol.103, issue.20, p.203901, 2013.

J. Benjamin, D. Bowers, and . Arnold, Spherical, rolling magnet generators for passive energy harvesting from human motion, Journal of Micromechanics and Microengineering, vol.19, issue.9, p.94008, 2009.

C. Lee, D. Stamp, N. R. Kapania, and J. , Harvesting vibration energy using nonlinear oscillations of an electromagnetic inductor, Energy Harvesting and Storage: Materials, Devices, and Applications, vol.7683, p.76830, 2010.

B. P. Mann and . Owens, Investigations of a nonlinear energy harvester with a bistable potential well, Journal of Sound and Vibration, vol.329, issue.9, pp.1215-1226, 2010.

A. Marin, P. Heitzmann, J. Twiefel, and S. Priya, Improved pen harvester for powering a pulse rate sensor, Active and Passive Smart Structures and Integrated Systems, vol.8341, p.83411, 2012.

H. Miah-a-halim, J. Cho, and . Park, Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester, Energy Conversion and Management, vol.106, pp.393-404, 2015.

S. Turkyilmaz, H. Kulah, and A. Muhtaroglu, Design and prototyping of second generation metu mems electromagnetic micro-power generators, Energy Aware Computing (ICEAC), 2010 International Conference on, pp.1-4, 2010.

F. Khan, F. Sassani, and B. Stoeber, Copper foil-type vibration-based electromagnetic energy harvester, Journal of Micromechanics and Microengineering, vol.20, issue.12, p.125006, 2010.

H. Liu, B. W. Soon, N. Wang, C. J. Tay, C. Quan et al., Feasibility study of a 3d vibration-driven electromagnetic mems energy harvester with multiple vibration modes, Journal of Micromechanics and Microengineering, vol.22, issue.12, p.125020, 2012.

M. Han, Q. Yuan, X. Sun, and H. Zhang, Design and fabrication of integrated magnetic mems energy harvester for low frequency applications, Journal of Microelectromechanical Systems, vol.23, issue.1, pp.204-212, 2014.

Ö. Zorlu, H. Emre-tan-topal, and . Kulah, A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method, IEEE Sensors Journal, vol.11, issue.2, pp.481-488, 2011.

X. Y. Wang, . Palagummi, F. G. Liu, and . Yuan, A magnetically levitated vibration energy harvester, Smart Materials and Structures, vol.22, issue.5, p.55016, 2013.

Y. Jiang, S. Masaoka, T. Fujita, M. Uehara, T. Toyonaga et al., Fabrication of a vibration-driven electromagnetic energy harvester with integrated ndfeb/ta multilayered micro-magnets, Journal of Micromechanics and Microengineering, vol.21, issue.9, p.95014, 2011.

M. Han, Z. Li, X. Sun, and H. Zhang, Analysis of an in-plane electromagnetic energy harvester with integrated magnet array, Sensors and Actuators A: Physical, vol.219, pp.38-46, 2014.

S. Meninger, J. O. Mur-miranda, R. Amirtharajah, A. Chandrakasan, and J. Lang, Vibration-to-electric energy conversion, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.9, pp.64-76, 2001.
DOI : 10.1109/lpe.1999.799408

D. Galayko, A. Dudka, A. Karami, E. Eoghan-o'riordan, O. Blokhina et al., Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle-part 1: Analysis of the electrical domain, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.62, issue.11, pp.2652-2663, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240996

V. Dorzhiev, A. Karami, P. Basset, F. Marty, V. Dragunov et al., Electret-free micromachined silicon electrostatic vibration energy harvester with the bennet's doubler as conditioning circuit, IEEE Electron Device Letters, vol.36, issue.2, pp.183-185, 2015.

U. Bartsch, O. Gaspar, and . Paul, Low-frequency two-dimensional resonators for vibrational micro energy harvesting, Journal of Micromechanics and Microengineering, vol.20, issue.3, p.35016, 2010.

K. Tao, . Sw-lye, . Wang, J. M. Hu, and . Miao, A sandwich-structured mems electret power generator for multi-directional vibration energy harvesting, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on, pp.51-54, 2015.

Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko et al., A nonlinear mems electrostatic kinetic energy harvester for human-powered biomedical devices, Applied Physics Letters, vol.107, issue.25, p.253902, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01521578

M. Honzumi, A. Ueno, K. Hagiwara, Y. Suzuki, T. Tajima et al., Soft-x-ray-charged vertical electrets and its application to electrostatic transducers

, Micro Electro Mechanical Systems (MEMS), pp.635-638, 2010.

M. Honzumi, K. Hagiwara, Y. Iguchi, and Y. Suzuki, High-speed electret charging using vacuum uv photoionization, Applied Physics Letters, vol.98, issue.5, p.52901, 2011.

G. Zhu, Z. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator, Nano letters, vol.13, issue.2, pp.847-853, 2013.

B. Meng, . Tang, . Zhang, . Han, . Sun et al., A high performance triboelectric generator for harvesting low frequency ambient vibration energy, Micro Electro Mechanical Systems (MEMS), pp.346-349, 2014.

J. Zhang and Z. Lv, A fruit jelly mems electret power generator, Proc. PowerMEMS'08, pp.285-293, 2008.

F. Wang and O. Hansen, Electrostatic energy harvesting device with out-of-the-plane gap closing scheme, Sensors and Actuators A: Physical, vol.211, pp.131-137, 2014.

G. Anthony, . Fowler, S. So-reza-moheimani, and . Behrens, A 3-dof mems ultrasonic energy harvester, Sensors, 2012 IEEE, pp.1-4, 2012.

E. Cuong-p-le, O. Halvorsen, E. M. Søråsen, and . Yeatman, Microscale electrostatic energy harvester using internal impacts, Journal of Intelligent Material Systems and Structures, vol.23, issue.13, pp.1409-1421, 2012.

S. Kaur, E. Halvorsen, O. Søråsen, and E. M. Yeatman, Characterization and modeling of nonlinearities in in-plane gap closing electrostatic energy harvester, Journal of Microelectromechanical Systems, vol.24, issue.6, pp.2071-2082, 2015.

K. Tao, S. Liu, S. W. Lye, J. Miao, and X. Hu, A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting, Journal of Micromechanics and Microengineering, vol.24, issue.6, p.65022, 2014.

B. Yang, C. Lee, K. Rama, J. Kotlanka, S. Xie et al., A mems rotary comb mechanism for harvesting the kinetic energy of planar vibrations, Journal of Micromechanics and Microengineering, vol.20, issue.6, p.65017, 2010.

R. P. Salar-chamanian, P. Zangabad, M. Zarbakhsh, M. Bahrami, and . Khodaei, Wideband capacitive energy harvester based on mechanical frequencyup conversion, Sensors Applications Symposium (SAS), pp.1-4, 2012.

H. Kloub, D. Hoffmann, B. Folkmer, and Y. Manoli, A micro capacitive vibration energy harvester for low power electronics, Work, vol.11, issue.25, p.1, 2009.

J. Yang, Y. Wen, P. Li, X. Dai, and M. Li, A broadband vibration energy harvester using magnetoelectric transducer, Sensors, 2010 IEEE, pp.1905-1909, 2010.

S. Ju, Y. Sh-chae, . Choi, . Jun, . Park et al., Harvesting energy from low frequency vibration using msma/mfc laminate composite, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, pp.1348-1351, 2013.

P. Li, Y. Wen, W. Yin, and H. Wu, An upconversion management circuit for low-frequency vibrating energy harvesting, IEEE Transactions on Industrial Electronics, vol.61, issue.7, pp.3349-3358, 2014.

J. Prescott-joule and . Xvii, on the effects of magnetism upon the dimensions of iron and steel bars, Philosophical Magazine Series, vol.3, pp.76-87, 1847.

H. Durou, C. Rossi, M. Brunet, C. Vanhecke, N. Bailly et al., Power harvesting and management from vibrations: a multi-source strategy simulation for aircraft structure health monitoring, Smart Structures, Devices, and Systems IV, vol.7268, p.726810, 2008.

. Vinod-r-challa, F. Prasad, and . Fisher, A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching, Smart materials and Structures, vol.18, p.95029, 2009.

B. Yang, C. Lee, S. Wei-loon-kee, and . Lim, Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms, Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.9, issue.2, p.23002, 2010.

A. Karami and D. Inman, Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems, Journal of Sound and Vibration, vol.330, issue.23, pp.5583-5597, 2011.

Y. Sang, X. Huang, H. Liu, and P. Jin, A vibration-based hybrid energy harvester for wireless sensor systems, IEEE transactions on Magnetics, vol.48, issue.11, pp.4495-4498, 2012.

C. Kean, . Aw, . Siva, and . Praneeth, Low frequency vibration energy harvesting from human motion using ipmc cantilever with electromagnectic transduction, Nano/Micro Engineered and Molecular Systems (NEMS), pp.645-648, 2013.

H. Jung, I. Kim, D. Y. Min, S. Sim, and J. Koo, A hybrid electromagnetic energy harvesting device for low frequency vibration, Active and Passive Smart Structures and Integrated Systems, vol.8688, p.86881, 2013.

H. Liu, K. How-koh, and C. Lee, Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester, Applied Physics Letters, vol.104, issue.5, p.53901, 2014.

S. Mahmoudi, N. Kacem, and . Bouhaddi, Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions, Smart Materials and Structures, vol.23, issue.7, p.75024, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02300229

M. Ayyaz, P. Paracha, . Basset, F. Lim, T. Marty et al., A bulk silicon-based vibration-to-electric energy converter using an in-plane overlap plate (ipop) mechanism, PowerMEMS'2006 Workshop Proceedings, 2006.

Y. Lu, F. Cottone, S. Boisseau, D. Galayko, F. Marty et al., Low-frequency mems electrostatic vibration energy harvester with coronacharged vertical electrets and nonlinear stoppers, In Journal of Physics: Conference Series, vol.660, p.12003, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01270683

Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko et al., Low-frequency and ultra-wideband mems electrostatic vibration energy harvester powering an autonomous wireless temperature sensor node, Micro Electro Mechanical Systems (MEMS), pp.33-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01521768

, IEEE, 2016.

D. Stephen and . Senturia, Microsystem design, 2007.

M. Bao and H. Yang, Squeeze film air damping in mems, Sensors and Actuators A: Physical, vol.136, issue.1, pp.3-27, 2007.

C. Binh-duc-truong, E. Phu-le, and . Halvorsen, Experiments on power optimization for displacement-constrained operation of a vibration energy harvester, Journal of Physics: Conference Series, vol.660, p.12012, 2015.

A. Karami, P. Basset, and D. Galayko, Electrostatic vibration energy harvester using an electret-charged mems transducer with an unstable auto-synchronous conditioning circuit, Journal of Physics: Conference Series, vol.660, p.12025, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01270684

Y. Lu, F. Eoghan-o'riordan, S. Cottone, D. Boisseau, E. Galayko et al., A batch-fabricated electret-biased wideband mems vibration energy harvester with frequency-up conversion behavior powering a uhf wireless sensor node, Journal of Micromechanics and Microengineering, vol.26, issue.12, p.124004, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01504353

Y. Lu, F. Marty, D. Galayko, and P. Basset, New comb geometry of capacitive vibration energy harvesters miniaturizing the air damping effect, Micro Electro Mechanical Systems (MEMS), pp.857-860, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01769056

, IEEE, 2017.

G. Hwang, M. Byun, C. K. Jeong, and K. Lee, Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications, Advanced healthcare materials, vol.4, pp.646-658, 2015.

A. Kachroudi, S. Basrour, L. Rufer, A. Sylvestre, and F. Jomni, Microstructured pdms piezoelectric enhancement through charging conditions, Smart Materials and Structures, vol.25, issue.10, p.105027, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01526845

P. Bai, G. Zhu, Z. Lin, Q. Jing, J. Chen et al., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions, ACS nano, vol.7, issue.4, pp.3713-3719, 2013.

B. Meng, W. Tang, X. Zhang, M. Han, W. Liu et al., Selfpowered flexible printed circuit board with integrated triboelectric generator, Nano Energy, vol.2, issue.6, pp.1101-1106, 2013.
DOI : 10.1016/j.nanoen.2013.08.006

A. Almusallam, Z. Luo, A. Komolafe, K. Yang, A. Robinson et al., Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles, Nano Energy, vol.33, pp.146-156, 2017.

A. Delnavaz and J. Voix, Flexible piezoelectric energy harvesting from jaw movements, Smart Materials and Structures, vol.23, issue.10, p.105020, 2014.
DOI : 10.1088/0964-1726/23/10/105020

Y. Sakane, Y. Suzuki, and N. Kasagi, The development of a highperformance perfluorinated polymer electret and its application to micro power generation, Journal of Micromechanics and Microengineering, vol.18, issue.10, p.104011, 2008.

R. E. Collins, Distribution of charge in electrets, Applied Physics Letters, vol.26, issue.12, pp.675-677, 1975.
DOI : 10.1063/1.88032

A. Mishra, Studies of polymer electrets. ii. factors governing the stabilities of homoelectrets obtained from polystyrene and its derivatives, Journal of Applied Polymer Science, vol.27, issue.4, pp.1107-1118, 1982.

W. D. Budinger, Poromeric material having uniformly distributed electrets for maintaining an electrostatic charge, US Patent, vol.5, p.337, 1995.

K. Kashiwagi, K. Okano, T. Miyajima, Y. Sera, N. Tanabe et al., Nano-cluster-enhanced high-performance perfluoropolymer electrets for energy harvesting, Journal of Micromechanics and Microengineering, vol.21, issue.12, p.125016, 2011.
DOI : 10.1088/0960-1317/21/12/125016

Y. Hsi-wen-lo and . Tai, Parylene-based electret power generators, Journal of Micromechanics and Microengineering, vol.18, issue.10, p.104006, 2008.

D. Li and Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Advanced materials, vol.16, pp.1151-1170, 2004.

A. Greiner and J. H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angewandte Chemie International Edition, vol.46, issue.30, pp.5670-5703, 2007.

J. Laheurte, C. Ripoll, D. Paret, and C. Loussert, UHF RFID technologies for identification and traceability, 2014.
DOI : 10.1002/9781118930939

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118930939.fmatter

S. Nicholas, G. Hudak, and . Amatucci, Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion, Journal of Applied Physics, vol.103, issue.10, 2008.

A. Hande, R. Bridgelall, and B. Zoghi, Vibration energy harvesting for disaster asset monitoring using active rfid tags, Proceedings of the IEEE, vol.98, issue.9, pp.1620-1628, 2010.
DOI : 10.1109/jproc.2010.2050670

URL : https://library.ndsu.edu/ir/bitstream/10365/27001/1/C9-2010-09-IEEE-Vibration-EH-Disaster-Asset.pdf

K. Satish, . Sharma, N. Anup, . Kulkarni, B. Mukund-r-thyagarajan et al., A compact spiral loaded planar dipole antenna with frequency reconfiguration, Antennas and Propagation Society International Symposium (APSURSI), pp.1-2, 2012.

M. Bolic, D. Simplot-ryl, and I. Stojmenovic, RFID systems: research trends and challenges, 2010.

. Daniel-d-deavours, Analysis and design of wideband passive uhf rfid tags using a circuit model, RFID, 2009 IEEE International Conference on, pp.283-290, 2009.

K. Entesari, A. P. Saghati, V. Sekar, and M. Armendariz, Tunable siw structures: antennas, vcos, and filters, vol.16, pp.34-54, 2015.
DOI : 10.1109/mmm.2015.2408273

M. Kgwadi and . Timothy-d-drysdale, Parametric study of broadband tunable helix antenna matching, Antennas and Propagation Conference (LAPC), pp.128-131, 2014.

D. Keith, M. W. Palmer, and . Van-rooyen, Simple broadband measurements of balanced loads using a network analyzer, IEEE Transactions on Instrumentation and Measurement, vol.55, issue.1, pp.266-272, 2006.

Y. Lu, Y. Capo-chichi, P. Leprince-wang, and . Basset, A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers, Smart Materials and Structures, vol.27, issue.1, p.14001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01721132

Y. Lu, F. Marty, D. Galayko, J. Laheurte, and P. Basset, A power supply module for autonomous portable electronics: ultralow-frequency mems electrostatic kinetic energy harvester with hierarchical comb structure reducing air damping. Microsystems and Nanoengineering, 2018.

Y. Lu, J. Jérôme, F. Cottone, D. Galayko, and P. Basset, An impact-coupled electrostatic kinetic energy harvester and its predictive model taking nonlinear air damping effect into account, Journal of Microelectromechanical Systems, 2018.
DOI : 10.1109/jmems.2018.2876353

URL : https://hal.archives-ouvertes.fr/hal-01931269

L. Serairi, L. Gu, Y. Qin, Y. Lu, P. Basset et al., Flexible piezoelectric nanogenerators based on pvdf-trfe nanofibers, The European Physical Journal Applied Physics, vol.80, issue.3, p.30901, 2017.
DOI : 10.1051/epjap/2017170288

URL : https://hal.archives-ouvertes.fr/hal-01721131

A. Ghaffarinejad, Y. Lu, R. Hichet, D. Galayko, J. Y. Hasani et al., Bennet's doubler working as a power booster for triboelectric nano generators, Electronics Letters, 2017.

R. Hinchet, A. Ghaffarinejad, Y. Lu, J. Y. Hasani, S. Kim et al., Understanding and modeling of triboelectric-electret nanogenerator, Nano Energy, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01763592

P. Basset, Y. Lu, and Y. , Electrostatic transducer for kinetic energy harvesting or mechanical sensing
DOI : 10.1002/9781119007487

P. Basset and Y. Lu, Miniature kinetic energy harvester for generating electrical energy from mechanical vibrations
URL : https://hal.archives-ouvertes.fr/hal-01763677

Y. Lu, Y. Amroun, P. Leprince-wang, and . Basset, A paper-based electrostatic kinetic energy harvester with stacked multiple electret films made of electrospun polymer nanofibers, Journal of Physics: Conference Series, vol.773, p.12032, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01721092

Y. Lu, F. Marty, D. Galayko, J. Laheurte, and P. Basset, A mems eveh-assisted long-range rfid tag system for applications with low-frequency vibrations, Multidisciplinary Digital Publishing Institute Proceedings, vol.1, p.582, 2017.
DOI : 10.3390/proceedings1040582

URL : https://www.mdpi.com/2504-3900/1/4/582/pdf

Y. Ma-ben-ouanes, H. Lu, P. Samaali, F. Basset, and . Najar, Design and test of a bennet's doubler device with mechanical switches for vibrational energy harvesting, Journal of Physics: Conference Series, vol.773, p.12038, 2016.