I. Energy-agency, « Energy Technology Perspectives 2017-Executive Summary, 2017.

U. , Paris Declaration on Electro-Mobility and Climate Change & Call to Action, p.1, 2015.

D. Joshua, . Miller, and F. Cristiano, « The state of clean transport policy-A 2014 synthesis of vehicle and fuel policy developments, The ICCT Report, p.73, 2014.

H. Dale, M. Marissa, and L. Nic, Electric vehicle capitals of the world, p.57, 2017.

, EVI-Electric Vehicle Initiative, INTERNATIONAL ENERGY AGENCY (IEA)

A. , Association nationale pour le développement de la mobilité électrique

, WEVA-World Electric Vehicle Association

A. , Prime à la conversion : mode d'emploi, 2018.

I. Transportation, Global update : Light-duty vehicle greenhouse gas and fuel economy standards, p.36, 2017.

I. Transportation, European Vehicle Market Statistics, 2017.

Y. Zifei, Improving the conversions between the various passenger vehicle fuel economy/CO2 emission standards around the world, The International Council on Clean Transportation (ICCT) (2014), p.14719185

L. Ntziachristos, In-use vs. type-approval fuel consumption of current passenger cars in Europe, Energy Policy, vol.67, pp.301-4215, 2014.

. Bibliographie,

D. Joachim, Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC, Energy Policy, vol.49, pp.301-4215, 2012.

U. , Global technical regulation No. 15, Worldwide harmonized Light vehicles Test Procedure, Global Technical Regulation, 2014.

U. , Agreement-Concerning the adoption of uniform technical prescriptions for wheeled vehicles, equipment and parts, 2015.

I. Transportation, « 2020-2030 CO2 standards for new cars and light-commercial vehicles in the European Union ». In : October (2017), pp.1-19

J. Brunet, A hardware in the loop (HIL) model development and implementation methodology and support tools for testing and validating car engine electronic control unit (ECU), International Conference on Simulation Based Engineering and Studies, TCN CAE, 2005.

A. Système, , 2018.

M. Mert, Electric Vehicle Powertrain Design and Implementation, 2013.

. , Control System Validation, 2018.

M. Anu, « Introduction to modelling and simulation, Winter Simulation Conference, pp.7-13, 1997.

P. Steven, G. Haveman, and B. Maarten, « Communication of simulation and modelling activities in early systems engineering, Procedia Computer Science, vol.44, pp.305-314, 2015.

H. Martyn and P. , Analysis and Design of Engineering Systems, p.303, 1961.

K. Dean and R. Ronald, Introduction to Physical System Dynamics, 1983.

M. Mert, A New Concept of Functional Energetic Modelling and Simulation, 9th EUROSIM Congress on Modelling and Simulation, pp.536-541, 2016.

J. Brunet, Procédé de Modélisation d'un Processus Physique, 1994.

A. Bouscayrol, « Macromodélisation pour les conversions électromécaniques : application à la commande des machines électriques, Rev. Int. GénieElectrique, vol.3, pp.257-282, 2000.

D. Florian, « Power modeling for the optimization of a marine hybrid propulsion, International Conference and Exhibition on Ecological Vehicles and Renewable Energies, 2009.

B. Éric, System design using an inverse approach : Application to the hybrid vehicle powertrain, vol.40, pp.269-290, 2006.

. , PhiSim for Simulink R, 2017.

J. Hautier and J. Faucher, « Le graphe informationnel causal, Bulletin de l'Union des Physiciens, vol.90, pp.167-189, 1996.

F. Clément, « Approche modulaire de l'optimisation des flux de puissance multi-sources et multi-clients, à visé temps réel, Ecole des Mines de Nantes, vol.DOI, p.1245429, 2015.

W. L. , Gestion d'Energie de Véhicules Electriques Hybrides Basée sur la Représentation Energétique Macroscopique, p.198, 2007.

Y. Cheng, « Field weakening control of a PM electric variable transmission for HEV, Journal of Electrical Engineering and Technology, vol.8, pp.1096-1106, 2013.

D. Chrenko, Inversion-Based Control of a Proton Exchange Membrane Fuel Cell System Using Energetic Macroscopic Representation, ASME. J. Fuel Cell Sci. Technol, vol.6, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411154

C. Keyu, « Common Energetic Macroscopic Representation and Unified Control Structure for Different Hybrid Electric Vehicles, 2010.

C. C. Chan, Powering Sustainable Mobility : Roadmaps of Electric, Hybrid and Fuel Cell Vehicles, Proceedings of the IEEE 97, vol.4, pp.603-607, 2009.

B. Alain and P. D. , Simplifications of the Maximum Control Structure of a wind energy conversion system with an induction generator, International Journal of Renewable Energy Engineering, vol.4, pp.479-485, 2002.

D. Florian, Dimensionnement d'une Propulsion Hybride de Voilier, basé sur la Modélisation par les Flux de Puissance, 2010.

G. Sanjaka, . Wirasingha, and E. Ali, « Classification and review of control strategies for plug-in hybrid electric vehicles, IEEE Transactions on Vehicular Technology, vol.60, issue.1, pp.111-122, 2011.

F. Salmasi, Control Strategies for Hybrid Electric Vehicles : Evolution, Classification, Comparison, and Future Trends, vol.56, pp.2393-2404, 2007.
DOI : 10.1109/tvt.2007.899933

H. Banvait, S. Anwar, and Y. Chen, « A rule-based energy management strategy for Plug-in Hybrid Electric Vehicle (PHEV), American Control Conference, 2009. ACC '09, pp.3938-3943, 2009.
DOI : 10.1109/acc.2009.5160242

H. Lee, Torque control strategy for a Parallel-Hybrid vehicle using Fuzzy Logic, IEEE Industry Applications Magazine December, pp.33-38, 2000.

P. Abdoulaye, Rule-based Energy Management Strategy for a Parallel Hybrid Electric Vehicle deduced from Dynamic Programming, 2017.

. Bibliographie,

H. Yanjun, Model predictive control power management strategies for HEVs : A review, vol.341, pp.91-106, 2017.

S. Antonio, B. Michael, and G. Lino, « Optimal control of parallel hybrid electric vehicles, IEEE Transactions on Control Systems Technology, vol.12, pp.352-363, 2004.

G. Paganelli, Equivalent consumption minimization strategy for parallel hybrid powertrains, IEEE Vehicular Technology Conference, vol.4, pp.2076-2081, 2002.

J. T. Kessels, M. W. Koot, P. P. Van-den, and . Bosch, « Optimal adaptive solution to powersplit problem in vehicles with Integrated Starter/Generator, 2006 IEEE Vehicle Power and Propulsion Conference, VPPC 2006, 2006.

Z. Shuo, R. Xiong, and S. Fengchun, Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system, Applied Energy, vol.185, 2017.

V. Cristina, Commande prédictive des systèmes hybrides et application à la commande de systèmes en électronique de puissance, 2013.

A. Taghavipour, Predictive power management strategy for a PHEV based on different levels of trip information. T. 45. 30. IFAC, pp.326-333, 2012.

S. Daliang, B. Valerie, and M. Steffen, « Model predictive energy management for a range extender hybrid vehicle using map information, 2015.

A. Sciarretta and L. G. , Control of hybrid electric vehicles, IEEE Control Systems, vol.27, pp.60-70, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00832475

Y. Hsieh and Y. Liu, Model predictive control strategy for plug-in hybrid electric vehicles, 2016 14th International Conference on Control, Automation, Robotics and Vision, pp.13-15, 2017.

B. Hoseinali, MPC-based energy management of a power-split hybrid electric vehicle, IEEE Transactions on Control Systems Technology, vol.20, issue.3, pp.593-603, 2012.

R. Haber, J. Rossiter, and K. Zabet, « An alternative for PID control : Predictive Functional Control-a tutorial, 2016 American Control Conference (ACC), 2016.

W. Yongyu and S. Qu, Predictive functional control of power kites for high altitude wind energy generation based on hybrid neural network, 34th Chinese Control Conference (CCC), 2015.

X. Wang, L. Li, and C. Yang, « Hierarchical Control of Dry Clutch for Engine-Start Process in a Parallel Hybrid Electric Vehicle, IEEE Transactions on Transportation Electrification, vol.2, pp.231-243, 2016.

W. Rui and M. L. Srdjan, Dynamic Programming Technique in Hybrid Electric Vehicle Optimization, IEEE International Electric Vehicle Conference, pp.1-8, 2012.

J. Scordia, Global optimisation of energy management laws in hybrid vehicles using dynamic programming, Int. Journal of Vehicle Design, vol.39, pp.349-367, 2005.

C. Claudio, Design of the control strategy for a range extended hybrid vehicle by means of dynamic programming optimization, IEEE Intelligent Vehicles Symposium, Proceedings Iv, pp.1234-1241, 2017.

C. Thomas, Introduction à l'algorithmique. 2e édition. Dunod, p.2100031287, 2004.

S. Bashash and H. , Optimizing demand response of plug-in hybrid electric vehicles using quadratic programming, American Control Conference, pp.716-721, 2013.

C. Zheng, Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming, Journal of Power Sources, vol.248, pp.416-426, 2014.

Z. Chen, Energy management for plug-in hybrid electric vehicles based on quadratic programming with optimized engine on-off sequence, IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, pp.7134-7139, 2017.

S. Hahn, Extension of a linear optimal control strategy for HEV, 2015 European Control Conference (ECC), pp.154-159, 2015.

A. Panday and H. Bansal, « Optimal fuel control of series-parallel input split hybrid electric vehicle using genetic algorithm based control strategy, 2015 International Conference on Energy Economics and Environment (ICEEE), pp.1-5, 2015.

Y. , C. Lai, and J. Teh, « Optimization of Control Strategy for Hybrid Electric Vehicles Based on Improved Genetic Algorithm, 2017 IEEE Vehicle Power and Propulsion Conference (VPPC, pp.1-4, 2017.

J. and L. E. Moigne, La théorie du système général, théorie de la modélisation, p.0, 1994.

D. K. , Eléments d'architecture des systèmes complexes, Gestion de la complexité et de l'information dans les grands systèmes critiques. Sous la dir. d'A. APPRIOU. CNRS Editions, pp.978-980, 2009.

J. M. Pénalva and E. P. , SAGACE : la modélisation des systèmes dont la maîtrise est complexe, 1990.

P. Nam and . Suh, Axiomatic Design Theory for Systems, vol.10, pp.1435-6066, 1998.

F. Clément, « A flexible design methodology to solve energy management problems, International Journal of Electrical Power & Energy Systems, vol.97, pp.220-232, 2017.

G. Massimo, « When cars went electric, IEEE Industrial Electronics Magazine, vol.5, issue.1, pp.61-62, 2011.

B. Jedlik and Á. István,

E. Wiki, Archives : The Inventions of Thomas Davenport, ? title = Archives : The{\_}Inventions{\_}of{\_}Thomas{\_}Davenport{\&}oldid=113605, 2015.

H. Pieper, Mixed Drive for Autovehicles, 1909.

G. Massimo, Looking back to electric cars, 3rd Region-8 IEEE HISTory of Electro-Technology CONference : The Origins of Electrotechnologies, HISTELCON 2012Conference Proceedings, 2012.

W. W. Commons and . Commons, ? title = File : Pieper{\ _ }petroleo-electrique{\ _ }1900. png{\&}oldid=87604539, 2013.

W. Hybrid-vehicle and . Org, Hybrid Vehicle History-more than a 100 years of evolution and refinement

T. Prius, , 1997.

N. Prius-hybride-rechargeable, , 2017.

E. Ali, Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations, IEEE Transactions on Vehicular Technology, vol.54, 2005.

M. Ehsani, Y. Gao, and J. Miller, « Hybrid Electric Vehicles : Architecture and Motor Drives, Proceedings of the IEEE 95, vol.4, 2007.

M. Ehsani, Y. Gao, and A. Emadi, Modern electric, hybrid electric and fuel cell vehicles. 2nd, p.9781420053982, 2010.

E. W. Lo, Review on the configurations of hybrid electric vehicles, 2009 3rd International Conference on Power Electronics Systems and Applications (PESA), p.9881747139, 2009.

D. Omonowo, . Momoh, O. Michael, and . Omoigui, « An Overview of Hybrid Electric Vehicle Technology, pp.1286-1292, 2009.

, Bibliographie 183

C. C. Chan, The state of the art of electric, hybrid, and fuel cell vehicles, Proceedings of the IEEE 95, vol.4, 2007.

D. Cabezuelo, Powertrain systems of electric, hybrid and fuel-cell vehicles : State of the technology, 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), pp.1445-1450, 2017.

C. C. Chan, A. Bouscayrol, and C. Keyu, « Electric, hybrid, and fuel-cell vehicles : Architectures and modeling, IEEE Transactions on Vehicular Technology, vol.59, pp.589-598, 2010.

R. Thomas, Linden's Handbook of Batteries. 4th, p.9780071624190, 2010.

T. Battery, Nickel-metal Hydride/Lithium-ion), 2017.

B. Isidor, C. Electronics, and I. , How to prolong lithium based batteries ?, 2018.

B. Isidor, C. Electronics, and I. , What causes capacity loss ?, 2018.

B. Isidor and C. Electronics-inc, What causes batteries to fail ?, 2003.

B. Isidor, C. Electronics, and I. , How does rising internal resistance affect performance ?, 2018.

B. Isidor, C. Electronics, and I. , What does elevated self discharge do ?, 2017.

H. Douglas and P. P. , Sizing ultracapacitors for hybrid electric vehicles, IECON Proceedings (Industrial Electronics Conference) 2005, pp.1599-1604, 2005.

B. Andrew and . Ultracapacitors, Why, how, and where is the technology, Journal of Power Sources, vol.91, 2000.

M. Zeraoulia, M. Benbouzid, and D. Diallo, Electric Motor Drive Selection Issues for HEV Propulsion Systems : A Comparative Study, IEEE Trans,Vehicular Technology, vol.55, issue.6, pp.1756-1764, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00527584

L. I. Yingjie, B. Dheeraj, and S. Bulent, « Design and Optimization of a Novel Dual-Rotor Hybrid PM Machine for Traction Application, IEEE Transactions on Industrial Electronics, vol.65, pp.1762-1771, 2017.

. Bibliographie,

S. Milomir, Improving Efficiency of Power Electronics Converters, Electronics, Faculty of Electrical Engineering, vol.14, pp.37-42, 2010.

J. Kolar, Extreme efficiency power electronics, Integrated Power Electronics Systems (CIPS), 2012 7th International Conference on, pp.1-22, 2012.

F. Philippe, « Modélisation pour la conception et l'évaluation de systèmes complexes, Revue Ingénieurs de l'Automobile, vol.841, 2016.

P. Fiani and M. Mokukcu, Représentation unifiée pour la conception, l'analyse et la simulation des systèmes complexes. Application aux véhicules hybrides, Proceedings of the Congrès Simulation : La simulation numérique au coeur de l'innovation automobile, pp.1-8, 2017.

M. Mert, Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics. T. 1. Icinco, pp.45-53, 2017.

M. Mert, Energy-based Functional Modelling for Control Architecture Design : an Application to Energy Management for a Hybrid Electric Vehicle, pp.1-24, 2018.

M. Omar, « Optimal control problem in bond graph formalism, Simulation Modelling Practice and Theory, vol.17, pp.240-256, 2009.

A. Étienne, A. Cédric, and B. Éric, « Consideration of glare from daylight in the control of the luminous atmosphere in buildings, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp.1070-1075, 2011.

. , Phisim Brochure, 2018.

M. Otter, H. Elmqvist, and F. Cellier, « Modeling of multibody systems with the object-oriented modeling language Dymola, Nonlinear Dynamics, vol.9, pp.91-112, 1996.

M. Wilfrid, E. Bideaux, and S. Serge, « A planar mechanical library in the AMESim simulation software. Part II : Library composition and illustrative example, Simulation Modelling Practice and Theory, vol.14, pp.95-111, 2006.

Z. Didar and G. Vincenzo, Proceedings of 8th International Workshop on Requirements Engineering : Foundation for Software Quality March, pp.155-164, 2002.

F. Clément, C. Fabien, and C. Philippe, Energy management in multi-consumers multi-sources system : A practical framework, IFAC Proceedings Volumes (IFAC-PapersOnline), vol.19, p.14746670, 2014.

V. Ludwig and . Bertalanffy, General System Theory, vol.1, p.289, 1968.

E. Darek, « A principal exposition of Jean-Louis Le Moigne's systemic theory, Cybernetics and Human Knowing, vol.4, pp.33-77, 1997.

T. Howard, . Odum, and . Environment, , 1971.

H. T. Odum, Ecological and General Systems : An Introduction to Systems Ecology, 1994.

T. Mark and . Brown, A picture is worth a thousand words : Energy systems language and simulation, Ecological Modelling, vol.178, 2004.

M. Felicitas, T. Rochdi, and B. Eric, Vehicle trajectory optimization for hybrid vehicles taking into account battery state-of-charge, 2012 IEEE Vehicle Power and Propulsion Conference, pp.950-955, 2012.

S. Gwenaëlle, M. Laurence, and G. Patrick, « Simulation of real-world vehicle missions using a stochastic markov model for optimal powertrain sizing, IEEE Transactions on Vehicular Technology, vol.61, pp.3454-3465, 2012.

C. Daniela, Novel Classification of Control Strategies for Hybrid Electric Vehicles, 2015 IEEE Vehicle Power and Propulsion Conference, VPPC 2015Proceedings, pp.1938-8756, 2015.

C. Desai, S. Sheldon, and . Williamson, Comparative study of hybrid electric vehicle control strategies for improved drivetrain efficiency analysis, Electrical Power & Energy Conference (EPEC) (2009), pp.1-6

A. M. Andreas, Supervisory power management control algorithms for hybrid electric vehicles : A survey, IEEE Transactions on Intelligent Transportation Systems, vol.15, 2014.

S. Overington and S. Rajakaruna, Review of PHEV and HEV operation and control research for future direction, Power Electronics for Distributed Generation Systems (PEDG), pp.385-392, 2012.

S. Alberto, A. Sorniotti, and L. Constantina, Power split strategies for hybrid energy storage systems for vehicular applications, Journal of Power Sources, vol.258, pp.395-407, 2014.

M. Bichi, Stochastic model predictive control with driver behavior learning for improved powertrain control, 49th IEEE Conference on Decision and Control, pp.743-1546, 2010.

L. Européennes, Directive 93/116/CE de la Commission, 1993.

L. Européennes, Directive du Conseil 91/441/CEE, 1991.

T. France, Brochure Nouvelle Prius, 2018.

F. Volvo-car, . Sas, and . Brochure, , 2018.

A. Propre and . Voitures-ecologiques, , 2018.

, Principe de la stratégie de commande prédictive Les étapes de synthèse d'une loi de commande prédictive [50] peuvent être résumées de la façon suivante

, Développer un modèle de prédiction afin de prédire la sortie du système sur un horizon fini. Dans la commande prédictive classique, il s'agit d'un modèle linéaire à temps discret sous forme d

, Définir une fonction du coût intégrant les objectifs de commande

, Déterminer la séquence de commandes optimales qui minimise la fonction de coût sur un horizon fini sujet au modèle de prédiction utilisé et aux contraintes liées aux limitation des grandeurs physiques

, Appliquer le premier élément de la séquence de commandes au système

, Mettre à jour l'état du système et répéter les étapes 1-5 à la période d'échantillonnage suivante

. , Application de la stratégie de commande prédictive à un VEH La commande d'un véhicule électrique hybride est réalisée en utilisant une structure de commande intégrant deux niveaux : ? le niveau « superviseur » : consiste d'un correcteur global qui calcule pour un cycle