Skip to Main content Skip to Navigation

Synthetic mimics of beta-sheets : design, synthesis and evaluation of their ability to modulate the aggregation of the beta-amyloid 1-42 peptide.

Abstract : Amyloidosis is the generic word to name a group of diseases that are caused by the misfolding and extracellular accumulation of various proteins. Alzheimer’s disease (AD) is a neurodegenerative disorder linked to oligomerization and fibrillization of amyloid β peptides, with Aβ 1-42 being the most aggregative and neurotoxic one. To date, the exactly cause of the Alzheimer's disease is not still known and so there is no effective treatment of the disease.An attractive strategy for treating AD could be the inhibition of the oligomerization of soluble Aβ monomers, by stabilizing the native unstructured conformation of the peptide, using compounds able to prevent the formation of β-sheets. Indeed, few structural studies of oligomeric species and fibrils revealed that the aggregation involves β-sheet structures.A large number of small molecules have been proposed for their ability to inhibit or modulate Aβ1-42 aggregation and toxicity. However, the aggregation process is highly complex, and extremely difficult to control. Recent studies indicate that soluble transient oligomers preceding fibril formation are highly toxic species. Thus, the development of inhibitors targeting both oligomerization and fibrillization remains challenging despite its therapeutic significance. Peptides are today reasonable alternatives to small molecule pharmaceuticals. In particular, inhibition of Aβ-aggregation has been targeted using self-recognition elements (SREs), which are key amino acid sequences involved in the different aggregated species. To our knowledge, the use of small acyclic β-hairpins has been very rarely explored as β-sheet binders and inhibitors of aggregation.As Aβ-aggregation is a dynamic and complex process, we hypothesized that flexible β-hairpins could adapt themselves in the interaction with the different Aβ1-42 conformations present during the aggregation process, and in particular in the early stages of oligomerization. We designed acyclic β-hairpin mimics based on a piperidine-pyrrolidine semi-rigid scaffold developed recently as a flexible β-turn inducer, and on different SREs of Aβ1-42. The choice of the SREs was based on oligomer and fibril structures.The ability of all compounds to influence the Aβ 1-42 fibrillization process was evaluated by thioflavin-T fluorescence spectroscopy, used as an evaluation tool to define the inhibitory activity. The obtained results were successively supplemented by transmission electron microscopy. The most promising compounds were also studied by Capillary Electrophoresis (CE) using a method we recently proposed to monitor the very early steps of the oligomerization process overtime. The best inhibitors were investigated to determine their ability to reduce the toxicity of aggregated Aβ1-42 to SH-SY5Y neuroblastoma cells.Together with the evaluation of these molecules, we report in this thesis the conformational studies performed by NMR. These structure investigations were performed to investigate and confirm the β-hairpin conformational preference of the compounds in solution.Finally, we performed a practical synthetic pathway to obtain new peptidomimetic chains composed by aza-amino acid residues. In the literature only peptide sequence, with just one aza-amino acid residue in the middle, are known, but the hydrogen-bonding properties of 2:1 [Aza/α]-tripeptides have not yet, to our knowledge, been exploited in the design of the inhibition of protein-protein interactions. We present in this thesis the conformational studies of the 2:1 [Aza/α]-tripeptide sequence by NMR analyses, X-ray crystallography and molecular modelling.In conclusion, the structural elements made in this thesis provide valuable insights in the understanding of the aggregation process of Aβ 1-42 peptide and to explore the design of novel acyclic β-hairpin targeting amyloid-forming proteins.
Document type :
Complete list of metadatas

Cited literature [301 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Saturday, November 24, 2018 - 1:01:13 AM
Last modification on : Wednesday, October 14, 2020 - 4:00:31 AM
Long-term archiving on: : Monday, February 25, 2019 - 12:24:47 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01933728, version 1



Nicolo Tonali. Synthetic mimics of beta-sheets : design, synthesis and evaluation of their ability to modulate the aggregation of the beta-amyloid 1-42 peptide.. Medicinal Chemistry. Université Paris-Saclay, 2016. English. ⟨NNT : 2016SACLS544⟩. ⟨tel-01933728⟩



Record views


Files downloads