Skip to Main content Skip to Navigation

Design, synthesis and single molecule force spectroscopy of biosynthetic polypeptides

Abstract : Proteins fold by the initial, preferential folding of secondarystructures 1, 2, however surprisingly little is known about the basic mechanicalproperties of isolated α-helices and β-sheets from an experimental standpoint.Previous investigations into studying the generic unfolding behaviour of α-heliceshave proved inconclusive 3-5, and to our knowledge the study of an isolated,intramolecular β-sheet is unprecedented.Bioinspired PEG114-b-poly(L-glutamic acid)85-(2-pyridyl disulphide),PEG114-b-poly(L-lysine)134-(2-pyridyl disulphide) and PEG114-b-poly(Llysine)134–b-PEG114 were designed, synthesized and utilized as model systems toprobe the mechanical properties of α-helix and β-sheet secondary motifs. Theobtained results were shown to be in good agreement with theoretical resultsobtained by utilizing a AGAGIR-based statistical mechanical model 6. Thedifference in unravelling force comparing the helices of poly(L-Lysine) ≈30 pNand poly(L-glutamic acid) ≈20 pN diblock copolymers was attributed to thediffering hydrophobicity of the side chains. The greater hydrophobicity of thelysine allowed greater interactions between the side chains and sterically hinderedrandom helix-coil fluctuations, which lead to a superior α-helix stability. Whenexperiments were conducted in conditions promoting the solubility of the lysineside chains, the interactions decreased to a force of ≈20 pN, similar to the force ofinteractions observed for the poly(L-glutamic acid). We infer that a minimum of≈20 pN is needed to rupture the hydrogen bonding maintaining the α-helix as thisforce was obtained in conditions where the side chain interactions wereminimized.The presence of constant force plateaus and corresponding inflectionsdemonstrates a length independent unfolding force, which supports a turn-by-turnunfolding mechanism for the α-helix.In addition, the greater hydrophobicity of the side chains was suggestedto not only stabilize the α-helix structure, but also to inhibit the formation of anintermediate metastable β-hairpin-like structure when entropic forces dominate.Preliminary studies were also conducted on the PEG114-b-poly(LLysine)134-(2-pyridyl disulphide) system after a α-β transition had been inducedby heat in basic conditions, where an inflection at a much higher force of ≈ 70 pNwas obtained suggesting the formation of a β-sheet interaction.A bottom-up, investigative strategy has thus been successfully proposeddemonstrating the potential of utilizing such artificial systems to simplify andexemplify real biological systems. The comprehension of these simpler isolatedmodels will no doubt aid the understanding of more complex systems.
Document type :
Complete list of metadatas

Cited literature [220 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, November 23, 2018 - 1:01:12 AM
Last modification on : Thursday, November 5, 2020 - 3:18:47 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01931762, version 1



Marie Asano. Design, synthesis and single molecule force spectroscopy of biosynthetic polypeptides. Polymers. Université de Bordeaux; Université de Liège, 2016. English. ⟨NNT : 2016BORD0163⟩. ⟨tel-01931762⟩



Record views


Files downloads