Criticalité, identification et jeux de suppression de sommets dans les graphes : Des étoiles plein les jeux

Antoine Dailly 1, 2
Abstract : In this thesis, we study both graphs and combinatorial games. There are several links betweenthose two domains : games are useful for modeling an opponent in optimization problems on graphs,and in the other direction several classical games are played on graphs. We will study two graphproblems and adapt some classical combinatorial games to be played on graphs.In a first chapter, we study a criticality problem. A graph that verifies some property, and suchthat any modification (vertex or edge addition or deletion) breaks the property is called critical forthis property. We focus on the critical graphs for the property "having diameter 2", called D2Cgraphs. The Murty-Simon conjecture gives an upper bound on the number of edges in a D2C graphwith a given number of vertices. However, recent research suggests that this bound can be improvedfor non-bipartite D2C graphs. We show the validity of this approach by proving a smaller upperbound for a subfamily of non-bipartite D2C graphs.In a second chapter, we consider an identification problem. Identification consists in assigningsome data to every edge or vertex of a graph, such that this assignment induces a label to everyvertex with the added condition that two distinct vertices must have a different label. We definean edge-coloring using sets of integers inducing an identification of the vertices, and prove that thiscoloring requires at most a logarithmic number of integers (with respect to the order of the graph)in order to successfully identify the vertices. This result is compared with other identifying colorings,for which the number of colors required to successfully identify the vertices can be linear with respectto the order of the graph.In order to show the link between graphs and games, we adapt a well-known family of games tobe played on graphs. We propose a general framework for the study of many vertex deletion games(which are games in which the players delete vertices from a graph under predefined rules) such asArc-Kayles. This framework is a generalization of subtraction and octal games on graphs. In theirclassical definition, those games exhibit a high regularity : all finite subtraction games are ultimatelyperiodic, and Guy conjectured that this is also true for all finite octal games.We specifically study the connected subtraction games CSG(S) (with S being a finite set). Inthose games, the players can remove k vertices from a graph if and only if they induce a connectedsubgraph, the graph remains connected after their deletion, and k ∈ S. We prove that those gamesare all ultimately periodic, in the sense that for a given graph and vertex, a path attached to thisvertex can be reduced (after a certain preperiod) without changing the Grundy value of the graph forthe game. We also prove pure periodicity results, mostly on subdivided stars : for some sets S, thepaths of a subdivided star can be reduced to their length modulo a certain period without changingthe outcome of the game.Finally, we define a weighted version of Arc-Kayles, called Weighted Arc-Kayles (WAKfor short). In this game, the players select an edge and reduce the weight of its endpoints. Verticeswith weight 0 are removed from the graph. We show a reduction between WAK and Arc-Kayles,then we prove that the Grundy values of WAK are unbounded, which answers an open question onArc-Kayles. We also prove that the Grundy values of WAK are ultimately periodic if we fix allbut one of the weights in the graph
Document type :
Complete list of metadatas

Cited literature [100 references]  Display  Hide  Download
Contributor : Abes Star <>
Submitted on : Monday, December 10, 2018 - 6:33:05 PM
Last modification on : Monday, May 20, 2019 - 10:11:06 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01933500, version 2


Antoine Dailly. Criticalité, identification et jeux de suppression de sommets dans les graphes : Des étoiles plein les jeux. Combinatoire [math.CO]. Université de Lyon, 2018. Français. ⟨NNT : 2018LYSE1163⟩. ⟨tel-01933500v2⟩



Record views


Files downloads