. When, the preceding sum

, Proceeding in time both of the agglomerations are well formed, An agglomeration is visible in both methods around the point (0, 0)

J. Adler, Chemotaxis in bacteria, Science, vol.153, pp.708-716, 1966.

J. Adler, Chemoreceptors in bacteria, Science, vol.166, pp.1588-1597, 1969.

J. Adler, A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by escherichia coli, Microbiology, vol.74, pp.77-91, 1973.

J. Adler, Chemotaxis in bacteria, Annual Review of Biochemistry, vol.44, pp.341-356, 1975.

J. Adler, T. , and B. , The effect of environmental conditions on the motility of escherichia coli, Microbiology, vol.46, pp.175-184, 1967.

H. C. Berg, Chemotaxis in bacteria, Annual Review of Biophysics and Bioengineering, vol.4, p.1098551, 1975.

P. Biler, L. Corrias, and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. Math. Biol, vol.63, pp.1-32, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00411913

A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, issue.44, p.32, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00021782

J. Bonner, The Cellular Slime Molds. Princeton Legacy Library, 2015.

A. N. Borodin and P. Salminen, Handbook of Brownian motion-facts and formulae. Probability and its Applications, 1996.

M. Bossy, Some stochastic particle methods for nonlinear parabolic PDEs, GRIP-Research Group on Particle Interactions, vol.15, pp.18-57, 2005.

M. Bossy, J. , and J. , Particle approximation for Lagrangian stochastic models with specular boundary condition, Electron. Commun. Probab, vol.23, p.14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01147441

M. Bossy, J. Jabir, and D. Talay, On conditional McKean Lagrangian stochastic models, Probab. Theory Related Fields, vol.151, pp.319-351, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00345524

M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation, Ann. Appl. Probab, vol.6, pp.818-861, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074265

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2011.

H. M. Brezis, C. , and T. , A nonlinear heat equation with singular initial data, J. Anal. Math, vol.68, pp.277-304, 1996.

A. Budhiraja, F. , and W. , Uniform in time interacting particle approximations for nonlinear equations of Patlak-Keller-Segel type, Electron. J. Probab, vol.22, issue.8, p.37, 2017.

E. O. Budrene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, vol.376, 1995.

P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers' equation, Ann. Inst. H. Poincaré Sect. A (N.S.), vol.39, pp.85-97, 1983.

V. Calvez, C. , and L. , The parabolic-parabolic Keller-Segel model in R 2, Commun. Math. Sci, vol.6, pp.417-447, 2008.

P. Cattiaux, P. , and L. , The 2-D stochastic Keller-Segel particle model: existence and uniqueness. ALEA Lat, Am. J. Probab. Math. Stat, vol.13, pp.447-463, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263156

L. Corrias, M. Escobedo, and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations, vol.257, pp.1840-1878, 2014.

L. Corrias, P. , and B. , Critical space for the parabolic-parabolic Keller-Segel model in R d, C. R. Math. Acad. Sci. Paris, vol.342, pp.745-750, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113524

L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math, vol.72, pp.1-28, 2004.

B. J. Dickson, Molecular mechanisms of axon guidance, Science, vol.298, pp.1959-1964, 2002.

M. Eisenbach and . Chemotaxis, , vol.1, 2004.

T. W. Engelmann, Neue methode zur untersuchung der sauerstoffausscheidung pflanzlicher und thierischer organismen. Archiv für die gesamte, Physiologie des Menschen und der Tiere, vol.25, pp.285-292, 1881.

I. Fatkullin, A study of blow-ups in the Keller-Segel model of chemotaxis, Nonlinearity, vol.26, pp.81-94, 2013.

N. Fournier, Finiteness of entropy for the homogeneous Boltzmann equation with measure initial condition, Ann. Appl. Probab, vol.25, pp.860-897, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01138786

N. Fournier and M. Hauray, Propagation of chaos for the Landau equation with moderately soft potentials, Ann. Probab, vol.44, pp.3581-3660, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01257022

N. Fournier, J. , and B. , Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes, Ann. Appl. Probab, vol.27, pp.2807-2861, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01171481

P. Friz and H. Oberhauser, A generalized Fernique theorem and applications, Proc. Amer. Math. Soc, vol.138, pp.3679-3688, 2010.

D. Godinho and C. Quiñinao, Propagation of chaos for a subcritical keller-segel model, Ann. Inst. H. Poincaré Probab. Statist, vol.51, issue.3, pp.965-992, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00834710

H. Guérin, M. , and S. , Convergence from Boltzmann to Landau processes with soft potential and particle approximations, J. Statist. Phys, vol.111, pp.931-966, 2003.

M. E. Hatten and H. N. , Neurogenesis and migration, Fundamentals of neuroscience, Z. M, pp.451-479, 1998.

J. Ha?kovec and C. Schmeiser, Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system, Comm. Partial Differential Equations, vol.36, pp.940-960, 2011.

M. A. Herrero and J. J. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann, vol.306, pp.583-623, 1996.

M. A. Herrero and J. J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.24, issue.4, pp.633-683, 1997.

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol, vol.58, pp.183-217, 2009.

T. Hillen, P. , and A. , The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci, vol.27, pp.1783-1801, 2004.

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math.-Verein, vol.105, pp.103-165, 2003.

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, II. Jahresber. Deutsch. Math.-Verein, vol.106, pp.51-69, 2004.

J. Jabir, D. Talay, and M. Toma?evi´toma?evi´c, Mean-field limit of a particle approximation of the one-dimensional parabolic-parabolic Keller-Segel model without smoothing, Electronic Communications in probability, vol.23, pp.1-14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01668926

B. Jourdain, M. , and S. , Probabilistic interpretation and particle method for vortex equations with Neumann's boundary condition, Proc. Edinb. Math. Soc, vol.47, issue.2, pp.597-624, 2004.

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113, 1991.

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, vol.26, pp.399-415, 1970.

E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, vol.30, pp.225-234, 1971.

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, Journal of Theoretical Biology, vol.30, pp.235-248, 1971.

N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, vol.131, pp.154-196, 2005.

I. Lagzi, Chemical robotics-chemotactic drug carriers, Central European Journal of Medicine, vol.8, pp.377-382, 2013.

L. Cavil, A. Oudjane, N. Russo, and F. , Probabilistic representation of a class of non-conservative nonlinear partial differential equations, ALEA Lat. Am. J. Probab. Math. Stat, vol.13, pp.1189-1233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01241701

A. Makhlouf, Representation and Gaussian bounds for the density of Brownian motion with random drift, Commun. Stoch. Anal, vol.10, pp.151-162, 2016.

S. Meleard and S. Roelly-coppoletta, A propagation of chaos result for a system of particles with moderate interaction, Stochastic Processes and their Applications, vol.26, pp.317-332, 1987.

R. Miller, Sperm chemo-orientation in the metazoa, Biology of Fertilization, pp.275-337, 1985.

N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differential Equations, vol.48, pp.491-505, 2013.

T. Nagai and T. Ogawa, Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in R 2, Funkcial. Ekvac, vol.59, pp.67-112, 2016.

D. Nualart, Malliavin calculus and its applications, CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, vol.110, 2009.

P. A. Nuzzi, M. A. Lokuta, and A. Huttenlocher, Adhesion Protein Protocols, pp.23-35, 2007.

H. Osada, A stochastic differential equation arising from the vortex problem, Proc. Japan Acad. Ser. A Math. Sci, vol.61, pp.333-336, 1985.

K. Osaki, Y. , and A. , Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac, vol.44, pp.441-469, 2001.

R. O. Pedraza, M. I. Mentel, A. L. Ragout, M. L. Xiqui, D. M. Segundo et al., Plant growth-promoting bacteria: The role of chemotaxis in the association azospirillum brasilense-plant, Chemotaxis: Types, Clinical Significance, and Mathematical Models, pp.53-83, 2011.

B. Perthame, PDE models for chemotactic movements: parabolic, hyperbolic and kinetic, Appl. Math, vol.49, pp.539-564, 2004.

W. Pfeffer, Lokomotorische richtungsbewegungen durch chemische reize, Untersuch. aus d. Botan. Inst. Tübingen, vol.1, pp.363-482, 1884.

W. Pfeffer, Ueber chemotaktische bewegungen von bakterien, flagellaten und volvocineen, Untersuch. aus d. Botan. Inst. Tübingen, vol.2, pp.582-661, 1888.

Z. Qian, F. Russo, and W. Zheng, Comparison theorem and estimates for transition probability densities of diffusion processes, Probab. Theory Related Fields, vol.127, pp.388-406, 2003.

Z. Qian and W. Zheng, Sharp bounds for transition probability densities of a class of diffusions, C. R. Math. Acad. Sci. Paris, vol.335, pp.953-957, 2002.

E. T. Roussos, J. S. Condeelis, and A. Patsialou, Chemotaxis in cancer, Nat Rev Cancer, vol.11, pp.573-587, 2011.

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), vol.7, pp.447-526, 1982.

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math, vol.61, pp.183-212, 2000.

D. W. Stroock and S. R. Varadhan, Diffusion processes with continuous coefficients, I. Comm. Pure Appl. Math, vol.22, pp.345-400, 1969.

D. W. Stroock and S. R. Varadhan, Multidimensional diffusion processes, vol.233

. Springer-verlag, , 1979.

A. Sznitman, InÉcoleIn´InÉcole d' ´ Eté de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math, vol.1464, pp.165-251, 1991.

D. Talay and M. Toma?evi´toma?evi´c, A new stochastic interpretation of Keller-Segel equations: the 1-D case

A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber et al., Rules for biologically inspired adaptive network design, Science, vol.327, pp.439-442, 2010.

M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia, and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis I: The single cell, Bulletin of Mathematical Biology, vol.70, pp.1525-1569, 2008.

D. Trevisan, Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients, Electron. J. Probab, vol.21, p.41, 2016.

W. Tso and J. Adler, Negative chemotaxis in escherichia coli, J Bacteriol, vol.118, pp.560-576, 1974.

A. Y. Veretennikov, Parabolic equations and itô's stochastic equations with coefficients discontinuous in the time variable, Mathematical notes of the Academy of Sciences of the USSR, vol.31, pp.278-283, 1982.

C. Villani, The Wasserstein distances, pp.93-111, 2009.

C. Weibull and . Movement, The bacteria, vol.1, pp.153-205, 1960.

H. Ziegler, Encyclopedia of Plant Physiology, vol.17, pp.484-532, 1962.