Skip to Main content Skip to Navigation
Theses

Development of edge-emitting Si/SiGe based optical sources operating in the visible and near visible range wavelength for sensing and communication applications

Abstract : We propose a low cost full-silicon optical links utilizing 650 – 850 nm propagation wavelengths. The creation of large-scale opto-electronic integrated circuits and optical data “highways” inCMOS integrated circuitry, utilizing Si CMOS compounds, have been envisioned and hold much promise [1] - [3] The latest attempts for realizing optoelectronic systems in CMOS technology have until now mainly been focused on utilizing wavelengths at 1550 nm [4] - [6], mainly because of the ease of design and fabrication of waveguides in this wavelength regime. However, no effective high-speed optical sources and Si detectors are available at this 1550nmwavelength. Today solutions to overcome the problem are mostly focused on the integration of group III-V elements based optical sources on Silicon through molecular bonding [7a] – [7b]. If optical sources, detectors, waveguides, and sensors could be realized on the same Si CMOS chip at, say, 750 nm wavelength, various low power consuming, light and miniature on-chip-based micro-photonic systems can be designed and realized. While Silicon optical sources may not yet be at the required performance level for very-high speed communications, the low cost “all silicon”opto-electronic systems still remain a great grail. These sources could lead as well to new field that could be appropriately named “Si photonic microsystems” opening the route to new sensing applications and products especially for the medical, biomedical optics, optical interconnect and bio-photonics field. These systems also do not require ultrahigh frequency bandwidths to transmit, and the emission powers of our avalanche Si light-emitting diodes(LEDs) may be sufficient to sustain the operation of such systems. This PhD thus deals with low cost SiGe/Si optical links using Microwave-Photonics devices such as, Bipolar integrated SiAvLED, Silicon Nitride and Silicon Oxide optical waveguides, SiGeHPTs, Si and SiGe/Si LEDs. It focuses on the combined integration of micron-scale optical sources, optical waveguides and detectors on the same chip to form a complete communication link for various applications involving short wavelength links (750nm to 950nm). The progress provided by this PhD to previous works could be synthesized as below:• Optical source, waveguide and the detector were all integrated and aligned on the same chip, in an industrial based technology, to form complete on-chip micro-optical links at750nm wavelength, with a SiGe radio frequency (RF) 0.35µm bipolar process.• A series of second generation of on-chip optical communication links of 50µm length, utilizing 650 – 850 nm propagation wavelengths, have been designed and realized inSiGe. Micron dimensioned optical sources, waveguides and detectors were all integrated ion the same chip to form a complete communication on-chip micro-optical links. Avalanche based Si LEDs (Si Av LEDs), Schottky contacting, TEOS densification strategies, Silicon-Nitride based waveguides, and state of the art SiGe bipolar detector technologies were used as key design strategies.• R-soft simulation software (Beam Prop) was used as a mathematical capable simulation tool to model various Silicon-Nitride optical waveguide structures, before the designing, the fabrication, characterization and testing of the device. Various device structures were modeled, simulation iterations were performed on several optical waveguide designed structures before the device design, and the devices were tested experimentally.• Best performances of the designed on-chip optical links show a conversion loss as low as30dB from source to detector with up to 500MHz in cut off frequency. The good alignment and the good efficiency of each device are then clearly achieved. Higher frequency performances are also envisaged from preliminary measurements
Document type :
Theses
Complete list of metadatas

Cited literature [152 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01935507
Contributor : Abes Star :  Contact
Submitted on : Monday, November 26, 2018 - 5:16:07 PM
Last modification on : Sunday, September 27, 2020 - 5:28:02 AM
Long-term archiving on: : Wednesday, February 27, 2019 - 2:52:30 PM

File

TH2018PESC1060.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01935507, version 1

Citation

Kingsley Ogudo. Development of edge-emitting Si/SiGe based optical sources operating in the visible and near visible range wavelength for sensing and communication applications. Optics / Photonic. Université Paris-Est, 2018. English. ⟨NNT : 2018PESC1060⟩. ⟨tel-01935507⟩

Share

Metrics

Record views

240

Files downloads

206