Fatigue mechanisms in Al-based metallizations in power MOSFETs

Abstract : This thesis, a collaboration between CEMES-CNRS, Satie laboratory (ENS Cachan) and NXP Semiconductors is motivated by the comprehension of the failure mechanisms of low voltage power MOSFET devices produced for ap- plications in the automotive industry. A limiting factor for the long-term reliability of power modules is the electro- thermal and/or thermo-mechanical aging of the metallic parts of the source: Al metallization and bonding wires. At the temperature reached during the on-off operating cycles (few hundred degrees), the difference in the coefficient of thermal expansion between the metallization and the oxide and semicon- ductor parts induces an inevitable plastic deformation in the metal, which is the softest material in the complex MOSFET architecture. We have characterized the metal microstructure before and after accelerated electro-thermal aging tests, by using specific techniques from the field of the physical metallurgy: electron and ion microscopy, grain orientation and chem- ical composition mapping. For the first time the source metallization has been characterized both away and under the bonding connections, which are one hundred times thicker than the metallization layer. The latter is a critical loca- tion for the reliability assessment because the ultrasonic bonding process may weaken the initial metallization microstructure by adding an important plas- tic deformation prior to aging. This is, however, poorly stated in the literature because of the difficulty to access the metallization under the wires without damaging their bonding, which is known to be particularly weak in case of aged modules. In order to investigate the wire-metallization interface, we have set up origi- nal sample preparations, based on ion polishing, that allowed us to disclose the metallization under the bonding wires without introducing preparation artifacts in the microstructure. The bonding process induces a severe and non- uniform plastic deformation in the metallization under the wires without re- creating a good electrical contact: small cavities and native oxide residues, have been systematically observed at the Al/Al interface, in all the analyzed mod- ules, before and after aging. The main mechanism behind the device failure is the generation and propa- gation of fatigue cracks in the aluminum metallization, associated to a local Al oxidation that prevents these crack from closing. Away and under the wire bonds, they run perpendicularly from the surface down to the silicon substrate following the grain boundaries, due to an enhanced intergranular diffusion of aluminum atoms. In the bonding area, the phenomenon of parallel cracking is favored by the initial imperfections in the wire-metallization bonding. Ion to- mography experiments have shown that these cracks are confined to the wire- metal interface and do not propagate in the wire despite its lower strength (pure Al, larger grain structure). Crack propagation along the Al/Al interface can cause a contact reduction between the wire and the source metallization and eventually its failure. Such discontinuities in the metal can explain the lo- cal increase in the device resistance and temperature that accelerates the aging process until failure. This study settled new, dedicated techniques and quantification methods to as- sess the aging of the metal parts of MOSFET devices. The full characterization of the intrinsically defective interface generated by the bonding process and the metallization degradation during electro-thermal aging indicated paths to possible improvements of current technologies and potential developments of new processes.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01933501
Contributor : Abes Star <>
Submitted on : Friday, November 23, 2018 - 5:33:05 PM
Last modification on : Monday, April 29, 2019 - 3:42:08 PM

File

2017TOU30256b.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01933501, version 1

Citation

Roberta Ruffilli. Fatigue mechanisms in Al-based metallizations in power MOSFETs. Material chemistry. Université Paul Sabatier - Toulouse III, 2017. English. ⟨NNT : 2017TOU30256⟩. ⟨tel-01933501⟩

Share

Metrics

Record views

211

Files downloads

144