, International Electrotechnical Commission 61400-12, vol.68, pp.77-104, 2005.

I. Abalakin and B. Koobus, The behavior of two near-wall models for k-epsilon prediction of stall, p.115, 2000.

P. Angot, C. H. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompresible viscous ows, Numerische Mathematik, vol.81, p.20, 1999.
DOI : 10.1007/s002110050401

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune et al., , p.22, 2018.

M. Bar-lev and H. T. Yang, Initial ow eld over an impulsively started circular cylinder, Journal of Fluid Mechanics, vol.72, p.44, 1975.
DOI : 10.1017/s0022112075003199

C. Batty, A cell-centred nite volume method for the poisson problem on non-graded quadtrees with second order accurate gradients, Journal of Computational Physics, issue.331, p.17, 2017.

P. Beaudan and P. Moin, Numerical experiments on the ow past a circular cylinder at sub-critical Reynolds number, vol.12, 1994.

M. Bergmann, Aerodynamic optimization using Reduced Order Model and optimal control. Application to the laminar wake ow around a circular cylinder, p.48, 2004.
URL : https://hal.archives-ouvertes.fr/tel-01750014

M. Bergmann, J. Hovnanian, and A. Iollo, An accurate Cartesian method for incompressible ows with moving boundaries, Communications in Computational Physics, issue.15, p.20, 2014.
DOI : 10.4208/cicp.220313.111013a

URL : https://hal.inria.fr/hal-00906897/file/article.pdf

M. Bergmann and A. Iollo, Modeling and simulation of sh-like swimming, Journal of Computational Physics, issue.230, p.16, 2011.
DOI : 10.1016/j.jcp.2010.09.017

E. T. Bot and O. Ceyhan, Blade Optimization Tool (BOT): User Manual. Energy Research Centre of the Netherlands, p.8, 2011.

M. Braza, P. Chassaing, and H. Ha-minh, Numerical study and physical analysis of the pressure and velocity elds in the near wake of a circular cylinder, Journal of Fluid Mechanics, vol.165, p.48, 1986.

M. Breuer, Large eddy simulation of the subcritical ow past a circular cylinder: Numerical and modeling aspects, vol.28, p.60, 1998.

D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible NavierStokes equations, Journal of Computational Physics, issue.168, p.21, 2001.
DOI : 10.1006/jcph.2001.6715

URL : https://cloudfront.escholarship.org/dist/prd/content/qt8qs8x847/qt8qs8x847.pdf?t=p60h7a

R. Campregher, J. Militzer, S. Mansur, and A. Neto, Computations of the ow past a still sphere at moderate Reynolds numbers using an Immersed Boundary Method, vol.31, p.54, 2009.

B. Cantwell and D. Coles, An experimental study on entrainment and transport in the turbulent near wake of a circular cylinder, vol.136, p.60, 1983.

J. E. Castillo, Mathematical Aspects of Numerical Grid Generation, Society for Industrial and Applied Mathematics, p.13, 1991.
DOI : 10.1016/0377-0427(87)90130-0

URL : https://doi.org/10.1016/0377-0427(87)90130-0

O. Ceyhan, Towards 20MW wind turbine: High Reynolds number eects on rotor design, p.34, 2012.
DOI : 10.2514/6.2012-1157

URL : https://publications.tno.nl/publication/34631407/7Lr05Z/m12002.pdf

N. M. Chaderjian, Advances in rotor performance and turbulent wake simulation using DES and Adaptive Mesh Renement, p.18, 2012.

H. Choi and P. Moin, Grid-point requirements for large eddy simulation: Chapman's estimates revisited, Physics of Fluids, vol.24, p.37, 2012.
DOI : 10.1063/1.3676783

URL : https://aip.scitation.org/doi/pdf/10.1063/1.3676783

A. J. Chorin, Numerical solution of the NavierStokes equations, Mathematics of Computation, issue.22, pp.16-21, 1968.

J. Chou, C. Chiu, I. Huang, and K. Chi, Failure analysis of wind turbine blade under critical wind loads, Engineering Failure Analysis, vol.2, issue.27, p.65, 2013.

J. Chou and W. Tu, Failure analysis and risk management of a collapsed large wind turbine tower, Engineering Failure Analysis, vol.2, issue.18, p.65, 2011.

Y. Coudière, J. Vila, and P. Villedieu, Convergence rate of a nite volume scheme for a two dimensional convection-diusion problem, ESAIM: M2AN, vol.33, issue.3, p.27, 1999.

R. De-frias and . Lopez, A 3D nite beam element for the modelling of composite wind turbine wings, KTH, vol.84, p.116, 2013.

M. D. De-tullio, Development of an immersed boundary method for the solution of the preconditioned NavierStokes equations, p.115, 2006.

J. N. Sorensen, Simulation of wind turbine wakes using the actuator line technique, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.373, p.18, 2015.

M. M. Hand, Unsteady aerodynamics experiment phase VI: Wind tunnel test congurations and available data campaigns, p.115, 2001.
DOI : 10.2172/15000240

URL : https://digital.library.unt.edu/ark:/67531/metadc1402033/m2/1/high_res_d/15000240.pdf

E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined Immersed-Boundary nite-dierence methods for three-dimensional complex ow simulations, Journal of Computational Physics, vol.161, issue.1, p.54, 2000.
DOI : 10.1006/jcph.2000.6484

M. Falcone and R. Ferretti, Convergence analysis for a class of high-order semi-lagrangian advection schemes, SIAM Journal on Numerical Analysis, vol.35, p.34, 1998.

R. A. Finkel and J. L. Bentley, Quad trees. A data structure for retrieval on composite keys, Acta Informatica, vol.4, p.13, 1974.

B. Fornberg, Steady viscous ow past a sphere at high Reynolds numbers, Journal of Fluid Mechanics, vol.190, p.54, 1988.

P. L. George, Automatic mesh generation: application to nite element methods, p.13, 1991.
DOI : 10.1061/(asce)0733-9399(1993)119:3(643)

M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, vol.3, p.36, 1991.
DOI : 10.1063/1.857955

A. Gossier, Moving Least-Squares: A numerical dierentiation method for irregularly spaced calculation points, p.53, 2001.

A. Guittet, M. Theillard, and F. Gibou, A stable projection method for the incompressible NavierStokes equations on arbitrary geometries and adaptive quad/octrees, Journal of Computational Physics, issue.292, p.18, 2015.

J. W. He, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, Active control and drag optimization for ow past a circular cylinder, Journal of Computational Physics, vol.163, p.48, 2000.

R. D. Henderson, Details of the drag curve near the onset of vortex shedding, Physics of Fluids, vol.7, p.48, 1995.

R. D. Henderson, Nonlinear dynamics and pattern formation in turbulent wake transition, Journal of Fluid Mechanics, vol.352, p.48, 1997.

G. Hou, J. Wang, and A. Layton, Numerical methods for uid-structure interaction-A review, Communications in Computational Physics, vol.12, p.86, 2012.

G. Ingram, Wind turbine blade analysis using the Blade Element Momentum method, p.115, 2011.

M. Arjomandi, J. O. Mo, A. Choudhry, and Y. H. Lee, Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model, Journal of Wind Engineering and Industrial Aerodynamics, issue.112, p.2, 2013.

M. Khalid and A. Imran, Characteristics of ow past a symmetric airfoil at low Reynolds number; A nonlinear perspective, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol.7, p.50, 2012.

S. Kim, Large eddy simulation of turbulent ow past a circular cylinder in subcritical regime, Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, vol.22, 2006.

D. Kurtulus, On the unsteady behavior of the ow around NACA 0012 airfoil with steady external conditions at Re=1000, vol.7, p.50, 2015.

S. Laizet and E. Lamballais, High-order compact schemes for incompressible ows: A simple and ecient method with quasi-spectral accuracy, Journal of Computational Physics, vol.228, p.15, 2009.

J. Laursen, S. Enevoldsen, and . Hjort, 3D CFD quantication of the performance of a multi-megawatt wind turbine, Journal of Physics: Conference Series, vol.75, issue.1, p.16, 2007.

M. Lentine, J. T. Grétarsson, and R. Fedkiw, An unconditionally stable fully conservative semi-Lagrangian method, Journal of Computational Physics, vol.17, issue.230, p.18, 2011.

E. M. Lorenzo, D. Lignarolo, . Mehta, J. A. Richard, A. E. Stevens et al., Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine, Renewable Energy, vol.94, p.2, 2016.

F. Losasso, F. Gibou, and R. Fedkiw, Simulating water and smoke with an octree data structure, vol.23, p.17, 2004.

L. M. Lourenco and C. Shih, Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study, p.57, 1993.

D. Luo, C. Yan, H. Liu, and R. Zhao, Comparative assessment of PANS and DES for simulation of ow past a circular cylinder, vol.134, p.60, 2014.

J. A. Michelsen, Basis3da platform for development of multiblock PDE solvers, p.16, 1992.

R. Mikkelsen, Actuator Disk Methods Applied to Wind Turbines, p.12, 2003.

C. Min and F. Gibou, A second order accurate projection method for the incompressible NavierStokes equations on non-graded adaptive grids, Journal of Computational Physics, issue.219, p.18, 2006.

C. Min, F. Gibou, and H. Ceniceros, A supra-convergent nite dierence scheme for the variable coecient poisson equation on non-graded grids, Journal of Computational Physics, issue.218, p.17, 2006.

R. Mittal and H. Dong, A versatile sharp interface immersed boundary method for incompressible ows with complex boundaries, Journal of Computational Physics, issue.227, p.20, 2008.

S. Mittal and T. E. Tezduyar, Massively parallel nite element computation incompressible ows involving uid-body interactions, Computer Methods in Applied Mechanics and Engineering, vol.112, p.50, 1994.

P. J. Moriarty and C. Hansen, AeroDyn theory manual, p.8, 2005.

G. M. Morton, A computed oriented geodetic data base and a new technique in le sequencing, p.14, 1966.

N. M. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, issue.85, p.86, 1959.

C. Norberg, Eects of Reynolds number and a low-intensity free-stream turbulence on the ow around circular cylinder, Department of Applied Thermodynamics and Fluid Mechanics, p.56, 1987.

S. E. Norris, J. E. Cater, K. A. Stol, and C. P. Unsworth, Wind turbine wake modelling using Large Eddy Simulation, 17th Australasian Fluid Mechanics Conference, p.2, 2010.

A. Oliveiro and A. M. Baptista, A comparison of integration and interpolation EulerianLagrangian methods, International Journal for Numerical Methods in Fluids, issue.3, p.17, 1995.

M. A. Olshanskii, K. M. Terekhov, and Y. V. Vassilevski, An octree-based solver for the incompressible NavierStokes equations with enhanced stability and low dissipation, Computers and Fluids, issue.84, p.18, 2013.

H. Ouvrard, B. Koobus, A. Dervieux, and M. V. Salvetti, Classical and variational multiscale LES of the ow around a circular cylinder on unstructured grids, Computers and Fluids, vol.39, issue.7, p.56, 2010.

N. Park, S. Lee, J. Lee, and H. Choi, A dynamic subgrid-scale eddy viscosity model with a global model coecient, Physics of Fluids, vol.18, issue.12, p.56, 2006.

P. Parnaudeau, J. Carlier, D. Heitz, and E. Lamballais, Experimental and numerical studies of the ow over a circular cylinder at Reynolds number 3900, Physics of Fluids, vol.20, p.57, 2008.

. Charles-s-peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, p.16, 1972.

S. Pezzano, Aeroelastic modelling of a wind turbine, 2018.

P. Ploumhans and G. S. Winckelmans, Vortex methods for high-resolution simulations of viscous ow past blu bodies of general geometry, Journal of Computational Physics, vol.165, p.44, 2000.

P. Ploumhans, G. S. Winckelmans, J. K. Salmon, A. Leonard, and M. S. Warren, Vortex methods for Direct Numerical Simulation of three-dimensional blu body ows: Application to the sphere at Re=300, 500, and 1000, Journal of Computational Physics, vol.178, issue.2, pp.427-463, 2002.

B. Stephen and . Pope, Turbulent Flows, p.35, 2000.

S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics, vol.14, issue.190, p.115, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01445436

B. N. Rajani, A. Kandasamy, and S. Majumdar, LES of ow past circular cylinder at Re = 3900, Journal of Applied Fluid Mechanics, vol.9, p.56, 2016.

B. Sanderse, Aerodynamics of wind turbine wakes-Literature review, pp.5-8, 2009.

K. Schneider, Numerical simulation of the transient ow behaviour in chemical reactors using a penalisation method, Computers and Fluids, vol.34, p.15, 2005.

D. A. Simms, M. M. Hand, L. J. Fingersh, and D. W. Jager, Unsteady aerodynamics experiment phase II-IV: Test congurations and available data campaigns, p.71, 1999.

J. Smagorinsky, General circulation experiments with the primitive equations, Monthly Weather Review, vol.91, issue.3, p.36, 1963.

D. O. Snyder and G. Degrez, Large-eddy simulation with complex 2-d geometries using a parallel nite-element/spectral algorithm, International Journal for Numerical Methods in Fluids, vol.41, issue.10, p.56, 2003.

J. N. Sorensen and W. Z. Shen, Numerical modelling of wind turbine wakes, Journal of Fluids Engineering, issue.124, p.12, 2002.

J. N. Sorensen, Aerodynamic aspects of wind energy conversion, Annual Review of Fluid Mechanics, issue.43, p.8, 2011.

J. N. Sorensen and A. Mikken, Unsteady actuator disc model for horizontal axis wind turbine, Journal of Wind Engineering and Industrial Aerodynamics, issue.39, p.12, 1992.

N. N. Sorensen, General purpose ow solver applied to ow over hills, p.16, 1995.

D. B. Spalding, A single formula for the Law of the Wall, Journal of Applied Mechanics, vol.28, p.38, 1961.

T. Suzuki, A. Sanse, T. Mizushima, and F. Yamamoto, Unsteady PTV velocity eld past an airfoil solved with DNS: Part 2. Validation and application at Reynolds numbers up to Re 10000, Experiments in Fluids-EXP FLUID, vol.47, p.50, 2009.

R. Témam, Sur l'approximation de la solution des équations de NavierStokes par la méthode des pas fractionnaires. Archive for Rational Mechanics and Analysis, pp.16-21, 1969.

A. Travin, M. Shur, M. Strelets, and P. Spalart, Detached-eddy simulations past a circular cylinder, Flow Turbulence and Combustion, vol.63, p.60, 2000.

R. Nguyen-van-yen, D. Kolomenskiy, and K. Schneider, Approximation of the Laplace and Stokes operators with Dirichlet boundary conditions through volume penalization: a spectral viewpoint, Numerische Mathematik, vol.128, p.20, 2014.

A. W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear ow: Algebraic theory and applications, Physics of Fluids, vol.16, p.36, 2004.

C. H. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, Journal of Fluid Mechanics, vol.206, p.47, 1989.

C. H. Williamson, Vortex dynamics in the cylinder wake, Annual Review of Fluid Mechanics, vol.28, p.47, 1996.

D. Xiu and G. E. Karniadakis, A semi-Lagrangian high-order method for NavierStokes equations, Journal of Computational Physics, issue.172, p.17, 2001.

D. You and P. Moin, A dynamic global-coecient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries, Physics of Fluids, vol.19, issue.6, p.56, 2007.

, Evolution of the size of wind turbines over time. Source www.windeurope.org

C. , ? curve for the Euros EU120 wind blade. Source www.euros.de

. , Example of power curve for some usual wind turbine

. , Axial stream tube around a wind turbine

]. .. , 10 1.6 Comparison of predicted power for BEM and GAD models with experimental data of NREL UAE

. , Example of quadtree discretization and corresponding tree representation

. , Example of mesh conguration in 2D with stencils

. , Examples of quadtree grids used for validation

, Example of mesh conguration in 2D with stencils for Laplacian operator, p.26

. , Example of error distribution between a Laplace operator discretization and an analytical expression and numerical solution with a quadtree grid conguration corresponding to tree level 7

, Example of mesh conguration in 2D with stencils for semi-Lagrangian scheme, vol.29

, Example of octree grid conguration used for validation of the solver, p.32

, Example of mesh conguration in 3D with stencils for Laplace operator, p.33

, Turbulent boundary layer proles for dierent Reynolds numbers, p.37

]. .. , 38 2.10 Implementation of the wall law

. , Velocity eld of the Taylor-Green vortex on a quadtree grid (tree level = 7) after 0.1 s of simulation

, Quadtree mesh around a two-dimensional cylinder (minimum tree level = 7), p.44

. , Drag coecient history at Re = 550 with the numerical solution of reference and the computed results with 3 dierent grid sizes

. , Isobars and contour lines of z?component of vorticity obtained at t = 100 and Re = 100 for the ow around a circular cylinder

. , Drag and Lift coecients history at Re = 100

. , Isobars and contour lines of z?component of vorticity obtained at t = 100 and Re = 200 for the ow around a circular cylinder

. , Drag and Lift coecients history at Re = 200

. , Isobars and contour lines of z?component of vorticity obtained at t = 100 and Re = 600 for the ow around a circular cylinder

. , 49 3.10 Simulation of a blade in a rotating frame, y-Velocity at plane z =-5, p.52

. , Octree mesh used for the ow around a sphere-Tree level 5

. , Time history of drag coecients for the ow at Re = 500 with 3 dierent grid renements and 2 dierent CFL conditions

, Pressure coecient around the cylinder at Re = 3900. Angle of ? corresponds to the wake of the cylinder, whereas angle of 0 is the incoming ow, p.57

. , Wake prole of streamwise velocity at dierent positions obtained by an average over 9 vortex sheddings after a preliminary simulation for the ow past a cylinder at Re = 3900

. , Comparison of x-Velocity eld obtained with the Cartesian and the octree codes for the ow around a cylinder at Re = 140000

, Wake prole for the ow past a cylinder at Re = 140000 at dierent locations obtained by an average over 5 vortex shedding after a preliminary simulation, p.62

. .. , Wake prole for the ow past a cylinder at Re = 140000 at dierent locations obtained after a preliminary simulation and by an average over the 5 rst vortex shedding (a, c and e), and over 5 next vortex shedding (b, d and f), p.63

, Computational domain with d = rotor diameter + a few meters, p.66

. , Topographic view of the wind plant obtained with Google Earth ® and wind rose corresponding to the site

. , Fiber Bragg Grating principle. n corresponds to the index of refraction and ? is the period of n variation. Found on www

. .. Optical-bre-technology,

. , Position of the strain gauges on the blade

. , Position of pressure sensors on the blade

. , 7 Final position of the met mast and wind rose of the area

. , Photo of the met mast after its installation

. , 76 4.12 Longitudinal deformations from sensors at dierent locations as a function of wind speed

, Time history of deformation data from sensor located on the leading edge at 7m of the blade length, of wind speed data reconstructed at the wind turbine and frequency (with a normalized scale) during a gust and with weak wind, p.79

. , Deformations on the blade at several location as a function of blade position with weak wind (a and c) or during gust events (b and d)

. , Blade cross section with suggested reference system including denition of apwise and lagwise bending axes

. , Partitioned scheme implemented in the 3D solver, vol.87

, 3 Sketch of the computational domain for the ow past a rotating blade, p.90

, Display of the octree mesh used for the simulation of the ow past a rotating blade, vol.91

. , 6 rpm after 3.5 revolutions of the blade

, Time history of the power extracted by the simulated wind turbine, p.94

, Velocity magnitude for the ow past a circular cylinder in 2D at Re = 200 showing the AMR process with superimposition of the mesh at the top, p.95

. , Beginning of the simulation with AMR process for the case of the ow around a sphere at Re = 5000

. , 97 5.10 End of the simulation with AMR process for the case of the ow around a sphere at Re = 5000

. , AMR process for the rotating blade with an operating condition at U ? = 6 m.s ?1 , ? = 16.2 rpm and Re = 1000

, Visualization of the ow around a rotating blade with a gust-like event, p.101

, Streamwise velocity past a cylinder for the ow at Re=140 000, p.106

, Comparaison de la vitesse selon l'axe x obtenue avec les codes Cartesien et octree pour le cas de l'écoulement autour d'un cylindre à Re = 140000, p.125

. , Prols de vitesses dans le sillage du cylindre à Re = 140000 obtenus à plusieurs positions et en moyennant sur 5 lachés tourbillonaires après une simulation préliminaire

. , 34 2.8 Norm of the error and order of the semi-Lagrangian scheme for 3D octree grid. . 34 3.1 Norm of the spatial error and orders of the Taylor-Green vortex for 2D quadtree grid

. .. 3d-octree-grid, , p.43

. , Comparison of Strouhal number and drag coecient for the ow past a circular cylinder at Re = 100

. , Comparison of Strouhal number and drag coecient for the ow past a circular cylinder at Re = 200

. , Comparison of Strouhal number and drag coecient for the ow past a circular cylinder at Re = 600

. , Comparison of lift coecient for the ow past a NACA0012 airfoil at Re = 1000 with dierent angles of attack

. , Comparison of averaged drag coecient (over 9 vortex sheddings) for the ow past a cylinder at Re = 140000

. , Mean values of frequency (noted f ) and amplitude (noted Amp) of deformations during gusts or with weak wind for each sensor