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Abstract

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis desibes the
time evolution of the density of a cell population and of the concentrationof a chemical attractant.

This thesis is devoted to the study of the parabolic{parabolic Keller-Segel equations using
probabilistic methods. To this aim, we give rise to a non linear stobastic di erential equation of
McKean-Vlasov type whose drift involves all the past of one dimensional ime marginal
distributions of the process in a singular way. These marginal distibutions coupled with a
suitable transformation of them are our probabilistic interpretation of a solution to the Keller
Segel model. In terms of approximations by particle systems, an inteesting and, to the best of our
knowledge, new and challenging di culty arises: each particle interacts with all the past of the
other ones by means of a highly singular space-time kernel.

In the one-dimensional case, we prove that the parabolic-parabolic Kedir-Segel system in the
whole Euclidean space and the corresponding McKean-Vlasov stochastds erential equation are
well-posed in well chosen space of solutions for any values of the parameteof the model. Then,
we prove the well-posedness of the corresponding singularly intacting and non-Markovian
stochastic particle system. Furthermore, we establish its propagdbn of chaos towards a unique
mean- eld limit whose time marginal distributions solve the one-dimensional parabolic-parabolic
Keller-Segel model.

In the two-dimensional case there exists a possibility of a blow-upn nite time for the
Keller-Segel system if some parameters of the model are large. Indeesle prove the
well-posedness of the mean eld limit under some constraints on the grameters and initial
datum. Under these constraints, we prove the well-posedness of theeller-Segel model in the
plane. To obtain this result, we combine PDE analysis and stochastic aalysis techniques.

Finally, we propose a fully probabilistic numerical method for appraximating the two-dimensional
Keller-Segel model and survey our main numerical results.

Keywords: McKean-Vlasov stochastic processes; stochastic particle systenwith singular
non-Markovian interaction; probabilistic methods for PDEs; Keller-Segel PDE; chemotaxis models.






Resune

En chimiotaxie, le moctle parabolique-parabolique classique de K&r-Segel en dimensiord decrit
levolution en temps de la densie d'une population de cellules et de la concentration d'un
attracteur chimique.

Cette tlese porte sur letude desequations de Keller-Segel @arabolique-parabolique par des
nmethodes probabilistes. Dans ce but, nous construisons uneequain dierentielle stochastique

non lireaire au sens de McKean-Vlasov dont le coe cient dont la coe c ient de cerive tepend, de
manere singulere, de tout le pass des lois marginales en temps al processus. Ces lois marginales
coupkes avec une transformation judicieuse permettent d'intepeter lesequations de Keller-Segel
de manere probabiliste. En ce qui concerne I'approximation partiaulaire il faut surmonter une

di cule ineressante et, nous semble-t-il, originale et dic ile: chaque particule interagit avec le
pas® de toutes les autres par l'internediaire d'un noyau espacdgemps fortement singulier.

En dimension 1, quelles que soient les valeurs des paranetres de mBte, nous prouvons que les
equations de Keller-Segel sont bien poses dans tout I'espace et §uen est de méme pour
lequation dierentielle stochastique de McKean-Vlasov corres pondante. Ensuite, nous prouvons
carackre bien pos du syseme assocee des particules en imraction non markovien et singulere.
Nousetablissons aussi la propagation du chaos vers une unique limite chgmmoyen dont les lois
marginales en temps esolvent le syseme Keller-Segel paraboliggrparabolique.

En dimension 2, des paranetres de mockle trop grands peuvent conduéa une explosion en temps
ni de la solution auxequations du Keller-Segel. De fait, nous montrons le caracere bien pos du
processus non-lireaire au sens de McKean-Vlasov en imposant des caaintes sur les paranetres
et donrees initiales. Pour obtenir ce esultat, nous combinons degechniques d'analyse
dequations aux cerivees partielles et d'analyse stochastique

Finalement, nous proposons une nrethode nunerique totalement prolabiliste pour approcher les
solutions du syseme Keller-Segel bi-dimensionnel et nous peentons les principaux esultats de
nos exgerimentations nuneriques.

Mots clefs: processus stochastiques de McKean-Vlasov; particules stochagties en interaction
non markovien et singulere; methodes probabilistes pour les EDPEDP de Keller-Segel; moceles
de chimiotaxie.
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Chapter 1

On the Keller-Segel model for chemotaxis:

From the literature to our main results

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis desibes the
time evolution of the density  of a cell population and of the concentrationc; of a chemical
attractant: 8

2 @tx)=r (3t ro(tx); t>0; x2RY
@c(t;x)= 34ct;x) ctx)+ (tx); t> 0 x2R%:
0:x) = o(x); c(0;x) = Co(X):

>

The goal of this thesis is to propose a new probabilistic interpretationfor this non-linear doubly
parabolic system and analyze it from theoretical and numerical viewpoint

In this introductory chapter we provide an overview of the literat ure concerning this model and
our main results.

We start with biological phenomena aimed to be modeled by the KellerSegel system: chemotaxis.
In Section 1.1 we de ne it, revisit the historical aspect of its investigation and give some examples
of biological processes governed by or involving chemotaxis.

Then, Section 1.2 explains the behaviour of cells when undergoing chemotaxis on a micrand a
macro level. Afterwards, we review the pioneer work of Keller and Sedg¢46, 47, 48] who pose the
above system of PDEs in its more general form.

Since it has been posed, the system is a subject of huge amount of PDE awsis literature. An
interesting phenomenon emerging from it is the possibility of a blav-up in nite time. A selection
of the PDE analysis results on the Keller-Segel system is given in $gon 1.3.

Recently, probabilistic interpretations have appeared for molli ed or parabolic-elliptic versions of
the fully parabolic model. In Section 1.4 we review the state of the art for these stochastic
approaches.

In Section 1.5 we present and discuss our own probabilistic interpretation: a Mckean-Vlasov
stochastic process whose drift involves all the past of one dimensiahtime marginals of the
process in a singular way. These time marginals coupled with a suitdb transformation of them
are our candidate for a solution to the Keller-Segel system. In terms o&pproximations by particle
systems, an interesting and, to the best of our knowledge, new and ealienging di culty arises:
each particle interacts with all the past of the other ones by means of a fghly singular space-time
kernel. In this Section we also state our main results and summarizeagne of our numerical results.
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1.1 Our biological motivations: Phenomena of chemotaxis

In order to give meaning to the notion of chemo-taxis, we will start from the su x taxis (pl.
taxes), an ancient Greek word for arrangement. Taxis represents oriented meéement of a motile
organism in response to a stimulus (e.g. light, temperature, food).The movement can be directed
towards or away from the stimulus. In the rst case, we have positive taxis and in the later
negative taxis. It is important to emphasize that only the motile organisms are capable of
performing such movements. Motile essentially means able to movay itself. For example, bacteria
cells use structures called agella to enable these movements.akes should not be confused with
tropism and kinesis. These are another classes of movements in resgento a stimulus. The rst
one represents the movements that include growth towards or awayrbm the stimulus. The

di erence is that in taxes the organism must have motility and the exhibited movement is not
growth, but rather a guided change of position. On the other hand, in kinesis, the presence of
stimulus in uences the changes of velocity of the organism, but not is direction in movement.

Taxes are also classi ed by the type of stimulus governing them, whih is indicated by a pre x.
Photo-taxis is governed by light, thermo-taxis by temperature. If the presence of oxygen triggers
the movements, we haveaero-taxis. Finally, a chemical stimulus is responsible forchemo-taxis.

Since the end of 17th century and Leeuwenhoek's advances in the eld ahicrobiology, scientists
have been studying the movements of organisms. However, bacteriaghemotaxis was discovered
two centuries after by Engelmann P7] and Pfe er [63, 64]. By Pfe er's original de nition,
chemotaxis is de ned as anything that causes the oriented movement oéin organism or a cell
relative to a chemical gradient. In his work, Pfe er also gave the bass for assays on how to detect
chemotaxis, i.e. the capillary method (3, 64]. Chemical that prompts positive chemotaxis was
called the chemo-attractant, while chemical that causes the organism to ee away from the source
was calledchemo-repellent Chemo-attractants usually represent favourable environment for the
organism, e.g. food, while the chemo-repellents are noxious substees, such as poisons. One
interesting consequence of positive chemotaxis is cell aggregation. &rthemo-attractants
produced by the fellow species increase self-attraction among thgopulation and further stimulate
cell aggregation [.9].

The study of the phenomena of chemotaxis may be divided into two pdods: before 1960's and
after. As mentioned in [4], the work before 1960's was carried out in complex media and was of a
quite subjective nature. The review of this period is given in |, 80, 81]. In the second period, the
rst priority was to develop conditions for obtaining motility and chem otaxis in de ned media

[1, 5, 2, 3] . Then it was important to nd quantitative methods that objectivel y detect
chemotaxis [l, 77]. This work, mostly by Adler, altered the attention from phenomenological to
guantitative research and initiated studies to reveal the molecularmechanism of bacterial
chemotaxis. Afterwards, the number of groups studying bacterial cherotaxis has been
continuously rising. Bacterial motility and chemotaxis have been studied most intensively in
Escherichia coli and its close relative Salmonella enterica serovar Typhimurium We refer to [26]
for a very complete and thorough further reading, which deals not only wih bacterial chemotaxis,
but also with chemotaxis as a mean of cell-cell communication, chemotagiin amoeba, blood cells,
sperm cells and nervous system.

After such an extensional research in the eld, natural question that poses itself is what the
signi cance of chemotaxis is. It has been established that chemotaxislpys a role in some of the
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most important biological processes, not only for humans, but for almost all pecies.

Naturally, we start from the role of chemotaxis in reproduction, as it is the essential process for
existance of life. It is rstly discovered in marine species 4] that chemotaxis is responsible of
guided movement of spermatozoa to the egg during fertilization. The esearch spread to all
species, from non-mammals to mammals. It has been established that foumans and some other
mammals, chemotaxis besides the previous role in guiding, has a sela@ role as well. Namely,
not all of the spermatozoa have the ability to fertilize the egg. The oneghat do have it are
chemotactically responsive. Chemotaxis is in charge for selecting #m and then guiding towards
the egg. For a full review on sperm chemotaxis we refer to Chapter 7 in?[).

Not only does the chemotaxis have a reproductive role, but it also appars in the embryonic phase
once the fertilization is successfully completed. During the deelopment of the embryo, cell
migration has a crucial role in morphogenetic processes and formation of nesus system B5J.
Many of these migration are caused by chemotaxis. The development and espially wiring of
nervous system depends on the precise guidance of axonal growth conestheir targets.
Mechanism underlying it is again chemotaxis P5].

Furthermore, we nd its role in functioning of the immune system. Certainly, movement and quick
response are essential when it come to the immune system. In ordeo threat an infection, the
white blood cells need to migrate towards it. They are attracted by the change of chemical
gradient that the infection produces [59].

So far, we have only seen the positive aspects of chemotactic movemgnHowever, a negative
aspect is the participation of chemotaxis in cancer metastasis and progre®n. Once the tumor
had a ected a certain tissue, cancer cells use chemotaxis to migrateotvards the surrounding
tissue and invade blood vessels5]].

An interesting role of chemotaxis can be found in agronomy and the use of biceftilizers. Namely,
certain groups of bacteria in the rhizosphere region of soil positivelyri uences plant growth.
Bacteria successfully colonizes the rhizosphere thanks to chenadttic attraction from the root
exudates of the plants p1].

We conclude this part with one fascinating way to use chemotaxis in meical purposes.
Particularly, in construction of nanorobots for human drug delivery. Th e idea is to design
autonomously moving arti cial cells which would carry drugs and be capabk of chemotactic
movements. These movements would rely on arti cial chemotaxis. Ths concept is described and
analyzed in [0).

1.2 Modelling of chemotaxis and the Keller{Segel approach

As the biological research of the phenomenon grew and altered its interesbwards experiments,
the need for mathematical models for chemotaxis emerged. Mathematical odels help in better
understanding of experimental results and allow biologists to studydi erent characteristics of
bacterial systems without the need to intensively repeat the exgriments. When one desires to
mathematically model chemotaxis, rst the goal and nature of the results should be clearly

de ned. That is to say, are we interested in the particular behaviour of one individual (cell,
bacteria) of the population or of the whole population at once. This leads us tawo main
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approaches when modelling chemotactic movements, the microscopand macroscopic approaches,
respectively.

As the microscopic models focus on the individual cell, it is imporant to understand the

biological processes that are happening within it when the cell becoes chemotactically active.
We will try to illustrate it on the example of E. Coli, as its chemotaxis is understood best. When
there is no stimuli in its environment, E. Coli swims in a random walk. The random walk takes
on a biased character, towards the attractant or away from the repellent as soon as the presence
of stimuli is sensed. The movement itself is a series of "runs" anéitumbles". Runs are movements
following a (fairly) straight line, which are suddenly interrupt ed by a change in the direction, a
tumble. When E. Coli exhibits positive chemotaxis, the number of umbles decrease. The opposite
happens with the negative chemotaxis. If there is a change of gradient ithe extra-cellular
environment, the bacterium is unable to detect it along its own lergth, because its size is too
small. Instead, the cell is equipped with membrane receptors, wibh are able to distinguish very
low attractant concentrations. Once the attractant is detected, the receptor passes the signal
inside the cell. Thanks to the intra-cellular proteins, called Che proteins (from Chemotaxis
proteins), a signaling cascade occurs and nally arrives to agellar motos. Then, the agella are
rotated clockwise or counterclockwise, depending on the type of th stimulus. Clockwise rotation
leads to tumbling and counterclockwise to runs. An important part of the process is also the
adaptation, which includes resetting of receptors, as if they have at been stimulated at all.
Furthermore, since the bacteria are able to sense a tiny change in gréehts, they need to be able
to amplify the signal (gain process).

The mathematical models for one cell try to represent above mentiong processes, individually or
together. So far, none of the models was able to reproduce well all of thetogether. One of the
reasons is that they all occur in di erent time scales. The models vkich do a good job in
representing ligand binding and adaptation, can not represent well als the chemoreceptor
sensitivity and gain and vice versa. For a review on these and many otherrmpcesses and how they
have been modeled in the literature, we refer to the thorough and comprehensive review by

Tindall et. al [75].

Now, we will see how a population exhibiting chemotactic activity behaves on the example of
slime molds. Slime molds are populations of amoebae that grow by cell dision. The cells wander
around their environment exhausting food supplies which they areable to nd using chemotaxis.
Once the nourishment is consumed, cells disperse uniformly arodnthe area at their disposal. A
while later, some of the cells begin emitting a signal that attracts othe cells who start moving
towards it and are triggered to emit the same attracting signal. The cels aggregate, forming a
slug that may move, respond to chemical stimuli and detect food sorces. Eventually, the slug
produces fruiting bodies and releases spores in order to recomnmmnthe life cycle. The pioneer of
biological research of slime molds was Bonner (see e.@])] What is fascinating about slime molds
even today, is that individually, they are very simple organisms that exhibit "intelligent"

behaviour once they aggregate. In the study 4], the authors were even able to reproduce a map
of Tokyo rail system once the di erent stimuli were put in the right places.

Motivated by describing the onset of slime mold aggregation using a macrospic approach,
Evelyn F. Keller and Lee A. Segel propose in46] a model of four coupled parabolic equations.

Namely, the authors start from the individual properties of the cells in order to derive a model for
the aggregation stage. Let (t;x) denote the density of the amoebae at pointx in time t, c(t; x)
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denotes the concentration of the chemo-attractant (acrasin), (t;x) denotes the concentration of
the enzyme that degrades the chemo-attractant (acrasinase) and, nally, (t;x) denotes the
concentration of a bio-chemical complexV formed by acrasin and arcasinase. The individual
properties taken into account are the following:

1. The amoeba moves according to a random motion analogous to a di usion that ibiased
towards the direction of the positive gradient of the attractant.

2. The acrasin is produced by the amoebae with raté (c).

3. The acrasinase is produced by the amoebae with ratg(c; ).

4. The complexV dissociates into arcasinase and a degraded product (d.p.):

k
c+ v +d.p.
k 1

5. Acrasin, arcasinase and the compleX di use according to Fick's law.

In order to derive the equation for , the authors use the mass balance equation and the fact that
the ux of amobea mass is proportional tor  (by Fick's law) and r ¢ (by Fourier's law). Birth
and death are not taken into account. Thus,

@@t(t;x)= r (Da(;c)r (;c)ro:

Here, D1 represents the strength of the random movement and the impact of the

chemo-attractant gradient to the ow of the population. The chemo-attract ant di uses according
to Fick's law and its dynamics involves its production and consumpion rates as described above,

gtc(t;x)z D c+ f(0 kic +k 1:

The equations for and are derived in the same way. The authors arrive to the following sysm:

5 @@t (tx)=r (Da(;c)r (;c)re; t>0 x2R%
% @@p(t;x)z Ddc+f(c) kic +k 1; t> 0 x2RS

S tx)=D 4 + g(c;) kic +(k 1+kp); t> 0 x2R" (1.1)
§ 8 (tx)=D 4 +kc (ki1+ky); t> 0 x2R%

(0;x) = o(x); ¢(0;x) = co; (0;X)= o (0;x)= o x2R%:
Herek 1;k; and k» are positive constants.

Then, the authors argue that the aggregation occurs as, in some point of maturatin, the
individual properties of the cells change. Thus, a uniform distritution is no longer favorable and it
becomes unstable. The objective is to see how such change in indivial cells impacts the whole
population, rather to explain why and how such change happens. In orderd do so, the authors
propose a simpli ed version of the latter system"as it is useful for the sake of clarity to employ
the simplest reasonable model[46, p. 403]. They assume that the bio-chemical comple¥X is in a
steady state w.r.t. the chemical reaction:kic  (k 1+ kz) =0 and that the total concentration
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of the free and bound degradant is constant. + = . Thus, (1.1) transforms into the following
system of non-linear parabolic equations:
@
E@t(t;x)z r (Di(;c)r (;e)re); t>0 x2 RY: (1.2a)
Egtc(t;x) = D¢dc+f(d) k(oc; t>0; x2RY (1.2b)

0;x) = o(x); ¢(0;x) = co; X2 R%

Then, the authors study how a small time dependent perturbation of the uniform con guration
in uences a linearized version of (.2) for d = 2. They nd conditions under which the uniform
state is temporarily or de nitely perturbed. The latter may be int erpreted as the beginning of
aggregation. Finally, analyzing these conditions, the conclusion is that ale nite perturbation
occurs as a result of:i) increase in the sensitivity of the population to a given acrasin gradiet,
ii ) increase in the rate which cells produce the acrasin aiii ) increase in the rate of acrasin
production (f ) due to high acrasin production. In other words, if the cells are too gnsitive to a
certain attractant or they start producing too much of it, we may expect an aggregation. This
claim will often be revisited in this thesis.

The above work is followed by two more articles by the same authors/[7, 4g]. In [47], the
chemotaxis of amoebae is modelled when the concentration of the acrasinis assumed to be
given. Equation (1.2g) is viewed as evolution of a probability density function and is derived as
collective behaviour of individual cell behaviours, whereD1(;c)= (¢)and (;c)= (0. In
[48], the authors use the system {.2) in d =1 to reproduce the experimental results of Adler's
capillary essays. They assume again the speci ¢ form of motility and segitivity functions:
Di(;c)= (¢ggand (;c)= (c). In(1.2b), k(c) is supposed to be zero and the cells no longer
produce the chemo-attractant but consume it with the rate f () (i.e. the sign in front of f (¢) has
changed). The goal was to observe the traveling bands of bacteria up to #capillary tube, as in
the experimental case and to compare with the experimental data someugntitative properties
(width and speed of the traveling bands). The comparison result wee encouraging, but as the
authors notice, what is more encouraging is that their model is capable of escribing di erent
assays of chemotaxis and that their framework may serve when descritg other collective
chemotactic phenomena.

Indeed, we deliberately used here the technical terms "ameboe", "aasin”, "acrasinase" in order
to help the reader concretize this example of chemotactic activity.Once one understands the
phenomenon behind it and the mathematical description of Keller and Sgel, one could easily
change these words with "cell population”, "chemo-attractant” and "chemo-degradant”,
respectively and obtain a general model for chemotaxis. Nowadays, any ndel of the following

form is called a Keller-Segel type model:

8

2 S wx)=r (fa(;o)r (;c)r o+ fa(;c); t>0; x2R%

Oc(t;x) = DeAc+ fa(c; ) falci )o; t>0; x2 R% (1.3)
0;x)= o(x); ¢(0;x)= co; x 2 R%:

>

Here the function f, accounts for birth and death of the cell population. It is usually negleced
assuming the phenomena occurs over a short period of time.

This thesis will be devoted to the so-called classical Keller{Segahodel of parabolic-parabolic type
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given by 8
3@ (tx)=r (r ro(tx); t> 0; x 2 RY: (1.4a)
@c(t;x)= 4ct;x) c(x)+ (tx); t> 0 x2RY (1.4b)
(0;x) = o(x); c(0;x)= co(x); x2 R
where Oand ; > 0. It corresponds tof,(;c) const, (;c)= ,fo  0,f3(c; )= and
fa(c; )= in (1.3). This system is as well called the "minimal model" as it does not inwlve

complicated functions for sensitivity of the population, production and decay of chemo-attractant
but rather simple linear functions. Still, it is rich enough to describe the phenomena in question as
we will see in the next section.

Notice that the rst equation in ( 1.4) preserves total mass as long as the solutions are well
de ned. We will denote Z Z

M = o(X)dx = (t; x)dx:

Rd Rd

We also remark that when =0, (1.4b) is an elliptic equation and the system may be decoupled
using Green's functions. This is the so-called parabolic{ellipticversion of the model. Even though
this thesis is focused on the case =1 (more general on > 0), we will see that the two cases are
somehow inseparable since the techniques used to analyze the paralbetlliptic model are the
groundwork for the doubly parabolic model.

1.3 PDE analysis of the Keller-Segel system

As the Keller-Segel system is designed to model the onset of cell aggegion when triggered by
chemical stimulus, it is no surprise that the solutions may blowup in nite time. The de nition of
the blow-up in nite time for a solution ( ;c) is the following : there exists a timeTo < 1 such
that  converges to a measure not belonging th1(RY) ast! To. In general, the question of
well-posedness of 1.4) is a subject of an extensive amount of PDE literature over the past alnost
40 years. A very complete review of the results obtained until early 200@' can be found in
Horstmann [41, 47]. Then, we suggest to the interested reader the review of Perthamg5Z] which
after a theoretical review of the Keller-Segel system shows its corection with kinetic models for
chemotaxis and the work of Hillen and Painter [39] reviewing results on di erent variations

of (1.4).

The principal conclusion when investigating the literature about the Keller-Segel system is that
whether we have global well-posedness or a blow up in nite time is tghly correlated with the
space dimension of the problem. In addition, various results obtained épend also on the
prescribed initial and possible boundary conditions, type of the doman and value of parameter .

Here we will summarize some of the results in the literature and willclassify them in three groups:
d=1,d=2and d 3.

The one-dimensional case

The well-posedness of 1.4) in d = 1 is the least elaborate case. It was previously studied by Osaki
and Yagi [60] and Hillen and Potapov [40]. The conclusion is: The solution exists globally in time
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on bounded intervals with periodic or Neumann boundary conditions.

In [60] the authors analyze a more general model:

8
3 @tx)=2a%, 9@ (9 t>0x2l
@(tx)= &5 c(tx)+d (tx) t>0x2;
g (Ox)= olx); c0;x)= co(x); x21

&t )= 9t )= &t )= &t )=0; t>0

(1.5)

wherel =( ; ). They assume is a smooth function on (g 1 ), di erentiable three times and
that these derivatives satisfy certain estimates. The case (c)= ¢, > 0 corresponding to (L.4),
is included in their assumptions. Supposing o2 L2(1)\ L1(1), g 2 H1(1) and inf; co(x) > O,
they prove (1.5) admits a unique global solution belonging to

2 C([0;1 ); L2(1)\CY((0;1 ); L2(1) \C ((0;1 ); HE (1));
c2C(0;1 ), HXaN\CH((0;1 y; HI(I))\C((0;1 ); HE (1):

Here the subscriptN emphasizes that the Neumann boundary condition is satis ed by functiors
belonging to H,%, (1) and H,:\”I (). They prove such solution is a classical solution in the case of
(1.9).

Their well-posedness proof is divided into two steps: rst, they establish the existence of a unique

local in time solution to (1.5). Second, they prove the following energy estimate:

| 7 |

Z 2 2 2 2
@ @ @c a @ b dc
@, @ T @ ", 2@ "2 @ *
Z 2 2!
@ @c .
+ I @ + @ dX p(k kH 1 + kaH 2).

This helps them to extend the local solution to an arbitrary time horizon T > 0.

The work in [40] concerns the classical modell(4) on a bounded interval (0;1) with either
Neumann or periodic boundary conditions. The global well-posedness is tdined assuming that
02 LT (1)\ L) and g2 W P (1), wherep and belong to a particular set of parameters.

This set is de ned as follows: a tuple of parameters (p;r; P;Q ) is admissible if

1 2p 1
< < 2 <p< 1; <r< ——
! % L R 1
1<P < 1}; £+£:1; }<9<}+2:

pP Q pr p

The result again is obtained by globalizing a local solution obtained applyng Banach's xed point
theorem. Then, this solution is turned into a global one by using the egularity of heat semi-group
and the mild formulation of (1.4).

The two-dimensional case

In the parabolic-elliptic version of the system, i.e. when =0, one may decouple the equations by
expressingc in terms of using Green's functions. In this setting, the system exhibitsa threshold
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behaviour: if M < 8 the solutions exists globally in time, if M > 8 every solution blows-up
in nite time (see e.g. Blanchet et. al [8] and Nagai and Ogawa §6]). As for the pro le of the
singularity, Herrero and and Vehzquez [37] prove existence of a radially symmetric solution on a
disc with Neumann boundary condition that blows-up at the origin in nit e time by acquiring a

-function type singularity. This phenomenon is called in the literature the "chemotactic
collapsé’. The condition in the threshold implies that in order to form a singul arity, the total
mass of the cell population needs to be large or the attraction of the chema needs to be very
strong. This is in accordance with the conclusions made by Keller and Sgl in [46] when
analyzing the instability of the system.

On the other hand, the parabolic-parabolic model (.4) expresses a less straight-forward
behaviour. It has been proved that whenM < 8 one has global existence (see Calvez and
Corrias [20], Mizogouchi [55]). However, in Biller et. al [7] the authors nd an initial con guration
of the system in which a global solution in some sense exists witM > 8 . Then, Herrero and
Vebzquez [38] construct a radially symmetric solution on a disk that blows-up and develops

-function type singularities. Finally, unique solution with any positive mass exists when the
reverse di usion of the chemoattractant is large enough (Corriaset. al [22]). Thus, in the case of
parabolic-parabolic model, the value 8 can still be understood as a threshold, but in a di erent
sense: under it there is global existence, over it there exists solution that blows up.

In [20] the authors obtain the global existence wherM < 8 and = =1 assuming as well that

1. 02 LYR?\ LY(R?log(1+ jxj?)dx) and glog o2 LY(R?);
2.2 HY(R?)if > 0orc2LY(R? andjr cj2 L?(R?)if =0;

3. oG 2 LY(R?).

Notice that the mass condition is equivalent toM < 8 for a given > 0 by rescaling of (L.4).
In the same sub-critical case, the global existence result is obtaimkin [55] assuming

02 LYR?\ LT (R?) and ¢ 2 H1(R?)\ L1(R?). Both of these works use energy methods to
prove the apriori estimates for the solutions of (L.4). Then, these estimates lead to existence of
global solution in sub-critical case. The free energy functional assoaied to (1.4) is

z Z 1Z z
E(t) = (t;x) log c(t; x) dx (t;x)e(t; x) dx + = jr o(t;x)j? dx + = A(t;x) dx:
R2 R2 2 R2 2 R2

The technical computations exploit in [55] the Trudinger-Moser inequality while in [20] two
alternatives are proposed: either to use the so-called Onfori inequi&y on the whole space or the
Hardy-Littlewood-Sobolev inequality.

In addition, in [ 55] the critical caseM =8 s treated. Under the assumptions
02 LYR?\ L (R?), o2 LYRZ%log(l+ jxj%)dx), olog o2 LY(R?) and cp 2 H(R?)\ L1(R?),
global existence for (L.4) is obtained.

On the other hand, in [27], global existence and uniqueness is obtained for any positive mass
under some restriction on the parameter > 0 and the initial datum. The authors are interested
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in the so-called integral solution to (1.4) that is a couple that satis es

xe £t
(t)=6G({t) o riGt s;) ((s))rict ) ds
-1 0, (1.6)
ot e t s
ct; )= e "'G(=;) c+ e TIG(—2;) (s;)ds;
0

'x'2
where G(t; x) = ﬁe " . This formulation is also known as mild form of (1.4) or the Duhamel's

formula. It is supposed = 1. The following theorem is proved:

Theorem 1.3.1 (Theorem 2.1 P7)). Let > 0, 0, 02 LYR?) andcy2 HY(R?). There
exists = (M; )andT = T(M; ) such that if kr cok_2(ry < there exist an integral solution
(1.6) of the Keller-Segel model with 2 L ((0;T); LY(R?)) andjr c2 L ((0;T); L?(R?))j.
Moreover, the total massM is conserved and there exists a constan€ = C( ) such that if

M < C ( ), the solution is global and

=

th Pk (6 dkerey C(M; ) t> 0

ke ot )krgrey C(M; )i t> 0

N|=

t

forall p2[1;1]andr 2 [2;1].

In order to prove this result, the authors apply Banach's xed point t heorem iterating the
formulation (1.6). In order to exhibit a contraction the condition on the initial datum e merges. In
order to pass from local to global solution in time, the condition on the massemerges. However,
as the latter is of the form p__

Ci @ M+ Co °r cokpzry < 1;

for some constantsC1; C»;b > 0 and a < 0, one can have M as large as one likes as soon ass

large enough as well. For the same reason, the smaller is the more restrictive is the condition
on the mass. Once the existence is proved, uniqueness and posityvof solutions follow from the
following theorem

Theorem 1.3.2 (Theorem 2.6 P7]). Let > O, Oand let 2 LYR? andc,2 H(R?),

i =1;2, be two initial data su ciently small so that the corresponding solutions ( ';¢') of (1.6)
are global. Then, for anyp?2 [1;1 Jandr 2 [2;1 ], there existsC = C(p;r) > 0 independent oft,
such that fort > 0 it holds

th Pk Mt ) AL Ykeerey 12 rkr &t ) T At ke ro)
C(k (J)' (z)kLp(RZ) + kr C% r (%kLr(RZ)):

The case d 3

When d 3 the total mass is no longer the relevant parameter for the well-posedrss analysis, but
rather the L2*"(R?)-norms where" 0.

In fact, for the parabolic{elliptic model, Corrias et. al. [24] assume that ¢ 2 LP(RY) for any
1 p< 1 andis non-negative. Then, they prove that there exists a constanK o( ;d ) such that
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if k OkL%(RZ) Ko, then the elliptic model has a global weak solution that preserves thenitial

mass and satis es somd_P(RY)-norm estimates. Then, they prove that the elliptic system has ro
_d_
global smooth solution with fast decay if the quantity 54 o(x) dx 9 2 is large. However, such a

condition cannot be replaced by a condition on the magnitude OL%(RZ)-norm of ¢ as in the case
ofd=2.

Corrias and Perthame 3] study the purely parabolic-parabolic case (.4) with = 1. Assuming
that o2 LY(RY\ L3(RY), where $<a dandr ¢ 2 LYRY), they prove that if

K oK_a(rey + Kr ok arsy  C(d; @) the parabolic system has at least one weak and global positive
solution satisfying a certain estimate. When proving the existere they work with the integral
formulation (1.6) in dimension d and prove some a priori estimates. A rigorous derivation of such
estimates of a regularized version of the integral equation gives in tharhit a weak solution.

1.4 Our mathematical motivations: Singular McKean-Vlasov dy-
namics

Analyzing a non-linear parabolic PDE of the McKean-Vlasov type through the associated
stochastic process became a classical topic in probability theory @r the past 30 years. The idea
is to see such a PDE as a Fokker-Planck equation for a time evolution of arpbability measure
that is a time marginal of a stochastic process. A simple example is # following equation

@ _
ot

where :RY! RYis a given kernel and ¢ an initial condition. Then, by I1t6's formula, one can
prove that the marginal distributions ( ()¢ o of the solution to the following stochastic process

(

4 ¢ r (( t) t)

R
dXy = (Xt y) t(dy) dt+ dW;
Xo  Ug; Xy t

satis es the above PDE (see Chapter2 for more details). As the goal of this thesis is to construct
and analyze such a stochastic interpretation for the parabolic-paraboliKeller-Segel equations, we
review here the current state of the art on this topic.

Recently, stochastic interpretations have been proposed for a sipli ed version of the model in
d =2, that is, 8
2 @ @tx)=r (r ro(tx); t>0; x2R?%

4 cot;x)= (tx); t>0 x2RY% (1.7)
O;x) = o(X); ¢(0;x) = cp:

This is the parabolic-elliptic model which corresponds to the case =0 and =0in (1.4). These
interpretations all rely on the fact that, in the case of (1.7), the equations for ; and c¢; can be

decoupled andc; can be explicited as the convolution of ¢ and a logarithmic kernel. Thus, one
obtains the following closed form of the above system:

>

@ (tx)=4 (tx) r ((k (t)) &x)); (1.8)
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where k(x) = ZIX—XJZ Consequently, the corresponding stochastic process of McKean{Vlas type
whose  is the time marginal density involves the singular interaction kernd k. That is why, so
far, only partial results are obtained and heavy techniques are used tget them.

Namely, the rst stochastic interpretation of ( 1.7) is due to Haskovec and Schmeiser6] who
analyze a particle system with McKean{Vlasov interactions and Brownian noise. More precisely,
as the ideal interaction kernelk is strongly singular, they introduce a kernel with a cut-o
parameter and obtain the tightness of the particle probability distrib utions w.r.t. the cut-o
parameter and the number of particles. They also obtain partial resultsin the direction of the
propagation of chaos (rigorously de ned in Chapter?2). Then, Godinho and Quifinao [33] analyze
the case wherek is replaced byW for some 2 (0;1). They prove the well-posedness of the
corresponding particle system and propagation of chaos towards the limit guation.

More recently, Fournier and Jourdain [31] and Cattiaux and Redeches [21] study to the following
Mc-Kean-Vlasov stochastic equation related to (.9):

( _
dX; = p2th + (k(t )(Xpdt; (1.9)
Xt t; X0 0- .
The connection between (.9) and (1.8) is established by I1t6's formula (see Chapter2 for such a
connection in a general setting). An habitual approach is to analyze the comsponding mean eld
model ( _ p_ = _ _

dx¢M o= T 2dW{ + o N k(XY XVt

N (1.10)
Xg iid o

P
and prove that when N !' 1 , the empirical measure N = Ni iN=1 xin  Weakly converges to the

law of the process (.9) (propagation of chaos). Due to the singular nature ofk it is not obvious
that system (1.10) is well de ned. Nevertheless, Fournier and Jourdain B1] almost achieve this
program in the subcritical case. Namely, when < 2 , they obtain the well{posedness of the
particle system. In addition, they obtain a consistency property which is weaker than the
propagation of chaos. They also describe complex behaviors of the particgystem in the sub and
super critical cases. Cattiaux and Receches P1] obtain the well-posedness of this particle system
without cut-o by using Dirichlet forms rather than pathwise approx imation techniques. They
leave the other stages of the program for some future work.

Theorem 1.4.1 (Theorems 5 and 6 B1]). Let N 2and < % Assume ¢ has a nite
moment of order 1. There exists a solution(X;" ); o1 i n to (1.10. In addition, the family

f(Xti;N )t 0;1 i Ngis exchangeable and for any 2 ((N2 Nl) ;1) and any T > 0 one has
Z T p A . 1IN :-2\1=2 p P~
. : 2 2E(1+ jXgy +4 2T
E xIN x2N 2gg (2 2EQ*IXpT )Y ). (1.11)
0 2 %)

Next, suppose < 2 . Then

i) The sequence( N))n 2 is tight.

ii) Any (possibly random) weak limit point  of ( N)y 2 is a.s. the law of a solution to the
nonlinear SDE (1.9).
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iii) In particular, one can nd a subsequence N such that ( L\‘k))t ogoesinlaw, ask!1l ,to
some( t)t o, Which is a.s. a weak solution to(1.8).

The main tool in showing these results is that (L.11) apriori holds true. Thus, the authors start
from a regularized version of (.10 and are able to build their way up towards (1.8). In fact,
thanks to (1.11) one is able to control the e ect of the singularity of the kernel, i. e. one can show
that the Lebesgue measure of the set of crossing times between partd is null, independently of
the number of particles. Two main drawbacks of this result are that it holds in a very sub-critical
case (< 2 )and that it is not a propagation of chaos result, but rather a tightness/consistency
result. The reason is that the uniqueness does not hold in the class @feak solutions the authors
work in. Then, the next theorem ensures the existence of the partie system until 3-particles
collide.

Theorem 1.4.2 (Theorem 7 [31]). Let > Oand N > maxf2; ,—g be xed. There exists a
solution (X )g 1« vy i N to (1.10 where

N :=supinfft 0:9i;j;k pairwise di erent such that

I 1

XM et X Nt x (T
The family (Xti;N )o < N:1 i n IS exchangeable and for any 2 (55 1), a.s. forany t 2 [0; NY)
one has Z,

XIN - x2ZNj 2ds<1:

Finally, it holds that

) N=1 as. if g N2

i)y N<1 as.if > 8 {2,

The mar'g] ing_redient when proving the preceding result is tg shav t_hat the process

RE=3 iX;" X'j2wherel f 1;:::;NgandX' =" , X" behaves aimost like a
square of a Bessel process of dimensiofl [ 1)(2 ﬁ). Then, the condition on  ensures that
for all jIj 3 the dimension of the Bessel process is greater than 2. Thus, the pressR| never
reaches zero and no collision involving three or more particles occutHowever, the main di culty
lies in the above mentioned almost like square Bessel process befaur of R': whenjlj= N itis
exactly the square of a Bessel process, then by backward induction is shown that some terms
can be neglected and that square Bessel behaviour holds even whgn < N .

Contrary to [ 31] for proving the existence part, Cattiaux and Redeches [21] use Dirichlet forms. In

fact, they prove that the form
Z

E(f;g) = <rfirg> fg2ctmMm):
M
is regular and local (M is given below). The main result in [21] is the following theorem:

Theorem 1.4.3 (Theorem 1.2 1]). Let _ _
M = f there exists at most one pair i 6 j such that X "N = XN g, Then
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For N 4and < 8 % there exists a unique (in distribution) non explosive solution of
(1.10, starting from any x 2 M. Moreover, the process is strong Markov, lives irM and
admits a symmetric - nite, invariant measure given by

Y ) .
(dxt; i dx Ny = X' XJj o wdx i dx N

For N 2and > 8 the system(1.10) does not admit any global (in time) solution.

For N 2and =8 , either the system(1.10 explodes or theN particles are glued in
nite time.

The techniques in 1] and [21] are based on the particular structure of the interaction kernel and
on the fact the process they are constructing is strongly Markov. We Wl see that the latter will
not be the case with our interpretation and thus, we will not be able to adapt their techniques in
this thesis.

In the fully parabolic case of (1.4) ( > 0), recently a probabilistic interpretation of a smoothed
Keller-Segel alike system of parabolic type was developed. For a parabofparabolic version of the
model with a smooth coupling between ; and ¢;, Budhiraja and Fan [17] study a particle system
with a smooth time integrated kernel and prove it propagates chaos. Moreger, adding a forcing
potential term to the model, under a suitable convexity assumption they obtain uniform in time
concentration inequalities for the particle system and uniform in time error estimates for a
numerical approximation of the limit non-linear process. As our main facus is (L.4) in the case

> 0 without any cut-o , we will not enter in the details of these result s. Similarly, in Stevens
[69) a probabilistic interpretation of a smooth Keller-Segel system isproposed.

We conclude this chapter by reviewing some examples from the liteture of McKean-Vlasov
stochastic processes with singular interaction arising as probabatic interpretations of non-linear
Fokker-Planck equations. Osada 9] studies an SDE related to 2D-Navier-Stokes equation written
in vorticity formulation. The interaction kernel is of the form K (x) = J;% Jourdain and
Mekard [ 44] study a non-linear di usion with normal re ecting boundary conditi ons and a
singularity that involves the Poisson kernel related to vortex equation. Fournier and Hauray [30]
study the 3-d Landau equation where the kernel is of the formk(x) = 2jxj x, for 2 ( 2;0).
Calderoni and Pulvirenti [ 19 study the Burger's equation, where the interaction kernel is the
-dirac function. Bossy and Talay [14] interpret the solution of the Burger's equation as a
distribution function of a probability measure solving a PDE of Mc-Kean Vlasov type where the
interaction kernel becomes the Heaviside function. Bossgt. al. [13] study the Lagrangian
stochastic model where the interaction is given through a conditionalexpectation, while Bossy
and Jabir [17] study the Lagrangian stochastic model with specular re ections on theboundary.
Le Cavil et. al. [5]] study the stochastic process and particle system related to a naonservative
McKean-Vlasov PDE with the coe cients depending of the marginal densities. Other types of
singularities have bees studied in the case of particle systems tlicollisions related to Boltzman
or Landau equations: see e.g. Glerin and Mekard [34] and Fournier [29].
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1.5 Our probabilistic interpretation of the parabolic-parabolic Kell er-
Segel system and main results

1.5.1 Probabilistic interpretation

In order to build a stochastic interpretation of (1.4), we will in the sequel formally decouple the
Keller-Segel system. From now on we set = 1.

Assume for a moment the functionc(t; x) is given and let us start from (1.43):
@ (tx)=4 (tx) r  ( (tX)rctx)); t>0 x2R%:

Then, by It6's formula, the time marginal distributions ( (t; )); o of the process K); o solution
to ( _
dXi= rc(t;X)dt+ p2th; t O

(1.12)
Xo 0

satisfy (1.48). We have already noticed that the integral (or Feynman-Kac) represetiation of the
equation for cis
Z

atx)=e "(G(t ) co)(x)+ P G s)  (s5))(x)ds; (1.13)
0

jxj?

where G(t;X) = We at ., Therefore, we can formally computer c(t;x). Taking into account

that we do not wish to derive the function , one has
Z t
rex)=e 'r (Gt ) co)x)+ e Gt s) (s;))(x) ds:
0

Plugging the preceding equation into (L.12), one obtains the following McKean-Vlasov non-linear
stochastic dynamics:
( R R 0 p_

dXp= e '(G(t ) r c)(X)dt+ o paKi (Xt y) (s;y)dyds dt+ 2dw; t T

Xo po; Xt (tx)dx;

jxj?

(1.14)
whereK(x):=e 'r G(t;x)=e ! me 4 and T > 0 is an arbitrary time horizon.
Notice that (X{); Tt is a d-dimensional stochastic process and that we impose that for any> 0,
the law of X is absolutely continuous w.r.t. Lebesgue's measure. The drift of 1.14) has two
components: one that depends on the initial concentration and one that depnds on the time
marginals of the law of the process. What is unusual is that the interacion between the solution
and its probability law happens not only in space, at each timet, but as well in time. That is, at
each timet > 0 the drift involves all the time marginals up to time t. This sets (1.14) apart from
the general setting of McKean-Vlasov processes (see e.g. Sznitmaitt]). Another point we would
like to insist on is the singular nature of the interaction kernel K. As the Gaussian density is
derived in space, a singularity emerges in time and it is of order;%%l. Remark as well that the

limit im (¢ y1 (0:0) Kt(X) is not well de ned. This singularity should be integrated in time and we
expect that the convolution in space will somehow smooth it. Throughoutthe thesis, we will refer
to the equations of the form (1.14) as "the non-linear SDEs with space and time interactions”.
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To conclude, our probabilistic interpretation of (1.4) is the non-linear stochastic equation (.14
paired with the transformation ( 1.13) of the time marginal laws of (1.14). In order to come back
to the Keller-Segel equations {.4), one should follow the following program:

Step 1 Construct a (weak) solution to (1.14) and extract the family of densities ( (t; ))t o.
Step 2 Construct the family (c(t; ))t o as a transformation of as in (1.13).
Step 3 Prove the pair (;c) satis es (1.4).

Step 3 of the program requires that an adequate notion of solution is precised. Thenain

question we tried to reply in this thesis is whether this program @n be carried out in di erent
spatial dimensions of the problem and under which conditions.

Another natural question is to associate to (L.14) the corresponding system of interacting
particles. Namely, plugging the empirical measure oN particles in the place of the unknown law
of the process in (L.14), one obtains the following system of stochastic equations:

8 ) o )

3t =Paawis e tre Gl XM )ty
Wt oK s XEN)ds T gy dt t T (1.15)
XV iid. and independent of W := (W';1 i N):

Here the W''s are N independent standard d-dimensional Brownian motions andX ,™" is
distributed according to . System (1.15 inherits from (1.14) that at each time t > 0 each
particle interacts in a singular way with the past of all the other parti cles. In fact, as soon as a
particle at time t crosses the past of another particle, we do not know how to integrate the
singularity in time. The only hope in that case is that the instant s in the past in which the
encounter happens is far awa% front. As lim ) (0.0 Kt(X) is not well de ned, we must ensure

that when s! t, the integral gKt S(Xt';N XIN)ds is well de ned. That is why, rst of all, we

will not consider an interaction of a particle with itself. Then, we will set an interaction to zero
every time X;" = X{™ . That is why the indicator 1, i ¢ , is added to the dynamics. In
order to justify it does not in uence the dynamics, we should always make sure that the set

ft  T;X{N = XN :i 6 jghas Lebesgue measure zero. The non-Markovian nature of the particle
system makes it impossible to adapt the techniques used in the dlitic case 1, 31].

Many questions arise when one considersL(15): Is it well-de ned? Under which conditions? Does
it propagate chaos? Does it exhibit agglomerations according to in the two-dimensional case?
This thesis aims to reply to them and set a foundation for future workson (1.14) and (1.15).

Before passing to the main results of this thesis, we give an illusation of the behaviour of the
particle system through a numerical simulation. In d = 2 we apply the Euler scheme to (.15).
The patrticles are initially distributed according to the uniform d istribution on the square

[ 1;1] [ 1;1]. The initial concentration has been chosen to be a standard two dimesional
Gaussian density. When is large the particles very quickly form an agglomeration in the center
of the domain where the initial concentration attains its maximum. On th e contrary, when is
small the particles di use in the plain and the di usion prevails th e singular interaction of the
particles. A typical result of such a simulation is given in Figure 1.1 (the pictures will be enlarged
in our last chapter).
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(@ t=0 (b) t=0:1 (c) t=0:3 (dy t=1
(e) t=0 (f) t=0:1 (9) t=0:3 (h)y t=1
Figure 1.1: (a)-(e): =50; (f)-(): =1. Euler scheme is applied to (L.15, with N =1000;d = 2.

Particles are initially distributed uniformly on[ 1;1] [ 1;1]. Initial concentration of the chemical
is a centered Gaussian density. When is large an agglomeration of particles appear in the center
of the domain, whilst when is small the particles di use.

1.5.2 Main results of the thesis

In this thesis we introduce and analyze a new probabilistic interpetation of the
parabolic-parabolic Keller-Segel model without cut-o in the casesd =1 and d = 2. Our rst goal
is to carry out the above de ned program and validate our approach by getting rew
well-posedness results forX.4) in the parabolic-parabolic case ( = 1). Our second objective is to
study the corresponding particle system.

We start with Chapter 2 that introduces the probabilistic tools and notions needed on a smootkd
version of (1.14). Namely, as soon as there is some regularity on the interaction kernel, @can
adapt the arguments in Sznitman [/Z] in order to obtain well-posedness and propagation of chaos
for a McKean-Vlasov SDE with a time and space interaction. The connecthn of such an SDE and
a non-linear parabolic PDE is established.

In Chapter 3 we study (1.14) in d =1 and prove it is well de ned and provides a unique solution
for the Keller-Segel system ind = 1. This result is available as a preprint [73].

Chapter 4 proposes another way to deal with the one-dimensional McKean-Vlasov SDiand
proves some Sobolev regularity results on time marginals of the law of theolution.

In Chapter 5 we deal with the one-dimensional particle system and prove it is weélde ned and it
propagates chaos towards the process built in ChapteB. This is a joint work with Jean-Francois
Jabir [43].

The two-dimensional McKean-Vlasov SDE is studied in Chapter6. After proving it is
well-de ned, we establish the connection with the two-dimensioral Keller-Segel system.

Finally, Chapter 7 describes and studies a purely probabilistic method to approxirate the
solutions of the fully parabolic two dimensional Keller-Segel systemIn addition, it gives some
theoretical insights about the particle system ind = 2.
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Let us summarize our main results.

The one-dimensional case

Our rst main result is given in Chapter 3. It concerns the well-posedness of a non-linear
one-dimensional stochastic di erential equation (SDE) with time and space interaction. As our
technique of analysis is not limited to the above kernelK , we consider the following

McKean-Vlasov stochastic equation:
n 0

R
dX¢ = bt X)dt+ (ke s ps)(Xy)ds dt+ dW; t  T;
ps(y)dy := L(Xs); Xo  po:

The set of hypothesis (H) assumed on the kernek is given in Chapter 3 and among them the key
oneisk 2 LY((0;T] R).

(1.16)

Due to the singular nature of the kernel, (1.16) cannot be analyzed by means of standard coupling
methods or Wasserstein distance contractions as in Chapte2. Both to construct local in time
solutions and to go from local to global solutions, an important issue consist in properly de ning
the set of weak solutions. Namely, without any assumption on the initial dansity o, we need to
add the following constraint in the classical de nition of a weak solution to (1.16):

The probability distribution P X 1 has time marginal densities ; t 2 [0; T]) with respect
to Lebesgue measure which satisfy
Cr

80<t T; kpki1 () 1%: (1.17)
To prove that this constraint is satis ed in the limit of an iterative procedure (where the kernel is
not cut o ), the norms of the successive time marginal densities cannotbe allowed to
exponentially depend on theL! -norm of the successive corresponding drifts. They neither can be
allowed to depend on Helder-norms of the drifts. Therefore, we use amccurate estimate (with
explicit constants) on densities of one-dimensional di usion proceses with bounded measurable
drifts which is obtained by a stochastic technique rather than by PDE techniques (See Section
3.3). This strategy allows us to get uniform bounds on the sequence of dii§, which is essential to
get existence and uniqueness of the local solution to the non-linear antingale problem solved by
any limit of the Picard procedure, and to suitably paste local solutions when constructing the
global solution.

Theorem (3.2.3. Let T > 0. Suppose thatpy 2 L(R) is a probability density function and
b2 L1 ([0;T] R) is continuous w.r.t. the space variable. Under the hypothesiéH), Eq. (1.16)
admits a unique weak solution (in the above sense which includés.17)).

The Hypothesis (H) is satis ed by the Keller-Segel kernelK . Thus, applying the above theorem to
it, we extract the family of marginals and complete Step 1 from our program. Then, we
perform the Step 2 by considering the function ¢ as transformation of according to (1.13.
Then, we are in the position to prove the well-posedness for the K@dr-Segel system ind = 1. The
precise notion of solution is given in Chapter3. Our strategy consists in proving the time marginal
distributions of the exhibited weak solutions satisfy the mild formulation (1.6) (for d = 1) of the
system. To this end, we impose the condition {.17) on the function : Finally, the Step 3 follows.
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Corollary (3.2.6). Assume that o 2 L}(R) and ¢ 2 C}(R). Given any > 0, Oand T > 0,
the time marginals (t;x) pi(x) of the probability distribution of the unique solution to

Eqg. (1.14) with d =1 and the corresponding functionc(t; x) provide a global solution to(1.4) with
d=1 in some sense. Any other solution( *;c!) with the same initial condition ( o; cp) satis es
k (t;) (t; )k 1y =0 and k%((t; ) %fgt; )KL1r) =0 forevery0 t T.

This seems to notably improve the results in §0, 40].

Chapter 4 revisits the work done on the level of the non-linear process in Chagtr 3, through a
regularization procedure. Namely, we regularize the interaction kerel K and combines the results
from Chapter 2 and Chapter 3 to prove the regularized equation in the limit (when the
regularization parameter vanishes) satis es (.14) in d = 1. The goal then is to obtain the rate of
convergence of the marginal laws of the solution to the regularized equain to the marginal laws
of the solution to (1.14) in d =1. In order to get this rate of convergence, we prove some Sobolev
regularity results for the one-dimensional marginals of a stochastic prcess with bounded and
measurable drift.

The objective of Chapter 5 is to analyze the particle system related to (.14) in d = 1. As neither

the linear part of the drift plays any role, nor the parameters of the equation, we set =1, =0,
=1,and ¢§ 0. We thus consider the following particle system:
X¢U = R jeigei o Ko s(XT XsT)AS Ty gygm o dE+ W (1.18)
X('jN i.i.d. and independent of W :=(W';1 i N);

where theW''s are N independent standard Brownian motions. Compared to the stochastic
particle systems introduced for the parabolic{elliptic model, an interesting fact occurs: the

di culties arising from the singular interaction can now be resolved by using purely Brownian
techniques rather than by using Bessel processes. The consttian of a weak solution to (1.18
involves arguments used by Krylov and Reckner [19, Section 3] to construct a weak solution to
SDEs with singular drifts. It relies on the Girsanov transform which removes all the drifts of
(1.18). Our calculation is based on the fact that the kernelK is in L(0; T;L2(R)).

Theorem (5.2.7). Given0<T < 1 andN 2 N, there exists a weak solution
( ;F;(F; 0 t T);0QV;wW;XxN) to the N -interacting particle system (1.18) that satis es, for
anyl i N,

0, 0 1 1
Z; W Zy 2

QN @ @l Ke (XN XIN)ds1
o Nijje 0

FXIN g x N gA dt< 1A =1:

Notice that in the above result, no additional condition on the initial la w is necessary. Due to the
singular nature of the kernel K, we need to introduce a partial Girsanov transform of the

N -particle system in order to obtain uniform in N bounds for moments of the corresponding
exponential martingale. We believe this trick may be useful when poving tightness and
propagation of chaos for other particle systems with singular interactions.

Theorem (5.2.5. Assume that theXg IN g ar%| i.d. and that the initial distribution of XéN has

a density . The empirical measure N = ,ﬁ , 1 xin of (1.18) converges in the distribution

sense, wherN !'1 | to the unique weak solution of(1.14).
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To the best of our knowledge, this is the rst time in the literatur e that the parabolic-parabolic
Keller-Segel system without cut-o is derived as a limit of a system of interacting stochastic
particles, when the number of particles tends to in nity.

The two-dimensional case

In Chapter 6 we study (1.14) in d =2. The increase of dimension leads to an increase in
singularity of the kernel K . We start with explaining why L! -spaces are no longer a good choice
for the drift and density of the to be constructed stochastic proces. As a consequence, we turn to
the LP-spaces. We rede ne the notion of a weak solution to our McKean-Vlasov SDby including
the following constraint:

The probability distribution P X ! has time marginal densities ¢; t 2 (0; T]) with respect
to Lebesgue measure which satisfy for any

81<q< 19 Cq> 0, supt® akpkiars) Cq (1.19)
t T

To prove that this constraint is satis ed, we conveniently regularize the McKean-Vlasov SDE and
apply the results from Chapter 2. Then we analyze the associated regularized mild equation and
prove estimates of type (.19 for the regularized densities. These estimates are uniform w.r.tthe
regularizing parameter under a condition involving the parameter and the size of initial datum.
Once such an estimate is obtained, we prove the convergence of martingaproblems related to
regularized dynamics towards the our NLSDE. We obtain the following theorem:

Theorem (6.2.3). Let T > 0 and suppose thatXy has a probability density functionpg.
Furthermore, assume thatcg 2 H1(R?). Then, Equation (1.14) in d = 2 admits a weak solution
under the following condition

A kr cok_zrey + BP < 1; (1.20)

where A and B are de ned as in Proposition 6.3.7.

Extract the time marginals  of the constructed solution to (1.14) to complete Step 1 from our
program. Then, we perform the Step 2 by considering the function c as transformation of
according to (1.13. Thanks to the estimates in (1.19), we obtain

82 r 19 C >0 suptz rkr gkirrey Cr
t T
Then, we prove the well-posedness for the Keller-Segel system d = 2. The precise notion of
solution is given in Chapter 6. Again, we aim to satisfy the mild formulation ( 1.6) of the system
and impose the condition (1.19 on the function : Finally, the Step 3 is a consequence of
Theorem 6.2.3

Corollary (6.2.5. Let ¢ a probability density function and ¢ 2 H1(R?). Under the
condition (1.20 the system(1.4) in d =2 admits a unique solution in some sense.

Concerning the particle system ind = 2, at the present, we do not have a mathematical answer to
the question of its well-posedness. We cannot apply the techniquelsom Chapter 5 as forq 2,
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the L1((0; T); L9(R?)){norm of the interaction kernel explodes. In Chapter 7 we give some
theoretical insights about this problematic. In short, the increase n singularity together with the
non-Markovian setting lead to strong di culties when turning to G irsanov or trajectorial
techniques. The well-posedness of the 2-d particle system withéweut-o remains open for some of
our future works. In this Chapter 7 we also analyze a probabilistic numerical method to
approximate the system (L.4) in d =2 coming from our stochastic interpretation for it. We
compare it with another numweical method proposed by Fatkullin [28] which combines stochastic
simulations and PDE resolution.






Chapter 2

McKean-Vlasov equations with smooth time
and space interaction

2.1 Introduction

In this chapter we study a McKean-Vlasov stochastic equation with s@ace and time interaction as
in (1.14) where the singular kernelK is replaced with a smooth kernelL. Under some
assumptions on boundness and Lipschitz continuity in space fok, we prove that in such a setting
one can modify the classical techniques in Sznitman/[] to obtain the existence of the solution
and propagation of chaos for the corresponding particle system. Then, we glore the connections
between such non-linear SDE and a non-linear parabolic equation. Namelyye derive the
Fokker-Planck equation and its mild formulation for the marginal laws of the process. Thus, we
see how the empirical measure of the associated particle system cae lised to approximate the
solution to a non-linear parabolic equation.

The purpose of this chapter is to illustrate that the singular interaction is the main di culty in
(1.14) despite its unusual form (integral in time and space). Moreover, on anexample with regular
interaction we wanted to show the main arguments behind the connectins PDE-SDE and the so
called particle methods for non-linear parabolic PDEs. In addition, weuse the opportunity to

de ne some classical notions of probability theory in this new settingthat will be necessary to
read this thesis (weak solutions, martingale problems, propagation of chaos)

The plan of the chapter is the following: In Section2.2 we study the above mentioned NLSDE and
prove its well-posedness and the propagation of chaos for the associated fiele system. In
Section we derive the associated Fokker-Planck equation, mild equaitn and some properties for
the one dimensional time marginals of the process.

2.2 Non-linear stochastic equations with smooth time and space
interactions

Let T > 0. On a Itered probability space ( ;F;P;(F¢)) equipped with a d{dimensional Brownian
motion (W) and an Fg measurable random variableX o, we study the stochastic equation
n Rt R (0]
dX¢=dWi+  gaL(t s;Xt Yy)Qs(dy) ds dt; t T,

(2.1)
Qs = L(Xs); Xo  Op;

23
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whereL maps [QT] RYto RY.

As the drift coe cient of ( 2.1) depends on the marginals of the unknown law of the process, we call
it a non-linear stochastic equation (NLSDE) in the sense of McKean{Vlasov A typical example of
such equations is studied in Sznitman 72]. What di ers Equation ( 2.1) from the setting in [77] is
that the interaction with the law of the process happens both in time and space. Nevertheless,
when the interaction kernel is su ciently regular this does not in duce any additional di culty.

Let us de ne the notion of existence in law or weak solution for @.1).

De nition 2.2.1.  The family ( ;F;P;(F¢); X;W) is said to be a weak solution to the equation
(22) up totime T > O if:

1. ( ;F;P;(Fy)) is a ltered probability space.

2. The processX = ( Xt)2[0;T] IS RY-valued, continuous, and(F)-adapted. In addition, the
probability distribution of Xg is .

3. The processW := (Wi)i2o:17 is @ d-dimensional (F¢)-Brownian motion.

4. Denote by(Qy; t 2 [0;T]) the time marginals of the probability distribution P X 1. For all
t 2 (0;T], one has that

z,2.Z

P L(s u;Xs VY)Qu(dy)ds dt<1 =1:
0 0 Rd

5. P-a.s. the pair (X; W) satises (2.1).

This is a classical de nition of a weak solution (see e.g.45]) to a stochastic equation. An
equivalent formulation is given in terms of the associated martingale poblem. In the case of linear
SDEs this equivalence is explained in45, Section 5.4]. The same arguments are valid for
non-linear SDEs. Thus, we pose the non-linear martingale problem ass@ated to (2.1).

De nition 2.2.2. A probability measure Q on the canonical spaceQ([0; T]; R%) equipped with its
canonical Itration and a canonical process (W) is a solution to the non-linear martingale problem
(MP) if:

() Qo(dx):= Q wy*(dx) = po(dx).

(i) For any t2 (0;T], denote Q¢(dx) := Q w, L(dx). Then,
Z:72 Z.Z
L(t six y)Qs(dy) ds Qi(dx) dt< 1
0 RI 0 Rd
(iiiy For any f 2 C2(RY) the process(M¢): T, de ned as
Z, zZ,Z

M= f (W) f (Wo) %4f(wu)+ rf(wy) L(u wy y)Q (dy)d du
0 0

is a Q-martingale.
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Throughout this thesis, well-posedness of martingale problems will  our primary technique when
proving existence in law for NLSDEs of type @.1). However, we will see in this chapter that once
the kernel L is regular enough, a xed point kind of argument may be applied. Notice thatin
both formulations we have an integrability condition for the drift term (De nition 2.2.1{4.,

De nition 2.2.Z(ii)). In order to satisfy it, some additional assumptions on the inter action kernel
or/and on the one-dimensional time marginals of the law of the process musbe imposed. We will
suppose throughout this section the following hypothesis:

Hypothesis (HO). The function L : [0;T] RY! RY satises

8(tx)2 (0;T) RY jL(tx)] ha(b);
8(tx;y)2 (0;T) RY R% jL(tX) L(Gy)i ha(b)ix vi;

whereh; : (0;T) ! R* is such that there existsDt > 0 such that for anyt T, one has
shi(s)ds Dr.

Notice that the time interaction induces a slight change in (HO) with respect to what is assumed
on the interaction kernel in [72]. We still assume the kernel is bounded and Lipshitz in space, but
in order to treat the additional integral in time, we introduce the fu nctions h1 and hs.

Let C((0; T); RY) be a set of continuousR%-valued functions de ned on (0; T) and Pt be the set of
probability measures onC((0;T); RY). Fora Q2 Pt and (t;x) 2 (0;T) RY denote by
z.z
b(t; x; (Qs)s t) := o ne L(t s;x y)Qs(dy) ds:

In view of Hypothesis (HO), for a givenQ 2 Pt one has that

(
jo(t;x;(Qs)s )] Dr;
jo(t;x;(Qs)s 1) b(ty;(Qs)s 1)i Drjx yij:

This will ensure that the above discussed integrability conditiors are ful lled. As the kernel
associated to our Keller-Segel NLSDE does not have such nice propessi, we will be prompt to
search for weak solutions in the spaces of measures whose one-dimensidimaé marginals have
some speci ¢ properties. Therefore, the above notion of weak solution W be rede ned (cf.
Chapters 3 and 6).

8(t;x;y)2 (0;T) RY RY: (2.2)

For a smooth interaction kernel, we will prove the following theorem:

Theorem 2.2.3. Under the hypothesis (HO), Equation(2.1) admits a unique strong solution.

Thanks to (2.2), to prove Theorem 2.2.3 one could adapt the xed point argument in the proof of
Theorem 1.1 in [/7] adding the time interaction everywhere. In order to do so, let us ntroduce for
two measuresms; m» 2 P, their distance with Wasserstein metric, given by
z
Dit(my;my) =  inf supjwl w3~ 1d (whw?);
2 ( m1;mz2)  C((0;T)RY) C(O;TKRY) s T
where ( mq;my) is the set of all couplings ofm; and my. In view of Villani [ 79, Cor. 6.13 and
Thm. 6.18], Wasserstein distances metrize weak convergence anB+(; D1.7) is a complete
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separable metric space. Two important properties of the Wassersteimetric follow from its
de nition. Firstly, for two random processes X ! and X 2 with laws m; and m,, respectively, one
has
Dir(my;my) E [squij1 X 2jn~ 1) (2.3)
S

Secondly, taking another nite time t T and repeating all the de nitions with natural extensions
of the same concepts from greater to smaller time, one obviously has

Dit(mi;mz) Dyt(mi;mg);, t T (2.4)

Proof of Theorem 2.2.3. To prove Theorem 2.2.3 one should search for a xed point of the map
Pt I'P 1 that to a given m 2 Pt associates the law of the solution to the following SDE:

dX¢ = dWt + b(t; X ¢; (ms)s ¢)dt;
Xo  Po:

Notice that this equation is well-de ned in strong sense thanks to @.2) (see e.g. {5, Thm. 5.2.9]).
To exhibit the xed point, the following contraction inequality sh ould be demonstrated for
my;me2Pr: 7

t

Dyt(( m1); ( m2)) Cr . D 1u(myg; mo)du:

To prove the latter, follow the steps in [77]. Always use (HO) when dealing with the time
interaction. Let m{;m> 2 Pt. Associate tom; the law of the solution of
z tZ S
Xi = Xo+ W + b(u; X 33 (Myy)r o) du ds;
0 0

and to m, the law of the solution of:
Z tZ S
XZ= Xo+ W+ b(u; X 2; (My)r o) du ds:
0O O

Then,
Z.Z,hZ

S
X5 X3 Lu X5 w)dmay(w)
0 0  C(OT)R 5
i
Lu ;X 2 w)dmy(w) ddu =: F(s):
C((0;T);Rd

Taking sups ; of the previous expression and an expectation on both sides, one has

E [supjX? X2j] E [supF(s): (2.5)
st st

In the following computations Ct is a constant that may change from line to line. Taking to be
any coupling of my and my, it comes
z.7,Z

F(s) = Lu ;X! wh) Lw ;x2 w?)dwhw?ddu :

0 0 C(0;T)RY) C((0;T);R%)
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In view of (HO), one has
jLu X g owh L X § wh)j @hi(u )+ ho(u )XG wh o X G+ wAA L

Therefore,
Z tZ u
E [supF(s)] CE (ha(u )+ ha(u )
st 0

X xZr1+jwt w?jr1d (whw?)d du
C((0;T);RY) C((0:T);RY)

Then,
z t
E [supF(s)] 2CtE jX! X2~ 1du
*tzz, ° z
+ (hi(u )+ ha(u ) jwt w?jr1d (whw?)d du:
0 0 C((0;T)RY) C((0:T);RY)
Using that jX} X2j sup ,jX} XZ andjw! w?j sup ,jw} w?j and applying Fubini's
theorem, one obtains
Z, z.2

E[supjX ! X?2j* 1]du+ supjw! w?jr1d (wl;w?)du :
r u

E[supF(s)] Cr
st 0 C((0;T)RY) C(O;T);Rd) r u

0
Coming back to (2.5), one gets
Z, zZ.Z

E[supjX! X?2j* 1]du+ supjw? w?jr1d (wl;w?)du :
r u

E[supjXs XZjl Cr
s t 0 C(O;T)%;RY) C(O;T);RY) r u

0
Taking an in mum over all couplings  of m; and m» of the above expression, leads to
z t Z t
E[supjXl X3%] Cr E[supjX! X2~ 1du+ Cr  Diy(my;mp)du:
s t 0 ru 0
Gronwall's lemma implies
Z t
E [supjXs XZj~1] Cr  Dyu(my;my)du: (2.6)
st 0

As X1 and X 2 have laws (m1) and ( m,), respectively, the property (2.3) of the Waserstein
distance together with (2.6), lead to the contraction inequality
Z t
D1t(( m1); (mz)) Cr . D yu(my; mz)du:

Firstly, we can conclude the weak uniqueness. Namely, leth; and m, be the laws of two weak
solutions to (2.1). Then, ( m1) = my and ( m») = ms. In view of the above contraction
inequality, one has
Z 1
Dyr(mg;mz) = Dyr(( my); ( mz)) Cq . D 1.u(my; mz)du:
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By Gronwall's lemma, D1.t(my; m2) = 0.

Secondly, the strong unigueness for4.1) follows. Assume we have two strong solutions with the
same notation as above. We have just seen thaD 1.7 (m1; my) = 0. In view of (2.6) and (2.4), one
has

E[SUPJXsl XZ%] CrDyr(mi;my)=0:
S

This implies strong uniqueness.

Finally, by the standard contraction argument, one gets weak existence Construct the sequence
fme;k 2 Ng=f X(m);m 2 Ng. Here m is any element ofPt. The contraction inequality leads to
Z 1
Dir( ***(m); X(m)) Cr  Dau( (m); * *(m)du:
0

Iterating this expression, one has

kil K Cka
Dyr( " (m); (M) =D (( m);m):
Since,% I Oask!1 ,the sequencefiy)kzn is a Cauchy sequence. As the spader is

complete with respect to the Wasserstein metric, there existsa probability measure Q such that
mi I Q. By the construction of the sequencemy, ( Q) = Q.

The existence of a strong solution follows from the results of Yamada andlVatanabe summarized
in Chapter 5.3 of [45]. O

A natural discretization of ( 2.1) is obtained by plugging the empirical measure ofN particles in
the place of the law of the process. Like this, one obtains instead of oneon-linear equation, a
system of N dependent linear equations. This system is called in the literatue the particle system
associated to @.1). It is de ned on the product probability space ( N;F N;P N) ltered by the
natural extension of the original lItration to the product space, and equipped with an
N -dimensional Brownian motion adapted to it. It reads
n 0
( dxN = dwi+ L P i Rg Lt ;XN xN)yds d; 27
XN iid.  po

Notice that the particle system inherits from the NLSDE the unusual interaction in time by
becoming non-Markovian. In each timet > 0 every patrticle interacts with all the past of all the
other particles.

Theorem 2.2.4. Under the hypothesis (HO), the particle system in(2.7) admits a unique strong
solution.

Proof. Notice that the drift of each patrticle is uniformly bounded according to (HO). Thus, by
Novikov's condition one can use the Girsanov transform in order to consuct a weak solution to
the particle system (see e.g.45, Prop. 5.3.6]).
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As above, to nish the proof one should show that strong uniqueness hdk. Let us drop the index
N for simplicity. Let X = (XY :::;XN)yand Y =(Y1;:::;YN) be two strong solutions to (2.7).
Then, in view of (HO), for i N andt T one has

XY N G WXy Yij+ixi  vljdu ds:

Notice that jX . Ydj+jXh Ydj 2sup, smaxq « njXK YXj. Thus,

yA t
iXi Yj cr  sup max XK YK ds:
0O u s
Taking the maximum w.rt. 1 i N and the supremum int T, one gets
z t
sup max jX{ Y/j Cr sup max XX YK ds:
t TLi N 0uslk
Apply Gronwall's lemma to nish the proof. O

An intuitive question that now can be posed is what happens with the paticle system once
N !'1 . Do we recover @.1)? In which sense? In order to answer it let us introduce the notionof
propagation of chaos.

De nition 2.2.5. Let uny a sequence of symmetric probabilities o€ ((0; T); R)N and u a
probability measure onC((0; T); RY). uy is u-chaotic, if for any f1;:::;fx 2 Co(C((0;T); RY),
anyk L

Z Y‘Z

lim n1g fa(x1)  fre(Xk)un (dxgpiiidxy) = fi(x)u(dx):
C((0;T);RHN iz1 C((O;T)RY)

In view of [72, Prop. 2.2-))], UN is u-chaotic |sFeqU|vaIent to: a) the same de nition with k = 2;
b) the sequence of empirical measuresN = ,\} iz; xi (Pr-valued random variables), converges

in law to the constant random variable u, where X ' are canonical coordinates orC((0; T); RN .

Let us denote the law of the process inZ.1) and (2.7) by Q and QN , respectively. The notion of
propagation of chaos in this context tells us that if QN is Q-chaotic, then the joint law of any
k-tuple of particles (k  2), converges, when the number of particles goes to in nity, to the
product measureQ ¥. Equivalently, it means that the empirical measure of N particles converges
in law to p. This is the analogue to the law of large numbers in the context of a systa of
interacting stochastic particles.

In order to establish the propagation of chaos in the above case we de nH i.i.d. copies of 2.1)
on the same Itered probability space as the particle system,
. . . NR R . 0
dX{= dw{+ bt X)dt+ o Lt sX! y)a(dy)ds dt 28)
G = L(XD); Xj= XN '

We will prove the following claim:
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Theorem 2.2.6. Under the hypothesis (HO), foranyi 1and anyT > O:
p__ - .
sup NE[sup 7jX{N  Xljl<1:
N

Proof. We adapt the arguments in [72, Thm. 1.4]. For simplicity, we drop N in the notation of
(2.7). In addition, C or Ct will denote constants that may change from line to line. One has
. . Z1 Zs 1 X . . z .
E[tsquJ'Xt' Xil E . o N L(s X ¢ X)) L(s ; Xs Yy)p (dy)d ds:
j=1

R
LetusnoteC(t s;x x9=L(t s;x x9 L(t s;x y)ps(dy). Notice that

ZSlX\l i J Z i
Lis ;X L X L(s : Xs yp (dy)d

j=1
Zs N - - o o
O N fiL(s ;X & XN) L(s ; Xg XNj+jL(s ; X& X') L(s ; X¢i X!)jgd
j=1
U : :
+ N C(s ; X{& X!)d
j=1 O
In view of (HO), one has
Z.:2Z,
ElsupjX| Xij] hys )EXL Xld ds
t T 0 0
Z T VA s 1 X ) . z T 1 X z s i i
+ ho(s  )—  EX! X!jd ds + E — C(s ; X¢ X!)d ds:
0 0 N . o N s O
j=1 j=1
Summing the previous expression over going from 1 to N and using that for s, one has
X1 xXJj sup 4jX! Xljandfors T,onehasjXx! Xij sup <jX! X!j, we get
X o ZR -
ElsupjX; Xl Dr ElsupjXi  Xijlds+
=1 T i=1 S
Zy X . . Z1 1 X Zs . .
+ Dt E[supjX! Xljlds+ Ct E — C(s ; X{ X!)d ds
0 J=l r s 0 N ]=l 0
Z1 . . Za 1 X Zs . .
= Ct E[supjX! Xljlds+ Ct E — C(s ; X& X!)d ds:
0 J=1 r s 0 N ]=l 0

Gronwall's lemma implies that

X _ _ Z1 1 X Zs _ _
E[supjX{ X{j] Cr E = C(s ; X! XJ)d ds:
i=1 t T 0 N j:l 0
Fixan1l i N. By symmetry in law of (2.7) and (2.8), one has
. . Z1 1 X Zs . .
E[supjX{ X{j] Cr E = C(s ; X{ XNd ds:
t T o N._. o
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After the Cauchy-Schwarz inequality, it comes
Vi - 4
u 0 T
Z iU E N Z . _ 2
— @ Cs ; XL Xx'd A ds: (2.9)
o N° . o

ElsupjiX{ X{jl Cry
t T

Notice that C is centered, 2

E[C(t six Xgl= E[L(t six XJ]  L(t six y) (sidy)=0:

This together with the fact that X1t and X2 are independent forj1 6 j», implies that the mixed
terms of the squared sum are zero. For the other terms we use thdt is bounded byhs, and thus
C also is. One gets

0 1,
E @X\I Zs i wivd A R iy 2 21
N2 . C(s ; Xg X')d N2 E , C(s ; Xg X')d DTW' (2.10)
j=1 j=1
Combine (2.10 and (2.9) in order to conclude the proof. O

Notice that Theorem 2.2.6implies Q' is Q-chaotic. Namely, denote byQ?%N the law of the couple
(X BN X 2N), Then, weak convergence of the probability measur&?N to the product measure

Q Q implies De nition 2.2.5for k =2. Q%N and Q Q belong to the spacePf) of probability
measures onC((0; T); RY)  C((0;T); RY). The de nition of the Wasserstein metric can naturally
be rewritten for such a space and will satisfy the analogues of2(3) and (2.4). Denote the

1-Wasserstein metric onPf) by D(lz% Thus,

DA (Q*N;Q Q) Efsupi(x SN X3N)  (XEXDIN 1] Elsupix N X1+ ElsupiX 2N X g}
S S S

Applying Theorem 2.2.6and letting N !'1 , one getst%(Qz?N 'Q Q! o.

The propagation of chaos property enables one to conclude a numerical algorith for
approximating the law Q. It tells us that when N is large enough the empirical measure ol
particles behaves like the limit law. Thus, the empirical measue of these particles in, for example,
time t will approximate the marginal Q;. The particles in (2.7) are themselves approximated by
an Euler scheme. A natural question arising once such a numerical algdhim is constructed, is
what the rates of convergence in the number of particles and time disatization step of the Euler
scheme are. A review of such results for a NLSDE without time interadbn can be found in Bossy
[11]. In this thesis such question will not be treated. However, one carmagine that with a slight
change of hypothesis on the interaction kernel (same as we did in (HO) wi. [77]) one can obtain
some of the results mentioned in I1]. This remains to be checked in some of our future works.

We conclude this section with the following remark:

Remark 2.2.7. All the obtained results may be generalized to a stochastic procesktbe type
dX¢ = (X¢)dW; + " R(; RRd L(t s Xt y)Qs(dy) dsodt"' b(t; X¢)dt; t T,
Qs = L(Xs); Xo  Po;

where :RY! RY%andb:(0;T) RY! RY are uniformly bounded on(0;T) R and Lipschitz
functions in space with a uniform constant with respect to time. h that case the2-Wasserstein
metric should be used.

(2.11)
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2.3 The associated McKean-Vlasov-Fokker-Planck equation

In the sequelQ will denote the law of the processX constructed in Theorem2.2.3 We aim to
establish a connection between the time marginals of) and the following Fokker-Planck equation:

(

=34 v v (Bt (s ) ) t2(0;T); (2.12)
t=0 = Op:

As the initial condition ¢ is a probability measure, from the probabilistic point of view, Equation
(2.12) describes the time evolution of a probability measure ;. Let us de ne the notion of weak
solution for (2.12).

De nition 2.3.1. A measurable family( ;); 7 of probability measures onR? is a weak solution
to (2.12) if for any f 2 C2(RY) and anyt 2 (0; T) one has
Z Z zZ.Z 1 zZ.Z
f(x) t(dx) = f (X)p(dx) + r f(x) b(s;x;Q) s(dx) ds+ = 4 f(x) <(dx) ds:
Rd Rd 0 Rd 2 o Rd

Hypothesis (HO) implies that everything makes sense in the precedg equation.
Proposition 2.3.2.  The family (Q;); 1 of probability measures onRY has the following

properties:

i) For any t 2 (0;T], Q; admits a probability density function ¢. In addition, ¢ 2 LP(RY) for
any1<p< 1 and

C 0 1y 2
80<t T: kQKLp(Rd) 9(1 l) e( Z)T ;
t2 = p

where :=sup; 1 kb(t; ;(Qr)r tk.
i) (q); T is a weak solution to(2.12).
Proof. i) This result is directly implied by Mekard and Roelly [ 53, Lemma 1.1] asbis bounded.

We write the proof in order to explicit the LP-norm estimate in function of andt. Let
t2 (0;T], p> 1 and p®such that % + alj =1. For f 2 C} (RY), de ne the linear functional

Z
He(f) = " f(x)Qe(dx) = E(f (X4)):

In view of Girsanov's theorem (e.g. [}5, Chapter 3, Thm. 5.1]), one has
He(f) = E(f (Wi + Xo)(Z7) 1))
where Zt is the exponential martingale

RT 1 RT- i2
ZT = e o b(s;Xs;(Qr)r s) dWs 50 jb(s: X s3(Qr)r )i dS:
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Remember that (HO) provides the boundness ob and thus by Novikov's condition Zy is a
martingale. Now, choose I q < p ®and o® such that % + alj = 1. Helder's inequality for

= %0 and %such that £ + 4 =1 leads to

1 1

H(E) EGF(Xo+ Wi ) E(Zr) ) = AB:
Applying Helder's inequality for g and q°
Zz 1 72 Z 1 b1
A= it (x+ y)i a(y) dy o(dx) it (x+ )P dy T KgK aoggey Go(dX)
e’ | 0 C
= kf qupo(Rd)kgtquO(Rd) = kf kLpo(Rd)w:
Notice that

B°=E e ORJ (X o+ Wsi(Qr)r ) dWs ( °>2RJjb(s;><o+ws;(czr)r s)i2 ds
97 DT ibsXor Wei(Q), P ds
Apply the Cauchy-Schwarz inequality. It comes
B° 92 T2

Therefore,

JHL(F) et * DT K Ky poze):

()

Then, H; is a bounded linear functional de ned on a dense subspace dn‘po(Rd). Therefore,
it extends to a bounded linear functional on LpO(Rd). By Riesz representation theorems (e.g.
[15 Thm. 4.11 and 4.14]), there exists a uniquey 2 LP(RY) such that ¢ is the probability
density of Q; and kg p(rs) ﬁe( 0T 2,
t2 P
i) Let f 2 C2(RY). Apply Ito's formula on f (X;):
Z t Z t 1 Y4 t
f(X) = f(Xo) + . r f(Xs) b(s;Xs;(qu)u s) ds+ o rf(Xs) dws+ > . 4 f(Xs) ds:

Taking the expectation on both sides one gets the condition from De nition 2.3.1

O]

Another way to connect the process in 2.1) and the PDE (2.12) is to show that the family (q): T
satis es the following mild formulation of ( 2.12) in the sense of the distributions:

xd 2y
t= G Po . rige s (B(s;;( uu t) s ds: (2.13)
i=1

Here a convejution involving a measure and a function f should be understood as
f )= fx vy (dy).
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Proposition 2.3.3.  The marginals (q)2 1] satisfy in the sense of the distributions the mild
equation (2.13).

Proof. In order to derive (2.13) from (2.1) for f 2 C2(RY) consider the Cauchy problem

G, 1 —-N- . d.
%S+§4G—O, 0 s<t x 2RY%

. (2.14)
limg ; G(s;x) = f(x):

The function Z
Gir (5;x) = f(Y)ar s(x y)dy

is a smooth solution to (2.14) where g; denotes the density ofW;. Applying I1t6's formula to
Ger (6 Xt) we get
Z t Z t
@@ (s;Xs)ds+ 1 Gyt (s; Xs) b(s;Xs;Q) ds
0, @s 0
Z 124
+ r Ger (S; Xs) dWs+ > 4 Gyt (s; Xs)ds:
0 0

Gur (1 Xt) Gyt (0;Xo) =

In view of (2.2) and (2.14), we obtain
z t
Ef (X1) = EGer (0;Xo)+  E[r Gyr (siXs) b(s;Xs;Q)lds=: | + II: (2.15)
0

On the one hand one has
Z Z Z

I = f(Y)a(x y)dy p(dx) = f(y)(a )(y)dy:

On the second hand one has
z.z z
I = r« fa s(x y)dy b(s;x;(q)u s)a&k(x) dx ds
7%z z
. fy)r g s(y x)dy b(s;x;(qu)u s)0s(x) dx ds
xd £ Z,
= f(y) ) [rige s (b(s;;(a)u s)a&)I(y) ds dy:

i=1

Thus (2.15 can be written as
z Z xd Z Z,
f(a(y)dy=f(y)(a w)(y)dy f(y) . [rige s (B(s;;(q)u s)&)(y) ds dy;
i=1

which is the mild equation (2.13). O

Remark that by constructing the stochastic process, we have not jat built a family of probability
measures orRY that is a solution to the Fokker-Planck equation. In fact we have built an object
that belongs to much wider class, a probability measureQ on the space of trajectories

C([0; T]; RY). In addition, the stochastic process can be seen as the time evolion of one
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individual in an in nite population following the dynamics in ( 2.12). Thus, a micro model for
(2.12 is obtained. Then, a tool as Girsanov transform can provide us with addtional information
about the solution of the PDE, like in Proposition 2.3.2-i). The reader will see another purely
probabilistic technique to obtain L1 (RY)-norm estimates for the marginal densities in Section3.3.
Finally, one should not forget the particle system associated to the sichastic process and now to
the PDE. The propagation of chaos property, proved in the previous chapte, tells us that the
empirical measure of large number of particles converges towards theviaof the stochastic process
and by that to a solution of (2.12). Thus, a numerical method for approximating the PDE is
obtained. This method is purely probabilistic and it is quite convenient since its complexity grows
linearly with the dimension d and not exponentially as it is the case with the deterministic
numerical methods for elliptic and parabolic PDE's.

Notice that all the results proven in this chapter are due to the regulrity assumption (HO) on the
interaction kernel L. It allowed us to adapt the classical proof of Sznitman to show well-posdness
of our time and space interacting Mc-Kean Vlasov di usion. It ensured the well-posedness and
propagation of chaos of the associated particle system even though the setg in it is
non-Markovian. Finally, it justi ed all the computations when inter preting the marginal laws of
the process as a solution to a non-linear Fokker-Planck equation.

The interaction kernel associated to the Keller-Segel system d®enot enjoy the regularity
properties supposed in this chapter and thus, the above arguments doot apply. A specic
analysis needs to be developed to overcome the singularity of the kagl. In particular, to prove
the well-posedness of the mean eld limit and of the associated syste of particles one needs to
develop speci ¢ and original techniques of analysis.






Chapter 3

The one-dimensional case: The non-linear
stochastic equation

This chapter is written in collaboration with Denis Talay and it is avai lable as a preprint [73].

3.1 Introduction

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis desthes the
time evolution of the density ; of a cell population and of the concentrationc; of a chemical
attractant:

2 @ tx)=r (3r r o(tx); t>0; x2RY
@c(t;x) = 34 ct;x) c(tx)+ (tx); t> 0 x2R%: (3.1)
(0:x) = o(x); ¢(0;x) = co(X):

>

For theoretical results on this system of PDEs and applications to Biologysee Chapterl.

Recently, stochastic interpretations have been proposed for a sipli ed version of the model, that
is, the parabolic-elliptic model which corresponds to the case = 0. These interpretations all rely
on the fact that, in the parabolic-elliptic case, the equations for ; and ¢; can be decoupled and:
can be explicated as the convolution of ; and a logarithmic kernel. Consequently, the
corresponding stochastic process of McKean{Vlasov type whosg is the time marginal density
involves the singular interaction kernel k(x) = zj‘—sz (when =0). This explains why, so far,
only partial results are obtained and heavy techniques are used to gethem. A review of the
works by Haskovec and Schmeiser36], Fournier and Jourdain [31] and Cattiaux and Receches [21]
is given in Sectionl.4.

Budhiraja and Fan [17] have studied a McKean{Vlasov SDE related to a parabolic{parabolic
version of the model with a smooth coupling between and c and a forcing potential term. Under
a suitable convexity assumption on the additional term, they obtain uniform in time concentration
inequalities for the corresponding particle system and uniform in tme error estimates for a
numerical approximation of the exact McKean{Vlasov process.

We here deal with the parabolic{parabolic system (> 0) without cut-o and study the
McKean-Vlasov stochastic representation of the mild formulation of theequation satis ed by ;.
This representation involves a singular interaction kernel which & di erent from the one in the
above mentioned approaches and does not seem to have been studied lre tMcKean-Vlasov

37
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non-linear SDE literature. The system reads
nNR (0]
dX¢ = B(EX)dt+  J(K] ¢ ps)(Xy)ds dt+ dwW; t> O

ps(y)dy := L(Xs); Xo o(x)dx;

(3.2)

2
whereK!(x):= e 'r (We Zryand B(tx) = e tr Eco(x + Wy). Here, Wy); o is a
d-dimensional Brownian motion de ned on a ltered probability space ( ;F;P;(Ft)) and Xg is an
RY-valued Fy measurable random variable. Notice that the formulation requires that the one
dimensional time marginals of the law of the solution are absolutely contimous with respect to
Lebesgue's measure and that the process interacts with all the pastrie marginals of its
probability distribution through a functional involving a singular ke rnel.

The analysis of the well-posedness of this non-linear stochastic egtion and the proof that ps is a
solution to (3.2) for any s are delicate, particularly in the multi-dimensional case when s large

enough to induce solutions with blow-ups in nite time (see Chapte 6). As numerical simulations
of the related particle system in Chapter 7 appear to be e ective, it seems interesting to validate

our approach in the one-dimensional case.

The objective of this chapter is to prove general existence and unigeness results for both the
deterministic system (3.1) and the stochastic dynamics @3.2) in d =1. In Chapter 5 we show the
well-posedness and propagation of chaos property of the corresponding parite system where each
particle interacts with all the past of the other ones by means of a time ntegrated singular kernel.

In this one-dimensional framework the PDE (3.1) was previously studied by Osaki and Yagi ((]
and Hillen and Potapov [40] in bounded intervals | with periodic boundary conditions while we
here deal with the problem posed on the whole spacB. In [60] one assumes 2 L2(1)\ L(I),
co 2 H(I) and inf; cg(x) > 0. In [40] one assumesg 2 Lt (1)\ LY(1)and cg2 W P (1), where p
and belong to a particular set of parameters. Here, we only suppose thatg is in L1(R).

We emphasize that we do not limit ourselves to the specic kerneIKt](x) related to the
Keller{Segel model. We below show that the stochastic di erential equation of Keller-Segel type is
well-posed for a whole class of time integrated singular kernels. Dueotthe singular nature of the
kernel, the mean- eld SDE cannot be analyzed by means of standard couply methods or
Wasserstein distance contractions as in Chaptef. Both to construct local in time solutions and
to go from local to global solutions, an important issue consists in propest de ning the set of
weak solutions. Namely, without any assumption on the initial density o, we need to introduce
some constraints on the time marginal densities. To prove that these anstraints are satis ed in
the limit of an iterative procedure (where the kernel is not cut o ) , the norms of the successive
time marginal densities cannot be allowed to exponentially depend ontie L -norm of the
successive corresponding drifts. They neither can be allowed tdepend on Helder-norms of the
drifts. Therefore, we use an accurate estimate (with explicit contants) on densities of
one-dimensional di usion processes with bounded measurable drigtwhich is obtained by a
stochastic technique rather than the PDE techniques. This straegy allows us to get uniform
bounds on the sequence of drifts, which is essential to get existea and uniqueness of the local
solution to the non-linear martingale problem solved by any limit of the Picard procedure, and to
suitably paste local solutions when constructing the global solution.

The chapter is organized as follows. In Sectior8.2 we state our main results. In Section3.3 we
prove a preliminary estimate on the probability density of di usion processes whose drift is only
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supposed Borel measurable and bounded. In Sectioc®4 we study a non-linear
McKean-Vlasov-Fokker-Planck equation. In Section3.5 we prove the local existence and
uniqueness of a solution to a non-linear stochastic di erential eqation more general than @.2)
(for d = 1). In Section 3.6 we get the global well-posedness of this equation. In Sectio8.7 we
apply the preceding result to the speci ¢ case of the one-dimensnal parabolic{parabolic
Keller-Segel model. The appendix sectior8.8 concerns an explicit formula for the transition
density of a particular di usion. The appendix section 3.9 is a reminder on standard convolution
inequalities (used in this Chapter and some of the following ones).

Notation. In all the chapter we denote by Ct; Cy(ly; po), etc., any constant which depends on
T and the other speci ed parameters, but is uniform w.r.t. t 2 [0; T] and may change from line. In
addition, for1 p;q 1 theRspaceLq((O;T); LP(R)) denotes the space of functions

f:(0;T) R! Rsuchthat j kf(t; Jklprydt< 1.

3.2 Our main results

Our rst main result concerns the well-posedness of a non-linear ondimensional stochastic

di erential equation (SDE) with a non standard McKean{Vlasov interacti on kernel which at each
time t involves in a singular way all the time marginals up to time t of the probability distribution
of the solution. As our technique of analysis is not limited to the above lernel K !, we consider the
following McKean-Vlasov stochastic equation:

nR (0]
dX¢ = Bt X)dt+ (K¢ s ps)(Xe)ds dt+ dW; t T,

ps(y)dy := L(Xs); Xo  po;

(3.3)

and in all the sequel we assume the following conditions on the interdion kernel.

Hypothesis (H). The function K de ned on R* R is such that for any T > O:

=

. Forany t> 0, K isin L(R).
2. For any t > 0 the function K(x) is a bounded continuous function onR.

3. The set of pointsx 2 R such thatlimy oK{(x) < 1 has full Lebesgue measure.

R kk; <k

4. For any t> 0, the function f(t) := —pﬁds is well de ned and bounded on0; T].
5. For any T > 0 there existsCt such that, for any probability density on R,

Z

sup (VKK (x  y)kiioy dy  Cr:
(tx)2(0;T] R

6. Finally, 7
T

1
sup KK+t sk gy P=ds Cr:
0t T 0 S



Chapter 3. The one-dimensional case: The non-linear stochastic equati 40

As emphasized in the introduction, the well-posedness of the sysin (3.3) cannot be obtained by
applying known results in the literature.

Given (t;x) 2 R* R and a family of densities {;); T we set
Z t
B(tx;p) = (Kt s ps)(x)ds: (3.4)
0

We now de ne the notion of a weak solution to (3.3).

De nition 3.2.1.  The family ( ;F;P;(F¢); X;W) is said to be a weak solution to the equation
(3.3 uptotime T > 0 if:

=

( ;F;P;(Fy)) is a Itered probability space.

2. The processX = ( Xt)i2[0;1] is real-valued, continuous, and(Ft)-adapted. In addition, the
probability distribution of X has densitypo.

3. The processW := (Wi)i20:17 is @ one-dimensional(Ft)-Brownian motion.

4. The probability distribution P X 1 has time marginal densities(p;; t 2 [0; T]) with respect
to Lebesgue measure which satisfy

80<t T; kpekp 1 (R) %lt: (3.5)
R, . _
5. Forall t 2 [0;T] and x 2 R, one has that ;jb(s;x)j ds< 1 :
6. P-a.s. the pair (X; W) satis es (3.3).
Remark 3.2.2. For any T > O, Inequality (3.5 and Hypothesis (H-4) lead to

sup supjB(t;x;p)j Cr:
0t Tx2R

The following theorem provides existence and uniqueness of theaak solution to (3.3).

Theorem 3.2.3. Let T > 0. Suppose thatpy 2 L1(R) is a probability density function and
b2 L1 ([0;T] R) is continuous w.r.t. the space variable. Under the hypothesigH), Eq. (3.3)
admits a unique weak solution in the sense of De nition3.2.1.

We nally state an easy result which is useful to prove the propagation ofchaos in the case of
Keller-Segel kernel (see Chapteb):

Corollary 3.2.4. In addition to the assumptions of Theorem3.2.3 suppose the following
hypothesis:

.. . R kKt sk .
H-7. for any t> 0, K is in L?(R) and the function f 5(t) := g ‘Slij“*’ds is well de ned and

bounded on[0; T].
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Then, there exists a unique weak solution tq3.3) in the sense of the De nition 3.2.1 modi ed as
follows: Instead of (3.5 one imposes

Cr

80<t T, Kpk 2 tl—__4: (3.6)
Our next result concerns the well-posedness of the one-dimensiainparabolic-parabolic
Keller-Segel model8
@ @ 1@ @
= (tx)= — (=— —)(t;x); t>0; x2R; 7
2 607 5 Gox @it >0 x2R (3.72)
@ 1 @c
P . = _ _—_ . . + . . > . . )
@gt,x) o) 0+ G0 t> 0 x2R; (3.7b)
0;x) = o(x); ¢0;x) = co(x); X2 R;
where > 0 and 0. As this systerzn preserves thf total mass, that is,
8t> 0 (t;x)dx = o(X)dx =: M;
the new functions ~t;x) := % and e(t; x) := <:('th) satisfy the system @3.7) with the new
parameter ~:= M . Therefore, w.l.o.g. we may and do thereafter assume thaM = 1.
Denote by g: the density of W;. We de ne the notion of solution for the system (3.7):
De nition 3.2.5. Given the functions ¢ and ¢y, and the constants > 0, 0, T > 0, the pair

(;c) is said to be a solution to(3.7) if (t; ) is a probability density function for every0 t T,
cisin L?! ([O;T];CQ(R)), one hask (t; )k.1 (r) &Tf for any t 2 (0; T], and the following equality

z
'@gs

o @c_. .
(tEx)=a  ofx) @x (@ s;) (s )(x) ds (3.8)
is satis ed in the sense of the distributions with .
t
ctx)=e "(g(t; ) co)(x)+ . e °(gs (t s;))(x)ds: (3.9)

Notice that the function c(t;x) de ned by (3.9) is a mild solution to (3.7h). These solutions are
known as integral solutions and they have already been studied in PDEiterature for the
two-dimensional Keller-Segel model for which sub-critical and ctical regimes exist depending on
the parameters of the model (see4Z] and references therein). In the one-dimensional case there is
no critical regime as shown by the following result.

Corollary 3.2.6. Assume that ¢ 2 L}(R) and ¢y 2 C}(R). Given any > 0, Oand T > 0,
the time marginals (t;x) pi(x) of the probability distribution of the unique solution to Eq.(3.2)
with d =1 and the corresponding functionc(t; x) provide a global solution to(3.7) in the sense of
De nition 3.2.5. Any other solution ( 1;c!) with the same initial condition ( o; cy) satis es

k (t;) (t; )k 1y =0 and k%ﬁ(t; ) %ﬁt; )KLir) =0 forevery0 t T.

Remark 3.2.7. From estimates in Section 3.3 we could deduce some additional regularity results
which we do not need here: See Remark3.3. In particular, if 2 L! (R), then

2 LY ([0;TLEN LY (R). If g2 L2(R), then 2 L' ([0;T];LY\ L?(R)) and
t4K (ki 1 (®) C; in addition, one can then easily nd modi cations of the hypotheses on the
kernel K allowing to get unique weak solutions with constraints orkpk, 2(gy. We prefer to only
suppose that ¢ 2 L(R).



Chapter 3. The one-dimensional case: The non-linear stochastic equati 42

3.3 Preliminary: A density estimate

In the sequel, we will get local solutions to @.3) and extend them to global solutions by means of
an iterative procedure. The L' -norms of the successive drifts are needed to be bounded from
above uniformly w.r.t. the iteration step. Standard density estimates obtained by using Girsanov
theorem or PDE analysis do not help to this purpose. The reason is that tey involve constants
which exponentially depend on theL! -norm (or even Helder-norm) of the drifts. Namely, let X (P
be a process de ned by
z t
X = Xo+  bs;XP)ds+ Wy t2 ][0TI (3.10)
0

where X = X. Suppose that the drift b( ; ) is measurable and uniformly bounded. Denote by
= SUPya o7y KBt )KL1 (r) @nd by p(t; ;) the transition probability density of X (. Formally,
from the mild equation satis ed by p, one gets

t

C
kp(t;x; )kii(ry Pz+C
t 0 t

Then, a Singular Gronwall lemma leads to an estimate that depends expantially of . To avoid
Gronwall's lemma, we could use the fact that, in view of p3, Prop. 1.1], for anyt> 0 one has
p(t;x; ) 2 LYR) with 1 <g < 1 . However, the proof is based on the Girsanov transform (see
Section 2.3) and therefore the L9(R)-norm of the density depends exponentially of . Thus, if we
would apply such an estimate in the mild equation instead of a Gronwall lenma as above, still we
would not avoid the exponential dependence on .

We therefore proceed by using an accurate pointwise estimate (witlexplicit constants) on
densities of one-dimensional di usions with bounded measurable dfts. Estimate (3.11) below is
obtained by using a stochastic technique. Its drawback is that themap y 7! py(t;x;y) is not a
probability density function. However, it su ces to nicely bound the successive drifts of the
Picard iterations as shown by Proposition3.5.3

To obtain L (R) estimates for the transition probability density p(® (t;x;y) of X (® under the
only assumption that the drift b(t;x) is measurable and uniformly bounded we slightly extend the
estimate proved in Qian and Zheng §6] for time homogeneous drift coe cients b(x). We here
propose a proof di erent from the original one. It avoids the use of dendies of pinned di usions
and the claim that p(®(t;x;y) is continuous w.r.t. all the variables which does not seem obvious to
us. In our proof we adapt the method in Makhlouf [52], the main di erence being that instead of
the Wiener measure our reference measure is the probability distoution of the particular
di usion process X considered in (6] and de ned by

Z t

Xy = Xo+ sgny Xg) ds+ W;:
0

Theorem 3.3.1. Let X (® be the process de ned in(3.10 with Xo = x. Let py(t;x;z) be the
transition density of X . Assume :=supprikb(t; )ka <1 . Thenforally2 Randt 2 (0;T]

it holds that 1 Z,
pP(txy) ptxy)= Pss 28 7 dz: (3.11)

pr ij
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3.3. Preliminary: A density estimate

Proof. Let f 2C% (R) and x t2 (0;T]. Consider the parabolic PDE driven by the in nitesimal
generator of X :

%ﬁ(s;x)+%%(s;x)+ sgny x)9Ys;x)=0; 0 s<t; x 2R;

(3.12)
u(t;x)=f(x); x2R:

In view of Veretennikov [78, Thm. 1] there exists a solution u(s;x) 2 Wpl;z([o;t] R). Applying

the 1t6-Krylov formula to u(s; Xs) we obtain that
Z

u(s;ix) = f(2p (t s;x2) dz:

The formula (3.35 from our appendix allows us to di erentiate under the integral sign:

z
@y_. .\ _ @p . : :
@ZS,X) = f (z)@(t s;x;z)dz; 80 s<t T

Fix 0 <" <t . Now apply the It6-Krylov formula to u(s;Xéb)) forO s t " anduse the
PDE (3.12. It comes:
woy (D) e (b) By @ (b)
Bt X ") = ue) B sx®)  sgny X ) g s X) ds

In view of Corollary 3.8.2in the appendix there exists a functionh 2 L1([0;t] R) such that

80<s<t T;8y;z2R; E %p:((t s;XP;z)  Cr.xy h(s;2): (3.13)
Consequently,
Z
Eut X )= f@py(txz) dz
z z,. ( )

fo1@  E Mex) sy xO) e sx®:i) dsdz
0

Let now tend to 0. By Lebesgue's dominated convergence theorem we obtain
Z Z

f@pP(txz)dz= f(2)p,(txz)dz
z z, ( @ )
+ f(z) E (bs;x{P) sgny Xéb)))@p:((t s;xP;z) dsdz:
0

Therefore the density p(® satis es:
z, ( )
POx2) = yxz)+  E MO  sony xON P six®iz) ds
0

As noticed in [66], in view of Formula (3.36) from our appendix we have for anyx 2 R

(b(s;x)  sgnly X))ggy(t s;xy) O
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This leads us to choosea = y in the preceding equality, which gives us
Z, @ )
p(xy) = pyExy)+ B (X)) sony XO) gl sXOiy) ds;

from which
st T pP(txy) ptxy):

We nally use Qian and Zheng's explicit representation (see $6] and our appendix section3.8).
O

Corollary 3.3.2. Assume Xy is distributed according to the probability density functionpg on R.
Denote byp(t; ) the probability density oth(b). One has

1
Proof. In view of (3.11) we have
1 z z 1 (z pf)z
p(tty) P— po(x)  ze 2 dz dx
2t %%
. Z Z, o
P= po(x) (z+ t)e z dz dx
2t o Py
Z Z Z
1 (X yi 1)2 p_ 1 22
= p=—=( po(x)e a0 dx+ t po(x) e 2 dz dx)
2t Jgp(yJ P
1 z Gy xj t)?
p? po(x)e 2t dx + :
O

Remark 3.3.3. If pp 2 L! (R), the above calculation shows that
kp(t; )ki1 (ry  2Kpokp1 (ry + -
If po2 LYR);qg > 1, Helder's inequality leads to

4 7 .

1 y 02 kpok v 0 o Cgtz® _ C
P— po(xe T ax SRR e et agid SR - S
t2a

3.4 A non-linear McKean{Vlasov{Fokker{Planck equation

Proposition 3.4.1. Let T > 0. Assumepg 2 LY(R), b2 L ([0;T] R) and Hypothesis(H). Let
( ;F;P;(Fy); X; W) be a weak solution to(3.3) until T. Then,
1. The marginals (pt)i2o:1] satisfy in the sense of the distributions the mild equation

Zt@
B2OTE m=o b o (p(blsi)* B(si p)ds:
0

(3.15)
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3.4. A non-linear McKean{Vlasov{Fokker{Planck equation

2. Equation (3.15 admits at most one solution(pt)2[o.;T7 Which for any t 2 [0; T] belongs to
L1(R) and satis es (3.5).

Proof. We successively prove 3.15 and the uniqueness of its solution inL(R).

1. Now, for f 2 CZ(R) consider the Cauchy problem

%ﬁs;x)+%%(s;x):0; 0 s<t x 2R;

limg ; G(s;x)= f(x):

The function 7
Ger (s;x) = f(y)a s(x y)dy

is a smooth solution to (3.16). Applying Ité's formula we get

z t z t
Gir (EX1) Gyt (0;X0) = @@G“S (s; Xs)ds + @@i; (s; Xs)(b(s; Xs) + B(s; Xs; p))ds
Z t t
@G . 17 ' @Gy . .
+ . @x (s; Xg)dW s+ > . @R (s; Xg)ds:
Using (3.16) we obtain
Z t
Ef (Xt) = EG¢s (0; Xo) + . E @@?; (s; Xs)(b(s; Xs) + B(s; Xs;p)) ds=:1+1lI: (3.17)

On the one hand, one has
ZZ Z
I = f(Y)a(y x)dy p(x)dx= f(y)(g po)(y)dy:

On the second hand, one has

z.z @ z
I = — o s(x y)dy (b(s;x)+ B(s;x;p))ps(x)dxds
Z

2 7 @x
f(y)@gs
@x

Z Z
fy) (@9
0o @x

t

. (X y)dy(b(s;x) + B(s; X; p))ps(x)dxds

((b(s; ) + B(s; ; p))ps)I(y)dsdy:

Thus (3.17) can be written as

z z Z  Zig
f(y)p(y)dx = f(y)(a po)(y)dy fly) | @gxs
0

((b(s; )+ B(s; ;p))ps)l(y)dsdy;

which is the mild equation (3.15).

(3.16)
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2. Assumep} and p? are two mild solutions in the sense of the distributions to (.15 which

satisfy
. ST 1 2 Cr.
9C > 0; 8t 2 (O,T], kpt k|_1 (R) + kpt k|_1 (R) BT
Then,
“t @g
ket pPkiir) gx B pIp B(S ip)pdkiards
. @g
+ k=2 [Bs; )ps P2k 1(r)ds
0o @x
“t @g
gx [BGP) B :p?)) PslkLi(ryds
. @g
t kg s POB(s: iP)lkiards
Z @g
+ ) k @XS [(s; )(ps  PEIkL1(r)dS
=L+ 0+ 11
As @ c
2 _ .
ki@xskLl(R) - pit S,
the convolution inequality (3.37) and Remark 3.2.2lead to
Z, Z,, 1 2
k k
I k@gskLl(R)k(pg p3)B(s; ; Pk yryds Cr . &pwdsz

0 @x

S

As bis bounded, we also have

Z
t kpl pgkLl(R)ds_
S Wy

0

jlnj  cr

We now turn to |. Notice that
Z S
kB(s; ;p') B(s: ;p)kiir) ) kKs keirkp'  pPkiiryd;

from which, since by hypothesis ;) satis es (3.5), one has

S
" |E)t—iTs'E% o s kirkp'  Pkuiryd ds
Z, Z,
C
o kp' kaLl(R) pt——TSFngKs K iryds d:

In addition, using Hypothesis (H-4),

Z, z z
1 17t 1 1 7Y kKskiir C
pﬁp%kKs kiiygyds  p= pﬁkKs kiiryds= p= . ptsii()sds FFI:
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3.5. A local existence and uniqueness result for Equation3(3)

It comes: 7 1 ;
tkp® p kLl(R)d _
—p—-d:
0
Gathering the preceding estimates we obtain

Zi 1 2
kps psk
kot pfkiir)  Cr *p—

I Cr

z
t mds:
0
Applying a Singular Gronwall Lemma (see Lemma3.4.2 below), we conclude

8t2 (0;T];, kpt prkiyr) =0;
which ends the proof. O]

LY(R)
ds+ C
S T

In the above proof we have used the following result:

Lemma 3.4.2. Let (u(t)); o be a non-negative bounded function such that for a giveh > 0,
there exists a positive constaniCt such that for anyt 2 (0; T]:

tu(s) Z u(s)
u(t) Ct $=ds+ Cy p——ds: (3.18)

0 S 0 t s
Then, u(t)=0 forany t 2 (0;T].
Proof. The relation in (3.18) reduces to

P Z+ u(s)
u(t) 2Cr t p—p—=—ds:
0 st s

Iterating the preceding expression, one gets
pft Ps Zs i
ut) @Cr)?'t pp— Pp——p=drds:
0 st s g S rr

Fubini's theorem leads to ~

Z S
ut) cr)?t

tu(r 1

HJQ p——p——dsdr
0 r o t s s r
Using the de nition of the -function one arrives to

Ztu

w  een?T G Har
2 2 0 r
Now, apply the classical Gronwall lemma to nish the proof. O
3.5 A local existence and uniqueness result for Equation (3.3
Set z.Z
D(T):= JKi(x)jdxdt < 1 : (3.19)
0 R

The main result in this section is the following theorem.

Theorem 3.5.1. Let To > 0 be such thatD(Tg) < 1. Assumepy 2 LY(R) andb2 L! ((0;Ty) R)
continuous w.r.t. space variable. Under HypothesigH), Equation (3.3) admits a uniqgue weak
solution up to Tp.
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Iterative procedure. Consider the following sequence of SDE's. Fok = 1
nR 0
dX{ = BEX ) dt+ (K s po)(X{)ds dt+ dWi; (3.20)
Xg  Po:

Denote the drift of this equation by b'(t; x). Supposing that, in the stepk 1, the one
dimensional time marginals of the law of the solution have densitiesnf D¢ o, we de ne the drift
in the step k as

Bt x; pX 1) = bt x) + B(tx;p* 1);

whereB is as in (3.4). The corresponding SDE is

dX K = Bt X K pk Ddt+ dw;

(3.21)
X§  po:

In order to prove the desired local existence and uniqueness n@s we set up the non-linear
martingale problem related to (3.3).

De nition 3.5.2. A probability measure Q on the canonical spaceC([0; To]; R) equipped with its
canonical Itration and a canonical process (w;) is a solution to the non-linear martingale problem
(MP (po; To; b)) if:

() Qo= po.

(i) For any t 2 (0;To)], the one dimensional time marginals ofQ, denoted byQ;, have densities
g w.r.t. Lebesgue measure orR. In addition, they satisfy

80<t To; kaki: () %TTO: (3.22)
(i) Forany f 2 Cﬁ (R) the process(M¢): T,, de ned as
M= f(wy) f(wp) “ 1C"gf(w)+@fw)(b(U'w)+ZuzK (w )q (y)dyd ]du
t = t o} . 2@% u @>$u s Wy . u u Y)q ly)ay

is a Q-martingale.

Notice that the arguments in Remark 3.2.2 justify that all the integrals in the de nition of M; are
well de ned.

We start with the analysis of Equations (3.20-(3.21).

Proposition 3.5.3. Same assumptions as in Theoren8.5.1. Then, for any k 1, Equations
(3.20-(3.21) Equations (3.20)-(3.21) admit uniqgue weak solutions up tolg. For k 1, denote by
Pk the law of (X&) T,. Moreover, for t 2 (0; To], the time marginals P¢ of PX have densitiespt
w.r.t. Lebesgue measure omR. Setting ¥ =sup, 1, kB(t; ;p* ki1 (r) and by := kbk_1 o1o] Ry
one has

C( LTO)

80<t To; kpiki: () and ¥ C(by;To):
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3.5. A local existence and uniqueness result for Equation3(3)

Finally, there exists a function p* 2 L ([0; To]; LY(R)) such that

sup ko pt ki) ! 0 ask!l
0

Moreover,
C(hy; To)

80<t To kpf ki:(r) t

; (3.23)
Proof. We proceed by induction.

Case k=1. Inview of (H-5), one has ! Iy+ Cr,. This implies that the equation (3.20 has a
unique weak solution in [Q To] with time marginal densities (pt); T, which in view of Corollary
3.3.2 satisfy

1
8t 2 (0;Tol; kpiki: (ry Prt L

Case k > 1. Assume now that the equation for X ¥ has a unique weak solution and assumeX is
nite. In addition, suppose that the one dimensional time marginals satisfy

8t 2 (0;Tol; kpiki1 (r p%+ K

In view of (H-4), the new drift satis es
Z t Z t

. . 1
X)) o+ kpkkir (kK skiigyds  bo+ (P5=+ VKK ¢ skp1(ryds
0 0

bp+ Cr, + XD (To):

Thus, we conclude that 1 by + Cr, + KD (Tp). Therefore, there exists a unique weak
solution to the equation for X ¥*1 . Furthermore, by Corollary 3.3.2

C
862 (0;Tol kp{"kiary P+ M

Notice that
8k>1 K1 pm+Cr,+ KD(To) and ' hy+ Cry:

Thus, as D (Tp) < 1, iterating the previous relation we have

h)+ CTO

. k
Bk L 1 D(To)

+ by + Cr, (3.24)

and
k CTo + by + CTo +

f 1 D (TO) tb + CTo . (325)

C
kpfkit (ry JPTTO +

Finally, it remains to prove that the sequencepX converges inL? ([0; To]; L(R)). In order to do
so, we will prove p¥ is a Cauchy sequence. As the space is Banach's, the convergence walldw.
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Applying the same procedure as in Sectior8.4, one can derive the mild equation for @{()tz[o;To]-
Thus, for every k 1, the marginals (plt()tZ(O;To] satisfy the mild equation

Z
'@gs
0o @x

in the sense of the distributions. Assume for a moment that we have mved that for any
O0<t To, one has

(PEB(s; ;¢ ))ds (3.26)

8t2 (O0;Tl, pk=a po

(3.27)

Lk 1 k2

kp ki1

kpt  pk Tkiry)  Cro s ;?% LR gs:
Rt ...Rukl -1 Rt k A

Remember that f (u1)::: % *f(u)dug ::idup= 7 ,f(u)du for any positive integrable

function f. Then, iterating (3.27) one gets,

(CTop f)k 1_

kplt( pk 1kLl(R) 2 k1)

Therefore, sup 1, kpl pf kiry! O,ask!1l as desired.

It remains to prove the inequality (3.27). In the sequel C(Tp) > O will denote a constant that
depends onTy and may change from line to line. In view of @.26), one has

Z t
@
B ke ke (R ek s e kg ds
Z t
1
; Pk U(si 1P A Pl Dkiag) ds

(3.28)
t
1
+ . pﬁk(b!‘(s; PN B s p* A)pkkiyr ds
=1+ Il

According to (3.24), one has

Z
I C(To)

t kpX k 1k
Ps pps LY(R) ds:
0
According to (3.25), one has
z z
I (T ot kK K1 p& Yk 1g) duds:
(O)OPt—isl%go s u (Py Py “)KLi(r) du ds:

Convolution inequality ( 3.37) and Fubini-Tonelli's theorem lead to
z t z t 1
I C(TO) kaL(J 1 pﬁ ZkLl(R) pﬁ%kKs ukLl(R) ds du:
0 u

Apply the change of variablest s= s It comes,
z t z t

1
Il C(To) p=kpf ' P& %keur
o u 0

u

1
P—KK ¢ u sk 1(r) ds’du:
0
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3.5. A local existence and uniqueness result for Equation3(3)

According to (H-4) one has
Z, 1
" C) pokel bRl ki) du:

Coming back to (3.28 and using our above estimates ol and Il , we obtain
Ztkpk pk Z1
V ——

LY(R 1
ket B¢ 'kiry  C(To) . S ® ds+ c(To) . Fﬁkpﬁ Lol ki) du

We are in the situation

(s)

(0=kt B kg AN+ C  p=ds,

t
0

where A(t) 0 is a bounded increasing function. lterate this relation and use themonotonicity of

A. It comes 7 7
t 1 S ( U)
0 t s o S u
Apply Fubini's theorem to get
ZZ t z t 1
t) CrA(t)+ C u p——p—— ds du:
(0 Cram+c? (0 PP

R R
Notice that | pP—p—ds= N p—p= dx. Now, apply Gronwall's lemma to get (3.27) and the

convergence ofX to p! .

In order to obtain (3.23, x t 2 (0;T] and use B.25 and the fact that the convergence inL(R)
implies the almost sure convergence of a subsequence. O

Corollary 3.5.4. Same assumptions as in Propositior8.5.3. Assume that (P¥), 1 admits a
weakly convergent subsequen¢®"«)x 1. Denote its limit by Q. Then for any t 2 (0; To], one has
that Q¢(dx) = pt (x)dx, wherep! is constructed in Proposition 3.5.3.

Proof. Let f 2 Ci (R). Then by weak convergence,

< f; Qt>:|li!r1n <fpf>=<fpt >+|1i!r1n <fipf pt

>
In view of Proposition 3.5.3 one has
. . . 1 . . 1 — .
kl!llm i<fipt™ pt >j k fk (g k|!l{n kpr*  pr ki ry) = O:
Thus, <f; Qi >=<f;p tl > which completes the proof. O

Proposition 3.5.5. Same assumptions as in Theoren(3.5.1). Then,

1) The family of probabilities (P¥)y> 1 is tight.

2) Any weak limit P! of a convergent subsequence ¢PX), 1 solves(MP (po; To; b)).
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Proof. In view of (3.24), we obviously have

9Cr, > 0; supEjX& XX* cCrjt si% 80 s t To
k
This is a su cient condition for tightness (see e.g. [45, Chap.2, Pb.4.11)).

Let (P"x) be a weakly convergent subsequence oP{), 1 and let P! denote its limit. Let us check
that P! solves the martingale problem MP (po; To; b)). To simplify the notation, we below write
PX instead of P"« and p¥ ! instead of p™« 1.

i) Each P§ has density pg, and therefore P§ also has densitypo.

ii) Corollary 3.5.4implies that the time marginals of P! are absolutely continuous with respect
to Lebesgue's measure and satisfy3(22).
i) Set
Z

t u
M= f(w) f(wp) . ;g;( wy) + ];gwu)(b(u;wu)+ 0(Ku p' )(wy)d ) du;

We have to prove

Epe [(Mt Mg) (Wiy;iii;we, )]=0; 8 2Cy(RN)and 0 t;< <ty <s t TogN 1

The process

Z 1 &f @f Z K
M¢ = f(w)  F(x(0)) . 2@)%( u) + )gwu)(b(U:Wu)+ 0(Ku p* H(wy)d du

is a martingale under P¥. Therefore, it follows that
0= Epx[(MF MX) (wyy;i:z;wey,)] z
t
= Epc[ (::')(f(wt) f(ws)l+ Epc[ (::: %(Wu)du]
s @

t t f u
+ Epl (1 @§wu)b(u wo)du] + Ep[ (:: @§wu) Ky P Ywy) d du

Since (PX) weakly converges toP! | the rst two terms on the r.h.s. obviously converge.
Now, observe that

z Z,
Bl (1) tglwu) (Ko pf Hw) d du]
S Zu
Epr [ (:22) tgkwu)f(m P )(wy) d du]
4 .
= Bl () Dwy) (K P Hw) d du)
2ol 28
Enl () o) , (o P d a
z u
() Py Ky P au
Zst @f Zou
B [ (31) o) (Ku  ph)w) d du
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3.5. A local existence and uniqueness result for Equation3(3)

Now, in view of (3.25 and the de nition of D(T) as in (3.19), one has

2,2,2 o
ik ke m J@ Ky (P * Pt )XiPS(x)dx d du
s 0 z 7z
@f tc u
k k|_1 (R)k@)l((Ll (R) pLE kK kLl(R)kpk L pl kLl(R)d du
s u o

@f
CroD(To)k ki1 (k=K1 (r) SUpkpt *  pt KLy
@X r To

Proposition 3.5.3impliesthat | ! 0Oask!1

Now, to prove that Il ! O, it su ces to prove that the functional F : C([0;To];R)! R
de ned by
Z, of zZ,Z
W 7 (W5t Wy ) @>SWU) Ku (wy Y)pl (y) dy d du
S 0

is continuous. Let (W") a sequence converging irC([0; To]; R) to w. Since is a continuous
function, it su ces to show that

zt@f z,Z
Jm i) Ku (W) y)p'(y)dyd du (3.29)
. Z t S@f Z u

_ @l 1 .

= @)gwu) . Ky (wy y)p (y)dyd du

For (u; )2 [s;t] [O;t], set
Z

@f
hy (0= 1f <ugzix) Ku (X y)pt ()dy:
The hypothesis (H-2) implies the continuity of h,. on R. Furthermore,
jhu: (xX)j C1f <u gkp® k.1 RKKy  Kiig) g&lf <ugkky  kiigy:

In view of (H-4), we apply the theorem of dominated convergence to conclug (3.29. This
ends the proof.

Proof of Theorem 3.5.1: Proposition 3.5.5implies the existence of a weak solution

( sF;P(Fe); X; W) to (3.3) up to time To. Thus, the marginals P X, 1= p, satisfy

Kpekp 1 (r) 1% t 2 (0; Tg]. In addition, as jB(t;x;p)j C(To), one has that ( ;F;P;(F¢);X;W)
is the unique weak solution of the linear SDE

dX: = b(t; Xo)dt + B(t; Xy; p)dt +dW;;, t To: (3.30)
Now suppose that there exists another weak solution {; F'; P; (F1); X; W) to (3.3) up to T and

denote P )@t 1(dx) = P (x)dx. By Proposition 3.4.1we havep} = p, fort  To. Therefore,
(" F;B; (Fo); X; W) is a weak solution to (3.30), fromwhich P X 1=p X 1
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3.6 Proof of Theorem 3.2.3: A global existence and uniqueness
result for Equation (3.3
We now construct a solution for an arbitrary time horizon T > 0. We will do it by restarting the
equation after the time horizon Tp xed in the previous section. We start with T = 2Ty. Then, we
will see how to generalize this procedure for an arbitraryT > 0.
Throughout this section, we denote by ¢ the canonical space([0; To]; R) and by Bg its Borel -
eld. We denote by Q! the probability distribution of the unique weak solution to ( 3.3) up to To
constructed in the previous section.
3.6.1 Solution on [0; 2To]
Proposition 3.6.1. Let To> 0 be such thatD(Tp) < 1. Assumepg 2 L1(R) and let
b2 L1 ([0;2To] R) be continuous w.r.t. the space variable. Under the hypothes{#l), Equation
(3.3) admits a unique weak solution up tdTy.
We start with analyzing the dynamics of (3.3) after Tp and informally explaining the construction
of a solution betweenTy and 2Ty. Assume, for a while, that Proposition 3.6.1 holds true. Denote
the density of X by pt, fort T and by p?, for t 2 (To; 2To]. Let t 0. In view of Equation
(3.3), we would have
z To+t z To+t z S
XT0+t= XTo+ uS;XS) ds+ (KS p)(xs) d ds + WT0+t WTo:
To To 0
Observe that
ZT0+tZS ZTo+tZTo ZT0+tZS
(Ks p)(Xs)d ds = (Ks pl)(Xs)d ds + (Ks pz)(xs) ds dt
To 0 To 0 To To

=: B1+ Boa:

The change of variabless Ty = s®leads to

A
B = (K40 P)(X1e+s0) d ds®
0 0
and, in combination with To= Cto
ZtZT0+SO ZtZSO
B, = o (KT0+SO pz)(XT0+so)d dSO= o o (KSO o p%OJr 0)(XTo+s°) d Odsa.
To

Now set Y; := Xty+t and p(y) := p%oﬂ(y). Consider the new Brownian motion
Wi = Wrgst  Wr,. It comes:
Z, Z,Z, Z.Z, -
Yy = Yo+ b(s+ To; Ys)ds+ (Krprso  PY)(Ys) d ds+ (Ko o p)(Ys)d ds+ Wy;
0 0 0 0 0
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3.6. Proof of Theorem3.2.3 A global existence and uniqueness result for Equation3.3)

for t 2 [0; To]. Setting
bi(t;X;To) = (Kot s PO(X)ds and Bt Xx):= b(To+ t;X);
0

we have
nNR 0 .
dY = Bt Yo)dt+ bi( Ye; To)dt+ (Ke s ps)(Yi)ds dt+ dWy; t To;

(3.31)
Yo p},(Y)dy; Ys  ps(y)dy:

To prove Proposition 3.6.1 we construct a weak solution to 3.31) on [0; Tg] and suitably paste its
probability distribution with QY. We then prove that the so de ned measure solves the desired
non-linear martingale problem. Notice that the SDE (3.31) is of the same type as 8.3).

Lemma 3.6.2. SameFé':lssumptions as in Propositior8.6.1. Denote byp! the time marginals of
QL Setbi(t;x;To):= o°(Krost s PE(X)ds and Bt;x) := b(To + t;x). Then, Equation (3.31)
admits a unique weak solution up torp.

Proof. Let us check that we can apply Theorem3.5.1to (3.31).

Firstly, by construction the initial law p%o of Y satis es the assumption of Theorem3.5.1
Secondly, the role of the additional drift bis now played by the sum of the two linear drifts, b and
b1. By hypothesis, Bis bounded in [Q Tp] R and continuous in the space variable. Using §.5)
and (H-6) we conclude thatb; is bounded uniformly in t and x since

Z .

KK K
bt To)j  Cr, Toth SR gs < Cry:
0

To show that by(t; x; To) is continuous w.r.t. X we use (H-2) and proceed as at the end of the proof
of Proposition 3.5.5

We now are in a position to apply Theorem3.5.1: There exists a unique weak solution to 8.31)
up to To.

Denote by Q? the probability distribution of the process (Y;;t Tg). Notice that Q? is the
solution to the martingale problem (MP (p-lro;To;b+ b)).

A new measure on  ([0; 2To];R). Let Q', Q? and (pt) be as above. Let (?) denote the time
marginal densities of Q. In particular, Q§ = Qt,, i.e. p§(z)dz = pt,(z)dz. De ne the mapping X °
from o to R asX°w):= wp. Using 45, Thm.3.19, Chap.5] to justify the introduction of regular
conditional probabilities, for eachy 2 R we de ne the probability measure Qf, on ( o;Bo) by

8A 2Bo; QF(A)= P*(AjX°=y):

In particular,
Qiw2 owo=y)=1:
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We now set := ([0;2To];R). For wl;w? 2 ¢ we de ne the concatenationw = w* 1, w?2 of
these two paths as the function in de ned by

w = wl 0 To;
W+, = W%O+W2 wg 0 t  To:

On the other hand, for a given pathw 2 , the two paths w!;w? 2 ¢ such thatw = w! 1, ,w? are

(

wl=w: 0 To;
w?2=wr+ ; O To:

We de ne the probability distribution Q on equipped with its Borel {eld as follows. For any
continuous and bounded functional' on |,

Z Z Z Z
Eol' 1= " (w) Q(dw) := . t(wh o wP) Q(dw?) pr, (y) dy QY(dwh): (3.32)
Notice that if ' acts only on the part of the pathuptot Tgofanyw 2 ,then
z
Eol (W) 0l= "((w) o) QYdx)= Eq[ (W) o) (3.33)

Proof of Proposition  3.6.1. Let us prove that the probability measure Q solves the non{linear
martingale problem (MP (po; 2To; b)) on the canonical spaceC([0; 2Ty]; R).

i) By (3.33, it is obvious that Qo = Q3. By construction, Q} has density po.

i) Next, let us characterize the one dimensional time marginals ofQ. For f 2 C,(R) and
t 2 [0; 2Tg], consider the functional' (w) = f (w;), for any x 2 C([0; 2To];R). Fort  To, by

(3.33, Z Z
Eo[ W)= f(w) QY(dx) = Rf(Z)rJtl(Z) dz:

Therefore, Q¢(dz) = pt(z)dz:

For To t 2To, by (3.32),
Z 22 ZZ

Eql' (W)= f(wf 1) Q7(dw?) pt,(y) dy Q*(dw?) = . Rf(Z)Q)Z/;t 7,(d2) p1, (y) dy:

o R o

By Fubini's theorem:
z z

Eql' (W)] = Rf (2) RQ;;t 70(d2) pt, (y) dy:
SinceQj = pt, we deduce 7
Eql' (W)] = Rf (2Pt 1,(2) dz;

which shows that Q;(dz) = p? 1 (z)dz:

Therefore, the one dimensional marginals of) have densitiesq which, by construction,

belong toL* (R) and satisfy katk 1 (ry  #%.
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3.6. Proof of Theorem3.2.3 A global existence and uniqueness result for Equation3.3)

i) It remains to show that for f 2 CK (R), the processM; de ned as

VAR A
t f f u
;g%( W)+ WU+ K (e y)a () dyd Jdu

is a Q-martingale, i.e. Eqg(M¢jBs) = Ms.

Mg = f(w) f(wo)

(@ Lets t To:
For any n 2 N, any continuous bounded functional on R", and any
t1 th s t To, by (3.33:

Eo( (Weysiiniwe, )(My - Mg)) = Equ( (Wey; 205w, )(Me Mg)):
As Q! solves (MP (po; To; b)) up to To,
Eo( (Wes:ii;we )(My Mg))=0
(b) Fors To t 2Ty,

Eq(MjBs) = Eq[Eq(MtjBr,)jBs]:
Let us prove that Eq(M¢jB1,) = M1,. Notice that

t 1 f I
M M= fw) f(wr) @2( wy)du @§wu)b(u wy) du
t@f )ZZK (w )q (y) dy d du:
. @>$ u u u Yy)qly)ay :
Write the Iast integral as
Z, of zZ,Z
)gwu) Ku (Wy y)g(y)dyd du
0zt @f °z i .
)gwu) Ku (W y)p(y)dyd du
zt @ z° z
ygwu) Ku Wy Y)P* 1o(y) dy d du=: Ig+ Iy
Now,
Zi 10 g Z+:,Z
1= @)gWU+To) Kurto (WusT, Y)pl(Y) dy d du:
0 0
For w2 identify w!;w?2 ¢ suchthatw=w! 1, w2 Then,
z t To @ Z N ) z t To @ ) )
I, = , @)gw (Ku+T0 p-)(w;) d du = . @)gw $b(u; w; To)du:
Proceeding as above,
Zi 7 gt z,z
|2 = >$Wu+To) KU (WU+T0 y)pz(y) dy d du
z.° z,z2°
t To @

_ ) , |
0 @)gw Ku (wg y)p(y)dyd du
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Similarly

t Z t To

SlwBuw)du = D U+ Toiwy7,)du
(Z t To @ 5 ° 5 Z t To @ ) )

= . @)sw ab(u+ To;wg)du = . @éw S(u; wi)du:

It comes:

£t To 1 @ Zt T @t
2 2 2
0 2@%(W $)du . @>$W $)B(u; wi)du

t To @f Z u
@>$W2) ba (u; W; To) + Ku (WG y)p(y) dyd du=: F(w?):
0 0

My My, =fWw? ) f(w))
Z

By de nition of the measure Q,

EQ( (Wiyiitiwe, )(My ZMTo)) =

Wi;ewd) ] F (w2)Q2(dw?)p}, (y) dy Q(dw?):

By the de nition of Q?:

Z Z
EQ( (Weyi:iiwe, )(My - M) = (Wisiinwd)  F(w?) Q3(dw?) Q' (dwh):
As Q? solves MP (pt,; To; b+ by)), one has
Z
Eq2(F) = F(w?) Q%(dw?) =0

0

Finally, we conclude that Eq(MjBt,) = M1, and therefore Eq(MjBs) = M5 for all
s To t 2T

(c) For T s t 2Tp:we may rewrite the dierence M; Mg in the same manner:

Zt To
1 @f
M¢ Ms=fMWw? ) f(wsq,) (w?)du
s To 2@)%
Zt TO @ UZ
>gW2) b(u; wg)) + by(u; wi; To) + Ku (Wert, Y)P*(y) dyd du
s To @ 0
= F(w?):
Now, take t; th <s. Let us suppose that the rst m are beforeTp and others

after. We have that

(Z(Wl ‘Wi, )(My M) =
FWE i Wi sWE L 7t WE )" (WP) QF(dw?) pr, (y) dy QY (dw?):
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3.7. Application to the one-dimensional Keller{Segel model

Since Q? solves MP (pt ; To; B+ by)), one has that Eg2( (w3 :: :wtzg)F) =0 for any

9

continuous bounded functional ®on R", any n 2 N and any t? t9<s o
Taking O(ng;;;;WtZR)z (wtll;:::;wtlm;wtzm+1 TO;:::;Wtzn 1.) fora xed x*, we
conclude that
Z Z
L WO WG Tl W )" (W) Qy(aw) pr(y) dy =0
0
Therefore,

EQ( (Wy;i1iwg, ) (M Mg)) =0
Thus, ER(M{jBs) = MgforTp s t 2To.

To summarize the preceding, we have just shown the existence ofsolution to (MP (po; 2To; b)).
Finally, we proceed as in the proof of Theorem3.5.1to deduce the existence and uniqueness of a
weak solution to (3.3) up to 2Tp.

3.6.2 End of the proof of Theorem  3.2.3: construction of the global solution

Given any nite time horizon T > Ty, split the interval [0;T] into n = [TTT,] + 1 intervals of length

not exceedingTy ([TT—O] denoting the integer part of Tlo) and repeat n times the procedure used in
the preceding subsection.

Remark 3.6.3. Using similar arguments as above one can construct a solution t¢3.3) when the
initial condition pg is in LT (R)\ L%(R) or, respectively, L3(R)\ L1(R). In these cases we use
Remark 3.3.3 in the iterative procedure. Consequently, the weak solution is uque under the
constraint that the one dimensional marginal densities(p;); T belong to

L1 (0;T); LY (R)\ L(R)) or, respectively, satisfy

C
kptkLl (R) tli;:

3.7 Application to the one-dimensional Keller{Segel model

In this section we prove Corollary 3.2.6 We start with checking that K1 satis es Hypothesis (H).
The condition (H-1) is satis ed since for t > 0 one has
1 C z 72
KK ik 1r) = 1%{ jzje zdz:

From the de nition of K1 it is clear that for t> 0, Kt] is a bounded and continuous function onR.
The condition (H-3) is also obviously satis ed. As already noticed,

C
kK{ ki) = P
from which,
Z ] z z
kKi Kk t 1 1 1
fut)y:= gt ®gs-c  pp—ds=C pp——dx=C;
0 S o St s o X 1 Xx
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where C is a universal constant. Now let be a probability density on R. For (t;x) 2 (0;T] R,

one has
Z Z Zt 1
WKKI(x Yk dy C  (V)ix Vi 32°

pA Z 10 3 i 2

= VX i Zoge 7 War gy

i jXYj3 z®

z )

= (y) e zdzdy:

D y1

t

This shows that (H-5) is satis ed. Finally, to prove (H-6) we notice th at for every t 2 [0; T]
KD, Kag P ds < ds C p—milds—c
- pP=———p— —ds=
T+t sTLAR) g o T+t s s o T s's
Therefore, in view of Theorem3.2.3 Equation (3.2) with d = 1 is well-posed?

Denote by (t;x) the time marginals of the constructed probability distribution. Now , de ne the
function c as in (3.9). In view of Inequality ( 3.6), for any t 2 (0; T] the function c(t; ) is well
de ned and bounded continuous. Let us show thatc 2 L ([0; T]; CL(R)).

We have

Z
@z @ t @ o
—(t;x)= — e "E(cp(x+W;) + — E e t  s;x+ Wq)ds
Then observe that
Z, Z, Z

l 2
E e ® (t s;x+ Ws)ds= e S (t s;x+ y)p:e% dy ds
0 0 2s
z, z )
: ts) . 1 _y x)?
= e ( (S;Y)p———=e 4t 5 dy ds
0 2 (t 9
Zt
= f (s;x)ds:
0

As forany 0<s<t

_y %2 iy X (y x)? C

e 2(t s) — e 2(t s) 71
@>1 J 2(t )32 t s

we have @ 7 ,
=g x) = (t s y 2(y1 ? -
s;X)= e S; ﬂai (T dy:
@>S ) ( y)2 2 (t ) y

R
Now, we repeat the same argument for@@X gf (s;x)ds. In order to justify the di erentiation under

the integral sign we notice that
. @f . Cr
J=(six)]  p——=
@>$ (t s)s
Lwith similar calculations as for f1, one easily checks that the function f » is bounded on any compact time interval.
Thus, Corollary 3.2.4 applies as well as Theorem3.2.3.
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3.7. Application to the one-dimensional Keller{Segel model

Gathering the preceding calculations we have obtained
@ Z Z y X (y x?
=tx)=e 'EQx+ W)+ e €9 p—— " et 9 dyds:
o) Boxrwo+ VP g y

Using the assumption oncy and Inequality (3.5), for any t 2 (0; T] one has

kgzt; kit Ry K Bkii gy + Cr:

In addition, the preceding calculation and Lebesgue's Dominated Convayence Theorem show that
%;Zt; ) is continuous on R. We thus have obtained the desired property.

The above discussion shows that we are in a position to apply Proposition3.4.1 with

b(t;x) e 'YEC(x+ W) and B(t;x; ) dened as in (3.4) with K K1: the function (t;x)
satis es (3.8) in the sense of the distributions. Therefore, it is a solution to the Keller Segel
system (3.7) in the sense of De nition 3.2.5 We now check the uniqueness of this solution.

Assume there exists another solution ! satisfying De nition 3.2.5with the same initial condition
as . For notation convenience, in the calculation below we set;(x) := c(t;x), ct(x) := ci(t; x),
t(x):= (tx),and {(x):= t;x).

Using De nition 3.2.5

z t
1 @g s @§ 1 @g
k tZ tkL1(R) . k @x (@x s %Xs)kLl(R)dS
t @9 s @t 1 t @9 s @t @s
. k @x (@X( s sDkiyrds+ 0 k @x ( s(@( @Q)kLl(R)dS
= |+ 1
sing standard convolution inequality (3.37) an LRy P=— we deduce:
Usi dard lution inequality (3.37) and k@ sk 1z PE< we ded
Z,, 1 2@ @
k k tk=s 2k
| C Sp "Lt ®ys and I C @y __@pL'(R) yg.
0 t s 0 t s s
Therefore
@¢ @¢ Zs 1 @g u Zsk ukL1(R)
k@x 6XkL1(R) o k( u u) @kLl(R)du C o ﬂﬁdu, (334)
from which
z, Z.,1
1 sk Kk
I C p=p— M du ds
Zo St s o 7 S u 7
t t 1 tk i k
0 u

Gathering the preceding bounds forl and Il we get

Z,, 1 Znl
k k tk k
kpt pkiiry  Cr ﬂ@—ps Ps :(R) ds+ Ct Ps %LI(R) ds:

0
Lemma 3.4.2implies that k } tkpiry =0 forevery t  T. In view of (3.34) we also have
k%i %):(kLl(R) = 0. This completes the proof of Corollary 3.2.6.
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3.8 Appendix A

We here propose a light simpli cation of the calculations in [66].

Proposition 3.8.1. Lety2 R and let be a constant. Denote bypy (t;X; z) the transition
probability density (with respect to the Lebesgue measure) of the upue weak solution to
Z t
X{=x+ sgnly Xsg) ds+ Wy
0

Then
Z
! Gy Xi+yjz vi) -2t . . o riz yitiy xp)?
e W XTI 2 iy +jz yj+ ]y xje 2t dy
0
(3.35)
. L. . 2 2 x)2 iz e xi)2
+ ]%;te Gy xii z v st “a o U,

. . — 1
py(t;x;z) = pﬁ

In particular, Z
1 1
py(EXy)= P=— ze 2 dz: (3.36)

2t A

Proof. Let f be a bounded continuous function. The Girsanov transform leads to

R 2
E(f (X()) = E(f (x + Wy)e oS0 x We)dWs -y,

Let L be the Brownian local time. By Tanaka's formula ([45], p. 205):
Z t
Wy aj=jaj+ sgnWs a)dWs+ L
0

Therefore fora=y X
z t
sgny x  We)dWs =jy xj+L¢ j Wi (v x)j;
0
from which ,
E(f (X)) = E(f (x + Wy)e ¥ X[HL{ ) We (v X)) zY:

recall that (W¢; Lg) has the following joint distribution (see [10, p.200,Eq.(1.3.8)]:

8 o,
S y>0: PW;2dz;L2dy)= Pﬁ()ﬂjz aj + jaje frelz Jie el dy dz:
22 iz aj+ijaj)?
P(W; 2 dz;L§ =0) = pl-e xdz »i-e o gy
It comes:
., 272, ,
E(f (X1)) = Pﬁ - f(x+2z)e W X*yiz VO 2y +jz (y x)j+ijy xj)
+iz (v xi+iy xj)?
dy dz
Z 2t y

1 L - 22
+ pﬁ f(x+z)e® Xz ) 54e
R

iz (v xi+iy xj)?
2t

) dz:
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3.8. Appendix A

The change of variablesx + z = z%leads to
z Z,

_ 1 Gy Xj+yij 20 vi) it ._0 . . . (v+iz% yi+jy xj)? 0
EF (X)) = P &f (29 e iy +j2° yi+tiy xje 2 dy dz
) - ) 2 20 )2 i20 i+ xi)2
+ k;t f(29e Uy Xi 2 v 2t 52 ey 70
R

from which the desired result follows.

In the next corollary we use the same notation as in the proof of Theoren8.3.1

Corollary 3.8.2. LetO<s<t T.Then forany z;y 2 R, there existsCr; .xy such that
Ej @ (t s:X:2)j  Cr. .y h(s;2);
@b (XA Criny Nisi2)
where h belongs toL1([0;t] R).

Proof. By Girsanov's theorem, for some constantCt. we have
S

e @ t s;xP:z) Ccr. E @ (t s;WX;2) i
@)Py 1 S T, @)Py 1 S
Observe that
@ o iy v Uz yitiy xi s)) 2
Pt sixz)= e 21z vig 20 9 sgn(x
@py( ) P—m gnx y)
. . 2 ! . (z x)?
+p e 1Z Vi F(t sgly X AT sgnix  y)
2 (t 9
. . 7z x)?
Lz X iz vi St 9gly X G
2 (t s)32

The sum of the absolute values of the rst two terms in the right-hand side is bounded from above
by

2 jz yj+ jy Xj.
p——¢ :
2 (t 9

Thus,

@ Cr. P
E — t s;X®:z p—L _ Eely W
@y ( si2) 2 (t s

(t s
r
CT- . . i xi (z Wé()z
e e R R
Notice that
Cr. - - z wgH? ' Xy 1= Cr, =
A g Bl Wefte TR Y TN = s (AaAy)
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Firstly, as there exists an > 0 such that jaj*e a®  Ce 27 one has

ZZ w (t S)2+1:2 (z x)2
A C(t s) e Ts g(u x)du p e 2AsHt 9@ ) ;
s+(t 9)=2)

Secondly,
Z Z Z
4 jy uj 4 Yoau L wow? 4 Yoo 1w
A= e W Ug(u x)du=e *Y € p—ge s du+ eV e %ge zs du
Zl l (ux4s)2y Zy 1 (]l.-J ><+4s)2
=gt (x B s p—e = du+e Oy 08 p—e z du € 5C,y:
y S 1 S "
Therefore,
1
A Cr;xy mgw(t 5= )(Z X):
The term B is treated in the similar way as A». O

3.9 Appendix B: A reminder on the standard convolution inequal-
ities

We give here the two standard convolution inequalities in their geneal form, as they are used in
the following chapters as well. The following is proven in Brezig15, Thm. 4.15]:

Lemma 3.9.1 (The convolution inequality). Let f 2 LP(RY) andg2 L}(RY) withl p 1 and

%:%+% 1 0. Then, f g2 LP(RY and

kf gkLp(Rd) k f kLp(Rd)kgkLl(Rd): (337)

The following is an extension of Lemma3.37 and it is proven in [15 Thm. 4.33]:

Lemma 3.9.2 (The convolution inequality) . Let f 2 LP(RY) and g2 L9(RY) with | p;q 1
Then, f g2 L"(RY) and
kf gkLr(Rd) k kap(Rd)kgqu(Rd): (338)



Chapter 4

The one-dimensional case: Regularization
approach to the non-linear stochastic equation

4.1 Introduction

In this chapter we adopt another approach in proving the well-posednes of the stochastic

di erential equation related to Keller-Segel model ind =1,
n 0

R
dXi = (6 g)(Xo)+ o(Ki s ps)(Xe)ds dt+ dWg; t> 0
s(Y)dy = L(Xs); Xo  o(X)dx;

(4.1)

whereK(x):= e ! @@X(We %) and b(t;x) == e ' @Eco(x + W;). Namely, we regularize
the interaction kernel K and prove the regularized equation in the limit is (4.1). The goal of this
mini-chapter is now to obtain the rate of convergence of the marginal lawsf the solution to the
regularized equation to the laws ofX;. This is an interesting question on its own when one deals
with McKean-Vlasov dynamics through a regularization procedure and it will involve Sobolev
regularity of a whole class of probability density functions. The latter will be obtained by the help
of heat kernel estimates in Strook and Varadhan ]0].

From now on we will, in addition to ¢ is a probability density function and ¢ 2 Cé(R), suppose
that o2 L' (R). This will smoothen out in time the L' (R)-norm estimates of ; and enable us
to get the rate of convergence. Namely, if o 2 L! (R), one hask ¢k 1 (R) C (see Remark3.6.3.
As seen in the previous chapter, the parameter > 0 plays no role in the mathematical analysis of
the problem. We will, thus, assume =1.

x2
A convenient regularization: Foran "> 0, de ne K (x) := pﬁe 2 and
e
dX{ = dWi +( g)(X{)+ o(K{ s o)(X{)dsdt t T;
) S0, (4.2)
Xo o Xy ¢

We denote the drift of (4.2) by b (t;x; ") and by b(t;x; ) the drift of ( 4.1). The well-posedness of
(4.2) is due to Theorem 2.2.3 However, to get more information about the one-dimensional
marginals of the law of this process, one needs to apply Theore®.2.3and Remark 3.6.3 It is
easy to check thatK " satis es Hypothesis (H). For example, notice that forany 1 p<1,

C
t1

KK { KLp(R)

INTIR =]
'c""
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where the constantsC, do not depend on the regularization parameter'. Thus, assuming that
02 LY(R)\ L! (R) and ¢y 2 C}(R), one has the following estimates:

80<t T: kiki@w C; and kb(t; )k C:

Thus, one hask 't'kLZ(R) C. Since theL-norm of the regularized kernel does not depend of,
neither do the above constants. This implies that for any sequencg,! 0 ask!1 , one has the
tightness of (X 'k)'s w.r.t. k 1. It is easy to check that the solution to the martingale problem
corresponding to @.2) converges to the one related to 4.1). Let P! be a weak limit of a
converging subsequenceR) of the laws of (X k). We will prove P! solves the NLMP related to
(4.1). We place ourselves in the context of Proposition3.5.5and adopt the notation from its proof
to this setting. In order not to repeat ourselves, we will not check al the requirements here, but
we will quickly review the most interesting details.

De ne the functional T;(g) by
Z

Ti(9):=  g(y)PF (dy); g2 Ck(R):

By weak convergence we have 7
Te(@) = lim  o(y)p{(y)dy;

and thus
iT(9)]  Ckgkizr):
Therefore, for each 0<t  Tp, Tt is a bounded linear functional on a dense subset dfz(R). Thus,

T, can be extended to a linear functional onL?(R). By Riesz-representation theorem (e.g. 15,
Thm. 4.11 and 4.14]), there exists a uniquept 2 L?(R) such that

80<t T: kpf kiery C
and pt is the probability density of P{ (dy).

In order to prove that
Z z

t t
Ep (1) fAx(u)b*(u;x(u); ") dul! Ep[ (:::)  fYx(u))b(u;x(u); ) dul; ask!1l ;

S
one decomposes their di erence into:
z z

t t
I = Epc[ (:1)  fAx(u)blusx(u); ) dul  Epc (::)  fYx(u)b(u;x(u); ) du]

and
Z Z

t t
I =Ep[ (::3) fAx(u)b(u;x(u); ) du]l Ep[ (:::)  fYx(u)blu;x(u); ) du]:

Convergence ofll is due to the continuity of the functional inside the expectation. This has been
already proven in the proof of Proposition 3.5.5. Then, convergence ofl is obtained in two steps:
rstly, one proves that for a xed u 2 [s;t], one has thatjbx(u;x; "«) b(u;x(u); )j! 0, as
k!1 , secondly one bounds this di erence by an integrable function ol independent ofk. The
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conclusion will follow by dominated convergence. The integrable boundomes from the density
and kernel estimates. We now check the rst step. Notice that
Z

S
b(u; ;) bx(u;; )= (Kur (r M)+ (Ko KJfp) H)dn
0
For r<u, Ky [ is a continuous and bounded function onR. By weak convergence,
Kur (r  Mj! 0 ask!1

In addition,

Ku v (v M CKKy rkizry ——
R (u r)a
By dominated convergencej OSKu ro(r ) duj! 0; ask!1l
It remains to check that
Z S
(Ky r Ky&,) xdr! 0 ask!1l
0

Now, forr<u, jK;k (X) Ky r(X)j! 0,ask!1 . We can apply dominated convergence as the
following bound is integrable in (0;s) R:

JKG (@) y) Ky o(x@u) y) )i CiKu r(x(u)  y)i:

Finally, this concludes the rst step and as well the convergence of . Therefore, the martingale
problems converge and we obtain the existence of a solution to the NLMP rated to (4.1). As
uniqueness holdsP? s the law of the processX .

The plan is the following: in the Section 4.2, we prove the above mentioned Sobolev estimates and
in the F§ection 4.3, we prove that the rate of convergence of ; towards  in L(R)-norm is of

order = ". Let p > 1. The following notation will be used:
n
Lp((O;T);WZ,,}(R)) = u2LP0;T) R)j9h2LP(O;T) R)such that
Z 0
u(t;x)—@ (t;x)dtdx = h(t;x) (t;x)dtdx; 8 2 Ccl (0;T) R) :
©T) R @x ©:T) R

4.2 Sobolev regularity of a certain class of probability densities

In the sequel, we will prove the result about the speed of convergee of | to by analyzing the
mild equations they satisfy. In order to nd the rate of convergence ofb (t; ; ") towards b(t; ; ),
we will need some Sobolev regularity for ; and . More generally, in this section we are
interested in di usion processes ind = 1 with bounded and measurable drift and a constant

di usion coe cient . Without loss of generality, we will assume =1. Let T > 0, de ne

dX; = b(t;Xt)dt + dW;; t T;

4.3
Xo o (4.3)

Suppose that sup 1 kb(t; )k <1 and o2 LY\ L (R). In that case, Equation (4.3) admits a
unique weak solution (see45], p. 327). In addition, by Girsanov theorem, the one dimensional
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time marginals of the solution are absolutely continuous with respect toLebesgue measure and
since the drift is bounded they are as well uniformly bounded in tine and space (see Sectio8.3).
Let us denote with  the density of X;. Then :=( )o ¢t T2 LP((0;T) R),foranyp 1.

One derives the mild equation satis ed by ; as in Section3.4,

z, @
t= 0 o 0(@)9 s ( shs))ds; (4.4)

where g;(x) denotes centered one dimensional Gaussian density with variance egl to t. We will
prove the following theorem:

Theorem 4.2.1. Let 1<p< 2andp’> 2its conjugate. Assume that o2 L1\ L! (R). Then,
2 LP((0; T); W)(R)) and

@
k@XkLP((O;T) R C(tb; o):

The following is the estimate in Strook and Varadhan [/1, p. 315]:

Lemma 4.2.2. Denote bySy the set ofd d symmetric matrices. Letc:[0;1)! Sy be a
measurable function for which there exist < < < 1 with the property

jiZh:;c)i jj% t 0and 2R%
R
Extend c to R by takingc( s)= c(s);s 0 and setC(s;t) = Stc(u)du fors t. Dene

h i1 . . 1 ;
asix;tyY) = L 920019 (2 )7 det C(s;t)  “exp y X’C(S’zt) i

on (R RY2 Forf 2C} (R RY),dene
zZ,Z7Z
Gf (s;%) = g(s; x; ty)f (t;y)dy dt
s Rd
and zZ, 2
G’f(ty) = a(s; x; t;y)f (s;x)dx ds:
1 Rd

Then forall 1<p< 1 andforalll i d:

@Gf
Ca(p; ; ) kfk
@1@x R R a(ps ;) LP(R RY)
and e
Gf
Cy(p; ; ) kfk :
@@y R R a(p; 5 ) LP(R RY)

Proof of Theorem 4.2.1. Take f 2 C,% ((0;T) R). De ne the linear functional

e
To(f) = o R @)1: (t;x) ¢(x) dx dt:
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Assume for a moment that
iTo(f)i  CKEk o001y Ry (4.5)

Then, Ty is a linear functional continuous for the Lpo((O; T) R)norm, de ned on a dense
subspace oﬂ_po((O;T) R). Therefore, it extends to a bounded linear functional T,, on
Lpo((O;T) R). By Riesz representation theorems (e.g. 15 Thm. 4.11 and 4.14]), there exists
h2 LP((0;T) R) such that for any f ZZLpO((O;T) R):

Tp(f) = f (t;x)he(x) dx dt:
©T) R
Denote by @@X t(X) == h(x). Then it holds for any f 2C: ((0;T) R):
Z z
@f (t,X) t(X) dx dt = f (t,x)@ t(X) dx dt: (46)
©:1) R @X ©0:T) R @x

In addition, k@@x kipomy Ry  C(tbipim). As 2 LP((0;T) R), the theorem is proved.

It remains to prove the relation in (4.5). Let f 2 C! ((0;T) R). Multiply ( 4.4) by @@)j (t;x) and
integrate over (OZ; T R:

Y4
o] (%) 100 de = G 000 dxat
) R @x 7 ©0:T) R @X
t
+ o) Rg)z (t;x) . (@@)?t s ( shs))(x) dsdxdt=: A+ B:

It comes down to controlling the terms A and B in terms of kf k; yoq.1) gry-

Term A:  We start by integrating by parts the space integral. Notice that by dominated
convergence, one hagggt 0)(X) = ( @@)gt 0)(X). Therefore,

Z.Z

_ @ :
A= Rf (t,x)(@)?t 0)(x) dx dt:

0
Applying Helder's inequality,
JA] Kk Tk poo.m) R)k@)gl oKLr(0;T) R):
Notice that 7
k—@ kP = ! k—@ kP o dit:
@)?t KLem) BT @)?t oKL p(r)dt:
As k@@)gtkLl(R) 1% and in view of Convolution inequality (3.37), one has

Do ok T Ck ok,
@® otom e 1p=2

For any p > 1, one has ¢ 2 LP(R) since g2 L\ L! (R). Moreover, since 1< p < 2 the
preceding integral is well de ned and we have that

@
k@)?‘ okEp((O;T) R) C(T;p:k okir(r)):

Therefore,
JA]  C(T;p;k okye(r))kf kLPO((O;T) R)
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Term B:  This term reads
Z:2Z Z.Z
5= s (t;X)—@)gt s(x y) s(y)b(s;y) dy ds dx dt:

o R 0 R@X @
Here we will use the estimates of Lemmat.2.2 To do so, we need to rewriteB in a convenient
form. Firstly, we conclude below that Fubini's theorem applies to B so that we can change the
order of integration as we like. Indeed,b and are uniformly bounded, @@th s IS integrable in
space and time andf 2 C} ((0;T) R). Thus,

Zrz 2,2 g @
j=f (tJX)*)gt s(x y) s(y)(s;y)j dy ds dx dt
0O RO R?X @
Z5 @ Z, c 7ZTZ @
C(b; j—f (t; X)j —dsdxdt C(b; T j—f (t;x)jdxdt< 1 :
( )0 RJ@X( )Jopﬁ (b; ) . RJ@X( )i

Therefore, we rewrite B as
272 72+7
T T @

- @, . @ . |
B= @y EXgg sk y)dxdt s(y)hisiy) dy ds:

We focus on the inner integrals. Integrate by parts in space and then cange the variables:
zZ.Z Z. Z
T e T a

- @)1: (t;x)g)?t s(X y)dxdt= . @f (X + y)g s(x) dx dt:

Notice that %f (t,x +y)= @%f (t;x + y) and sincef is regular, the order of integration and
derivation can be exchanged. It comes

Z:Z Z.Z
@ .. @ _ @7 . .
. @)1: (t,x)@)?t s(x y)dxdt= @—9 . Rf (t;x + y)g s(x) dx dt:
After another change of variables,
Z:Z Z.Z
@ .. @ _ @7 _ .
. @)1: (t,x)@)?t s(x y)dxdt= @9 . F{f (t;x)g s(x y) dxdt

Therefore, Z.2 . Z.2

B = o a s(y)b(s;y)@—9[s Rf(t;X)gt s(x y) dxdt] dy ds:

Applying Helder's inequality,
Z.Z

Bi COKkoom » g 08 x ) dxd

Le%©:T) R)

Now, Lemma 4.2.2 provides a bound for the last term. The framework is the following. Ford = 1,

we denec(t) 1. ThenC(t;s)=1t s;s t. The function g(s;x;t;y) in Lemma 4.2.2is here
g(s;x;tyy) = 1fs  tgg s(y x). Dene f{t;x)= 1f0 t Tdf (t;x). Then,the functional G
becomes
Z,Z7Z Z,Z
Gf{(s;y) = a(s; y; t;x)f(s;y)dxdt =
R

S

f(t;x)g s(x y)dxdt:
R

S
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Applying the estimate in Lemma 4.2.2,

@ @ .
k@gCuiom r K ggCMuir ry  Ckkig ry = KTk )

Finally, this implies
iBj  C(b;pkf kLpo«O;T) R)’

Combining the estimates of termsA and B, we obtain (4.5). Thus, the theorem is proved. O

Remark 4.2.3. The relation (4.6) holds for a wider class of functionsf . Namely, by density
0
arguments, it holds as well forf 2 Lpo((O;T); Wlp (R)).

4.3 Rate of convergence

Theorem 4.3.1. lLetl<p< 2, T>0and"> 0. Then, foranyt T one has

. p_
kKt tkeery Cr ™

Proof. Remember that by the iterative procedures applied to @.1) and (4.2), one has that

1. Both drifts are uniformly bounded in time and space. Namely,b:b 2 L1 ((0;T) R).

2. By construction 2 L ((0;T);LY(R)\ L* (R)and "2 LY ((0;T);LYR)\ L! (R)). In
addition, the estimate for " is uniform in ".

We write the mild equations satis ed by and °, respectively:

_ Qg . @Fs [ pre . M ge.
t= G o . @x (sh(s;; ) dsand =g o . @x (b(s;; ) ds:
Notice that,
Zt
KO tnm kg (s DS Dk ds
Z: o 0
+ kSIS (s ) B(si: ) Dkiew ds= A+ B
o @x
By the convolution inequality ( 3.37), one has
Z, Z "
@g " k Kiery .
A k bk . k @XSkLl(R)ks Kipry ds  Cp Hsgtsis()dsl

The di erence of the two drifts writes as
ZS
b(s;; ) b(s;; )= O(Ksr (r D+H(Ksr Kgy) ()dr
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Thus, the term B decomposes to

Z, z
@ - :
B @;’; (s Kso (1 9 dke
+k@gs Ks r K. " dr)kip(r) ds=: B+ By:
@x (s s ( sr s r) rdr)kepr ds=: B 2:
We rst treat Bj. Applying the convolution inequality ( 3.37) twice and the bounds on ¢, one has
Z, 1 Zg )
Bir C P— kKs r (r  r)kieer) drds
z° L z° .
C S pjk r Irlk|_p(R) dr ds:
0 t s o S T
Applying Fubini's theorem,
Z t Z t 1 V4 t
C K ¢ IrlkLp(R) dr:

B1 C k 'k p—p— dsdr
! L L U 0
Let us pass toB»,. This term will give us the rate of convergence. The convolution ineqality and

the bound on the density lead to

z, , Z,
Bz C pﬁk (KS r KS I’) r drkLp(R) dS
0 0
Set
Z.Z o2 Z.Z )
X X x_y)° .

F(x) := S A
0= s e
". Moreover, as for a xed " > 0 the drift of

Notice that Theorem 4.2.1 applies to both and
(4.2 is'in G (R), the density | is di erentiable everywhere (see e.g. Nualart §7]). Notice that

3=2

Me (2X(sy2f = C (X )and N J7
(s 1) o ¥ (s 1+ e
After an integration by parts
I
Z SZ 3=2"
_ S r @ . .
F(x)=C o 1 s r+ " Os r(x Y)@yr(Y)dy dr:
Notice that
1 s r (s r+")¥2 (s r+ ") S r+(s r+ ")pﬁ (s r)%7?
s r+" - (s r+")32
B ps T+ ps r. "psnir anﬁ
- s or+ " (s r+")' s r+" Ys 1
Next, we are interested in the LP(R) norm of F. After the convolution inequality ( 3.37)
Z
p . S 1 p - S
kF kLp(R) C p:kgs r @ tkLp(R) dr C pik @ tkLp(R) dr:
0 S r @ 0 @

(X y) e (2>Esy2)2 =C L Cﬂ@gs r(X y)
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This implies that
|oﬁZt 1 %s g Q@ .

B C — ——k— Kk dr ds:
i 0 PT s o s raxtt®
Fubini's theorem and Helder's inequality lead to
Z Z Z
Pt : ! 1 P ', @ .
B C " k= k p——=>pP——=dsdr=C " k— k dr
2 o @xU PR PP ey o @xt PR
Py Ct @ ’
(=) &= "Lp
C "te . k@xtkLp(R) dr
In view of Theorem 4.2.1, one gets
P
Bz CT .
The constant Ct depends onpg; T; ¢, but not on ". Finally, the term B is estimated by
Z, 0
B C K | lrlkLp(R) dr+Cr ™

0
The estimates onA and B together lead to

Z, 1

; . p.
kKt (kiery Cr . Pﬁk s sKipryds+ Cr o ™

It remains to apply Gronwall's lemma in order to nish the proof. O






Chapter 5

The one-dimensional case: Particle system
and propagation of chaos

This chapter is the subject of a paper {:3] that appeared in Electronic Communications of
Probability. It is a joint work with Jean Francois Jabir (HSE Moscow) and Denis Talay.

5.1 Introduction

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis desthes the
time evolution of the density ; of a cell population and of the concentrationc; of a chemical

attractant: 8
2 @ tx)=r (3r rec; t>0; x2RS
S @c(tx)= 34c c+; t> 0; x2RY (5.1)
(0:x) = 0(x);¢(0;x) = co(X);
for some parameters > 0, 0 and 0. See Chapterl or Perthame [67] and references
therein for theoretical results on this system of PDEs and applicatiors to biology. When =0,
the system (5.1) is parabolic{elliptic, and when =1 (or more generally, when 0< 1), the

system is parabolic{parabolic.

For the parabolic{elliptic version of the model with d = 2, the rst stochastic interpretation of this
system is due to Haskovec and Schmeiser3f] who analyze a particle system with McKean{Vlasov
interactions and Brownian noise. More precisely, as the ideal interaton kernel should be strongly
singular, they introduce a kernel with a cut-o parameter and obtain t he tightness of the particle
probability distributions w.r.t. the cut-o parameter and the numb er of particles. They also
obtain partial results in the direction of the propagation of chaos. More recetly, in the subcritical
case, that is, when the parameter of the parabolic{elliptic model is small enough, Fournier and
Jourdain [31] obtain the well{posedness of a particle system without cut-o . In addition, they
obtain a consistency property which is weaker than the propagation of chaosThey also describe
complex behaviors of the particle system in the sub and super critial cases. Cattiaux and
Redeches [21] obtain the well-posedness of this particle system without cut-o by using Dirichlet
forms rather than pathwise approximation techniques.

For a parabolic{parabolic version of the model with a smooth coupling betveen ; and ¢,
Budhiraja and Fan [17] study a particle system with a smooth time integrated kernel and pove it
propagates chaos. Moreover, adding a forcing potential term to the modelunder a suitable
convexity assumption, they obtain uniform in time concentration inequalities for the particle
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system and uniform in time error estimates for a numerical approximaton of the limit non-linear
process.

In Section 1.4 the reader may found more details on §6, 31, 21].

For the pure parabolic{parabolic model without cut-o or smoothing, in the one-dimensional case
with =1, we have proved in Chapter 3 the well-posedness of PDE §.1) and of the following

non-linear SDE:
n 0

R
dX; = b(t; X )dt + o(Kt s? $)(Xy)ds dt+ dW; t> 0;

(5.2)
s(y)dy := L(Xs); Xo  o(x)dx;

>(2
where K(x) := e ! @@iﬁe zr) and bt;x) = e ' @E[co(x + Wy)].

Under the sole condition that the initial probability law L(Xg) has a density, it is shown that the
law L (X) uniquely solves a non-linear martingale problem and its time marginalshave densities.
These densities coupled with a suitable transformation of them unigely solve the
one{dimensional parabolic{parabolic Keller{Segel system without cut-o. In Chapter 6 additional
techniques are developed for the two-dimensional version ob(2).

The objective of this chapter is to analyze the particle system relagd to (5.2). It inherits from the
limit equation that at each time t> 0 each patrticle interacts in a singular way with the past of all
the other particles. We prove that the particle system is well{poseal and propagates chaos to the
unique weak solution of 6.2). To the best of our knowledge, this is the rst time in the literat ure
that the parabolic-parabolic Keller-Segel system is derived as a lintiof a system of interacting
stochastic particles, when the number of particles tends to in rity. Compared to the stochastic
particle systems introduced for the parabolic{elliptic model, an interesting fact occurs: the

di culties arising from the singular interaction can now be resolved by using purely Brownian
techniques rather than by using Bessel processes. Due to thengular nature of the kernel K, we
need to introduce a partial Girsanov transform of the N -particle system in order to obtain
uniform in N bounds for moments of the corresponding exponential martingale. Our caldation is
based on the fact that the kernelK is in L(0; T;L?(R)). Notice that in the case of the
multi-dimensional Keller{Segel particle system the L*(0; T;L2(R%))-norm of the kernel is in nite,
so these techniques can not be used in higher dimension. For more dés see Chapter7.

The chapter is organized as follows: In Sectiorb.2 we state our two main results and comment our
methodology. In Section5.3 and Appendix we prove technical lemmas. In Sectiorb.4 we prove
our main results.

In all the chapter we denote by C any positive real number independent ofN. Any time C will
depend onN or any other parameter that will be explicitly written.

5.2 Main results

Our main results concern the wel{posedness and propagation of chaos of

( in _ Py R, N iN °
dXt' = ¥ i=1j6i OKI S(Xt‘ X )dS leli;N SXE;N g

XcijN i.i.d. and independent of W :=(W';1 i N);

dt + dw/;
t (5.3)
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X2 i . . .
where K{(x) = pﬁe 2t and the W''s are N independent standard Brownian motions. It
correspondsto =1, =0, =1,and ¢ O. Itis easy to extend our methodology to £.2)

under the hypotheses made in Chaptel3.

Theorem 5.2.1. Given0<T < 1 and N 2 N, there exists a weak solution
( ;F:;(F;0 t T);QV;wW;XN) to the N -interacting particle system (5.3) that satis es, for
anyl i N,
0 z. 0 L z, | 1, 1
QN @ - Kie s(XN XEN)ds 1

gA dt< 1 A =1; (5.4)
0 j=1jei ©

fx N g xN

In view of Karatzas and Shreve {5, Chapter 5, Proposition 3.10], one has the following uniqueness
result:

Corollary 5.2.2. Weak uniqueness holds in the class of weak solutions satisfyiii§.4).

The construction of a weak solution to (5.3) involves arguments used by Krylov and Reckner {9,
Section 3] to construct a weak solution to SDEs with singular drifts. K relies on the Girsanov
transform which removes all the drifts of (5.3).

Remark 5.2.3.  Our construction shows that the law of the particle system is equalent to
Wiener's measure. Thus, a.s. the sef't T;Xt"N = X{'N g has Lebesgue measure zero.

Our second main theorem concerns the propagation of chaos of the syster.B). Before we
proceed to its statement, we need to de ne the non-linear martingaé problem (MPKS) associated

to the non-linear SDE:
( n 0

R
dX¢ = o(K¢ s? s)(Xg)ds dt+dW; t T; 55
s(y)dy := L(Xs); Xo  o(X)dx:

For any measurable spacd we denote byP (E) the set of probability measures onE.

De nition 5.2.4. Q2P (C[0;T];R) is a solution to (MPKS) if:

() Qo(dx) = o(x) dx;

(i) For any t 2 (0;T], the one dimensional time marginalQ; of Q has a density  w.r.t.
Lebesgue measure oR which belongs toL?(R) and satis es

C
9CT; 80<t T; k ko tTT4
(iiiy Denoting by (x(t); t T) the canonical process ofC([0; T]; R), we have: For anyf 2 C2(R),
the process de ned by
zZ, Z/Z 1
M= FE) TO) s (X(9) y) r)dyar FRx(E) + %) ds

is a Q-martingale w.r.t. the canonical Itration.
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In Chapter 3, we have proven that (MPKS) admits a unique solution and that a suitable notion of
weak solution to (5.5) is equivalent to the notion of solution to (MPKS) (see Corollary 3.2.4).
Theorem 5.2.5. Assume that theX(i);N 's are i.i.d. and that the initial distribution of Xé;N has a
density o. The empirical measure N = Ni iN=1 xin  Of (5.3) converges in the distribution

sense, wherN !'1 | to the unique weak solution of (5.5).

To prove the tightness and weak convergence ofN , we use a Girsanov transform which removes a
xed small number of the drifts of (5.3) rather than all the drifts. This trick, which may be useful
for other singular interactions, allows us to get uniform w.r.t. N bounds for the needed Girsanov
exponential martingales.

5.3 Preliminaries

On the path space de ne the functional F; as
Z, 2
Fi(x; k) = Kt s(xt Rs)ds 1fx16btg ; (5.6)
0

where x;R) 2C(0; T];R) C (J0; T];R). The objective of this section is to show that
OT Fi(w;Y) dt has nite exponential moments whenw is a Brownian motion and Y is a process
independent ofw. The following key property of the kernel K will be used:

2 22 2
2 o T2 P 1 pen: (5.7)
o tP2 tt %

kKikipry= C

We will proceed as in the proof of the local Novikov Condition (see45, Chapter 3, Corollary
5.14]) by localizing on small intervals of time.

Lemma 5.3.1. Let w:=(w;) be a(G)-Brownian motion with an arbitrary initial condition ¢ on
some probability space equipped with a probability measuRand a Itration (G). There exists a
universal real numberCgy > 0 such that

Zy

2 P —
8x2C(0;T];R); 80 t1 t, T,; Eg‘l[Ft(w;x)] dt Co TIO to  t1:
t1
Proof. By the de nition of F,
Z to G z to Z tZ t G.. ]
t Ep ' Fe(w; x)dt e EptiKt s(Wy  Xs)K¢ u(wy  Xy)j ds du dt: (5.8)
1 1

X2
Let g(x) := p%e 2. In view of (5.7), one has

S

-
L

th SkLz(R) C .
(t ¥ (1 s)¥4(t )™

KZs(y+ Wy Xs))G t,(y)dy
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Here we used that the density ofw;  wy, is bounded byptC—T. We repeat the above calculations
replacing s with u. Coming back to (5.8), one has

Z ., Zy, o Z:Z. L Zy, Pt
EST[Fy(w; X)] dt P dsdudt=  p———dt
4 ; wo L f1o o (t §)¥FHt u)s notoh
Co ?p to  tg:
[
Lemma 5.3.2. Same assumptions as in Lemm&.3.1. Let Cy be as in Lemma5.3.1. For any
> 0, there existsC(T; ) independent of ¢ such that, forany0 T; T, T satisfying
T2 Tl < Coflz’
Zt
Gr 2
8x 2C([0;TI;R); Ep* exp . Fi(w; x)dt C(T; ):
1
Proof. We adapt the proof of Khasminskii's lemma in Simon [&]. Admit for a while we have
shown that there exists a constantC( ; T ) such that forany M 2 N
E ! Fi(w; x)dt C(T; ); (5.9)
k! T
k=1 1
provided that T, Ti < c2T 5. The desired result then follows from Fatou's lemma.
We now prove (5.9). By the tower property of conditional expectation,
Gr ZTz k# ZTzszsz ZTZZTZ Grh
Ept Fi(w; x)dt = k! Ep ' Fi (W; X)F,(w; x)
T1 T1 itl t2 tk 2 tk 1
Fi, L (W;X) E(P3tk P (w;x)  dtgdte 1 dtpdts:
In view of Lemma 5.3.1,
PP _—— P_P_—
ES iR, wi)dte Co T T 1 Co T Tp Tu
tk 1
Therefore, by Fubini's theorem,
Gr ZT2 k# pip ZTzszsz ZT2 G'rh
1 - 1 . .
= Fe(w; x)dt KiCob T T, T1 Ep* Fey(W;X)Ft, (W;X)
T1 . T t1 t2 tk 2

|
Fr, ,(w;X) dtx 1 dt, dts:

Now we repeatedly condition with respect toG, ;, (i 2f2;:::;k 1g) and combine Lemma5.3.1
with Fubini's theorem. It comes:
Z 1, k Zq

p 2 p
Fe(w; x)dt k'(CopT T, Tk? ESTl[Ftl(W;x)]dtl k'(CopT T, Tk
T1 T1

Eg

Thus, (5.9) is satis ed provided that T, T; < O

_1
C3T 2°
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Proposition 5.3.3. Let T > 0. Same assumptions as in Lemma.3.1. Suppose that the Itered
probability space is rich enough to support a continuous procesé independent ofw. For any

> 0, zZ-
Ep exp Fe(w;Y)dt C(T; )
0

where C(T; ) depends only onT and , but does neither depend on the law (Y) nor of .

Proof. Denote by PY := P Y 1. Observe that

Z: Z Z;
Epexp Fi(w;Y)dt = Epexp Fe(w; x)dt  PY (dx): (5.10)
0 C([0;TIR) 0
Set = ﬁ A T, whereCgp is as in Lemma5.3.1 Setn:= T  where T denotes the greatest
0
integer less than or equal to~. Then,
Zr Y ( Z1 m )
exp Fi(w;x)dt = exp Fi(w; x) dt

0 =0 (T (m+1) )_0

Condition the right-hand side by Gt ) . Notice that is small enough to be in the setting of
Lemma5.3.2 Thus,

Z . ¥ C z. . )

Epexp Fi(w; x)dt C(T; )Ep exp Fi(w;x) dt
0 (T (m+1) )_0

m=1
Successively, conditioning byGr (m+1)) o for m2f1;2;:::ng and using Lemmas.3.2
Zq ( z (T n).o )

Epexp Fi(w; x)dt C"(T; )Epexp Fi(w; x)dt C(T; ):
0 0

The proof is completed by plugging the preceding estimate into $.10). O

5.4 Existence of the particle system and propagation of chaos

5.4.1 Existence: Proof of Theorem 521

We start from a probability space ( ;F;(F¢; 0 t T); W) on which are de ned an

N -dimensional Brownian motion W = (W?;:::;WN) and the random variablesXE,N (see 6.9).
Set
N i;N i.
XM= Xgh + W ot T
and X :=(X"™N:1 i N). For x 2C([0; T];R)N denote
R

i:N — i;N i:N ) )
H( (X) .— ﬁ 0 Kt S(Xt XJS )dS 1fX|t;N 6XJt;N g
i=1
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Z1
z¥ = exp BN (X) dw;
0

Z 1

=

= BN(X)%dt
>, BUCO

To prove Theorem 5.2.1, it su ces to prove the following Novikov condition holds true (se e e.g.
[45, Chapter 3, Proposition 5.13]):

Proposition 5.4.1. Forany T >0, N 1, > O, there existsC(T;N; ) such that

Zy
Ew exp BN (X)j2dt C(T;N; ): (5.11)
0

Proof. Drop the index N for simplicity. Using the de nition of BN and Jensen's inequality one has
2 8 93
a SR W4T =

Ew exp BN(X) % dt Ew 4exp

NF (X' X] dt_5'
. NN . t(X'; ); ;

where F; is de ned in (5.6). Applying one more time the Jensen's inequality, we deduce

Z1 2 1 X X 21 o
Ew exp BN (X) “ dt N g Ewep N Fe(X ' XT) dt
0 ; 0

As the X 's are independent Brownian motions, we are in a position to use Propoton 5.3.3 This
concludes the proof.

O

5.4.2 Girsanov transform for 1 k<N particles

In the proof of Theorem 5.2.1we used 6.7) and a Girsanov transform. However, the right-hand
side of (6.11) goes to in nity with N. Thus, Proposition 5.4.1 cannot be used to prove the
tightness and propagation of chaos of the particle system. We instead de nan intermediate
particle system. Letus x1 k<N . Proceeding as in the proof of Theorenb.2.1 one gets the
existence of a weak solution on [0T'] to

8

3 R = qwt'&) Lok | o

5 dR™M = & L o Ko sORT REN)dS L pin g o dt+ dWY; k10 N

© BN iid. and independent of W) :=(W';1 i N):

_ (5.12)

Below we setX :=(X™N:1 i N)and we denote byQKN the probability measure under which
W = (Wl; T ;WN) is an N -dimensio_nal Brownian motion and X is V\_/eII de ned. Notice that
(R'"N:1 | K)isindependent of "N :k+1 i N)andthat(®™N:k+1 i N) interact

in the same way as 6.3) without rst k particles. We now study the exponential local martingale
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associated to the change of drift between.3) and (5.12). For x 2 C([0; T];R)N set

(k) 1:N KN 1 X Z k+1 i
(X)) i= b (X)) (x);W , Kt s(X; x's)dslfxrﬂexig;:::;
i=1
1 X Z N i
N . Kt s(Xy  Xg)ds Liyngyig :
i=1

In the sequel we will need uniform w.r.tN bounds for moments of
Z. 2T
7 = exp i 8oy dw, 2 i W0kt (5.13)
Proposition 5.4.2. Forany T >0, > Oandk 1there existsNg k and C(T; ;k) s.t.
Z 1
8N Ng; Egen exp i j WeRy2at (T k)

Proof. For x 2 C([0; T];R)N, one has

0 . 1,
(K yyi2 = 1 X K xds 1 A
i (X = _ Wj—]_ o s(X;  Xg)ds fxl6xig
|
1 XX Z K+ j i -
K j=1 =1 O Koslx Xs)dS Liikriexig
By Jensen's inequality,
_ _ 1 XN o K X kX o
i P2 o Fex'sx) + <5 Fe(x* 15 xTy;
i=1 j=1 j=1 i=1

where F¢ is as in (5.6). For simplicity we below write E (respectively, X ') instead of Eqxn
(respectively, XN ). Observe that
Z 1

n K (0]
Eexp | {9 0R)j2dt
nyk o, W 27 01 Nop X kyxk Z 71 0
E exp 2 F. R 0dt ? Eexp 2k F OR**T 01y dt - ?
I\ N 2 o)
i=1 j=1 j=1 i=1
1 1
=. A2Bz:

Now, Helder's and Jensen's inequalities lead to
¥ n oW ZT 01 ¥y n

A Eexp 2k F (R RNdt N Eexp 2Kk
i=1 ji=1 0 i=1 " j=1

z T ) ) 0O 1
FOR:;Rdt  “:
0

In view of Proposition 5.3.3 one has
A C(T;k; ):
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Again, combine Helder's and Jensen's inequalities. It comes
N k 1 XK Nok?2 z 1

T 0 1
B S Eexp S———  FORKHI Rt MK
ok N

It now remains to prove that there exists Ng 2 N such that

ZKZZT S
sup E exp ——  F(XKk;X)dt C(T;k; ):
N No N o
We postpone the proof of this inequality to the Appendix (see Proposiion 5.5.1). O

5.4.3 Propagation of chaos : Proof of Theorem 525
Tightness
We start with showing the tightness of f N g and of an auxiliary empirical measure which is

needed in the sequel.

Lemma 54.3. Let QN be as above. The sequende N g is tight under QN . In addition, let
= ORT ikl =1 XIN XN kN x v . The sequencef Ngis tight under QN .

Proof. The tightness off Ng, respectivelyf Ng, results from the tightness of the intensity
measuref EQN N(O)g, respectivelyf.EQN N()g: See Sznitman [2, I_Drop. 2.2-ii]. By symmetry, in
both cases it su ces to check the tightness off Law(X 1N)g. We aim to prove

9Cr > 0;8N  No; Eqn[iX{™  XINj cqrjit si% 0 st T (5.14)
where Ng is as in Proposition 5.4.2 Let Z#l) be as in 6.13. One has
Eqe [IX{™ XN = Equn [(Z77) PRI RN j:
As RN is a one dimensional Brownian motion underQ:N
Eqn [X{™  XENI (Equu [Zf7) 2D (Equn RN I8
(Equv [(Z8) 2)*2Cjt i

Observe that, for a Brownian motion (W!) under QN
Z . zZ.
Equ [(Z") 7= Egwexp 2 J08) aw! 1 (PO0)it

Ry

Adding and subtracting 3  j t(l)()@)jzdt and applying again the Cauchy-Schwarz inequality,

Z T 1=2
Equ [(Z4) 21 Equn exp 6 . B R)jdt

Applying Proposition 5.4.2with k =1 and =6, we obtain the desired result. O
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Convergence

For a spaceS we denote byP (S) the set of probability measures on it. To prove Theorem 5.2.5
we have to show that any limit point of fLaw( N)gis o, whereQ is the unique solution to
(MPKS). Since the particles interact through an unbounded singular unctional, we adapt the
arguments in Bossy and Talay [4, Thm. 3.2].

Let 2CyRP), f 2C3(R),0<ty1< <tp, s<t Tandm2P(C([0;T];R)). Set

Z
G(m) := I (Xtsinxg) FO) f(xq)
e ]’1& t Zt z u
> f %x1)du FADLiexzg  Ku (x5 x?)ddu dm(x!) dm(x?):
S S 0
We start with showing that
Jim E[G( M) ’l=0: (5.15)
Observe that
z
1 X § y § § 14t }
G( M=  OTmnxg) M) fxE) 5 %% EM)du
i=1 S
1 X Z N Zy - N
N fO(Xl'J’N)leIiJ;N exXiN g o Ky (XlljN X! )d du
S

j=1
! 1 P N iN i;N .
Apply It6's formulato & 2, (F(Xy7) f(Xg")). It comes:

X\|Z

t . o2
‘e f XN Ydw]

ELG(M) 7T HE

Zl0

Thus, (5.15 holds true.
Suppose for a while we have proven the following lemma:

Lemma 5.4.4. Let 1 2P (P(Q0;T];R)*) be a limit point of flaw( N)g. Then

) Z ( Z h 1Z t
. 00,
lim E[ G( V) 7= f(xf) f(x3) 5 f (xy)du
N1 P(C(OTIR)Y)  CUOTIR) 2 s
Z, . Z, i 2
f (X0 1ixiexzg . Ky (x} x?d du (Xtnxg)d (Khonx®d ()
S

and

i) Any 12 P §CX[0;1T]; Rl)4) belonging to the support of ! is a product measure:
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i) For any t 2 (0;T], the time marginal { of ! has a density { which satis es

C
9Cr; 80<t T; k tkizry —o:
t2

Then, (5.15 and (5.16) imply
Z (z h Z,
(od) f6d) 3 b
P(C(OTIRY)  C(OTLR) 2 s
Z t Z u i 2
o (xD e J K (g xAd du (x{;nxd)d (Knx®) o d T()=0
S
Let 2P (C([0;T];R)* belong to the support of ! . Then, parts i) and ii) of Lemma 5.4.4 lead

to
z h Z,

1
i) fod) fod) 5 fOxhau
OiTIR) s
A Z .z |
faxd) Ko (<3 y) Aydyd dudi(x)=0
S 0

We deduce that ! solves (MPKS) and thus that ! = Q. As (MPKS) admits a unique solution,
the support of ! reducestoQ Q Q Q. Now, let a continuous and bounded functional on
C([0; T];R)* such that (x1;x2;x3;x%) = ' (x!). One one side< !; > =< q;'> . Onthe
other side, by weak convergence and de nition of , one has

< l;>=1lm E< N; >=1lm E< N;'>;
N1 N1
where convergent subsequences of and " are not renamed. It follows that any limit point of

Law( N)is q, which ends the proof.

Proof of Lemma 5.4.4

Proof of (5.16): Step 1. Notice that
1 X ) . 1 _ X ) Nl
E[ G( N) ]_72 2(XI'N;Xk'N)+mE 3(XI’N;Xk'N;XI'N)
k=1 i;k;l =1
iE )(\l (Xk;N.Xi;N.Xj;N)+ iE )(\l (Xi;N.Xj;N .XKJN.X|;N). (5 17)
N3 AT N4 ArTAT AR ) '
ik =1 ikl =1

+

where

H(X BN kiNYy = (thz;::"Xt'N) (XN XN .
PO T L R ) ) St au
3(X“N;X";N;X';N)::Z (XN ;:::;X:;NZ) (thl;N;:::;thFjN)

N

z

FXEN gx !N g 0

fo?X{jl’\‘)dul fAXKNY1 Ky (XKN - x™yd du;

S

FOXNy  F (XN

NI =
n
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and
iN .y Ny KNy N fififutu iN iiN K:N K:N N
A(OXEN G XN KN BNy o= o Xy s Xen) (X X)X
S S
. i i : l;
FOXEN K XY XK, (Y X1

2

1

XN 6 XEN g N 6 x Y od 1d 2dus duy:

Let Cyn be the last term in the r.h.s. of (5.17). In Steps 2-4 below we prove thatCy converges as
N !'1 and we identify its limit. De ne the function F on R%*6 as

1 2 3 4 .
KU1 1(X X )KUZ 2(X X )1fX16X591fX26X691f 1<u 1g1f 2<U 20*

_RRR,R, )
WesetCn = o ¢ o o An d1d2dugdup with
Ay = X E(E (XN <Y N -y Ny BN L3 Ny BNy BN SN Ly kN KN Yy
N_W ( ( uy ! 1! uz 5 ! uy uz tg 1 tp ’ tg vt tp ))
ikl =1

We now aim to show that Ay converges pointwise (Step 2), thatjAy j is bounded from above by an
integrable function w.r.t. d 1 d » du; duy (Step 3), and nally to identify the limit of Cy (Step 4).

Proof of (5.16): Step 2. Fix uy;u» 2 [s;tJand 1 2 [O;ui) and 52 [O;uy). Dene N as

1 X
N.= — BNy BNy KN Ly BN Ly BNy BN L N N Ly kN KN
N 4 Xuy XXy XD XY Xy X X X X
ikl =1
De ne the measure QY. ;. ,,., ON R?P*® as follows: For any Borel setS in R?*®
N - N :
Qul; 1;U2; z;tl;:::;tp(s) - E( (S))
The convergence of law( V)g implies the weak convergence ol . ., . 2tupt, [0 @ Mmeasure on
R?P*6 de ned by
Z Z
- 1.y2 .3 g4 .02 .04 . 1.....
Quy; 1 z;tl;:::;tp(s) = ls(Xul,X 1 XU X, Xy Xy, Xt s ;
P(C0:TER)Y)  C(0;TLR)*
1.93..... 3 1.y2.03. My 1 (Y-
xtp,xtl,...,xtp)d (x5 x4 x%xMd ()

Let us show that Qu,; ;;u,; 5it:;::t, @dmits an L2-density w.r.t. the Lebesgue measure oR?°*®.

Let h 2 Cx (R?*%). By weak convergence,

< Quy; g 2t N>

o1 X N Ly BNy KNy BNy N Ly BN iN Ly KN KGN
= Jim < EROX Y s XX X A X X s X XN s XY )
’ ikl =1
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When, in the preceding sum, at least two indices are equal, we bounthe expectation by khk; :
Wheni 6 j 6 k 6 |, we apply Girsanov's transform in Section5.4.2 with four particles and
Proposition 5.4.2 This procedure leads to

. C
< Quy; sup; oitastey N> NII!En khk, N

+ C7T X Ehz()ei;N .>QJ';11\1 ;%k;N .)QI;ZN ;)Qj;N YN .)Qi;N .:::;)Qti;pN ;%tkl;N T ;>thp;N)

4 ug us 1] usg us tl )
i6]6k61

1=2

As for xed i 6 j 6 k 6 |, the processesXiN | XIN XkN and XN are independent Brownian
motions, we have

< Quy; suz; oty D> Cugiugs s oitasstp KNKL2(R20es )

It follows from Riesz's representation theorem (e.g. 15, Thm. 4.11 and 4.14]) that

Quy; 1uz; 2itust, has a density w.r.t. Lebesgue's measure ih?(R?P*®). Therefore, the

functional F is continuous Qu,; ;;u,; sy, - @€ As forug;uz 2 [s;t]and 12 [0;uz), 22 [O;u2)
F is bounded, by weak convergence one has

N“,En AN =< Quyi s aitasstes F >

Proof of (5.16): Step 3. By de nition of F we may restrict ourselves to the case 6 j and
k 6 |. Use the Girsanov transforms from Sections.4.2 with r 2 f 2; 3; 4g according to, respectively,
(i=kjj=1),@0(=k;j6l),(i6k;j61l),etc. It comes:

1 1 1=2 1=2
AN = W EQr;N ((Z_E_r)) 1[:( )) W EQr;N (Z_E_r)) 2 EQr;N (FZ( ))
kil =1 ikl =1
By Proposition 5.4.2, Egn (ZQ)) 2 can be bounded uniformly w.r.t. N (see the paragraph
Tightness). As the functionsf and are bounded we deduce
1=2

Eow (F2( ) Cli jausgli sauzg Egm (K&, (R XIHKE  (REN Xy
fori 6 j andk 6 |. In view of (5.7), forany0< <u<T we have

N N 1=4 C C
4 N iN .
Egw (Kg (XN XM = ke m
Therefore,
1=2 1¢ <u glf <u 29
E " (Fz( )) C _ 1<U1 _2 2 :
Q uit(ur )7Buy (U )78

We thus have obtained:
1 1<u 191f 2<U 29

1=8 —q 1=8 —a "
uy (up 1)7_8u2 (uz2 2)7=8

We remark that the r.h.s. belongs to L1((0; T)%).

AN
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Proof of (5.16): Step 4. Steps 2 and 3 allow us to conclude that
Z tZ tZ tZ t

|i|m Cn = < Quy; 1iup; atates F > d 1d 2dug dug:
N1l s s s s

By de nition of Qu,; ;:u,; 2it1::t, @nd F we thus have obtained that
z z,2.2
lim Cy = FAXEIFAXZ) (L irooxd) (x3iixd)
l N uz u t1e tp t1e 1 Mp
N1 POIOTER)Y) s s CUOTIR)®
Kuy (Xﬁl x? )Kuz (Xﬁz x* ):I-fx1 163 glfxﬁzexﬁzg

d(x x%x3x%) d1dadupdupd ()

0

A similar procedure is applied to the three other terms in the r.hs. of (5.17). We identify their

limits:
1 W Z Z
lim ——E H(X TN x KNy = (xEoinxg) (xBriinxd)
NiLONZTL PCIOTIR)) CQOTIR)YE 7 o
, z.

f(xi)  f(xq) XD du F(xd) f(xd) % tfo?xﬂ’) du d (xhx%x%xhd ()

NI =
n
n

1 W Z Z
lim  5E (XN X KN BN = (XXt (Fsnx)
N kil =1 PCIOTIR)Y)  CO:TIR)
1 Z t Z t Z u
fxt)  f(xq) > f %Rxg) du A3 Lixzexi . Ky (x§ x%)dud
S S
d (x5hx%x3xh)d ()
and
lim - E o (X KN XN BNy = ‘ ‘ (xbioinxd) (x25:xd)
N NS PIC(OTER)) C(OTER) S ’
b 1 YA t Z t YA u
fO)  f(xd) > f98x3) du x5 Lixiexzg , Ky (xj x?) dud
S S

d (x5 x%x3xHd t():

Once all the limits in the r.h.s. of (5.17) are obtained, we use the claim i) of Lemmab.4.4to
obtain (5.16).

Proof of i) and ii). Now, we prove the claims i) and ii) of Lemma5.4.4

i) For any measure 2 P (([0; T]; R)*), denote its rst marginal by 1. One easily gets
1 ae; = 1 1(see [4, Lemma 3.3)).
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ii) Take h 2 Cx (R). Using similar arguments as in the above Step 1, forany &t T one has
1(d)ae,

< &h>=lim Equ< {ih>= lm Eg (h(x Ny = lim  Equx O nwrNy)

C

t1_4khkL2(R)

5.5 Appendix

Proposition 5.5.1. Same assumptions as in Propositiorb.3.3. There existsNg 2 N depending
onlyonT and , such that

( z, z, ,

sup Ep exp N Kt s(Yt  ws)dsliyegyv,g dt C(T; ):
N No 0 0

Compared to the proof of Proposition5.4.2, asw and Y exchanged places in the left-hand side, it
is not so obvious to use the independence of Brownian increments. Mever, the weight Ni enables
us to skip the localization part (see Lemmas5.3.1and 5.3.2).

Ry

R 2
o oKt s(Yt wg)ds dt. One has

Proof. Fix N 2 N: Set!| =

Z-Z Z
Ik C Tt ds t(Yt WS)2 Mt WS)Zd dt k
o o (L 9% o (I 9% >
_ LYy we)? ws>2 K
CcTk=4 M we)7 ) e dsdt

o o (t %
ForO s<T andfor(!; b) 2 C(0;T];R) C([0;T];R), de ne the functional Hs as

Z
T (L b2 e

dt:
s (U 9%

Hs(!; b) =

As the processesy and w are independent,

Z; k Z Z: k

Ep Hs(Y;w)ds = Ep Hs(x;w)ds P (dx):
0 C(0;TIiR) 0

As before we observe that, for anyx 2 C([0; T]; R),
Ep Hs(x;w)ds = k! Ep

0 0 S1 Sk 1

Gs
KT (Hs, (X;W) 12t Hg (X W) dsy i idsy:
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Using again that gs, s, ,(2)
Zt

p—L _ one has
Sk Sk 1

E(ssk YHeg, (X; W) dsg
Y2 7.7
2
_ T T (Xt z Ws, 1)2 (xt Zl V‘;sk 1)
= o=4 © X
Sk 1 Sk (t Sk)
T 1 Z1 1 z 2 P—
2.z 1=4 3=4.
0— - z’e © dzdtdsy, CT T s¢q1 CT
Sk 1 'Jsk Sk 1 Sk (t Sk)3_4

Os. s .(2) dz dt ds¢

Finally,

Z K
Ep Hs(x; w)ds

0
KICT3

Ep Hs, (X;w):::Hg, ,(X;w) dsg 1:::dsq:
0 S1 Sk

2

Repeat the previous procedurek 2 times. It comes:

Z Kk Z+
Ep Hs(x; w)ds kick T3k D= Ep(Hg, (x;w)) ds;
0
Zy | Z1 L
kick 173k D=4 o= = 726 Z gz dtds; KICKT T
0o S1 g (t sp)%

This implies that forany M 1,

Xookk o M kokTk
Ep .

N kk! Nk

ChooseNg large enough to haveg;CT < 1. To conclude, we apply Fatou's lemma.



Chapter 6

The two-dimensional case: The non-linear
stochastic equation

6.1 Introduction

This chapter is devoted to the analysis of the Mc-Kean Vlasov non{linear ®E (1.14) with d=2
and its connection with the two{dimensional Keller-Segel system. Is main contribution is in how
to deal with singular interaction kernels that lead to a process whosdaw has small chances to be
absolutely continuous w.r.t. Wiener's measure. In addition, our pracedure leads to a new
well-posedness result for the Keller-Segel system id = 2.

On a ltered probability space ( ;F;P;(Ft)), equipped with a 2-dimensional Brownian motion
(Wp)¢ o, consider the SDE

n Rt R (0]
dX = dW, + by(t; X ()dt + 0 9 Ky (Xt y)ps(y)dyds dt;t T

(6.1)
ps(y)dy := L(Xs); Xo o

where X g is an R?-valued F; measurable random variable,g: denotes the probability density of
W; and for (t;x) 2 (0;T] R?

bo(6X):= e '(rco g0 and K(x) = r g()= e H
Here jxj denotes the Euclidean norm. Notice thatK is a two dimensional vector. We denote its
coordinates by K{ with i =1;2 and
Z, z
Btx;p) = h(tX)+ e 9 K{ (X¢ y)ps(y)dy ds dt
0

The main di culty when dealing with ( 6.1) is the singular nature of the kernelK . In Chapters 3
and 5 we overcame it thanks to the fact that the one{dimensional kernel K!) belonged to the
spaceL1((0; T):L1(R)) \ L((0;T);L?(R)) and by the help of preciseL! (R)-norm density
estimates (see Sectior8.3). When d = 2, the singularity in time of the kernel is stronger and
therefore estimates such as3.14) do not seem to remain true.

The following technical lemmas will be used throughout this chapterand actually show that for
q 2, the L((0;T); L9R?)){norm of K' explodes. This was not the case ird = 1 and it is in this
sense that the two{dimensional kernel is more singular.

91



Chapter 6. The two-dimensional case: The non-linear stochastic equain 92

Lemma 6.1.1. Lett> Oandi 2f1;29. Then,forany 1 g<1 one has

i C
thlqu(Rz) = kr ig[qu(RZ) = %, (62)
tz «
where
20 2 g+1 T
Cl(Q): 1 L 1,1 ( 2 ) :
2qqq RZ
Here ( x) denotes the Gamma function: ( x) = 01 ¢ e 2 dz.
Proof. Let1l q<1. One has
Z 1 VA Z 1
KK KL aqre) = KT 0K are) = oo xite Hax = L rdx  jxjle ird
tKLa(r2) = KI' iGtK ar2) = 2t2 RZJX|J e X = 512 Re X R]Xj e X
P Z, e
= 1 ﬁi 2 xY9e 92t dx
2t 2 q 0
Apply the change of variables% = y. It comes
I 1
P— a1Z T g
. 1 2t 2t 7 Tl o ot ‘
thIqu(RZ) = kr ig’[qu(Rz) = W ﬁ? 2 q o yz2e ya dy
1,1 1
1 2t a°2 1 g+1l, «
= = w(A)
2t2 q 2
This ends the proof. O

The change of variablesp’; = z leads to

Lemma 6.1.2. Lett> 0. Then,forany 1 g<1 one has

C
Kgika(r2) = tf(?); (6.3)
q
where 1
CZ(q) = 1 L ;:
(2 ) aqa

The functions C1(qg) and C»(q) will be used only when we need the explicit constants in a
computation. In all other cases we will use notationCq that may change from line to line.

Discussion on the 1d-approach in the 2d-setting The change of the space dimension has a
signi cant impact on the techniques we used in Chapter3 to prove the well-posedness of the
NLSDE. In Chapter 3, we used Picard's iteration process to exhibit a weak solution. In ach step
the L1 ([0; T] R)-norm of the drift and L((0;T];L* (R))-norm of the marginal densities were
controlled simultaneously. These controls were obtained thanks to a babilistic method which
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exhibits sharp density estimates for a process whose drift is uformly bounded in space and time
(see Section3.3). A generalisation to the multidimensional case of the results in Setion 3.3 can be
found in Qian et al. [65] in the case of time homogeneous drifts. There, the authors show that th
estimate of the transition density of a d-dimensional stochastic process is a product of
one-dimensional estimates provided that the Euclidean norm of the dft vector is uniformly
bounded. With the arguments we used ind = 1, one can easily extend the results in §5] to time
inhomogeneous drifts and get the following. Suppose that the drifto(t; x) of a two-dimensional
linear process K ) is bounded, i.e. SURtx)2[0:T] Rz JI(t X)] . Then the two-dimensional
transition density of (X P) satis es

1 YZ z 1 (z pf)
P(EXY) o Loze Zoodz
=1 et
If the initial condition is assumed to belong to L1(R?), the arguments used to prove Corollary

3.3.2lead to 5 1
b 24 T
pe(Y) 19721: ot

This estimate is not integrable in time. Consequently, it is too crude to be applied in each step of
the Picard's iteration procedure developed in Sectior3.5. One could overcome this by imposing
more regularity on the initial condition. For example, if pp 2 L (R?), one would get

2
pPy) %+ P+ Ckpokir (ro)’

Now, using the same notation as in SectiorB.5, in view of (6.2) one would get the following
relation for the drift bounds in the iteration process :

p_— p_—
k1 = krcoky +C (& T+ o+ Kpokpr rey T):

Thus, when d = 2 one gets a quadratic relationship between theL ! -norms of successive drifts,
whereas the relationship was linear in the 1-d case (see Secti@5). Therefore, in order to control
k's uniformly in k, one should impose conditions on , kpgkj 1 (R2), kr coky and T. The easiest

way to exhibit suitable conditions is to search for a positive zero ofthe polynomial

P_— p_
P(x)=C Tx®+ (C )x+ C Tkpok, 1 (rR2) T kr coky :
This leads to the constraints

1 P—  P—
< ¢ and (C 1> 4C  T(C  Tkpoki: (rey + Kr Cokii (re)):

These constraints are equivalent to

q -
M= VM=
C +2 C T(C TkpokLl (R2) + kr CQkLl (RZ)) < 1 (64)

As we do not want to depend on the time horizon, a condition onT should be imposed that
depends onkr cok; and kpok; 1 (r2). This condition together with one on  would su ce to get
tightness and local in time weak solutions for 6.1) up to a small time T;. Restarting this
procedure after the imposed time horizon becomes tricky as the norm dhe new initial condition
increased, as well all as the constants involved in the condition&.4). Thus, the new time horizon
T, is much smaller than T1 and iterating the procedure leads to a sequenceTg)x 1 such that
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« Tk < 1. We believe it is impossible to get global well-posedness by applyinthe above
procedure. In addition, we do want a result as general as possible and raaditional assumptions
on po except it being a probability density function.

All'in all, the L1 ([0;T] R?) and L((0;T];L! (R?) seem not to be a good choice for a
functional space for the drift and density of (6.1), respectively. The main reason is that the
density estimates at our disposal seem to be too crude id = 2. It is thus necessary to change the
approach. We have chosen to use th& 9-spaces.

Formal discussion on an adequate  LY9-space for the drift and density functions In
order to understand what kind of an L 9(R?)-estimate we can expect for the densityp; of X, we
formally derive and analyze the mild equation for p;:
xe 2 . Zs |
Pt=0 Po Fig s Ps by(s;)+ e SODKL, pdr ds:
izt O 0

The term kgt pokia(rey can give an idea of the behaviour okpiky q(r2y. In view of the convolution
inequality (3.37) and (6.3), one has

Cq.
tta

kgt pokLarz)y K Gikpa(rz)Kpok1(rey =
This prompts us to assume for a moment that for every 1< q < 1 there existsCq > 0 such that

supt1 %kptqu(Rz) Cq: (6.5)
t T

Then, the non-linear part of the drift satises for i 2f 1;2g
Z, ¢ 9 Z, ) Z, 1
e SIK ps ds KK{ <k 1(r2yKpsk arzy ds C ds:
. t s Ps L) o ot sHLAREEPSKLA(R?) qopiﬁslé

The change of variables; = u leads to
VA t
i C
e 9K! psds T
0 La(R2) t2 g

In order to have the same type of estimate fortfo one needs to suppose that cy belongs to a
suitable L"(R?) space forr co. In view of (6.3) and the standard convolution inequality (3.39),

i kr CokLr R2
Koh(t; JkLare) K Gkim (reyKr Cokir (r2) T();

m

m
r co 2 L?(R?). Notice that in order to apply the convolution inequality above we needq 2.

where 1+ = ¢+ . Therefore,r should satisfy 3 =4 §. Thus, one should have

We conclude that if ¢g 2 H1(R?) and if the marginals of X satisfy (6.5), then the L"(R?)-norm of
the drift b(t;x;p) for all r 2 satis es

ts Tkb(t ;p)kirre) Cr: (6.6)
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The above discussion, motivates us to rede ne the notion of a weak soludn to our
McKean-Vlasov SDE (NLSDE) in order to include the constraints of type (6.5). To prove these
constraints are satis ed, we conveniently regularize the NLSDE and rgly apply the results from
Chapter 2. Then we analyze the associated regularized mild equation and prove tmates of type
(6.5) for the regularized densities. These estimates are uniform w.r.tthe regularizing parameter
under a condition involving the parameter and the size of initial datum. Once such an estimate
is obtained, we prove the convergence of martingale problems related teegularized dynamics
towards the our NLSDE.

The plan of the chapter is the following: Main results are stated in Setion 6.2. A convenient
regularization is exhibited in Section 6.3 and the estimates on the time marginals of the
regularized equation are obtained; Existence (resp. well-posedrm&sfor the NLSDE (resp.
Keller-Segel model) is proved in Sectior6.4 (resp. Section6.5); Uniqueness in law for the NLSDE
is proved in Section6.6.

6.2 Main results

Having, in mind the discussion about convenient functional spaces ab@&y we de ne the notion of
weak solution to (6.1).

De nition 6.2.1.  The family ( ;F;P;(F¢); X;W) is said to be a weak solution to the equation
(6.) uptotime T > Oif:

=

( ;F;P;(Fy)) is a Itered probability space.

2. The processX = ( Xt)20;1] IS R2-valued, continuous, and(F)-adapted. In addition, the
probability distribution of X has densitypp.

3. The processW := (W¢)i2o:1] is @ two-dimensional (F)-Brownian motion.

4. The probability distribution P X ! has time marginal densities(p; t 2 (0; T]) with respect
to Lebesgue measure which satisfy for any

81<q< 19Cy>0; supt1 %kptqu(Rz) Cq: (6.7)
t T

R
5. For any t 2 [0; T] and x 2 R?, one has (;jbo(s;x)j ds<1:
6. P-a.s. the pair (X; W) satises (6.1).

Remark 6.2.2. Notice that under the condition cg 2 H1(R?) one gets applying Helder's inequality
and (6.3), 7 7
t t

jo(s;x)j ds  Ckr coky 2(r2) pl—g ds:
0 0

Moreover (6.7) implies

Ksu pu(x)du ds C pl—,ds:
0 0 o S
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The rst objective of this chapter is to prove the following claim:

Theorem 6.2.3. Let T > 0 and suppose thatX ¢ has a probability density functionpp.
Furthermore, assume thatco 2 H1(R?). Then, Equation (6.1) admits a weak solution under the
following condition

A ki cokizrey + B < 1; (6.8)

where A and B are de ned as in Proposition 6.3.7 below.

We do not apply Picard's iteration since in each iteration step we will need a well-posedness result
for a linear SDE whose drift satis es (6.6). In view of Krylov and Rackner [ 49, the well-posedness

follows from a nite LP((0; T); L"(R2))-norm of the drift with %+ 1 < 1. Unfortunately, the

property in (6.6) will imply the opposite condition %+ rl > % for the same norm to be nite. We
do not see how to circumvent this without a cut-o. To prove Theorem 6.2.3we will use a
regularization method. The goal is to prove that the time marginals of the regularized version of
(6.1) satisfy the property (6.7) with uniform constants with respect to the regularization
parameter. Then, the tightness will follow thanks to (6.6) for r = 1 . It will remain, then, to solve
the non-linear martingale problem related to (6.1).That is why we chose to only regularize instead
of iterating and regularizing. The well-posedness of the regularizedcgiation will follow from
Chapter 2. In addition, the incompatibility of ( 6.6) and the condition in [49] makes us doubt that
Girsanov transform techniques would work and that the law of (6.1) is absolutely continuous
w.r.t. Wiener's measure.

The next objective is to use Theorem6.2.3to get a well-posedness of the Keller - Segel model in
d = 2. The system reads

8
%gl(t;x)z r (%r (t;x) (tx)r c(t;x)); t> 0; x2R?% (6.9a)
ngt;x): %4 c(t;x) c(x)+ (tx); t>0; x2R; (6.9b)

(0;x) = o(x); ¢(0;x) = co;

where > 0 and K- The parameter is called the chemotactic sensitivity and, together with
the total mass M = o(X) dx, plays an important role in the well-posedness theory for 6.9).
Notice that the two di usion coe cient are deliberately chosen to be equal to % in order to have
unit di usion coe cient and standard Gaussian kernel in the formulat ion of (6.1).

As seen in Sectionl.2, Keller-Segel system was constructed to model the onset of cell aggation
due to chemotactic behaviour of slime molds. Therefore, it is no woner that critical regimes in
which the solutions blow-up in nite time have been found in the literature. The de nition of this
phenomenon is the following:

9To< 1 :sup(k ko1 (rey+ keks (re)) = 1
t To

Indeed, the question of global existence versus blow-up id = 2 was extensively studied in the
PDE literature. We have no intention to review all of it here, but r ather mention some of the
results. A very thorough review can be found in Horstmann {1].

In the parabolic-elliptic version of the system, i.e. when 6.9b) is in steady state, the behaviour of
the system has been completely understood. There, the systenxlabits the "threshold"
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behaviour: if M < 8 the solutions are global in time, if M > 8 every solution blows-up in
nite time (see e.g. Blanchet et. al [8] and Nagai and Ogawa §]).

On the other hand, the fully parabolic model (6.9) expresses a less straight-forward behaviour. It
has been proved that whenM < 8 one has global existence (see Calvez and Corriag(],
Mizogouchi [55]). However, in Biller et. al [7] the authors nd an initial con guration of the
system in which a global solution in some sense exists witM > 8 . Finaly, Herrero and
Vebzquez [38] construct a radially symmetric solution on a disk that blows-up and develops

-function type singularities. Finally, unique solution with any positive mass exists under some
condition on the reverse di usion coe cient of the chemoattractant and initial datum (Corrias et.
al [27]). Thus, in the case of parabolic-parabolic model, the value 8 can still be understood as a
threshold, but in a di erent sense: below it there is global exisence, above it there exists a
solution that blows up.

The new functions ~t;x) := % and &(t; x) = C(,{,I—X) satisfy the system 6.9) with the new
parameter ~:= M . Therefore, w.l.0.g. we may and do thereafter assume tham = 1. We
consider the following notion of solution to (6.9):

De nition 6.2.4. Given the functions ¢ and cg, and the constants > 0, 0, T > 0, the pair
(;c) is said to be a solution to(6.9) if (t; ) is a probability density function for every0 t T,
one has .
81<q< 19Cyq>0: S%ﬁlak(t)h%m) Cq;
t

and the following equality

x <t
tx)=a ox)+ . rige s r ic(s;) (s;))(x) ds (6.10)
i=1
is satis ed in the sense of the distributions with
z t
ctx)=e "(gt; ) co)(x)+ Oes@s (t s;))(x) ds: (6.11)

Notice that the function c(t;x) de ned by (6.11) is a mild solution to (6.9b). These solutions are
known as integral solutions and they have already been studied in PDEiterature for the
two-dimensional Keller-Segel model (see?f] and references therein).

A consequence of Theoren®.2.3is the well-posedness ofg.9).
Corollary 6.2.5. Let ¢ a probability density function and ¢ 2 H1(R?). Under the condition
(6.8) the system(6.9) admits a unique solution in the sense of De nition 6.2.4.

In [20] the authors obtain the global existence in sub-critical case assuming:

) 02 LYR?\ LY(R?log(l+ jxj?)dx) and ¢log o2 L(R?);
i) 2 HY(R?)if > O0orcg2 LY(R?) and jr cj2 L3(R?)if =0;

i) o co2 LYR2).
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We should emphasize that their sub-critical condition translates info 4 < 8 for (6.9) due to the
additional di usion coe cients in it. In the same sub-critical case , the global existence result is
obtained in [55] assuming ¢ 2 LY(R?)\ L! (R?) and ¢ 2 H1(R?)\ L1(R?). Our result does not
assume any additional conditions other than that ¢ is a probability density function and

co 2 HY(R?). The price to pay is the smallness condition 6.8) that not just involves the
parameter , but the size of the initial datum as well.

Corollary 6.2.5is very similar to the result in [22, Thm. 2.1]. Indeed, the assumptions on initial
conditions are the same and as well the notion of solution. The objective igli erent in the sense
that the goal of [227] was to exhibit global existence for 6.9) for any positive mass and =1 as
long as the following two conditions are satis ed

C1: There exists = (M; ) such that kr CokLz(R) <
C2: There existsC( ) such that M <C ( ),

where is the inverse di usion coe cient of the chemo-attractant (see (1.4)). The condition on
the total mass is similar to (6.8) on , but as C grows with , one can haveM as large as one
likes as soon as is large enough as well (see Sectioh.3 for more details). In this chapter the
objective is to get results for the classical K-S model ( = 1) with respect to chemo-attractant
sensitivity (and mass). When we assume the same in the framework of{], we see that we have
removed the assumption on the smallness of the initial datum (C1). Thereason lies in our
method: in [27] the Banach's xed point is used to construct solutions locally in time (where C1
emerges) and then such solution is globalized (where C2 emerges). Inrotase only a condition of
C2 type appears as, thanks to our regularization procedure, we diregfl construct a global
solution. The well-posedness of the regularized equation comes from &pter (2).

Finally, using the so-called transfer of uniqueness we prove the @ak uniqueness for §.1). Namely,
we will use the results in Trevisan [/6] to prove the following theorem:

Theorem 6.2.6. Under a smallness condition on precised in Section6.6, weak unigueness in
the sense of De nition 6.2.1 holds for Eq. (6.1).

6.3 Regularization

We de ne the regularized version of the interaction kernelK and the linear part of the drift as
follows. For"> O and (t;x) 2 (0;T) R?dene

1 ixj?

x w2 oand y(tx)= e '(ro g

K, = T e e g (x) = AN

The regularized Mc-Kean-Vlasov equation reads
. . . NR R . . . 0
dX; = dW, + by(t; X ; )dt + ce 9K (X{ y) o(dy)ds dtt T,

s = L(X2): Xo  po;
Set Z, Z
b(tx; )= byltx)+ e 09 K{(x vy) (dy)ds:
0

(6.12)
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It is clear that there exists C+ > 0 such that for any t 2 (0;T), one has
8y 2 R% jip(tx) Ip(ty)i+iK (x) K (Y)i Cix yj and jbo(t;x)j+jK(x)j C: (6.13)

Notice that C-!'1 as"! 0. Similar computations as the ones to get 6.2) and (6.3) lead to the
following estimates. Fort 2 (0;T]and1 q< 1, one has
C " C
0D g kg, 22D

th;I qu(RZ) 3 1 1 1-
(t+ ||)2 q (t+ ||) q

(6.14)
Proposition 6.3.1. LetT >0; > 0, r ¢o2 L?(R?) and pg a probability density function on R?.
Then, for any " > 0, Equation (6.12) admits a unique strong solution. Moreover, the one
dimensional time marginals of the law of the solution admit prbability density functions, (p;)t T.
In addition, for t 2 (0;T), p, satis es the following mild equation in the sense of the distribtions:
=9 Po Jigs (psb” (s; ;p))ds: (6.15)
i=1

Proof. In view of (6.13 and Theorem 2.2.3 the strong solution to Equation (6.12) is uniquely well
de ned. In addition, as the drift term is bounded, we can apply Girsanov's transformation and
conclude that the one dimensional time marginals of the law of the solutioradmit probability
density functions. By classical arguments (see ChapteR), one can prove that fort 2 (0;T), p
satis es (6.15 in sense of the distributions. O

In the sequel, for 1< g < 1 , uniform in " estimates on sup T tt %kp't' qu(Rz) will be crucial.
They will imply uniform in " estimates on sup 1tz kb (t; )Kirrzy for2 v 1 .n
particular, for i =1;2 andt 2 (0; T],
C
kb (t, )k|_1 (R?) p?:

The latter will enable us to prove tightness of the probability laws of (X ).

6.3.1 Density estimates

For 0<a;b < 1, we denote 7
1
1
;b = —————du: A
(a;b . B a u)bdu (6.16)
Now we prove some technical lemmas that will be used throughout this chpter.

Lemma 6.3.2. Lett> 0OandO<a;b< 1. Then,
Z, 1

— 1 +b A

o s op O8TE Y @

Proof. Observe that Z, ) . Z,

ds = 1

The change of variables? = u implies the result. O
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Lemma 6.3.3. Let t> 0. Then, the function l:fo(t; ) is continuous on R2 and forr 2 [2,1 ], one
has

Q)
N
~—~

z
RE‘N
N

k%(t, )kLr(RZ) kl’ COkLZ(RZ)(RZ)

1
'[Zr

Proof. Asr jcp is only in L?(R?) we can not apply the classical results of convolution with a
continuous function. The continuity of lci)(t; )= ricy @ is a direct consequence oflp, EX.
4.30-3.] as for at > 0 both g and r ;cy belong to L?(R?). However, in this case, one can use the
particular form of the functions involved in the convolution to prove t he continuity. Let x, ! X in
R%2asn!1 . Toproveg r ico(Xn)! @ r ico(x) we need to boundjg(xn Y)r ico(y)j with an
h(y) 2 L1(R?): As g is continuous we would then apply the dominated convergence theorem. lte
R > 0. Then there existsng 1 such that forn ng one has thatjx, Xj R. Then, by reverse
triangular inequality one has that

ixn_yi? Gxn_xij y xi)? RZ  (y xj R)Z
2t 2t ez e 2t :
1 R2 vy xj R)? 1/52
Thus, we de ne h(y) = r jco(y);-€2t € 2t and concludeh 2 L*(R¢) by Cauchy-Schwarz

inequality.

Let g 1 be such that% + 2 =1+ 1. By the convolution inequality ( 3.38)

r
ku)(t, )kLr(RZ) kr iCOkLZ(RZ)kg[qu(RZ):
In view of estimates onkgik, ¢(r2) and the relation above betweenr and g, one has

CZ( 2r

r+2 7 ,

kHO(t, )kLr(RZ) kr CokLZ(RZ)kgtk 2r kr CokLz(Rz)tl(i

1,1y
LT+2 F+E)

Repeating the arguments as in the preceding proof, one gets
Lemma 6.3.4. Fort> Oandr 2 [2;1 ] one has
Ca(2y

1

Kbe' (t: )k, - kr cok 2l
b (8 )Kir(r2) CoKL 2(R2) (t+ ..)% T

Lemma 6.3.5. Let pg a probability density function onR? and1<q< 1 . One has

limsupt* %kgt PoK_ a(r2) = 0
)

Proof. The proof is a special case of Lemma 8 inlf]. Let f 2 Ck (R?). Using the standard
convolution inequality (3.37), one has
1 1 1
t' kg pokiarey t- dkg fkiamey* tT akge (Po T )KLare)
tl %kgtkLl(RZ)kf qu(RZ) + tl %kgtqu(Rz)pr f kLl(R2)
K fkareyt® @+ Ckpo T K 1(ro):
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Thus,
1
lim supt1 akgr pokiarzy Ckpo fkiigry:
t 0

Sincef is arbitrary, the r.h.s. can be arbitrarily small ( see e.g. [L5 Theorem 4.3]) . O
De ne )

Ng(t) == sup s' akpskLare): (6.17)

s2(0;t)

The following lemma provides a rst estimate for N(;(t) fora xed "> 0. This estimate is not the
optimal one in ", but it is necessary in order to be sure that all the quantities we wok with are
well de ned. Also, it will be used in order to obtain the limit behav iour of N(;(t) ast! 0.

Lemma 6.3.6. LetO<t T and"> 0 xed. Forany 1<q< 1, there existsC-(T; ) > 0 such
that
Ng(t) C(T; ): (6.18)

Moreover, one has
lim Ng(t)=0: (6.19)

As K" is smooth, we can propose a simpli ed version of the arguments inlf, p. 285-286] for the
proof of (6.19.

Proof. The drift of the regularized stochastic equation is bounded. IndeedjK | <. and

Lemma 6.3.4imply
Kb (t; ;P )kt (re) FCE + % = G+

For1<q< 1 and q®such that é+ q% =1 integrate (6.15 w.r.t. a test function f 2 L%(R2) and
apply Helder's inequality. It comes
z xe Zt .
P (X)f (x)dx  k kaqo(Rz) kgt  PoKia(rz) + . Krigt s (Pshs')kiarayds (6.20)
i=1

a) Assume 1< q < 2. The above drift bound and the convolution inequality (3.37) applied in
(6.20), lead to

.. ¥ 2 ..
kpt qu(RZ) kK o pOkLQ(RZ) +C(1+1) . kr g Squ(RZ)kpskLl(RZ)dS:
i=1

In view of (6.2), we deduce that

Z, Z, 1 L
kr i Ot squ(RZ)kpskLl(RZ) ds Cq — =3 1~ tha 2
0 0 (t 5)2 q
Thus,
1 " _ 1,1 —
t' okpikiarey  t1 F9Kkg pokiarey + th 9T e TECH(L+ t): (6.21)

1

get (6.19 use Lemma6.3.5for the rst term of the r.h.s. of ( 6.21) and the fact that the
second term tends to zero as! O.

To get (6.18), in (6.2 use the convolution inequality (3.37) and that kgik,_q(r2y = € .. To
q
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b) Let g 2andpi1: pi: 3+ qu Then, 1<pi;p2<2and1+1= pil+ p% The convolution

inequality (3.38 and the drift estimate applied in (6.20), lead to

.. ¥ 2 ..
kp’[ qu(RZ) k Ot pOqu(RZ) + C"(l + T) o kr i Ot skLpl(RZ)kpskLpz(RZ)dS:
i=1

In view of (6.2) and the result in a), one has

VA t
Tkp, g L C c(T
t' qkptqu(RZ) t ko pOkLQ(R2)+ C-(1+ T)tl a qs 1 g 1)dSZ
0 (t 5)5 P1 §° P2

Apply Lemma 6.3.2 and use the relation between the exponents. It comes:

1. 1 1C("T 1
t' akpkarzy ' 7Kg pokLagre) + U @ (1 — (1 D5

tz a

SN
2 p

Repeating the last steps as in a), one can obtain the desired result.

O
The following proposition enables one to controlf('q'(t) for a xed g and uniformly on small .
Proposition 6.3.7. Let T > 0and x a g2 (2;4). Then, there existsC > 0 such that for any
t 2 (0;T], f4(t) dened in (6.17) satis es
80<"< 1: Ng(t) C;
provided that
A kr cok 2y + BP < 1 (6.22)
where, C1, C, and (; ) being de ned as in Lemmas6.1.1, 6.1.2 and Eq. 6.16 respectively,
r
_ 2,323 1 _ 37238 15, 11
A= CUdCATH) G 53 @ ad B=2 GGG G G5 @ @ g3
Proof. Let ¢°> 1 be such that% + ﬁljz 1. Integrating ( 6.15 w.r.t. a test function f 2 L%(R2),
one again starts from
z e Z !
P OOf (X)dx Kk K qorzy KOt Pokiarz) + krige s (Pshs' )k areyds (6.23)
i=1 O
Letus x i 2f1;2g, s<t and denoteAL := kr g s (IO;b;;i)qu(Rz). Observe thatal)+ %z 1+ %
Apply the convolution inequality ( 3.38) and then use 6.2). It comes
i 1L . "
C]_(q()kbs’ qu(RZ)S qkpSqu(RZ) kbs' qu(RZ)

AL K iG skyaore KPR K g 0o - Ca(qINg () 1T

1 3
s a (t s)? s a

an

(t s)°
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In view of Lemma 6.3.4, (6.14) and Lemma 6.3.2 we get

Caly) It okzgmn ‘s

kby' ki a(r2) (s+")2 0 KK ¢ ki 1(r2) kP, KLaGre) U
S q
Z
Co(ZL) Kkr cokz(re) " ) !
q* — + C 1()Ng(1) o Pe— 1 ¢ ds
Ry S uu a

Calgrg) Kr Cokiz(rey + C 1(1)Ng (1) (1 Ly
1 1 .
S2

It comes . ) -
: ., Calgz)kr cok zrzy + C1(NG(t) (1 55 3)
Ay Ca(d) Ng(t) i 3 1 3 zq S
(t s)z sz q
Plug this into (6.20. The condition g2 (2;4) ensures that 3 % <land3 < 1 Thus,
Lemma 6.5,.2 leads to

Py (X)f (x)dx k fkiaorey KOt PoKLacr?)

. CaELKr cokpzrey + CL(LNG(H) (1 53 3 23 1
+2C Ng(t)— 2 2 L2 2y

Take sup¢ k_q0=1 in the preceding inequality. It follows from the convolution inequality ( 3.37) and

(6.3) that
2q " 1.1
. C2(9) 3 1N Cz(qu)kf CokLzre) + C1(DNg(t) (1 5:3)
Let us denote
3 23 1 1 3 23 1
Ki=2C@G® G i o @ ) and K —zcl(qo)cz( ) G 32 @
After rearranging the terms,
0 K1 (Ng(t)*+(Kz kr cokizrzy 1)Ng(t)+ Co(0): (6.24)

Under the assumptions
Ko kr cokizrzy 1< 0and (Ko kr cok zrzy 1) 4K1Ca(q) > O
the polynomial function
P(z)= K1z 2+ (K kr cokizrzy 1)z + Ca(0)

admlts two positive roots. In view of Lemma 6.3.6 and (6.24), one has that limy o N (t) =0 and
P(N (t)) > 0 for any t 2 [0; T]. Necessarily, for anyt 2 [0; T] N, (t) is bounded from above by the
smaller root of the polynomial function P (z). As the constants do not depend onT and ", this
estimate is uniform in time and does not depend on the regularization paameter.

Notice that the above condition is equivalent to
p__
K2 kr coki2(rzy +2° K1Ca(g) < L
Denote A .= K, and B = 2IO C2(g)K 1 to nish the proof. O
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Remark 6.3.8. The upper bound C ofN(;(t) is given by

q
1 A kr COkLZ(RZ) (1 A kr C()kLZ(RZ))2 B2
2K 1

C=

Now, we will continue analyzing N, (t), for di erent values of r. We will see that di erent
arguments are used whemr < q andr > q. The result obtained for r < q will be used to control
kQ" kLr(RZ), for r 2.

Corollary 6.3.9. Same assumptions as in Propositior6.3.7. Then, for 1<r <q , it holds

80<"< 1, N,(T) C:

Proof. Let1<r<q . Dene := i

. Then, =1+ g Asp; 2 LY(R?), "interpolation

inequalities” (see [L5, p. 93]) lead to

" " " C C
1 _. br
O
Corollary 6.3.10. Same assumptions as in Propositior6.3.7. Then, for 2 r 1
" Ci(; kr cok
80<"< 1 Kiki (e r ( 1(701 L2(R2))
t2 r
Proof. In view of Lemma 6.3.4, one has fori 2 f 1;2g
Z
e C( ; kr C0k|_2 R2 ) t i "
kH[ kL’(Rz) t% T (R%) + o th'IS pSkLr(RZ)dS: (625)
a) Forr 2 [2;q), Corollary 6.3.9immediately implies
i . C .
th s pskL’(RZ) W
b) Forq r 1 ,choosep; such that pil =1+ 1 % Notice that, as 2<q r, it follows
that § < p% 1. Applying the convolution inequality ( 3.38 and Corollary 6.3.9, one has
. C
KK {'s  PskLr(r2) 3 14 1
(t s)2 pPis™ a
To nish the proof, in both cases, one plugs the obtained estimates in §.25 and applies
Lemma 6.3.2 O

Corollary 6.3.11. Same assumptions as in Propositior6.3.7. Then, for g<r< 1, one has

80<"< 1, N, (T) C:
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Proof. Let 1<(qi;0 < 2 such that qil = 1= . Convolution

1
q 2
inequality (3.38) leads to i

) X 2 .
kpt kLr(RZ) k Ok pOkL’(RZ) + kr i Ot Squl(Rz) kpsbs’l quZ(RZ) ds:
i=1 O
Let us apply Helder's inequality for + + L =1 such that ;= §,

kpghy' ki ax(r2)y K Pskp 1az (rey KBS Ky 20z (re):

Notice that 1 < 1< 2 since 2< g < 4 by hypothesis. Then, > 2, thus > > 2. In addition,
1% = 70 <. In view of Corollaries 6.3.9and 6.3.1Q one has

kpshy! KL az(r2) 1 L .1 1~ 3 1-
S 192 2 202 S2 a2
Therefore, 7
t
1 L . 1 1 C
t qkptkLr(RZ) C+t a 51T 3 1 ds:
0 (t s)2 as? @
Apply Lemma 6.3.2to nish the proof. O

Notice that the choice of the constantsA and B depends only on the initially chosenqg 2 (2; 4).
One may analyze the constants in Condition 6.22) in function of g to get an optimal condition on

6.4 Proof of Theorem 6.2.3

6.4.1 Tightness

Proposition 6.4.1. Let T > 0. Denote "y = &, for k 2 N. P¥ denotes the law of the solutions to
(6.12 regularized with ". If the initial law pg is a probability density, r ¢o 2 L?(R?) and > 0
are such that Condition (6.22) is satis ed, then the probability laws (PX), 1 are tight in
C([0;T];R?) w.rt. k2 N.

Proof. For m> 2 and O<s<'t T, notice that

Zt 2 Zt 2! =z
EjiX, X ™ E bil(u;X,)du + b*2(u; X ,)du + EjW;  Wgj™:

S S

In view of the drift estimate for r = 1 in Corollary 6.3.1Q one has

EiX, Xi™ 2 +C(t s)2  C(; kr cokizre))(t 9)7:

i C(; kr cokizre)) . "
p— du
s u

Kolmogorov's criterion implies tightness. O



Chapter 6. The two-dimensional case: The non-linear stochastic equain

106

6.4.2 Existence

In order to prove the existence of a weak solution, we will prove thatthe following non-linear
martingale problem related to (6.1) admits a solution under the hypothesis of Theorem6.2.3

De nition 6.4.2. A probability measure Q on the canonical spaceC([0; T]; R?) equipped with its
canonical Itration and a canonical process (w;) is a solution to the non-linear martingale problem
(MP) if:

() Qo= po.

(i) Forany t 2 (0;T], the one dimensional time marginals ofQ, denoted byQ;, have densitiesg
w.r.t. Lebesgue measure orR. In addition, they satisfy

8r2(L;1)9C>0: sup t! rkak. gy C:
t2(0;T)

(i) For any f 2 CZ(R?) the process(M); 1, de ned as
Z, z,2
M¢ = f(w) f(wo) >4 f(wu)+r £ (wy) (bo(u;wy)+ Ku (wu Yy)q (y)dyd ]du
0 0

is a Q-martingale.

In view of Proposition 6.4.1, there exists a weakly convergent subsequence dP{), 1 that we will
still denote by (PX), 1. Denote its limit by P! . Let us prove that P! solves the martingale
problem (MP).

i) Each P§ has density pg, and therefore P§ also has densitypo.

i) De ne the functional (' ) by
z
)= (V)P (dy); ' 2 Ck (R?):

By weak convergence we have
Z

Y — | ! k .
()= fim @Ry,

and thus for any 1<r< 1 and its conjugater® in view of Proposition 6.3.7 and Corollaries
6.3.9and 6.3.110ne has

S c .,
jot(")i tljk kLrO(RZ):

Therefore, for each O<t T, : is a bounded linear functional on a dense subset of
Lro(Rz). Thus, { can be extended to a linear functional onLro(Rz). By
Riesz-representation theorem (e.g. 15, Thm. 4.11 and 4.14]), there exists a unique

pt 2 L"(R?) such that kp{ ki« (re) tlc% and pt is the probability density of P} (dy).
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iii) Set

Mﬁlt:: f(we)  f(wo) 7 .

Afwa)+rfwy) (bo(uwy)+ o= e @ Ky (w ypt(y)dyd Jdu

0 0

In order to prove that (M{ )¢ 1 is aP! martingale, we will check that for any N 1,
0 t1< <ty<s t Tandany 2 Cyu(R?N), one has

Ept [(ME ML) (wWeiiiiwy )]1=0: (6.26)

As P¥ solves the non{linear martingale problem related to 6.12 with "\ = % one has

Z
M{ = f(w)  f(x(0)) Ot 4F (wy)+ 1 f(wy) (Bt (u;wy)
Z

u

+ e M (K pYw)d ]du

8 o
is a martingale under PK. Thus,

0= Epc[(M{ . ME) (Weg;iii;wey )] = Ep] (o)(f (W) T (we))]
t t
+ Epc[ (0:1) 4 f(wy)dul+ Epc[ (i::) 1 f(wy) by(u;wy)du]
S S
VA t Z u
Bl () rfw) e MK pY(wy)d dul:
S 0
Since (PX) weakly converges toP! |, the rst two terms on the r.h.s. converge to their
analogues in 6.26). It remains to check the convergence of the last two terms. We will
analyze separately the parts coming from the linear and non-linear drifs.

Linear part  Notice that for t> 0 andx 2 R?

. "k(t ) b‘)(t ) C e t IIk z ( ) ﬁ d "kkr COkLZ(RZ)
X X — r X e 2t =
By PRy et O Y Y T+ ")

Thus, kbz)k (t; ) bo(t; k1 (R2) I Ok!1l andfrom Lemmas6.3.3and 6.3.4we have

. C
Kbg'(t; ) bo(t; kit rey P

Similarly, for t> 0 andr > 2,

ne : k 141,
Kby“(t; ) bo(t; )kpr(ray Kkr CokLz(Rz)mCtrJ'z.
Therefore, .
Kby (t; ) ho(t; Kirrzy ! O k!l (6.27)
and from Lemmas6.3.3and 6.3.4we have
" C
KB (6) ol Dkrry T (6.28)
2
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Now, observe that

Zy . Zy
Epc[ (::1)  rf(wy) by(uiwy)du]l  Epr [ (i) 1 f(wy) bo(u;wy)du]
S 7 . " S d .
=(Epc[ Ciz)rf(w) bp(uiwe)du]  Epl (:) 1 f(wu) bo(u; wy)dul)
Z Z5
+(Ep[ () rf(wy) bo(uiwy)du]l  Epc [ (i:x) 1 f(wy) bo(uiwy)dul) =2 B+ 11

We start from 11 . De ne for x 2 C([0; T]; RZ) the functional
z t
F(X):=  (Xtgsiii:Xty) rf(xy) bo(u;xy)du:

S

In view of Lemma 6.3.3 for u> 0 andi = 1;2, the function b(u; ) is bounded and
continuous onR? and one haskh},(t; )k 1 (R2) f% By dominated convergence one gets

that F () is continuous. In addition, F () is bounded onC([0; T]; R?). Thus, by weak
convergencell ! 0,ask!1l

We turn to I:

Zix 2 : _
il k- ke er if (2)(by " (u;2)  Bh(u; 2))jpg(2) dz ds:
S i=1 R
Apply the Helder's inequality for £+ 4 =1 suchthat1 < < 2. In view of Corollary 6.3.9
one has 7
. tc ¥ . -
ilki kK kq kr fkg T Kby " (u; ) Bh(u; )k, orzydU:
s um =

In view of (6.27), khy'(u; ) bh(u; )k, orey ! Oask!l . Inaddition (6.29 leads to

c X .. .
1 1 ktbk’ (U, ) tb(u, )k|_ O(RZ)

14+
T uo

@]

1 -
-0

N

By dominated convergencely! 0, ask!1l

Non-linear part Let us rst analyze the di erence of the two drifts. Fix 0 <s<t,
x 2 R andi 2 1;2. Notice that
n n2 ixj2
(L 9"+ " ixijezt 9
(t s)P(t s+ ")?

KL x) K ()

Thus for any x 2 R? and any 0<s <t , we have thatht"kg(x) K{ Jx)j! Ok!1l
After integration, for any 1 <r < 2 one has

9+
@ 9t s+t

1
I+

=~

th"kg Ktl ska(RZ) Cr

Therefore, for any 0< s <t , one gets

KKkD K ckirrey! Ok1L (6.29)
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In addition, (6.2) and (6.14) lead to

th“kg Ktl SkLr(RZ) k Kt“kgkLr(RZ) + thI SkLr(RZ) m: (630)
Fort> 0,x 2 R?andi 2 1;2, one has
Z t ) Z t Z t . Z t
(Kis p(x)ds  (K{ s ps)(X)ds (Kis p(x)ds  (K{ s pi)(x)ds
OZ OZ 0 0
t t

+ O(Kti s PO(X)ds 0(Kti s PL)(x)ds =: Ay + By:

We start from By. For s<t andi =1;2, the kernelK{ () is a continuous and bounded
function on R2. Thus, by weak convergence we have that

limas (K! ¢ pE)(X)=(K{ ¢ p&)(x). In addition, for r > 2 Helder's inequality, part ii)
and Proposition 6.3.7 lead to

r

iKis PO (K{ s ps )X

n
Nt
Nl 0

1 1°
ogl

As the bound is integrable in (G t), the dominated convergence theorem implies that
B! O,ask!1l
In Ax we apply the Helder's inequality with 1 <r < 2 and the density bounds from
Corollary 6.3.9. It comes
Z, ‘ c
JAK] kK s K{ skLrO(Rz)Tr; ds:
0 Sl
In view of (6.29 and (6.30), one can apply the dominated convergence. ThusAy ! 0, as
k!'1 . Finally, we obtain
Z t . Z t
lim (KL pds (K{ s pd)(x)ds =0: (6.31)
! 0 0

As in the linear part, we decompose

zZ, Z,
Epc[ (::2) 1 f(wy) (K¢ p*)(wy)d du]
S 7 . 0 7 !
Epe [ (:i2) 1 f(wy) (Ky pt )(wy)d du]
Z, 2,
Epc[ (::2) 1 f(wy) (K p*)(wy)d du]
z > z 2
Epc[ (:i2) 1 f(wy) (Ky p* )(wy)d du]
z, z,
+ Epe (i) o1 f(wy) (Ku  p' ) (wy)d du]
z3 z%

Ep [ (i) 1 f(wy) . (Ky  p*)(wy)d du]

S

=. Cx + Dyg:
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Start from Dy. Similarly to the linear part, we need the boundness and continuity of the
functional
z t z u
H(x) = (X(t);:i5x(tn)) 1 F(x(u) (Ku  pt)(x(u)d du; x 2C(0;T];R?):
S 0
The continuity comes from the fact that the kernel is a continuous function on R? whenever
<u . Namely, if xn 2 C([0; T]; R?) converges tox 2C(0;T]; R?), then
Ki (xa(u) y)! K{ (x(u) ). Inaddition jK| (xn(u) y)p' (V)i ﬁpl y),
fori 2f1;2g,asn!1 . Thus, by dominated convergence, for <u one has

Ki  pY(xa(u) ! KL ph(x(u); nil

For %+ r% =1 such that r > 2 apply Helder's inequality and after the estimate in ii). It
comes

o . C
Ky pt (xn(u))j i

By dominated convergence,
z z

u

(K4, p ) (Xn(u))d ! U(KL pt )(x(u))d;n 11
0 0

Moreover, in view of Lemma6.3.2, one has
“ a 13 b
r f(xn(u)) Ku  p" (Xa(u)d Ckr fky é’az —:
0

Finally, after one more application of dominated convergence the continuy of the functional
H follows. This procedure obviously impliesH is a bounded functional onC([0; T]; R?).
Thus, by weak convergenceDy converges to zero. R
We turn to Gy Let us just for this part denote by b(uiz):= ,K, p'(zd and
Bi(uz) == JK,' p!(2)d . Notice that
Z t )R Z
iCd kK it @ (u2) (U 2)ipl(z)dz:
S i=1 R

After Helder inequality for %+ % =1 such that r > 2, one has

Z t )@ Z 1=r

iCki k ki ir if )" jib"(u;2) B(u;z)i'dz du:

s Uy

Let u> 0. In view of (6.31), jb (u;z) b(u;z)j"! Oask!1l . Now, we do not omit

jr if (2)j9 as in the linear part. Instead, we use it in order to integrate in space \ith respect
to drift bounds. Namely, for u> 0 andi = 1;2, we have seen thajb“ (u; )j + jb (u; )j p%
Thus,

ir if @18 (u;2)  B(u;2))f %J’r if (2)":
uz
By dominated convergence,

ke if ()09 (u; ) B(u; Dkerrey ! 0 k11
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6.5. Application to the two-dimensional Keller-Segel model

Using that kb (u; YKy r rey + KB (U; )KL (r2) € -, one gets

1
uz

C

+1r%

ull%kr F O U ) B Dkerrey ke if (ke -

[N
=k

Thus, by dominated convergence, we get thalCy ! 0, ask!1

As all the terms converge, we get that 6.26) holds true. Thus, the process M ); 1 is aP?
martingale.

6.5 Application to the two-dimensional Keller-Segel model

In this section we prove Corollary 6.2.5 The parameter does not play any role in the above
results. Therefore, we will assume here = 0. It is easy to extend the following arguments for
> 0.

Denote by (t; ) pi(x) the time marginals of the probability distribution constructed in
Theorem 6.2.3 As such, satisesforanyl q<1,

supt1 ak (t YkLarzy  Cqt
t T

The corresponding drift function satises forany 1 r 1 ,

N|=
=l

t kut, , )kLr(RZ) CI’:

Following the arguments in Proposition 2.3.3 one may derive the mild equation for (t; ). The
above estimates ensure that everything is well de ned. Thus, onarrives to the following: for any
f 2 CL (R?»andanyt2 (0;T],
z z

f(y) (Gy)dy=f(y)(a o)y)dy

2 Z Z,
f(y) . [rige s (B(s;; ) (s )(y) ds dy:
i=1
Thus satis es in the sense of the distributions

X <t ,
(t)=a o . rige s (B(s;;)) (s;)) ds: (6.32)

i=1
Now, de ne the function c(t;x) as
z t
c(t;x) =(g(t; ) co)(x)+ . (t s;) d(s; )(x) ds:

Thanks to the density estimatesc(t; x) is well de ned for all x 2 R? as soon ag > 0. Indeed,

. . kecoky 2(re) 21
je(t; x)j ﬂf—+ C k(t s;)kzre)kgsk 2(rz)ds

kCokL 2(R2
i ﬂ#

11
re G
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It is obvious that c(t; ) 2 L2(R?). Thanks to the density estimates and the fact that g; is strongly
derivable as soon ag > 0, c(t; x) is derivable in any point x and

@ ‘i
G0 = TiEE ) @00+ (s T igls )0 ds

The fact that ¢ 2 H1(R?) enables us to writer j(g(t; ) c) =(g(t; ) r ico). Now, remark that
@—%c(t;x) is exactly the drift in ( 6.32). Thus, the couple (;c) satis es De nition 6.2.4

Assume there exists another couple (*; ¢!) satisfying De nition 6.2.4 with the above initial
conditions ( ¢; Cp). As such, they satisfy

81 <19 C>0: supt’ ik kkarey C
t T

and -
82 r 19 C>0: suptz rkr ¢tkirrzy C:
t T

We are in the position to apply [22, Thm. 2.6] and conclude thatforal g<1 anda
2 r 1 ,there exists a constantC(q;r) not depending on time such that fort> 0 it holds

tl %k t %qu(RZ) + t% rlkl’ C I Cg'kLr(RZ) =0

6.6 Weak uniqueness for the non-linear process: Proof of Theo-
rem 6.2.6

In this section we come back to the non-linear processt(1) and prove Theorem6.2.6. As the
parameter does not play any role, we will assume here = 0. It is easy to extend the following
arguments for > 0. In addition, the parameter already satis es the requirement 6.22).

In the preceding section we proved that under the condition 6.22), the one-dimensional time
marginals of any weak solution to 6.1) are the solution to (6.9) in the sense of De nition 6.2.4.
Thus, they are uniquely determined as the function ( (t; )); T from the previous section. We
de ne the linearized process

R
dXt = bo(t; X)dt+ o Ke s (S5 )(XY) ds di+ dw;

(6.33)
Xo 0-
We will denote in this section
YA t
b(t; x) := bp(t; x)dt + Kt s (s5)(x)ds:
0
By de nition, one has
8r2[21]19C: suptz rkot )kirryy C: (6.34)
t T

Let us de ne the notion of solution to (6.33).
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De nition 6.6.1.  The family ( ;F;P;(F¢); X;W ) is said to be a weak solution to the equation
(6.339 up to time T > 0 if:

1. ( ;F;P;(Fy)) is a Itered probability space.

2. The processX := ( Xt)z0;1] IS R?-valued, continuous, and(F)-adapted. In addition, the
probability distribution of Xy has density .

3. The processW := (Wi)i20:17 is @ two-dimensional (F)-Brownian motion.

4. The probability distribution P X ! has time marginal densities(p; t 2 (0; T]) with respect
to Lebesgue measure which satisfy

81<q< 19 Cq>080<t T, t! akpkiamy Cq (6.35)

R
5. For any t 2 [0;T] and x 2 R?, one has that  jbo(s;x)j ds< 1 :

6. P-a.s. the pair (X;W ) satis es (6.33.

It is clear that any solution to ( 6.1) in the sense of De nition 6.2.1is a solution to (6.33) in the
sense the preceding de nition. Therefore, if we prove uniqueess of the weak solution in the sense
of De nition 6.6.1to (6.33, we will have the uniqueness of the solution in the sense of De tion
6.2.1to (6.1).

In order to do so, we will use the so-called transfer of uniqueness gved in Trevisan [/6]. The goal
is to use the [/6, Lemma 2.12] in the sense) implies ii ). This result is stated in the sequel once
all the objects appearing in it are introduced. Firstly, let us de ne the mild equation associated to
the laws (p); T in the sense of distributions.

x Z
pt=0 o . rig s (b(s;)ps)ds: (6.36)
i=1

We de ne the spaceR .1 as follows
8
2 1: 0= o0
Rotp=f( ot 1 S 2:  is a probability density functilon
3:81<q<1;80<t T: t'dkkiareyy< 1 and . satises (6.36):

We prove it admits a unique solution under a condition precised in e proof.

Lemma 6.6.2. Equation (6.36) admits a unique solution in the spaceR jo.r provided is small
enough.

Proof. Let us suppose there exist two families of densitiesp®: 1 and (pf); T satisfying (6.7) and
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(6.35. We will prove sup, 1 kpt pfki1(rey = 0. Notice that

xe . .
ket BEkiire) . krige s ((bb(s; +H(si; N(Ps  PE))kLi(re) ds
i=1

Z t
kr g skiiroykbh(s; )+ B(s; ; ki (roykBs  Pik i(reyds  (6.37)
i=1 0

12 X Tte) j
sutpkr}S PEKL 1 (R2) . pﬁkldo(s; )+ B(s;; ki1 (rey ds:
s i=1

In view of Lemma 6.3.3 forany 0<s T, one has
i Ca(2
ku)(S, )kLl (R2) kr CokLZ(RZ)(RZ)gé(gf): (638)

Let g2 (2;4) as in Proposition 6.3.7. According to the de nition of , one has

sups T st ak skiarzy  C( ), where C( ) is given in Remark 6.3.8 Apply Helder's inequality,
Lemma 6.11 and this estimate on to obtain forany 0 <s T the following

. g R RS
k(s 5 Mkt ey Ca(-—=)C( ) —h=—"= (6.39)
q 1 S
Plug (6.38 and (6.39 in (6.37). It comes
ket pkii(re)
11 q 13 1
2supkps pokuiry) (5i5)Ca1) ke eokiereyrn Co@)+ Ca(=9)C() @ 5 )
Thus, sup, 1 ket pfkiire) = 0, provided that
—n (11 q 13 1 :
H():=2 (E’E)Cl(l) kr coki 2(r2y(r2)C2(2) + Cl(q 1)C( ) (1 02 ao) < 1: (6.40)
Remember that already satis es (6.22). In view of Remark 6.3.8 one has
q
1 A kl‘ CokLZ(RZ) (1 A kr CokLZ(RZ))Z B2
C()= K,
SinceC ()! Oas ! O,wehaveH( )! Oas ! 0. Thus itis possible to choose small
enough in order to satisfy in the same time 6.22) and (6.40). O
Now, notice that for0 <s t T one has
x s x L
=0 s (& o % (rigs u (b(u; )pu)) du Fige o (b(u; )pu)du
i=1 i=1 S
Therefore
x <
Pt=0s Ps Fige o (B(u; )pu) du: (6.41)

i=1 S
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From here, fora 2 R pg We de ne

xe 2
Psit = G s S rid u (b(U; )ps;u)du: (6-42)

i=1 S
Now we dene forany 0 s T the space
1. 2R [0:5]
2280 t T : pstisa probability density function
38l<qgq<1;8 t T: (t s)1 %kps;tqu(Rz) <1
4. (pst)s t T Satises (6.42):

R = f(Ps)s t 1

W AW 00

We will prove the following lemma for the classes Ris:t7)o s T-

Lemma 6.6.3. Forany O s T, the following two properties are satis ed:

Property 1: Let (ps)s t T 2R [s;7) @and let (gs¢)s + 7 a family of probability measures that satis es
(6.42 and is such thatd; Cps for t 2 [s;T]. Then, (Gst)s t T 2 Rs;1]-

Property 2: Letr sand(q.)r t T 2R} Then, the restriction (q.)s + 1 belongs toR st

Proof. Property 1: let s2 [0;T], (Ps.t)s t+ T 2R [s;7) @nd let (gs)s + 7 @ family of probability
measures that satis es 6.42 and is such thatg,; Cpg, for t 2 [s; T]. We should prove that
(G:t)s t T 2R g7y Asfort 2 [s;T]; we haveqs; ps; then for a test function f 2 Ck (R?) one
has Z z

I T (dx)j j F(X)psy(X)dxi:
Let g > 1 and ¢°> 1 such that é + alj =1. As (Psy)s t T 2 Rs7], ONe has

z

. . C

I 000 (dX)] Kk Tk aogeyKPs:tKLarey ———kfK qoRro:
(R%) t st (R?)

By Riesz representation theorem,qs; is absolutely continuous with respect to Lebesgue's measure.
We still denote its probability density by ¢, and conclude

C
kos;tqu(RZ) )1 -
s)”

Therefore, (G.t)s t T 2R [s:1]-

Property 2:  Letr sand (¢.)r t T 2R.r]. We should prove that the restriction (¢.)s ¢ 1
belongs toRs.r;. Lett s. Notice that

X2 Zs x 2t
Gt =0 s (Gsr ) O s rigs v (b(u;)g.)du rig o (b(u; )g.) du:
i=1 r i=1 S
Therefore, fort 2 [s; T] one has

x 2
Gt = & s G Nid u (b(U; )or;t) du:

i=1 S
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In addition, for t 2 [s;T]and r s, one has

1 1
(t ) mkoykomrez (t 1)t kg komgzy C:

Thus the restriction (q..)s + 1 belongs toRs1;. O

We are ready to state the result [/6, Lemma 2.12] in our framework:

Lemma 6.6.4. As R :=(Rs1))o s T Satis es the properties in Lemma 6.6.3, the following
conditions are equivalent:

i) for every s2 [0;T] and 2R o), there exists at most one 2 R [s1) With = .

i) for every s2 [0;T], if Q! and Q? are the laws of two weak solutions t6.33 starting from s
with Q! = Q2, then Q! = Q2.

To apply the preceding lemma in the sense) implies ii ) for s =0, it remains to check that for a
xed 2 Rgg the equation (6.42) admits a unique solution in Rg.ty. In order to do so, repeat
the same as in the proof of Lemma5.6.2to get the uniqueness of 6.42). As the constants do not
depend ont; T, one gets the same condition on for the uniqueness. We, thus, conclude the
uniqueness in law for 6.33 holds.



Chapter 7

The two-dimensional case: Particle system

and numerical simulations

The numerical simulations in this chapter were achieved in collaborabn with Victor Martin-Lac,
research engineer in team Tosca, Inria from September 2017 to June 2018. Theoncern a
probabilistic numerical method designed to solve the 2-d-KellerSegel system.

7.1 Introduction

The regularization method applied in Chapter 6 leads to a following particle approximation of
(6.1): For N 2 Nand" > 0,
( dxi;N;" = dWi + bi(t: i;N" n 1 P R i;N;" JiNs™ © .
¢ = AW By(EX T )dt+ o o K s(Xq X )ds dt; (7.1)
XN jid po: '

where W'); n are standard 2-dimensional independent Brownian motions. In view of §.13 and
Theorem 2.2.4, System (7.1) admits a unique strong solution. Then, according to Theorem2.2.6
fora xed "> 0, thlg partlcle system propagates chaos toward36(12) Thus, the empirical

measure N = W , 1 xiny converges in law towards the lawP" of the regularized process in
(6.12 when N !'1 . Then, in view of Chapter (6), the law P" converges to the law of the non
linear process in 6.1) when" ! 0. Thus, for a largeN, a small” and at> 0, the empirical

measure {\' is a good approximation of the marginal densityp; of X;. Thus, applying the Euler
scheme to {.1), we can construct a numerical approximation for the function p;.

A natural question concerns the behavior of the particle system 7.1) in the limit " = 0. In other
words, is the following particle system well de ned?
( dXx N _ dWi + v N n 1 P N Rt i:N; iiN; ° .
¢ =AW+ (X )dt+ o g K s(Xy Xs)ds dt; (7.2)
XN iid. po: '

At the present, we do not have a mathematical answer to this question This chapter is devoted to
some theoretical comments and some numerical simulations.

The plan is the following: we rst see why the techniques used in Gapter 5 do not give results on
(7.2). Then, we analyze a purely probabilistic method to discretize he Keller-Segel system in

d = 2 coming from our probabilistic interpretation. Finally, we compare it with a
probabilistic-deterministic method recently proposed by Fatkullin [ 28].

117
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7.2 Theoretical insights: Extending the techniques from d=1
We start from a probability space ( ;F ;W) and the driftless system
™ oaw 1T
t v (7.3)

X1iid.  po;

Following the arguments in Chapter 5, we would like to add the drift terms in (7.2) using the
Girsanov transformation. To do so, forx 2 C([0; T]; (R?)N) we denote byH (x) the drift term of
the i{th particle and we aim to get the Novikov condition for the drift vector

Zy
E exp BN (X)j? dt
0

for > 0. As in Chapter 5, we develop the exponential in a sum
Eexp BN(X)j?2dt =E BNX)j?dt (7.4)
0 0

k!
k=1

7.2.1 No Khasminskii's lemma procedure

Letus assumeb 0O andpy = o. For k =1 in ( 7.4) one of the terms we should control is
Z+: Z, 2

A:==E K w! w2)ds dt
0 0

We will often use the following standard formula for an integral of two onedimensional Gaussian

densities: V4
1 (x m1)2 1 (x m2)2 1 (mq mz)z
p=—=e 2% p=—=e 25 dx= p—Pp——=¢ 255 (7.5)
R 2 1 2 3 2 1t 2

In addition, we denote by g'4 when we want to emphasize that we have the one-dimensional
Gaussian density. Now, notice that
Z.72.Z,
A=2 EKE (W2 WKL (W W2)] du ds dt
z2.% 7 Z Z
=2 %@ WK sz y) Ky x y)gu s(x) dx dy dz duds dt:
0 0 s R2 R2 R2

Observe thatKl! ,(z x y)= @—@;gt u(z X y). Use (7.5 and compute the integral on R? as a
product of integrals on R. It comes
z @
Kiu@z x y)gu s dx= =g s(z y)=K{ sz )
R2 @z
Thus z.Z, 7 7

A=2 t s a@ WKz y)?dydzdsdt:
R2 R2
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Use again the same formula to integrate w.r.t.y, and z,. It comes

Z Z z
C
0%z) g% (z2 V2G(y2) dyz dzo= C gl(z0)gi (22) dzp = p=—:
R R 2 R 2 3t+s
Thus,
z.Z, 4 Z yd 2
A=C & s @ Y)7 Boas 0 G s dt:

0%z1)  g(y1)
R R

o o 3t+s (t s)4

The change of variablesb2X = y and Fubini's theorem lead to

Z1Z, 32 Z Z 2
A=C 99% g%z) oz ypt s)y (t j)e P s dy dz ds dt
o, 0 3t+s g R (t s
7>z, . z K )
= p——— y% ¥ g¥z)gl%z; y t s)dz dydsdt
o o 3t+st s) r R
2124 1 s 2 1 (t_s)y?
= pP——— vyeYp—e A9y dydsdt
o 0o 3t+st s) r t+ s
Z T Z t 1 Z (3t+s)y?
= p—— vy’ 25 dydsdt
o o 3t+s(t s r

The singularity when s! t is not integrable. We conclude thatA = 1 . Thus, it is not possible to
obtain the Novikov's condition if the initial law is a Dirac measure.

Remark 7.2.1. The above computations do not change when adding an initial cortdin to the
Brownian motion.

7.2.2 Fernique's theorem does not apply

In [37], Friz and Oberhauser show a generalised version of Fernique's theem which implies the
Novikov condition.

Theorem 7.2.2 (Thm. 2 [37])). Let (E;H; ) be an abstract Wiener space. Assume
f:E! R[f1 ;1g is a measurable map andN E a null set andc some positive constant
such that for anyx 2 N one has

ifxi<1,

8h2H: jf(x)j c(f(x h)j+ jhju):

Then, 7
. . . 1
expf jf (X)j’g (dx)< 1 if < oz 7
Here s dened as
z :
= sup <:x>2 (dx) <1:

2E%j jg2=1
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Let H be the standard Cameron-Martin space. In order to apply their Theorem 2,one should
de ne for x 2 C([0; T]; (RHN) s _
L7

f(x):= BN (x)j2 dt:
0

Then it should be proved that

f is nite W-a.e.
f is a pseudo norm, i.e. for anyh 2 H

O] cf (x h)j+ jhjn);
- d Ry — — —
where jhjy = o (h(s))2 ds.

Both conditions are problematic: we do not know how to prove thatf is nite and the
exponential in the de nition of the drift disables us to bound jf (x h+ h)j with a linear
combination of jf (x  h)j and jhjy.

7.2.3 Main di culties

At the present, we are still working on the well-posedness of 1.2). What makes this job di cult

is, as seen above, the singular nature of the interaction kernel. Thencrease of dimension lead to
an increase in time singularity which can no longer be tamed by using Bswnian techniques. This
makes us doubt that the laws of the particles are actually absolutely corihuous with respect to
Wiener's measure, while its one dimensional marginals should be.

Thus, an idea might be to nd a reference process di erent than (7.3) and then use the Girsanov
transformation. One choice for the reference system is the systenoantaining only the linear part
of the drift, i.e.

dXN o= dwi + (X Nydt T

X§iid.  po:
Using the regularization techniques from Chapter6, one can prove that System {.6) is well
de ned under some condition on the size of and kr cok 2(g. In addition, under these conditions
the laws p} of XN satisfy

(7.6)

81<q< 19 Cq> 0, supt® ikplk arey Cq:
t T

Unfortunately, such property is not powerful enough to control the time singularity of the kernel
and will not improve the computations done in Subsection7.2.1. Until present, we have not found
a suitable reference particle system.

A completely di erent approach could be to start from the regularized system (7.1) and for a xed
N try to get tightness of (X tN:"; "> 0). Then, take a limit point and prove it satis es ( 7.2). The
usual criterion of tightnesg we used in this thesis, leads us to théollowing quantity:
Ly w2y o -
E@ N K, xEN xPyd duA
S j=2 0

m
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Foranm 2 N and m > 1, we could follow the Khasminskii's argument as in Chapter5 to control
this quantity. However, we will need the joint distribution of ( X ™" ; X *N" ) for someu 6 . The
non-markovian nature of the system prevents us of having a represeéation for marginal densities
of the laws of the particles. Thus, it is not clear how to get some estirates of the law of the above
written couple that could help us in integrating the singularity. Anot her way to get tightness
might be to follow the arguments of Fournier and Jourdain [31]. It would come done to control
uniformly in " > 0 the following quantity quantity

XN L1 Z, . - 2
ES Ko (XENT xINT Y g du;

u

where 2 (0;1) is to be chosen. Again, we are not sure how to proceed once the quantityf
interest is identi ed as we do not have information about the joint laws (X3 ;XN ) for some
u6 . Another idea would be to apply a functional It6's formula in order to control the above
quantity. We have not tried this option yet.

The question of well-posedness of7(2) without cut-o remains open for our future work.

7.3 Our probabilistic numerical method

For a xed time horizon 0 <T < 1 , we choose4t> Oandn 2 N such thatn4t= T. In the
sequel, we propose a discrete approximationXka 1)1 k n := (Xeq: 5 Xpay )1 k n Of (7.2).

Then, we use it to construct a discretization (; c) of a solution (;c) to (6.9).

For a given probability measure pg on R? we assume 1((');'\' )1 i n are independent identically
distributed according to pp. We suppose the initial concentrationcg 2 H *(R?) is given and that in
each pointx 2 R? we can computer ¢ (x). Ford i N and1l k n, we apply the Euler
scheme on 7.2). One gets

N = yiN -y kN ; i iy
X(Ik+l)4t h XII<4t + 4 tbo(k4 t; XII<4t) + 4t N Vklzju +(W(Ik+1)4t Wi 0);
j=1j6i
[ Rk4t i:N iiN . . i
whereViy = o Kuat s(X\4; Xs ) ds. One way to discretizeV,; , is to use the values
XN i x N and Riemann sums. This is, of course, one of many possible choices when
discretizing this integral, but disputable when the integral is singular. Nevertheless, we set

b(l
i _ i:N N y.
Viar = AtKa nat(Xig Xipy):
1=0

Finally, we obtain the following discrete approximation of the particle system (7.2):

Coym i Fatbotkd tX N+ 4t 0 N v (W W,
(k+1) 4t = k4t B o s Xat) N j=1j6i Yk4t ( (k+1) 4 t ka t) (7.7)
Xgliciodo poi Ved = 10 4 tK e nat(Xip XIay)

Notice that each th is a two dimensional vector. The system {.7) can be simulated easily.
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