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Abstract

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis describes the
time evolution of the density of a cell population and of the concentrationof a chemical attractant.

This thesis is devoted to the study of the parabolic{parabolic Keller-Segel equations using
probabilistic methods. To this aim, we give rise to a non linear stochastic di�erential equation of
McKean-Vlasov type whose drift involves all the past of one dimensional time marginal
distributions of the process in a singular way. These marginal distributions coupled with a
suitable transformation of them are our probabilistic interpretation of a solution to the Keller
Segel model. In terms of approximations by particle systems, an interesting and, to the best of our
knowledge, new and challenging di�culty arises: each particle interacts with all the past of the
other ones by means of a highly singular space-time kernel.

In the one-dimensional case, we prove that the parabolic-parabolic Keller-Segel system in the
whole Euclidean space and the corresponding McKean-Vlasov stochasticdi�erential equation are
well-posed in well chosen space of solutions for any values of the parameters of the model. Then,
we prove the well-posedness of the corresponding singularly interacting and non-Markovian
stochastic particle system. Furthermore, we establish its propagation of chaos towards a unique
mean-�eld limit whose time marginal distributions solve the one-dimensional parabolic-parabolic
Keller-Segel model.

In the two-dimensional case there exists a possibility of a blow-upin �nite time for the
Keller-Segel system if some parameters of the model are large. Indeed, we prove the
well-posedness of the mean �eld limit under some constraints on the parameters and initial
datum. Under these constraints, we prove the well-posedness of theKeller-Segel model in the
plane. To obtain this result, we combine PDE analysis and stochastic analysis techniques.

Finally, we propose a fully probabilistic numerical method for approximating the two-dimensional
Keller-Segel model and survey our main numerical results.

Keywords: McKean-Vlasov stochastic processes; stochastic particle systems with singular
non-Markovian interaction; probabilistic methods for PDEs; Keller -Segel PDE; chemotaxis models.
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R�esum�e

En chimiotaxie, le mod�ele parabolique-parabolique classique de Keller-Segel en dimensiond d�ecrit
l'�evolution en temps de la densit�e d'une population de cellules et de la concentration d'un
attracteur chimique.

Cette th�ese porte sur l'�etude des �equations de Keller-Segel parabolique-parabolique par des
m�ethodes probabilistes. Dans ce but, nous construisons une �equation di��erentielle stochastique
non lin�eaire au sens de McKean-Vlasov dont le coe�cient dont la coe�c ient de d�erive d�epend, de
mani�ere singuli�ere, de tout le pass�e des lois marginales en temps du processus. Ces lois marginales
coupl�ees avec une transformation judicieuse permettent d'interpr�eter les �equations de Keller-Segel
de mani�ere probabiliste. En ce qui concerne l'approximation particulaire il faut surmonter une
di�cult�e int�eressante et, nous semble-t-il, originale et di�c ile: chaque particule interagit avec le
pass�e de toutes les autres par l'interm�ediaire d'un noyau espace-temps fortement singulier.

En dimension 1, quelles que soient les valeurs des param�etres de mod�ele, nous prouvons que les
�equations de Keller-Segel sont bien pos�ees dans tout l'espace et qu'il en est de même pour
l'�equation di��erentielle stochastique de McKean-Vlasov corres pondante. Ensuite, nous prouvons
caract�ere bien pos�e du syst�eme associ�ee des particules en interaction non markovien et singuli�ere.
Nous �etablissons aussi la propagation du chaos vers une unique limite champ moyen dont les lois
marginales en temps r�esolvent le syst�eme Keller-Segel parabolique-parabolique.

En dimension 2, des param�etres de mod�ele trop grands peuvent conduire �a une explosion en temps
�ni de la solution aux �equations du Keller-Segel. De fait, nous montrons le caract�ere bien pos�e du
processus non-lin�eaire au sens de McKean-Vlasov en imposant des contraintes sur les param�etres
et donn�ees initiales. Pour obtenir ce r�esultat, nous combinons destechniques d'analyse
d'�equations aux d�eriv�ees partielles et d'analyse stochastique.

Finalement, nous proposons une m�ethode num�erique totalement probabiliste pour approcher les
solutions du syst�eme Keller-Segel bi-dimensionnel et nous pr�esentons les principaux r�esultats de
nos exp�erimentations num�eriques.

Mots clefs: processus stochastiques de McKean-Vlasov; particules stochastiques en interaction
non markovien et singuli�ere; methodes probabilistes pour les EDP; EDP de Keller-Segel; mod�eles
de chimiotaxie.
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Chapter 1

On the Keller-Segel model for chemotaxis:

From the literature to our main results

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis describes the
time evolution of the density � t of a cell population and of the concentrationct of a chemical
attractant:

8
><

>:

@t � (t; x ) = r � ( 1
2r � � �� r c)( t; x ); t > 0; x 2 Rd;

@t c(t; x ) = 1
24 c(t; x ) � �c (t; x ) + � (t; x ); t > 0; x 2 Rd:

� (0; x) = � 0(x); c(0; x) = c0(x):

The goal of this thesis is to propose a new probabilistic interpretationfor this non-linear doubly
parabolic system and analyze it from theoretical and numerical viewpoint.

In this introductory chapter we provide an overview of the literat ure concerning this model and
our main results.

We start with biological phenomena aimed to be modeled by the Keller-Segel system: chemotaxis.
In Section 1.1 we de�ne it, revisit the historical aspect of its investigation and give some examples
of biological processes governed by or involving chemotaxis.

Then, Section 1.2 explains the behaviour of cells when undergoing chemotaxis on a microand a
macro level. Afterwards, we review the pioneer work of Keller and Segel [46, 47, 48] who pose the
above system of PDEs in its more general form.

Since it has been posed, the system is a subject of huge amount of PDE analysis literature. An
interesting phenomenon emerging from it is the possibility of a blow-up in �nite time. A selection
of the PDE analysis results on the Keller-Segel system is given in Section 1.3.

Recently, probabilistic interpretations have appeared for molli�ed or parabolic-elliptic versions of
the fully parabolic model. In Section 1.4 we review the state of the art for these stochastic
approaches.

In Section 1.5 we present and discuss our own probabilistic interpretation: a McKean-Vlasov
stochastic process whose drift involves all the past of one dimensional time marginals of the
process in a singular way. These time marginals coupled with a suitable transformation of them
are our candidate for a solution to the Keller-Segel system. In terms ofapproximations by particle
systems, an interesting and, to the best of our knowledge, new and challenging di�culty arises:
each particle interacts with all the past of the other ones by means of a highly singular space-time
kernel. In this Section we also state our main results and summarize some of our numerical results.

1



Chapter 1. On the Keller-Segel model for chemotaxis: From the literature to our main results 2

1.1 Our biological motivations: Phenomena of chemotaxis

In order to give meaning to the notion of chemo-taxis, we will start from the su�x taxis (pl.
taxes), an ancient Greek word for arrangement. Taxis represents oriented movement of a motile
organism in response to a stimulus (e.g. light, temperature, food).The movement can be directed
towards or away from the stimulus. In the �rst case, we have positive taxis and in the later
negative taxis. It is important to emphasize that only the motile organisms are capable of
performing such movements. Motile essentially means able to moveby itself. For example, bacteria
cells use structures called 
agella to enable these movements. Taxes should not be confused with
tropism and kinesis. These are another classes of movements in response to a stimulus. The �rst
one represents the movements that include growth towards or away from the stimulus. The
di�erence is that in taxes the organism must have motility and the exhibited movement is not
growth, but rather a guided change of position. On the other hand, in kinesis, the presence of
stimulus in
uences the changes of velocity of the organism, but not its direction in movement.

Taxes are also classi�ed by the type of stimulus governing them, which is indicated by a pre�x.
Photo-taxis is governed by light, thermo-taxis by temperature. If the presence of oxygen triggers
the movements, we haveaero-taxis. Finally, a chemical stimulus is responsible forchemo-taxis.

Since the end of 17th century and Leeuwenhoek's advances in the �eld ofmicrobiology, scientists
have been studying the movements of organisms. However, bacterial chemotaxis was discovered
two centuries after by Engelmann [27] and Pfe�er [ 63, 64]. By Pfe�er's original de�nition,
chemotaxis is de�ned as anything that causes the oriented movement ofan organism or a cell
relative to a chemical gradient. In his work, Pfe�er also gave the basis for assays on how to detect
chemotaxis, i.e. the capillary method [63, 64]. Chemical that prompts positive chemotaxis was
called the chemo-attractant, while chemical that causes the organism to 
ee away from the source
was calledchemo-repellent. Chemo-attractants usually represent favourable environment for the
organism, e.g. food, while the chemo-repellents are noxious substances, such as poisons. One
interesting consequence of positive chemotaxis is cell aggregation. The chemo-attractants
produced by the fellow species increase self-attraction among thepopulation and further stimulate
cell aggregation [18].

The study of the phenomena of chemotaxis may be divided into two periods: before 1960's and
after. As mentioned in [4], the work before 1960's was carried out in complex media and was of a
quite subjective nature. The review of this period is given in [6, 80, 81]. In the second period, the
�rst priority was to develop conditions for obtaining motility and chem otaxis in de�ned media
[1, 5, 2, 3] . Then it was important to �nd quantitative methods that objectivel y detect
chemotaxis [1, 77]. This work, mostly by Adler, altered the attention from phenomenological to
quantitative research and initiated studies to reveal the molecularmechanism of bacterial
chemotaxis. Afterwards, the number of groups studying bacterial chemotaxis has been
continuously rising. Bacterial motility and chemotaxis have been studied most intensively in
Escherichia coli and its close relativeSalmonella enterica serovar Typhimurium. We refer to [26]
for a very complete and thorough further reading, which deals not only with bacterial chemotaxis,
but also with chemotaxis as a mean of cell-cell communication, chemotaxis in amoeba, blood cells,
sperm cells and nervous system.

After such an extensional research in the �eld, natural question that poses itself is what the
signi�cance of chemotaxis is. It has been established that chemotaxis plays a role in some of the
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most important biological processes, not only for humans, but for almost all species.

Naturally, we start from the role of chemotaxis in reproduction, as it is the essential process for
existance of life. It is �rstly discovered in marine species [54] that chemotaxis is responsible of
guided movement of spermatozoa to the egg during fertilization. The research spread to all
species, from non-mammals to mammals. It has been established that for humans and some other
mammals, chemotaxis besides the previous role in guiding, has a selective role as well. Namely,
not all of the spermatozoa have the ability to fertilize the egg. The onesthat do have it are
chemotactically responsive. Chemotaxis is in charge for selecting them and then guiding towards
the egg. For a full review on sperm chemotaxis we refer to Chapter 7 in [26].

Not only does the chemotaxis have a reproductive role, but it also appears in the embryonic phase
once the fertilization is successfully completed. During the development of the embryo, cell
migration has a crucial role in morphogenetic processes and formation of nervous system [35].
Many of these migration are caused by chemotaxis. The development and especially wiring of
nervous system depends on the precise guidance of axonal growth cones totheir targets.
Mechanism underlying it is again chemotaxis [25].

Furthermore, we �nd its role in functioning of the immune system. Certainly, movement and quick
response are essential when it come to the immune system. In order to threat an infection, the
white blood cells need to migrate towards it. They are attracted by the change of chemical
gradient that the infection produces [58].

So far, we have only seen the positive aspects of chemotactic movements. However, a negative
aspect is the participation of chemotaxis in cancer metastasis and progression. Once the tumor
had a�ected a certain tissue, cancer cells use chemotaxis to migrate towards the surrounding
tissue and invade blood vessels [67].

An interesting role of chemotaxis can be found in agronomy and the use of bio-fertilizers. Namely,
certain groups of bacteria in the rhizosphere region of soil positively in
uences plant growth.
Bacteria successfully colonizes the rhizosphere thanks to chemotactic attraction from the root
exudates of the plants [61].

We conclude this part with one fascinating way to use chemotaxis in medical purposes.
Particularly, in construction of nanorobots for human drug delivery. Th e idea is to design
autonomously moving arti�cial cells which would carry drugs and be capable of chemotactic
movements. These movements would rely on arti�cial chemotaxis. This concept is described and
analyzed in [50].

1.2 Modelling of chemotaxis and the Keller{Segel approach

As the biological research of the phenomenon grew and altered its interesttowards experiments,
the need for mathematical models for chemotaxis emerged. Mathematical models help in better
understanding of experimental results and allow biologists to studydi�erent characteristics of
bacterial systems without the need to intensively repeat the experiments. When one desires to
mathematically model chemotaxis, �rst the goal and nature of the results should be clearly
de�ned. That is to say, are we interested in the particular behaviour of one individual (cell,
bacteria) of the population or of the whole population at once. This leads us totwo main
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approaches when modelling chemotactic movements, the microscopicand macroscopic approaches,
respectively.

As the microscopic models focus on the individual cell, it is important to understand the
biological processes that are happening within it when the cell becomes chemotactically active.
We will try to illustrate it on the example of E. Coli , as its chemotaxis is understood best. When
there is no stimuli in its environment, E. Coli swims in a random walk. The random walk takes
on a biased character, towards the attractant or away from the repellent, as soon as the presence
of stimuli is sensed. The movement itself is a series of "runs" and"tumbles". Runs are movements
following a (fairly) straight line, which are suddenly interrupt ed by a change in the direction, a
tumble. When E. Coli exhibits positive chemotaxis, the number of tumbles decrease. The opposite
happens with the negative chemotaxis. If there is a change of gradient inthe extra-cellular
environment, the bacterium is unable to detect it along its own length, because its size is too
small. Instead, the cell is equipped with membrane receptors, which are able to distinguish very
low attractant concentrations. Once the attractant is detected, the receptor passes the signal
inside the cell. Thanks to the intra-cellular proteins, called Che proteins (from Chemotaxis
proteins), a signaling cascade occurs and �nally arrives to 
agellar motors. Then, the 
agella are
rotated clockwise or counterclockwise, depending on the type of the stimulus. Clockwise rotation
leads to tumbling and counterclockwise to runs. An important part of the process is also the
adaptation, which includes resetting of receptors, as if they have not been stimulated at all.
Furthermore, since the bacteria are able to sense a tiny change in gradients, they need to be able
to amplify the signal (gain process).

The mathematical models for one cell try to represent above mentioned processes, individually or
together. So far, none of the models was able to reproduce well all of them together. One of the
reasons is that they all occur in di�erent time scales. The models which do a good job in
representing ligand binding and adaptation, can not represent well also the chemoreceptor
sensitivity and gain and vice versa. For a review on these and many other processes and how they
have been modeled in the literature, we refer to the thorough and comprehensive review by
Tindall et. al [75].

Now, we will see how a population exhibiting chemotactic activity behaves on the example of
slime molds. Slime molds are populations of amoebae that grow by cell division. The cells wander
around their environment exhausting food supplies which they areable to �nd using chemotaxis.
Once the nourishment is consumed, cells disperse uniformly around the area at their disposal. A
while later, some of the cells begin emitting a signal that attracts other cells who start moving
towards it and are triggered to emit the same attracting signal. The cells aggregate, forming a
slug that may move, respond to chemical stimuli and detect food sources. Eventually, the slug
produces fruiting bodies and releases spores in order to recommence the life cycle. The pioneer of
biological research of slime molds was Bonner (see e.g. [9]). What is fascinating about slime molds
even today, is that individually, they are very simple organisms that exhibit "intelligent"
behaviour once they aggregate. In the study [74], the authors were even able to reproduce a map
of Tokyo rail system once the di�erent stimuli were put in the right places.

Motivated by describing the onset of slime mold aggregation using a macroscopic approach,
Evelyn F. Keller and Lee A. Segel propose in [46] a model of four coupled parabolic equations.

Namely, the authors start from the individual properties of the cells in order to derive a model for
the aggregation stage. Let� (t; x ) denote the density of the amoebae at pointx in time t, c(t; x )
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denotes the concentration of the chemo-attractant (acrasin),� (t; x ) denotes the concentration of
the enzyme that degrades the chemo-attractant (acrasinase) and, �nally,� (t; x ) denotes the
concentration of a bio-chemical complexV formed by acrasin and arcasinase. The individual
properties taken into account are the following:

1. The amoeba moves according to a random motion analogous to a di�usion that isbiased
towards the direction of the positive gradient of the attractant.

2. The acrasin is produced by the amoebae with ratef (c).

3. The acrasinase is produced by the amoebae with rateg(c; � ).

4. The complexV dissociates into arcasinase and a degraded product (d.p.):

c + �
k1
�
k� 1

V
k2! � + d.p.

5. Acrasin, arcasinase and the complexV di�use according to Fick's law.

In order to derive the equation for � , the authors use the mass balance equation and the fact that
the 
ux of amobea mass is proportional to r � (by Fick's law) and r c (by Fourier's law). Birth
and death are not taken into account. Thus,

@
@t

� (t; x ) = r � (D1(�; c )r � � � (�; c )r c):

Here, D1 represents the strength of the random movement and� the impact of the
chemo-attractant gradient to the 
ow of the population. The chemo-attract ant di�uses according
to Fick's law and its dynamics involves its production and consumption rates as described above,

@
@t

c(t; x ) = Dc4 c + f (c)� � k1c� + k� 1�:

The equations for � and � are derived in the same way. The authors arrive to the following system:
8
>>>>>><

>>>>>>:

@
@t� (t; x ) = r � (D1(�; c )r � � � (�; c )r c); t > 0; x 2 Rd;
@
@tc(t; x ) = Dc4 c + f (c)� � k1c� + k� 1�; t > 0; x 2 Rd;
@
@t� (t; x ) = D � 4 � + �g (c; � ) � k1c� + ( k� 1 + k2)�; t > 0; x 2 Rn ;
@
@t� (t; x ) = D � 4 � + k1c� � (k� 1 + k2)�; t > 0; x 2 Rd;

� (0; x) = � 0(x); c(0; x) = c0; � (0; x) = � 0; � (0; x) = � 0; x 2 Rd:

(1.1)

Here k� 1; k1 and k2 are positive constants.

Then, the authors argue that the aggregation occurs as, in some point of maturation, the
individual properties of the cells change. Thus, a uniform distribution is no longer favorable and it
becomes unstable. The objective is to see how such change in individual cells impacts the whole
population, rather to explain why and how such change happens. In order to do so, the authors
propose a simpli�ed version of the latter system"as it is useful for the sake of clarity to employ
the simplest reasonable model"[46, p. 403]. They assume that the bio-chemical complexV is in a
steady state w.r.t. the chemical reaction: k1c� � (k� 1 + k2)� = 0 and that the total concentration
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of the free and bound degradant is constant:� + � = � 0. Thus, (1.1) transforms into the following
system of non-linear parabolic equations:

8
>>>><

>>>>:

@
@t

� (t; x ) = r � (D1(�; c )r � � � (�; c )r c); t > 0; x 2 Rd;

@
@t

c(t; x ) = Dc4 c + f (c)� � k(c)c; t > 0; x 2 Rd;

� (0; x) = � 0(x); c(0; x) = c0; x 2 Rd:

(1.2a)

(1.2b)

Then, the authors study how a small time dependent perturbation of the uniform con�guration
in
uences a linearized version of (1.2) for d = 2. They �nd conditions under which the uniform
state is temporarily or de�nitely perturbed. The latter may be int erpreted as the beginning of
aggregation. Finally, analyzing these conditions, the conclusion is that ade�nite perturbation
occurs as a result of:i ) increase in the sensitivity of the population to a given acrasin gradient,
ii ) increase in the rate which cells produce the acrasin oriii ) increase in the rate of acrasin
production ( f ) due to high acrasin production. In other words, if the cells are too sensitive to a
certain attractant or they start producing too much of it, we may expect an aggregation. This
claim will often be revisited in this thesis.

The above work is followed by two more articles by the same authors [47, 48]. In [47], the
chemotaxis of amoebae is modelled when the concentration of the acrasinc is assumed to be
given. Equation (1.2a) is viewed as evolution of a probability density function and is derived as
collective behaviour of individual cell behaviours, whereD1(�; c ) = � (c) and � (�; c ) = �� (c). In
[48], the authors use the system (1.2) in d = 1 to reproduce the experimental results of Adler's
capillary essays. They assume again the speci�c form of motility and sensitivity functions:
D1(�; c ) = � (c) and � (�; c ) = �� (c). In ( 1.2b), k(c) is supposed to be zero and the cells no longer
produce the chemo-attractant but consume it with the rate f (c) (i.e. the sign in front of f (c)� has
changed). The goal was to observe the traveling bands of bacteria up to the capillary tube, as in
the experimental case and to compare with the experimental data some quantitative properties
(width and speed of the traveling bands). The comparison result were encouraging, but as the
authors notice, what is more encouraging is that their model is capable of describing di�erent
assays of chemotaxis and that their framework may serve when describing other collective
chemotactic phenomena.

Indeed, we deliberately used here the technical terms "ameboe", "acrasin", "acrasinase" in order
to help the reader concretize this example of chemotactic activity.Once one understands the
phenomenon behind it and the mathematical description of Keller and Segel, one could easily
change these words with "cell population", "chemo-attractant" and "chemo-degradant",
respectively and obtain a general model for chemotaxis. Nowadays, any model of the following
form is called a Keller-Segel type model:

8
><

>:

@
@t� (t; x ) = r � (f 1(�; c )r � � � (�; c )r c) + f 2(�; c ); t > 0; x 2 Rd;
@
@tc(t; x ) = Dc4 c + f 3(c; � ) � f 4(c; � )c; t > 0; x 2 Rd;

� (0; x) = � 0(x); c(0; x) = c0; x 2 Rd:

(1.3)

Here the function f 2 accounts for birth and death of the cell population. It is usually neglected
assuming the phenomena occurs over a short period of time.

This thesis will be devoted to the so-called classical Keller{Segelmodel of parabolic-parabolic type
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given by 8
>><

>>:

@t � (t; x ) = r � (r � � �� r c)( t; x ); t > 0; x 2 Rd;

� @t c(t; x ) = 4 c(t; x ) � �c (t; x ) + � (t; x ); t > 0; x 2 Rd;

� (0; x) = � 0(x); c(0; x) = c0(x); x 2 Rd:

(1.4a)

(1.4b)

where � � 0 and �; � > 0. It corresponds to f 1(�; c ) � const, � (�; c ) = �� , f 2 � 0, f 3(c; � ) = � and
f 4(c; � ) = � in (1.3). This system is as well called the "minimal model" as it does not involve
complicated functions for sensitivity of the population, production and decay of chemo-attractant
but rather simple linear functions. Still, it is rich enough to describe the phenomena in question as
we will see in the next section.

Notice that the �rst equation in ( 1.4) preserves total mass as long as the solutions are well
de�ned. We will denote

M :=
Z

Rd
� 0(x)dx =

Z

Rd
� (t; x )dx:

We also remark that when � = 0, ( 1.4b) is an elliptic equation and the system may be decoupled
using Green's functions. This is the so-called parabolic{ellipticversion of the model. Even though
this thesis is focused on the case� = 1 (more general on � > 0), we will see that the two cases are
somehow inseparable since the techniques used to analyze the parabolic-elliptic model are the
groundwork for the doubly parabolic model.

1.3 PDE analysis of the Keller-Segel system

As the Keller-Segel system is designed to model the onset of cell aggregation when triggered by
chemical stimulus, it is no surprise that the solutions may blow-up in �nite time. The de�nition of
the blow-up in �nite time for a solution ( �; c ) is the following : there exists a time T0 < 1 such
that � t converges to a measure not belonging toL 1(Rd) as t ! T0. In general, the question of
well-posedness of (1.4) is a subject of an extensive amount of PDE literature over the past almost
40 years. A very complete review of the results obtained until early 2000's can be found in
Horstmann [41, 42]. Then, we suggest to the interested reader the review of Perthame[62] which
after a theoretical review of the Keller-Segel system shows its connection with kinetic models for
chemotaxis and the work of Hillen and Painter [39] reviewing results on di�erent variations
of (1.4).

The principal conclusion when investigating the literature about the Keller-Segel system is that
whether we have global well-posedness or a blow up in �nite time is highly correlated with the
space dimension of the problem. In addition, various results obtained depend also on the
prescribed initial and possible boundary conditions, type of the domain and value of parameter� .

Here we will summarize some of the results in the literature and willclassify them in three groups:
d = 1, d = 2 and d � 3.

The one-dimensional case

The well-posedness of (1.4) in d = 1 is the least elaborate case. It was previously studied by Osaki
and Yagi [60] and Hillen and Potapov [40]. The conclusion is: The solution exists globally in time
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on bounded intervals with periodic or Neumann boundary conditions.

In [60] the authors analyze a more general model:
8
>>>><

>>>>:

@t � (t; x ) = a@2 �
@x2 � @

@x(�
@

@x� (c) t > 0; x 2 I;

@t c(t; x ) = @2c
@x2 � �c (t; x ) + d� (t; x ); t > 0; x 2 I;

� (0; x) = � 0(x); c(0; x) = c0(x); x 2 I
@�
@(t; � ) = @�

@(t; � ) = @c
@(t; � ) = @c

@(t; � ) = 0 ; t > 0;

(1.5)

where I = ( �; � ). They assume� is a smooth function on (0; 1 ), di�erentiable three times and
that these derivatives satisfy certain estimates. The case� (c) = �c , � > 0 corresponding to (1.4),
is included in their assumptions. Supposing� 0 2 L 2(I ) \ L 1(I ), c0 2 H 1(I ) and inf I c0(x) > 0,
they prove (1.5) admits a unique global solution belonging to

� 2 C([0; 1 ); L 2(I )) \ C 1((0; 1 ); L 2(I )) \ C ((0; 1 ); H 2
N (I )) ;

c 2 C([0; 1 ); H 1(I )) \ C 1((0; 1 ); H 1(I )) \ C ((0; 1 ); H 3
N (I )) :

Here the subscript N emphasizes that the Neumann boundary condition is satis�ed by functions
belonging to H 2

N (I ) and H 3
N (I ). They prove such solution is a classical solution in the case of

(1.4).

Their well-posedness proof is divided into two steps: �rst, they establish the existence of a unique
local in time solution to ( 1.5). Second, they prove the following energy estimate:

@
@t

Z

I

 �
@2�
@x2

� 2

+
�

@2c
@x2

� 2
!

dx +
Z

I

 
a
2

�
@3�
@x3

� 2

+
b
2

�
@4c
@x4

� 2
!

dx

+
Z

I

 �
@2�
@x2

� 2

+ �
�

@4c
@x4

� 2
!

dx � p(k� kH 1 + kckH 2 ):

This helps them to extend the local solution to an arbitrary time hori zon T > 0.

The work in [40] concerns the classical model (1.4) on a bounded interval (0; l ) with either
Neumann or periodic boundary conditions. The global well-posedness is obtained assuming that
� 0 2 L 1 (I ) \ L 1(I ) and c0 2 W �;p (I ), where p and � belong to a particular set of parameters.
This set is de�ned as follows: a tuple of parameters (�; p; r; P; Q ) is admissible if

1 < � < 2;
1

� � 1
< p < 1 ;

2p
�p + 1

< r <
1

� � 1

1 < P < 1
1
p

;
1
P

+
1
Q

= 1 ;
1
p

<
Q
r

<
1
p

+ 2 :

The result again is obtained by globalizing a local solution obtained applying Banach's �xed point
theorem. Then, this solution is turned into a global one by using the regularity of heat semi-group
and the mild formulation of ( 1.4).

The two-dimensional case

In the parabolic-elliptic version of the system, i.e. when� = 0, one may decouple the equations by
expressingc in terms of � using Green's functions. In this setting, the system exhibitsa threshold
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behaviour: if M� < 8� the solutions exists globally in time, if M� > 8� every solution blows-up
in �nite time (see e.g. Blanchet et. al [8] and Nagai and Ogawa [56]). As for the pro�le of the
singularity, Herrero and and Vel�azquez [37] prove existence of a radially symmetric solution on a
disc with Neumann boundary condition that blows-up at the origin in �nit e time by acquiring a
� -function type singularity. This phenomenon is called in the literature the " chemotactic
collapse". The condition in the threshold implies that in order to form a singul arity, the total
mass of the cell population needs to be large or the attraction of the chemical needs to be very
strong. This is in accordance with the conclusions made by Keller and Segel in [46] when
analyzing the instability of the system.

On the other hand, the parabolic-parabolic model (1.4) expresses a less straight-forward
behaviour. It has been proved that whenM� < 8� one has global existence (see Calvez and
Corrias [20], Mizogouchi [55]). However, in Biller et. al [7] the authors �nd an initial con�guration
of the system in which a global solution in some sense exists withM� > 8� . Then, Herrero and
Vel�azquez [38] construct a radially symmetric solution on a disk that blows-up and develops
� -function type singularities. Finally, unique solution with any positive mass exists when the
reverse di�usion of the chemoattractant is large enough (Corriaset. al [22]). Thus, in the case of
parabolic-parabolic model, the value 8� can still be understood as a threshold, but in a di�erent
sense: under it there is global existence, over it there exists asolution that blows up.

In [20] the authors obtain the global existence whenM < 8� and � = � = 1 assuming as well that

1. � 0 2 L 1(R2) \ L 1(R2; log(1 + jxj2)dx) and � 0 log � 0 2 L 1(R2);

2. c0 2 H 1(R2) if � > 0 or c0 2 L 1(R2) and jr c0j 2 L 2(R2) if � = 0;

3. � 0c0 2 L 1(R2).

Notice that the mass condition is equivalent to M� < 8� for a given � > 0 by rescaling of (1.4).
In the same sub-critical case, the global existence result is obtained in [55] assuming
� 0 2 L 1(R2) \ L 1 (R2) and c0 2 H 1(R2) \ L 1(R2). Both of these works use energy methods to
prove the apriori estimates for the solutions of (1.4). Then, these estimates lead to existence of
global solution in sub-critical case. The free energy functional associated to (1.4) is

E(t) =
Z

R2
� (t; x ) log c(t; x ) dx �

Z

R2
� (t; x )c(t; x ) dx +

1
2

Z

R2
jr c(t; x )j2 dx +

�
2

Z

R2
c2(t; x ) dx:

The technical computations exploit in [55] the Trudinger-Moser inequality while in [20] two
alternatives are proposed: either to use the so-called Onfori inequality on the whole space or the
Hardy-Littlewood-Sobolev inequality.

In addition, in [ 55] the critical case M = 8 � is treated. Under the assumptions
� 0 2 L 1(R2) \ L 1 (R2), � 0 2 L 1(R2; log(1 + jxj2)dx), � 0 log � 0 2 L 1(R2) and c0 2 H 1(R2) \ L 1(R2),
global existence for (1.4) is obtained.

On the other hand, in [22], global existence and uniqueness is obtained for any positive massM
under some restriction on the parameter� > 0 and the initial datum. The authors are interested
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in the so-called integral solution to (1.4) that is a couple that satis�es

� (t; �) = G(t; �) � � 0 �
2X

i =1

Z t

0
r i G(t � s; �) � (� (s; �)r i c(t; �)) ds

c(t; �) = e� �
� t G(

t
�

; �) � c0 +
Z t

0
e� �

� (t � s)G(
t � s

�
; �) � � (s; �) ds;

(1.6)

where G(t; x ) = 1
4�t e� j x j 2

4t . This formulation is also known as mild form of (1.4) or the Duhamel's
formula. It is supposed� = 1. The following theorem is proved:

Theorem 1.3.1 (Theorem 2.1 [22]). Let � > 0, � � 0, � 0 2 L 1(R2) and c0 2 H 1(R2). There
exists � = � (M; � ) and T = T(M; � ) such that if kr c0kL 2 (R) < � there exist an integral solution
(1.6) of the Keller-Segel model with� 2 L 1 ((0; T); L 1(R2)) and jr c 2 L 1 ((0; T); L 2(R2)) j.
Moreover, the total massM is conserved and there exists a constantC = C(� ) such that if
M < C (� ), the solution is global and

t1� 1
p k� (t; �)kL p (R2 ) � C(M; � ); t > 0;

t
1
2 � 1

r kr c(t; �)kL r (R2 ) � C(M; � ); t > 0;

for all p 2 [1; 1 ] and r 2 [2; 1 ].

In order to prove this result, the authors apply Banach's �xed point t heorem iterating the
formulation ( 1.6). In order to exhibit a contraction the condition on the initial datum e merges. In
order to pass from local to global solution in time, the condition on the massemerges. However,
as the latter is of the form

C1� a
p

M + C2� bkr c0kL 2 (R) < 1;

for some constantsC1; C2; b > 0 and a < 0, one can have M as large as one likes as soon as� is
large enough as well. For the same reason, the smaller is� , the more restrictive is the condition
on the mass. Once the existence is proved, uniqueness and positivity of solutions follow from the
following theorem

Theorem 1.3.2 (Theorem 2.6 [22]). Let � > 0, � � 0 and let � i
0 2 L 1(R2) and ci

0 2 H 1(R2),
i = 1 ; 2, be two initial data su�ciently small so that the corresponding solutions (� i ; ci ) of (1.6)
are global. Then, for anyp 2 [1; 1 ] and r 2 [2; 1 ], there existsC = C(p; r) > 0 independent oft,
such that for t > 0 it holds

t1� 1
p k� 1(t; �) � � 2(t; �)kL p (R2 ) + t

1
2 � 1

r kr c1(t; �) � r c2(t; �)kL r (R2 )

� C(k� 1
0 � � 2

0kL p (R2 ) + kr c1
0 � r c2

0kL r (R2 ) ):

The case d � 3

When d � 3 the total mass is no longer the relevant parameter for the well-posedness analysis, but
rather the L

d
2 + " (R2)-norms where" � 0.

In fact, for the parabolic{elliptic model, Corrias et. al. [24] assume that � 0 2 L p(Rd) for any
1 � p < 1 and is non-negative. Then, they prove that there exists a constantK 0(�; d ) such that
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if k� 0k
L

d
2 (R2 )

� K 0, then the elliptic model has a global weak solution that preserves theinitial

mass and satis�es someL p(Rd)-norm estimates. Then, they prove that the elliptic system has no

global smooth solution with fast decay if the quantity
� R

Rd � 0(x) dx
� d

d� 2 is large. However, such a

condition cannot be replaced by a condition on the magnitude ofL
d
2 (R2)-norm of � 0 as in the case

of d = 2.

Corrias and Perthame [23] study the purely parabolic-parabolic case (1.4) with � = 1. Assuming
that � 0 2 L 1(Rd) \ L a(Rd), where d

2 < a � d and r c0 2 L d(Rd), they prove that if
k� 0kL a (Rd ) + kr c0kL d (Rd ) � C(d; a) the parabolic system has at least one weak and global positive
solution satisfying a certain estimate. When proving the existence they work with the integral
formulation ( 1.6) in dimension d and prove some a priori estimates. A rigorous derivation of such
estimates of a regularized version of the integral equation gives in the limit a weak solution.

1.4 Our mathematical motivations: Singular McKean-Vlasov dy-
namics

Analyzing a non-linear parabolic PDE of the McKean-Vlasov type through the associated
stochastic process became a classical topic in probability theory over the past 30 years. The idea
is to see such a PDE as a Fokker-Planck equation for a time evolution of a probability measure
that is a time marginal of a stochastic process. A simple example is the following equation

@
@t

� t = 4 � t � r � (( � � � t )� t );

where � : Rd ! Rd is a given kernel and� 0 an initial condition. Then, by Itô's formula, one can
prove that the marginal distributions ( � t )t � 0 of the solution to the following stochastic process

(
dX t =

� R
� (X t � y)� t (dy)

�
dt + dWt ;

X 0 � u0; X t � � t

satis�es the above PDE (see Chapter2 for more details). As the goal of this thesis is to construct
and analyze such a stochastic interpretation for the parabolic-parabolicKeller-Segel equations, we
review here the current state of the art on this topic.

Recently, stochastic interpretations have been proposed for a simpli�ed version of the model in
d = 2, that is, 8

><

>:

@t � (t; x ) = r � (r � � �� r c)( t; x ); t > 0; x 2 R2;

�4 c(t; x ) = � (t; x ); t > 0; x 2 Rd;

� (0; x) = � 0(x); c(0; x) = c0:

(1.7)

This is the parabolic-elliptic model which corresponds to the case� = 0 and � = 0 in ( 1.4). These
interpretations all rely on the fact that, in the case of (1.7), the equations for � t and ct can be
decoupled andct can be explicited as the convolution of� t and a logarithmic kernel. Thus, one
obtains the following closed form of the above system:

@t � (t; x ) = 4 � (t; x ) � � r � ((k � � (t; �)) � (t; x )) ; (1.8)
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where k(x) = � x
2� jx j2 . Consequently, the corresponding stochastic process of McKean{Vlasov type

whose� t is the time marginal density involves the singular interaction kernel k. That is why, so
far, only partial results are obtained and heavy techniques are used toget them.

Namely, the �rst stochastic interpretation of ( 1.7) is due to Ha�skovec and Schmeiser [36] who
analyze a particle system with McKean{Vlasov interactions and Brownian noise. More precisely,
as the ideal interaction kernelk is strongly singular, they introduce a kernel with a cut-o�
parameter and obtain the tightness of the particle probability distrib utions w.r.t. the cut-o�
parameter and the number of particles. They also obtain partial resultsin the direction of the
propagation of chaos (rigorously de�ned in Chapter2). Then, Godinho and Qui~ninao [33] analyze
the case wherek is replaced by � x

2� jx j1+ � for some� 2 (0; 1). They prove the well-posedness of the
corresponding particle system and propagation of chaos towards the limit equation.

More recently, Fournier and Jourdain [31] and Cattiaux and P�ed�eches [21] study to the following
Mc-Kean-Vlasov stochastic equation related to (1.8):

(
dX t =

p
2dWt + � (k � � (t; �))( X t )dt;

X t � � t ; X 0 � � 0:
(1.9)

The connection between (1.9) and (1.8) is established by Itô's formula (see Chapter2 for such a
connection in a general setting). An habitual approach is to analyze the corresponding mean �eld
model (

dX i;N
t =

p
2dW i

t + �
N

P N
i =1 k(X i;N

t � X j;N
t )dt;

X i;N
0 i. i. d. � � 0:

(1.10)

and prove that when N ! 1 , the empirical measure� N = 1
N

P N
i =1 � X i;N weakly converges to the

law of the process (1.9) (propagation of chaos). Due to the singular nature ofk it is not obvious
that system (1.10) is well de�ned. Nevertheless, Fournier and Jourdain [31] almost achieve this
program in the subcritical case. Namely, when � < 2� , they obtain the well{posedness of the
particle system. In addition, they obtain a consistency property which is weaker than the
propagation of chaos. They also describe complex behaviors of the particlesystem in the sub and
super critical cases. Cattiaux and P�ed�eches [21] obtain the well-posedness of this particle system
without cut-o� by using Dirichlet forms rather than pathwise approx imation techniques. They
leave the other stages of the program for some future work.

Theorem 1.4.1 (Theorems 5 and 6 [31]). Let N � 2 and � < 2�N
N � 1 . Assume � 0 has a �nite

moment of order 1. There exists a solution(X i;N
t )t � 0;1� i � N to (1.10). In addition, the family

f (X i;N
t )t � 0; 1 � i � N g is exchangeable and for any� 2 ( (N � 1)�

2�N ; 1) and any T > 0 one has

E
Z T

0

�
�X 1;N

s � X 2;N
s

�
� � � 2

ds �
(2

p
2E(1 + jX 1;N

0 j2)1=2 + 4
p

2T) �

� (2� � (N � 1)�
�N )

: (1.11)

Next, suppose� < 2� . Then

i) The sequence(� N ))N � 2 is tight.

ii) Any (possibly random) weak limit point � of (� N )N � 2 is a.s. the law of a solution to the
nonlinear SDE (1.9).
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iii) In particular, one can �nd a subsequence Nk such that (� N k
t )) t � 0 goes in law, ask ! 1 , to

some(� t )t � 0, which is a.s. a weak solution to(1.8).

The main tool in showing these results is that (1.11) apriori holds true. Thus, the authors start
from a regularized version of (1.10) and are able to build their way up towards (1.8). In fact,
thanks to (1.11) one is able to control the e�ect of the singularity of the kernel, i. e. one can show
that the Lebesgue measure of the set of crossing times between particles is null, independently of
the number of particles. Two main drawbacks of this result are that it holds in a very sub-critical
case (� < 2� ) and that it is not a propagation of chaos result, but rather a tightness/consistency
result. The reason is that the uniqueness does not hold in the class ofweak solutions the authors
work in. Then, the next theorem ensures the existence of the particle system until 3-particles
collide.

Theorem 1.4.2 (Theorem 7 [31]). Let � > 0 and N > maxf 2; �
2� g be �xed. There exists a

solution (X i;N
t )0� t<� N ;1� i � N to (1.10) where

� N := sup
l � 1

inf f t � 0 : 9i; j; k pairwise di�erent such that

jX i;N
t � X j;N

t j + jX i;N
t � X k;N

t j + jX j;N
t � X k;N

t j �
1
l
g:

The family (X i;N
t )0� t<� N ;1� i � N is exchangeable and for any� 2 ( �

2�N ; 1), a.s. for any t 2 [0; � N )
one has Z t

0
jX 1;N

s � X 2;N
s j � � 2 ds < 1 :

Finally, it holds that

i) � N = 1 a.s. if � � 8� N � 2
N � 1 ,

ii) � N < 1 a.s. if � > 8� N � 2
N � 1 .

The main ingredient when proving the preceding result is to show that the process
RI

t = 1
2

P
jX i;N

t � �X I j2 where I � f 1; : : : ; N g and �X I = 1
jI j

P
i 2 I X i;N

t behaves almost like a

square of a Bessel process of dimension (jI j � 1)(2 � � jI j
4�N ). Then, the condition on � ensures that

for all jI j � 3 the dimension of the Bessel process is greater than 2. Thus, the processRI
t never

reaches zero and no collision involving three or more particles occur. However, the main di�culty
lies in the above mentioned almost like square Bessel process behaviour of RI : when jI j = N it is
exactly the square of a Bessel process, then by backward induction it is shown that some terms
can be neglected and that square Bessel behaviour holds even whenjI j < N .

Contrary to [ 31] for proving the existence part, Cattiaux and P�ed�eches [21] use Dirichlet forms. In
fact, they prove that the form

E(f; g ) =
Z

M
< r f; r g >; f; g 2 C1

0 (M ):

is regular and local (M is given below). The main result in [21] is the following theorem:

Theorem 1.4.3 (Theorem 1.2 [21]). Let
M = f there exists at most one pair i 6= j such that X i;N = X j;N g. Then
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� For N � 4 and � < 8� N
N � 1 , there exists a unique (in distribution) non explosive solution of

(1.10), starting from any x 2 M . Moreover, the process is strong Markov, lives inM and
admits a symmetric � - �nite, invariant measure given by

� (dX 1; : : : ; dX N ) =
Y

1� i<j � N

jX i � X j j �
�
N dX 1; : : : ; dX N :

� For N � 2 and � > 8� the system(1.10) does not admit any global (in time) solution.

� For N � 2 and � = 8 � , either the system(1.10) explodes or theN particles are glued in
�nite time.

The techniques in [31] and [21] are based on the particular structure of the interaction kernel and
on the fact the process they are constructing is strongly Markov. We will see that the latter will
not be the case with our interpretation and thus, we will not be able to adapt their techniques in
this thesis.

In the fully parabolic case of (1.4) ( � > 0), recently a probabilistic interpretation of a smoothed
Keller-Segel alike system of parabolic type was developed. For a parabolic{parabolic version of the
model with a smooth coupling between� t and ct , Budhiraja and Fan [17] study a particle system
with a smooth time integrated kernel and prove it propagates chaos. Moreover, adding a forcing
potential term to the model, under a suitable convexity assumption, they obtain uniform in time
concentration inequalities for the particle system and uniform in time error estimates for a
numerical approximation of the limit non-linear process. As our main focus is (1.4) in the case
� > 0 without any cut-o�, we will not enter in the details of these result s. Similarly, in Stevens
[69] a probabilistic interpretation of a smooth Keller-Segel system isproposed.

We conclude this chapter by reviewing some examples from the literature of McKean-Vlasov
stochastic processes with singular interaction arising as probabilistic interpretations of non-linear
Fokker-Planck equations. Osada [59] studies an SDE related to 2D-Navier-Stokes equation written
in vorticity formulation. The interaction kernel is of the form K (x) = x t

jx j2 . Jourdain and
M�el�eard [ 44] study a non-linear di�usion with normal re
ecting boundary conditi ons and a
singularity that involves the Poisson kernel related to vortex equation. Fournier and Hauray [30]
study the 3-d Landau equation where the kernel is of the formk(x) = � 2jxj 
 x , for 
 2 (� 2; 0).
Calderoni and Pulvirenti [ 19] study the Burger's equation, where the interaction kernel is the
� -dirac function. Bossy and Talay [14] interpret the solution of the Burger's equation as a
distribution function of a probability measure solving a PDE of Mc-Kean Vlasov type where the
interaction kernel becomes the Heaviside function. Bossyet. al. [13] study the Lagrangian
stochastic model where the interaction is given through a conditionalexpectation, while Bossy
and Jabir [12] study the Lagrangian stochastic model with specular re
ections on theboundary.
Le Cavil et. al. [51] study the stochastic process and particle system related to a nonconservative
McKean-Vlasov PDE with the coe�cients depending of the marginal densities. Other types of
singularities have bees studied in the case of particle systems with collisions related to Boltzman
or Landau equations: see e.g. Gu�erin and M�el�eard [34] and Fournier [29].
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1.5 Our probabilistic interpretation of the parabolic-parabolic Kell er-
Segel system and main results

1.5.1 Probabilistic interpretation

In order to build a stochastic interpretation of ( 1.4), we will in the sequel formally decouple the
Keller-Segel system. From now on we set� = 1.

Assume for a moment the functionc(t; x ) is given and let us start from (1.4a):

@t � (t; x ) = 4 � (t; x ) � r � (�� (t; x )r c(t; x )) ; t > 0; x 2 Rd:

Then, by Itô's formula, the time marginal distributions ( � (t; �)) t � 0 of the process (X t )t � 0 solution
to (

dX t = � r c(t; X t )dt +
p

2dWt ; t � 0

X 0 � � 0
(1.12)

satisfy (1.4a). We have already noticed that the integral (or Feynman-Kac) representation of the
equation for c is

c(t; x ) = e� �t (G(t; �) � c0)(x) +
Z t

0
e� � (t � s) (G(t � s; �) � � (s; �))( x) ds; (1.13)

where G(t; x ) = 1
(4�t )d= 2 e� j x j 2

4t . Therefore, we can formally computer c(t; x ). Taking into account
that we do not wish to derive the function � , one has

r c(t; x ) = e� �t r ((G(t; �) � c0)(x)) +
Z t

0
e� � (t � s) (r G(t � s; �) � � (s; �))( x)) ds:

Plugging the preceding equation into (1.12), one obtains the following McKean-Vlasov non-linear
stochastic dynamics:
(

dX t = �e � �t (G(t; �) � r c0)(X t )dt + �
nRt

0

R
Rd K t � s(X t � y)� (s; y) dy ds

o
dt +

p
2dWt ; t � T;

X 0 � p0; X t � � (t; x )dx;
(1.14)

where K t (x) := e� �t r G(t; x ) = e� �t � x

2(4� )
d
2 t

d
2 +1

e� j x j 2

4t and T > 0 is an arbitrary time horizon.

Notice that ( X t )t � T is a d-dimensional stochastic process and that we impose that for anyt > 0,
the law of X t is absolutely continuous w.r.t. Lebesgue's measure. The drift of (1.14) has two
components: one that depends on the initial concentration and one that depends on the time
marginals of the law of the process. What is unusual is that the interaction between the solution
and its probability law happens not only in space, at each timet, but as well in time. That is, at
each time t > 0 the drift involves all the time marginals up to time t. This sets (1.14) apart from
the general setting of McKean-Vlasov processes (see e.g. Sznitman [72]). Another point we would
like to insist on is the singular nature of the interaction kernel K . As the Gaussian density is
derived in space, a singularity emerges in time and it is of order 1

t
d
2 +1

. Remark as well that the

limit lim (t;x )! (0;0) K t (x) is not well de�ned. This singularity should be integrated in time an d we
expect that the convolution in space will somehow smooth it. Throughoutthe thesis, we will refer
to the equations of the form (1.14) as "the non-linear SDEs with space and time interactions".
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To conclude, our probabilistic interpretation of ( 1.4) is the non-linear stochastic equation (1.14)
paired with the transformation ( 1.13) of the time marginal laws of (1.14). In order to come back
to the Keller-Segel equations (1.4), one should follow the following program:

Step 1 Construct a (weak) solution to (1.14) and extract the family of densities (� (t; �)) t � 0.

Step 2 Construct the family ( c(t; �)) t � 0 as a transformation of � as in (1.13).

Step 3 Prove the pair (�; c ) satis�es (1.4).

Step 3 of the program requires that an adequate notion of solution is precised. Themain
question we tried to reply in this thesis is whether this program can be carried out in di�erent
spatial dimensions of the problem and under which conditions.

Another natural question is to associate to (1.14) the corresponding system of interacting
particles. Namely, plugging the empirical measure ofN particles in the place of the unknown law
of the process in (1.14), one obtains the following system of stochastic equations:

8
>><

>>:

dX i;N
t =

p
2dW i

t + �e � �t (r c0 � G(t; �))( X i;N
t )dt+n

�
N

P N
j =1

Rt
0 K t � s(X i;N

t � X j;N
s )ds 1f X i;N

t 6= X j;N
t g

o
dt; t � T;

X i;N
0 ; i.i.d. and independent of W := ( W i ; 1 � i � N ):

(1.15)

Here the W i 's are N independent standardd-dimensional Brownian motions andX 1;N
0 is

distributed according to � 0. System (1.15) inherits from ( 1.14) that at each time t > 0 each
particle interacts in a singular way with the past of all the other parti cles. In fact, as soon as a
particle at time t crosses the past of another particle, we do not know how to integrate the
singularity in time. The only hope in that case is that the instant s in the past in which the
encounter happens is far away fromt. As lim (t;x )! (0;0) K t (x) is not well de�ned, we must ensure

that when s ! t, the integral
Rt

0 K t � s(X i;N
t � X j;N

s )ds is well de�ned. That is why, �rst of all, we
will not consider an interaction of a particle with itself. Then, we will set an interaction to zero
every time X i;N

t = X j;N
t . That is why the indicator 1f X i;N

t 6= X j;N
t g is added to the dynamics. In

order to justify it does not in
uence the dynamics, we should always make sure that the set
f t � T; X i;N

t = X j;N
t ; i 6= j g has Lebesgue measure zero. The non-Markovian nature of the particle

system makes it impossible to adapt the techniques used in the elliptic case [21, 31].

Many questions arise when one considers (1.15): Is it well-de�ned? Under which conditions? Does
it propagate chaos? Does it exhibit agglomerations according to� in the two-dimensional case?
This thesis aims to reply to them and set a foundation for future workson (1.14) and (1.15).

Before passing to the main results of this thesis, we give an illustration of the behaviour of the
particle system through a numerical simulation. In d = 2 we apply the Euler scheme to (1.15).
The particles are initially distributed according to the uniform d istribution on the square
[� 1; 1] � [� 1; 1]. The initial concentration has been chosen to be a standard two dimensional
Gaussian density. When� is large the particles very quickly form an agglomeration in the center
of the domain where the initial concentration attains its maximum. On th e contrary, when � is
small the particles di�use in the plain and the di�usion prevails th e singular interaction of the
particles. A typical result of such a simulation is given in Figure 1.1 (the pictures will be enlarged
in our last chapter).
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(a) t = 0 (b) t = 0 :1 (c) t = 0 :3 (d) t = 1

(e) t = 0 (f ) t = 0 :1 (g) t = 0 :3 (h) t = 1

Figure 1.1: (a)-(e): � = 50; (f)-(j): � = 1. Euler scheme is applied to (1.15), with N = 1000; d = 2.
Particles are initially distributed uniformly on [ � 1; 1]� [� 1; 1]. Initial concentration of the chemical
is a centered Gaussian density. When� is large an agglomeration of particles appear in the center
of the domain, whilst when � is small the particles di�use.

1.5.2 Main results of the thesis

In this thesis we introduce and analyze a new probabilistic interpretation of the
parabolic-parabolic Keller-Segel model without cut-o� in the casesd = 1 and d = 2. Our �rst goal
is to carry out the above de�ned program and validate our approach by getting new
well-posedness results for (1.4) in the parabolic-parabolic case (� = 1). Our second objective is to
study the corresponding particle system.

We start with Chapter 2 that introduces the probabilistic tools and notions needed on a smoothed
version of (1.14). Namely, as soon as there is some regularity on the interaction kernel, one can
adapt the arguments in Sznitman [72] in order to obtain well-posedness and propagation of chaos
for a McKean-Vlasov SDE with a time and space interaction. The connection of such an SDE and
a non-linear parabolic PDE is established.

In Chapter 3 we study (1.14) in d = 1 and prove it is well de�ned and provides a unique solution
for the Keller-Segel system ind = 1. This result is available as a preprint [73].

Chapter 4 proposes another way to deal with the one-dimensional McKean-Vlasov SDEand
proves some Sobolev regularity results on time marginals of the law of thesolution.

In Chapter 5 we deal with the one-dimensional particle system and prove it is well de�ned and it
propagates chaos towards the process built in Chapter3. This is a joint work with Jean-Francois
Jabir [43].

The two-dimensional McKean-Vlasov SDE is studied in Chapter6. After proving it is
well-de�ned, we establish the connection with the two-dimensional Keller-Segel system.

Finally, Chapter 7 describes and studies a purely probabilistic method to approximate the
solutions of the fully parabolic two dimensional Keller-Segel system. In addition, it gives some
theoretical insights about the particle system in d = 2.
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Let us summarize our main results.

The one-dimensional case

Our �rst main result is given in Chapter 3. It concerns the well-posedness of a non-linear
one-dimensional stochastic di�erential equation (SDE) with time and space interaction. As our
technique of analysis is not limited to the above kernelK , we consider the following
McKean-Vlasov stochastic equation:

(
dX t = b(t; X t )dt +

n Rt
0 (kt � s � ps)(X t )ds

o
dt + dWt ; t � T;

ps(y)dy := L (X s); X 0 � p0:
(1.16)

The set of hypothesis (H) assumed on the kernelk is given in Chapter 3 and among them the key
one isk 2 L 1((0; T] � R).

Due to the singular nature of the kernel, (1.16) cannot be analyzed by means of standard coupling
methods or Wasserstein distance contractions as in Chapter2. Both to construct local in time
solutions and to go from local to global solutions, an important issue consists in properly de�ning
the set of weak solutions. Namely, without any assumption on the initial density � 0, we need to
add the following constraint in the classical de�nition of a weak solution to (1.16):

� The probability distribution P � X � 1 has time marginal densities (pt ; t 2 [0; T]) with respect
to Lebesgue measure which satisfy

80 < t � T; kpt kL 1 (R) �
CTp

t
: (1.17)

To prove that this constraint is satis�ed in the limit of an iterative procedure (where the kernel is
not cut o�), the norms of the successive time marginal densities cannotbe allowed to
exponentially depend on theL 1 -norm of the successive corresponding drifts. They neither can be
allowed to depend on H•older-norms of the drifts. Therefore, we use anaccurate estimate (with
explicit constants) on densities of one-dimensional di�usion processes with bounded measurable
drifts which is obtained by a stochastic technique rather than by PDE techniques (See Section
3.3). This strategy allows us to get uniform bounds on the sequence of drifts, which is essential to
get existence and uniqueness of the local solution to the non-linear martingale problem solved by
any limit of the Picard procedure, and to suitably paste local solutions when constructing the
global solution.

Theorem (3.2.3). Let T > 0. Suppose thatp0 2 L 1(R) is a probability density function and
b 2 L 1 ([0; T] � R) is continuous w.r.t. the space variable. Under the hypothesis(H), Eq. (1.16)
admits a unique weak solution (in the above sense which includes(1.17)).

The Hypothesis (H) is satis�ed by the Keller-Segel kernelK . Thus, applying the above theorem to
it, we extract the family of marginals � and completeStep 1 from our program. Then, we
perform the Step 2 by considering the function c as transformation of � according to (1.13).
Then, we are in the position to prove the well-posedness for the Keller-Segel system ind = 1. The
precise notion of solution is given in Chapter3. Our strategy consists in proving the time marginal
distributions of the exhibited weak solutions satisfy the mild formulation ( 1.6) (for d = 1) of the
system. To this end, we impose the condition (1.17) on the function �: Finally, the Step 3 follows.
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Corollary (3.2.6). Assume that � 0 2 L 1(R) and c0 2 C1
b(R). Given any � > 0, � � 0 and T > 0,

the time marginals � (t; x ) � pt (x) of the probability distribution of the unique solution to
Eq. (1.14) with d = 1 and the corresponding functionc(t; x ) provide a global solution to(1.4) with
d = 1 in some sense. Any other solution(� 1; c1) with the same initial condition (� 0; c0) satis�es
k� 1(t; �) � � (t; �)kL 1 (R) = 0 and k@c1

@x(t; �) � @c
@x(t; �)kL 1 (R) = 0 for every 0 � t � T .

This seems to notably improve the results in [60, 40].

Chapter 4 revisits the work done on the level of the non-linear process in Chapter 3, through a
regularization procedure. Namely, we regularize the interaction kernel K and combines the results
from Chapter 2 and Chapter 3 to prove the regularized equation in the limit (when the
regularization parameter vanishes) satis�es (1.14) in d = 1. The goal then is to obtain the rate of
convergence of the marginal laws of the solution to the regularized equation to the marginal laws
of the solution to (1.14) in d = 1. In order to get this rate of convergence, we prove some Sobolev
regularity results for the one-dimensional marginals of a stochastic process with bounded and
measurable drift.

The objective of Chapter 5 is to analyze the particle system related to (1.14) in d = 1. As neither
the linear part of the drift plays any role, nor the parameters of the equation, we set � = 1, � = 0,
� = 1, and c0

0 � 0. We thus consider the following particle system:
(

dX i;N
t =

n
1
N

P N
j =1 ;j 6= i

Rt
0 K t � s(X i;N

t � X j;N
s )ds 1f X i;N

t 6= X j;N
t g

o
dt + dW i

t ;

X i;N
0 i.i.d. and independent of W := ( W i ; 1 � i � N );

(1.18)

where the W i 's are N independent standard Brownian motions. Compared to the stochastic
particle systems introduced for the parabolic{elliptic model, an interesting fact occurs: the
di�culties arising from the singular interaction can now be resolved by using purely Brownian
techniques rather than by using Bessel processes. The construction of a weak solution to (1.18)
involves arguments used by Krylov and R•ockner [49, Section 3] to construct a weak solution to
SDEs with singular drifts. It relies on the Girsanov transform which removes all the drifts of
(1.18). Our calculation is based on the fact that the kernel K is in L 1(0; T; L 2(R)).

Theorem (5.2.1). Given 0 < T < 1 and N 2 N, there exists a weak solution
(
 ; F ; (F t ; 0 � t � T); QN ; W; X N ) to the N -interacting particle system (1.18) that satis�es, for
any 1 � i � N ,

QN

0

@
Z T

0

0

@ 1
N

NX

j =1 ;j 6= i

Z t

0
K t � s(X i;N

t � X j;N
s )ds1f X i;N

t 6= X j;N
t g

1

A

2

dt < 1

1

A = 1 :

Notice that in the above result, no additional condition on the initial la w is necessary. Due to the
singular nature of the kernel K , we need to introduce a partial Girsanov transform of the
N -particle system in order to obtain uniform in N bounds for moments of the corresponding
exponential martingale. We believe this trick may be useful when proving tightness and
propagation of chaos for other particle systems with singular interactions.

Theorem (5.2.5). Assume that theX i;N
0 's are i.i.d. and that the initial distribution of X 1;N

0 has
a density � 0. The empirical measure � N = 1

N

P N
i =1 � X i;N of (1.18) converges in the distribution

sense, whenN ! 1 , to the unique weak solution of(1.14).
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To the best of our knowledge, this is the �rst time in the literatur e that the parabolic-parabolic
Keller-Segel system without cut-o� is derived as a limit of a system of interacting stochastic
particles, when the number of particles tends to in�nity.

The two-dimensional case

In Chapter 6 we study (1.14) in d = 2. The increase of dimension leads to an increase in
singularity of the kernel K . We start with explaining why L 1 -spaces are no longer a good choice
for the drift and density of the to be constructed stochastic process. As a consequence, we turn to
the L p-spaces. We rede�ne the notion of a weak solution to our McKean-Vlasov SDEby including
the following constraint:

� The probability distribution P � X � 1 has time marginal densities (pt ; t 2 (0; T]) with respect
to Lebesgue measure which satisfy for any

81 < q < 1 9 Cq > 0; sup
t � T

t1� 1
q kpt kL q (R2 ) � Cq: (1.19)

To prove that this constraint is satis�ed, we conveniently regularize the McKean-Vlasov SDE and
apply the results from Chapter 2. Then we analyze the associated regularized mild equation and
prove estimates of type (1.19) for the regularized densities. These estimates are uniform w.r.t. the
regularizing parameter under a condition involving the parameter� and the size of initial datum.
Once such an estimate is obtained, we prove the convergence of martingale problems related to
regularized dynamics towards the our NLSDE. We obtain the following theorem:

Theorem (6.2.3). Let T > 0 and suppose thatX 0 has a probability density functionp0.
Furthermore, assume thatc0 2 H 1(R2). Then, Equation (1.14) in d = 2 admits a weak solution
under the following condition

A� kr c0kL 2 (R2 ) + B
p

� < 1; (1.20)

where A and B are de�ned as in Proposition 6.3.7.

Extract the time marginals � of the constructed solution to (1.14) to complete Step 1 from our
program. Then, we perform theStep 2 by considering the function c as transformation of �
according to (1.13). Thanks to the estimates in (1.19), we obtain

82 � r � 1 9 Cr > 0; sup
t � T

t
1
2 � 1

r kr ct kL r (R2 ) � Cr :

Then, we prove the well-posedness for the Keller-Segel system in d = 2. The precise notion of
solution is given in Chapter 6. Again, we aim to satisfy the mild formulation ( 1.6) of the system
and impose the condition (1.19) on the function �: Finally, the Step 3 is a consequence of
Theorem 6.2.3.

Corollary (6.2.5). Let � 0 a probability density function and c0 2 H 1(R2). Under the
condition (1.20) the system(1.4) in d = 2 admits a unique solution in some sense.

Concerning the particle system ind = 2, at the present, we do not have a mathematical answer to
the question of its well-posedness. We cannot apply the techniquesfrom Chapter 5 as for q � 2,
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the L 1((0; T); L q(R2)){norm of the interaction kernel explodes. In Chapter 7 we give some
theoretical insights about this problematic. In short, the increase in singularity together with the
non-Markovian setting lead to strong di�culties when turning to G irsanov or trajectorial
techniques. The well-posedness of the 2-d particle system without cut-o� remains open for some of
our future works. In this Chapter 7 we also analyze a probabilistic numerical method to
approximate the system (1.4) in d = 2 coming from our stochastic interpretation for it. We
compare it with another numweical method proposed by Fatkullin [28] which combines stochastic
simulations and PDE resolution.





Chapter 2

McKean-Vlasov equations with smooth time

and space interaction

2.1 Introduction

In this chapter we study a McKean-Vlasov stochastic equation with space and time interaction as
in (1.14) where the singular kernelK is replaced with a smooth kernelL . Under some
assumptions on boundness and Lipschitz continuity in space forL , we prove that in such a setting
one can modify the classical techniques in Sznitman [72] to obtain the existence of the solution
and propagation of chaos for the corresponding particle system. Then, we explore the connections
between such non-linear SDE and a non-linear parabolic equation. Namely,we derive the
Fokker-Planck equation and its mild formulation for the marginal laws of the process. Thus, we
see how the empirical measure of the associated particle system can be used to approximate the
solution to a non-linear parabolic equation.

The purpose of this chapter is to illustrate that the singular interaction is the main di�culty in
(1.14) despite its unusual form (integral in time and space). Moreover, on anexample with regular
interaction we wanted to show the main arguments behind the connections PDE-SDE and the so
called particle methods for non-linear parabolic PDEs. In addition, weuse the opportunity to
de�ne some classical notions of probability theory in this new settingthat will be necessary to
read this thesis (weak solutions, martingale problems, propagation of chaos).

The plan of the chapter is the following: In Section2.2 we study the above mentioned NLSDE and
prove its well-posedness and the propagation of chaos for the associated particle system. In
Section we derive the associated Fokker-Planck equation, mild equation and some properties for
the one dimensional time marginals of the process.

2.2 Non-linear stochastic equations with smooth time and space
interactions

Let T > 0. On a �ltered probability space (
 ; F ; P; (F t )) equipped with a d{dimensional Brownian
motion (W ) and an F0� measurable random variableX 0, we study the stochastic equation

(
dX t = dWt +

n Rt
0

R
Rd L(t � s; X t � y)Qs(dy) ds

o
dt; t � T;

Qs := L (X s); X 0 � q0;
(2.1)

23
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where L maps [0; T] � Rd to Rd.

As the drift coe�cient of ( 2.1) depends on the marginals of the unknown law of the process, we call
it a non-linear stochastic equation (NLSDE) in the sense of McKean{Vlasov. A typical example of
such equations is studied in Sznitman [72]. What di�ers Equation ( 2.1) from the setting in [72] is
that the interaction with the law of the process happens both in time and space. Nevertheless,
when the interaction kernel is su�ciently regular this does not in duce any additional di�culty.

Let us de�ne the notion of existence in law or weak solution for (2.1).

De�nition 2.2.1. The family (
 ; F ; P; (F t ); X; W ) is said to be a weak solution to the equation
(2.1) up to time T > 0 if:

1. (
 ; F ; P; (F t )) is a �ltered probability space.

2. The processX := ( X t )t2 [0;T ] is Rd-valued, continuous, and(F t )-adapted. In addition, the
probability distribution of X 0 is q0.

3. The processW := ( Wt )t2 [0;T ] is a d-dimensional (F t )-Brownian motion.

4. Denote by(Qt ; t 2 [0; T]) the time marginals of the probability distribution P � X � 1. For all
t 2 (0; T] , one has that

P
� Z t

0

�
�
�
�

Z s

0

Z

Rd
L(s � u; X s � y)Qu(dy) ds

�
�
�
� dt < 1

�
= 1 :

5. P-a.s. the pair (X; W ) satis�es (2.1).

This is a classical de�nition of a weak solution (see e.g. [45]) to a stochastic equation. An
equivalent formulation is given in terms of the associated martingale problem. In the case of linear
SDEs this equivalence is explained in [45, Section 5.4]. The same arguments are valid for
non-linear SDEs. Thus, we pose the non-linear martingale problem associated to (2.1).

De�nition 2.2.2. A probability measure Q on the canonical spaceC([0; T]; Rd) equipped with its
canonical �ltration and a canonical process (wt ) is a solution to the non-linear martingale problem
(MP ) if:

(i) Q0(dx) := Q � w� 1
0 (dx) = p0(dx).

(ii) For any t 2 (0; T], denote Qt (dx) := Q � w� 1
t (dx). Then,

Z T

0

Z

Rd

�
�
�
�

Z t

0

Z

Rd
L(t � s; x � y)Qs(dy) ds

�
�
�
� Qt (dx) dt < 1

(iii) For any f 2 C2
K (Rd) the process(M t )t � T , de�ned as

M t := f (wt ) � f (w0) �
Z t

0

� 1
2

4 f (wu) + r f (wu) �
Z u

0

Z
L(u � �; w u � y)Q� (dy) d�

�
du

is a Q-martingale.
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Throughout this thesis, well-posedness of martingale problems will be our primary technique when
proving existence in law for NLSDEs of type (2.1). However, we will see in this chapter that once
the kernel L is regular enough, a �xed point kind of argument may be applied. Notice that in
both formulations we have an integrability condition for the drift term (De�nition 2.2.1{4.,
De�nition 2.2.2{(ii)). In order to satisfy it, some additional assumptions on the inter action kernel
or/and on the one-dimensional time marginals of the law of the process mustbe imposed. We will
suppose throughout this section the following hypothesis:

Hypothesis (H0). The function L : [0; T] � Rd ! Rd satis�es

8(t; x ) 2 (0; T) � Rd; jL (t; x )j � h1(t);

8(t; x; y ) 2 (0; T) � Rd � Rd; jL (t; x ) � L (t; y)j � h2(t)jx � yj;

where hi : (0; T) ! R+ is such that there existsDT > 0 such that for any t � T , one hasRt
0 hi (s)ds � DT .

Notice that the time interaction induces a slight change in (H0) with respect to what is assumed
on the interaction kernel in [72]. We still assume the kernel is bounded and Lipshitz in space, but
in order to treat the additional integral in time, we introduce the fu nctions h1 and h2.

Let C((0; T); Rd) be a set of continuousRd-valued functions de�ned on (0; T) and PT be the set of
probability measures onC((0; T); Rd). For a Q 2 P T and (t; x ) 2 (0; T) � Rd denote by

b(t; x ; (Qs)s� t ) :=
Z t

0

Z

Rd
L(t � s; x � y)Qs(dy) ds:

In view of Hypothesis (H0), for a given Q 2 P T one has that

8(t; x; y ) 2 (0; T) � Rd � Rd :

(
jb(t; x ; (Qs)s� t )j � DT ;

jb(t; x ; (Qs)s� t ) � b(t; y ; (Qs)s� t )j � DT jx � yj:
(2.2)

This will ensure that the above discussed integrability conditions are ful�lled. As the kernel
associated to our Keller-Segel NLSDE does not have such nice properties, we will be prompt to
search for weak solutions in the spaces of measures whose one-dimensionaltime marginals have
some speci�c properties. Therefore, the above notion of weak solution will be rede�ned (cf.
Chapters 3 and 6).

For a smooth interaction kernel, we will prove the following theorem:

Theorem 2.2.3. Under the hypothesis (H0), Equation(2.1) admits a unique strong solution.

Thanks to (2.2), to prove Theorem 2.2.3 one could adapt the �xed point argument in the proof of
Theorem 1.1 in [72] adding the time interaction everywhere. In order to do so, let us introduce for
two measuresm1; m2 2 P T , their distance with Wasserstein metric, given by

D1;T (m1; m2) = inf
� 2 �( m1 ;m 2 )

Z

C((0 ;T );Rd )� C((0 ;T );Rd )
sup
s� T

jw1
s � w2

s j ^ 1 d� (w1; w2);

where �( m1; m2) is the set of all couplings ofm1 and m2. In view of Villani [ 79, Cor. 6.13 and
Thm. 6.18], Wasserstein distances metrize weak convergence and (PT ; D1;T ) is a complete
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separable metric space. Two important properties of the Wassersteinmetric follow from its
de�nition. Firstly, for two random processes X 1 and X 2 with laws m1 and m2, respectively, one
has

D1;T (m1; m2) � E [sup
s� T

jX 1
s � X 2

s j ^ 1]: (2.3)

Secondly, taking another �nite time t � T and repeating all the de�nitions with natural extensions
of the same concepts from greater to smaller time, one obviously has

D1;t (m1; m2) � D1;T (m1; m2); t � T: (2.4)

Proof of Theorem 2.2.3. To prove Theorem 2.2.3, one should search for a �xed point of the map
� : PT ! P T that to a given m 2 P T associates the law of the solution to the following SDE:

(
dX t = dWt + b(t; X t ; (ms)s� t )dt;

X 0 � p0:

Notice that this equation is well-de�ned in strong sense thanks to (2.2) (see e.g. [45, Thm. 5.2.9]).
To exhibit the �xed point, the following contraction inequality sh ould be demonstrated for
m1; m2 2 P T :

D1;t (�( m1); �( m2)) � CT

Z t

0
D1;u (m1; m2)du:

To prove the latter, follow the steps in [72]. Always use (H0) when dealing with the time
interaction. Let m1; m2 2 P T . Associate to m1 the law of the solution of

X 1
t = X 0 + Wt +

Z t

0

Z s

0
b(u; X 1

u ; (m1;r )r � u) du ds;

and to m2 the law of the solution of:

X 2
t = X 0 + Wt +

Z t

0

Z s

0
b(u; X 2

u ; (m2;r )r � u) du ds:

Then,

jX 1
s � X 2

s j �
�
�
�
Z s

0

Z u

0

hZ

C((0 ;T );Rd
L(u � �; X 1

u � w� )dm1(w)

�
Z

C((0 ;T );Rd
L(u � �; X 2

u � w� )dm2(w)
i
d�du

�
�
� =: F (s):

Taking sups� t of the previous expression and an expectation on both sides, one has

E [sup
s� t

jX 1
s � X 2

s j] � E [sup
s� t

F (s)]: (2.5)

In the following computations CT is a constant that may change from line to line. Taking � to be
any coupling of m1 and m2, it comes

F (s) =
�
�
�
Z s

0

Z u

0

Z

C((0 ;T );Rd )� C((0 ;T );Rd )

�
L (u � �; X 1

u � w1
� ) � L (u � �; X 2

u � w2
� )

�
d� (w1; w2) d� du

�
�
�:



27 2.2. Non-linear stochastic equations with smooth time and space interactions

In view of (H0), one has

jL (u � �; X 1
u � w1

� ) � L (u � �; X 2
u � w2

� )j � (2h1(u � � ) + h2(u � � )) jX 1
u � w1

� � X 2
u + w2

� j ^ 1:

Therefore,

E [sup
s� t

F (s)] � CE
Z t

0

Z u

0
(h1(u � � ) + h2(u � � ))

Z

C((0 ;T );Rd )� C((0 ;T );Rd )

�
jX 1

u � X 2
u j ^ 1 + jw1

� � w2
� j ^ 1

�
d� (w1; w2) d� du:

Then,

E [sup
s� t

F (s)] � 2CT E
Z t

0
jX 1

u � X 2
u j ^ 1 du

+
Z t

0

Z u

0
(h1(u � � ) + h2(u � � ))

Z

C((0 ;T );Rd )� C((0 ;T );Rd )
jw1

� � w2
� j ^ 1 d� (w1; w2)d� du:

Using that jX 1
u � X 2

u j � supr � u jX 1
r � X 2

r j and jw1
� � w2

� j � supr � u jw1
r � w2

r j and applying Fubini's
theorem, one obtains

E [sup
s� t

F (s)] � CT
� Z t

0
E[sup

r � u
jX 1

r � X 2
r j^ 1]du+

Z t

0

Z

C((0 ;T );Rd )� C((0 ;T );Rd )
sup
r � u

jw1
r � w2

r j^ 1 d� (w1; w2)du
�
:

Coming back to (2.5), one gets

E [sup
s� t

jX 1
s � X 2

s j] � CT
� Z t

0
E[sup

r � u
jX 1

r � X 2
r j^ 1]du+

Z t

0

Z

C((0 ;T );Rd )� C((0 ;T );Rd )
sup
r � u

jw1
r � w2

r j^ 1 d� (w1; w2)du
�
:

Taking an in�mum over all couplings � of m1 and m2 of the above expression, leads to

E [sup
s� t

jX 1
s � X 2

s j] � CT

Z t

0
E [sup

r � u
jX 1

r � X 2
r j ^ 1]du + CT

Z t

0
D1;u (m1; m2)du:

Gronwall's lemma implies

E [sup
s� t

jX 1
s � X 2

s j ^ 1] � CT

Z t

0
D1;u (m1; m2)du: (2.6)

As X 1 and X 2 have laws �( m1) and �( m2), respectively, the property (2.3) of the Waserstein
distance together with (2.6), lead to the contraction inequality

D1;t (�( m1); �( m2)) � CT

Z t

0
D1;u (m1; m2)du:

Firstly, we can conclude the weak uniqueness. Namely, letm1 and m2 be the laws of two weak
solutions to (2.1). Then, �( m1) = m1 and �( m2) = m2. In view of the above contraction
inequality, one has

D1;T (m1; m2) = D1;T (�( m1); �( m2)) � CT

Z T

0
D1;u (m1; m2)du:
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By Gronwall's lemma, D1;T (m1; m2) = 0.

Secondly, the strong uniqueness for (2.1) follows. Assume we have two strong solutions with the
same notation as above. We have just seen thatD1;T (m1; m2) = 0. In view of ( 2.6) and (2.4), one
has

E [sup
s� T

jX 1
s � X 2

s j] � CT D1;T (m1; m2) = 0 :

This implies strong uniqueness.

Finally, by the standard contraction argument, one gets weak existence.Construct the sequence
f mk ; k 2 Ng = f � k (m); m 2 Ng. Here m is any element ofPT . The contraction inequality leads to

D1;T (� k+1 (m); � k (m)) � CT

Z T

0
D1;u (� k (m); � k� 1(m))du:

Iterating this expression, one has

D1;T (� k+1 (m); � k (m)) �
Ck

T T k

k!
D1;T (�( m); m):

Since, Ck
T T k

k! ! 0 ask ! 1 , the sequence (mk )k2 N is a Cauchy sequence. As the spacePT is
complete with respect to the Wasserstein metric, there existsa probability measure Q such that
mk

w! Q. By the construction of the sequencemk , �( Q) = Q.

The existence of a strong solution follows from the results of Yamada andWatanabe summarized
in Chapter 5.3 of [45].

A natural discretization of ( 2.1) is obtained by plugging the empirical measure ofN particles in
the place of the law of the process. Like this, one obtains instead of one non-linear equation, a
system ofN dependent linear equations. This system is called in the literature the particle system
associated to (2.1). It is de�ned on the product probability space (
 N ; F 
 N ; P
 N ) �ltered by the
natural extension of the original �ltration to the product space, and equipped with an
N -dimensional Brownian motion adapted to it. It reads

(
dX i;N

t = dW i
t +

n
1
N

P N
j =1

Rt
0 L(t � s; X i;N

t � X j;N
s )ds

o
dt;

X i;N
0 i.i.d. � p0:

(2.7)

Notice that the particle system inherits from the NLSDE the unusual interaction in time by
becoming non-Markovian. In each timet > 0 every particle interacts with all the past of all the
other particles.

Theorem 2.2.4. Under the hypothesis (H0), the particle system in(2.7) admits a unique strong
solution.

Proof. Notice that the drift of each particle is uniformly bounded according to (H0). Thus, by
Novikov's condition one can use the Girsanov transform in order to construct a weak solution to
the particle system (see e.g. [45, Prop. 5.3.6]).
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As above, to �nish the proof one should show that strong uniqueness holds. Let us drop the index
N for simplicity. Let X = ( X 1; : : : ; X N ) and Y = ( Y 1; : : : ; Y N ) be two strong solutions to (2.7).
Then, in view of (H0), for i � N and t � T one has

jX i
t � Y i

t j �
Z t

0

1
N

NX

i =1

Z s

0
h2(s � u)( jX i

s � Y i
s j + jX j

u � Y j
u j)du ds:

Notice that jX i
s � Y i

s j + jX j
u � Y j

u j � 2 supu� s max1� k� N jX k
u � Y k

u j. Thus,

jX i
t � Y i

t j � CT

Z t

0
sup
u� s

max
1� k� N

jX k
u � Y k

u j ds:

Taking the maximum w.r.t. 1 � i � N and the supremum in t � T , one gets

sup
t � T

max
1� i � N

jX i
t � Y i

t j � CT

Z t

0
sup
u� s

max
1� k� N

jX k
u � Y k

u j ds:

Apply Gronwall's lemma to �nish the proof.

An intuitive question that now can be posed is what happens with the particle system once
N ! 1 . Do we recover (2.1)? In which sense? In order to answer it let us introduce the notionof
propagation of chaos.

De�nition 2.2.5. Let uN a sequence of symmetric probabilities onC((0; T); Rd)N and u a
probability measure onC((0; T); Rd). uN is u-chaotic, if for any f 1; : : : ; f k 2 Cb(C((0; T); Rd)) ,
any k � 1:

lim N !1

Z

C((0 ;T );Rd )N
f 1(x1) � � � f k (xk )uN (dx1 : : : dxN ) =

kY

i =1

Z

C((0 ;T );Rd )
f i (x)u(dx):

In view of [72, Prop. 2.2-i)], UN is u-chaotic is equivalent to: a) the same de�nition with k = 2;
b) the sequence of empirical measures� N = 1

N

P N
i =1 � X i (PT -valued random variables), converges

in law to the constant random variable u, where X i are canonical coordinates onC((0; T); Rd)N .

Let us denote the law of the process in (2.1) and (2.7) by Q and QN , respectively. The notion of
propagation of chaos in this context tells us that if QN is Q-chaotic, then the joint law of any
k-tuple of particles (k � 2), converges, when the number of particles goes to in�nity, to the
product measureQ� k . Equivalently, it means that the empirical measure of N particles converges
in law to � P. This is the analogue to the law of large numbers in the context of a system of
interacting stochastic particles.

In order to establish the propagation of chaos in the above case we de�neN i.i.d. copies of (2.1)
on the same �ltered probability space as the particle system,

(
d �X i

t = �dW i
t + b(t; �X i

t )dt +
n Rt

0

R
L(t � s; �X i

t � y)qs(dy)ds
o

dt

qs := L ( �X i
s); �X i

0 = X i;N
0 :

(2.8)

We will prove the following claim:
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Theorem 2.2.6. Under the hypothesis (H0), for anyi � 1 and any T > 0:

sup
N

p
N E[supt � T jX i;N

t � �X i
t j] < 1 :

Proof. We adapt the arguments in [72, Thm. 1.4]. For simplicity, we drop N in the notation of
(2.7). In addition, C or CT will denote constants that may change from line to line. One has

E[sup
t � T

jX i
t � �X i

t j] � E
Z T

0

�
�
�
Z s

0

1
N

NX

j =1

L(s � �; X i
s � X j

� ) �
Z

L(s � �; �X i
s � y)p� (dy)d�

�
�
� ds:

Let us note ~L(t � s; x � x0) = L(t � s; x � x0) �
R

L(t � s; x � y)ps(dy). Notice that

�
�
�
Z s

0

1
N

NX

j =1

L(s � �; X i
s � X j

� ) �
Z

L(s � �; �X i
s � y)p� (dy) d�

�
�
�

�
Z s

0

1
N

NX

j =1

fj L (s � �; X i
s � X j

� ) � L (s � �; �X i
s � X j

� )j + jL (s � �; �X i
s � X j

� ) � L (s � �; �X i
s � �X j

� )jgd�

+
�
� 1
N

NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�
�
� :

In view of (H0), one has

E[sup
t � T

jX i
t � �X i

t j] �
Z T

0

Z s

0
h2(s � � )EjX i

s � �X i
sjd� ds

+
Z T

0

Z s

0
h2(s � � )

1
N

NX

j =1

EjX j
� � �X j

� jd� ds +
Z T

0
E

�
� 1
N

NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�
�
� ds:

Summing the previous expression overi going from 1 to N and using that for � � s, one has
jX j

� � �X j
� j � supr � s jX j

r � �X j
r j and for s � T, one hasjX j

s � �X j
s j � supr � s jX j

r � �X j
r j, we get

NX

i =1

E[sup
t � T

jX i
t � �X i

t j] � DT

Z T

0

NX

i =1

E[sup
r � s

jX j
r � �X j

r j]ds+

+ DT

Z T

0

NX

j =1

E[sup
r � s

jX j
r � �X j

r j]ds + CT

Z T

0
E

�
� 1
N

NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�
�
�ds

= CT

Z T

0

NX

j =1

E[sup
r � s

jX j
r � �X j

r j]ds + CT

Z T

0
E

�
� 1
N

NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�
�
�ds:

Gronwall's lemma implies that

NX

i =1

E[sup
t � T

jX i
t � �X i

t j] � CT

Z T

0
E

�
� 1
N

NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�
�
�ds:

Fix an 1 � i � N . By symmetry in law of ( 2.7) and (2.8), one has

E[sup
t � T

jX i
t � �X i

t j] � CT

Z T

0
E

�
� 1
N

NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�
�
� ds:
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After the Cauchy-Schwarz inequality, it comes

E[sup
t � T

jX i
t � �X i

t j] � CT

Z T

0

vu
u
u
t E

N 2

0

@
NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�

1

A

2

ds: (2.9)

Notice that ~L is centered,

E[~L(t � s; x � �X i
s)] = E[L (t � s; x � �X i

s)] �
Z

L(t � s; x � y)� (s; dy) = 0 :

This together with the fact that �X j 1
� and �X j 2

� are independent forj 1 6= j 2, implies that the mixed
terms of the squared sum are zero. For the other terms we use thatL is bounded byh1, and thus
~L also is. One gets

E
N 2

0

@
NX

j =1

Z s

0

~L(s � �; �X i
s � �X j

� )d�

1

A

2

�
1

N 2

NX

j =1

E
� Z s

0

~L(s � �; �X i
s � �X j

� )d�
� 2

� D 2
T

1
N

: (2.10)

Combine (2.10) and (2.9) in order to conclude the proof.

Notice that Theorem 2.2.6 implies QN is Q-chaotic. Namely, denote byQ2;N the law of the couple
(X 1;N ; X 2;N ). Then, weak convergence of the probability measureQ2;N to the product measure
Q � Q implies De�nition 2.2.5 for k = 2. Q2;N and Q � Q belong to the spaceP (2)

T of probability
measures onC((0; T); Rd) � C((0; T); Rd). The de�nition of the Wasserstein metric can naturally
be rewritten for such a space and will satisfy the analogues of (2.3) and (2.4). Denote the
1-Wasserstein metric onP (2)

T by D (2)
1;T . Thus,

D (2)
1;T (Q2;N ; Q � Q) � E[sup

s� T
j(X 1;N

s ; X 2;N
s ) � ( �X 1

s ; �X 2
s )j ^ 1] � E[sup

s� T
jX 1;N

s � �X 1
s j] + E[sup

s� T
jX 2;N

s � �X 2
s j]:

Applying Theorem 2.2.6 and letting N ! 1 , one getsD (2)
1;T (Q2;N ; Q � Q) ! 0.

The propagation of chaos property enables one to conclude a numerical algorithm for
approximating the law Q. It tells us that when N is large enough the empirical measure ofN
particles behaves like the limit law. Thus, the empirical measure of these particles in, for example,
time t will approximate the marginal Qt . The particles in (2.7) are themselves approximated by
an Euler scheme. A natural question arising once such a numerical algorithm is constructed, is
what the rates of convergence in the number of particles and time discretization step of the Euler
scheme are. A review of such results for a NLSDE without time interaction can be found in Bossy
[11]. In this thesis such question will not be treated. However, one canimagine that with a slight
change of hypothesis on the interaction kernel (same as we did in (H0) w.r.t. [72]) one can obtain
some of the results mentioned in [11]. This remains to be checked in some of our future works.

We conclude this section with the following remark:

Remark 2.2.7. All the obtained results may be generalized to a stochastic process of the type
(

dX t = � (X t )dWt +
n Rt

0

R
Rd L(t � s; X t � y)Qs(dy) ds

o
dt + b(t; X t )dt; t � T;

Qs := L (X s); X 0 � p0;
(2.11)

where � : Rd ! Rd and b : (0; T) � Rd ! Rd are uniformly bounded on(0; T) � Rd and Lipschitz
functions in space with a uniform constant with respect to time. In that case the2-Wasserstein
metric should be used.
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2.3 The associated McKean-Vlasov-Fokker-Planck equation

In the sequelQ will denote the law of the processX constructed in Theorem 2.2.3. We aim to
establish a connection between the time marginals ofQ and the following Fokker-Planck equation:

(
@
@t� t = 1

24 � t � r � (b(t; �; (� s)s� t )� t ); t 2 (0; T);

� t=0 = q0:
(2.12)

As the initial condition q0 is a probability measure, from the probabilistic point of view, Equation
(2.12) describes the time evolution of a probability measure� t . Let us de�ne the notion of weak
solution for (2.12).

De�nition 2.3.1. A measurable family (� t )t � T of probability measures onRd is a weak solution
to (2.12) if for any f 2 C2

b(Rd) and any t 2 (0; T) one has

Z

Rd
f (x)� t (dx) =

Z

Rd
f (x)q0(dx) +

Z t

0

Z

Rd
r f (x) � b(s; x; Q)� s(dx) ds +

1
2

Z t

0

Z

Rd
4 f (x)� s(dx) ds:

Hypothesis (H0) implies that everything makes sense in the preceding equation.

Proposition 2.3.2. The family (Qt )t � T of probability measures onRd has the following
properties:

i) For any t 2 (0; T], Qt admits a probability density function qt . In addition, qt 2 L p(Rd) for
any 1 < p < 1 and

80 < t � T : kqt kL p (Rd ) �
C

t
d
2 (1� 1

p )
e(� 0� 1

2 )T � 2
;

where � := sup t � T kb(t; �; (Qr )r � t k.

ii) (qt )t � T is a weak solution to(2.12).

Proof. i) This result is directly implied by M�el�eard and Roelly [ 53, Lemma 1.1] asb is bounded.
We write the proof in order to explicit the L p-norm estimate in function of � and t. Let
t 2 (0; T], p > 1 and p0 such that 1

p + 1
p0 = 1. For f 2 C1

K (Rd), de�ne the linear functional

H t (f ) :=
Z

Rd
f (x)Qt (dx) = E(f (X t )) :

In view of Girsanov's theorem (e.g. [45, Chapter 3, Thm. 5.1]), one has

H t (f ) = E(f (Wt + X 0)(ZT ) � 1)) ;

where ZT is the exponential martingale

ZT := e�
RT

0 b(s;X s ;(Qr ) r � s )�dWs � 1
2

RT
0 jb(s;X s ;(Qr ) r � s )j2 ds:
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Remember that (H0) provides the boundness ofb and thus by Novikov's condition ZT is a
martingale. Now, choose 1< q < p 0 and q0 such that 1

q + 1
q0 = 1. H•older's inequality for

� = p0

q and � 0 such that 1
� + 1

� 0 = 1 leads to

jH t (f )j �
�

E(jf (X 0 + Wt )j � )
� 1

�
�

E((ZT ) � � 0
)
� 1

� 0
=: AB:

Applying H•older's inequality for q and q0,

A =
� Z Z

jf (x + y)j � gt (y) dy q0(dx)
� 1

�

�

 Z � Z
jf (x + y)jp

0
dy

� 1
q

kgt kL q0(Rd ) q0(dx)

! 1
�

=

 

kf k
p0

q

L p0(Rd )
kgt kL q0(Rd )

! q
p0

= kf kL p0(Rd )
C

t
d
2 (1� 1

q0) q
p0

:

Notice that

B � 0
= E

�
e� 0

RT
0 b(s;X 0+ Ws ;(Qr ) r � s )�dWs � (� 0)2

RT
0 jb(s;X 0+ Ws ;(Qr ) r � s )j2 ds

e(( � 0)2 � � 0

2 )
RT

0 jb(s;X 0+ Ws ;(Qr ) r � s )j2 ds
�

:

Apply the Cauchy-Schwarz inequality. It comes

B � 0
� e(( � 0)2 � � 0

2 )T � 2
:

Therefore,

jH t (f )j �
C

t
d
2 (1� 1

p )
e(� 0� 1

2 )T � 2
kf kL p0(Rd ) :

Then, H t is a bounded linear functional de�ned on a dense subspace ofL p0
(Rd). Therefore,

it extends to a bounded linear functional on L p0
(Rd). By Riesz representation theorems (e.g.

[15, Thm. 4.11 and 4.14]), there exists a uniqueqt 2 L p(Rd) such that qt is the probability
density of Qt and kqt kL p (Rd ) � C

t
d
2 (1 � 1

p )
e(� 0� 1

2 )T � 2
.

ii) Let f 2 C2
b(Rd). Apply Itô's formula on f (X t ):

f (X t ) = f (X 0) +
Z t

0
r f (X s) � b(s; X s; (qu)u� s) ds +

Z t

0
r f (X s) � dWs +

1
2

Z t

0
4 f (X s) ds:

Taking the expectation on both sides one gets the condition from De�nition 2.3.1.

Another way to connect the process in (2.1) and the PDE (2.12) is to show that the family ( qt )t � T

satis�es the following mild formulation of ( 2.12) in the sense of the distributions:

� t = gt � p0 �
dX

i =1

Z t

0
r i gt � s � (bi (s; �; (� u)u� t )� s) ds: (2.13)

Here a convolution involving a measure� and a function f should be understood as
(f � � )(x) =

R
f (x � y)� (dy).
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Proposition 2.3.3. The marginals (qt )t2 (0;T ] satisfy in the sense of the distributions the mild
equation (2.13).

Proof. In order to derive (2.13) from ( 2.1) for f 2 C2
b(Rd) consider the Cauchy problem

(
@G
@s+ 1

24 G = 0 ; 0 � s < t; x 2 Rd;

lim s! t � G(s; x) = f (x):
(2.14)

The function

Gt;f (s; x) =
Z

f (y)gt � s(x � y)dy

is a smooth solution to (2.14) where gt denotes the density ofWt . Applying Itô's formula to
Gt;f (t; X t ) we get

Gt;f (t; X t ) � Gt;f (0; X 0) =
Z t

0

@Gt;f
@s

(s; X s)ds +
Z t

0
r Gt;f (s; X s) � b(s; X s; Q) ds

+
Z t

0
r Gt;f (s; X s) � dW s +

1
2

Z t

0
4 Gt;f (s; X s)ds:

In view of (2.2) and (2.14), we obtain

Ef (X t ) = EGt;f (0; X 0) +
Z t

0
E [r Gt;f (s; X s) � b(s; X s; Q)] ds =: I + II: (2.15)

On the one hand one has

I =
Z Z

f (y)gt (x � y)dy q0(dx) =
Z

f (y)(gt � q0)(y)dy:

On the second hand one has

II =
Z t

0

Z
r x

� Z
f (y)gt � s(x � y)dy

�
� b(s; x; (qu)u� s)qs(x) dx ds

= �
Z t

0

Z Z
f (y)r gt � s(y � x)dy � b(s; x; (qu)u� s)qs(x) dx ds

= �
dX

i =1

Z
f (y)

Z t

0
[r i gt � s � (bi (s; �; (qu)u� s)qs)](y) ds dy:

Thus (2.15) can be written as

Z
f (y)qt (y) dy =

Z
f (y)(gt � q0)(y) dy �

dX

i =1

Z
f (y)

Z t

0
[r i gt � s � (bi (s; �; (qu)u� s)qs)](y) ds dy;

which is the mild equation (2.13).

Remark that by constructing the stochastic process, we have not just built a family of probability
measures onRd that is a solution to the Fokker-Planck equation. In fact we have built an object
that belongs to much wider class, a probability measureQ on the space of trajectories
C([0; T]; Rd). In addition, the stochastic process can be seen as the time evolution of one
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individual in an in�nite population following the dynamics in ( 2.12). Thus, a micro model for
(2.12) is obtained. Then, a tool as Girsanov transform can provide us with additional information
about the solution of the PDE, like in Proposition 2.3.2 - i ). The reader will see another purely
probabilistic technique to obtain L 1 (Rd)-norm estimates for the marginal densities in Section3.3.
Finally, one should not forget the particle system associated to the stochastic process and now to
the PDE. The propagation of chaos property, proved in the previous chapter, tells us that the
empirical measure of large number of particles converges towards the law of the stochastic process
and by that to a solution of ( 2.12). Thus, a numerical method for approximating the PDE is
obtained. This method is purely probabilistic and it is quite convenient since its complexity grows
linearly with the dimension d and not exponentially as it is the case with the deterministic
numerical methods for elliptic and parabolic PDE's.

Notice that all the results proven in this chapter are due to the regularity assumption (H0) on the
interaction kernel L . It allowed us to adapt the classical proof of Sznitman to show well-posedness
of our time and space interacting Mc-Kean Vlasov di�usion. It ensured the well-posedness and
propagation of chaos of the associated particle system even though the setting in it is
non-Markovian. Finally, it justi�ed all the computations when inter preting the marginal laws of
the process as a solution to a non-linear Fokker-Planck equation.

The interaction kernel associated to the Keller-Segel system does not enjoy the regularity
properties supposed in this chapter and thus, the above arguments donot apply. A speci�c
analysis needs to be developed to overcome the singularity of the kernel. In particular, to prove
the well-posedness of the mean �eld limit and of the associated system of particles one needs to
develop speci�c and original techniques of analysis.





Chapter 3

The one-dimensional case: The non-linear

stochastic equation

This chapter is written in collaboration with Denis Talay and it is avai lable as a preprint [73].

3.1 Introduction

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis describes the
time evolution of the density � t of a cell population and of the concentrationct of a chemical
attractant:

8
><

>:

@t � (t; x ) = r � ( 1
2r � � �� r c)( t; x ); t > 0; x 2 Rd;

� @t c(t; x ) = 1
24 c(t; x ) � �c (t; x ) + � (t; x ); t > 0; x 2 Rd:

� (0; x) = � 0(x); c(0; x) = c0(x):

(3.1)

For theoretical results on this system of PDEs and applications to Biologysee Chapter1.

Recently, stochastic interpretations have been proposed for a simpli�ed version of the model, that
is, the parabolic-elliptic model which corresponds to the case� = 0. These interpretations all rely
on the fact that, in the parabolic-elliptic case, the equations for � t and ct can be decoupled andct

can be explicated as the convolution of� t and a logarithmic kernel. Consequently, the
corresponding stochastic process of McKean{Vlasov type whose� t is the time marginal density
involves the singular interaction kernel k(x) = � x

2� jx j2 (when � = 0). This explains why, so far,
only partial results are obtained and heavy techniques are used to get them. A review of the
works by Ha�skovec and Schmeiser [36], Fournier and Jourdain [31] and Cattiaux and P�ed�eches [21]
is given in Section1.4.

Budhiraja and Fan [17] have studied a McKean{Vlasov SDE related to a parabolic{parabolic
version of the model with a smooth coupling between� and c and a forcing potential term. Under
a suitable convexity assumption on the additional term, they obtain uniform in time concentration
inequalities for the corresponding particle system and uniform in time error estimates for a
numerical approximation of the exact McKean{Vlasov process.

We here deal with the parabolic{parabolic system (� > 0) without cut-o� and study the
McKean-Vlasov stochastic representation of the mild formulation of theequation satis�ed by � t .
This representation involves a singular interaction kernel which is di�erent from the one in the
above mentioned approaches and does not seem to have been studied in the McKean-Vlasov

37
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non-linear SDE literature. The system reads
(

dX t = b] (t; X t )dt +
n Rt

0 (K ]
t � s � ps)(X t )ds

o
dt + dWt ; t > 0;

ps(y)dy := L (X s); X 0 � � 0(x)dx;
(3.2)

where K ]
t (x) := �e � �t r ( 1

(2�t )d= 2 e� j x j 2

2t ) and b] (t; x ) := �e � �t r Ec0(x + Wt ). Here, (Wt )t � 0 is a

d-dimensional Brownian motion de�ned on a �ltered probability space (
 ; F ; P; (F t )) and X 0 is an
Rd-valued F0� measurable random variable. Notice that the formulation requires that the one
dimensional time marginals of the law of the solution are absolutely continuous with respect to
Lebesgue's measure and that the process interacts with all the past time marginals of its
probability distribution through a functional involving a singular ke rnel.

The analysis of the well-posedness of this non-linear stochastic equation and the proof that ps is a
solution to (3.2) for any s are delicate, particularly in the multi-dimensional case when� is large
enough to induce solutions with blow-ups in �nite time (see Chapter 6). As numerical simulations
of the related particle system in Chapter 7 appear to be e�ective, it seems interesting to validate
our approach in the one-dimensional case.

The objective of this chapter is to prove general existence and uniqueness results for both the
deterministic system (3.1) and the stochastic dynamics (3.2) in d = 1. In Chapter 5 we show the
well-posedness and propagation of chaos property of the corresponding particle system where each
particle interacts with all the past of the other ones by means of a time integrated singular kernel.

In this one-dimensional framework the PDE (3.1) was previously studied by Osaki and Yagi [60]
and Hillen and Potapov [40] in bounded intervals I with periodic boundary conditions while we
here deal with the problem posed on the whole spaceR. In [60] one assumes� 0 2 L 2(I ) \ L 1(I ),
c0 2 H 1(I ) and inf I c0(x) > 0. In [40] one assumes� 0 2 L 1 (I ) \ L 1(I ) and c0 2 W �;p (I ), where p
and � belong to a particular set of parameters. Here, we only suppose that� 0 is in L 1(R).

We emphasize that we do not limit ourselves to the speci�c kernelK ]
t (x) related to the

Keller{Segel model. We below show that the stochastic di�erential equation of Keller-Segel type is
well-posed for a whole class of time integrated singular kernels. Due to the singular nature of the
kernel, the mean-�eld SDE cannot be analyzed by means of standard coupling methods or
Wasserstein distance contractions as in Chapter2. Both to construct local in time solutions and
to go from local to global solutions, an important issue consists in properly de�ning the set of
weak solutions. Namely, without any assumption on the initial density � 0, we need to introduce
some constraints on the time marginal densities. To prove that these constraints are satis�ed in
the limit of an iterative procedure (where the kernel is not cut o�) , the norms of the successive
time marginal densities cannot be allowed to exponentially depend on the L 1 -norm of the
successive corresponding drifts. They neither can be allowed todepend on H•older-norms of the
drifts. Therefore, we use an accurate estimate (with explicit constants) on densities of
one-dimensional di�usion processes with bounded measurable drifts which is obtained by a
stochastic technique rather than the PDE techniques. This strategy allows us to get uniform
bounds on the sequence of drifts, which is essential to get existence and uniqueness of the local
solution to the non-linear martingale problem solved by any limit of the Picard procedure, and to
suitably paste local solutions when constructing the global solution.

The chapter is organized as follows. In Section3.2 we state our main results. In Section3.3 we
prove a preliminary estimate on the probability density of di�usion processes whose drift is only
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supposed Borel measurable and bounded. In Section3.4 we study a non-linear
McKean-Vlasov-Fokker-Planck equation. In Section3.5 we prove the local existence and
uniqueness of a solution to a non-linear stochastic di�erential equation more general than (3.2)
(for d = 1). In Section 3.6 we get the global well-posedness of this equation. In Section3.7 we
apply the preceding result to the speci�c case of the one-dimensional parabolic{parabolic
Keller-Segel model. The appendix section3.8 concerns an explicit formula for the transition
density of a particular di�usion. The appendix section 3.9 is a reminder on standard convolution
inequalities (used in this Chapter and some of the following ones).

Notation. In all the chapter we denote by CT ; CT (b0; p0), etc., any constant which depends on
T and the other speci�ed parameters, but is uniform w.r.t. t 2 [0; T] and may change from line. In
addition, for 1 � p; q � 1 the spaceL q((0; T); L p(R)) denotes the space of functions
f : (0; T) � R ! R such that

RT
0 kf (t; �)kq

L p (R)dt < 1 .

3.2 Our main results

Our �rst main result concerns the well-posedness of a non-linear one-dimensional stochastic
di�erential equation (SDE) with a non standard McKean{Vlasov interacti on kernel which at each
time t involves in a singular way all the time marginals up to time t of the probability distribution
of the solution. As our technique of analysis is not limited to the above kernel K ] , we consider the
following McKean-Vlasov stochastic equation:

(
dX t = b(t; X t )dt +

n Rt
0 (K t � s � ps)(X t )ds

o
dt + dWt ; t � T;

ps(y)dy := L (X s); X 0 � p0;
(3.3)

and in all the sequel we assume the following conditions on the interaction kernel.

Hypothesis (H) . The function K de�ned on R+ � R is such that for any T > 0:

1. For any t > 0, K t is in L 1(R).

2. For any t > 0 the function K t (x) is a bounded continuous function onR.

3. The set of pointsx 2 R such that lim t ! 0 K t (x) < 1 has full Lebesgue measure.

4. For any t > 0, the function f 1(t) :=
Rt

0

kK t � s kL 1 ( R)p
s ds is well de�ned and bounded on[0; T].

5. For any T > 0 there existsCT such that, for any probability density � on R,

sup
(t;x )2 (0;T ]� R

Z
� (y)kK �(x � y)kL 1 (0;t ) dy � CT :

6. Finally,

sup
0� t � T

Z T

0
kK T + t � skL 1 (R)

1
p

s
ds � CT :
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As emphasized in the introduction, the well-posedness of the system (3.3) cannot be obtained by
applying known results in the literature.

Given (t; x ) 2 R+ � R and a family of densities (pt )t � T we set

B (t; x ; p) :=
Z t

0
(K t � s � ps)(x)ds: (3.4)

We now de�ne the notion of a weak solution to (3.3).

De�nition 3.2.1. The family (
 ; F ; P; (F t ); X; W ) is said to be a weak solution to the equation
(3.3) up to time T > 0 if:

1. (
 ; F ; P; (F t )) is a �ltered probability space.

2. The processX := ( X t )t2 [0;T ] is real-valued, continuous, and(F t )-adapted. In addition, the
probability distribution of X 0 has densityp0.

3. The processW := ( Wt )t2 [0;T ] is a one-dimensional(F t )-Brownian motion.

4. The probability distribution P � X � 1 has time marginal densities(pt ; t 2 [0; T]) with respect
to Lebesgue measure which satisfy

80 < t � T; kpt kL 1 (R) �
CTp

t
: (3.5)

5. For all t 2 [0; T] and x 2 R, one has that
Rt

0 jb(s; x)j ds < 1 :

6. P-a.s. the pair (X; W ) satis�es (3.3).

Remark 3.2.2. For any T > 0, Inequality (3.5) and Hypothesis (H-4) lead to

sup
0� t � T

sup
x2 R

jB (t; x; p)j � CT :

The following theorem provides existence and uniqueness of the weak solution to (3.3).

Theorem 3.2.3. Let T > 0. Suppose thatp0 2 L 1(R) is a probability density function and
b 2 L 1 ([0; T] � R) is continuous w.r.t. the space variable. Under the hypothesis(H), Eq. (3.3)
admits a unique weak solution in the sense of De�nition3.2.1.

We �nally state an easy result which is useful to prove the propagation ofchaos in the case of
Keller-Segel kernel (see Chapter5):

Corollary 3.2.4. In addition to the assumptions of Theorem3.2.3 suppose the following
hypothesis:

H-7. for any t > 0, K t is in L 2(R) and the function f 2(t) :=
Rt

0

kK t � s kL 2 ( R)

s1=4 ds is well de�ned and
bounded on[0; T].
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Then, there exists a unique weak solution to(3.3) in the sense of the De�nition 3.2.1 modi�ed as
follows: Instead of (3.5) one imposes

80 < t � T; kpt kL 2 (R) �
CT

t1=4
: (3.6)

Our next result concerns the well-posedness of the one-dimensional parabolic-parabolic
Keller-Segel model

8
>>>>><

>>>>>:

@�
@t

(t; x ) =
@

@x
� (

1
2

@�
@x

� ��
@c
@x

)( t; x ); t > 0; x 2 R;

@c
@t

(t; x ) =
1
2

@2c
@x2

(t; x ) � �c (t; x ) + � (t; x ); t > 0; x 2 R;

� (0; x) = � 0(x); c(0; x) = c0(x); x 2 R;

(3.7a)

(3.7b)

where � > 0 and � � 0. As this system preserves the total mass, that is,

8t > 0;
Z



� (t; x )dx =

Z



� 0(x)dx =: M;

the new functions ~� (t; x ) := � (t;x )
M and ~c(t; x ) := c(t;x )

M satisfy the system (3.7) with the new
parameter ~� := �M . Therefore, w.l.o.g. we may and do thereafter assume thatM = 1.

Denote by gt the density of Wt . We de�ne the notion of solution for the system (3.7):

De�nition 3.2.5. Given the functions � 0 and c0, and the constants� > 0, � � 0, T > 0, the pair
(�; c ) is said to be a solution to(3.7) if � (t; �) is a probability density function for every 0 � t � T ,
c is in L 1 ([0; T]; C1

b(R)) , one hask� (t; �)kL 1 (R) � CTp
t

for any t 2 (0; T], and the following equality

� (t; x ) = gt � � 0(x) � �
Z t

0

@gt � s

@x
� (

@c
@x

(s; �) � (s; �))( x) ds (3.8)

is satis�ed in the sense of the distributions with

c(t; x ) = e� �t (g(t; � ) � c0)(x) +
Z t

0
e� �s (gs � � (t � s; �))( x) ds: (3.9)

Notice that the function c(t; x ) de�ned by ( 3.9) is a mild solution to ( 3.7b). These solutions are
known as integral solutions and they have already been studied in PDE literature for the
two-dimensional Keller-Segel model for which sub-critical and critical regimes exist depending on
the parameters of the model (see [22] and references therein). In the one-dimensional case there is
no critical regime as shown by the following result.

Corollary 3.2.6. Assume that � 0 2 L 1(R) and c0 2 C1
b(R). Given any � > 0, � � 0 and T > 0,

the time marginals � (t; x ) � pt (x) of the probability distribution of the unique solution to Eq.(3.2)
with d = 1 and the corresponding functionc(t; x ) provide a global solution to(3.7) in the sense of
De�nition 3.2.5. Any other solution (� 1; c1) with the same initial condition (� 0; c0) satis�es
k� 1(t; �) � � (t; �)kL 1 (R) = 0 and k@c1

@x(t; �) � @c
@x(t; �)kL 1 (R) = 0 for every 0 � t � T .

Remark 3.2.7. From estimates in Section3.3 we could deduce some additional regularity results
which we do not need here: See Remark3.3.3. In particular, if � 0 2 L 1 (R), then
� 2 L 1 ([0; T]; L 1 \ L 1 (R)) . If � 0 2 L 2(R), then � 2 L 1 ([0; T]; L 1 \ L 2(R)) and
t1=4k� t kL 1 (R) � C; in addition, one can then easily �nd modi�cations of the hypotheses on the
kernel K allowing to get unique weak solutions with constraints onkpt kL 2 (R) . We prefer to only
suppose that� 0 2 L 1(R).
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3.3 Preliminary: A density estimate

In the sequel, we will get local solutions to (3.3) and extend them to global solutions by means of
an iterative procedure. The L 1 -norms of the successive drifts are needed to be bounded from
above uniformly w.r.t. the iteration step. Standard density estimates obtained by using Girsanov
theorem or PDE analysis do not help to this purpose. The reason is that they involve constants
which exponentially depend on theL 1 -norm (or even H•older-norm) of the drifts. Namely, let X (b)

be a process de�ned by

X (b)
t = X 0 +

Z t

0
b(s; X (b)

s ) ds + Wt ; t 2 [0; T]; (3.10)

where X 0 = x. Suppose that the drift b(�; �) is measurable and uniformly bounded. Denote by
� := sup t2 [0;T ] kb(t; �)kL 1 (R) and by p(t; x; y ) the transition probability density of X (b) . Formally,
from the mild equation satis�ed by p, one gets

kp(t; x; �)kL 1 (R) �
C
p

t
+ C�

Z t

0

kp(s; x; �)kL 1 (R)p
t � s

ds:

Then, a Singular Gronwall lemma leads to an estimate that depends exponentially of � . To avoid
Gronwall's lemma, we could use the fact that, in view of [53, Prop. 1.1], for any t > 0 one has
p(t; x; �) 2 L q(R) with 1 < q < 1 . However, the proof is based on the Girsanov transform (see
Section 2.3) and therefore the L q(R)-norm of the density depends exponentially of� . Thus, if we
would apply such an estimate in the mild equation instead of a Gronwall lemma as above, still we
would not avoid the exponential dependence on� .

We therefore proceed by using an accurate pointwise estimate (withexplicit constants) on
densities of one-dimensional di�usions with bounded measurable drifts. Estimate (3.11) below is
obtained by using a stochastic technique. Its drawback is that themap y 7! p�

y (t; x; y ) is not a
probability density function. However, it su�ces to nicely bound the successive drifts of the
Picard iterations as shown by Proposition3.5.3.

To obtain L 1 (R) estimates for the transition probability density p(b) (t; x; y ) of X (b) under the
only assumption that the drift b(t; x ) is measurable and uniformly bounded we slightly extend the
estimate proved in Qian and Zheng [66] for time homogeneous drift coe�cients b(x). We here
propose a proof di�erent from the original one. It avoids the use of densities of pinned di�usions
and the claim that p(b) (t; x; y ) is continuous w.r.t. all the variables which does not seem obvious to
us. In our proof we adapt the method in Makhlouf [52], the main di�erence being that instead of
the Wiener measure our reference measure is the probability distribution of the particular
di�usion process X � considered in [66] and de�ned by

X �
t = X 0 + �

Z t

0
sgn(y � X �

s ) ds + Wt :

Theorem 3.3.1. Let X (b) be the process de�ned in(3.10) with X 0 = x. Let p�
y (t; x; z ) be the

transition density of X � . Assume � := sup t2 [0;T ] kb(t; �)k1 < 1 . Then for all y 2 R and t 2 (0; T]
it holds that

p(b) (t; x; y ) � p�
y (t; x; y ) =

1
p

2�t

Z 1

j x � y jp
t

ze� ( z � �
p

t ) 2

2 dz: (3.11)
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Proof. Let f 2 C1
K (R) and �x t 2 (0; T]. Consider the parabolic PDE driven by the in�nitesimal

generator ofX � :
(

@u
@t(s; x) + 1

2
@2u
@x2 (s; x) + � sgn(y � x) @u

@x(s; x) = 0 ; 0 � s < t; x 2 R;

u(t; x ) = f (x); x 2 R:
(3.12)

In view of Veretennikov [78, Thm. 1] there exists a solution u(s; x) 2 W 1;2
p ([0; t] � R). Applying

the Itô-Krylov formula to u(s; X �
s ) we obtain that

u(s; x) =
Z

f (z)p�
y (t � s; x; z) dz:

The formula (3.35) from our appendix allows us to di�erentiate under the integral sign:

@u
@x

(s; x) =
Z

f (z)
@p�y
@x

(t � s; x; z) dz; 80 � s < t � T:

Fix 0 < " < t . Now apply the Itô-Krylov formula to u(s; X (b)
s ) for 0 � s � t � " and use the

PDE (3.12). It comes:

E(u(t � "; X (b)
t � " )) = u(0; x) + E

Z t � "

0
(b(s; X (b)

s ) � � sgn(y � X (b)
s ))

@u
@x

(s; X (b)
s ) ds:

In view of Corollary 3.8.2 in the appendix there exists a functionh 2 L 1([0; t] � R) such that

80 < s < t � T; 8y; z 2 R; E

�
�
�
�
�
@p�y
@x

(t � s; X (b)
s ; z)

�
�
�
�
�

� CT;�;x;y h(s; z): (3.13)

Consequently,

E(u(t � "; X (b)
t � " )) =

Z
f (z)p�

y (t; x; z ) dz

+
Z

f (z)
Z t � "

0
E

(

(b(s; X (b)
s ) � � sgn(y � X (b)

s ))
@p�y
@x

(t � s; X (b)
s ; z)

)

ds dz:

Let now � tend to 0. By Lebesgue's dominated convergence theorem we obtain
Z

f (z)p(b) (t; x; z )dz =
Z

f (z)p�
y (t; x; z )dz

+
Z

f (z)
Z t

0
E

(

(b(s; X (b)
s ) � � sgn(y � X (b)

s ))
@p�y
@x

(t � s; X (b)
s ; z)

)

ds dz:

Therefore the density p(b) satis�es:

p(b) (t; x; z ) = p�
y (t; x; z ) +

Z t

0
E

(

(b(s; X (b)
s ) � � sgn(y � X (b)

s ))
@p�y
@x

(t � s; X (b)
s ; z)

)

ds:

As noticed in [66], in view of Formula (3.36) from our appendix we have for anyx 2 R

(b(s; x) � � sgn(y � x))
@

@x
p�

y (t � s; x; y) � 0:
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This leads us to choosez = y in the preceding equality, which gives us

p(b) (t; x; y ) = p�
y (t; x; y ) +

Z t

0
E

(

(b(s; X (b)
s ) � � sgn(y � X (b)

s ))
@p�y
@x

(t � s; X (b)
s ; y)

)

ds;

from which
8t � T; p(b) (t; x; y ) � p�

y (t; x; y ):

We �nally use Qian and Zheng's explicit representation (see [66] and our appendix section3.8).

Corollary 3.3.2. AssumeX 0 is distributed according to the probability density functionp0 on R.
Denote byp(t; �) the probability density of X (b)

t . One has

kp(t; �)kL 1 (R) �
1

p
2�t

+ �: (3.14)

Proof. In view of (3.11) we have

p(t; y) �
1

p
2�t

Z
p0(x)

Z 1

j x � y jp
t

ze� ( z � �
p

t ) 2

2 dz dx

�
1

p
2�t

Z
p0(x)

Z 1

j x � y jp
t

� �
p

t
(z + �

p
t)e� z2

2 dz dx

=
1

p
2�t

(
Z

p0(x)e� ( j x � y j� �t ) 2

2t dx + �
p

t
Z

p0(x)
Z 1

j x � y jp
t

� �
p

t
e� z2

2 dz dx)

�
1

p
2�t

Z
p0(x)e� ( j y � x j� �t ) 2

2t dx + �:

Remark 3.3.3. If p0 2 L 1 (R), the above calculation shows that

kp(t; �)kL 1 (R) � 2kp0kL 1 (R) + �:

If p0 2 L q(R); q > 1, H•older's inequality leads to

1
p

2�t

Z
p0(x)e� ( j y � x j� �t ) 2

2t dx �
kp0kL q (R)p

2�t
(
Z

e� q ( j y � x j� �t ) 2

2t dx)1=q0
�

Cqt
1

2q0

p
t

=
Cq

t
1

2q

:

3.4 A non-linear McKean{Vlasov{Fokker{Planck equation

Proposition 3.4.1. Let T > 0. Assume p0 2 L 1(R), b 2 L 1 ([0; T] � R) and Hypothesis(H). Let
(
 ; F ; P; (F t ); X; W ) be a weak solution to(3.3) until T . Then,

1. The marginals (pt )t2 [0;T ] satisfy in the sense of the distributions the mild equation

8t 2 (0; T]; pt = gt � p0 �
Z t

0

@gt � s

@x
� (ps(b(s; �) + B (s; � ; p))ds: (3.15)
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2. Equation (3.15) admits at most one solution(pt )t2 [0;T ] which for any t 2 [0; T] belongs to
L 1(R) and satis�es (3.5).

Proof. We successively prove (3.15) and the uniqueness of its solution inL 1(R).

1. Now, for f 2 C2
b(R) consider the Cauchy problem

(
@G
@s(s; x) + 1

2
@2G
@x2 (s; x) = 0 ; 0 � s < t; x 2 R;

lim s! t � G(s; x) = f (x):
(3.16)

The function

Gt;f (s; x) =
Z

f (y)gt � s(x � y)dy

is a smooth solution to (3.16). Applying Itô's formula we get

Gt;f (t; X t ) � Gt;f (0; X 0) =
Z t

0

@Gt;f
@s

(s; X s)ds +
Z t

0

@Gt;f
@x

(s; X s)(b(s; X s) + B (s; X s; p))ds

+
Z t

0

@Gt;f
@x

(s; X s)dW s +
1
2

Z t

0

@2Gt;f

@x2
(s; X s)ds:

Using (3.16) we obtain

Ef (X t ) = EGt;f (0; X 0) +
Z t

0
E

�
@Gt;f

@x
(s; X s)(b(s; X s) + B (s; X s; p))

�
ds =: I + II: (3.17)

On the one hand, one has

I =
Z Z

f (y)gt (y � x)dy p0(x)dx =
Z

f (y)(gt � p0)(y)dy:

On the second hand, one has

II =
Z t

0

Z
@

@x

� Z
f (y)gt � s(x � y)dy

�
(b(s; x) + B (s; x; p))ps(x)dxds

=
Z t

0

Z Z
f (y)

@gt � s

@x
(x � y)dy(b(s; x) + B (s; x; p))ps(x)dxds

= �
Z

f (y)
Z t

0
[
@gt � s

@x
� ((b(s; �) + B (s; �; p))ps)](y)dsdy:

Thus (3.17) can be written as

Z
f (y)pt (y)dx =

Z
f (y)(gt � p0)(y)dy �

Z
f (y)

Z t

0
[
@gt � s

@x
� ((b(s; �) + B (s; �; p))ps)](y)dsdy;

which is the mild equation (3.15).
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2. Assumep1
t and p2

t are two mild solutions in the sense of the distributions to (3.15) which
satisfy

9C > 0; 8t 2 (0; T]; kp1
t kL 1 (R) + kp2

t kL 1 (R) �
CTp

t
:

Then,

kp1
t � p2

t kL 1 (R) �
Z t

0
k

@gt � s

@x
� [B (s; � ; p1)p1

s � B (s; � ; p2)p2
s)kL 1 (R)ds

+
Z t

0
k

@gt � s

@x
� [b(s; � )(p1

s � p2
s)]kL 1 (R)ds

�
Z t

0
k

@gt � s

@x
� [(B (s; �; p1) � B (s; �; p2))p1

s]kL 1 (R)ds

+
Z t

0
k

@gt � s

@x
� [(p1

s � p2
s)B (s; � ; p2)]kL 1 (R)ds

+
Z t

0
k

@gt � s

@x
� [b(s; � )(p1

s � p2
s)]kL 1 (R)ds

=: I + II + III:

As

k
@gt � s

@x
kL 1 (R) =

C
p

t � s
;

the convolution inequality ( 3.37) and Remark 3.2.2 lead to

II �
Z t

0
k

@gt � s

@x
kL 1 (R)k(p1

s � p2
s)B (s; �; p2)kL 1 (R)ds � CT

Z t

0

kp1
s � p2

skL 1 (R)p
t � s

ds:

As b is bounded, we also have

jIII j � CT

Z t

0

kp1
s � p2

skL 1 (R)p
t � s

ds:

We now turn to I . Notice that

kB (s; �; p1) � B (s; �; p2)kL 1 (R) �
Z s

0
kK s� � kL 1 (R)kp1

� � p2
� kL 1 (R)d�;

from which, since by hypothesis (pt ) satis�es (3.5), one has

I �
Z t

0

CTp
t � s

p
s

Z s

0
kK s� � kL 1 (R)kp1

� � p2
� kL 1 (R)d� ds

�
Z t

0
kp1

� � p2
� kL 1 (R)

Z t

�

CTp
t � s

p
s

kK s� � kL 1 (R)ds d�:

In addition, using Hypothesis (H-4),

Z t

�

1
p

t � s
p

s
kK s� � kL 1 (R)ds �

1
p

�

Z t

�

1
p

t � s
kK s� � kL 1 (R)ds =

1
p

�

Z t � �

0

kK skL 1 (R)p
t � � � s

ds �
CTp

�
:
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It comes:

I � CT

Z t

0

kp1
� � p2

� kL 1 (R)p
�

d�:

Gathering the preceding estimates we obtain

kp1
t � p2

t kL 1 (R) � CT

Z t

0

kp1
s � p2

skL 1 (R)p
t � s

ds + CT

Z t

0

kp1
s � p2

skL 1 (R)p
s

ds:

Applying a Singular Gronwall Lemma (see Lemma3.4.2 below), we conclude

8t 2 (0; T]; kp1
t � p2

t kL 1 (R) = 0 ;

which ends the proof.

In the above proof we have used the following result:

Lemma 3.4.2. Let (u(t)) t � 0 be a non-negative bounded function such that for a givenT > 0,
there exists a positive constantCT such that for any t 2 (0; T]:

u(t) � CT

Z t

0

u(s)
p

s
ds + CT

Z t

0

u(s)
p

t � s
ds: (3.18)

Then, u(t) = 0 for any t 2 (0; T].

Proof. The relation in ( 3.18) reduces to

u(t) � 2CT
p

t
Z t

0

u(s)
p

s
p

t � s
ds:

Iterating the preceding expression, one gets

u(t) � (2CT )2
p

t
Z t

0

p
s

p
s
p

t � s

Z s

0

u(r )
p

s � r
p

r
dr ds:

Fubini's theorem leads to

u(t) � (2CT )2
p

t
Z t

0

u(r )
p

r

Z s

0

1
p

t � s
p

s � r
ds dr:

Using the de�nition of the � -function one arrives to

u(t) � (2CT )2
p

T � (
1
2

;
1
2

)
Z t

0

u(r )
p

r
dr:

Now, apply the classical Gronwall lemma to �nish the proof.

3.5 A local existence and uniqueness result for Equation (3.3)

Set

D(T) :=
Z T

0

Z

R
jK t (x)jdxdt < 1 : (3.19)

The main result in this section is the following theorem.

Theorem 3.5.1. Let T0 > 0 be such thatD(T0) < 1. Assume p0 2 L 1(R) and b 2 L 1 ((0; T0) � R)
continuous w.r.t. space variable. Under Hypothesis(H), Equation (3.3) admits a unique weak
solution up to T0.
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Iterative procedure. Consider the following sequence of SDE's. Fork = 1
(

dX 1
t = b(t; X 1

t ) dt +
n Rt

0 (K t � s � p0)(X 1
t )ds

o
dt + dWt ;

X 1
0 � p0:

(3.20)

Denote the drift of this equation by b1(t; x ). Supposing that, in the step k � 1, the one
dimensional time marginals of the law of the solution have densities (pk� 1

t )t � 0, we de�ne the drift
in the step k as

bk (t; x; pk� 1) = b(t; x ) + B (t; x ; pk� 1);

where B is as in (3.4). The corresponding SDE is
(

dX k
t = bk (t; X k

t ; pk� 1)dt + dWt ;

X k
0 � p0:

(3.21)

In order to prove the desired local existence and uniqueness result we set up the non-linear
martingale problem related to (3.3).

De�nition 3.5.2. A probability measure Q on the canonical spaceC([0; T0]; R) equipped with its
canonical �ltration and a canonical process (wt ) is a solution to the non-linear martingale problem
(MP (p0; T0; b)) if:

(i) Q0 = p0.

(ii) For any t 2 (0; T0], the one dimensional time marginals ofQ, denoted byQt , have densities
qt w.r.t. Lebesgue measure onR. In addition, they satisfy

80 < t � T0; kqt kL 1 (R) �
CT0p

t
: (3.22)

(iii) For any f 2 C2
K (R) the process(M t )t � T0 , de�ned as

M t := f (wt ) � f (w0) �
Z t

0

� 1
2

@2f
@x2

(wu)+
@f
@x

(wu)(b(u; wu)+
Z u

0

Z
K u� � (wu � y)q� (y)dyd�

�
]du

is a Q-martingale.

Notice that the arguments in Remark 3.2.2 justify that all the integrals in the de�nition of M t are
well de�ned.

We start with the analysis of Equations (3.20)-(3.21).

Proposition 3.5.3. Same assumptions as in Theorem3.5.1. Then, for any k � 1, Equations
(3.20)-(3.21) Equations (3.20)-(3.21) admit unique weak solutions up toT0. For k � 1, denote by
Pk the law of (X k

t )t � T0 . Moreover, for t 2 (0; T0], the time marginals Pk
t of Pk have densitiespk

t
w.r.t. Lebesgue measure onR. Setting � k = sup t � T0

kbk (t; �; pk� 1)kL 1 (R) and b0 := kbkL 1 ([0;T0 ]� R) ,
one has

80 < t � T0; kpk
t kL 1 (R) �

C(b0; T0)
p

t
and � k � C(b0; T0):
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Finally, there exists a function p1 2 L 1 ([0; T0]; L 1(R)) such that

sup
t � T0

kpk
t � p1

t kL 1 (R) ! 0; as k ! 1 :

Moreover,

80 < t � T0; kp1
t kL 1 (R) �

C(b0; T0)
p

t
: (3.23)

Proof. We proceed by induction.

Case k = 1 . In view of (H-5), one has� 1 � b0 + CT0 . This implies that the equation (3.20) has a
unique weak solution in [0; T0] with time marginal densities (p1

t )t � T0 which in view of Corollary
3.3.2 satisfy

8t 2 (0; T0]; kp1
t kL 1 (R) �

1
p

2�t
+ � 1:

Case k > 1. Assume now that the equation forX k has a unique weak solution and assume� k is
�nite. In addition, suppose that the one dimensional time marginals satisfy

8t 2 (0; T0]; kpk
t kL 1 (R) �

1
p

2�t
+ � k :

In view of (H-4), the new drift satis�es

jbk+1 (t; x ; pk )j � b0 +
Z t

0
kpk

skL 1 (R)kK t � skL 1 (R)ds � b0 +
Z t

0
(

1
p

2�s
+ � k )kK t � skL 1 (R)ds

� b0 + CT0 + � kD(T0):

Thus, we conclude that � k+1 � b0 + CT0 + � kD(T0). Therefore, there exists a unique weak
solution to the equation for X k+1 . Furthermore, by Corollary 3.3.2:

8t 2 (0; T0]; kpk+1
t kL 1 (R) �

CT0p
t

+ � k+1 :

Notice that
8k > 1; � k+1 � b0 + CT0 + � kD(T0) and � 1 � b0 + CT0 :

Thus, as D(T0) < 1, iterating the previous relation we have

8k � 1; � k �
b0 + CT0

1 � D(T0)
+ b0 + CT0 (3.24)

and

kpk
t kL 1 (R) �

CT0p
t

+ � k �
CT0p

t
+

b0 + CT0

1 � D(T0)
+ b0 + CT0 : (3.25)

Finally, it remains to prove that the sequencepk converges inL 1 ([0; T0]; L 1(R)). In order to do
so, we will prove pk is a Cauchy sequence. As the space is Banach's, the convergence will follow.
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Applying the same procedure as in Section3.4, one can derive the mild equation for (pk
t )t2 [0;T0 ].

Thus, for every k � 1, the marginals (pk
t )t2 (0;T0 ] satisfy the mild equation

8t 2 (0; T]; pk
t = gt � p0 �

Z t

0

@gt � s

@x
� (pk

sbk (s; �; pk� 1))ds (3.26)

in the sense of the distributions. Assume for a moment that we have proved that for any
0 < t � T0, one has

kpk
t � pk� 1

t kL 1 (R) � CT0

Z t

0

kpk� 1
s � pk� 2

s kL 1 (R)p
s

ds: (3.27)

Remember that
Rt

0 f (u1) : : :
Ruk � 1

0 f (uk )duk : : : du1 = 1
k!

� Rt
0 f (u)du

� k
for any positive integrable

function f . Then, iterating ( 3.27) one gets,

kpk
t � pk� 1

t kL 1 (R) � 2
(CT0

p
t)k� 1

(k � 1)!
:

Therefore, supt � T0
kpk

t � pk� 1
t kL 1 (R) ! 0, ask ! 1 as desired.

It remains to prove the inequality ( 3.27). In the sequel C(T0) > 0 will denote a constant that
depends onT0 and may change from line to line. In view of (3.26), one has

kpk
t � pk� 1

t kL 1 (R) �
Z t

0
k

@gt � s

@x
� (pk

sbk (s; �; pk� 1) � pk� 1
s bk� 1(s; �; pk� 2))kL 1 (R) ds

�
Z t

0

1
p

t � s
kbk� 1(s; �; pk� 2)(pk

s � pk� 1
s )kL 1 (R) ds

+
Z t

0

1
p

t � s
k(bk (s; �; pk� 1) � bk� 1(s; �; pk� 2))pk

skL 1 (R) ds

=: I + II:

(3.28)

According to (3.24), one has

I � C(T0)
Z t

0

kpk
s � pk� 1

s kL 1 (R)p
t � s

ds:

According to (3.25), one has

II � C(T0)
Z t

0

1
p

t � s
p

s

Z s

0
kK s� u � (pk� 1

u � pk� 2
u )kL 1 (R) du ds:

Convolution inequality ( 3.37) and Fubini-Tonelli's theorem lead to

II � C(T0)
Z t

0
kpk� 1

u � pk� 2
u kL 1 (R)

Z t

u

1
p

t � s
p

s
kK s� ukL 1 (R) ds du:

Apply the change of variablest � s = s0. It comes,

II � C(T0)
Z t

0

1
p

u
kpk� 1

u � pk� 2
u kL 1 (R)

Z t � u

0

1
p

s0
kK t � u� s0kL 1 (R) ds0 du:
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According to (H-4) one has

II � C(T0)
Z t

0

1
p

u
kpk� 1

u � pk� 2
u kL 1 (R) du:

Coming back to (3.28) and using our above estimates onI and II , we obtain

kpk
t � pk� 1

t kL 1 (R) � C(T0)
Z t

0

kpk
s � pk� 1

s kL 1 (R)p
t � s

ds + C(T0)
Z t

0

1
p

u
kpk� 1

u � pk� 2
u kL 1 (R) du:

We are in the situation

�( t) := kpk
t � pk� 1

t kL 1 (R) � A(t) + C
Z t

0

�( s)
p

t � s
ds;

where A(t) � 0 is a bounded increasing function. Iterate this relation and use themonotonicity of
A. It comes

�( t) � CT A(t) + C2
Z t

0

1
p

t � s

Z s

0

�( u)
p

s � u
du ds:

Apply Fubini's theorem to get

�( t) � CT A(t) + C2
Z t

0
�( u)

Z t

u

1
p

t � s
p

s � u
ds du:

Notice that
Rt

u
1p

t � s
p

s� u
ds =

R1
0

1p
1� x

p
x

dx. Now, apply Gronwall's lemma to get (3.27) and the

convergence ofpk to p1 .

In order to obtain ( 3.23), �x t 2 (0; T] and use (3.25) and the fact that the convergence inL 1(R)
implies the almost sure convergence of a subsequence.

Corollary 3.5.4. Same assumptions as in Proposition3.5.3. Assume that (Pk )k� 1 admits a
weakly convergent subsequence(Pnk )k� 1. Denote its limit by Q. Then for any t 2 (0; T0], one has
that Qt (dx) = p1

t (x)dx, where p1 is constructed in Proposition 3.5.3.

Proof. Let f 2 C1
K (R). Then by weak convergence,

< f; Qt > = lim
k!1

< f; p nk
t > = < f; p 1

t > + lim
k!1

< f; p nk
t � p1

t > :

In view of Proposition 3.5.3, one has

lim
k!1

j < f; p nk
t � p1

t > j � k f kL 1 (R) lim
k!1

kpnk
t � p1

t kL 1 (R) = 0 :

Thus, < f; Qt > = < f; p 1
t > which completes the proof.

Proposition 3.5.5. Same assumptions as in Theorem(3.5.1). Then,

1) The family of probabilities (Pk )k> 1 is tight.

2) Any weak limit P1 of a convergent subsequence of(Pk )k� 1 solves(MP (p0; T0; b)) .
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Proof. In view of (3.24), we obviously have

9CT0 > 0; sup
k

EjX k
t � X k

s j4 � CT0 jt � sj2; 8 0 � s � t � T0:

This is a su�cient condition for tightness (see e.g. [45, Chap.2, Pb.4.11]).

Let (Pnk ) be a weakly convergent subsequence of (Pk )k� 1 and let P1 denote its limit. Let us check
that P1 solves the martingale problem (MP (p0; T0; b)). To simplify the notation, we below write
Pk instead of Pnk and �pk� 1 instead of pnk � 1.

i) Each Pk
0 has density p0, and thereforeP1

0 also has densityp0.

ii) Corollary 3.5.4 implies that the time marginals of P1 are absolutely continuous with respect
to Lebesgue's measure and satisfy (3.22).

iii) Set

M t := f (wt ) � f (w0) �
Z t

0

� 1
2

@2f
@x2

(wu) +
@f
@x

(wu)(b(u; wu) +
Z u

0
(K u� � � p1

� )(wu)d� )
�
du;

We have to prove

EP1 [(M t � M s)� (wt1 ; : : : ; wtN )] = 0 ; 8� 2 Cb(RN ) and 0 � t1 < � � � < t N < s � t � T0; N � 1:

The process

M k
t := f (wt ) � f (x(0)) �

Z t

0

� 1
2

@2f
@x2

(wu) +
@f
@x

(wu)(b(u; wu) +
Z u

0
(K u� � � �pk� 1

� )(wu)d�
�
]du

is a martingale under Pk . Therefore, it follows that

0 = EPk [(M k
t � M k

s )� (wt1 ; : : : ; wtN )]

= EPk [� (: : : )( f (wt ) � f (ws))] + EPk [� (: : : )
Z t

s

1
2

@2f
@x2

(wu)du]

+ EPk [� (: : : )
Z t

s

@f
@x

(wu)b(u; wu)du] + EPk [� (: : : )
Z t

s

@f
@x

(wu)
Z u

0
(K u� � � �pk� 1

� )(wu) d� du ]:

Since (Pk ) weakly converges toP1 , the �rst two terms on the r.h.s. obviously converge.
Now, observe that

EPk [� (: : : )
Z t

s

@f
@x

(wu)
Z u

0
(K u� � � �pk� 1

� )(wu) d� du ]

� EP1 [� (: : : )
Z t

s

@f
@x

(wu)
Z u

0
(K u� � � p1

� )(wu) d� du ]

=
�
EPk [� (: : : )

Z t

s

@f
@x

(wu)
Z u

0
(K u� � � �pk� 1

� )(wu) d� du ]

� EPk [� (: : : )
Z t

s

@f
@x

(wu)
Z u

0
(K u� � � p1

� )(wu) d� du ]
�

+
�
EPk [� (: : : )

Z t

s

@f
@x

(wu)
Z u

0
(K u� � � p1

� )(wu) d� du ]

� EP1 [� (: : : )
Z t

s

@f
@x

(wu)
Z u

0
(K u� � � p1

� )(wu) d� du ]
�

=: I + II:
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Now, in view of (3.25) and the de�nition of D(T) as in (3.19), one has

jI j � k � kL 1 (R)

Z t

s

Z u

0

Z
j
@f
@x

(x)jj (K u� � � ( �pk� 1
� � p1

� ))( x)jpk
u(x)dx d� du

� k � kL 1 (R)k
@f
@x

kL 1 (R)

Z t

s

CT0p
u

Z u

0
kK u� � kL 1 (R)k�pk� 1

� � p1
� kL 1 (R)d� du

� CT0 D(T0)k� kL 1 (R)k
@f
@x

kL 1 (R) sup
r � T0

k�pk� 1
r � p1

r kL 1 (R) :

Proposition 3.5.3 implies that I ! 0 ask ! 1 .

Now, to prove that II ! 0, it su�ces to prove that the functional F : C([0; T0]; R) ! R
de�ned by

w: 7! � (wt1 ; : : : ; wtN )
Z t

s

@f
@x

(wu)
Z u

0

Z
K u� � (wu � y)p1

� (y) dy d� du

is continuous. Let (wn ) a sequence converging inC([0; T0]; R) to w. Since� is a continuous
function, it su�ces to show that

lim
n!1

Z t

s

@f
@x

(wn
u )

Z u

0

Z
K u� � (wn

u � y)p1
� (y) dy d� du (3.29)

=
Z t

s

@f
@x

(wu)
Z u

0

Z
K u� � (wu � y)p1

� (y) dy d� du:

For (u; � ) 2 [s; t] � [0; t], set

hu;� (x) := 1f � < u g
@f
@x

(xu)
Z

K u� � (x � y)p1
� (y)dy:

The hypothesis (H-2) implies the continuity of hu;� on R. Furthermore,

jhu;� (x)j � C1f � < u gkp1
� kL 1 (R)kK u� � kL 1 (R) �

C
p

�
1f � < u gkK u� � kL 1 (R) :

In view of (H-4), we apply the theorem of dominated convergence to conclude (3.29). This
ends the proof.

Proof of Theorem 3.5.1 : Proposition 3.5.5 implies the existence of a weak solution
(
 ; F ; P; (F t ); X; W ) to ( 3.3) up to time T0. Thus, the marginals P � X � 1

t =: pt satisfy
kpt kL 1 (R) � Cp

t
, t 2 (0; T0]. In addition, as jB (t; x ; p)j � C(T0), one has that (
 ; F ; P; (F t ); X; W )

is the unique weak solution of the linear SDE

d ~X t = b(t; ~X t )dt + B (t; ~X t ; p)dt + dWt ; t � T0: (3.30)

Now suppose that there exists another weak solution (̂
 ; F̂ ; P̂; (F̂ t ); X̂; Ŵ ) to ( 3.3) up to T0 and
denote P̂ � X̂ � 1

t (dx) = p̂t (x)dx. By Proposition 3.4.1 we havep̂t = pt , for t � T0. Therefore,
(
̂ ; F̂ ; P̂; (F̂ t ); X̂; Ŵ ) is a weak solution to (3.30), from which P̂ � X̂ � 1 = P � X � 1.
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3.6 Proof of Theorem 3.2.3: A global existence and uniqueness
result for Equation (3.3)

We now construct a solution for an arbitrary time horizon T > 0. We will do it by restarting the
equation after the time horizon T0 �xed in the previous section. We start with T = 2T0. Then, we
will see how to generalize this procedure for an arbitraryT > 0.

Throughout this section, we denote by 
 0 the canonical spaceC([0; T0]; R) and by B0 its Borel � -
�eld. We denote by Q1 the probability distribution of the unique weak solution to ( 3.3) up to T0

constructed in the previous section.

3.6.1 Solution on [0; 2T0]

Proposition 3.6.1. Let T0 > 0 be such thatD(T0) < 1. Assume p0 2 L 1(R) and let
b 2 L 1 ([0; 2T0] � R) be continuous w.r.t. the space variable. Under the hypothesis(H), Equation
(3.3) admits a unique weak solution up to2T0.

We start with analyzing the dynamics of (3.3) after T0 and informally explaining the construction
of a solution betweenT0 and 2T0. Assume, for a while, that Proposition 3.6.1 holds true. Denote
the density of X t by p1

t , for t � T0 and by p2
t , for t 2 (T0; 2T0]. Let t � 0. In view of Equation

(3.3), we would have

X T0+ t = X T0 +
Z T0+ t

T0

b(s; X s) ds +
Z T0+ t

T0

Z s

0
(K s� � � p� )(X s) d� ds + WT0+ t � WT0 :

Observe that

Z T0+ t

T0

Z s

0
(K s� � � p� )(X s) d� ds =

Z T0+ t

T0

Z T0

0
(K s� � � p1

� )(X s)d�ds +
Z T0+ t

T0

Z s

T0

(K s� � � p2
� )(X s) ds dt

=: B1 + B2:

The change of variabless � T0 = s0 leads to

B1 =
Z t

0

Z T0

0
(K T0+ s0� � � p1

� )(X T0+ s0) d� ds0

and, in combination with � � T0 = � 0, to

B2 =
Z t

0

Z T0+ s0

T0

(K T0+ s0� � � p2
� )(X T0+ s0)d�ds0 =

Z t

0

Z s0

0
(K s0� � 0 � p2

T0+ � 0)(X T0+ s0) d� 0 ds0:

Now set Yt := X T0+ t and ~pt (y) := p2
T0+ t (y). Consider the new Brownian motion

W t := WT0+ t � WT0 . It comes:

Yt = Y0 +
Z t

0
b(s+ T0; Ys)ds+

Z t

0

Z T0

0
(K T0+ s0� � � p1

� )(Ys) d� ds +
Z t

0

Z s

0
(K s0� � 0 � ~p� )(Ys) d� ds + W t ;
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for t 2 [0; T0]. Setting

b1(t; x; T 0) :=
Z T0

0
(K T0+ t � s � p1

s)(x)ds and ~b(t; x ) := b(T0 + t; x );

we have
(

dYt = ~b(t; Yt )dt + b1(t; Yt ; T0)dt +
n Rt

0 (K t � s � ~ps)(Yt )ds
o

dt + dW t ; t � T0;

Y0 � p1
T0

(y)dy; Ys � ~ps(y)dy:
(3.31)

To prove Proposition 3.6.1 we construct a weak solution to (3.31) on [0; T0] and suitably paste its
probability distribution with Q1. We then prove that the so de�ned measure solves the desired
non-linear martingale problem. Notice that the SDE (3.31) is of the same type as (3.3).

Lemma 3.6.2. Same assumptions as in Proposition3.6.1. Denote byp1
t the time marginals of

Q1. Set b1(t; x; T 0) :=
RT0

0 (K T0+ t � s � p1
s)(x)ds and ~b(t; x ) := b(T0 + t; x ). Then, Equation (3.31)

admits a unique weak solution up toT0.

Proof. Let us check that we can apply Theorem3.5.1 to (3.31).

Firstly, by construction the initial law p1
T0

of Y satis�es the assumption of Theorem3.5.1.
Secondly, the role of the additional drift b is now played by the sum of the two linear drifts, ~b and
b1. By hypothesis, ~b is bounded in [0; T0] � R and continuous in the space variable. Using (3.5)
and (H-6) we conclude that b1 is bounded uniformly in t and x since

jb1(t; x; T 0)j � CT0

Z T0

0

kK T0+ t � skL 1 (R)p
s

ds < CT0 :

To show that b1(t; x; T 0) is continuous w.r.t. x we use (H-2) and proceed as at the end of the proof
of Proposition 3.5.5.

We now are in a position to apply Theorem3.5.1: There exists a unique weak solution to (3.31)
up to T0.

Denote by Q2 the probability distribution of the process ( Yt ; t � T0). Notice that Q2 is the
solution to the martingale problem (MP (p1

T0
; T0; ~b+ b1)).

A new measure on C([0; 2T0]; R). Let Q1, Q2 and (p1
t ) be as above. Let (p2

t ) denote the time
marginal densities ofQ2. In particular, Q2

0 = Q1
T0

, i.e. p2
0(z)dz = p1

T0
(z)dz. De�ne the mapping X 0

from 
 0 to R as X 0(w) := w0. Using [45, Thm.3.19, Chap.5] to justify the introduction of regular
conditional probabilities, for each y 2 R we de�ne the probability measure Q2

y on (
 0; B0) by

8A 2 B0; Q2
y(A) = P2(AjX 0 = y):

In particular,
Q2

y(w 2 
 0; w0 = y) = 1 :
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We now set 
 := C([0; 2T0]; R). For w1
� ; w2

� 2 
 0 we de�ne the concatenationw = w1 
 T0 w2 2 
 of
these two paths as the function in 
 de�ned by

(
w� = w1

� ; 0 � � � T0;

w� + T0 = w1
T0

+ w2
� � w2

0; 0 � � � t � T0:

On the other hand, for a given path w 2 
, the two paths w1
� ; w2

� 2 
 0 such that w = w1 
 T0 w2 are
(

w1
� = w� ; 0 � � � T0;

w2
� = wT0+ � ; 0 � � � T0:

We de�ne the probability distribution Q on 
 equipped with its Borel � {�eld as follows. For any
continuous and bounded functional' on 
,

EQ[' ] =
Z



' (w) Q(dw) :=

Z


 0

Z

R

Z


 0

' (w1 
 T0 w2) Q2
y(dw2) p1

T0
(y) dy Q1(dw1): (3.32)

Notice that if ' acts only on the part of the path up to t � T0 of any w� 2 
, then

EQ[' ((w� ) � � t )] =
Z


 0

' ((w� ) � � t ) Q1(dx) = EQ1 [' ((w� ) � � t )]: (3.33)

Proof of Proposition 3.6.1 . Let us prove that the probability measure Q solves the non{linear
martingale problem (MP (p0; 2T0; b)) on the canonical spaceC([0; 2T0]; R).

i) By ( 3.33), it is obvious that Q0 = Q1
0. By construction, Q1

0 has density p0.

ii) Next, let us characterize the one dimensional time marginals ofQ. For f 2 Cb(R) and
t 2 [0; 2T0], consider the functional ' (w) = f (wt ), for any x 2 C([0; 2T0]; R). For t � T0, by
(3.33),

EQ[' (w)] =
Z


 0

f (wt ) Q1(dx) =
Z

R
f (z)p1

t (z) dz:

Therefore, Qt (dz) = p1
t (z)dz:

For T0 � t � 2T0, by (3.32),

EQ[' (w)] =
Z


 0

Z

R

Z


 0

f (w2
t � T0

) Q2
y(dw2) p1

T0
(y) dy Q1(dw1) =

Z

R

Z

R
f (z)Q2

y;t � T0
(dz) p1

T0
(y) dy:

By Fubini's theorem:

EQ[' (w)] =
Z

R
f (z)

Z

R
Q2

y;t � T0
(dz) p1

T0
(y) dy:

SinceQ2
0 = p1

T0
we deduce

EQ[' (w)] =
Z

R
f (z)p2

t � T0
(z) dz;

which shows that Qt (dz) = p2
t � T0

(z)dz:

Therefore, the one dimensional marginals ofQ have densitiesqt which, by construction,
belong to L 1 (R) and satisfy kqt kL 1 (R) � Cp

t
.
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iii) It remains to show that for f 2 C2
K (R), the processM t de�ned as

M t := f (wt ) � f (w0) �
Z t

0

� 1
2

@2f
@x2

(wu)+
@f
@x

(wu)(b(u; wu)+
Z u

0

Z
K u� � (wu � y)q� (y) dy d�

�
]du

is a Q-martingale, i.e. EQ(M t jBs) = M s.

(a) Let s � t � T0 :
For any n 2 N , any continuous bounded functional� on Rn , and any
t1 � � � � � tn � s � t � T0, by (3.33):

EQ(� (wt1 ; : : : ; wtn )(M t � M s)) = EQ1 (� (wt1 ; : : : ; wtn )(M t � M s)) :

As Q1 solves (MP (p0; T0; b)) up to T0,

EQ(� (wt1 ; : : : ; wtn )(M t � M s)) = 0 :

(b) For s � T0 � t � 2T0,

EQ(M t jBs) = EQ[EQ(M t jBT0 )jBs]:

Let us prove that EQ(M t jBT0 ) = M T0 . Notice that

M t � M T0 = f (wt ) � f (wT0 ) �
Z t

T0

1
2

@2f
@x2

(wu)du �
Z t

T0

@f
@x

(wu)b(u; wu) du

�
Z t

T0

@f
@x

(wu)
Z u

0

Z
K u� � (wu � y)q� (y) dy d� du:

Write the last integral as
Z t

T0

@f
@x

(wu)
Z u

0

Z
K u� � (wu � y)q� (y) dy d� du

=
Z t

T0

@f
@x

(wu)
Z T0

0

Z
K u� � (wu � y)p1

� (y) dy d� du

+
Z t

T0

@f
@x

(wu)
Z u

T0

Z
K u� � (wu � y)p2

� � T0
(y) dy d� du =: I 1 + I 2:

Now,

I 1 =
Z t � T0

0

@f
@x

(wu+ T0 )
Z T0

0

Z
K u+ T0 � � (wu+ T0 � y)p1

� (y) dy d� du:

For w 2 
 identify w1; w2 2 
 0 such that w = w1 
 T0 w2. Then,

I 1 =
Z t � T0

0

@f
@x

(w2
u)

Z T0

0
(K u+ T0 � � � p1

� )(w2
u) d� du =

Z t � T0

0

@f
@x

(w2
u)b1(u; w2

u ; T0)du:

Proceeding as above,

I 2 =
Z t � T0

0

@f
@x

(wu+ T0 )
Z u

0

Z
K u� � (wu+ T0 � y)p2

� (y) dy d� du

=
Z t � T0

0

@f
@x

(w2
u)

Z u

0

Z
K u� � (w2

u � y)p2
� (y) dy d� du:
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Similarly

Z t

T0

@f
@x

(wu)b(u; wu)du =
Z t � T0

0

@f
@x

(wu+ T0 )b(u + T0; wu+ T0 )du

=
Z t � T0

0

@f
@x

(w2
u)b(u + T0; w2

u)du =
Z t � T0

0

@f
@x

(w2
u)~b(u; w2

u)du:

It comes:

M t � M T0 = f (w2
t � T0

) � f (w2
0) �

Z t � T0

0

1
2

@2f
@x2

(w2
u)du �

Z t � T0

0

@f
@x

(w2
u)~b(u; w2

u)du

�
Z t � T0

0

@f
@x

(w2
u)

�
b1(u; w2

u ; T0) +
Z u

0

Z
K u� � (w2

u � y)p2
� (y) dy d�

�
du =: F (w2):

By de�nition of the measure Q,

EQ(� (wt1 ; : : : wtn )(M t � M T0 )) =
Z


 0

� (w1
t1

; : : : ; w1
tn

)
Z

R

Z


 0

F (w2)Q2
y(dw2)p1

T0
(y) dy Q1(dw1):

By the de�nition of Q2:

EQ(� (wt1 ; : : : wtn )(M t � M T0 )) =
Z


 0

� (w1
t1

; : : : ; w1
tn

)
Z


 0

F (w2) Q2(dw2) Q1(dw1):

As Q2 solves (MP (p1
T0

; T0; ~b+ b1)), one has

EQ2 (F ) =
Z


 0

F (w2) Q2(dw2) = 0 :

Finally, we conclude that EQ(M t jBT0 ) = M T0 and thereforeEQ(M t jBs) = M s for all
s � T0 � t � 2T0.

(c) For T0 � s � t � 2T0 : we may rewrite the di�erence M t � M s in the same manner:

M t � M s = f (w2
t � T0

) � f (w2
s� T0

) �
Z t � T0

s� T0

1
2

@2f
@x2

(w2
u)du

�
Z t � T0

s� T0

@f
@x

(w2
u)

�
b(u; w2

u)) + b1(u; w2
u ; T0) +

Z u

0

Z
K u� � (wu+ T0 � y)p2

� (y) dy d�
�

du

=: F (w2):

Now, take t1 � � � � � tn < s . Let us suppose that the �rst m are beforeT0 and others
after. We have that

EQ(� (wt1 ; : : : wtn )(M t � M s)) =
Z


 0

Z

R

Z


 0

F (w1
t1

; : : : ; w1
tm

; w2
tm +1 � T0

; : : : ; w2
tn � T0

)' (w2) Q2
y(dw2) p1

T0
(y) dy Q1(dw1):
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SinceQ2 solves (MP (p1
T0

; T0; ~b+ b1)), one has that EQ2 (� 0(w2
t0
1
; : : : w2

t0
n
)F ) = 0 for any

continuous bounded functional � 0 on Rn , any n 2 N and any t0
1 � � � � � t0

n < s � T0:
Taking � 0(w2

t0
1
; : : : w2

t0
n
) = � (w1

t1
; : : : ; w1

tm
; w2

tm +1 � T0
; : : : ; w2

tn � T0
) for a �xed x1, we

conclude that
Z

R

Z


 0

� (w1
t1

; : : : ; w1
tm

; w2
tm +1 � T0

; : : : ; w2
tn � T0

)' (w2) Q2
y(dw2) p1

T0
(y) dy = 0 :

Therefore,
EQ(� (wt1 ; : : : wtn )(M t � M s)) = 0 :

Thus, EQ(M t jBs) = M s for T0 � s � t � 2T0.

To summarize the preceding, we have just shown the existence of asolution to (MP (p0; 2T0; b)).
Finally, we proceed as in the proof of Theorem3.5.1 to deduce the existence and uniqueness of a
weak solution to (3.3) up to 2T0.

3.6.2 End of the proof of Theorem 3.2.3: construction of the global solution

Given any �nite time horizon T > T 0, split the interval [0 ; T] into n = [ T
T0

] + 1 intervals of length
not exceedingT0 ([ T

T0
] denoting the integer part of T

T0
) and repeat n times the procedure used in

the preceding subsection.

Remark 3.6.3. Using similar arguments as above one can construct a solution to(3.3) when the
initial condition p0 is in L 1 (R) \ L 1(R) or, respectively, L 2(R) \ L 1(R). In these cases we use
Remark 3.3.3 in the iterative procedure. Consequently, the weak solution is unique under the
constraint that the one dimensional marginal densities(pt )t � T belong to
L 1 ((0; T); L 1 (R) \ L 1(R)) or, respectively, satisfy

kpt kL 1 (R) �
CT

t1=4
:

3.7 Application to the one-dimensional Keller{Segel model

In this section we prove Corollary 3.2.6. We start with checking that K ] satis�es Hypothesis (H).
The condition (H-1) is satis�ed since for t > 0 one has

kK ]
t kL 1 (R) =

C
p

t

Z
jzje� z2

2 dz:

From the de�nition of K ] it is clear that for t > 0, K ]
t is a bounded and continuous function onR.

The condition (H-3) is also obviously satis�ed. As already noticed,

kK ]
t � skL 1 (R) =

C
p

t � s
;

from which,

f 1(t) :=
Z t

0

kK ]
t � skL 1 (R)p

s
ds = C

Z t

0

1
p

s
p

t � s
ds = C

Z 1

0

1
p

x
p

1 � x
dx = C;
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where C is a universal constant. Now let � be a probability density on R. For (t; x ) 2 (0; T] � R,
one has

Z
� (y)kK ]

� (x � y)kL 1 (0;t ) dy � C
Z

� (y)jx � yj
Z t

0

1
s3=2

e� j x � y j 2

2s ds dy

=
Z

� (y)jx � yj
Z 1

j x � y jp
t

z3

jx � yj3
e� z2

2
jx � yj2

z3 dz dy

=
Z

� (y)
Z

j x � y jp
t

e� z2

2 dz dy:

This shows that (H-5) is satis�ed. Finally, to prove (H-6) we notice th at for every t 2 [0; T]

Z T

0
kK ]

T + t � skL 1 (R)
1

p
s

ds �
Z T

0

C
p

T + t � s
p

s
ds � C

Z T

0

1
p

T � s
p

s
ds = C:

Therefore, in view of Theorem3.2.3, Equation (3.2) with d = 1 is well-posed.1

Denote by � (t; x ) the time marginals of the constructed probability distribution. Now , de�ne the
function c as in (3.9). In view of Inequality ( 3.6), for any t 2 (0; T] the function c(t; �) is well
de�ned and bounded continuous. Let us show thatc 2 L 1 ([0; T]; C1

b(R)).

We have

@c
@x

(t; x ) =
@

@x

�
e� �t E(c0(x + Wt )

�
+

@
@x

�
E

Z t

0
e� �s � (t � s; x + Ws)ds

�
:

Then observe that

E
Z t

0
e� �s � (t � s; x + Ws)ds =

Z t

0
e� �s

Z
� (t � s; x + y)

1
p

2�s
e

� y 2

4s dy ds

=
Z t

0
e� � (t � s)

Z
� (s; y)

1
p

2� (t � s)
e

� ( y � x ) 2

4( t � s) dy ds

=:
Z t

0
f (s; x)ds:

As for any 0 < s < t

j
@

@x
1

p
t � s

e
� ( y � x ) 2

2( t � s) j �
jy � xj

2(t � s)3=2
e

� ( y � x ) 2

2( t � s) �
C

t � s
;

we have
@f
@x

(s; x) = e� � (t � s)
Z

� (s; y)
y � x

2
p

2� (t � s)3=2
e

� ( y � x ) 2

2( t � s) dy:

Now, we repeat the same argument for@
@x

Rt
0 f (s; x)ds. In order to justify the di�erentiation under

the integral sign we notice that

j
@f
@x

(s; x)j �
CTp

(t � s)s
:

1With similar calculations as for f 1 , one easily checks that the function f 2 is bounded on any compact time interval.
Thus, Corollary 3.2.4 applies as well as Theorem3.2.3.
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Gathering the preceding calculations we have obtained

@c
@x

(t; x ) = e� �t Ec0
0(x + Wt ) +

Z t

0
e� � (t � s)

Z
� s(y)

y � x
p

2� (t � s)3=2
e

� ( y � x ) 2

2( t � s) dy ds:

Using the assumption onc0 and Inequality (3.5), for any t 2 (0; T] one has

k
@c
@x

(t; �)kL 1 (R) � k c0
0kL 1 (R) + CT :

In addition, the preceding calculation and Lebesgue's Dominated Convergence Theorem show that
@c
@x(t; �) is continuous on R. We thus have obtained the desired property.

The above discussion shows that we are in a position to apply Proposition3.4.1 with
b(t; x ) � �e � �t Ec0

0(x + Wt ) and B (t; x ; � ) de�ned as in (3.4) with K � K ] : the function � (t; x )
satis�es (3.8) in the sense of the distributions. Therefore, it is a solution to the Keller Segel
system (3.7) in the sense of De�nition 3.2.5. We now check the uniqueness of this solution.

Assume there exists another solution� 1 satisfying De�nition 3.2.5 with the same initial condition
as � . For notation convenience, in the calculation below we setct (x) := c(t; x ), c1

t (x) := c1(t; x ),
� t (x) := � (t; x ), and � 1

t (x) := � 1(t; x ).

Using De�nition 3.2.5,

k� 1
t � � t kL 1 (R) �

Z t

0
k

@gt � s

@x
� (

@c1s
@x

� 1
s �

@cs
@x

� s)kL 1 (R)ds

�
Z t

0
k

@gt � s

@x
� (

@c1

@x
(� 1

s � � s))kL 1 (R)ds +
Z t

0
k

@gt � s

@x
� (� s(

@c1

@x
�

@cs
@x

))kL 1 (R)ds

=: I + II:

Using standard convolution inequality (3.37) and k@gt � s
@x kL 1 (R) � Cp

t� s
we deduce:

I � C
Z t

0

k� 1
s � � skL 1 (R)p

t � s
ds and II � C

Z t

0

k@c1s
@x � @cs

@xkL 1 (R)p
t � s

p
s

ds:

Therefore

k
@c1s
@x

�
@cs
@x

kL 1 (R) �
Z s

0
k(� 1

u � � u) �
@gs� u

@x
kL 1 (R)du � C

Z s

0

k� 1
u � � ukL 1 (R)p

s � u
du; (3.34)

from which

II � C
Z t

0

1
p

s
p

t � s

Z s

0

k� 1
u � � ukL 1 (R)p

s � u
du ds

� C
Z t

0
k� 1

u � � ukL 1 (R)

Z t

u

1
p

s
p

s � u
p

t � s
ds du � CT

Z t

0

k� 1
u � � ukL 1 (R)p

u
du:

Gathering the preceding bounds forI and II we get

kp1
t � pt kL 1 (R) � CT

Z t

0

kp1
s � pskL 1 (R)p

t � s
ds + CT

Z t

0

kp1
s � pskL 1 (R)p

s
ds:

Lemma 3.4.2 implies that k� 1
t � � t kL 1 (R) = 0 for every t � T . In view of (3.34) we also have

k@c1t
@x � @ct

@xkL 1 (R) = 0. This completes the proof of Corollary 3.2.6.
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3.8 Appendix A

We here propose a light simpli�cation of the calculations in [66].

Proposition 3.8.1. Let y 2 R and let � be a constant. Denote byp�
y (t; x; z ) the transition

probability density (with respect to the Lebesgue measure) of the unique weak solution to

X t = x + �
Z t

0
sgn(y � X s) ds + Wt :

Then

p�
y (t; x; z ) =

1
p

2�t 3=2

Z 1

0
e� ( jy� x j+�y�j z� yj)� � 2

2 t (�y + jz � yj + jy � xj)e� ( �y + j z � y j + j y � x j ) 2

2t d�y

+
1

p
2�t

e� ( jy� x j�j z� yj)� � 2

2 t (e� ( z � x ) 2

2t � e� ( j z � y j + j y � x j ) 2

2t ):
(3.35)

In particular,

p�
y (t; x; y ) =

1
p

2�t

Z 1

j x � y jp
t

ze� ( z � �
p

t ) 2

2 dz: (3.36)

Proof. Let f be a bounded continuous function. The Girsanov transform leads to

E(f (X t )) = E(f (x + Wt )e�
Rt

0 sgn(y� x� Ws )dW s� � 2

2 t ):

Let L a
t be the Brownian local time. By Tanaka's formula ([45], p. 205):

jWt � aj = jaj +
Z t

0
sgn(Ws � a)dWs + L a

t :

Therefore for a = y � x
Z t

0
sgn(y � x � Ws)dWs = jy � xj + L a

t � j Wt � (y � x)j;

from which
E(f (X t )) = E(f (x + Wt )e� ( jy� x j+ L y � x

t �j Wt � (y� x)j)� � 2

2 t ):

recall that ( Wt ; L a
t ) has the following joint distribution (see [10, p.200,Eq.(1.3.8)]:

8
<

:

�y > 0 : P(Wt 2 dz; La
t 2 d�y) = 1p

2�t 3=2 (�y + jz � aj + jaj)e� ( �y + j z � a j + j a j ) 2

2t d�y dz:

P(Wt 2 dz; La
t = 0) = 1p

2�t
e� z2

2t dz � 1p
2�t

e� ( j z � a j + j a j ) 2

2t dz:

It comes:

E(f (X t )) =
1

p
2�t 3=2

Z

R

Z 1

0
f (x + z)e� ( jy� x j+�y�j z� (y� x)j)� � 2

2 t (�y + jz � (y � x)j + jy � xj)

e� ( �y + j z � ( y � x ) j + j y � x j ) 2

2t d�y dz

+
1

p
2�t

Z

R
f (x + z)e� ( jy� x j�j z� (y� x)j)� � 2

2 t (e� z2

2t � e� ( j z � ( y � x ) j + j y � x j ) 2

2t ) dz:
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The change of variablesx + z = z0 leads to

E(f (X t )) =
1

p
2�t 3=2

Z

R
f (z0)

Z 1

0
e� ( jy� x j+�y�j z0� yj)� � 2

2 t (�y + jz0� y)j + jy � xj)e� ( �y + j z0� y j + j y � x j ) 2

2t d�y dz0

+
1

p
2�t

Z

R
f (z0)e� ( jy� x j�j z0� yj)� � 2

2 t (e� ( z0� x ) 2

2t � e� ( j z0� y j + j y � x j ) 2

2t )dz0;

from which the desired result follows.

In the next corollary we use the same notation as in the proof of Theorem3.3.1.

Corollary 3.8.2. Let 0 < s < t � T.Then for any z; y 2 R, there existsCT;�;x;y such that

Ej
�

@
@x

p�
y

�
(t � s; X (b)

s ; z)j � CT;�;x;y h(s; z);

where h belongs toL 1([0; t] � R).

Proof. By Girsanov's theorem, for some constantCT;� we have

E

�
�
�
�

�
@

@x
p�

y

�
(t � s; X (b)

s ; z)

�
�
�
� � CT;�

s

E

�
�
�
�

�
@

@x
p�

y

�
(t � s; Wx

s ; z)

�
�
�
�

2

:

Observe that

@
@�x

p�
y (t � s; �x; z) =

�
p

2� (t � s)
e� 2� jz� yje� ( j z � y j + j y � �x j� � ( t � s)) 2

2( t � s) sgn(�x � y)

+
�

p
2� (t � s)

e� � jz� yj� � 2

2 (t � s)e� jy� �x j� ( z � �x ) 2

2( t � s) sgn(�x � y)

+
z � �x

2� (t � s)3=2
e� � jz� yj� � 2

2 (t � s)e� jy� �x j� ( z � �x ) 2

2( t � s) :

The sum of the absolute values of the �rst two terms in the right-hand side is bounded from above
by

�
p

2� (t � s)
e� 2� jz� yj+ � jy� �x j :

Thus,

E

�
�
�
�

�
@

@x
p�

y

�
(t � s; X (b)

s ; z)

�
�
�
� �

CT;�p
2� (t � s)

p
Ee2� jy� W x

s j

+
CT;�

(t � s)3=2

r

E(jz � W x
s j2e2� jy� W x

s j� ( z � W x
s ) 2

t � s ) =: B + A:

Notice that

A �
CT;�

(t � s)3=2
(E[jz � W x

s j4e� 2 ( z � W x
s ) 2

t � s ]E[e4� jy� W x
s j ])1=4 =:

CT;�

(t � s)3=2
(A1A2)1=4:
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Firstly, as there exists an � > 0 such that jaj4e� a2
� Ce� �a 2

, one has

A1 � C(t � s)2
Z

e� � ( z � u ) 2

t � s gs(u � x)du �
(t � s)2+1 =2

p
s + ( t � s)=(2� )

e� ( z � x ) 2

2( s+( t � s) =(2 � )) :

Secondly,

A2 =
Z

e4� jy� ujgs(u � x)du = e� 4�y
Z 1

y
e4�u 1

p
s

e� ( u � x ) 2

2s du + e4�y
Z y

�1
e� 4�u 1

p
s

e� ( u � x ) 2

2s du

= e4� (x� y)e8� 2s
Z 1

y

1
p

s
e� ( u � x � 4�s ) 2

2s du + e4� (y� x)e8� 2s
Z y

�1

1
p

s
e� ( u � x +4 �s ) 2

2s du � e8� 2sC�;x;y :

Therefore,

A � CT;�;x;y
1

(t � s)7=8
gs+( t � s)=(2� ) (z � x):

The term B is treated in the similar way as A2.

3.9 Appendix B: A reminder on the standard convolution inequal-
ities

We give here the two standard convolution inequalities in their general form, as they are used in
the following chapters as well. The following is proven in Brezis[15, Thm. 4.15]:

Lemma 3.9.1 (The convolution inequality) . Let f 2 L p(Rd) and g 2 L 1(Rd) with l � p � 1 and
1
r = 1

q + 1
q � 1 � 0. Then, f � g 2 L p(Rd) and

kf � gkL p (Rd ) � k f kL p (Rd )kgkL 1 (Rd ) : (3.37)

The following is an extension of Lemma3.37 and it is proven in [15, Thm. 4.33]:

Lemma 3.9.2 (The convolution inequality) . Let f 2 L p(Rd) and g 2 L q(Rd) with l � p; q � 1 .
Then, f � g 2 L r (Rd) and

kf � gkL r (Rd ) � k f kL p (Rd )kgkL q (Rd ) : (3.38)



Chapter 4

The one-dimensional case: Regularization

approach to the non-linear stochastic equation

4.1 Introduction

In this chapter we adopt another approach in proving the well-posedness of the stochastic
di�erential equation related to Keller-Segel model in d = 1,

(
dX t = ( c0

0 � gt )(X t ) +
n Rt

0 (K t � s � ps)(X t )ds
o

dt + dWt ; t > 0;

� s(y)dy := L (X s); X 0 � � 0(x)dx;
(4.1)

where K t (x) := �e � �t @
@x(

1
(2�t )1=2 e� x 2

2t ) and b(t; x ) := �e � �t @
@xEc0(x + Wt ). Namely, we regularize

the interaction kernel K and prove the regularized equation in the limit is (4.1). The goal of this
mini-chapter is now to obtain the rate of convergence of the marginal lawsof the solution to the
regularized equation to the laws ofX t . This is an interesting question on its own when one deals
with McKean-Vlasov dynamics through a regularization procedure and it will involve Sobolev
regularity of a whole class of probability density functions. The latter will be obtained by the help
of heat kernel estimates in Strook and Varadhan [70].

From now on we will, in addition to � 0 is a probability density function and c0 2 C1
b(R), suppose

that � 0 2 L 1 (R). This will smoothen out in time the L 1 (R)-norm estimates of � t and enable us
to get the rate of convergence. Namely, if� 0 2 L 1 (R), one hask� t kL 1 (R) � C (see Remark3.6.3).
As seen in the previous chapter, the parameter� > 0 plays no role in the mathematical analysis of
the problem. We will, thus, assume� = 1.

A convenient regularization: For an " > 0, de�ne K "
t (x) := � x

p
2� (t+ " )

3
2

e� x 2

2t and

(
dX "

t = dWt + ( c0
0 � gt )(X "

t ) +
Rt

0 (K "
t � s � � "

s)(X "
t ) ds dt; t � T;

X "
0 � � 0; X "

t � � "
t :

(4.2)

We denote the drift of (4.2) by b" (t; x ; � " ) and by b(t; x ; � ) the drift of ( 4.1). The well-posedness of
(4.2) is due to Theorem 2.2.3. However, to get more information about the one-dimensional
marginals of the law of this process, one needs to apply Theorem3.2.3 and Remark 3.6.3. It is
easy to check thatK " satis�es Hypothesis (H). For example, notice that for any 1 � p < 1 ,

kK "
t kL p (R) �

Cp

t1� 1
2p

;

65
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where the constantsCp do not depend on the regularization parameter" . Thus, assuming that
� 0 2 L 1(R) \ L 1 (R) and c0 2 C1

b(R), one has the following estimates:

80 < t � T : k� "
t kL 1 (R) � C; and kb" (t; �; � " )k � C:

Thus, one hask� "
t kL 2 (R) � C. Since theL 1-norm of the regularized kernel does not depend on" ,

neither do the above constants. This implies that for any sequence" k ! 0 ask ! 1 , one has the
tightness of (X " k )'s w.r.t. k � 1. It is easy to check that the solution to the martingale problem
corresponding to (4.2) converges to the one related to (4.1). Let P1 be a weak limit of a
converging subsequence (Pk ) of the laws of (X " k ). We will prove P1 solves the NLMP related to
(4.1). We place ourselves in the context of Proposition3.5.5 and adopt the notation from its proof
to this setting. In order not to repeat ourselves, we will not check all the requirements here, but
we will quickly review the most interesting details.

De�ne the functional Tt (g) by

Tt (g) :=
Z

g(y)P1
t (dy); g 2 CK (R):

By weak convergence we have

Tt (g) = lim
k!1

Z
g(y)pk

t (y)dy;

and thus
jTt (g)j � CkgkL 2 (R) :

Therefore, for each 0< t � T0, Tt is a bounded linear functional on a dense subset ofL 2(R). Thus,
Tt can be extended to a linear functional onL 2(R). By Riesz-representation theorem (e.g. [15,
Thm. 4.11 and 4.14]), there exists a uniquep1

t 2 L 2(R) such that

80 < t � T : kp1
t kL 2 (R) � C

and p1
t is the probability density of P1

t (dy).

In order to prove that

EPk [� (: : : )
Z t

s
f 0(x(u))b" k (u; x(u); � " k ) du] ! EP[� (: : : )

Z t

s
f 0(x(u))b(u; x(u); � ) du]; as k ! 1 ;

one decomposes their di�erence into:

I = EPk [� (: : : )
Z t

s
f 0(x(u))b(u; x(u); � " k ) du] � EPk [� (: : : )

Z t

s
f 0(x(u))b(u; x(u); � ) du]

and

II = EPk [� (: : : )
Z t

s
f 0(x(u))b(u; x(u); � ) du] � EP[� (: : : )

Z t

s
f 0(x(u))b(u; x(u); � ) du]:

Convergence ofII is due to the continuity of the functional inside the expectation. This has been
already proven in the proof of Proposition 3.5.5. Then, convergence ofI is obtained in two steps:
�rstly, one proves that for a �xed u 2 [s; t], one has that jb" k (u; x; � " k ) � b(u; x(u); � )j ! 0, as
k ! 1 , secondly one bounds this di�erence by an integrable function ofu independent ofk. The
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conclusion will follow by dominated convergence. The integrable boundcomes from the density
and kernel estimates. We now check the �rst step. Notice that

b(u; �; � ) � b" k (u; �; � " k ) =
Z s

0
(K u� r � (� r � � " k

r ) + ( K u� r � K " k
u� r ) � � " k

r ) dr:

For r < u , K u� r is a continuous and bounded function onR. By weak convergence,

jK u� r � (� r � � " k
r )j ! 0; as k ! 1 :

In addition,

jK u� r � (� r � � " k
r )j � CkK u� r kL 2 (R) �

C

(u � r )
1
4

:

By dominated convergence,j
Rs

0 K u� r � (� r � � " k
r ) duj ! 0; as k ! 1 :

It remains to check that
�
�
�
�

Z s

0
(K u� r � K " k

u� r ) � � " k
r dr

�
�
�
� ! 0; as k ! 1 :

Now, for r < u , jK " k
u� r (x) � K u� r (x)j ! 0, ask ! 1 . We can apply dominated convergence as the

following bound is integrable in (0; s) � R:

j(K " k
u� r (x(u) � y) � K u� r (x(u) � y)) � " k

r (y)j � CjK u� r (x(u) � y)j:

Finally, this concludes the �rst step and as well the convergence ofI . Therefore, the martingale
problems converge and we obtain the existence of a solution to the NLMP related to (4.1). As
uniqueness holdsP1 is the law of the processX .

The plan is the following: in the Section 4.2, we prove the above mentioned Sobolev estimates and
in the Section 4.3, we prove that the rate of convergence of� "

t towards � t in L 1(R)-norm is of
order

p
" . Let p > 1. The following notation will be used:

L p((0; T); W 1
p (R)) :=

n
u 2 L p((0; T) � R)j9 h 2 L p((0; T) � R) such that

Z

(0;T )� R
u(t; x )

@
@x

� (t; x )dtdx = �
Z

(0;T )� R
h(t; x )� (t; x )dtdx; 8� 2 C1

c ((0; T) � R)
o

:

4.2 Sobolev regularity of a certain class of probability densities

In the sequel, we will prove the result about the speed of convergence of � "
t to � t by analyzing the

mild equations they satisfy. In order to �nd the rate of convergence ofb" (t; �; � " ) towards b(t; �; � ),
we will need some Sobolev regularity for� "

t and � t . More generally, in this section we are
interested in di�usion processes ind = 1 with bounded and measurable drift and a constant
di�usion coe�cient � . Without loss of generality, we will assume� = 1. Let T > 0, de�ne

(
dX t = b(t; X t )dt + dWt ; t � T;

X 0 � � 0
(4.3)

Suppose that supt � T kb(t; �)k1 < 1 and � 0 2 L 1 \ L 1 (R). In that case, Equation (4.3) admits a
unique weak solution (see [45], p. 327). In addition, by Girsanov theorem, the one dimensional



Chapter 4. The one-dimensional case: Regularization approach to the non-linear stochastic equation 68

time marginals of the solution are absolutely continuous with respect toLebesgue measure and
since the drift is bounded they are as well uniformly bounded in time and space (see Section3.3).
Let us denote with � t the density of X t . Then � := ( � t )0� t � T 2 L p((0; T) � R), for any p � 1 .

One derives the mild equation satis�ed by � t as in Section3.4,

� t = gt � � 0 �
Z t

0
(

@
@x

gt � s � (� sbs))ds; (4.4)

where gt (x) denotes centered one dimensional Gaussian density with variance equal to t. We will
prove the following theorem:

Theorem 4.2.1. Let 1 < p < 2 and p0 > 2 its conjugate. Assume that� 0 2 L 1 \ L 1 (R). Then,
� 2 L p((0; T); W 1

p (R)) and

k
@

@x
� kL p ((0 ;T )� R) � C(t; b; � 0):

The following is the estimate in Strook and Varadhan [71, p. 315]:

Lemma 4.2.2. Denote bySd the set ofd � d symmetric matrices. Let c : [0; 1 ) ! Sd be a
measurable function for which there exists0 < � < � < 1 with the property

� j� j2 � h �; c (t)� i � � j� j2; t � 0 and � 2 Rd:

Extend c to R by taking c(� s) = c(s); s � 0 and set C(s; t) =
Rt

s c(u)du for s � t. De�ne

g(s; x; t; y) = 1f (t � s)2 (0;1 )g

h
(2� )d det C(s; t)

i � 1
2 exp

�
�

hy � x; C (s; t) � 1(y � x)i
2

�

on (R � Rd)2. For f 2 C1
0 (R � Rd), de�ne

Gf (s; x) =
Z 1

s

Z

Rd
g(s; x; t; y)f (t; y)dy dt

and

G?f (t; y) =
Z t

�1

Z

Rd
g(s; x; t; y)f (s; x)dx ds:

Then for all 1 < p < 1 and for all 1 � i; j � d:









@2Gf
@xi @xj










L p (R� Rd )
� Cd(p; �; �) kf kL p (R� Rd )

and 








@2G?f
@yi @yj










L p (R� Rd )
� Cd(p; �; �) kf kL p (R� Rd ) :

Proof of Theorem 4.2.1. Take f 2 C1
K ((0; T) � R). De�ne the linear functional

~Tp(f ) =
Z

(0;T )� R

@
@x

f (t; x )� t (x) dx dt:
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Assume for a moment that
jTp(f )j � Ckf kL p0((0 ;T )� R) : (4.5)

Then, ~Tp is a linear functional continuous for the L p0
((0; T) � R) norm, de�ned on a dense

subspace ofL p0
((0; T) � R). Therefore, it extends to a bounded linear functionalTp on

L p0
((0; T) � R). By Riesz representation theorems (e.g. [15, Thm. 4.11 and 4.14]), there exists

h 2 L p((0; T) � R) such that for any f 2 L p0
((0; T) � R):

Tp(f ) =
Z

(0;T )� R
f (t; x )ht (x) dx dt:

Denote by @
@x� t (x) := � h(x). Then it holds for any f 2 C1

K ((0; T) � R):
Z

(0;T )� R

@
@x

f (t; x )� t (x) dx dt = �
Z

(0;T )� R
f (t; x )

@
@x

� t (x) dx dt: (4.6)

In addition, k @
@x� kL P ((0 ;T )� R) � C(t; b; p; p0). As � 2 L p((0; T) � R), the theorem is proved.

It remains to prove the relation in ( 4.5). Let f 2 C1
c ((0; T) � R). Multiply ( 4.4) by @

@xf (t; x ) and
integrate over (0; T) � R:

Z

(0;T )� R

@
@x

f (t; x )� t (x) dx dt =
Z

(0;T )� R

@
@x

f (t; x )(gt � � 0)(x) dx dt

+
Z

(0;T )� R

@
@x

f (t; x )
Z t

0
(

@
@x

gt � s � (� sbs))( x) ds dx dt =: A + B:

It comes down to controlling the terms A and B in terms of kf kL p0((0 ;T )� R) .

Term A: We start by integrating by parts the space integral. Notice that by dominat ed
convergence, one has@

@x(gt � � 0)(x) = ( @
@xgt � � 0)(x). Therefore,

A = �
Z T

0

Z

R
f (t; x )(

@
@x

gt � � 0)(x) dx dt:

Applying H•older's inequality,

jAj � k f kL p0((0 ;T )� R)k
@

@x
gt � � 0kL p ((0 ;T )� R) :

Notice that

k
@

@x
gt � � 0kp

L p ((0 ;T )� R) =
Z T

0
k

@
@x

gt � � 0kp
L p (R)dt:

As k @
@xgt kL 1 (R) � Cp

t
and in view of Convolution inequality ( 3.37), one has

k
@

@x
gt � � 0kp

L p ((0 ;T )� R) �
Z T

0

Ck� 0kp
L p (R)

tp=2
dt:

For any p > 1, one has� 0 2 L p(R) since � 0 2 L 1 \ L 1 (R). Moreover, since 1< p < 2 the
preceding integral is well de�ned and we have that

k
@

@x
gt � � 0kp

L p ((0 ;T )� R) � C(T; p;k� 0kL p (R) ):

Therefore,
jAj � C(T; p;k� 0kL p (R) )kf kL p0((0 ;T )� R) :
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Term B: This term reads

B =
Z T

0

Z

R

Z t

0

Z

R

@
@x

f (t; x )
@

@x
gt � s(x � y)� s(y)b(s; y) dy ds dx dt:

Here we will use the estimates of Lemma4.2.2. To do so, we need to rewriteB in a convenient
form. Firstly, we conclude below that Fubini's theorem applies to B so that we can change the
order of integration as we like. Indeed,b and � are uniformly bounded, @

@xgt � s is integrable in
space and time andf 2 C1

K ((0; T) � R). Thus,

Z T

0

Z

R

Z t

0

Z

R
j

@
@x

f (t; x )
@

@x
gt � s(x � y)� s(y)b(s; y)j dy ds dx dt

� C(b; � )
Z T

0

Z

R
j

@
@x

f (t; x )j
Z t

0

C
p

t � s
ds dx dt � C(b; � )

p
T

Z T

0

Z

R
j

@
@x

f (t; x )j dx dt < 1 :

Therefore, we rewriteB as

B =
Z T

0

Z

R

Z T

s

Z

R

@
@x

f (t; x )
@

@x
gt � s(x � y) dx dt � s(y)b(s; y) dy ds:

We focus on the inner integrals. Integrate by parts in space and then change the variables:

Z T

s

Z

R

@
@x

f (t; x )
@

@x
gt � s(x � y) dx dt = �

Z T

s

Z

R

@2

@x2
f (t; x + y)gt � s(x) dx dt:

Notice that @2

@x2 f (t; x + y) = @2

@y2 f (t; x + y) and sincef is regular, the order of integration and
derivation can be exchanged. It comes

Z T

s

Z

R

@
@x

f (t; x )
@

@x
gt � s(x � y) dx dt = �

@2

@y2

Z T

s

Z

R
f (t; x + y)gt � s(x) dx dt:

After another change of variables,

Z T

s

Z

R

@
@x

f (t; x )
@

@x
gt � s(x � y) dx dt = �

@2

@y2

Z T

s

Z

R
f (t; x )gt � s(x � y) dx dt:

Therefore,

B = �
Z T

0

Z

R
� s(y)b(s; y)

@2

@y2
[
Z T

s

Z

R
f (t; x )gt � s(x � y) dx dt] dy ds:

Applying H•older's inequality,

jB j � C(b)k� kL p ((0 ;T )� R)










@2

@y2

Z T

�

Z

R
f (t; x )gt �� (x � � ) dx dt










L p0((0 ;T )� R)
:

Now, Lemma 4.2.2 provides a bound for the last term. The framework is the following. Ford = 1,
we de�ne c(t) � 1. Then C(t; s) = t � s; s � t. The function g(s; x; t; y) in Lemma 4.2.2 is here
g(s; x; t; y) := 1f s � tggt � s(y � x). De�ne ~f (t; x ) = 1f 0 � t � Tgf (t; x ). Then,the functional G
becomes

G ~f (s; y) =
Z 1

s

Z

R
g(s; y; t; x ) ~f (s; y)dxdt =

Z T

s

Z

R
f (t; x )gt � s(x � y)dxdt:
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Applying the estimate in Lemma 4.2.2,

k
@2

@y2
G ~f kL p0((0 ;T )� R) � k

@2

@y2
G ~f kL p0(R� R)) � Ck ~f kL p0(R� R)) = ckf kL p0((0 ;T )� R) :

Finally, this implies
jB j � C(b; p)kf kL p0((0 ;T )� R) :

Combining the estimates of termsA and B , we obtain (4.5). Thus, the theorem is proved.

Remark 4.2.3. The relation (4.6) holds for a wider class of functionsf . Namely, by density
arguments, it holds as well forf 2 L p0

((0; T); W p0

1 (R)) .

4.3 Rate of convergence

Theorem 4.3.1. Let 1 < p < 2, T > 0 and " > 0. Then, for any t � T one has

k� t � � "
t kL p (R) � CT

p
":

Proof. Remember that by the iterative procedures applied to (4.1) and (4.2), one has that

1. Both drifts are uniformly bounded in time and space. Namely,b; b" 2 L 1 ((0; T) � R).

2. By construction � 2 L 1 ((0; T); L 1(R) \ L 1 (R)) and � " 2 L 1 ((0; T); L 1(R) \ L 1 (R)). In
addition, the estimate for � " is uniform in " .

We write the mild equations satis�ed by � and � " , respectively:

� t = gt � � 0 �
Z T

0

@gt � s

@x
� (� sb(s; �; � )) ds and � "

t = gt � � 0 �
Z T

0

@gt � s

@x
� (� "

sb" (s; �; � " )) ds:

Notice that,

k� t � � "
t kL p (R) �

Z t

0
k

@gt � s

@x
� (( � s � � "

s)b(s; �; � ))kL p (R) ds

+
Z t

0
k

@gt � s

@x
� ((b(s; �; � ) � b" (s; �; � " )) � "

s)kL p (R) ds =: A + B:

By the convolution inequality ( 3.37), one has

A � k bk1

Z t

0
k

@gt � s

@x
kL 1 (R)k� s � � "

skL p (R) ds � Cb

Z
k� s � � "

skL p (R)p
t � s

ds:

The di�erence of the two drifts writes as

b(s; �; � ) � b" (s; �; � " ) =
Z s

0
(K s� r � (� r � � "

r ) + ( K s� r � K "
s� r ) � � "

r ) dr:
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Thus, the term B decomposes to

B �
Z t

0
k

@gt � s

@x
� (� "

s

Z s

0
K s� r � (� r � � "

r ) dr )kL p (R)

+ k
@gt � s

@x
� (� "

s

Z s

0
(K s� r � K "

s� r ) � � "
r dr)kL p (R) ds =: B1 + B2:

We �rst treat B1. Applying the convolution inequality ( 3.37) twice and the bounds on� "
s, one has

B1 � C
Z t

0

1
p

t � s

Z s

0
kK s� r � (� r � � "

r )kL p (R) dr ds

� C
Z t

0

1
p

t � s

Z s

0

1
p

s � r
k� r � � "

r kL p (R) dr ds:

Applying Fubini's theorem,

B1 � C
Z t

0
k� r � � "

r kL p (R)

Z t

r

1
p

t � s
p

s � r
ds dr � C

Z t

0
k� r � � "

r kL p (R) dr:

Let us pass toB2. This term will give us the rate of convergence. The convolution inequality and
the bound on the density lead to

B2 � C
Z t

0

1
p

t � s
k

Z s

0
(K s� r � K "

s� r ) � � "
r drkL p (R) ds:

Set

F (x) :=
Z t

0

Z
� (x � y)
(s � r )3=2

e� ( x � y ) 2

2( s� r ) � "
r (y)dy dr �

Z t

0

Z
� (x � y)

(s � r + " )3=2
e� ( x � y ) 2

2( s� r ) � "
r (y)dy dr:

Notice that Theorem 4.2.1 applies to both � and � " . Moreover, as for a �xed " > 0 the drift of
(4.2) is in C1

b (R), the density � "
t is di�erentiable everywhere (see e.g. Nualart [57]). Notice that,

� (x � y)
(s � r )3=2

e� ( x � y ) 2

2( s� r ) = C
@
@y

gs� r (x� y) and
� (x � y)

(s � r + " )3=2
e� ( x � y ) 2

2( s� r ) = C
�

s � r
s � r + "

� 3=2 @
@y

gs� r (x� y):

After an integration by parts

F (x) = C
Z s

0

Z  

1 �
�

s � r
s � r + "

� 3=2
!

gs� r (x � y)
@
@y

� "
r (y)dy dr:

Notice that
�
�
�
�
�
1 �

�
s � r

s � r + "

� 3=2
�
�
�
�
�

=

�
�
�
�
�
(s � r + " )3=2 � (s � r + " )

p
s � r + ( s � r + " )

p
s � r � (s � r )3=2

(s � r + " )3=2

�
�
�
�
�

=

�
�
�
�

p
s � r + " �

p
s � r

p
s � r + "

+
"
p

s � r
(s � r + " )

p
s � r + "

�
�
�
� � 2

p
"

p
s � r

:

Next, we are interested in theL p(R) norm of F . After the convolution inequality ( 3.37),

kF kL p (R) � C
p

"
Z s

0

1
p

s � r
kgs� r �

@
@x

� "
t kL p (R) dr � C

p
"

Z s

0

1
p

s � r
k

@
@x

� "
t kL p (R) dr:
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This implies that

B2 � C
p

"
Z t

0

1
p

t � s

Z s

0

1
p

s � r
k

@
@x

� "
t kL p (R) dr ds:

Fubini's theorem and H•older's inequality lead to

B2 � C
p

"
Z t

0
k

@
@x

� "
t kL p (R)

Z t

r

1
p

t � s
p

s � r
ds dr = C

p
"

Z t

0
k

@
@x

� "
t kL p (R) dr

� C
p

"t
1
p0

� Z t

0
k

@
@x

� "
t kp

L p (R) dr
� 1

p

:

In view of Theorem 4.2.1, one gets
B2 � CT

p
":

The constant CT depends onp0; T; c0
0, but not on " . Finally, the term B is estimated by

B � C
Z t

0
k� r � � "

r kL p (R) dr + CT
p

":

The estimates onA and B together lead to

k� t � � "
t kL p (R) � CT

Z t

0

1
p

t � s
k� s � � "

skL p (R)ds + CT
p

":

It remains to apply Gronwall's lemma in order to �nish the proof.





Chapter 5

The one-dimensional case: Particle system

and propagation of chaos

This chapter is the subject of a paper [43] that appeared in Electronic Communications of
Probability. It is a joint work with Jean Francois Jabir (HSE Moscow) and Denis Talay.

5.1 Introduction

The standard d-dimensional parabolic{parabolic Keller{Segel model for chemotaxis describes the
time evolution of the density � t of a cell population and of the concentrationct of a chemical
attractant: 8

><

>:

@t � (t; x ) = r � ( 1
2r � � �� r c); t > 0; x 2 Rd;

�@t c(t; x ) = 1
24 c � �c + �; t > 0; x 2 Rd;

� (0; x) = � 0(x); c(0; x) = c0(x);

(5.1)

for some parameters� > 0, � � 0 and � � 0. See Chapter1 or Perthame [62] and references
therein for theoretical results on this system of PDEs and applications to biology. When � = 0,
the system (5.1) is parabolic{elliptic, and when � = 1 (or more generally, when 0< � � 1), the
system is parabolic{parabolic.

For the parabolic{elliptic version of the model with d = 2, the �rst stochastic interpretation of this
system is due to Ha�skovec and Schmeiser [36] who analyze a particle system with McKean{Vlasov
interactions and Brownian noise. More precisely, as the ideal interaction kernel should be strongly
singular, they introduce a kernel with a cut-o� parameter and obtain t he tightness of the particle
probability distributions w.r.t. the cut-o� parameter and the numb er of particles. They also
obtain partial results in the direction of the propagation of chaos. More recently, in the subcritical
case, that is, when the parameter� of the parabolic{elliptic model is small enough, Fournier and
Jourdain [31] obtain the well{posedness of a particle system without cut-o�. In addition, they
obtain a consistency property which is weaker than the propagation of chaos.They also describe
complex behaviors of the particle system in the sub and super critical cases. Cattiaux and
P�ed�eches [21] obtain the well-posedness of this particle system without cut-o� by using Dirichlet
forms rather than pathwise approximation techniques.

For a parabolic{parabolic version of the model with a smooth coupling between� t and ct ,
Budhiraja and Fan [17] study a particle system with a smooth time integrated kernel and prove it
propagates chaos. Moreover, adding a forcing potential term to the model, under a suitable
convexity assumption, they obtain uniform in time concentration inequalities for the particle

75
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system and uniform in time error estimates for a numerical approximation of the limit non-linear
process.

In Section 1.4 the reader may found more details on [36, 31, 21].

For the pure parabolic{parabolic model without cut-o� or smoothing, in the one-dimensional case
with � = 1, we have proved in Chapter 3 the well-posedness of PDE (5.1) and of the following
non-linear SDE:

(
dX t = b(t; X t )dt +

n
�

Rt
0 (K t � s ? � s)(X t )ds

o
dt + dWt ; t > 0;

� s(y)dy := L (X s); X 0 � � 0(x)dx;
(5.2)

where K t (x) := e� �t @
@x(

1
(2�t )1=2 e� x 2

2t ) and b(t; x ) = e� �t @
@xE[c0(x + Wt )].

Under the sole condition that the initial probability law L(X 0) has a density, it is shown that the
law L(X ) uniquely solves a non-linear martingale problem and its time marginalshave densities.
These densities coupled with a suitable transformation of them uniquely solve the
one{dimensional parabolic{parabolic Keller{Segel system without cut-o�. In Chapter 6 additional
techniques are developed for the two-dimensional version of (5.2).

The objective of this chapter is to analyze the particle system related to (5.2). It inherits from the
limit equation that at each time t > 0 each particle interacts in a singular way with the past of all
the other particles. We prove that the particle system is well{posed and propagates chaos to the
unique weak solution of (5.2). To the best of our knowledge, this is the �rst time in the literat ure
that the parabolic-parabolic Keller-Segel system is derived as a limit of a system of interacting
stochastic particles, when the number of particles tends to in�nity. Compared to the stochastic
particle systems introduced for the parabolic{elliptic model, an interesting fact occurs: the
di�culties arising from the singular interaction can now be resolved by using purely Brownian
techniques rather than by using Bessel processes. Due to the singular nature of the kernel K , we
need to introduce a partial Girsanov transform of the N -particle system in order to obtain
uniform in N bounds for moments of the corresponding exponential martingale. Our calculation is
based on the fact that the kernelK is in L 1(0; T; L 2(R)). Notice that in the case of the
multi-dimensional Keller{Segel particle system theL 1(0; T; L 2(Rd))-norm of the kernel is in�nite,
so these techniques can not be used in higher dimension. For more details see Chapter7.

The chapter is organized as follows: In Section5.2 we state our two main results and comment our
methodology. In Section5.3 and Appendix we prove technical lemmas. In Section5.4 we prove
our main results.

In all the chapter we denote by C any positive real number independent ofN . Any time C will
depend onN or any other parameter that will be explicitly written.

5.2 Main results

Our main results concern the well{posedness and propagation of chaos of
(

dX i;N
t =

n
1
N

P N
j =1 ;j 6= i

Rt
0 K t � s(X i;N

t � X j;N
s )ds 1f X i;N

t 6= X j;N
t g

o
dt + dW i

t ;

X i;N
0 i.i.d. and independent of W := ( W i ; 1 � i � N );

(5.3)
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where K t (x) = � xp
2�t 3=2 e� x 2

2t and the W i 's are N independent standard Brownian motions. It
corresponds to� = 1, � = 0, � = 1, and c0

0 � 0. It is easy to extend our methodology to (5.2)
under the hypotheses made in Chapter3.

Theorem 5.2.1. Given 0 < T < 1 and N 2 N, there exists a weak solution
(
 ; F ; (F t ; 0 � t � T); QN ; W; X N ) to the N -interacting particle system (5.3) that satis�es, for
any 1 � i � N ,

QN

0

@
Z T

0

0

@ 1
N

NX

j =1 ;j 6= i

Z t

0
K t � s(X i;N

t � X j;N
s )ds 1f X i;N

t 6= X j;N
t g

1

A

2

dt < 1

1

A = 1 : (5.4)

In view of Karatzas and Shreve [45, Chapter 5, Proposition 3.10], one has the following uniqueness
result:

Corollary 5.2.2. Weak uniqueness holds in the class of weak solutions satisfying(5.4).

The construction of a weak solution to (5.3) involves arguments used by Krylov and R•ockner [49,
Section 3] to construct a weak solution to SDEs with singular drifts. It relies on the Girsanov
transform which removes all the drifts of (5.3).

Remark 5.2.3. Our construction shows that the law of the particle system is equivalent to
Wiener's measure. Thus, a.s. the setf t � T; X i;N

t = X j;N
t g has Lebesgue measure zero.

Our second main theorem concerns the propagation of chaos of the system (5.3). Before we
proceed to its statement, we need to de�ne the non-linear martingale problem (MPKS) associated
to the non-linear SDE:

(
dX t =

n Rt
0 (K t � s ? � s)(X t )ds

o
dt + dWt ; t � T;

� s(y)dy := L (X s); X 0 � � 0(x)dx:
(5.5)

For any measurable spaceE we denote byP(E) the set of probability measures onE.

De�nition 5.2.4. Q 2 P (C[0; T]; R) is a solution to (MPKS) if:

(i) Q0(dx) = � 0(x) dx;

(ii) For any t 2 (0; T], the one dimensional time marginalQt of Q has a density � t w.r.t.
Lebesgue measure onR which belongs toL 2(R) and satis�es

9CT ; 8 0 < t � T; k� t kL 2 (R) �
CT

t1=4
;

(iii) Denoting by (x(t); t � T) the canonical process ofC([0; T]; R), we have: For anyf 2 C2
b(R),

the process de�ned by

M t := f (x(t)) � f (x(0)) �
Z t

0

� � Z s

0

Z
K s� r (x(s) � y)� r (y)dydr

�
f 0(x(s)) +

1
2

f 00(x(s))
�

ds

is a Q-martingale w.r.t. the canonical �ltration.



Chapter 5. The one-dimensional case: Particle system and propagation of chaos 78

In Chapter 3, we have proven that (MPKS) admits a unique solution and that a suitable notion of
weak solution to (5.5) is equivalent to the notion of solution to (MPKS) (see Corollary 3.2.4).

Theorem 5.2.5. Assume that theX i;N
0 's are i.i.d. and that the initial distribution of X 1;N

0 has a
density � 0. The empirical measure � N = 1

N

P N
i =1 � X i;N of (5.3) converges in the distribution

sense, whenN ! 1 , to the unique weak solution of(5.5).

To prove the tightness and weak convergence of� N , we use a Girsanov transform which removes a
�xed small number of the drifts of ( 5.3) rather than all the drifts. This trick, which may be useful
for other singular interactions, allows us to get uniform w.r.t. N bounds for the needed Girsanov
exponential martingales.

5.3 Preliminaries

On the path space de�ne the functional Ft as

Ft (x; bx) =
� Z t

0
K t � s(x t � bxs)ds 1f x t 6= bx t g

� 2

; (5.6)

where (x; bx) 2 C([0; T]; R) � C ([0; T]; R). The objective of this section is to show thatRT
0 Ft (w; Y) dt has �nite exponential moments when w is a Brownian motion and Y is a process

independent ofw. The following key property of the kernel K t will be used:

kK t kL p (R) =
�

C
Z 1

0

z2

tp� 1
2

e� pz 2

2 dz
� 1

p

=
Cp

t1� 1
2p

; 1 � p < 1 : (5.7)

We will proceed as in the proof of the local Novikov Condition (see [45, Chapter 3, Corollary
5.14]) by localizing on small intervals of time.

Lemma 5.3.1. Let w := ( wt ) be a(Gt )-Brownian motion with an arbitrary initial condition � 0 on
some probability space equipped with a probability measureP and a �ltration (Gt ). There exists a
universal real numberC0 > 0 such that

8x 2 C([0; T]; R); 80 � t1 � t2 � T;
Z t2

t1

E
Gt 1
P [Ft (w; x)] dt � C0

p
T

p
t2 � t1:

Proof. By the de�nition of F ,

Z t2

t1

E
Gt 1
P Ft (w; x)dt �

Z t2

t1

Z t

0

Z t

0
E

Gt 1
P jK t � s(wt � xs)K t � u(wt � xu)j ds du dt: (5.8)

Let gt (x) := 1p
2�t

e� x 2

2t . In view of (5.7), one has

s Z
K 2

t � s(y + wt1 � xs))gt � t1 (y)dy � C
kK t � skL 2 (R)

(t � t1)1=4
�

C
(t � s)3=4(t � t1)1=4

:
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Here we used that the density ofwt � wt1 is bounded by Cp
t� t1

. We repeat the above calculations
replacing s with u. Coming back to (5.8), one has

Z t2

t1

E
Gt 1
P [Ft (w; x)] dt �

Z t2

t1

C
p

t � t1

Z t

0

Z t

0

1
(t � s)3=4(t � u)3=4

dsdudt =
Z t2

t1

C
p

t
p

t � t1
dt

� C0
p

T
p

t2 � t1:

Lemma 5.3.2. Same assumptions as in Lemma5.3.1. Let C0 be as in Lemma5.3.1. For any
� > 0, there existsC(T; � ) independent of� 0 such that, for any 0 � T1 � T2 � T satisfying
T2 � T1 < 1

C2
0 T � 2 ,

8x 2 C([0; T]; R); E
GT1
P

�
exp

�
�

Z T2

T1

Ft (w; x)dt
��

� C(T; � ):

Proof. We adapt the proof of Khasminskii's lemma in Simon [68]. Admit for a while we have
shown that there exists a constantC(�; T ) such that for any M 2 N

MX

k=1

� k

k!
E

GT1
P

� Z T2

T1

Ft (w; x)dt
� k

� C(T; � ); (5.9)

provided that T2 � T1 < 1
C2

0 T � 2 . The desired result then follows from Fatou's lemma.

We now prove (5.9). By the tower property of conditional expectation,

E
GT1
P

" � Z T2

T1

Ft (w; x)dt
� k

#

= k!
Z T2

T1

Z T2

t1

Z T2

t2

� � �
Z T2

tk � 2

Z T2

tk � 1

E
GT1
P

h
Ft1 (w; x)Ft2 (w; x)

� � � � � Ftk � 1 (w; x)
�

E
Gt k � 1
P Ftk (w; x)

� i
dtk dtk� 1 � � � dt2 dt1:

In view of Lemma 5.3.1,
Z T2

tk � 1

E
Gt k � 1
P Ftk (w; x) dtk � C0

p
T

p
T2 � tk� 1 � C0

p
T

p
T2 � T1:

Therefore, by Fubini's theorem,

E
GT1
P

" � Z T2

T1

Ft (w; x)dt
� k

#

� k!C0
p

T
p

T2 � T1

Z T2

T1

Z T2

t1

Z T2

t2

� � �
Z T2

tk � 2

E
GT1
P

h
Ft1 (w; x)Ft2 (w; x)

� � � � � Ftk � 1 (w; x)
i
dtk� 1 � � � dt2 dt1:

Now we repeatedly condition with respect toGtk � i (i 2 f 2; : : : ; k � 1g) and combine Lemma5.3.1
with Fubini's theorem. It comes:

E
GT1
P

� Z T2

T1

Ft (w; x)dt
� k

� k!(C0
p

T
p

T2 � T1)k� 1
Z T2

T1

E
GT1
P [Ft1 (w; x)]dt1 � k!(C0

p
T

p
T2 � T1)k :

Thus, (5.9) is satis�ed provided that T2 � T1 < 1
C2

0 T � 2 .
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Proposition 5.3.3. Let T > 0. Same assumptions as in Lemma5.3.1. Suppose that the �ltered
probability space is rich enough to support a continuous processY independent ofw. For any
� > 0,

EP

�
exp

�
�

Z T

0
Ft (w; Y)dt

��
� C(T; � );

where C(T; � ) depends only onT and � , but does neither depend on the lawL(Y ) nor of � 0.

Proof. Denote by PY := P � Y � 1. Observe that

EP exp
�

�
Z T

0
Ft (w; Y)dt

�
=

Z

C([0;T ];R)
EP exp

�
�

Z T

0
Ft (w; x)dt

�
PY (dx): (5.10)

Set � := 1
2C2

0 T � 2 ^ T, where C0 is as in Lemma5.3.1. Set n :=
� T

�

�
, where

� T
�

�
denotes the greatest

integer less than or equal toT
� . Then,

exp
�

�
Z T

0
Ft (w; x)dt

�
=

nY

m=0

exp

(

�
Z T � m�

(T � (m+1) � )_ 0
Ft (w; x) dt

)

:

Condition the right-hand side by G(T � � )_ 0. Notice that � is small enough to be in the setting of
Lemma 5.3.2. Thus,

EP exp
�

�
Z T

0
Ft (w; x)dt

�
� C(T; � )EP

nY

m=1

exp

(

�
Z T � m�

(T � (m+1) � )_ 0
Ft (w; x) dt

)

:

Successively, conditioning byG(T � (m+1)) _ 0 for m 2 f 1; 2; : : : ng and using Lemma5.3.2,

EP exp
�

�
Z T

0
Ft (w; x)dt

�
� Cn (T; � )EP exp

(

�
Z (T � n� )_ 0

0
Ft (w; x)dt

)

� C(T; � ):

The proof is completed by plugging the preceding estimate into (5.10).

5.4 Existence of the particle system and propagation of chaos

5.4.1 Existence: Proof of Theorem 5.2.1

We start from a probability space (
 ; F ; (F t ; 0 � t � T); W) on which are de�ned an
N -dimensional Brownian motion W = ( W 1; : : : ; W N ) and the random variablesX i;N

0 (see (5.3)).
Set

�X i;N
t := X i;N

0 + W i
t ; t � T

and �X := ( �X i;N ; 1 � i � N ). For x 2 C([0; T]; R)N denote

bi;N
t (x) :=

1
N

NX

j =1

Z t

0
K t � s(x i;N

t � x j;N
s )ds 1f x i;N

t 6= x j;N
t g
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and the vector of all the drifts as B N
t (x) := ( b1;N

t (x); : : : ; bN;N
t (x)). For a �xed N 2 N, consider

Z N
T := exp

� Z T

0
B N

t ( �X ) � dWt �
1
2

Z T

0

�
�B N

t ( �X )
�
�2

dt
�

:

To prove Theorem 5.2.1, it su�ces to prove the following Novikov condition holds true (se e e.g.
[45, Chapter 3, Proposition 5.13]):

Proposition 5.4.1. For any T > 0, N � 1, � > 0, there existsC(T; N; � ) such that

EW

�
exp

�
�

Z T

0
jB N

t ( �X )j2dt
��

� C(T; N; � ): (5.11)

Proof. Drop the index N for simplicity. Using the de�nition of B N
t and Jensen's inequality one has

EW

�
exp

�
�

Z T

0

�
�B N

t ( �X )
�
�2

dt
��

� EW

2

4exp

8
<

:
1
N

NX

i =1

1
N

NX

j =1

Z T

0
�NF t ( �X i ; �X j ) dt

9
=

;

3

5 ;

where Ft is de�ned in (5.6). Applying one more time the Jensen's inequality, we deduce

EW

�
exp

�
�

Z T

0

�
�B N

t ( �X )
�
�2

dt
��

�
1
N

NX

i =1

1
N

NX

j =1

EW

�
exp

�
�N

Z T

0
Ft ( �X i ; �X j ) dt

��
:

As the �X i 's are independent Brownian motions, we are in a position to use Proposition 5.3.3. This
concludes the proof.

5.4.2 Girsanov transform for 1 � k < N particles

In the proof of Theorem 5.2.1 we used (5.7) and a Girsanov transform. However, the right-hand
side of (5.11) goes to in�nity with N . Thus, Proposition 5.4.1 cannot be used to prove the
tightness and propagation of chaos of the particle system. We instead de�nean intermediate
particle system. Let us �x 1 � k < N . Proceeding as in the proof of Theorem5.2.1 one gets the
existence of a weak solution on [0; T] to

8
>><

>>:

d bX l;N
t = dW l

t ; 1 � l � k;

d bX i;N
t =

n
1
N

P N
j = k+1

Rt
0 K t � s( bX i;N

t � bX j;N
s ) ds 1f bX i;N

t 6= bX j;N
t g

o
dt + dW i

t ; k + 1 � i � N;
bX i;N

0 i.i.d. and independent of (W ) := ( W i ; 1 � i � N ):
(5.12)

Below we setX̂ := ( X̂ i;N ; 1 � i � N ) and we denote byQk;N the probability measure under which
W = ( W 1; : : : ; W N ) is an N -dimensional Brownian motion and X̂ is well de�ned. Notice that
( bX l;N ; 1 � l � k) is independent of (bX i;N ; k + 1 � i � N ) and that ( bX i;N ; k + 1 � i � N ) interact
in the same way as (5.3) without �rst k particles. We now study the exponential local martingale
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associated to the change of drift between (5.3) and (5.12). For x 2 C([0; T]; R)N set

� (k)
t (x) :=

�
b1;N

t (x); : : : ; bk;N
t (x);

1
N

kX

i =1

Z t

0
K t � s(xk+1

t � x i
s)ds 1f xk +1

t 6= x i
t g; : : : ;

1
N

kX

i =1

Z t

0
K t � s(xN

t � x i
s)ds 1f xN

t 6= x i
t g

�
:

In the sequel we will need uniform w.r.t N bounds for moments of

Z (k)
T := exp

�
�

Z T

0
� (k)

t ( bX ) � dWt �
1
2

Z T

0
j� (k)

t ( bX )j2dt
�

: (5.13)

Proposition 5.4.2. For any T > 0, 
 > 0 and k � 1 there existsN0 � k and C(T; 
; k ) s.t.

8N � N0; EQk;N exp
�



Z T

0
j� (k)

t ( bX )j2dt
�

� C(T; 
; k ):

Proof. For x 2 C([0; T]; R)N , one has

j� (k)
t (x)j2 =

kX

i =1

0

@ 1
N

NX

j =1

Z t

0
K t � s(x i

t � x j
s)ds 1f x j

t 6= x i
t g

1

A

2

+
1

N 2

N � kX

j =1

 
kX

i =1

Z t

0
K t � s(xk+ j

t � x i
s)ds 1f xk + j

t 6= x i
t g

! 2

:

By Jensen's inequality,

j� (k)
t (x)j2 �

1
N

kX

i =1

NX

j =1

Ft (x i ; x j ) +
k

N 2

N � kX

j =1

kX

i =1

Ft (xk+ j ; x i );

where Ft is as in (5.6). For simplicity we below write E (respectively, X̂ i ) instead of EQk;N

(respectively, X̂ i;N ). Observe that

E exp
n



Z T

0
j� (k)

t ( bX )j2dt
o

�
�

E exp
n kX

i =1

2

N

NX

j =1

Z T

0
Ft ( bX i ; bX j )dt

o� 1
2
�

E exp
n 2
k

N 2

N � kX

j =1

kX

i =1

Z T

0
Ft ( bX k+ j ; bX i ) dt

o� 1
2

=: A
1
2 B

1
2 :

Now, H•older's and Jensen's inequalities lead to

A �
� kY

i =1

E exp
n

2
k
1
N

NX

j =1

Z T

0
Ft ( bX i ; bX j )dt

o� 1
k �

� kY

i =1

1
N

NX

j =1

E exp
n

2
k
Z T

0
Ft ( bX i ; bX j )dt

o� 1
k :

In view of Proposition 5.3.3, one has
A � C(T; k; 
 ):
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Again, combine H•older's and Jensen's inequalities. It comes

B �
� N � kY

j =1

1
k

kX

i =1

E exp
n 2
k 2

N

Z T

0
Ft ( bX k+ j ; bX i )dt

o� 1
N � k :

It now remains to prove that there exists N0 2 N such that

sup
N � N0

E
�
exp

�
2
k 2

N

Z T

0
Ft (X̂ k+ j ; X̂ i )dt

��
� C(T; k; 
 ):

We postpone the proof of this inequality to the Appendix (see Proposition 5.5.1).

5.4.3 Propagation of chaos : Proof of Theorem 5.2.5

Tightness

We start with showing the tightness of f � N g and of an auxiliary empirical measure which is
needed in the sequel.

Lemma 5.4.3. Let QN be as above. The sequencef � N g is tight under QN . In addition, let
� N := 1

N 4

P N
i;j;k;l =1 � X i;N

: ;X j;N
: ;X k;N

: ;X l;N
:

. The sequencef � N g is tight under QN .

Proof. The tightness of f � N g, respectively f � N g, results from the tightness of the intensity
measuref EQN � N (�)g, respectivelyf EQN � N (�)g: See Sznitman [72, Prop. 2.2-ii]. By symmetry, in
both cases it su�ces to check the tightness off Law(X 1;N )g. We aim to prove

9CT > 0; 8N � N0; EQN [jX 1;N
t � X 1;N

s j4] � CT jt � sj2; 0 � s; t � T; (5.14)

where N0 is as in Proposition 5.4.2. Let Z (1)
T be as in (5.13). One has

EQN [jX 1;N
t � X 1;N

s j4] = EQ1;N [(Z (1)
T ) � 1j bX 1;N

t � bX 1;N
s j4]:

As bX 1;N is a one dimensional Brownian motion underQ1;N ,

EQN [jX 1;N
t � X 1;N

s j4] � (EQ1;N [(Z (1)
T ) � 2])1=2(EQ1;N [j bX 1;N

t � bX 1;N
s j8])1=2

� (EQ1;N [(Z (1)
T ) � 2])1=2Cjt � sj2:

Observe that, for a Brownian motion (W ] ) under Q1;N ,

EQ1;N [(Z (1)
T ) � 2] = EQ1;N exp

�
2

Z T

0
� (1)

t (X̂ ) � dW ]
t �

Z T

0
j� (1)

t (X̂ )j2dt
�

:

Adding and subtracting 3
RT

0 j� (1)
t (X̂ )j2dt and applying again the Cauchy-Schwarz inequality,

EQ1;N [(Z (1)
T ) � 2] �

�
EQ1;N exp

�
6

Z T

0
j� (1)

t (X̂ )j2dt
�� 1=2

:

Applying Proposition 5.4.2 with k = 1 and 
 = 6, we obtain the desired result.
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Convergence

For a spaceS we denote byP(S) the set of probability measures on it. To prove Theorem 5.2.5
we have to show that any limit point of f Law(� N )g is � Q, where Q is the unique solution to
(MPKS). Since the particles interact through an unbounded singular functional, we adapt the
arguments in Bossy and Talay [14, Thm. 3.2].

Let � 2 Cb(Rp), f 2 C2
b(R), 0 < t 1 < � � � < t p � s < t � T and m 2 P (C([0; T]; R)). Set

G(m) :=
Z

C([0;T ];R)2
� (x1

t1
; : : : ; x1

tp
)
�

f (x1
t ) � f (x1

s)

�
1
2

Z t

s
f 00(x1

u)du �
Z t

s
f 0(x1

u)1f x1
u 6= x2

u g

Z u

0
K u� � (x1

u � x2
� )d�du

�
dm(x1) 
 dm(x2):

We start with showing that

lim
N !1

E[
�
G(� N )

� 2
] = 0 : (5.15)

Observe that

G(� N ) =
1
N

NX

i =1

� (X i;N
t1

; : : : ; X i;N
tp

)
�

f (X i;N
t ) � f (X i;N

s ) �
1
2

Z t

s
f 00(X i;N

u )du

�
1
N

NX

j =1

Z t

s
f 0(X i;N

u )1f X i;N
u 6= X j;N

u g

Z u

0
K u� � (X i;N

u � X j;N
� )d� du

�
:

Apply Itô's formula to 1
N

P N
i =1 (f (X i;N

t ) � f (X i;N
s )). It comes:

E[
�
G(� N )

� 2
] �

C
N 2 E

� NX

i =1

Z t

s
f 0(X i;N

u )dW i
u

� 2
�

C
N

:

Thus, (5.15) holds true.

Suppose for a while we have proven the following lemma:

Lemma 5.4.4. Let � 1 2 P (P(C([0; T]; R)4)) be a limit point of f law(� N )g. Then

lim
N !1

E[
�
G(� N )

� 2
] =

Z

P (C([0;T ];R)4 )

( Z

C([0;T ];R)4

h
f (x1

t ) � f (x1
s) �

1
2

Z t

s
f

00
(x1

u)du

�
Z t

s
f

0
(x1

u)1f x1
u 6= x2

u g

Z u

0
K u� � (x1

u � x2
� )d� du

i
� � (x1

t1
; : : : ; x1

tp
)d� (x1; : : : ; x4)

� 2

d� 1 (� );

(5.16)

and

i) Any � 2 P (C([0; T]; R)4) belonging to the support of� 1 is a product measure:
� = � 1 
 � 1 
 � 1 
 � 1.
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ii) For any t 2 (0; T], the time marginal � 1
t of � 1 has a density� 1

t which satis�es

9CT ; 80 < t � T; k� 1
t kL 2 (R) �

CT

t
1
4

:

Then, (5.15) and (5.16) imply
Z

P (C([0;T ];R)4 )

( Z

C([0;T ];R)4

h
f (x1

t ) � f (x1
s) �

1
2

Z t

s
f

00
(x1

u)du

�
Z t

s
f

0
(x1

u)1f x1
u 6= x2

u g

Z u

0
K u� � (x1

u � x2
� )d� du

i
� � (x1

t1
; : : : ; x1

tp
)d� (x1; : : : ; x4)

� 2

d� 1 (� ) = 0 :

Let � 2 P (C([0; T]; R)4) belong to the support of � 1 . Then, parts i ) and ii ) of Lemma 5.4.4 lead
to

Z

C([0;T ];R)
� (x1

t1
; : : : ; x1

tp
)
h
f (x1

t ) � f (x1
s) �

1
2

Z t

s
f 00(x1

u)du

�
Z t

s
f 0(x1

u)
Z u

0

Z
K u� � (x1

u � y)� 1
� (y)dy d� du

i
d� 1(x1) = 0 :

We deduce that � 1 solves (MPKS) and thus that � 1 = Q. As (MPKS) admits a unique solution,
the support of � 1 reduces toQ 
 Q 
 Q 
 Q. Now, let � a continuous and bounded functional on
C([0; T]; R)4 such that � (x1; x2; x3; x4) = ' (x1). One one side,< � 1 ; � > = < � Q; ' > . On the
other side, by weak convergence and de�nition of� , one has

< � 1 ; � > = lim
N !1

E < � N ; � > = lim
N !1

E < � N ; ' >;

where convergent subsequences of� n and � n are not renamed. It follows that any limit point of
Law(� N ) is � Q, which ends the proof.

Proof of Lemma 5.4.4

Proof of (5.16): Step 1. Notice that

E[
�
G(� N )

� 2
] =

1
N 2 E

NX

i;k =1

� 2(X i;N ; X k;N ) +
1

N 3 E
NX

i;k;l =1

� 3(X i;N ; X k;N ; X l;N )

+
1

N 3 E
NX

i;j;k =1

� 3(X k;N ; X i;N ; X j;N ) +
1

N 4 E
NX

i;j;k;l =1

� 4(X i;N ; X j;N ; X k;N ; X l;N ); (5.17)

where

� 2(X i;N ; X k;N ) := � (X i;N
t1

; : : : ; X i;N
tp

) � (X k;N
t1

; : : : ; X k;N
tp

)
�

f (X i;N
t ) � f (X i;N

s ) �
1
2

Z t

s
f 00(X i;N

u )du
��

f (X k;N
t ) � f (X k;N

s ) �
1
2

Z t

s
f 00(X k;N

u )du
�

;

� 3(X i;N ; X k;N ; X l;N ) := � � (X i;N
t1

; : : : ; X i;N
tp

) � (X k;N
t1

; : : : ; X k;N
tp

)
�

f (X i;N
t ) � f (X i;N

s ) �
1
2

Z t

s
f 00(X i;N

u1
)du1

� Z t

s
f 0(X k;N

u )1f X k;N
u 6= X l;N

u g

Z u

0
K u� � (X k;N

u � X l;N
� ) d� du;
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and

� 4(X i;N ; X j;N ; X k;N ; X l;N ) :=
Z t

s

Z t

s

Z u1

0

Z u2

0
� (X i;N

t1
; : : : ; X i;N

tp
)� (X k;N

t1
; : : : ; X k;N

tp
)f 0(X i;N

u1
)

f 0(X k;N
u2

)K u1 � � 1 (X i;N
u1

� X j;N
� 1

)K u2 � � 2 (X k;N
u2

� X l;N
� 2

)1f X i;N
u 1 6= X j;N

u 1 g1f X k;N
u 2 6= X l;N

u 2 gd� 1 d� 2 du1 du2:

Let CN be the last term in the r.h.s. of (5.17). In Steps 2-4 below we prove thatCN converges as
N ! 1 and we identify its limit. De�ne the function F on R2p+6 as

F (x1; : : : ; x2p+6 ) := f 0(x1)f 0(x3)� (x7; : : : ; xp+6 )� (xp+7 ; : : : ; x2p+6 )

� K u1 � � 1 (x1 � x2)K u2 � � 2 (x3 � x4)1f x16= x5g1f x26= x6g1f � 1<u 1g1f � 2<u 2g:

We set CN =
Rt

s

Rt
s

Ru1
0

Ru2
0 AN d� 1 d� 2 du1 du2 with

AN :=
1

N 4

NX

i;j;k;l =1

E(F (X i;N
u1

; X j;N
� 1

; X k;N
u2

; X l;N
� 2

; X j;N
u1

; X l;N
u2

; X i;N
t1

; : : : ; X i;N
tp

; X k;N
t1

; : : : ; X k;N
tp

)) :

We now aim to show that AN converges pointwise (Step 2), thatjAN j is bounded from above by an
integrable function w.r.t. d� 1 d� 2 du1 du2 (Step 3), and �nally to identify the limit of CN (Step 4).

Proof of (5.16): Step 2. Fix u1; u2 2 [s; t] and � 1 2 [0; u1) and � 2 2 [0; u2). De�ne � N as

� N :=
1

N 4

NX

i;j;k;l =1

� X i;N
u 1 ;X j;N

� 1 ;X k;N
u 2 ;X l;N

� 2
;X j;N

u 1 ;X l;N
u 2 ;X i;N

t 1
;:::;X i;N

t p ;X k;N
t 1

;:::;X k;N
t p

:

De�ne the measureQN
u1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p

on R2p+6 as follows: For any Borel setS in R2p+6

QN
u1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p

(S) = E(� N (S)) :

The convergence off law(� N )g implies the weak convergence ofQN
u1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p

to a measure on
R2p+6 de�ned by

Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p (S) :=
Z

P (C([0;T ];R)4 )

Z

C([0;T ];R)4
1S(x1

u1
; x2

� 1; x3
u2

; x4
� 2

; x2
u1

; x4
u2

; x1
t1

; : : : ;

x1
tp

; x3
t1

; : : : ; x3
tp

)d� (x1; x2; x3; x4)d� 1 (� ):

Let us show that Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p admits an L 2-density w.r.t. the Lebesgue measure onR2p+6 .
Let h 2 CK (R2p+6 ). By weak convergence,

�
�< Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p ; h >

�
�

=

�
�
�
�
�
�

lim
N !1

1
N 4

NX

i;j;k;l =1

Eh(X i;N
u1

; X j;N
� 1 ; X k;N

u2
; X l;N

� 2
; X j;N

u1
; X l;N

u2
; X i;N

t1
; : : : ; X i;N

tp
; X k;N

t1
; : : : ; X k;N

tp
)

�
�
�
�
�
�
:
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When, in the preceding sum, at least two indices are equal, we boundthe expectation by khk1 :
When i 6= j 6= k 6= l, we apply Girsanov's transform in Section5.4.2 with four particles and
Proposition 5.4.2. This procedure leads to

�
�< Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p ; h >

�
� � lim

N !1

�
khk1

C
N

+
CT

N 4

X

i 6= j 6= k6= l

�
Eh2(X̂ i;N

u1
; X̂ j;N

� 1 ; X̂ k;N
u2

; X̂ l;N
� 2

; X̂ j;N
u1

; X̂ l;N
u2

; X̂ i;N
t1

; : : : ; X̂ i;N
tp

; X̂ k;N
t1

; : : : ; X̂ k;N
tp

)
� 1=2 �

:

As for �xed i 6= j 6= k 6= l, the processesX̂ i;N , X̂ j;N , X̂ k;N and X̂ l;N are independent Brownian
motions, we have

�
�< Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p ; h >

�
� � Cu1 ;u2 ;� 1 ;� 2 ;t 1 ;:::;t p khkL 2 (R2p+6 ) :

It follows from Riesz's representation theorem (e.g. [15, Thm. 4.11 and 4.14]) that
Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p has a density w.r.t. Lebesgue's measure inL 2(R2p+6 ). Therefore, the
functional F is continuous Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p - a.e. As for u1; u2 2 [s; t] and � 1 2 [0; u1), � 2 2 [0; u2)
F is bounded, by weak convergence one has

lim
N !1

AN = < Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p ; F > :

Proof of (5.16): Step 3. By de�nition of F we may restrict ourselves to the casei 6= j and
k 6= l. Use the Girsanov transforms from Section5.4.2 with r 2 f 2; 3; 4g according to, respectively,
(i = k; j = l), ( i = k; j 6= l), ( i 6= k; j 6= l), etc. It comes:

AN =
�
�
�

1
N 4

NX

i;j;k;l =1

EQr;N ((Z (r )
T ) � 1F (� � � ))

�
�
� �

1
N 4

NX

i;j;k;l =1

�
EQr;N (Z (r )

T ) � 2
� 1=2 �

EQr;N (F 2(� � � ))
� 1=2

:

By Proposition 5.4.2, EQr;N (Z (r )
T ) � 2 can be bounded uniformly w.r.t. N (see the paragraph

Tightness). As the functions f and � are bounded we deduce

q
EQr;N (F 2(� � � )) � C1f � 1<u 1g1f � 2<u 2g

�
EQr;N (K 2

u1 � � 1
(X̂ i;N

u1
� X̂ j;N

� 1
)K 2

u1 � � 1
(X̂ k;N

u2
� X̂ l;N

� 2
))

� 1=2
;

for i 6= j and k 6= l. In view of (5.7), for any 0 < � < u < T we have

�
EQr;N (K 4

u� � (X̂ i;N
u � X̂ j;N

� )
� 1=4

�
C

u1=8
kK u� � kL 4 (R) �

C
u1=8(u � � )7=8

:

Therefore,
�
EQr;N (F 2(� � � ))

� 1=2
� C

1f � 1<u 1g1f � 2<u 2g

u1=8
1 (u1 � � 1)7=8u1=8

2 (u2 � � 2)7=8
:

We thus have obtained:

AN � C
1f � 1<u 1g1f � 2<u 2g

u1=8
1 (u1 � � 1)7=8u1=8

2 (u2 � � 2)7=8
:

We remark that the r.h.s. belongs to L 1((0; T)4).
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Proof of (5.16): Step 4. Steps 2 and 3 allow us to conclude that

lim
N !1

CN =
Z t

s

Z t

s

Z t

s

Z t

s
< Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p ; F > d� 1 d� 2 du1 du2:

By de�nition of Qu1 ;� 1 ;u2 ;� 2 ;t 1 ;:::;t p and F we thus have obtained that

lim
N !1

CN =
Z

P(C([0;T ];R)4 )

Z t

s

Z t

s

Z

C([0;T ];R)4
f 0(x1

u1
)f 0(x3

u2
)� (x1

t1
; : : : ; x1

tp
)� (x3

t1
; : : : ; x3

tp
)

�
Z u1

0

Z u2

0
K u1 � � 1 (x1

u1
� x2

� 1
)K u2 � � 2 (x3

u2
� x4

� 2
)1f x1

u 1
6= x2

u 1
g1f x3

u 2
6= x4

u 2
g

d� (x1; x2; x3; x4) d� 1 d� 2 du1 du2 d� 1 (� ):

A similar procedure is applied to the three other terms in the r.h.s. of (5.17). We identify their
limits:

lim
N !1

1
N 2 E

NX

i;k =1

� 2(X i;N ; X k;N ) =
Z

P(C([0;T ];R)4 )

Z

C([0;T ];R)4
� (x1

t1
; : : : ; x1

tp
)� (x3

t1
; : : : ; x3

tp
)

�
f (x1

t ) � f (x1
s) �

1
2

Z t

s
f 00(x1

u) du
� �

f (x3
t ) � f (x3

s) �
1
2

Z t

s
f 00(x3

u) du
�

d� (x1; x2; x3; x4) d� 1 (� );

lim
N !1

1
N 3 E

NX

i;k;l =1

� 3(X i;N ; X k;N ; X l;N ) = �
Z

P(C([0;T ];R)4 )

Z

C([0;T ];R)4
� (x1

t1
; : : : ; x1

tp
)� (x3

t1
; : : : ; x3

tp
)

�
f (x1

t ) � f (x1
s) �

1
2

Z t

s
f 00(x1

u) du
� Z t

s
f 0(x3

u)1f x3
u 6= x4

u g

Z u

0
K u� � (x3

u � x4
� ) du d�

d� (x1; x2; x3; x4) d� 1 (� );

and

lim
N !1

1
N 3 E

NX

k;i;j =1

� 3(X k;N ; X i;N ; X j;N ) = �
Z

P(C([0;T ];R)4 )

Z

C([0;T ];R)4
� (x1

t1
; : : : ; x1

tp
)� (x3

t1
; : : : ; x3

tp
)

�
f (x3

t ) � f (x3
s) �

1
2

Z t

s
f 00(x3

u) du
� Z t

s
f 0(x1

u)1f x1
u 6= x2

u g

Z u

0
K u� � (x1

u � x2
� ) du d�

d� (x1; x2; x3; x4) d� 1 (� ):

Once all the limits in the r.h.s. of (5.17) are obtained, we use the claim i) of Lemma5.4.4 to
obtain (5.16).

Proof of i) and ii). Now, we prove the claims i) and ii) of Lemma5.4.4.

i) For any measure � 2 P (C([0; T]; R)4), denote its �rst marginal by � 1. One easily gets
� 1 a.e.; � = � 1 
 � 1 
 � 1 
 � 1 (see [14, Lemma 3.3]).
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ii) Take h 2 CK (R). Using similar arguments as in the above Step 1, for any 0< t � T one has
� 1 (d� ) a.e.,

< � 1
t ; h > = lim

N !1
EQN < � N

t ; h > = lim
N !1

EQN (h(X 1;N
t )) = lim

N !1
EQ1;N (Z (1)

T h(W 1;N
t ))

�
C

t1=4
khkL 2 (R) :

5.5 Appendix

Proposition 5.5.1. Same assumptions as in Proposition5.3.3. There exists N0 2 N depending
only on T and � , such that

sup
N � N0

EP

"

exp

(
�
N

Z T

0

� Z t

0
K t � s(Yt � ws)ds1f wt 6= Yt g

� 2

dt

)#

� C(T; � ):

Compared to the proof of Proposition 5.4.2, as w and Y exchanged places in the left-hand side, it
is not so obvious to use the independence of Brownian increments. However, the weight 1

N enables
us to skip the localization part (see Lemmas5.3.1 and 5.3.2).

Proof. Fix N 2 N: Set I :=
RT

0

� Rt
0 K t � s(Yt � ws)ds

� 2
dt. One has

I k � C
� Z T

0

Z t

0

ds
(t � s)3=4

Z t

0

(Yt � ws)2

(t � s)9=4
e� ( Yt � w s ) 2

t � s ds dt
� k

� CTk=4
� Z T

0

Z t

0

(Yt � ws)2

(t � s)9=4
e� ( Yt � w s ) 2

t � s ds dt
� k

:

For 0 � s < T and for (!; b! ) 2 C([0; T]; R) � C([0; T]; R), de�ne the functional Hs as

Hs(!; b! ) =
Z T

s

(! t � b! s)2

(t � s)9=4
e� ( ! t � b! s ) 2

t � s dt:

As the processesY and w are independent,

EP

� Z T

0
Hs(Y; w)ds

� k

=
Z

C([0;T ];R)
EP

� Z T

0
Hs(x; w)ds

� k

PY (dx):

As before we observe that, for anyx 2 C([0; T]; R),

EP

� Z T

0
Hs(x; w)ds

� k

= k!
Z T

0

Z T

s1

� � �
Z T

sk � 1

EP

�
E

Gsk � 1
P (Hs1 (x; w) : : : Hsk (x; w))

�
dsk : : : ds1:
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Using again that gsk � sk � 1 (z) � 1p
sk � sk � 1

, one has

Z T

sk � 1

E
Gsk � 1
P Hsk (x; w) dsk

=
Z T

sk � 1

Z T

sk

Z
(x t � z � wsk � 1 )2

(t � sk )9=4
e

�
( x t � z � w sk � 1 ) 2

t � sk gsk � sk � 1 (z) dz dt dsk

�
Z T

sk � 1

1
p

sk � sk� 1

Z T

sk

1
(t � sk )3=4

Z
z2e� z2

dz dt dsk � CT1=4
p

T � sk� 1 � CT3=4:

Finally,

EP

� Z T

0
Hs(x; w)ds

� k

� k!CT3=4
Z T

0

Z T

s1

� � �
Z T

sk � 2

EP
�
Hs1 (x; w) : : : Hsk � 1 (x; w)

�
dsk� 1 : : : ds1:

Repeat the previous procedurek � 2 times. It comes:

EP

� Z T

0
Hs(x; w)ds

� k

� k!Ck� 1T3(k� 1)=4
Z T

0
EP (Hs1 (x; w)) ds1

� k!Ck� 1T3(k� 1)=4
Z T

0

1
p

s1

Z T

s1

1
(t � s1)3=4

Z
z2e� z2

dz dt ds1 � k!CkT
3k
4 :

This implies that for any M � 1,

EP

MX

k=1

� k I k

N kk!
�

MX

k=1

� kCkT k

N k :

ChooseN0 large enough to have �
N0

CT < 1. To conclude, we apply Fatou's lemma.



Chapter 6

The two-dimensional case: The non-linear

stochastic equation

6.1 Introduction

This chapter is devoted to the analysis of the Mc-Kean Vlasov non{linear SDE (1.14) with d = 2
and its connection with the two{dimensional Keller-Segel system. Its main contribution is in how
to deal with singular interaction kernels that lead to a process whoselaw has small chances to be
absolutely continuous w.r.t. Wiener's measure. In addition, our procedure leads to a new
well-posedness result for the Keller-Segel system ind = 2.

On a �ltered probability space (
 ; F ; P; (F t )), equipped with a 2-dimensional Brownian motion
(Wt )t � 0, consider the SDE

(
dX t = dWt + b0(t; X t )dt + �

n Rt
0 e� � (t � s)

R
K t � s(X t � y)ps(y)dy ds

o
dt; t � T

ps(y)dy := L (X s); X 0 � � 0;
(6.1)

where X 0 is an R2-valued F0� measurable random variable,gt denotes the probability density of
Wt and for (t; x ) 2 (0; T] � R2

b0(t; x ) := �e � �t (r c0 � gt )(x) and K t (x) := r gt (x) = �
x

2�t 2 e� j x j 2

2t :

Here jxj denotes the Euclidean norm. Notice thatK t is a two dimensional vector. We denote its
coordinates by K i

t with i = 1 ; 2 and

bi (t; x ; p) = bi
0(t; X t ) + �

Z t

0
e� � (t � s)

Z
K i

t � s(X t � y)ps(y)dy ds dt:

The main di�culty when dealing with ( 6.1) is the singular nature of the kernel K . In Chapters 3
and 5 we overcame it thanks to the fact that the one{dimensional kernel (K ] ) belonged to the
spaceL 1((0; T); L 1(R)) \ L 1((0; T); L 2(R)) and by the help of preciseL 1 (R)-norm density
estimates (see Section3.3). When d = 2, the singularity in time of the kernel is stronger and
therefore estimates such as (3.14) do not seem to remain true.

The following technical lemmas will be used throughout this chapterand actually show that for
q � 2, the L 1((0; T); L q(R2)){norm of K i explodes. This was not the case ind = 1 and it is in this
sense that the two{dimensional kernel is more singular.
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Lemma 6.1.1. Let t > 0 and i 2 f 1; 2g. Then, for any 1 � q < 1 one has

kK i
t kL q (R2 ) = kr i gt kL q (R2 ) =

C1(q)

t
3
2 � 1

q

; (6.2)

where

C1(q) =
2

1
q � 1

2

� 1� 1
2q q

1
q + 1

2

�
�(

q + 1
2

)
� 1

q

:

Here �( x) denotes the Gamma function:�( x) =
R1

0 zx� 1e� z dz.

Proof. Let 1 � q < 1 . One has

kK i
t kL q (R2 ) = kr i gt kL q (R2 ) =

1
2�t 2

� Z

R2
jx i jqe� qj x j 2

2t dx
� 1

q

=
1

2�t 2

� Z

R
e� qx 2

2t dx
Z

R
jxjqe� qx 2

2t dx
� 1

q

=
1

2�t 2

 p
2�t

p
q

2
Z 1

0
xqe� qx 2

2t dx

! 1
q

:

Apply the change of variables qx2

2t = y. It comes

kK i
t kL q (R2 ) = kr i gt kL q (R2 ) =

1
2�t 2

 p
2�t

p
q

2
�

2t
q

� q� 1
2

Z 1

0
y

q� 1
2 e� y t

q
dy

! 1
q

=
1

2�t 2

�
2t
q

� 1
q + 1

2

�
1

2q

�
�(

q + 1
2

)
� 1

q

:

This ends the proof.

The change of variables xp
t

= z leads to

Lemma 6.1.2. Let t > 0. Then, for any 1 � q < 1 one has

kgt kL q (R2 ) =
C2(q)

t1� 1
q

; (6.3)

where
C2(q) =

1

(2� )1� 1
q q

1
q

:

The functions C1(q) and C2(q) will be used only when we need the explicit constants in a
computation. In all other cases we will use notationCq that may change from line to line.

Discussion on the 1d-approach in the 2d-setting The change of the space dimension has a
signi�cant impact on the techniques we used in Chapter3 to prove the well-posedness of the
NLSDE. In Chapter 3, we used Picard's iteration process to exhibit a weak solution. In each step
the L 1 ([0; T] � R)-norm of the drift and L 1((0; T]; L 1 (R))-norm of the marginal densities were
controlled simultaneously. These controls were obtained thanks to a probabilistic method which
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exhibits sharp density estimates for a process whose drift is uniformly bounded in space and time
(see Section3.3). A generalisation to the multidimensional case of the results in Section 3.3 can be
found in Qian et al. [65] in the case of time homogeneous drifts. There, the authors show that the
estimate of the transition density of a d-dimensional stochastic process is a product of
one-dimensional estimates provided that the Euclidean norm of the drift vector is uniformly
bounded. With the arguments we used ind = 1, one can easily extend the results in [65] to time
inhomogeneous drifts and get the following. Suppose that the driftb(t; x ) of a two-dimensional
linear process (X b) is bounded, i.e. sup(t;x )2 [0;T ]� R2 jb(t; x )j � � . Then the two-dimensional
transition density of ( X b

t ) satis�es

pb(t; x; y ) �
1

2�t

2Y

i =1

 Z 1

j x i � y i jp
t

ze� ( z � �
p

t )
2 dz

!

:

If the initial condition is assumed to belong to L 1(R2), the arguments used to prove Corollary
3.3.2 lead to

pb
t (y) � � 2 +

2�
p

2�t
+

1
2�t

:

This estimate is not integrable in time. Consequently, it is too crude to be applied in each step of
the Picard's iteration procedure developed in Section3.5. One could overcome this by imposing
more regularity on the initial condition. For example, if p0 2 L 1 (R2), one would get

pb
t (y) � � 2 +

2�
p

2�t
+ Ckp0kL 1 (R2 ) :

Now, using the same notation as in Section3.5, in view of (6.2) one would get the following
relation for the drift bounds in the iteration process :

� k+1 = � kr c0k1 + C� (� 2
k

p
T + � k + kp0kL 1 (R2 )

p
T):

Thus, when d = 2 one gets a quadratic relationship between theL 1 -norms of successive drifts,
whereas the relationship was linear in the 1-d case (see Section3.5). Therefore, in order to control
� k 's uniformly in k, one should impose conditions on� , kp0kL 1 (R2 ) , kr c0k1 and T. The easiest
way to exhibit suitable conditions is to search for a positive zero ofthe polynomial

P(x) = C�
p

T x2 + ( C� � 1)x + C�
p

Tkp0kL 1 (R2 ) + � kr c0k1 :

This leads to the constraints

� <
1
C

and (C� � 1)2 � 4C�
p

T(C�
p

Tkp0kL 1 (R2 ) + � kr c0kL 1 (R2 ) ):

These constraints are equivalent to

�C + 2 �
q

C
p

T(C
p

Tkp0kL 1 (R2 ) + kr c0kL 1 (R2 ) ) < 1: (6.4)

As we do not want � to depend on the time horizon, a condition onT should be imposed that
depends onkr c0k1 and kp0kL 1 (R2 ) . This condition together with one on � would su�ce to get
tightness and local in time weak solutions for (6.1) up to a small time T1. Restarting this
procedure after the imposed time horizon becomes tricky as the norm ofthe new initial condition
increased, as well all as the constants involved in the condition (6.4). Thus, the new time horizon
T2 is much smaller than T1 and iterating the procedure leads to a sequence (Tk )k� 1 such that
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P
k Tk < 1 . We believe it is impossible to get global well-posedness by applying the above

procedure. In addition, we do want a result as general as possible and noadditional assumptions
on p0 except it being a probability density function.

All in all, the L 1 ([0; T] � R2) and L 1((0; T]; L 1 (R2)) seem not to be a good choice for a
functional space for the drift and density of (6.1), respectively. The main reason is that the
density estimates at our disposal seem to be too crude ind = 2. It is thus necessary to change the
approach. We have chosen to use theL q-spaces.

Formal discussion on an adequate L q-space for the drift and density functions In
order to understand what kind of an L q(R2)-estimate we can expect for the densitypt of X t , we
formally derive and analyze the mild equation for pt :

pt = gt � p0 �
2X

i =1

Z t

0
r i gt � s �

�
ps

�
bi

0(s; �) + �
Z s

0
e� � (s� r )K i

s� r � pr dr
��

ds:

The term kgt � p0kL q (R2 ) can give an idea of the behaviour ofkpt kL q (R2 ) . In view of the convolution
inequality ( 3.37) and (6.3), one has

kgt � p0kL q (R2 ) � k gt kL q (R2 )kp0kL 1 (R2 ) =
Cq

t1� 1
q

:

This prompts us to assume for a moment that for every 1< q < 1 there exists Cq > 0 such that

sup
t � T

t1� 1
q kpt kL q (R2 ) � Cq: (6.5)

Then, the non-linear part of the drift satis�es for i 2 f 1; 2g









Z t

0
e� � (t � s)K i

t � s � ps ds










L q (R2 )
�

Z t

0
kK i

t � skL 1 (R2 )kpskL q (R2 ) ds � Cq

Z t

0

1
p

t � ss1� 1
q

ds:

The change of variabless
t = u leads to










Z t

0
e� � (t � s)K i

t � s � ps ds










L q (R2 )
�

Cq

t
1
2 � 1

q

:

In order to have the same type of estimate forbi
0 one needs to suppose thatr c0 belongs to a

suitable L r (R2) space forr c0. In view of (6.3) and the standard convolution inequality (3.38),

kbi
0(t; �)kL q (R2 ) � k gt kL m (R2 )kr c0kL r (R2 ) �

kr c0kL r (R2 )

t1� 1
m

;

where 1 + 1
q = 1

r + 1
m . Therefore, r should satisfy 1

2 � 1
q = 1

x � 1
q . Thus, one should have

r c0 2 L 2(R2). Notice that in order to apply the convolution inequality above we need q � 2.

We conclude that if c0 2 H 1(R2) and if the marginals of X t satisfy (6.5), then the L r (R2)-norm of
the drift b(t; x ; p) for all r � 2 satis�es

t
1
2 � 1

r kb(t; �; p)kL r (R2 ) � Cr : (6.6)



95 6.2. Main results

The above discussion, motivates us to rede�ne the notion of a weak solution to our
McKean-Vlasov SDE (NLSDE) in order to include the constraints of type (6.5). To prove these
constraints are satis�ed, we conveniently regularize the NLSDE and �rstly apply the results from
Chapter 2. Then we analyze the associated regularized mild equation and prove estimates of type
(6.5) for the regularized densities. These estimates are uniform w.r.t. the regularizing parameter
under a condition involving the parameter � and the size of initial datum. Once such an estimate
is obtained, we prove the convergence of martingale problems related toregularized dynamics
towards the our NLSDE.

The plan of the chapter is the following: Main results are stated in Section 6.2. A convenient
regularization is exhibited in Section 6.3 and the estimates on the time marginals of the
regularized equation are obtained; Existence (resp. well-posedness) for the NLSDE (resp.
Keller-Segel model) is proved in Section6.4 (resp. Section6.5); Uniqueness in law for the NLSDE
is proved in Section6.6.

6.2 Main results

Having, in mind the discussion about convenient functional spaces above, we de�ne the notion of
weak solution to (6.1).

De�nition 6.2.1. The family (
 ; F ; P; (F t ); X; W ) is said to be a weak solution to the equation
(6.1) up to time T > 0 if:

1. (
 ; F ; P; (F t )) is a �ltered probability space.

2. The processX := ( X t )t2 [0;T ] is R2-valued, continuous, and(F t )-adapted. In addition, the
probability distribution of X 0 has densityp0.

3. The processW := ( Wt )t2 [0;T ] is a two-dimensional (F t )-Brownian motion.

4. The probability distribution P � X � 1 has time marginal densities(pt ; t 2 (0; T]) with respect
to Lebesgue measure which satisfy for any

81 < q < 1 9 Cq > 0; sup
t � T

t1� 1
q kpt kL q (R2 ) � Cq: (6.7)

5. For any t 2 [0; T] and x 2 R2, one has
Rt

0 jb0(s; x)j ds < 1 :

6. P-a.s. the pair (X; W ) satis�es (6.1).

Remark 6.2.2. Notice that under the condition c0 2 H 1(R2) one gets applying H•older's inequality
and (6.3), Z t

0
jb0(s; x)j ds � Ckr c0kL 2 (R2 )

Z t

0

1
p

s
ds:

Moreover (6.7) implies

Z t

0

�
�
�
�

Z s

0
K s� u � pu(x) du

�
�
�
� ds � C

Z t

0

1
p

s
ds:
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The �rst objective of this chapter is to prove the following claim:

Theorem 6.2.3. Let T > 0 and suppose thatX 0 has a probability density functionp0.
Furthermore, assume thatc0 2 H 1(R2). Then, Equation (6.1) admits a weak solution under the
following condition

A� kr c0kL 2 (R2 ) + B
p

� < 1; (6.8)

where A and B are de�ned as in Proposition 6.3.7 below.

We do not apply Picard's iteration since in each iteration step we will need a well-posedness result
for a linear SDE whose drift satis�es (6.6). In view of Krylov and R•ockner [ 49], the well-posedness
follows from a �nite L p((0; T); L r (R2))-norm of the drift with 1

p + 1
r < 1

2 . Unfortunately, the
property in ( 6.6) will imply the opposite condition 1

p + 1
r > 1

2 for the same norm to be �nite. We
do not see how to circumvent this without a cut-o�. To prove Theorem 6.2.3 we will use a
regularization method. The goal is to prove that the time marginals of the regularized version of
(6.1) satisfy the property ( 6.7) with uniform constants with respect to the regularization
parameter. Then, the tightness will follow thanks to (6.6) for r = 1 . It will remain, then, to solve
the non-linear martingale problem related to (6.1).That is why we chose to only regularize instead
of iterating and regularizing. The well-posedness of the regularized equation will follow from
Chapter 2. In addition, the incompatibility of ( 6.6) and the condition in [49] makes us doubt that
Girsanov transform techniques would work and that the law of (6.1) is absolutely continuous
w.r.t. Wiener's measure.

The next objective is to use Theorem6.2.3 to get a well-posedness of the Keller - Segel model in
d = 2. The system reads

8
>>>><

>>>>:

@�
@t

(t; x ) = r � (
1
2

r � (t; x ) � �� (t; x )r c(t; x )) ; t > 0; x 2 R2;

@c
@t

(t; x ) =
1
2

4 c(t; x ) � �c (t; x ) + � (t; x ); t > 0; x 2 R;

� (0; x) = � 0(x); c(0; x) = c0;

(6.9a)

(6.9b)

where � > 0 and � � 0. The parameter � is called the chemotactic sensitivity and, together with
the total mass M :=

R
� 0(x) dx, plays an important role in the well-posedness theory for (6.9).

Notice that the two di�usion coe�cient are deliberately chosen to be equal to 1
2 in order to have

unit di�usion coe�cient and standard Gaussian kernel in the formulat ion of (6.1).

As seen in Section1.2, Keller-Segel system was constructed to model the onset of cell aggregation
due to chemotactic behaviour of slime molds. Therefore, it is no wonder that critical regimes in
which the solutions blow-up in �nite time have been found in the literature. The de�nition of this
phenomenon is the following:

9 T0 < 1 : sup
t � T0

(k� t kL 1 (R2 ) + kct kL 1 (R2 ) ) = 1 :

Indeed, the question of global existence versus blow-up ind = 2 was extensively studied in the
PDE literature. We have no intention to review all of it here, but r ather mention some of the
results. A very thorough review can be found in Horstmann [41].

In the parabolic-elliptic version of the system, i.e. when (6.9b) is in steady state, the behaviour of
the system has been completely understood. There, the system exhibits the "threshold"
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behaviour: if M� < 8� the solutions are global in time, if M� > 8� every solution blows-up in
�nite time (see e.g. Blanchet et. al [8] and Nagai and Ogawa [56]).

On the other hand, the fully parabolic model (6.9) expresses a less straight-forward behaviour. It
has been proved that whenM� < 8� one has global existence (see Calvez and Corrias [20],
Mizogouchi [55]). However, in Biller et. al [7] the authors �nd an initial con�guration of the
system in which a global solution in some sense exists withM� > 8� . Finaly, Herrero and
Vel�azquez [38] construct a radially symmetric solution on a disk that blows-up and develops
� -function type singularities. Finally, unique solution with any positive mass exists under some
condition on the reverse di�usion coe�cient of the chemoattractant and initial datum (Corrias et.
al [22]). Thus, in the case of parabolic-parabolic model, the value 8� can still be understood as a
threshold, but in a di�erent sense: below it there is global existence, above it there exists a
solution that blows up.

The new functions ~� (t; x ) := � (t;x )
M and ~c(t; x ) := c(t;x )

M satisfy the system (6.9) with the new
parameter ~� := �M . Therefore, w.l.o.g. we may and do thereafter assume thatM = 1. We
consider the following notion of solution to (6.9):

De�nition 6.2.4. Given the functions � 0 and c0, and the constants� > 0, � � 0, T > 0, the pair
(�; c ) is said to be a solution to(6.9) if � (t; �) is a probability density function for every 0 � t � T ,
one has

81 < q < 1 9 Cq > 0 : sup
t � T

t1� 1
q k� (t; �)kL q (R2 ) � Cq;

and the following equality

� (t; x ) = gt � � 0(x) + �
2X

i =1

Z t

0
r i gt � s � r i c(s; �) � (s; �))( x) ds (6.10)

is satis�ed in the sense of the distributions with

c(t; x ) = e� �t (g(t; � ) � c0)(x) +
Z t

0
e� �s (gs � � (t � s; �))( x) ds: (6.11)

Notice that the function c(t; x ) de�ned by ( 6.11) is a mild solution to ( 6.9b). These solutions are
known as integral solutions and they have already been studied in PDE literature for the
two-dimensional Keller-Segel model (see [22] and references therein).

A consequence of Theorem6.2.3 is the well-posedness of (6.9).

Corollary 6.2.5. Let � 0 a probability density function and c0 2 H 1(R2). Under the condition
(6.8) the system(6.9) admits a unique solution in the sense of De�nition 6.2.4.

In [20] the authors obtain the global existence in sub-critical case assuming:

i) � 0 2 L 1(R2) \ L 1(R2; log(1 + jxj2)dx) and � 0 log � 0 2 L 1(R2);

ii) c0 2 H 1(R2) if � > 0 or c0 2 L 1(R2) and jr c0j 2 L 2(R2) if � = 0;

iii) � 0 c0 2 L 1(R2).
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We should emphasize that their sub-critical condition translates into 4� < 8� for (6.9) due to the
additional di�usion coe�cients in it. In the same sub-critical case , the global existence result is
obtained in [55] assuming� 0 2 L 1(R2) \ L 1 (R2) and c0 2 H 1(R2) \ L 1(R2). Our result does not
assume any additional conditions other than that � 0 is a probability density function and
c0 2 H 1(R2). The price to pay is the smallness condition (6.8) that not just involves the
parameter � , but the size of the initial datum as well.

Corollary 6.2.5 is very similar to the result in [22, Thm. 2.1]. Indeed, the assumptions on initial
conditions are the same and as well the notion of solution. The objective isdi�erent in the sense
that the goal of [22] was to exhibit global existence for (6.9) for any positive mass and� = 1 as
long as the following two conditions are satis�ed

C1: There exists� = � (M; � ) such that kr c0kL 2 (R) < � ,

C2: There existsC(� ) such that M < C (� ),

where � is the inverse di�usion coe�cient of the chemo-attractant (see ( 1.4)). The condition on
the total mass is similar to (6.8) on � , but as C grows with � , one can haveM as large as one
likes as soon as� is large enough as well (see Section1.3 for more details). In this chapter the
objective is to get results for the classical K-S model (� = 1) with respect to chemo-attractant
sensitivity (and mass). When we assume the same in the framework of [22], we see that we have
removed the assumption on the smallness of the initial datum (C1). Thereason lies in our
method: in [22] the Banach's �xed point is used to construct solutions locally in time (where C1
emerges) and then such solution is globalized (where C2 emerges). In our case only a condition of
C2 type appears as, thanks to our regularization procedure, we directly construct a global
solution. The well-posedness of the regularized equation comes from Chapter (2).

Finally, using the so-called transfer of uniqueness we prove the weak uniqueness for (6.1). Namely,
we will use the results in Trevisan [76] to prove the following theorem:

Theorem 6.2.6. Under a smallness condition on� precised in Section6.6, weak uniqueness in
the sense of De�nition 6.2.1 holds for Eq. (6.1).

6.3 Regularization

We de�ne the regularized version of the interaction kernelK and the linear part of the drift as
follows. For " > 0 and (t; x ) 2 (0; T) � R2 de�ne

K "
t := �

x
2� (t + " )2 e� j x j 2

2t ; g"
t (x) =:

1
2� (t + " )

e� j x j 2

2t and b"
0(t; x ) := �e � �t (r c0 � g"

t )(x):

The regularized Mc-Kean-Vlasov equation reads
(

dX "
t = dWt + b"

0(t; X "
t )dt + �

n Rt
0 e� � (t � s)

R
K "

t � s(X "
t � y)� "

s(dy) ds
o

dt; t � T;

� "
s := L (X "

s ); X "
0 � p0;

(6.12)

Set

b" (t; x ; � " ) := b"
0(t; x ) + �

Z t

0
e� � (t � s)

Z
K "

t � s(x � y)� "
s(dy) ds:
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It is clear that there exists C" > 0 such that for any t 2 (0; T), one has

8x; y 2 R2; jb"
0(t; x ) � b"

0(t; y)j+ jK "
t (x) � K "

t (y)j � C" jx � yj and jb"
0(t; x )j+ jK "

t (x)j � C" : (6.13)

Notice that C" ! 1 as " ! 0. Similar computations as the ones to get (6.2) and (6.3) lead to the
following estimates. For t 2 (0; T] and 1 � q < 1 , one has

kK ";i
t kL q (R2 ) �

C1(q)

(t + " )
3
2 � 1

q

and kg"
t kL q (R2 ) �

C2(q)

(t + " )1� 1
q

: (6.14)

Proposition 6.3.1. Let T > 0; � > 0, r c0 2 L 2(R2) and p0 a probability density function on R2.
Then, for any " > 0, Equation (6.12) admits a unique strong solution. Moreover, the one
dimensional time marginals of the law of the solution admit probability density functions, (p"

t )t � T .
In addition, for t 2 (0; T), p"

t satis�es the following mild equation in the sense of the distributions:

p"
t = gt � p0 �

2X

i =1

Z t

0
r i gt � s � (p"

sb";i (s; �; p" ))ds: (6.15)

Proof. In view of (6.13) and Theorem 2.2.3, the strong solution to Equation (6.12) is uniquely well
de�ned. In addition, as the drift term is bounded, we can apply Girsanov's transformation and
conclude that the one dimensional time marginals of the law of the solutionadmit probability
density functions. By classical arguments (see Chapter2), one can prove that for t 2 (0; T), p"

t
satis�es (6.15) in sense of the distributions.

In the sequel, for 1< q < 1 , uniform in " estimates on supt � T t1� 1
q kp"

t kL q (R2 ) will be crucial.

They will imply uniform in " estimates on supt � T t
1
2 � 1

r kb";i (t; �)kL r (R2 ) for 2 � r � 1 . In
particular, for i = 1 ; 2 and t 2 (0; T],

kb";i (t; �)kL 1 (R2 ) �
C
p

t
:

The latter will enable us to prove tightness of the probability laws of (X " ).

6.3.1 Density estimates

For 0 < a; b < 1, we denote

� (a; b) :=
Z 1

0

1
ua (1 � u)bdu: (6.16)

Now we prove some technical lemmas that will be used throughout this chapter.

Lemma 6.3.2. Let t > 0 and 0 < a; b < 1. Then,
Z t

0

1
sa(t � s)b ds = t1� (a+ b) � (a; b):

Proof. Observe that Z t

0

1
sa(t � s)b ds =

1
t (a+ b)

Z t

0

1
� s

t

� a �
1 � s

t

� b ds:

The change of variabless
t = u implies the result.
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Lemma 6.3.3. Let t > 0. Then, the function bi
0(t; �) is continuous on R2 and for r 2 [2; 1 ], one

has

kbi
0(t; �)kL r (R2 ) � � kr c0kL 2 (R2 )( R2 )

C2( 2r
r +2 )

t
1
2 � 1

r

:

Proof. As r i c0 is only in L 2(R2) we can not apply the classical results of convolution with a
continuous function. The continuity of bi

0(t; �) = � r i c0 � gt is a direct consequence of [15, Ex.
4.30-3.] as for at > 0 both gt and r i c0 belong to L 2(R2). However, in this case, one can use the
particular form of the functions involved in the convolution to prove t he continuity. Let xn ! x in
R2 as n ! 1 . To prove gt � r i c0(xn ) ! gt � r i c0(x) we need to boundjgt (xn � y)r i c0(y)j with an
h(y) 2 L 1(R2): As gt is continuous we would then apply the dominated convergence theorem. Let
R > 0. Then there existsn0 � 1 such that for n � n0 one has that jxn � xj � R. Then, by reverse
triangular inequality one has that

e� j x n � y j 2

2t � e� ( j x n � x j�j y � x j ) 2

2t � e
R 2

2t e� ( j y � x j� R ) 2

2t :

Thus, we de�ne h(y) = r i c0(y) 1
2�t e

R 2

2t e� ( j y � x j� R ) 2

2t and concludeh 2 L 1(R2) by Cauchy-Schwarz
inequality.

Let q � 1 be such that 1
q + 1

2 = 1 + 1
r . By the convolution inequality ( 3.38)

kbi
0(t; �)kL r (R2 ) � � kr i c0kL 2 (R2 )kgt kL q (R2 ) :

In view of estimates onkgt kL q (R2 ) and the relation above betweenr and q, one has

kbi
0(t; �)kL r (R2 ) � � kr c0kL 2 (R2 )kgt k

L
2r

r +2
� � kr c0kL 2 (R2 )

C2( 2r
r +2 )

t1� ( 1
r + 1

2 )
:

Repeating the arguments as in the preceding proof, one gets

Lemma 6.3.4. For t > 0 and r 2 [2; 1 ] one has

kb";i
0 (t; �)kL r (R2 ) � � kr c0kL 2 (R2 )

C2( 2r
r +2 )

(t + " )
1
2 � 1

r

:

Lemma 6.3.5. Let p0 a probability density function on R2 and 1 < q < 1 . One has

lim sup
t ! 0

t1� 1
q kgt � p0kL q (R2 ) = 0 :

Proof. The proof is a special case of Lemma 8 in [16]. Let f 2 CK (R2). Using the standard
convolution inequality ( 3.37), one has

t1� 1
q kgt � p0kL q (R2 ) � t1� 1

q kgt � f kL q (R2 ) + t1� 1
q kgt � (p0 � f )kL q (R2 )

� t1� 1
q kgt kL 1 (R2 )kf kL q (R2 ) + t1� 1

q kgt kL q (R2 )kp0 � f kL 1 (R2 )

� k f kL q (R2 ) t
1� 1

q + Ckp0 � f kL 1 (R2 ) :
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Thus,
lim sup

t ! 0
t1� 1

q kgt � p0kL q (R2 ) � Ckp0 � f kL 1 (R2 ) :

Sincef is arbitrary, the r.h.s. can be arbitrarily small ( see e.g. [15, Theorem 4.3]) .

De�ne
N "

q (t) := sup
s2 (0;t )

s1� 1
q kp"

skL q (R2 ) : (6.17)

The following lemma provides a �rst estimate for N "
q (t) for a �xed " > 0. This estimate is not the

optimal one in " , but it is necessary in order to be sure that all the quantities we work with are
well de�ned. Also, it will be used in order to obtain the limit behav iour of N "

q (t) as t ! 0.

Lemma 6.3.6. Let 0 < t � T and " > 0 �xed. For any 1 < q < 1 , there existsC" (T; � ) > 0 such
that

N "
q (t) � C" (T; � ): (6.18)

Moreover, one has
lim
t ! 0

N "
q (t) = 0 : (6.19)

As K " is smooth, we can propose a simpli�ed version of the arguments in [16, p. 285-286] for the
proof of (6.19).

Proof. The drift of the regularized stochastic equation is bounded. Indeed, jK "
t j � C

" 3=2 and
Lemma 6.3.4 imply

kb";i (t; �; p" )kL 1 (R2 ) �
C
p

"
+

Ct
"3=2

=: C" (1 + t):

For 1 < q < 1 and q0 such that 1
q + 1

q0 = 1 integrate ( 6.15) w.r.t. a test function f 2 L q0
(R2) and

apply H•older's inequality. It comes
�
�
�
�

Z
p"

t (x)f (x)dx

�
�
�
� � k f kL q0(R2 )

 

kgt � p0kL q (R2 ) +
2X

i =1

Z t

0
kr i gt � s � (p"

sb";i
s )kL q (R2 )ds

!

: (6.20)

a) Assume 1< q < 2. The above drift bound and the convolution inequality (3.37) applied in
(6.20), lead to

kp"
t kL q (R2 ) � k gt � p0kL q (R2 ) + C" (1 + t)

2X

i =1

Z t

0
kr i gt � skL q (R2 )kp"

skL 1 (R2 )ds:

In view of (6.2), we deduce that
Z t

0
kr i gt � skL q (R2 )kp"

skL 1 (R2 ) ds � Cq

Z t

0

1

(t � s)
3
2 � 1

q

= Cqt
1
q � 1

2 :

Thus,
t1� 1

q kp"
t kL q (R2 ) � t1� 1=qkgt � p0kL q (R2 ) + t1� 1

q + 1
q � 1=2C" (1 + t): (6.21)

To get (6.18), in ( 6.21) use the convolution inequality (3.37) and that kgt kL q (R2 ) = C

t1� 1
q

. To

get (6.19) use Lemma6.3.5 for the �rst term of the r.h.s. of ( 6.21) and the fact that the
second term tends to zero ast ! 0.
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b) Let q � 2 and 1
p1

= 1
p2

= 1
2 + 1

2q. Then, 1 < p 1; p2 < 2 and 1 + 1
q = 1

p1
+ 1

p2
. The convolution

inequality ( 3.38) and the drift estimate applied in ( 6.20), lead to

kp"
t kL q (R2 ) � k gt � p0kL q (R2 ) + C" (1 + T)

2X

i =1

Z t

0
kr i gt � skL p1 (R2 )kp"

skL p2 (R2 )ds:

In view of (6.2) and the result in a), one has

t1� 1
q kp"

t kL q (R2 ) � t1� 1
q kgt � p0kL q (R2 ) + C" (1 + T)t1� 1

q

Z t

0

Cq

(t � s)
3
2 � 1

p1

C("; T )

s1� 1
p2

ds:

Apply Lemma 6.3.2 and use the relation between the exponents. It comes:

t1� 1
q kp"

t kL q (R2 ) � t1� 1
q kgt � p0kL q (R2 ) + t1� 1

q
C("; T )

t
1
2 � 1

q

� (1 �
1
p2

;
3
2

�
1
p1

):

Repeating the last steps as in a), one can obtain the desired result.

The following proposition enables one to controlf "
q (t) for a �xed q and uniformly on small " .

Proposition 6.3.7. Let T > 0 and �x a q 2 (2; 4). Then, there existsC > 0 such that for any
t 2 (0; T], f "

q (t) de�ned in (6.17) satis�es

80 < " < 1 : N "
q (t) � C;

provided that
A� kr c0kL 2 (R2 ) + B

p
� < 1 (6.22)

where, C1, C2 and � (�; �) being de�ned as in Lemmas6.1.1, 6.1.2 and Eq. 6.16 respectively,

A = C1(q0)C2(
2q

q + 2
)� (

3
2

�
2
q

;
3
2

�
1
q0) and B = 2

r

C2(q)C1(q0)C1(1)� (
3
2

�
2
q

;
3
2

�
1
q0)� (1 �

1
q

;
1
2

):

Proof. Let q0 > 1 be such that 1
q + 1

q0 = 1. Integrating ( 6.15) w.r.t. a test function f 2 L q0
(R2),

one again starts from

�
�
�
�

Z
p"

t (x)f (x)dx

�
�
�
� � k f kL q0(R2 )

 

kgt � p0kL q (R2 ) +
2X

i =1

Z t

0
kr i gt � s � (p"

sb";i
s )kL q (R2 )ds

!

: (6.23)

Let us �x i 2 f 1; 2g, s < t and denoteA i
s := kr i gt � s � (p"

sb";i
s )kL q (R2 ) . Observe that 1

q0 + 2
q = 1 + 1

q .
Apply the convolution inequality ( 3.38) and then use (6.2). It comes

A i
s � kr i gt � skL q0(R2 )kp"

sb";i
s k

L
q
2 (R2 )

�
C1(q0)kb";i

s kL q (R2 )s
1� 1

q kp"
skL q (R2 )

(t � s)
3
2 � 1

q0s1� 1
q

� C1(q0)N "
q (t)

kb";i
s kL q (R2 )

(t � s)
3
2 � 1

q0s1� 1
q

:
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In view of Lemma 6.3.4, (6.14) and Lemma 6.3.2, we get

kb";i
s kL q (R2 ) �

C2( 2q
q+2 )� kr c0kL 2 (R2 )

(s + ")
1
2 � 1

q

+ �
Z s

0
kK i;"

s� ukL 1 (R2 )kp"
ukL q (R2 )du

�
C2( 2q

q+2 )� kr c0kL 2 (R2 )

s
1
2 � 1

q

+ �C 1(1)N "
q (t)

Z s

0

1
p

s � u u1� 1
q

ds

�
C2( 2q

q+2 )� kr c0kL 2 (R2 ) + �C 1(1)N "
q (t)� (1 � 1

q ; 1
2)

s
1
2 � 1

q

:

It comes

A i
s � C1(q0)� N "

q (t)
C2( 2q

q+2 )kr c0kL 2 (R2 ) + C1(1)N "
q (t)� (1 � 1

q ; 1
2)

(t � s)
3
2 � 1

q0s
3
2 � 2

q

:

Plug this into ( 6.20). The condition q 2 (2; 4) ensures that 3
2 � 2

q < 1 and 3
2 � 1

q0 < 1. Thus,
Lemma 6.3.2 leads to

�
�
�
�

Z
p"

t (x)f (x)dx

�
�
�
� � k f kL q0(R2 )

�
kgt � p0kL q (R2 )

+ 2C1(q0)� N "
q (t)

C2( 2q
q+2 )kr c0kL 2 (R2 ) + C1(1)N "

q (t)� (1 � 1
q ; 1

2)

t1� 1
q

� (
3
2

�
2
q

;
3
2

�
1
q0)

�
:

Take supkf k
L q0=1 in the preceding inequality. It follows from the convolution inequality ( 3.37) and

(6.3) that

kp"
t kL q (R2 ) �

C2(q)

t1� 1
q

+ 2C1(q0)�� (
3
2

�
2
q

;
3
2

�
1
q0)N

"
q (t)

C2( 2q
q+2 )kr c0kL 2 (R2 ) + C1(1)N "

q (t)� (1 � 1
q ; 1

2)

t1� 1
q

:

Let us denote

K 1 := 2C1(q0)C1(1)� (
3
2

�
2
q

;
3
2

�
1
q0)� (1 �

1
q

;
1
2

) and K 2 := 2C1(q0)C2(
2q

q + 2
)� (

3
2

�
2
q

;
3
2

�
1
q0):

After rearranging the terms,

0 � K 1� (N "
q (t))2 + ( K 2� kr c0kL 2 (R2 ) � 1)N "

q (t) + C2(q): (6.24)

Under the assumptions

K 2� kr c0kL 2 (R2 ) � 1 < 0 and (K 2� kr c0kL 2 (R2 ) � 1)2 � 4K 1C2(q)� > 0;

the polynomial function

P(z) = K 1�z 2 + ( K 2� kr c0kL 2 (R2 ) � 1)z + C2(q)

admits two positive roots. In view of Lemma 6.3.6 and (6.24), one has that limt ! 0 N "
q (t) = 0 and

P(N "
q (t)) > 0 for any t 2 [0; T]. Necessarily, for anyt 2 [0; T] N "

q (t) is bounded from above by the
smaller root of the polynomial function P(z). As the constants do not depend onT and " , this
estimate is uniform in time and does not depend on the regularization parameter.

Notice that the above condition is equivalent to

K 2� kr c0kL 2 (R2 ) + 2
p

K 1C2(q)� < 1:

Denote A := K 2 and B := 2
p

C2(q)K 1 to �nish the proof.
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Remark 6.3.8. The upper bound C ofN "
q (t) is given by

C =
1 � A� kr c0kL 2 (R2 ) �

q
(1 � A� kr c0kL 2 (R2 ) )2 � B 2�

2K 1�
:

Now, we will continue analyzing N "
r (t), for di�erent values of r . We will see that di�erent

arguments are used whenr < q and r > q . The result obtained for r < q will be used to control
kb"

t kL r (R2 ) , for r � 2.

Corollary 6.3.9. Same assumptions as in Proposition6.3.7. Then, for 1 < r < q , it holds

8 0 < " < 1; N "
r (T) � Cr :

Proof. Let 1 < r < q . De�ne � :=
1� 1

r
1� 1

q
. Then, 1

r = 1 � � + �
q. As p"

t 2 L 1(R2), "interpolation

inequalities" (see [15, p. 93]) lead to

kp"
t kL r (R2 ) � k p"

t k1� �
L 1 (R2 )kp"

t k�
L q (R2 ) �

C �

t � (1� 1
q )

=:
Cr

t1� 1
r

:

Corollary 6.3.10. Same assumptions as in Proposition6.3.7. Then, for 2 � r � 1 ,

8 0 < " < 1; kb"
t kL r (R2 ) �

Cr (�; kr c0kL 2 (R2 ) )

t
1
2 � 1

r

Proof. In view of Lemma 6.3.4, one has fori 2 f 1; 2g

kbi;"
t kL r (R2 ) �

C(�; kr c0kL 2 (R2 ) )

t
1
2 � 1

r

+ �
Z t

0
kK ";i

t � s � p"
skL r (R2 )ds: (6.25)

a) For r 2 [2; q), Corollary 6.3.9 immediately implies

kK ";i
t � s � p"

skL r (R2 ) �
C

p
t � ss1� 1

r

:

b) For q � r � 1 , choosep1 such that 1
p1

:= 1 + 1
r � 1

q . Notice that, as 2 < q � r , it follows
that 1

2 < 1
p1

� 1. Applying the convolution inequality ( 3.38) and Corollary 6.3.9, one has

kK ";i
t � s � p"

skL r (R2 ) �
C

(t � s)
3
2 � 1

p1 s1� 1
q

:

To �nish the proof, in both cases, one plugs the obtained estimates in (6.25) and applies
Lemma 6.3.2.

Corollary 6.3.11. Same assumptions as in Proposition6.3.7. Then, for q < r < 1 , one has

8 0 < " < 1; N "
r (T) � Cr :
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Proof. Let 1 < q1; q2 < 2 such that 1
q1

= 1
q2

= 1
2 + 1

2r . Then, 1 + 1
r = 1

q1
+ 1

q2
. Convolution

inequality ( 3.38) leads to

kp"
t kL r (R2 ) � k gt � p0kL r (R2 ) +

2X

i =1

Z t

0
kr i gt � skL q1 (R2 )kp"

sb";i
s kL q2 (R2 ) ds:

Let us apply H•older's inequality for 1
� 1

+ 1
� 2

= 1 such that � 1 = q
2 ,

kp"
sb";i

s kL q2 (R2 ) � k p"
skL � 1q2 (R2 )kb";i

s kL � 2q2 (R2 ) :

Notice that 1 < � 1 < 2 since 2< q < 4 by hypothesis. Then, � 2 > 2, thus � 2q2 > 2. In addition,
� 1q2 = q

2q2 < q. In view of Corollaries 6.3.9 and 6.3.10, one has

kp"
sb";i

s kL q2 (R2 ) �
C

s1� 1
� 1q2

+ 1
2 � 1

� 2q2

=
C

s
3
2 � 1

q2

:

Therefore,

t1� 1
q kp"

t kL r (R2 ) � C + t1� 1
q

Z t

0

C

(t � s)
3
2 � 1

q1 s
3
2 � 1

q2

ds:

Apply Lemma 6.3.2 to �nish the proof.

Notice that the choice of the constantsA and B depends only on the initially chosenq 2 (2; 4).
One may analyze the constants in Condition (6.22) in function of q to get an optimal condition on
� .

6.4 Proof of Theorem 6.2.3

6.4.1 Tightness

Proposition 6.4.1. Let T > 0. Denote " k = 1
k , for k 2 N. Pk denotes the law of the solutions to

(6.12) regularized with " k . If the initial law p0 is a probability density, r c0 2 L 2(R2) and � > 0
are such that Condition (6.22) is satis�ed, then the probability laws(Pk )k� 1 are tight in
C([0; T]; R2) w.r.t. k 2 N.

Proof. For m > 2 and 0< s < t � T, notice that

EjX "
t � X "

s jm � E

 � Z t

s
b"; 1(u; X "

u)du
� 2

+
� Z t

s
b"; 2(u; X "

u)du
� 2

! m
2

+ EjWt � Wsjm :

In view of the drift estimate for r = 1 in Corollary 6.3.10, one has

EjX "
t � X "

s jm �
�

2
Z t

s

C(�; kr c0kL 2 (R2 ) )p
u

du
� m

+ C(t � s)
m
2 � C(�; kr c0kL 2 (R2 ) )( t � s)

m
2 :

Kolmogorov's criterion implies tightness.
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6.4.2 Existence

In order to prove the existence of a weak solution, we will prove thatthe following non-linear
martingale problem related to (6.1) admits a solution under the hypothesis of Theorem6.2.3.

De�nition 6.4.2. A probability measure Q on the canonical spaceC([0; T]; R2) equipped with its
canonical �ltration and a canonical process (wt ) is a solution to the non-linear martingale problem
(MP ) if:

(i) Q0 = p0.

(ii) For any t 2 (0; T], the one dimensional time marginals ofQ, denoted byQt , have densitiesqt

w.r.t. Lebesgue measure onR. In addition, they satisfy

8r 2 (1; 1 ) 9C > 0 : sup
t2 (0;T )

t1� 1
r kqt kL r (R2 ) � C:

(iii) For any f 2 C2
K (R2) the process(M t )t � T , de�ned as

M t := f (wt )� f (w0)�
Z t

0

� 1
2

4 f (wu)+ r f (wu)�(b0(u; wu)+ �
Z u

0

Z
K u� � (wu � y)q� (y)dyd�

�
]du

is a Q-martingale.

In view of Proposition 6.4.1, there exists a weakly convergent subsequence of (Pk )k� 1 that we will
still denote by (Pk )k� 1. Denote its limit by P1 . Let us prove that P1 solves the martingale
problem (MP ).

i) Each Pk
0 has density p0, and thereforeP1

0 also has densityp0.

ii) De�ne the functional � t (' ) by

� t (' ) :=
Z

R2
' (y)P1

t (dy); ' 2 CK (R2):

By weak convergence we have

� t (' ) = lim
k!1

Z
' (y)pk

t (y)dy;

and thus for any 1 < r < 1 and its conjugate r 0, in view of Proposition 6.3.7 and Corollaries
6.3.9 and 6.3.11one has

j� t (' )j �
C

t1� 1
r

k' kL r 0(R2 ) :

Therefore, for each 0< t � T, � t is a bounded linear functional on a dense subset of
L r 0

(R2). Thus, � t can be extended to a linear functional onL r 0
(R2). By

Riesz-representation theorem (e.g. [15, Thm. 4.11 and 4.14]), there exists a unique
p1

t 2 L r (R2) such that kp1
t kL r (R2 ) � C

t1� 1
r

and p1
t is the probability density of P1

t (dy).
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iii) Set

M 1
t := f (wt ) � f (w0)

�
Z t

0

�
4 f (wu) + r f (wu) � (b0(u; wu) +

�
8�

Z u

0
e� � (u� � )

Z
K u� � (wu � y)p1

� (y) dy d�
�
]du:

In order to prove that ( M 1
t )t � T is a P1 martingale, we will check that for any N � 1,

0 � t1 < � � � < t N < s � t � T and any � 2 Cb((R2)N ), one has

EP1 [(M 1
t � M 1

s )� (wt1 ; : : : ; wtN )] = 0 : (6.26)

As Pk solves the non{linear martingale problem related to (6.12) with " k = 1
k , one has

M k
t := f (wt ) � f (x(0)) � �

Z t

0

�
4 f (wu) + r f (wu) � (b" k

0 (u; wu)

+
�
8�

Z u

0
e� � (u� � ) (K " k

u� � � pk
� )(wu)d�

�
]du

is a martingale under Pk . Thus,

0 = EPk [(M k
t � M k

s )� (wt1 ; : : : ; wtN )] = EPk [� (: : : )( f (wt ) � f (ws))]

+ EPk [� (: : : )
Z t

s
4 f (wu)du] + EPk [� (: : : )

Z t

s
r f (wu) � b" k

0 (u; wu)du]

+
�
8�

EPk [� (: : : )
Z t

s
r f (wu) �

Z u

0
e� � (u� � ) (K " k

u� � � pk
� )(wu)d�du ]:

Since (Pk ) weakly converges toP1 , the �rst two terms on the r.h.s. converge to their
analogues in (6.26). It remains to check the convergence of the last two terms. We will
analyze separately the parts coming from the linear and non-linear drifts.

Linear part Notice that for t > 0 and x 2 R2

jb" k
0 (t; x ) � b0(t; x )j � C

�e � �t " k

t(t + " k )

�
�
�
�

Z

R2
r c0(x � y)e� j y j 2

2t dy

�
�
�
� �

" kkr c0kL 2 (R2 )p
t(t + " k )

:

Thus, kb" k
0 (t; �) � b0(t; �)kL 1 (R2 ) ! 0; k ! 1 and from Lemmas6.3.3 and 6.3.4 we have

kb" k
0 (t; �) � b0(t; �)kL 1 (R2 ) �

C
p

t
:

Similarly, for t > 0 and r > 2,

kb" k
0 (t; �) � b0(t; �)kL r (R2 ) � kr c0kL 2 (R2 )

" k

t(t + " k )
Ct

1
r + 1

2 :

Therefore,
kb" k

0 (t; �) � b0(t; �)kL r (R2 ) ! 0; k ! 1 (6.27)

and from Lemmas6.3.3 and 6.3.4 we have

kb" k
0 (t; �) � b0(t; �)kL r (R2 ) �

C

t
1
2 � 1

r

: (6.28)
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Now, observe that

EPk [� (: : : )
Z t

s
r f (wu) � b" k

0 (u; wu)du] � EP1 [� (: : : )
Z t

s
r f (wu) � b0(u; wu)du]

= ( EPk [� (: : : )
Z t

s
r f (wu) � b" k

0 (u; wu)du] � EPk [� (: : : )
Z t

s
r f (wu) � b0(u; wu)du])

+ ( EPk [� (: : : )
Z t

s
r f (wu) � b0(u; wu)du] � EP1 [� (: : : )

Z t

s
r f (wu) � b0(u; wu)du]) =: I k + II k :

We start from II k . De�ne for x 2 C([0; T]; R2) the functional

F (x) := � (x t1 ; : : : ; x tN )
Z t

s
r f (xu) � b0(u; xu)du:

In view of Lemma 6.3.3, for u > 0 and i = 1 ; 2, the function bi
0(u; �) is bounded and

continuous on R2 and one haskbi
0(t; �)kL 1 (R2 ) � Cp

t
. By dominated convergence one gets

that F (�) is continuous. In addition, F (�) is bounded onC([0; T]; R2). Thus, by weak
convergence,II k ! 0, ask ! 1 .

We turn to I k :

jI k j � k � k1

Z t

s

2X

i =1

Z

R2
jr i f (z)(b" k ;i

0 (u; z) � bi
0(u; z)) jpk

u(z) dz ds:

Apply the H•older's inequality for 1
� + 1

� 0 = 1 such that 1 < � < 2. In view of Corollary 6.3.9,
one has

jI k j � k � k1 kr f k1

Z t

s

C

u1� 1
�

2X

i =1

kb" k ;i
0 (u; �) � bi

0(u; �)kL � 0(R2 )du:

In view of (6.27), kb" k ;i
0 (u; �) � bi

0(u; �)kL � 0(R2 ) ! 0 ask ! 1 . In addition ( 6.28) leads to

C

u1� 1
�

2X

i =1

kb" k ;i
0 (u; �) � bi

0(u; �)kL � 0(R2 ) �
C

u
1

� 0+ 1
2 � 1

� 0
:

By dominated convergence,I k ! 0, ask ! 1 .

Non-linear part Let us �rst analyze the di�erence of the two drifts. Fix 0 < s < t ,
x 2 R2 and i 2 1; 2. Notice that

jK " k ;i
t � s (x) � K i

t � s(x)j �
(t � s)" k + "2

k

(t � s)2(t � s + " k )2 jx i je
j x j 2

2( t � s) :

Thus for any x 2 R2 and any 0< s < t , we have that jK " k ;i
t � s (x) � K i

t � s(x)j ! 0; k ! 1 .
After integration, for any 1 < r < 2 one has

kK " k ;i
t � s � K i

t � skL r (R2 ) � Cr
(t � s)" k + "2

k

(t � s)2(t � s + " k )2 (t � s)
1
2 + 1

r :

Therefore, for any 0< s < t , one gets

kK " k ;i
t � s � K i

t � skL r (R2 ) ! 0; k ! 1 : (6.29)
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In addition, ( 6.2) and (6.14) lead to

kK " k ;i
t � s � K i

t � skL r (R2 ) � k K " k ;i
t � s kL r (R2 ) + kK i

t � skL r (R2 ) �
Cr

(t � s)
3
2 � 1

r

: (6.30)

For t > 0, x 2 R2 and i 2 1; 2, one has
�
�
�
�

Z t

0
(K " k ;i

t � s � pk
s )(x)ds �

Z t

0
(K i

t � s � p1
s )(x)ds

�
�
�
� �

�
�
�
�

Z t

0
(K " k ;i

t � s � pk
s )(x)ds �

Z t

0
(K i

t � s � pk
s )(x)ds

�
�
�
�

+

�
�
�
�

Z t

0
(K i

t � s � pk
s )(x)ds �

Z t

0
(K i

t � s � p1
s )(x)ds

�
�
�
� =: Ak + Bk :

We start from Bk . For s < t and i = 1 ; 2, the kernel K i
t � s(�) is a continuous and bounded

function on R2. Thus, by weak convergence we have that
lim k!1 (K i

t � s � pk
s )(x) = ( K i

t � s � p1
s )(x). In addition, for r > 2 H•older's inequality, part ii )

and Proposition 6.3.7 lead to

j(K i
t � s � pk

s )(x) � (K i
t � s � p1

s )(x)j �
Cr

(t � s)
3
2 � 1

r 0s1� 1
r

:

As the bound is integrable in (0; t), the dominated convergence theorem implies that
Bk ! 0, ask ! 1 .

In Ak we apply the H•older's inequality with 1 < r < 2 and the density bounds from
Corollary 6.3.9. It comes

jAk j �
Z t

0
kK " k ;i

t � s � K i
t � skL r 0(R2 )

Cr

s1� 1
r

ds:

In view of (6.29) and (6.30), one can apply the dominated convergence. Thus,Ak ! 0, as
k ! 1 . Finally, we obtain

lim
k!1

�
�
�
�

Z t

0
(K " k ;i

t � s � pk
s )(x)ds �

Z t

0
(K i

t � s � p1
s )(x)ds

�
�
�
� = 0 : (6.31)

As in the linear part, we decompose

EPk [� (: : : )
Z t

s
r f (wu) �

Z u

0
(K " k

u� � � pk
� )(wu)d�du ]

� EP1 [� (: : : )
Z t

s
r f (wu) �

Z u

0
(K u� � � p1

� )(wu)d�du ]

�
�

EPk [� (: : : )
Z t

s
r f (wu) �

Z u

0
(K " k

u� � � pk
� )(wu)d�du ]

� EPk [� (: : : )
Z t

s
r f (wu) �

Z u

0
(K u� � � p1

� )(wu)d�du ]
�

+
�

EPk [� (: : : )
Z t

s
r f (wu) �

Z u

0
(K u� � � p1

� )(wu)d�du ]

� EP1 [� (: : : )
Z t

s
r f (wu) �

Z u

0
(K u� � � p1

� )(wu)d�du ]
�

=: Ck + Dk :
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Start from Dk . Similarly to the linear part, we need the boundness and continuityof the
functional

H (x) := � (x(t1); : : : ; x(tN ))
Z t

s
r f (x(u)) �

Z u

0
(K u� � � p1

� )(x(u))d�du; x 2 C([0; T]; R2):

The continuity comes from the fact that the kernel is a continuous function on R2 whenever
� < u . Namely, if xn 2 C([0; T]; R2) converges tox 2 C([0; T]; R2), then
K i

u� � (xn (u) � y) ! K i
u� � (x(u) � y). In addition jK i

u� � (xn (u) � y)p1
� (y)j � C

(u� � )3=2 p1
� (y),

for i 2 f 1; 2g, as n ! 1 . Thus, by dominated convergence, for� < u one has

K i
u� � � p1

� (xn (u)) ! K i
u� � � p1

� (x(u)) ; n ! 1 :

For 1
r + 1

r 0 = 1 such that r > 2 apply H•older's inequality and after the estimate in ii ). It
comes

jK i
u� � � p1

� (xn (u)) j �
Cr

(u � � )
3
2 � 1

r 0 � 1� 1
r

:

By dominated convergence,
Z u

0
(K i

u� � � p1
� )(xn (u))d� !

Z u

0
(K i

u� � � p1
� )(x(u))d�; n ! 1 :

Moreover, in view of Lemma6.3.2, one has
�
�
�
�r f (xn (u)) �

Z u

0
K u� � � p1

� (xn (u))d�

�
�
�
� � Ckr f k1

� (1 � 1
r ; 3

2 � 1
r 0)p

u
:

Finally, after one more application of dominated convergence the continuity of the functional
H follows. This procedure obviously impliesH is a bounded functional onC([0; T]; R2).
Thus, by weak convergence,Dk converges to zero.

We turn to Ck . Let us just for this part denote by bi (u; z) :=
Ru

0 K i
u� � � p1

� (z)d� and
bk;i (u; z) :=

Ru
0 K " k ;i

u� � � p1
� (z)d� . Notice that

jCk j � k � k1

Z t

s

2X

i =1

Z

R2
jr i f (z)(bk;i (u; z) � bi (u; z)) jpk

u(z)dz:

After H•older inequality for 1
r + 1

r 0 = 1 such that r > 2, one has

jCk j � k � k1

Z t

s

C

u1� 1
r 0

2X

i =1

� Z
jr i f (z)jr jbk;i (u; z) � bi (u; z)jr dz

� 1=r

du:

Let u > 0. In view of (6.31), jbk;i (u; z) � bi (u; z)jr ! 0 ask ! 1 . Now, we do not omit
jr i f (z)jq as in the linear part. Instead, we use it in order to integrate in space with respect
to drift bounds. Namely, for u > 0 and i = 1 ; 2, we have seen thatjbk;i (u; �)j + jbi (u; �)j � Cp

u .
Thus,

jr i f (z)jr jbk;i (u; z) � bi (u; z)jr �
C

u
r
2

jr i f (z)jr :

By dominated convergence,

kr i f (�)(bk;i (u; �) � bi (u; �))kL r (R2 ) ! 0; k ! 1 :
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Using that kbk;i (u; �)kL r (R2 ) + kbi (u; �))kL r (R2 ) � C

u
1
2 � 1

r
, one gets

1

u1� 1
r 0

kr i f (�)(bk;i (u; �) � bi (u; �))kL r (R2 ) � kr i f (�)k1
C

u
1
2 � 1

r +1 � 1
r 0

Thus, by dominated convergence, we get thatCk ! 0, ask ! 1 .

As all the terms converge, we get that (6.26) holds true. Thus, the process (M 1
t )t � T is a P1

martingale.

6.5 Application to the two-dimensional Keller-Segel model

In this section we prove Corollary 6.2.5. The parameter � does not play any role in the above
results. Therefore, we will assume here� = 0. It is easy to extend the following arguments for
� > 0.

Denote by � (t; �) � pt (x) the time marginals of the probability distribution constructed in
Theorem 6.2.3. As such, � satis�es for any 1 � q < 1 ,

sup
t � T

t1� 1
q k� (t; �)kL q (R2 ) � Cq:

The corresponding drift function satis�es for any 1 � r � 1 ,

t
1
2 � 1

r kb(t; �; � )kL r (R2 ) � Cr :

Following the arguments in Proposition 2.3.3 one may derive the mild equation for� (t; �). The
above estimates ensure that everything is well de�ned. Thus, onearrives to the following: for any
f 2 C1

K (R2) and any t 2 (0; T],
Z

f (y)� (t; y) dy =
Z

f (y)(gt � � 0)(y)dy

�
2X

i =1

Z
f (y)

Z t

0
[r i gt � s � (bi (s; �; � )� (s; �))]( y) ds dy:

Thus � satis�es in the sense of the distributions

� (t; �) = gt � � 0 �
2X

i =1

Z t

0
r i gt � s � (bi (s; �; � )) � (s; �)) ds: (6.32)

Now, de�ne the function c(t; x ) as

c(t; x ) := ( g(t; �) � c0)(x) +
Z t

0
� (t � s; �) � g(s; �)(x) ds:

Thanks to the density estimatesc(t; x ) is well de�ned for all x 2 R2 as soon ast > 0. Indeed,

jc(t; x )j �
kc0kL 2 (R2 )p

t
+ C

Z t

0
k� (t � s; �)kL 2 (R2 )kgskL 2 (R2 ) ds �

kc0kL 2 (R2 )p
t

+ C� (
1
2

;
1
2

):
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It is obvious that c(t; �) 2 L 2(R2). Thanks to the density estimates and the fact that gt is strongly
derivable as soon ast > 0, c(t; x ) is derivable in any point x and

@
@xi

c(t; x ) = r i (g(t; �) � c0)(x) +
Z t

0
(� t � s � r i g(s; �))( x) ds:

The fact that c0 2 H 1(R2) enables us to writer i (g(t; �) � c0) = ( g(t; �) � r i c0). Now, remark that
� @

@xi
c(t; x ) is exactly the drift in ( 6.32). Thus, the couple (�; c ) satis�es De�nition 6.2.4.

Assume there exists another couple (� 1; c1) satisfying De�nition 6.2.4 with the above initial
conditions (� 0; c0). As such, they satisfy

8 1 � q < 1 9 C > 0 : sup
t � T

t1� 1
q k� 1

t kL q (R2 ) � C

and
8 2 � r � 1 9 C > 0 : sup

t � T
t

1
2 � 1

r kr c1
t kL r (R2 ) � C:

We are in the position to apply [22, Thm. 2.6] and conclude that for a 1� q < 1 and a
2 � r � 1 , there exists a constantC(q; r) not depending on time such that for t > 0 it holds

t1� 1
q k� t � � 1

t kL q (R2 ) + t
1
2 � 1

r kr ct � r c1
t kL r (R2 ) = 0

6.6 Weak uniqueness for the non-linear process: Proof of Theo-
rem 6.2.6

In this section we come back to the non-linear process (6.1) and prove Theorem6.2.6. As the
parameter � does not play any role, we will assume here� = 0. It is easy to extend the following
arguments for � > 0. In addition, the parameter � already satis�es the requirement (6.22).

In the preceding section we proved that under the condition (6.22), the one-dimensional time
marginals of any weak solution to (6.1) are the solution to (6.9) in the sense of De�nition 6.2.4.
Thus, they are uniquely determined as the function (� (t; �)) t � T from the previous section. We
de�ne the linearized process

(
d ~X t = b0(t; ~X t )dt + �

Rt
0 K t � s � � (s; �)( ~X t ) ds dt + dWt ;

~X 0 � � 0:
(6.33)

We will denote in this section

b(t; x ) := b0(t; x )dt + �
Z t

0
K t � s � � (s; �)(x) ds:

By de�nition, one has

8r 2 [2; 1 ] 9C : sup
t � T

t
1
2 � 1

r kb(t; �)kL r (R2 ) � C: (6.34)

Let us de�ne the notion of solution to ( 6.33).
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De�nition 6.6.1. The family (
 ; F ; P; (F t ); ~X; W ) is said to be a weak solution to the equation
(6.33) up to time T > 0 if:

1. (
 ; F ; P; (F t )) is a �ltered probability space.

2. The process ~X := ( ~X t )t2 [0;T ] is R2-valued, continuous, and(F t )-adapted. In addition, the
probability distribution of ~X 0 has density� 0.

3. The processW := ( Wt )t2 [0;T ] is a two-dimensional (F t )-Brownian motion.

4. The probability distribution P � ~X � 1 has time marginal densities(~pt ; t 2 (0; T]) with respect
to Lebesgue measure which satisfy

8 1 < q < 1 9 Cq > 0 80 < t � T; t1� 1
q k~pt kL q (R2 ) � Cq: (6.35)

5. For any t 2 [0; T] and x 2 R2, one has that
Rt

0 jb0(s; x)j ds < 1 :

6. P-a.s. the pair ( ~X; W ) satis�es (6.33).

It is clear that any solution to ( 6.1) in the sense of De�nition 6.2.1 is a solution to (6.33) in the
sense the preceding de�nition. Therefore, if we prove uniqueness of the weak solution in the sense
of De�nition 6.6.1 to (6.33), we will have the uniqueness of the solution in the sense of De�nition
6.2.1 to (6.1).

In order to do so, we will use the so-called transfer of uniqueness proved in Trevisan [76]. The goal
is to use the [76, Lemma 2.12] in the sensei ) implies ii ). This result is stated in the sequel once
all the objects appearing in it are introduced. Firstly, let us de� ne the mild equation associated to
the laws (~pt )t � T in the sense of distributions.

~pt = gt � � 0 �
2X

i =1

Z t

0
r i gt � s � (b(s; �)~ps) ds: (6.36)

We de�ne the spaceR [0;T ] as follows

R [0;T ] := f (� t )t � T :

8
><

>:

1: � 0 = � 0

2: � t is a probability density function

3: 81 < q < 1 ; 80 < t � T : t1� 1
q k� t kL q (R2 ) < 1 and � t satis�es (6.36):

We prove it admits a unique solution under a condition precised in the proof.

Lemma 6.6.2. Equation (6.36) admits a unique solution in the spaceR [0;T ] provided � is small
enough.

Proof. Let us suppose there exist two families of densities (~p1
t )t � T and (~p2

t )t � T satisfying (6.7) and
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(6.35). We will prove supt � T k~p1
t � ~p2

t kL 1 (R2 ) = 0. Notice that

k~p1
t � ~p2

t kL 1 (R2 ) �
2X

i =1

Z t

0
kr i gt � s � ((bi

0(s; � + bi (s; �; � ))(~p1
s � ~p2

s))kL 1 (R2 ) ds

�
2X

i =1

Z t

0
kr i gt � skL 1 (R2 )kbi

0(s; �) + bi (s; �; � )kL 1 (R2 )k~p1
s � ~p2

skL 1 (R2 ) ds

� sup
s� t

k~p1
s � ~p2

skL 1 (R2 )

2X

i =1

Z t

0

C1(1)
p

t � s
kbi

0(s; �) + bi (s; �; � )kL 1 (R2 ) ds:

(6.37)

In view of Lemma 6.3.3, for any 0 < s � T, one has

kbi
0(s; �)kL 1 (R2 ) � � kr c0kL 2 (R2 )( R2 )

C2(2)
p

s
: (6.38)

Let q 2 (2; 4) as in Proposition 6.3.7. According to the de�nition of � , one has

sups� T s1� 1
q k� skL q (R2 ) � C(� ), where C(� ) is given in Remark 6.3.8. Apply H•older's inequality,

Lemma 6.11 and this estimate on� to obtain for any 0 < s � T the following

kbi (s; �; � )kL 1 (R2 ) � �C 1(
q

q � 1
)C(� )

� (1 � 1
q ; 3

2 � 1
q0)

p
s

: (6.39)

Plug (6.38) and (6.39) in ( 6.37). It comes

k~p1
t � ~p2

t kL 1 (R2 )

� 2 sup
s� t

k~p1
s� ~p2

skL 1 (R2 ) � (
1
2

;
1
2

)C1(1)
�

� kr c0kL 2 (R2 )( R2 )C2(2) + �C 1(
q

q � 1
)C(� )� (1 �

1
q

;
3
2

�
1
q0)

�
:

Thus, supt � T k~p1
t � ~p2

t kL 1 (R2 ) = 0, provided that

H (� ) := 2 � (
1
2

;
1
2

)C1(1)
�

� kr c0kL 2 (R2 )( R2 )C2(2) + �C 1(
q

q � 1
)C(� )� (1 �

1
q

;
3
2

�
1
q0)

�
< 1: (6.40)

Remember that � already satis�es (6.22). In view of Remark 6.3.8, one has

�C (� ) =
1 � A� kr c0kL 2 (R2 ) �

q
(1 � A� kr c0kL 2 (R2 ) )2 � B 2�

2K 1
:

Since�C (� ) ! 0 as � ! 0, we haveH (� ) ! 0 as � ! 0. Thus it is possible to choose� small
enough in order to satisfy in the same time (6.22) and (6.40).

Now, notice that for 0 < s � t � T one has

~pt = gt � s � (gs � � 0) �
2X

i =1

Z s

0
gt � s � (r i gs� u � (b(u; �)~pu)) du �

2X

i =1

Z t

s
r i gt � u � (b(u; �)~pu) du:

Therefore

~pt = gt � s � ~ps �
2X

i =1

Z t

s
r i gt � u � (b(u; �)~pu) du: (6.41)
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From here, for a � 2 R [0;s] we de�ne

p�
s;t = gt � s � � s �

2X

i =1

Z t

s
r i gt � u � (b(u; �)p�

s;u) du: (6.42)

Now we de�ne for any 0 � s � T the space

R [s;T ] := f (p�
s;t )s� t � T :

8
>>>><

>>>>:

1: � 2 R [0;s]

2: 80 � t � T : ps;t is a probability density function

3: 81 < q < 1 ; 8s � t � T : (t � s)1� 1
q kp�

s;t kL q (R2 ) < 1

4: (p�
s;t )s� t � T satis�es (6.42):

We will prove the following lemma for the classes (R [s;T ])0� s� T .

Lemma 6.6.3. For any 0 � s � T, the following two properties are satis�ed:

Property 1: Let (p�
s;t )s� t � T 2 R [s;T ] and let (q�

s;t )s� t � T a family of probability measures that satis�es
(6.42) and is such thatq�

s;t � Cp�
s;t for t 2 [s; T]. Then, (q�

s;t )s� t � T 2 R [s;T ].

Property 2: Let r � s and (q�
r;t )r � t � T 2 R [r;T ]. Then, the restriction (q�

r;t )s� t � T belongs toR [s;T ].

Proof. Property 1: let s 2 [0; T], (p�
s;t )s� t � T 2 R [s;T ] and let (q�

s;t )s� t � T a family of probability
measures that satis�es (6.42) and is such that q�

s;t � Cp�
s;t for t 2 [s; T]. We should prove that

(q�
s;t )s� t � T 2 R [s;T ]. As for t 2 [s; T]; we haveq�

s;t � p�
s;t then for a test function f 2 CK (R2) one

has

j
Z

f (x)q�
s;t (dx)j � j

Z
f (x)p�

s;t (x)dxj:

Let q > 1 and q0 > 1 such that 1
q + 1

q0 = 1. As ( p�
s;t )s� t � T 2 R [s;T ], one has

j
Z

f (x)q�
s;t (dx)j � k f kL q0(R2 )kp�

s;t kL q (R2 ) �
C

(t � s)1� 1
q

kf kL q0(R2 ) :

By Riesz representation theorem,q�
s;t is absolutely continuous with respect to Lebesgue's measure.

We still denote its probability density by q�
s;t and conclude

kq�
s;t kL q (R2 ) �

C

(t � s)1� 1
q

:

Therefore, (q�
s;t )s� t � T 2 R [s;T ].

Property 2: Let r � s and (q�
r;t )r � t � T 2 R [r;T ]. We should prove that the restriction (q�

r;t )s� t � T

belongs toR [s;T ]. Let t � s. Notice that

q�
r;t = gt � s � (gs� r � � r ) �

2X

i =1

gt � s �
Z s

r
r i gs� u � (b(u; �)q�

r;t ) du �
2X

i =1

Z t

s
r i gt � u � (b(u; �)q�

r;t ) du:

Therefore, for t 2 [s; T] one has

q�
r;t = gt � s � q�

r;s �
2X

i =1

Z t

s
r i gt � u � (b(u; �)q�

r;t ) du:
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In addition, for t 2 [s; T] and r � s, one has

(t � s)1� 1
m kq�

r;t kL m (R2 ) � (t � r )1� 1
m kq�

r;t kL m (R2 ) � C:

Thus the restriction ( q�
r;t )s� t � T belongs toR [s;T ].

We are ready to state the result [76, Lemma 2.12] in our framework:

Lemma 6.6.4. As R := ( R [s;T ])0� s� T satis�es the properties in Lemma 6.6.3, the following
conditions are equivalent:

i) for every s 2 [0; T] and �� 2 R [0;s], there exists at most one� 2 R [s;T ] with � s = �� s.

ii) for every s 2 [0; T], if Q1 and Q2 are the laws of two weak solutions to(6.33) starting from s
with Q1

s = Q2
s, then Q1 = Q2.

To apply the preceding lemma in the sensei ) implies ii ) for s = 0, it remains to check that for a
�xed � 2 R [0;s] the equation (6.42) admits a unique solution in R [s;T ]. In order to do so, repeat
the same as in the proof of Lemma6.6.2 to get the uniqueness of (6.42). As the constants do not
depend ont; T , one gets the same condition on� for the uniqueness. We, thus, conclude the
uniqueness in law for (6.33) holds.



Chapter 7

The two-dimensional case: Particle system

and numerical simulations

The numerical simulations in this chapter were achieved in collaboration with Victor Martin-Lac,
research engineer in team Tosca, Inria from September 2017 to June 2018. They concern a
probabilistic numerical method designed to solve the 2-d-Keller-Segel system.

7.1 Introduction

The regularization method applied in Chapter 6 leads to a following particle approximation of
(6.1): For N 2 N and " > 0,

(
dX i;N;"

t = dW i
t + b"

0(t; X i;N"
t )dt + �

n
1
N

P N
j =1

Rt
0 K "

t � s(X i;N;"
t � X j;N;"

s )ds
o

dt;

X i;N
0 i.i.d. � p0:

(7.1)

where (W i ) i � N are standard 2-dimensional independent Brownian motions. In view of (6.13) and
Theorem 2.2.4, System (7.1) admits a unique strong solution. Then, according to Theorem2.2.6
for a �xed " > 0, the particle system propagates chaos towards (6.12). Thus, the empirical
measure� N;" := 1

N

P N
i =1 � X i;N;" converges in law towards the lawP" of the regularized process in

(6.12) when N ! 1 . Then, in view of Chapter (6), the law P" converges to the law of the non
linear process in (6.1) when " ! 0. Thus, for a large N , a small " and a t > 0, the empirical
measure� N;"

t is a good approximation of the marginal densitypt of X t . Thus, applying the Euler
scheme to (7.1), we can construct a numerical approximation for the function pt .

A natural question concerns the behavior of the particle system (7.1) in the limit " = 0. In other
words, is the following particle system well de�ned?

(
dX i;N

t = dW i
t + b0(t; X i;N

t )dt + �
n

1
N

P N
j =1

Rt
0 K t � s(X i;N;

t � X j;N;
s )ds

o
dt;

X i;N
0 i.i.d. � p0:

(7.2)

At the present, we do not have a mathematical answer to this question. This chapter is devoted to
some theoretical comments and some numerical simulations.

The plan is the following: we �rst see why the techniques used in Chapter 5 do not give results on
(7.2). Then, we analyze a purely probabilistic method to discretize the Keller-Segel system in
d = 2 coming from our probabilistic interpretation. Finally, we compare i t with a
probabilistic-deterministic method recently proposed by Fatkullin [ 28].

117
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7.2 Theoretical insights: Extending the techniques from d = 1

We start from a probability space (
 ; F ; W) and the driftless system
(

d �X i;N
t = dW i

t ; t � T
�X i

0 i.i.d. � p0;
(7.3)

Following the arguments in Chapter 5, we would like to add the drift terms in ( 7.2) using the
Girsanov transformation. To do so, for x 2 C([0; T]; (R2)N ) we denote bybi

t (x) the drift term of
the i {th particle and we aim to get the Novikov condition for the drift vector
B N

t (x) = ( b1
t ; : : : ; bN

t ). The quantity of interest is

E exp
�

�
Z T

0
jB N

t ( �X )j2 dt
�

;

for � > 0. As in Chapter 5, we develop the exponential in a sum

E exp
�

�
Z T

0
jB N

t ( �X )j2 dt
�

= E
1X

k=1

� k

k!

� Z T

0
jB N

t ( �X )j2 dt
� k

: (7.4)

7.2.1 No Khasminskii's lemma procedure

Let us assumeb � 0 and p0 = � 0. For k = 1 in ( 7.4) one of the terms we should control is

A := E
Z T

0

� Z t

0
K 1

t � s(W 1
t � W 2

s ) ds
� 2

dt:

We will often use the following standard formula for an integral of two one-dimensional Gaussian
densities: Z

R

1
p

2�� 2
1

e
� ( x � m 1 ) 2

2� 2
1

1
p

2�� 2
2

e
� ( x � m 2 ) 2

2� 2
2 dx =

1
p

2�
p

� 2
1 + � 2

2

e
� ( m 1 � m 2 ) 2

2( � 2
1 + � 2

2 ) : (7.5)

In addition, we denote by g1d when we want to emphasize that we have the one-dimensional
Gaussian density. Now, notice that

A = 2
Z T

0

Z t

0

Z t

s
E[K 1

t � s(W 1
t � W 2

s )K 1
t � u(W 1

t � W 2
u )] du ds dt

= 2
Z T

0

Z t

0

Z t

s

Z

R2
gt (z)

Z

R2
gs(y)K 1

t � s(z � y)
Z

R2
K 1

t � u(z � x � y)gu� s(x) dx dy dz du ds dt:

Observe that K 1
t � u(z � x � y) = @

@z1
gt � u(z � x � y). Use (7.5) and compute the integral on R2 as a

product of integrals on R. It comes
Z

R2
K 1

t � u(z � x � y)gu� s(x) dx =
@

@z1
gt � s(z � y) = K 1

t � s(z � y):

Thus

A = 2
Z T

0

Z t

0
(t � s)

Z

R2
gt (z)

Z

R2
gs(y)(K 1

t � s(z � y))2 dy dz ds dt:
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Use again the same formula to integrate w.r.t.y2 and z2. It comes
Z

R
g1d

t (z2)
Z

R
g1d

t � s
2

(z2 � y2)g1d
s (y2) dy2 dz2 = C

Z

R
g1d

t (z2)g1d
t + s

2
(z2) dz2 =

C
p

3t + s
:

Thus,

A = C
Z T

0

Z t

0

(t � s)3=2
p

3t + s

Z

R
g1d

t (z1)
Z

R
g1d

s (y1)
(z1 � y1)2

(t � s)4 e� ( z1 � y1 ) 2

t � s dy1 dz1 ds dt:

The change of variablesz1 � y1p
t � s

= y and Fubini's theorem lead to

A = C
Z T

0

Z t

0

(t � s)3=2
p

3t + s

Z

R
g1d

t (z1)
Z

R
g1d

s (z1 � y
p

t � s)
y2(t � s)
(t � s)4 e� y2 p

t � s dy dz1 ds dt

= C
Z T

0

Z t

0

1
p

3t + s(t � s)

Z

R
y2e� y2

Z

R
g1d

t (z1)g1d
s (z1 � y

p
t � s) dz1 dy ds dt

= C
Z T

0

Z t

0

1
p

3t + s(t � s)

Z

R
y2e� y2 1

p
t + s

e� ( t � s) y 2

2( t + s) dy ds dt

= C
Z T

0

Z t

0

1
p

3t + s(t � s)

Z

R
y2e� (3 t + s) y 2

2( t + s) dy ds dt:

The singularity when s ! t is not integrable. We conclude that A = 1 . Thus, it is not possible to
obtain the Novikov's condition if the initial law is a Dirac measure.

Remark 7.2.1. The above computations do not change when adding an initial condition to the
Brownian motion.

7.2.2 Fernique's theorem does not apply

In [32], Friz and Oberhauser show a generalised version of Fernique's theorem which implies the
Novikov condition.

Theorem 7.2.2 (Thm. 2 [32]). Let (E; H; � ) be an abstract Wiener space. Assume
f : E ! R [ f�1 ; 1g is a measurable map andN � E a null set and c some positive constant
such that for any x =2 N one has

� j f (x)j < 1 ,

� 8 h 2 H : jf (x)j � c(jf (x � h)j + � jhjH ):

Then, Z
expf � jf (x)j2g � (dx) < 1 if � <

1
2c2� 2 :

Here � is de�ned as

� := sup
� 2 E ? ;j� jE ? =1

� Z
< �; x > 2 � (dx)

� 1
2

< 1 :
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Let H be the standard Cameron-Martin space. In order to apply their Theorem 2,one should
de�ne for x 2 C([0; T]; (R2)N )

f (x) :=

s Z T

0
jB N

t (x)j2 dt:

Then it should be proved that

� f is �nite W-a.e.

� f is a pseudo norm, i.e. for anyh 2 H

jf (x)j � c(jf (x � h)j + � jhjH );

where jhjH =
q RT

0 (
:
h(s))2 ds.

Both conditions are problematic: we do not know how to prove that f is �nite and the
exponential in the de�nition of the drift disables us to bound jf (x � h + h)j with a linear
combination of jf (x � h)j and jhjH .

7.2.3 Main di�culties

At the present, we are still working on the well-posedness of (7.2). What makes this job di�cult
is, as seen above, the singular nature of the interaction kernel. The increase of dimension lead to
an increase in time singularity which can no longer be tamed by using Brownian techniques. This
makes us doubt that the laws of the particles are actually absolutely continuous with respect to
Wiener's measure, while its one dimensional marginals should be.

Thus, an idea might be to �nd a reference process di�erent than (7.3) and then use the Girsanov
transformation. One choice for the reference system is the system containing only the linear part
of the drift, i.e. (

d �X i;N
t = dW i

t + b0(t; �X i;N
t )dt; t � T

�X i
0 i.i.d. � p0:

(7.6)

Using the regularization techniques from Chapter6, one can prove that System (7.6) is well
de�ned under some condition on the size of� and kr c0kL 2 (R) . In addition, under these conditions

the laws pi
t of �X i;N

t satisfy

81 < q < 1 9 Cq > 0; sup
t � T

t1� 1
q kpi

t kL q (R2 ) � Cq:

Unfortunately, such property is not powerful enough to control the time singularity of the kernel
and will not improve the computations done in Subsection7.2.1. Until present, we have not found
a suitable reference particle system.

A completely di�erent approach could be to start from the regularized system (7.1) and for a �xed
N try to get tightness of (X 1;N;" ; " > 0). Then, take a limit point and prove it satis�es ( 7.2). The
usual criterion of tightness we used in this thesis, leads us to thefollowing quantity:

E

0

@
Z t

s

�
N

NX

j =2

Z u

0
K ";i

u� � (X 1;N;"
u � X j;N;"

� ) d� du

1

A

m

:
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For an m 2 N and m > 1, we could follow the Khasminskii's argument as in Chapter5 to control
this quantity. However, we will need the joint distribution of ( X 1;N;"

u ; X j;N;"
� ) for some u 6= � . The

non-markovian nature of the system prevents us of having a representation for marginal densities
of the laws of the particles. Thus, it is not clear how to get some estimates of the law of the above
written couple that could help us in integrating the singularity. Anot her way to get tightness
might be to follow the arguments of Fournier and Jourdain [31]. It would come done to control
uniformly in " > 0 the following quantity quantity

E
�
N

NX

j =2

Z T

0

�
�
�
�

Z u

0
K ";i

u� � (X 1;N;"
u � X j;N;"

� ) d�

�
�
�
�

2� �

du;

where � 2 (0; 1) is to be chosen. Again, we are not sure how to proceed once the quantityof
interest is identi�ed as we do not have information about the joint law s (X 1;N;"

u ; X j;N;"
� ) for some

u 6= � . Another idea would be to apply a functional Itô's formula in order to control the above
quantity. We have not tried this option yet.

The question of well-posedness of (7.2) without cut-o� remains open for our future work.

7.3 Our probabilistic numerical method

For a �xed time horizon 0 < T < 1 , we choose4 t > 0 and n 2 N such that n4 t = T. In the
sequel, we propose a discrete approximation (�X k4 t )1� k� n := ( �X 1;N

k4 t ; : : : ; �X N;N
k4 t )1� k� n of (7.2).

Then, we use it to construct a discretization (��; �c) of a solution (�; c ) to ( 6.9).

For a given probability measure p0 on R2 we assume (�X i;N
0 )1� i � N are independent identically

distributed according to p0. We suppose the initial concentrationc0 2 H 1(R2) is given and that in
each point x 2 R2 we can computer c0 � gt (x). For 1 � i � N and 1 � k � n, we apply the Euler
scheme on (7.2). One gets

�X i;N
(k+1) 4 t = �X i;N

k4 t + 4 t b0(k4 t; �X i;N
k4 t ) + 4 t

�
N

NX

j =1 ;j 6= i

V i;j
k4 t + ( W i

(k+1) 4 t � W i
k4 t );

where V i;j
k4 t =

Rk4 t
0 K k4 t � s( �X i;N

k4 t � X j;N
s ) ds. One way to discretizeV i;j

k4 t is to use the values
�X j;N

0 ; : : : ; �X j;N
k4 t and Riemann sums. This is, of course, one of many possible choices when

discretizing this integral, but disputable when the integral is singular. Nevertheless, we set

~V i;j
k4 t =

k� 1X

l=0

4 t K (k� l )4 t ( �X i;N
k4 t � �X j;N

l4 t ):

Finally, we obtain the following discrete approximation of the partic le system (7.2):
(

�X i;N
(k+1) 4 t = �X i;N

k4 t + 4 t b0(k4 t; �X i;N
k4 t ) + 4 t �

N

P N
j =1 ;j 6= i

~V i;j
k4 t + ( W i

(k+1) 4 t � W i
k4 t )

�X i;N
0 i. i. d. � p0; ~V i;j

k4 t =
P k� 1

l=0 4 t K (k� l )4 t ( �X i;N
k4 t � �X j;N

l4 t )
(7.7)

Notice that each �X i;N
k4 t is a two dimensional vector. The system (7.7) can be simulated easily.

First, one obtains N independent realizations of the distribution p0: x1
0; : : : ; xN

0 and initializes
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