M. S. El-deab and O. Takeo, An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes, vol.4, pp.288-292, 2002.

H. Sohyoung, A. David, . Jaffray, and A. Christine, Gold nanoparticles for applications in cancer radiotherapy : mechanisms and recent advancements, Advanced Drug Delivery Reviews, vol.109, pp.84-101, 2017.

J. Rongchao, Z. Yan, and Q. Huifeng, Quantum-sized gold nanoclusters : bridging the gap between organometallics and nanocrystals, vol.17, pp.6584-6593, 2011.

S. Hei, Y. , O. Varnavski, G. Theodore, and . Iii, An ultrafast look at Au nanoclusters, Accounts of Chemical Research, vol.46, issue.7, pp.1506-1516, 2013.

H. Conghui, Z. Hongfang, and Z. Jianbin, Electrochemical behavior of organosoluble gold nanoclusters and its application, Journal of Solid State Electrochemistry, pp.1-7, 2017.

J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, External field-assisted laser ablation in liquid : an efficient strategy for nanocrystal synthesis and nanostructure assembly, Progress in Materials Science, vol.87, pp.140-220, 2017.

Y. U. Jiaxin, N. Junyi, and Z. Heping, Size control of nanoparticles by multiplepulse laser ablation, Applied Surface Science, vol.402, pp.330-335, 2017.

F. Michael, Experimental relations of gold (and other metals) to light. Philosophical Transactions, vol.147, pp.145-181, 1857.

T. John, P. Cooper, S. , and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, pp.55-75, 1951.

G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature, issue.105, pp.20-22, 1973.

D. Matthieu, B. Kristin, and B. Gilles, UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction : observation of goldcitrate aggregates, Journal of Colloid and Interface Science, vol.399, pp.1-5, 2013.

W. Maria, B. Alexander, W. Steffen, S. Michael, V. Ulla et al., Turkevich in new robes : key questions answered for the most common gold nanoparticle synthesis, vol.9, pp.7052-7071, 2015.

P. Pichitchai and C. Supab, Monodispersity and stability of gold nanoparticles stabilized by using polyvinyl alcohol, Chiang Mai Journal of Science, vol.38, pp.31-38, 2011.

J. Mohd-rafie, L. Chien, C. Et-nor-aliya, and H. , Preparation and stabilization of monodisperse colloidal gold by reduction with monosodium glutamate and poly (methyl methacrylate), International Journal of Electrochemical Science, vol.7, pp.4567-4573, 2012.

C. Fengxi, . Guo-qin, T. S. Xu, and H. Andy, Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion, Materials Letters, vol.57, issue.21, pp.3282-3286, 2003.

A. Santosh, R. Bahadur, K. C. Narayan, B. , C. Ki et al., Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids, Journal of Colloid and Interface Science, vol.299, issue.1, pp.191-197, 2006.

B. Mathias, W. Merryl, B. Donald, D. J. Schiffrin, and W. Robin, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquidliquid system, Journal of the Chemical Society, Chemical Communications, vol.7, pp.801-802, 1994.

S. Utkarsha, S. Richa, W. Sweety, G. Sharvari, and B. A. Chopade, Microbial synthesis of gold nanoparticles : current status and future prospects, Advances in Colloid and Interface Science, vol.209, pp.40-48, 2014.

H. Teddy, F. Katia, E. David, C. Vincent, P. Behra et al., Influence of the gold nanoparticles electrodeposition method on Hg (II) trace electrochemical detection, Electrochimica Acta, vol.73, pp.15-22, 2012.

I. Audrey, C. Fabien, and T. Théodore, Influence of electrode material and roughness on iron electrodeposits dispersion by ultrasonification. Electrochimica Acta, vol.184, pp.436-451, 2015.

G. Guillaume, Modification de surfaces électrochimiques par des nanoparticules d'or pour la détection de molécules impliquées dans le stress oxydant, 2013.

I. Malvern, Zeta potential : an introduction in 30 minutes, Zetasizer Nano Serles Tech. Note, vol.654, issue.2, pp.1-6, 2011.

E. J. Verwey, J. G. Th, and . Overbeek, Theory of the stability of lyophobic colloids, 1948.

B. V. Derjaguin and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochimica URSS, vol.14, issue.6, pp.633-662, 1941.

W. Xinyu, R. D. Tilley, and J. J. Watkins, Simple ligand exchange reactions enabling excellent dispersibility and stability of magnetic nanoparticles in polar organic, aromatic, and protic solvents, Langmuir, vol.30, issue.6, pp.1514-1521, 2014.

W. U. Libo, Z. Jian, and W. Wiwik, Physical and chemical stability of drug nanoparticles, Advanced Drug Delivery Reviews, vol.63, issue.6, pp.456-469, 2011.

L. I. Feng, F. Yan, D. Pingjun, Y. Limin, and T. Bo, Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor, Biosensors and Bioelectronics, vol.26, issue.5, pp.1947-1952, 2011.

C. Peng, S. Sohyeon, L. Junghyun, W. Luyang, L. Eunkyo et al., Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide, ACS Nano, vol.5, issue.9, pp.6826-6833, 2011.

A. L. Gui, L. Guozhen, C. Muthukumar, L. E. Guillaume, . Saux et al., A comparative study of electrochemical

, Electroanalysis, vol.22, issue.16, pp.1824-1830, 2010.

B. Sabrina, S. Ibrahima, K. Samia, M. Mohamed, G. Benjamin et al., Mohamed JAZIRI et Mohamed M. CHEHIMI : Aryl diazonium-modified olive waste : a low cost support for the immobilization of nanocatalysts, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.529, pp.541-549, 2017.

J. A. Harnisch, A. D. Pris, and M. D. Porter, Attachment of gold nanoparticles to glassy carbon electrodes via a mercaptobenzene film, Journal of the American Chemical Society, vol.123, issue.24, pp.5829-5830, 2001.

L. Guozhen, L. Jingquan, T. P. Davis, J. Justin, and G. , Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody, Biosensors and Bioelectronics, vol.26, issue.8, pp.3660-3665, 2011.

L. Valeria and Z. Tomaso, Approaches to self-assembly of colloidal monolayers : a guide for nanotechnologists, Advances in Colloid and Interface Science, vol.246, pp.217-274, 2017.

R. D. Deegan, B. Olgica, T. F. Dupont, H. Greb, S. R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops, Nature, vol.389, issue.6653, pp.827-829, 1997.

L. I. Joaquim, C. Bernard, S. Michael, G. Jérémie, and G. Lucas, Drying dip-coated colloidal films, Langmuir, vol.28, issue.1, pp.200-208, 2011.

S. Leonid, A. Q. Shen, and H. A. Stone, Surface morphology of drying latex films : multiple ring formation, Langmuir, vol.18, issue.9, pp.3441-3445, 2002.

T. M. Blättler, S. Philipp, T. Marcus, J. Vörös, and R. Erik, Microarray spotting of nanoparticles, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.346, issue.1, pp.61-65, 2009.

P. Jungho and M. Jooho, Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing, Langmuir, vol.22, issue.8, pp.3506-3513, 2006.

W. Akira, K. Naoko, O. Takeshi, and Y. Ryousuke, Fabrication of nanoparticle films applying directed self-assembly, Journal of Photopolymer Science and Technology, vol.28, issue.5, pp.643-647, 2015.

O. Hirotaka, T. Hiroaki, T. Mitsuo, I. Akihiro, Y. Yoshiaki et al., Nanopattern transfer from high-density self-assembled nanosphere arrays on prepatterned substrates, Nanotechnology, vol.20, issue.45, p.455303, 2009.

M. Jozef, Z. Adriana, . Náková, Z. Vladimír, . Nák et al., Thiol-modified gold nanoparticles deposited on silica support using dip coating, Applied Surface Science, vol.315, pp.392-399, 2014.

A. S. Dimitrov and N. Kuniaki, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir, vol.12, issue.5, pp.1303-1311, 1996.

A. Mohamed, T. P. Kevin, . Lim, W. Fuke, D. Huigao et al., Directed self-assembly of densely packed gold nanoparticles, Langmuir, vol.28, issue.49, pp.16782-16787, 2012.

D. U. Xiaohang, C. Zhaolai, L. I. Zibo, H. Hongxia, Z. Qingsen et al., Dip-coated gold nanoparticle electrodes for aqueous-solutionprocessed large-area solar cells, Advanced Energy Materials, vol.4, issue.9, p.1400135, 2014.

O. Takashi, L. Balam, M. Ferry, I. Kikuo, and O. , Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.297, issue.1, pp.71-78, 2007.

C. Kan-sen, K. Huang, and L. Hsien-hsuen, Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method, Nanotechnology, vol.16, issue.6, p.779, 2005.

Y. Gun, K. O. , D. Hun, S. , G. Sun et al., Fabrication of colloidal crystals on hydrophilic/hydrophobic surface by spin-coating, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.385, issue.1, pp.188-194, 2011.

G. Qijie, T. Xiaowei, R. Saifur, and Y. Hong, Patterned LangmuirBlodgett films of monodisperse nanoparticles of iron oxide using soft lithography, Journal of the American Chemical Society, vol.125, issue.3, pp.630-631, 2003.

W. Tianlong, A. Sara, and . Majetich, Ultra-large-area self-assembled monolayers of nanoparticles, ACS Nano, vol.5, issue.11, pp.8868-8876, 2011.

H. Ghada, . Dushaq, A. Amro, M. S. Rasras, M. Ammar et al., Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon, AIP Advances, vol.5, issue.9, p.97181, 2015.

B. Denis, F. Oelher, and T. David, Gold colloidal nanoparticle electrodeposition on a silicon surface in a uniform electric field, Nanoscale Research Letters, vol.6, issue.1, p.580, 2011.

L. Isabelle, A. Pierre-antoine, and P. Marie-paule, Supra" crystal : control of the ordering of self-organization of cobalt nanocrystals at the mesoscopic scale, The Journal of Physical Chemistry B, vol.108, issue.52, 2004.

Y. Jiazhi, S. Dongping, L. I. Jun, Y. Xujie, Y. U. Junwei et al., In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance, Electrochimica Acta, vol.54, issue.26, pp.6300-6305, 2009.

C. Peihong, L. Richard, and . Mccreery, Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification, Analytical Chemistry, vol.68, issue.22, pp.3958-3965, 1996.

R. William, Nouvelle stratégie de fonctionnalisation de surfaces d'électrodes à base de sels de diazonium : application aux capteurs à antioxydants, 2013.

C. Jean-noël and A. Philippe, On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer, Journal of the American Chemical Society, vol.133, issue.4, pp.762-764, 2010.

B. Abbas, C. Simone, L. Erwann, D. Nadim, J. Justin et al., Distance-dependent electron transfer at passivated electrodes decorated by gold nanoparticles, Analytical Chemistry, vol.85, issue.2, pp.1073-1080, 2012.

B. Abbas, C. Simone, L. Erwann, D. Nadim, and J. , Justin GOODING : The influence of organic-film morphology on the efficient electron transfer at passivated polymer-modified electrodes to which nanoparticles are attached, ChemPhysChem, vol.14, issue.10, pp.2190-2197, 2013.

O. Abdollah, A. Ali, R. Nasrin, Y. Maryam, and K. , Experimental and theoretical studies on carbon surface modification by reduction of in situ generated diazonium salt, Chemical Physics Letters, vol.539, pp.107-111, 2012.

B. Stève and B. Daniel, Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations, The Journal of Physical Chemistry B, vol.109, issue.51, pp.24401-24410, 2005.

S. C. Samuel, A. J. Yu, and . Downard, Dynamic behavior of organic thin films attached to carbon surfaces, Surface Science and Nanotechnology, vol.3, pp.294-298, 2005.

P. A. Brooksby and A. J. Downard, Electrochemical and atomic force microscopy study of carbon surface modification via diazonium reduction in aqueous and acetonitrile solutions, Langmuir, vol.20, issue.12, pp.5038-5045, 2004.

K. Maryam, A. Ali, and R. , Characterization of the organic molecules deposited at gold surface by the electrochemical reaction of diazonium salts, Journal of Electroanalytical Chemistry, vol.647, issue.2, pp.117-122, 2010.

S. Hunt, D. , and R. L. Mccreery, Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes, Analytical Chemistry, vol.71, issue.20, pp.4594-4602, 1999.

R. G. Pearson, Hard and soft acids and bases, Journal of the American Chemical Society, vol.85, issue.22, pp.3533-3539, 1963.

J. Dodzi, Z. Jacques, S. Philippe, and H. , Synthesis and immobilization of Ag 0 nanoparticles on diazonium modified electrodes : SECM and cyclic voltammetry studies of the modified interfaces, vol.26, pp.7638-7643, 2010.

M. C. González, A. G. Orive, R. C. Salvarezza, and A. H. , CREUS : Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces, Physical Chemistry Chemical Physics, vol.18, issue.3, pp.1953-1960, 2016.

G. John, T. Hai, P. Yasuhiko, F. Zhi, L. I. Oleksandr et al., Covalent modification of graphene and graphite using diazonium chemistry : tunable grafting and nanomanipulation, ACS Nano, vol.9, issue.5, pp.5520-5535, 2015.

H. Julien, V. Christine, C. Annie, and A. Alain, Electrochemical grafting of organic coating onto gold surfaces : Influence of the electrochemical conditions on the grafting of nitrobenzene diazonium salt, Progress in Organic Coatings, vol.63, pp.18-24, 2008.

M. Thibaud, D. Maryleène, E. Levillain, A. J. Downard, and B. Tony, Electrografting via diazonium chemistry : the key role of the aryl substituent in the layer growth mechanism, The Journal of Physical Chemistry C, vol.120, issue.8, pp.4423-4429, 2016.

J. Young, K. Kun, and C. , Seul-a RYU, So Youn KIM et Byung Mook WEON : Crack formation and prevention in colloidal drops, Scientific Reports, vol.5, p.13166, 2015.

P. Ludovic, F. Parisse, and C. Allain, Influence of salt content on crack patterns formed through colloidal suspension desiccation, Physical Review E, vol.59, issue.3, p.3737

K. Ganesh, T. J. Ramachandran, A. M. Hopson, L. A. Rawlett, A. Nagahara et al., A bond-fluctuation mechanism for stochastic switching in wired molecules, Science, vol.300, pp.1413-1416, 2003.

L. I. Cui, M. Susanna, L. I. Xin, R. Zilvinas, Å. Hans et al., Theoretical study of para-nitro-aniline adsorption on the Au (111) surface, Surface Science, vol.649, pp.124-132, 2016.

L. Laure, H. Teddy, G. Pierre, L. , H. Jeroen et al.,

S. , P. Behra, and E. David, Mercury (II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step, Talanta, vol.141, pp.26-32, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01143054

L. Guozhen, L. Erwann, J. Justin, and G. , The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry, Langmuir, vol.27, issue.7, pp.4176-4183, 2011.

J. C. Hoogvliet, M. Dijksma, B. Kamp, and W. P. Van-bennekom, Electrochemical pretreatment of polycrystalline gold electrodes to produce a reproducible surface roughness for self-assembly : a study in phosphate buffer pH 7.4. Analytical Chemistry, vol.72, pp.2016-2021, 2000.

J. Luo, V. W. Jones, M. M. Maye, H. Li, N. N. Kariuki et al., Thermal activation of molecularly-wired gold nanoparticles on a substrate as catalyst, Journal of the American Chemical Society, vol.124, issue.47, pp.13988-13989, 2002.

K. G. Nikolaev, S. S. Ermakov, A. Offenhäusser, and M. Yulia, Activation of gold nanostructures with Meerwein's salt, Mendeleev Communications, vol.24, issue.3, pp.145-146, 2014.

B. Beden, C. Lamy, N. R. De-tacconi, and A. J. , ARVIA : The electrooxidation of CO : a test reaction in electrocatalysis, Electrochimica Acta, vol.35, issue.4, pp.691-704, 1990.

S. Trasatti and O. A. Petrii, Real surface area measurements in electrochemistry, Pure and Applied Chemistry, vol.63, issue.5, pp.711-734, 1991.
DOI : 10.1515/iupac.63.0028

URL : https://www.degruyter.com/printpdf/view/IUPAC/iupac.63.0028

M. ?ukaszewski, M. Soszko, and A. Czerwi´nskiczerwi´-czerwi´nski, Electrochemical methods of real surface area determination of noble metal electrodes-An overview, International Journal of Electrochemical Science, vol.11, pp.4442-4469, 2016.

H. Schulenburg, J. Durst, E. Müller, A. Wokaun, and G. G. Scherer, Real surface area measurements of P t 3 Co/C catalysts, Journal of Electroanalytical Chemistry, vol.642, issue.1, pp.52-60, 2010.
DOI : 10.1016/j.jelechem.2010.02.005

S. Minhua, J. H. Odell, C. Sang-il, and X. Younan, Electrochemical surface area measurements of platinum-and palladium-based nanoparticles, Electrochemistry communications, vol.31, pp.46-48, 2013.

L. D. Burke and P. F. Nugent, The electrochemistry of gold : I. The redox behaviour of the metal in aqueous media, Gold Bulletin, vol.30, issue.2, pp.43-53, 1997.

N. Konstantin, E. Sergey, Y. E. Elena, A. , A. Offenhäusser et al., A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein's salt. A bioelectrochemical sensor for glucose determination, Bioelectrochemistry, vol.105, pp.34-43, 2015.

A. Halina, B. E. Conway, A. Hamelin, and L. Stoicoviciu, Elementary steps of electrochemical oxidation of single-crystal planes of Au-I. chemical basis of processes involving geometry of anions and the electrode surfaces, Electrochimica Acta, vol.31, issue.8, pp.1051-1061, 1986.

G. D. Stephen, C. Shackleford, S. N. Boxall, R. J. Port, and . Taylor, An in situ electrochemical quartz crystal microbalance study of polycrystalline gold electrodes in nitric acid solution, Journal of Electroanalytical Chemistry, vol.538, pp.109-119, 2002.

G. , L. H. Dall'antonia, and G. Jerkiewicz, Limit to extent of formation of the quasi-two-dimensional oxide state on au electrodes, Journal of Electroanalytical Chemistry, vol.422, issue.1-2, pp.149-159, 1997.

S. J. Xia and V. I. Birss, A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solutions, Journal of Electroanalytical Chemistry, vol.500, issue.1, pp.562-573, 2001.

R. S. Sirohi and M. A. Genshaw, Electrochemical ellipsometric study of gold, vol.116, pp.910-914, 1969.
DOI : 10.1149/1.2412168

URL : http://jes.ecsdl.org/content/116/7/910.full.pdf

S. Wolfgang and S. Rolf, Electrochemical in-situ investigations on polycrystalline gold electrodes with oscillating quartz crystals : the electrosorption valency and heterogeneity constant of halide and sulphate adlayers, Berichte der Bunsengesellschaft für Physikalische Chemie, vol.93, issue.5, pp.600-605, 1989.

W. Ying, L. Eduardo, A. Crossley, and R. G. Compton, Surface oxidation of gold nanoparticles supported on a glassy carbon electrode in sulphuric acid medium : contrasts with the behaviour of 'macro'gold, Physical Chemistry Chemical Physics, vol.15, issue.9, pp.3133-3136, 2013.

B. Stanley and S. Michael, An in situ weighing study of the mechanism for the formation of the adsorbed oxygen monolayer at a gold electrode, Journal of Electroanalytical Chemistry, vol.188, issue.1, pp.131-136, 1985.

Z. Ulmas, A. V. Rudnev, L. I. Jian-feng, K. Akiyoshi, V. U. Thuhien et al., Electro-oxidation of Au (111) in contact with aqueous electrolytes : new insight from in situ vibration spectroscopy, vol.112, pp.853-863, 2013.

B. E. Conway, Electrochemical oxide film formation at noble metals as a surface-chemical process, Progress in Surface Science, vol.49, issue.4, pp.331-452, 1995.
DOI : 10.1016/0079-6816(95)00040-6

K. Juodkazis, J. Juodkazyt, B. ?ebeka, and A. Lukinskas, Cyclic voltammetric studies on the reduction of a gold oxide surface layer, Electrochemistry communications, vol.1, issue.8, pp.315-318, 1999.

R. D. Rocklin, A. P. Clarke, and W. Michael, Improved longterm reproducibility for pulsed amperometric detection of carbohydrates via a new quadruple-potential waveform, Analytical Chemistry, vol.70, issue.8, pp.1496-1501, 1998.
DOI : 10.1021/ac970906w

C. Serhiy, A. A. Topalov, K. Ioannis, and J. J. Karl, MAYRHOFER : Electrochemical dissolution of gold in acidic medium, Electrochemistry Communications, vol.28, pp.44-46, 2013.

D. A. Rand and R. Woods, A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry, Journal of Electroanalytical Chemistry, vol.35, issue.1, pp.209-218, 1972.

A. C. Cruickshank and A. J. Downard, Electrochemical stability of citrate-capped gold nanoparticles electrostatically assembled on amine-modified glassy carbon, Electrochimica Acta, vol.54, issue.23, pp.5566-5570, 2009.
DOI : 10.1016/j.electacta.2009.04.060

J. T. Steven, V. B. Golovko, J. Bernt, and T. Aaron, MARSHALL : Electrochemical stability of carbon-supported gold nanoparticles in acidic electrolyte during cyclic voltammetry, Electrochimica Acta, vol.187, pp.593-604, 2016.
DOI : 10.1016/j.electacta.2015.11.096

URL : http://hdl.handle.net/10092/11737

J. Juodkazyt-?-e, B. ?ebeka, I. Savickaja, A. Selskis, V. Jasulaitien-?-e et al., Evaluation of electrochemically active surface area of photosensitive copper oxide nanostructures with extremely high surface roughness. Electrochimica Acta, vol.98, pp.109-115, 2013.

M. V. Malashchonak, E. A. Streltsov, G. A. Ragoisha, M. B. Dergacheva, and K. A. , URAZOV : Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (T iO 2 , ZnO) by cadmium underpotential deposition, Electrochemistry Communications, vol.72, pp.176-180, 2016.

H. Enrique, L. J. Buller, and D. Héctor, ABRUÑA : Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials, Chemical Reviews, vol.101, issue.7, pp.1897-1930, 2001.

A. Hamelin, Lead adsorption on gold single crystal stepped surfaces, Journal of Electroanalytical Chemistry, vol.101, issue.2, pp.285-290, 1979.

A. Hamelin and A. Katayama, Lead underpotential deposition on gold singlecrystal surfaces : the (100) face and its vicinal faces, Journal of Electroanalytical Chemistry, vol.117, issue.2, pp.221-232, 1981.

A. Hamelin, Underpotential deposition of lead on single crystal faces of gold : Part I. the influence of crystallographic orientation of the substrate, Journal of Electroanalytical Chemistry, vol.165, issue.1, pp.167-180, 1984.

A. Hamelin and J. Lipkowski, Underpotential deposition of lead on gold single crystal faces : Part II. general discussion, Journal of Electroanalytical Chemistry, vol.171, issue.1-2, pp.317-330, 1984.

J. Hernandez, J. Solla-gullón, and E. Herrero, Gold nanoparticles synthesized in a water-in-oil microemulsion : electrochemical characterization and effect of the surface structure on the oxygen reduction reaction, Journal of Electroanalytical Chemistry, vol.574, issue.1, pp.185-196, 2004.

C. M. Sánchez-sánchez, F. J. Vidal-iglesias, J. Solla-gullón, V. Montiel, A. Aldaz et al., Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods, Electrochimica Acta, vol.55, issue.27, pp.8252-8257, 2010.

J. Hernández, J. Solla-gullón, E. Herrero, and J. M. Feliu, ALDAZ : In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles, Journal of Nanoscience and Nanotechnology, vol.9, issue.4, pp.2256-2273, 2009.

G. Guillaume, F. Katia, E. David, and G. Pierre, Electrodeposited gold nanoparticles on glassy carbon : correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media, Electrochimica Acta, vol.128, pp.412-419, 2014.

W. Ying, L. Eduardo, S. Chris, A. Crossley, and R. G. Compton, Facile in situ characterization of gold nanoparticles on electrode surfaces by electrochemical techniques : average size, number density and morphology determination, Analyst, vol.137, issue.20, pp.4693-4697, 2012.

T. Wilhelmin, N. Aurelien, H. Julie, R. Karine, S. et al., Effect of the cleaning step on the morphology of gold nanoparticles, vol.2, pp.24-27, 2011.

P. Diandree, G. Vladimir, I. Bridget, and T. Aaron, MARSHALL : Influence of particle size on the electrocatalytic oxidation of glycerol over carbon-supported gold nanoparticles, Electrochimica Acta, vol.120, pp.398-407, 2014.

R. Francois, S. G. Hickey, W. K. Kegel, and V. Daniel, Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface, Angewandte Chemie International Edition, vol.43, issue.4, pp.458-462, 2004.

R. Francois, W. K. Kegel, Z. Hao, N. Marc, W. Dayang et al., Performances analytiques pour la détection de traces de mercure CHAPITRE 3. PERFORMANCES ANALYTIQUES POUR LA DÉTECTION DE TRACES DE MERCURE prime abord plus sensible que les autres pour la détection du mercure, Physical Chemistry Chemical Physics, vol.8, issue.33, pp.3828-3835, 2006.

D. , Les résultats obtenus montrent en premier lieu l'existence d'un effet mémoire du capteur se traduisant par l'augmentation du courant de pic de détection du mercure ; celui-ci finit par diminuer sur les dernières mesures de l'étude. La redissolution incomplète du Hg durant les SWASV ainsi que la perte de SEA sont les phénomènes soupçonnés d'être responsables de cette évolution, une étude préliminaire sur la stabilité des interfaces a permis de suivre le comportement des électrodes durant des utilisations régulières en parallèle du stockage dans trois milieux différents

G. De-manière, les interfaces étudiées dans ces travaux montrent des performances prometteuses pour la détection du mercure (temps d'analyse très court du fait d'une grande réactivité des AuNPs, sensibilités meilleures que celle d'autres capteurs de la bibliographie

A. J. Bard, R. Larry, and . Faulkner, Electrochemical methods, 2nd, 2001.

H. Teddy, L. Laure, G. Pierre, P. Behra, and E. David, Hg (II) trace electrochemical detection on gold electrode : evidence for chloride adsorption as the responsible for the broad baseline, Journal of Electroanalytical Chemistry, vol.697, pp.28-31, 2013.

R. Rossmann, A. James, and . Barres, Contamination of Green Bay water with lead and cadmium by a 37-m long, 2-m draft research vessel, Science of the Total Environment, vol.125, pp.405-415, 1992.

A. Gary, W. F. Gill, and . Fitzgerald, Mercury sampling of open ocean waters at the picomolar level, Deep Sea Research Part A. Oceanographic Research Papers, vol.32, pp.287-297, 1985.

H. Micheal, D. E. Bothner, and . Robertson, Mercury contamination of sea water samples stored in polyethylene containers, Analytical Chemistry, vol.47, issue.3, pp.592-595, 1975.

M. E. Lewis and M. E. Brigham, Low-level mercury, Processing of Water Samples, US Geological Survey Techniques of Water-Resources Investigations, 2004.

U. S. Epa, Mercury in water by oxidation, purge and trap, and Cold Vapor Atomic Fluorescence Spectrometry, 2002.

C. R. Hammerschmidt, K. L. Bowman, and M. D. Tabatchnick,

H. Carl, LAMBORG : Storage bottle material and cleaning for determination of total mercury in seawater, Limnology and Oceanography : Methods, vol.9, issue.10, pp.426-431, 2011.

J. L. Parker and N. S. Bloom, Preservation and storage techniques for low-level aqueous mercury speciation, Science of the Total Environment, vol.337, issue.1, pp.253-263, 2005.

H. Teddy, F. Katia, E. David, C. Vincent, P. Behra et al., Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry : application to Hg (II) trace analysis, Journal of Electroanalytical Chemistry, vol.664, pp.46-52, 2012.

A. Mercure, Détection du mercure 186 CHAPITRE 3

L. Laure, H. Teddy, G. Pierre, L. Heimbürger, E. Jeroen et al., Mercury (II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step, Talanta, vol.141, pp.26-32, 2015.

H. Teddy, F. Katia, E. David, C. Vincent, P. Behra et al., Influence of the gold nanoparticles electrodeposition method on Hg (II) trace electrochemical detection, Electrochimica Acta, vol.73, pp.15-22, 2012.

S. Carola, M. Alfonso, S. Michael, and I. Daniela, Investigation of Au-Hg amalgam formation on substrate-immobilized individual Au nanorods, Journal of Materials Chemistry C, vol.3, issue.34, pp.8865-8872, 2015.

S. Carola, W. Amélie, M. Alfonso, A. O. Riordan, and I. Daniela, Direct observation of mercury amalgamation on individual gold nanorods using spectroelectrochemistry, The Journal of Physical Chemistry C, vol.120, issue.34, pp.19295-19301, 2016.

F. L. Stijn, . Mertens, G. Matthew, A. S. Sologubenko, M. Joachim et al., Au@Hg nanoalloy formation through direct amalgamation : structural, spectroscopic, and computational evidence for slow nanoscale diffusion, Advanced Functional Materials, vol.21, issue.17, pp.3259-3267, 2011.

G. Eugénie, G. Emelyne, G. Guillaume, D. Sandrine, M. Martine et al., Mercury (II) trace detection using a glassy carbon electrode functionalized by chemically prepared gold nanoparticles. Influence of coating process on surface reactivity and analytical performances, International Journal of Electrochemical Science, vol.12, pp.6092-6107, 2017.

A. Ornella, G. Agnese, M. Mery, P. Giuseppina, and M. Edoardo, Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode, Electroanalysis, vol.20, issue.1, pp.75-83, 2008.

D. Liang, L. Yuping, Z. Jianping, A. , M. Bond et al., Direct electrodeposition of graphene-gold nanocomposite films for ultrasensitive voltammetric determination of mercury (II), Electroanalysis, vol.26, issue.1, pp.121-128, 2014.

G. Jingming, Z. Ting, S. Dandan, and Z. Lizhi, Monodispersed au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive of mercury (II), Sensors and Actuators B : Chemical, vol.150, issue.2, pp.491-497, 2010.

L. I. Dongyue, L. I. Jing, J. Xiaofang, and W. Erkang, Gold nanoparticles decorated carbon fiber mat as a novel sensing platform for sensitive detection of Hg

, Electrochemistry Communications, vol.42, pp.30-33, 2014.

G. Marco, M. Giovanni, T. Fabio, Z. Chiara, and S. Renato, Composite PEDOT/Au nanoparticles modified electrodes for determination of mercury at trace levels by anodic stripping voltammetry, Electroanalysis, vol.23, issue.2, pp.456-462, 2011.

X. U. He, Z. Liping, X. Sujie, S. Guoyue, X. Yuezhong et al., Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury (II), Electrochemistry Communications, vol.10, issue.12, pp.1839-1843, 2008.

M. Weber, I. R. De-moraes, A. J. Motheo, and F. , NART : In situ vibrational spectroscopy analysis of adsorbed phosphate species on gold single crystal electrodes

, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.134, issue.1-2, p.103

Y. Chao, L. Bianhua, L. Fei, M. Han, and Z. Zhongping, Fluorescence "turn on" detection of mercuric ion based on bis(dithiocarbamato) copper (II) complex functionalized carbon nanodots, Analytical Chemistry, vol.86, issue.2, pp.1123-1130, 2014.

. Sheng-e-wang and S. I. Shihui, Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis, Analytical Methods, vol.5, issue.12, pp.2947-2953, 2013.

L. I. Ming, Z. Xuejiao, D. Weiqiang, G. Shouwu, and W. U. Nianqiang, Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II), Biosensors and Bioelectronics, vol.41, pp.889-893, 2013.

Z. Min, Y. Bin-cheng, T. Weihong, and Y. E. Bang-ce, A versatile graphenebased fluorescence "on/off" switch for multiplex detection of various targets, Biosensors and Bioelectronics, vol.26, issue.7, pp.3260-3265, 2011.

J. Xin-dong, Z. Jiuli, L. I. Qian, C. Sun, G. Jian et al., Synthesis of nir fluorescent thienyl-containing aza-bodipy and its application for detection of Hg 2+ : electron transfer by bonding with Hg 2+, Dyes and Pigments, vol.125, pp.136-141, 2016.

Z. Huijun, F. Juan, C. Hangqing, T. Zhenwei, W. Guimei et al., An EDTA promoted coordination induced disaggregation for specific Hg 2+ detection, Dyes and Pigments, vol.113, pp.181-188, 2015.

Y. Huiran, H. Chunmiao, Z. Xingjun, L. Yi, K. Yin et al., Upconversion luminescent chemodosimeter based on NIR organic dye for monitoring methylmercury in vivo, Advanced Functional Materials, vol.26, issue.12, pp.1945-1953, 2016.

Z. Yan, Y. Meifen, J. Jingjing, G. Pengfei, Z. Guomei et al., Highly selective and sensitive nanoprobes for hg (II) ions based on photoluminescent gold nanoclusters, Sensors and Actuators B : Chemical, vol.235, pp.386-393, 2016.

C. Shu, K. Yangfang, Z. Pingping, H. Yuanzhi, W. Aoli et al., A dualfunctional spectroscopic probe for simultaneous monitoring Cu 2+ and Hg 2+ ions by Annexe, p.204

A. A. , ANNEXE two different sensing nature based on novel fluorescent gold nanoclusters, Sensors and Actuators B : Chemical, vol.253, pp.283-291, 2017.

L. Dingbin, Q. U. Weisi, C. Wenwen, Z. Wei, W. Zhuo et al., Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Analytical Chemistry, vol.82, pp.9606-9610, 2010.

S. Gulsu, U. Lokman, and D. Adil, Lysine-promoted colorimetric response of gold nanoparticles : a simple assay for ultrasensitive mercury (II) detection, Analytical Chemistry, vol.86, issue.1, pp.514-520, 2014.

L. I. Yan, W. U. Ping, X. U. Hu, Z. Zhongping, and Z. Xinhua, Highly selective and sensitive visualizable detection of Hg 2+ based on anti-aggregation of gold nanoparticles, Talanta, vol.84, issue.2, pp.508-512, 2011.

C. Ling, L. Tingting, Y. U. Chunwei, K. Qi, and C. Lingxin, N-1-(2mercaptoethyl) thymine modification of gold nanoparticles : a highly selective and sensitive colorimetric chemosensor for Hg 2+, Analyst, vol.136, issue.22, pp.4770-4773, 2011.

Y. Jun, H. U. Haoze, Z. Jinping, Z. Lina, Z. Yaping et al., Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury (II), Langmuir, vol.29, issue.16, pp.5085-5092, 2013.

K. Vijay, K. Devendra, . Singh, M. Sweta, B. Daraksha et al., Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion, Journal of Photochemistry and Photobiology B : Biology, vol.168, pp.67-77, 2017.

L. Ting, J. Xue, D. , S. Gang, L. Na et al., Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg 2+ ions detection, Journal of Hazardous Materials, vol.322, pp.430-436, 2017.

S. Nawfel, M. Wiem, H. Ben, O. Hatem, and M. , Enhancing performances of colorimetric response of carboxymethylcellulose-stabilized silver nanoparticles : a fully eco-friendly assay for Hg 2+ detection, Sensors and Actuators, 2017.

Y. , W. Lixing, W. Fengping, A. N. Hui, X. U. Zejin et al., Graphitic carbon nitride supported platinum, p.205

, Annexe nanocomposites for rapid and sensitive colorimetric detection of mercury ions. Analytica Chimica Acta, 2017.