?. ?. ????????, ?. ?. ?????????, ?. ?. ????????, and ?. ???????,

, ???????????? ????????????????? ??????? ??????? ????????????? ? ???????? ?????????. // ????????????.-1978.-?. 14.-? 6, pp.907-910

K. A. Stoerzinger, M. Risch, B. Han, and Y. Shao-horn, Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. // ACS Catal, pp.6021-6031

P. Zoltowski and D. M. Drazic, Vorkapic L. Carbon-Air Electrode with

, Regenerative Short Time Overload Capacity: Part 1. Effect of Manganese Dioxide

/. , J. Appl. Electrochem, pp.271-283, 1973.

J. P. Brenet, Electrochemical Behaviour of Metallic Oxides. // J. Power Sources.-1979, pp.183-190

H. N. Cong, P. Chartier, and J. Brenet, Reduction Electrocatalytique de I'oxygene

, Sur Electrodes Solides D'oxydes Mixtes Contenant des Ions Manganese. II. Role du Couple Mn 3+-Mn 4+ en Sites Octaédriques. // J. Applied Electrochem.-1977, pp.395-406

L. Q. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba et al.,

, Mechanistic Study of the Reduction of Oxygen in Air Electrode with Manganese Oxides as Electrocatalysts. // Electrochim. Acta.-2003.-V. 48.-? 8, pp.1015-1021

W. G. Hardin, J. T. Mefford, D. A. Slanac, B. B. Patel, X. Wang et al., Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions

. Mater,

F. Cheng, Y. Su, J. Liang, Z. Tao, and J. Chen, MnO 2-based nanostructures as catalysts for electrochemical oxygen, Chem. Mater, vol.2010, issue.22

A. C. Garcia, A. D. Herrera, E. A. Ticianelli, M. Chatenet, and C. Poinsignon, Evaluation of several carbon-supported nanostructured Ni-doped manganese oxide Materials for the Electrochemical Reduction of Oxygen, J. Electrochem. Soc, pp.290-296, 2011.

Q. W. Tang, L. H. Jiang, J. Liu, S. L. Wang, and G. Sun, Effect of Surface Manganese Valence of Manganese Oxides on the Activity of the Oxygen Reduction Reaction in Alkaline Media. // ACS Catalys, pp.457-463, 2014.

F. H. Lima, M. L. Calegaro, and E. A. Ticianelli, Electrocatalytic Activity of Manganese Oxides Prepared by Thermal Decomposition for Oxygen Reduction. // Electrochim. Acta.-2007.-V. 52.-? 11, pp.3732-3738

I. Roche, E. Chainet, M. Chatenet, and J. Vondrak, Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism, J. Phys
URL : https://hal.archives-ouvertes.fr/hal-00333889

M. Chatenet, M. Aurousseau, and R. Durand, Electrochemical Measurement of the Oxygen Diffusivity and Solubility in Concentrated Alkaline Media on Rotation Ring-Disk and Disk Electrodes-Application to Industrial Chlorine-Soda Electrolyte, Electrochim. Acta, pp.2823-2827, 2000.

R. B. Valim, M. C. Santos, M. R. Lanza, S. A. Machado, and F. H. Lima,

M. L. Calegaro, Oxygen Reduction Reaction Catalyzed by Epsilon-MnO 2 : Influence of the Crystalline Structure on the Reaction Mechanism, pp.423-431

M. Inaba, H. Yamada, J. Tokunaga, and A. Tasaka, Effect of Agglomeration of Pt/C Catalyst on Hydrogen Peroxide Formation. // Electrochem. Solid State Letters, pp.474-476

A. Bonakdarpour, M. Lefevre, R. Yang, F. Jaouen, T. Dahn et al.,

J. R. Dahn, Impact of loading in RRDE Experiments on Fe-N-C Catalysts: Two-or Four-Electron Oxygen Reduction. // Electrochem. Solid State Lett
URL : https://hal.archives-ouvertes.fr/hal-00800304

T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi et al.,

Y. Iriyama, T. Abe, and Z. Ogumi, Durability of Perfluorinated Ionomer Membrane 181

, J. Power Sources, pp.1222-1228

?. ?. ?????????, ?. ?. ???????, and ?. ???????????, ??????????? ???????? ???????? ? ???????. // ?.: ?????.-1987.-248 c

H. S. Wroblowa, . Yen-chi-pan, and G. Razumney, Electroreduction of Oxygen, J. Electroanal. Chem, pp.195-201

R. R. Adzic and J. Wang, Configuration and Site of O 2 Adsorption on the Pt

, 1998.-V. 102.-? 45, J. Phys. Chem. B, pp.8988-8993

N. M. Markovic and P. Ross, Surface Science Studies of Model Fuel Cell Electrocatalysts. // Surface Sci, pp.121-229

A. Damjanovic, M. A. Genshaw, J. Bockris, and . O'm, The Role of Hydrogen Peroxide in Oxygen Reduction at Platinum in H 2 SO 4 Solution

D. B. Sepa, M. V. Vojnovik, and A. Damjanovic, Different Views Regarding the Kinetics and Mechanisms of Oxygen Reduction at Pt and Pd Electrodes. // Electrochim. Acta.-1987.-V. 32.-? 1, pp.129-134

V. Jalan and E. J. Taylor, Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid, J. Electrochem. Soc, pp.2299-2302

P. S. Ruvinskiy, A. Bonnefont, and E. R. Savinova, Further Insight into the Oxygen Reduction Reaction on Pt Nanoparticles Supported on Spatially Structured Catalytic Layers, pp.123-133, 2011.

P. S. Ruvinskiy, A. Bonnefont, and E. R. Savinova, Using Ordered Carbon Nanomaterials for Shedding Light on the Mechanism of the Cathodic Oxygen Reduction Reaction. // Langmuir.-2011, pp.9018-9027

?. ?. ????????? and ?. ????????, , pp.676-695

E. Yeager, Dioxygen Electrocatalysis-Mechanisms in Relation to Catalyst Structure, // J. Mol. Catal

S. Markovic and R. Stamenkovic, Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces. // Fuel Cells.-2001.-V. 1.-? 2, pp.105-116

N. M. Markovic, H. A. Gasteiger, and P. Ross, Oxygen Reduction on Platinum low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring disk Pt(hkl) Studies. // J. Physical Chemistry.-1996.-V. 100.-? 16, pp.6715-6721

T. J. Schmidt, V. Stamenkovic, P. N. Ross, and N. Markovic, Temperature Dependent Surface Electrochemistry on Pt Single Crystals in Alkaline Electrolyte

/. , Phys. Chem. Chem. Phys, pp.400-406

C. Paliteiro and L. Batista, Electroreduction of Dioxygen on Plycrystalline Platinum in Alkaline Solution. I. Platinum Surface Pretreated by Potential Cycling Between 40 and 1450 mV, J. Electrochem. Soc, pp.3436-3444, 2000.

C. Paliteiro and E. Correia, Electroreduction of Dioxygen on Plycrystalline Platinum in Alkaline Solution. II. Platinum Surface Modified by Hydrogen Evolution, J. Electrochem. Soc, pp.3445-3455

D. B. Sepa, M. V. Vojnovic, and D. A. Damjanovic, Kinetics and Mechanism of O 2

, Reduction at Pt in Alkaline Solutions. // Ele?trochim. Acta.-1980.-V. 25.-? 11, pp.1491-1496

?. ?. ?????????, ???????????? ?????????? ??????????. // ?.: ?????.1984.-253 c

J. Zhu, A. Holmen, and D. Chen, Carbon Nanomaterials in Catalysis: Proton Affinity, Chemical and Electronic Properties, and Their Catalytic Consequences, pp.378-401

M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, I. Kink et al.,

, Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene in Alkaline Media, Appl. Catal. B: Environ, pp.369-376, 2014.

F. Pan, J. Jin, X. Fu, Q. Liu, and J. Zhang, Advanced Oxygen Reduction Electrocatalyst Based on Nitrogen-Doped Graphene Derived from Edible Sugar 183

, Applied Materials and Interfaces.-2013.-V. 5.-? 21, pp.11108-11114

T. Poux, F. S. Napolskiy, T. Dintzer, G. Kéranguéven, S. Istomin et al., Dual Role of Carbon in the Catalytic Layers of

, Perovskite/Carbon Composites for the Electrocatalytic Oxygen Reduction Reaction. // Catal. Today.-2012.-V. 189.-? 1, pp.83-92

P. Serp and J. L. Figueiredo, Carbon Materials for Catalysis, vol.579
URL : https://hal.archives-ouvertes.fr/hal-02042511

K. Kinoshita, Carbon-Electrochemical and Physicochemical Properties, 1988.

W. H. Bo, X. Luhana, C. Guo, and L. , Nitrogen Doped Large Mesoporous Carbon for Oxygen Reduction Electrocatalyst Using DNA as Carbon and Nitrogen Precursor, // Electrochem. Commun, pp.5-8, 2012.

Y. Liu, K. Li, B. Ge, L. Pu, and Z. Liu, Influence of Microporous and Mesoporous in Activated Carbon air Cathode Catalyston Oxygen Reaction Reaction in

, Microbioal Fuel Cell. // Electrochim. Acta, pp.110-118, 2016.

M. Inagaki, H. Konno, and O. Tanaike, Carbon materials for electrochemical capacitors

P. Simon and Y. Gogotsi, Capacitive Energy Storage in Nanostructured Carbon Electrolyte Systems, Acc. Chem. Res, pp.1094-1103

K. Tammeveski, K. Kontturi, R. J. Nichols, R. J. Potter, and D. J. Schiffrin, Surface Redox Catalysis for O 2 Reduction on Quinone-Modified Glassy Carbon Electrodes, J. Electroanal. Chem

Y. Sang, A. Fu, H. Li, J. Zhang, Z. Li et al., Experimental and Theoretical Studies on the Effect of Functional Groups on Carbon Nanotubes to Its Oxygen Reduction Reaction Activity. // Colloids and Surfaces A, pp.476-484

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev, pp.2646-2687, 2008.

M. Gara and R. G. Compton, Activity of Carbon Electrodes towards Oxygen Reduction in Acid: a Comparative Study, New J. Chem, pp.2647-2652, 2011.

W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng et al., The Edge-and Basal-Plane-Specific Electrochemistry of a Single-Layer Graphene Sheet, p.2248

G. Kéranguéven, J. Faye, S. Royer, and S. N. Pronkin, Electrochemical Properties and Capacitance of Hausmannite Mn 3 O 4-Carbon Composite Synthesized by in situ Autocombustion Method, pp.755-764, 2016.

Y. Gorlin, B. Lassalle-kaiser, J. Benck, S. Gui, S. Webb et al.,

J. Jaramillo, Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction, Situ X-ray

M. Ubeda, H. Mishima, and B. Demishima, The Electrochemical Response of

, Manganese Hydroxide Oxide-Films in Slightly Alkaline-Solutions-I. The Redox Couple. // Electrochim. Acta.-1991.-V. 36.-? 5-6, pp.1013-1018

S. I. Cordoba-de-torresi and A. Gorenstein, Electrochromic Behaviour of

, Manganese Dioxide Electrodes in Slightly Alkaline Solutions

B. M. Ferreira, M. E. Melo-jorge, M. E. Lopes, M. R. Nunes, and M. I. Da-silva-pereir, Properties of Ca 1?x Ho x MnO 3 Perovskite-Type Electrodes, pp.5902-5908, 2009.

A. C. Queiroz and F. H. Lima, Electrocatalytic Activity and Stability of Co and Mn-Based Oxides for the Oxygen Reduction Reaction in Alkaline Electrolyte, J. Electroanal. Chem, pp.142-150, 2013.

J. Feng, Y. Liang, H. Wang, Y. Li, B. Zhang et al., Engineering Manganese Oxide/Nanocarbon Hybrid Materials for Oxygen Reduction Electrocatalysis. // Nano Res

Y. Gorlin, C. Chung, D. Nordlund, B. M. Clemens, T. F. Jaramillo et al., , vol.3

, Supported on Glassy Carbon: an Active Non-Precious Metal Catalyst for the Oxygen Reduction Reaction // ACS Catal.-2012, p.12

?. ,

S. K. Bickarolla, F. Yu, W. Zhou, W. Zhou, P. Joseph et al.,

, Nitrogenated Graphene Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media, J. Mater. Chem. A, pp.14493-14501

W. Sun, A. Hsu, and R. Chen, Carbon-Supported Tetragonal MnOOH Catalysts for Oxygen Reduction Reaction in Alkaline Media, J. Power Sources, 2011.

?. , , pp.627-635

T. Oshaka, L. Mao, K. Arihara, and T. Sotomura, Bifunctional Catalytic Activity of Manganese Oxide Toward O 2 Reduction: Novel Insight into the Mechanism of Alkaline Air Electrode, Electrochem. Commun, 2004.

N. Ohno, Y. Akeboshi, M. Saito, J. Kuwano, H. Shiroishi et al., Oxygen Reduction Electrode Properties of Manganese Oxide Nanosheet-Based Materials, pp.903-911

C. Shi, G. Zang, Z. Zhang, G. Sheng, Y. Huang et al., Synthesis of Layered MnO 2 Nanosheets for Enhanced Oxygen Reduction Reaction Catalytic Activity, pp.239-243

Y. Gorlin and T. F. Jaramillo, A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation, // J. Amer. Chem. Soc

Y. Gorlin and T. F. Jaramillo, Investigation of surface oxidation processes on manganese oxide electrocatalysts using electrochemical methods and ex situ x-ray photoelectron spectroscopy, J. Electrochem. Soc

K. L. Pickmarn, S. W. Park, Y. Gorlin, H. Lee, T. F. Jaramillo et al.,

, Active MnOx Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. // Adv. Energy Mater.-2012.-V. 2.-? 10, pp.1269-1277

W. Wang, J. Geng, L. Kuai, M. Li, and B. Geng, Porous Mn 2 O 3 : A Low-Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with

G. Kéranguéven, S. Royer, and E. Savinova, Synthesis of Efficient VulcanLaMnO 3 Perovskite Nanocomposite for the Oxygen Reduction Reaction

. Electro?hem and . Comm, , pp.28-31, 2015.

S. Ardizzone, G. Fregonara, and S. Trasatti, Inner" and "Outer" Active Surface of
DOI : 10.1016/0013-4686(90)85068-x

, RuO 2 Electrodes. // Electrochim. Acta.-1990.-V. 35.-?. 1, pp.263-267

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough et al., Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries. // Nature Chem, pp.546-550, 2011.
DOI : 10.1038/nchem.1069

F. Cheng, J. Shen, W. Ji, Z. Tao, and J. Chen, Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction// ACS Appl. Mater.2009.-V.1.-? 2, pp.460-466

W. Xiao, D. Wang, and X. W. Lou, Shape-Controlled Synthesis of MnO 2

, Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction

, J. Phys. Chem. C, pp.1694-1700

J. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao et al., Ketjenblack Carbon Supported Amorphous Manganese Oxides Nanowires as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Solutions. // Nano letters, vol.11, pp.5362-5366, 2011.

L. Jiang, Q. Tang, J. Liu, and G. Sun, Elucidation of Oxygen Reduction Reaction Pathway. // Chinese J. Catal.-2015.-V. 36.-? 2, pp.175-180

Z. Yang, X. Zhou, H. Nie, Z. Yao, and S. Huang, Facile Construction of Manganese Oxide Doped Carbon Nanotube Catalysts with High Activity for Oxygen Reduction Reaction and Investigations into the Origin of Their Activity Enhancement, ACS Appl. Mater. Inter, pp.2601-2606, 2011.

E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Koetz et al., Composite Electrode Boosts the Activity of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-delta Perovskite and Carbon toward Oxygen Reduction in Alkaline Media. // ACS Catal, pp.1061-1070, 2014.

S. Malkhandi, P. Trinh, A. K. Manohar, K. C. Jayachandrababu, and A. Kindler,

G. K. Prakash and S. R. Narayanan, Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells, 2013.-V. 160.-? 9, pp.943-952

C. Grimmer, M. Grandi, R. Zacharias, S. Weinberger, A. Schenk et al., Carbon Supported Nanocrystalline Manganese Oxide: Surpassing Platinum as Oxygen Reduction Catalyst in Direct Borohydride Fuel Cells, J. Electrochem. Soc
DOI : 10.1149/2.1091608jes

URL : http://jes.ecsdl.org/content/163/8/F885.full.pdf

F. ,

T. Li, J. Liu, X. Jin, F. Wang, and Y. Song, Composition-Dependent ElectroCatalytic Activities of Covalent Carbon-LaMnO3 Hybrids as Synergistic Catalysts for Oxygen Reduction Reaction, pp.115-126, 2016.

X. Liu, I. S. Amiinu, S. Liu, K. Cheng, and S. Mu, Transition Metal/Nitrogen DualDoped Mesoporous Graphene-Like Carbon Nanosheets for the Oxygen Reduction and Evolution Reactions, pp.13311-13320, 2016.
DOI : 10.1039/c6nr03247h

A. Pendashteh, J. Palma, M. Anderson, and R. Marcilla, NiCoMnO4 nanoparticles on N-doped Graphene: Highly Efficient Bifunctional Electrocatalyst for Oxygen Reduction/Evolution Reactions. //Appl. Catalys. B: Environmental, pp.241-252
DOI : 10.1016/j.apcatb.2016.08.044

Y. Wang, X. Ding, F. Wang, J. Li, S. Song et al., Nanoconfined NitrogenDoped Carbon-Coated Mno Nanoparticles in Graphene Enabling High 188
DOI : 10.1039/c5sc04668h

URL : https://pubs.rsc.org/en/content/articlepdf/2016/sc/c5sc04668h

, Performance for Lithium-Ion Batteries and Oxygen Reduction Reaction

. Sci, , pp.4284-4290

Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang et al., Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts, J. Amer. Chem. Soc, pp.3517-3523, 2012.
DOI : 10.1021/ja210924t

G. Kéranguéven, C. Ulhaq-bouillet, V. Papaefthimiou, S. Royer, and E. Savinova,

, Perovskite-Carbon Composites Synthesized through in situ Autocombustion For The Oxygen Reduction Reaction: the Carbon Effect, pp.148-156

K. Nishio, S. Molla, T. Okugaki, S. Nakanishi, I. Nitta et al., Effects of Carbon on Oxygen Reduction and Evolution Reactions of Gasdiffusion air Electrodes Based on Perovskite-Type Oxides, J. Power Sources, pp.236-240, 2015.

X. Li, W. Qu, J. Zhang, and H. Wang, Electrocatalytic activities of La 0.6 Ca 0, vol.4

, 6 Ca 0.4 CoO 3-Carbon Composites toward the Oxygen Reduction Reaction in Concentrated Alkaline Electrolytes, J. Electrochem. Soc, pp.597-604

T. Poux, A. Bonnefont, G. Kéranguéven, G. A. Tsirlina, and E. Savinova, Electrocatalytic Oxygen Reduction Reaction on Perovskite Oxides: Series versus Direct Pathway, Chem. Phys. Chem
DOI : 10.1002/cphc.201402022

K. Wu, Q. Zeng, B. Zhang, X. Leng, D. Su et al.,

D. Thiele and A. Zuttel, Electrochemical Characterisation of air Electrodes Based on La 0.6 Sr 0.4 CoO 3 and Carbon Nanotubes. // J. Power Sources.-2008.-V. 183.? 2, pp.590-594

E. Fabbri, M. Nachtegaal, X. Cheng, and T. J. Schmidt, Superior Bifunctional Electrocatalytic Activity of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-? Carbon Composite Electrodes: Insight into the Local Electronic Structure. // Adv. Energy Mater

H. Wang and H. Dai, Strongly Coupled Inorganic-Nano-Carbon Hybrid Materials for Energy StoragE, Chem. Soc. Rev, pp.3088-3113
DOI : 10.1039/c2cs35307e

Y. Xu, A. Tsou, Y. Fu, J. Wang, J. Tian et al., Carbon-Coated

, Perovskite BaMnO 3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution. // Electrochim. Acta.-2015, pp.551-556

Q. Wu, L. Jiang, Q. Tang, J. Liu, S. Wang et al., Activity and stability of the Ni(OH) 2-MnO x /C Composite for Oxygen Reduction Reaction in Alkaline Solution, Electrochim. Acta, pp.314-322, 2013.

I. Roche, E. Chaînet, M. Chatenet, and J. Vondrák, Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism, J. Phys
URL : https://hal.archives-ouvertes.fr/hal-00333889

. Chem, , pp.1434-1443, 2007.

F. Cheng, Y. Su, J. Liang, Z. Tao, and J. Chen, MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media
DOI : 10.1021/cm901698s

J. Sunarso, A. J. Torriero, W. Zhou, P. C. Howlett, and M. Forsyth, Oxygen reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: a Thin-Film Rotating Ring-Disk Electrode Study, J. Phys. Chem. C, pp.5827-5834, 2012.

T. Konishi, H. Kawai, M. Saito, J. Kuwano, H. Shiroishi et al., Electrocatalytic Activity of Pyrochlores Ln 2 M 2 O 7-delta (Ln=lanthanoids) for Oxygen Reduction Reaction, pp.896-902, 2009.
DOI : 10.1007/s11244-009-9223-3

F. Jaouen, O 2 Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells
URL : https://hal.archives-ouvertes.fr/hal-00800317

, J. Phys. Chem. C, pp.15433-15443

C. M. Lousada, A. J. Johansson, T. Brinck, and M. Jonsson, , vol.2

, J. Phys. Chem. C, pp.9533-9543

S. Lin and M. D. Gurol, Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications. // Environ. Sci. Technol.1998.-V. 32.-? 10, pp.1417-1423

R. Venkatachalapathy, G. P. Davila, and J. Prakash, Catalytic Decomposition of Hydrogen Peroxide in Alkaline Solutions. // Electrochem. Commun.-1999

?. , , pp.614-617

D. Fu, P. G. Keech, D. W. Shoesmith, and J. C. Wren, An electrochemical study of H 2 O 2 Decomposition on Single-Phase Gamma-FeOOH Films

. Acta, , pp.3787-3796, 2010.

F. H. Lima, M. L. Calegaro, and E. A. Ticianelli, Investigations of the Catalytic Properties of Manganese Oxides for the Oxygen Reduction Reaction in Alkaline Media, J. Electroanal. Chem, 2006.

Y. L. Cao, H. X. Yang, X. Ai, and L. Xiao, The mechanism of oxygen reduction on MnO 2-Catalyzed Air Cathode in Alkaline Solution, J. Electroanal. Chem, pp.127-134, 2003.

P. Ruetschi and P. Delahay, Influence of Electrode Material on Oxygen Overvoltage-a Theoretical Analysis, J. Chem. Phys, pp.556-560, 1955.

J. Bockris, . O'm, and T. Otagawa, Mechanism of Oxygen Evolution On Perovskites, J. Phys. Chem, vol.87, pp.2960-2971, 1983.

J. B. Goodenough and B. Cushing, Handbook of Fuel Cells-Fundamentals

/. Chichester and . England, , pp.520-533

W. T. Hong, T. Wesley, . Hong, M. Risch, K. A. Stoerzinger et al., Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis, // Energy Environ. Sci, pp.1404-1427, 2015.

A. C. Tseung and S. Jasem, Oxygen Evolution on Semiconducting Oxides, J. Electrochim. Acta, pp.31-34

J. Deren, J. Haber, A. Podgorecka, and J. Burzyk, Physicochemical and Catalytic Properties of the System Chromium Oxides-Oxygen-Water. // J. Catal.-1963, pp.161-175

T. Minami, P. Ravindranathan, and K. Patil, Catalytic Decomposition of

, Hydrogen Peroxide on Fine Particle Ferrites and Cobaltites. // Proc. Indian Acad

. Sci, , pp.209-215, 1987.

A. Ariafard, H. R. Aghabozorg, and F. Salehirad, Hydrogen Peroxide Decomposition over La 0.9 Sr 0.1 Ni 1-x Cr x O 3 Perovskites, Catal. Commun, pp.561-566, 2003.

H. Falcon and R. E. Carbonio, Study of the Heterogeneous Decomposition of Hydrogen Peroxide: Its Application to the Development of Catalysts for CarbonBased Oxygen Cathodes, J. Electroanal. Chem, pp.69-83

H. Falcon, R. E. Carbonio, and J. L. Fierro, Correlation of Oxidation States in

, LaFe x Ni 1-x O 3+delta Oxides with Catalytic Activity for H 2 O 2 Decomposition, J. Catal, pp.264-272

S. B. Kanungo, K. M. Parida, and B. R. Sant, Studies on MnO 2-III

F. C. Moura, M. H. Araujo, J. D. Ardisson, W. A. Macedo, A. S. Albuquerque et al., Investigation of the Solid State Reaction of LaMnO 3 with Fe and Its Effect on the Catalytic Reactions with H 2 O 2, J. Brazil. Chem. Soc

Y. N. Lee, R. M. Lago, J. L. Fierro, and J. Gonzalez, Hydrogen Peroxide Decomposition over Ln 1-x A x MnO 3 (Ln=La or Nd and A=K or Sr) Perovskites. // Applied Catalysis A: General, vol.1, pp.245-256

J. S. Yang and J. J. Xu, Nanoporous Amorphous Manganese Oxide as Electrocatalyst for Oxygen Reduction in Alkaline Solutions

. Commun, , pp.306-311

, ?????? ????????????? ?????. ???????????? ???????????. / (??? ???

?. ?. ????????, ????.??.-2001.-463 ?

A. Douy, Polyacrilamide gel: an Efficient Tool for Easy Synthesis of

, Multicomponent Oxide Precursors of Ceramics and Glasses, Int. J. Inorg. Mater, pp.699-707, 2001.

S. Diodati, L. Nodari, M. M. Natile, U. Russo, E. Tondello et al.,

S. Gross, Highly Crystalline Strontium Ferrites SrFeO 3-delta : an Easy and Effective Wet-Chemistry Synthesis. // Dalton Trans

S. H. Ju, D. Y. Kim, H. Y. Koo, S. K. Hong, E. B. Jo et al., The Characteristics of Nano-Sized Manganese Oxide Particles Prepared by Spray Pyrolysis. // J. Alloys Comp

X. Cao, N. Wang, L. Wang, C. Mo, Y. Xu et al., A Novel NonEnzymatic Hydrogen Peroxide Biosensor Based on Ultralong Manganite MnOOH Nanowires, pp.730-734

V. M. Crisostomo, J. K. Ngala, A. S. Dobley, A. Morein, C. Chen et al.,

X. Shen and S. L. Suib, New Synthetic Route, Characterization, and Electrocatalytic Activity of Nanosized Manganite, Chem. Mater, pp.1832-1839

T. Ranganathan, B. E. Mackean, and A. Muan, The System Manganese OxideAlumina in Air, J. Amer. Ceram. Soc, pp.279-281

?. ?. ???????????, ?. ?. ??????????, and ?. ?. ????????, ???????????? ?????????????? ??????? ???????? ? ??????? ?? ???????. // ???. ?? ????, ?????. ???.-1966, pp.275-280

A. Muan and S. Somiya, The System Iron Oxide-Manganese Oxide in Air

, Amer. J. Sci, pp.230-240

T. V. Reshetenko, L. B. Avdeeva, Z. R. Ismagilov, and V. V. Pushkarev,

S. V. Cherepanova, A. L. Chuvilin, and V. A. Likholobov, // Catalytic Filamentous Carbon. Structural and Textural Properties. // Carbon, pp.1605-1615

V. L. Kuznetsov, K. V. Elumeeva, A. V. Ishchenko, N. Beylina, and . Yu,

A. A. Stepashkin, S. I. Moseenkov, L. M. Plyasova, I. Molina, . Yu et al.,

O. B. Anikeeva and E. N. Tkachev, Multi-Walled Carbon Nanotubes with Ppm Level of Impurities. // Phys. Status Solidi B.-2010.-V. 247.-? 11-12, pp.2695-2699

O. V. Cherstiouk, V. L. Kuznetsov, A. N. Simonov, I. N. Mazov, and . Elumeeva,

K. V. Moseva and N. S. , Electrocorrosion Properties of Multiwall Carbon Nanotubes, Phys. Status Solidi B, pp.2738-2742

V. F. Surovikin, G. V. Plaksin, V. A. Semikolenov, V. A. Likholobov, and I. J. Tiunova, Porous Carbonaceous Material, vol.4, pp.649-1990

K. Fukuta, Electrolyte Material for AMFCs and AMFC performance. // AMFC Workshop, 2011.

H. Tan, J. Verbeeck, A. Abakumov, and T. Van, Oxidation State and Chemical shift Investigation in Transition Metal Oxides by EELS. // Ultramicroscopy, pp.24-33

A. J. Bard and L. R. Faulkner, Electrochemical Methods-Fundamentals and Applications, vol.850, p.p

Y. Shih, G. V. Sagar, and S. D. Lin, Effect of Electrode Pt Loading on the Oxygen Reduction Reaction Evaluated by Rotating Disk Electrode and Its Implication on the Reaction Kinetics, J. Phys. Chem. C, pp.123-130, 2008.

F. Jaouen and J. Dodelet, O 2 Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part I: Experimental Rates of O 2 Electroreduction, H 2 O 2 Electroreduction, and H 2 O 2 Disproportionation, J. Physic. Chem. C, pp.15422-15432, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00800317

V. G. Prabhu, L. R. Zarapkar, and R. G. Dhaneshwar, Electrochemical Studies of Hydrogen Peroxide at a Platinum Disc Electrode. // Electrochim. Acta.-1981, pp.725-729

I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, and P. U. Biedermann,

A. A. Auer and J. J. Mayrhofer, Hydrogen Peroxide Electrochemistry on Platinum: towards Understanding the Oxygen Reduction Reaction Mechanism

, Chem. Chem. Phys, vol.2012, pp.7384-7391

A. M. Gomez-marin, K. J. Schouten, M. T. Koper, and J. Feliu, Interaction of Hydrogen Peroxide with a Pt(111) Electrode. // Electrochem. Commun, pp.153-156

S. Strbac, The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode. // Electrochim. Acta.-2011, pp.1597-1604

G. Wang, Y. Bao, Y. Tian, J. Xia, and D. Cao, Electrocatalytic Activity of
URL : https://hal.archives-ouvertes.fr/hal-01409977

, Perovskite La 1-x Sr x MnO 3 towards Hydrogen Peroxide Reduction in Alkaline Medium, J. Power Sources, pp.6463-6467, 2010.

T. Poux, A. Bonnefont, A. Ryabova, G. Kéranguéven, and G. A. Tsirlina,

E. R. Savinova, Electrocatalysis of Hydrogen Peroxide Reactions on Perovskite Oxides: Experiment versus Kinetic Modeling, Phys. Chem. Chem. Phys, pp.13595-13600

A. S. Ryabova, F. S. Napolskiy, T. Poux, S. Y. Istomin, A. Bonnefont et al.,

. Mn, Mn(III) Red-Ox Transition on the Electrocatalytic Activity of Manganese Oxides in the Oxygen Reduction Reaction // Electrochim. Acta. 2016-V. 187, pp.161-172

A. S. Ryabova, A. Bonnefont, P. Zagrebin, T. Poux, R. P. Sena et al.,

E. R. Savinova, Study of Hydrogen Peroxide Reactions on Manganese Oxides as a Tool to Decode the Oxygen Reduction Reaction Mechanism, pp.1667-1677, 2016.

J. Masa, K. Ozoemena, W. Schuhmann, and J. Zagal, Oxygen Reduction Reaction Using N4-Metallomacrocyclic Catalysts: Fundamentals on Rational Catalyst Design, pp.761-784

Y. Wang and H. P. Cheng, Oxygen Reduction Activity on Perovskite Oxide Surfaces: a Comparative First-Principles Study of LaMnO 3, J. Phys. Chem. C, pp.2106-2112, 2013.

A. J. Groszek, Graphitic and Polar Surface Sites in Carbonaceous Solids. // Carbon.-1987.-V. 25.-? 6, pp.717-722

P. A. Simonov, S. V. Filimonova, G. N. Kyukova, E. M. Moroz, V. A. Likholobov et al., 129Xe NMR Study of Carbonaceous Materials: Effects of Surface Chemistry and Nanotexture. // Carbon.-1999, pp.591-600

S. R. Kelemen, H. Freund, and C. A. Mims, The Dependence of H 2 O Adsorption and Reaction on the Structure of the Carbon Substrate, J. Vac. Sci. Technol, issue.2, pp.987-990, 1984.

S. R. Kelemen and H. Freund, O 2 Oxidation Studies of The Edge Surface of

, Graphite. // Carbon.-1985.-V. 23.-? 6, pp.619-625

S. G. Chen and R. T. Yang, Titration for Basal Plane versus Edge Plane Surface on Graphitic Carbons by Adsorption. // Langmuir.-1993.-V.9, p.11

R. J. Rice and R. L. Mccreery, Quantitative Relationship between Electron Transfer Rate and Surface Microstructure of Laser-Modified Graphite Electrodes

/. , Anal. Chem, pp.1637-1641

L. R. Radovic, Active Sites in Graphene and the Mechanism of CO 2

, J. Amer. Chem. Soc, pp.17166-17175

P. S. Ruvinskiy, A. Bonnefont, and E. Savinova, 3D-Ordered Layers of Vertically Aligned Carbon Nanofilaments as a Model Approach to Study Electrocatalysis on Nanomaterials, pp.174-186

A. S. Ryabova, A. Bonnefont, P. A. Simonov, T. Dintzer, and C. Ulhaq-bouillet,

Y. G. Bogdanova, G. A. Tsirlina, and E. R. Savinova, Further Insights into the Role of 196

, Carbon in Manganese Oxide/Carbon Composites in the Oxygen Reduction Reaction in Alkaline Media, pp.643-653

A. S. Ryabova, I. Filimonenkov, A. Bonnefont, and G. A. Tsirlina, Savinova E R. The Role of Carbon in Manganese Oxide/Carbon Composites in Oxygen Electrocatalysis. // 1st Colloquium of Young Physicists-Chemists of EUCORthe European Campus. Energy Transition: abstracts, 2017.

A. S. Ryabova, I. Filimonenkov, P. A. Simonov, G. A. Tsirlina, and E. R. Savinova, Transition Metal/Carbon Composites for Oxygen Electrocatalysis. // Carbocat VII: abstracts, 2016.

?. ?. ??????, T. Poux, ?. ?. ?????, and ?. ??????????,

, ????????????????????? ?????????????? ????????? ?? ??????? ? ??????? ??????? ????????: ????? ????????????????????? ?????????? ? ??????????????? Mn(IV)/Mn(III). // ????????????? ??????? ??????????? ?????????, ?????????? ? ??????? ?????? «?????????-2015»: ???. ????

. ?????? and . ??????, , 2015.

A. S. Ryabova, A. Bonnefont, G. A. Tsirlina, and E. R. Savinova, Understanding Oxygen Electrocatalysis on Transition Metal Oxides, XIVth International Conference on Electrified Interfaces (ICEI): abstracts, 2016.

R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomi? Distances in Halides and Chaleogenides. // Acta Cryst. A.-1976

K. A. Stoerzinger, M. Risch, B. Han, and Y. Shao-horn, Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. // ACS Catal, pp.6021-6031

P. Zoltowski and D. M. Drazic, Vorkapic L. Carbon-Air Electrode with

, Regenerative Short Time Overload Capacity: Part 1. Effect of Manganese Dioxide

/. , J. Appl. Electrochem, pp.271-283, 1973.

J. P. Brenet, Electrochemical Behaviour of Metallic Oxides. // J. Power Sources.-1979, pp.183-190

H. N. Cong, P. Chartier, and J. Brenet, Reduction Electrocatalytique de I'oxygene Sur Electrodes Solides D'oxydes Mixtes Contenant des Ions Manganese. II. Role du Couple Mn 3+-Mn 4+ en Sites Octaédriques. // J. Applied Electrochem.-1977, pp.395-406

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough et al., Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries. // Nature Chem, pp.546-550, 2011.

Y. Wang and H. P. Cheng, Oxygen Reduction Activity on Perovskite Oxide Surfaces: a Comparative First-Principles Study of LaMnO 3

T. Poux, A. Bonnefont, A. Ryabova, G. Kéranguéven, G. A. Tsirlina et al., Electrocatalysis of Hydrogen Peroxide Reactions on Perovskite Oxides: Experiment versus Kinetic Modeling, Phys. Chem. Chem. Phys, pp.13595-13600, 2014.

A. S. Ryabova, F. S. Napolskiy, T. Poux, S. Y. Istomin, A. Bonnefont et al.,

G. A. Tsirlina and E. R. Savinova, Rationalizing the Influence of the Mn(IV)/Mn(III)

, Transition on the Electrocatalytic Activity of Manganese Oxides in the Oxygen Reduction Reaction // Electrochim. Acta. 2016-V. 187, pp.161-172

T. Poux, A. Bonnefont, G. Kéranguéven, G. A. Tsirlina, and E. Savinova, Electrocatalytic Oxygen Reduction Reaction on Perovskite Oxides: Series versus Direct Pathway, Chem. Phys. Chem

A. S. Ryabova, A. Bonnefont, P. Zagrebin, T. Poux, R. P. Sena et al.,

E. R. Savinova, Study of Hydrogen Peroxide Reactions on Manganese Oxides as a Tool to Decode the Oxygen Reduction Reaction Mechanism, pp.1667-1677, 2016.

K. Kinoshita, Carbon-Electrochemical and Physicochemical Properties, 1988.

M. Inagaki, H. Konno, and O. Tanaike, Carbon materials for electrochemical capacitors

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev, pp.2646-2687, 2008.

P. A. Simonov, S. V. Filimonova, G. N. Kyukova, E. M. Moroz, V. A. Likholobov et al., 129Xe NMR Study of Carbonaceous Materials: Effects of Surface Chemistry and Nanotexture. // Carbon.-1999, pp.591-600

S. R. Kelemen, H. Freund, and C. A. Mims, The Dependence of H 2 O Adsorption and Reaction on the Structure of the Carbon Substrate, J. Vac. Sci. Technol, issue.2, pp.987-990, 1984.

L. R. Radovic, Active Sites in Graphene and the Mechanism of CO 2 Formation in Carbon Oxidation, // J. Amer. Chem. Soc, pp.17166-17175

T. Poux, F. S. Napolskiy, T. Dintzer, G. Kéranguéven, S. Istomin et al., Dual Role of Carbon in the Catalytic Layers of

, Perovskite/Carbon Composites for the Electrocatalytic Oxygen Reduction Reaction. // Catal. Today.-2012.-V. 189.-? 1, pp.83-92

A. S. Ryabova, A. Bonnefont, P. A. Simonov, T. Dintzer, and C. Ulhaq-bouillet,

Y. G. Bogdanova, G. A. Tsirlina, and E. R. Savinova, Further Insights into the Role of 224