R. Abeti, E. Uzun, I. Renganathan, T. Honda, M. A. Pook et al., Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia, Pharmacological Research, vol.99, pp.344-350, 2015.

I. A. Abreu and D. E. Cabelli, Superoxide dismutases-a review of the metal-associated mechanistic variations, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, vol.1804, pp.263-274, 2010.

F. Acquaviva, I. Castaldo, A. Filla, M. Giacchetti, D. Marmolino et al., Recombinant Human Erythropoietin Increases Frataxin Protein Expression Without Increasing mRNA Expression, The Cerebellum, vol.7, pp.360-365, 2008.

J. Adamec, F. Rusnak, W. G. Owen, S. Naylor, L. M. Benson et al., Iron dependent self-assembly of recombinant yeast frataxin-impliation for Friedreich's ataxia, Am. J. Hum. Genet, vol.67, pp.549-562, 2000.

S. Adinolfi, M. Trifuoggi, A. S. Politou, S. Martin, and A. Pastore, A structural approach to understanding the iron-binding properties of phylogenetically different frataxins, Hum Mol Genet, vol.11, pp.1865-1877, 2002.

S. Adinolfi, M. Nair, A. Politou, E. Bayer, S. Martin et al., The factors governing the thermal stability of frataxin orthologues: how to increase a protein's stability, Biochemistry, vol.43, pp.6511-6518, 2004.

S. Adinolfi, C. Iannuzzi, F. Prischi, C. Pastore, S. Iametti et al., Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS, Nat Struct Mol Biol, vol.16, pp.390-396, 2009.

A. , GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology, Genomics, vol.88, pp.580-590, 2006.

K. Aloria, B. Schilke, A. Andrew, and E. A. Craig, Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo, EMBO Rep, vol.5, pp.1096-1101, 2004.

A. Virmouni, S. , A. , S. Sandi, C. Yasaei et al., Identification of telomere dysfunction in Friedreich ataxia, Mol Neurodegener, vol.10, p.22, 2015.

A. Anzovino, D. J. Lane, J. Huang, and D. R. Richardson, Fixing frataxin : 'ironing out' the metabolic defect in Friedreich's ataxia, British Journal of Pharmacology, vol.171, pp.2174-2190, 2014.

A. Atkinson and D. R. Winge, Metal acquisition and availability in the mitochondria, Chem. Rev, vol.109, pp.4708-4721, 2009.

M. Babcock, D. Silva, R. Oaks, S. Davis-kaplan, S. Jiralerspong et al., Regulation of Mitochondrial Iron Accumulation by Yfh1p, a Putative Homolog of Frataxin, Science, vol.276, pp.1709-1712, 1997.

K. Z. Bencze, K. C. Kondapalli, J. D. Cook, S. Mcmahon, C. Millan-pacheco et al., The structure and function of frataxin, Crit Rev Biochem Mol Biol, vol.41, pp.269-291, 2006.

K. Z. Bencze, T. Yoon, C. Millan-pacheco, P. B. Bradley, N. Pastor et al., Human frataxin: iron and ferrochelatase binding surface, Chem Commun, pp.1798-1800, 2007.

N. Boddaert, L. Q. Sang, K. H. Rötig, A. Leroy-willig, A. Gallet et al., Selective iron chelation in Friedreich ataxia: biologic and clinical implications, Blood, vol.110, pp.401-408, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00687082

F. Bou-abdallah, S. Adinolfi, A. Pastore, T. M. Laue, D. Chasteen et al., Iron binding and oxidation kinetics in frataxin CyaY of Escherichia coli, J Mol Biol, vol.341, pp.605-615, 2004.

S. A. Bradley and J. R. Steinert, Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse, Oxid Med Cell Longev, p.5681036, 2016.

X. Brazzolotto, J. Gaillard, K. Pantopoulos, M. Hentze, and J. Moulis, Human Cytoplasmic Aconitase (Iron Regulatory Protein 1) Is Converted into Its [3Fe-4S] Form by Hydrogen Peroxide in Vitro but Is Not Activated for Iron-responsive Element Binding, J Biol Chem, vol.274, issue.31, pp.21625-21630, 1999.

J. Bridwell-rabb, A. M. Winn, and D. P. Barondeau, Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex, Biochemistry, vol.50, pp.7265-7274, 2011.

J. Bridwell-rabb, N. G. Fox, C. L. Tsai, A. M. Winn, and D. P. Barondeau, Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry, Biochemistry, vol.53, pp.4904-4913, 2014.
DOI : 10.1021/bi500532e

URL : https://doi.org/10.1021/bi500532e

A. L. Bulteau, O. Neill, H. A. Kennedy, M. C. Ikeda-saito, M. Isaya et al., Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity, Science, vol.305, pp.242-245, 2004.
DOI : 10.1126/science.1098991

A. L. Bulteau, A. Dancis, M. Gareil, J. J. Montagne, J. M. Camadro et al., Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia, Free Radic Biol Med, vol.42, pp.1561-1570, 2007.

A. L. Bulteau, S. Planamente, L. Jornea, A. Dur, E. Lesuisse et al., Changes in mitochondrial glutathione levels and protein thiol oxidation in yfh1 yeast cells and the lymphoblasts of patients with Friedreich's ataxia, Biochim Biophys Acta, vol.1822, pp.212-225, 2012.

V. Calabrese, R. Lodi, C. Tonon, D. 'agata, V. Sapienza et al., Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia, J Neurol Sci, vol.233, pp.145-162, 2005.

V. Campuzano, Friedreich's Ataxia : Autosomal recessive disease caused by an intronic GAA triplet repeat expansion, Science, vol.271, pp.1423-1427, 1996.
DOI : 10.1126/science.271.5254.1423

B. Carletti, Frataxin silencing inactivates mitochondrial Complex I in NSC34 motoneuronal cells and alters glutathione homeostasis, Int J Mol Sci, vol.15, pp.5789-5806, 2014.

L. Castro, V. Demicheli, V. Tórtora, and R. Radi, Mitochondrial protein tyrosine nitration, Free Radical Research, vol.45, pp.37-52, 2011.
DOI : 10.3109/10715762.2010.516254

O. S. Chen, S. Hemenway, and J. Kaplan, Genetic analysis of iron citrate toxicity in yeast: Implications for mammalian iron homeostasis, PNAS, vol.99, pp.16922-16927, 2002.

F. Colin, A. Martelli, M. Clemancey, J. M. Latour, S. Gambarelli et al., Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly, J Am Chem Soc, vol.135, pp.733-740, 2013.
DOI : 10.1021/ja308736e

URL : https://hal.archives-ouvertes.fr/hal-01054359

I. Condo, N. Ventura, F. Malisan, B. Tomassini, and R. Testi, A pool of extramitochondrial frataxin that promotes cell survival, J Biol Chem, vol.281, pp.16750-16756, 2006.

I. Condo, F. Malisan, I. Guccini, D. Serio, A. Rufini et al., Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin, Hum Mol Genet, vol.19, pp.1221-1229, 2010.

J. D. Cook, K. C. Kondapalli, S. Rawat, W. C. Childs, Y. Murugesan et al., Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly, Biochemistry, vol.49, pp.8756-8765, 2010.

J. D. Cook, K. Z. Bencze, A. D. Jankovic, A. K. Crater, C. N. Busch et al., Monomeric Yeast Frataxin Is an Iron-Binding Protein ?, Biochem J, vol.45, pp.7767-7777, 2006.

J. Copin, Y. Gasche, and P. H. Chan, Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase, Free Radical Biology and Medicine, vol.28, pp.1571-1576, 2000.

A. R. Correia, T. Wang, E. A. Craig, and C. M. Gomes, Iron-binding activity in yeast frataxin entails a trade off with stability in the alpha1/beta1 acidic ridge region, Biochem J, vol.426, pp.197-203, 2010.

M. Cossée, H. Puccio, A. Gansmuller, H. Koutnikova, A. Dierich et al., Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation, Hum Mol Genet, vol.9, pp.1219-1226, 2000.

M. Cossée, Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes, Ann Neurol, vol.45, pp.200-206, 1999.

V. C. Culotta, M. Yang, and T. V. O'halloran, Activation of superoxide dismutases: putting the metal to the pedal, Biochim Biophys Acta, vol.1763, pp.747-758, 2006.

S. Dhe-paganon, R. Shigeta, Y. I. Chi, M. Ristow, and S. E. Shoelson, Crystal structure of human frataxin, J Biol Chem, vol.275, pp.30753-30756, 2000.

M. V. Evans-galea, A. Pebay, M. Dottori, L. A. Corben, S. H. Ong et al., Cell and gene therapy for Friedreich ataxia: progress to date, Hum Gene Ther, vol.25, pp.684-693, 2014.

F. C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and controversies, Nat Rev Micro, vol.2, pp.820-832, 2004.

F. Foury, Low iron concentration and aconitase deficiency in a yeast frataxin homolog deficient strain, FEBS Letters, vol.456, pp.281-284, 1999.

F. Foury and O. Cazzalini, Deletion of yfh1 of human genne associated with FRDA elicits iron accumulation in mitochondria, FEBS Letters, vol.411, pp.373-377, 1997.

F. Foury, A. Pastore, and M. Trincal, Acidic residues of yeast frataxin have an essential role in Fe-S cluster assembly, EMBO Rep, vol.8, pp.194-199, 2007.

C. A. Galea, Compound heterozygous FXN mutations and clinical outcome in friedreich ataxia, Ann Neurol, vol.79, pp.485-495, 2016.

P. R. Gardner, Superoxide-Driven Aconitase FE-S Center Cycling, Bioscience Reports, vol.17, pp.33-42, 1997.

C. Gellera, B. Castellotti, C. Mariotti, R. Mineri, V. Seveso et al., Frataxin gene point mutations in Italian Friedreich ataxia patients, Neurogenetics, vol.8, pp.289-299, 2007.

J. Gerber, U. Muhlenhoff, and R. Lill, An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1, EMBO Rep, vol.4, pp.906-911, 2003.

P. Gonzalez-cabo and F. Palau, Mitochondrial pathophysiology in Friedreich's ataxia, J Neurochem, vol.126, pp.53-64, 2013.

P. Gonzalez-cabo, R. P. Vazquez-manrique, M. A. Garcia-gimeno, P. Sanz, and F. Palau, Frataxin interacts functionally with mitochondrial electron transport chain proteins, Hum Mol Genet, vol.14, pp.2091-2098, 2005.

J. M. Gottesfeld, Small molecules affecting transcription in Friedreich ataxia, Pharmacology & Therapeutics, vol.116, pp.236-248, 2007.

D. E. Handy and J. Loscalzo, Redox Regulation of Mitochondrial Function, Antioxidants & Redox Signaling, vol.16, pp.1323-1367, 2012.

A. C. Haugen, Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: cellular model of pathology, PLoS Genet, vol.6, p.1000812, 2010.

G. Hayashi and G. Cortopassi, Oxidative stress in inherited mitochondrial diseases, Free Radic Biol Med, vol.88, pp.10-17, 2015.

Y. He, S. L. Alam, S. V. Zhang, Y. Lesuisse, E. Dancis et al., Yeast Frataxin Solution Structure, Iron Binding, and Ferrochelatase Interaction, Biochemistry, vol.43, pp.16254-16262, 2004.

E. Herrero, J. Ros, G. Belli, and E. Cabiscol, Redox control and oxidative stress in yeast cells, Biochim Biophys Acta, vol.1780, pp.1217-1235, 2008.

M. L. Huang, E. B. Beckera, M. Whitnall, Y. S. Rahmanto, P. Ponka et al., Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant, Pnas, vol.106, pp.16381-16386, 2009.

M. A. Huynen, B. Snel, P. Bork, and T. J. Gibson, The phylogenetic distribution of frataxin indicates a role in iron-sulfur cluster protein assembly, vol.10, pp.2463-2468, 2001.

H. P. Indo, A mitochondrial superoxide theory for oxidative stress diseases and aging, Journal of Clinical Biochemistry and Nutrition, vol.56, pp.1-7, 2015.

D. Sanfelice, R. Puglisi, S. R. Martin, D. Bari, L. Pastore et al., Yeast frataxin is stabilized by low salt concentrations: cold denaturation disentangles ionic strength effects from specific interactions, PLoS One, vol.9, p.95801, 2014.

R. Santos, S. Lefevre, D. Sliwa, A. Seguin, J. M. Camadro et al., Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities, Antioxid Redox Signal, vol.13, p.43, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00484581

S. Schmucker, A. Martelli, C. F. Page, A. Wattenhofer-donze, M. Reutenauer et al., Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex, PLoS One, vol.6, p.16199, 2011.

J. B. Schulz, Oxidative stress in patients with Friedreich ataxia, Neurology, vol.55, pp.1719-1721, 2000.

A. Seguin, R. Santos, D. Pain, A. Dancis, J. M. Camadro et al., Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1), J Biol Chem, vol.286, pp.6071-6079, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00588006

A. Seguin, A. Bayot, A. Dancis, A. Rogowska-wrzesinska, F. Auchere et al., Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on ironsulfur cluster assembly, heme synthesis and resistance to oxidative stress, Mitochondrion, vol.9, pp.130-138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00503012

A. Seguin, Evidence that yeast frataxin is not an iron storage protein in vivo, Biochim Biophys Acta, vol.1802, pp.531-538, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518156

H. Seznec, Friedreich ataxia: the oxidative stress paradox, Hum Mol Genet, vol.14, pp.463-474, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187760

Y. Shan, E. Napoli, and G. Cortopassi, Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones, Hum Mol Genet, vol.16, pp.929-941, 2007.

Y. Shan, R. A. Schoenfeld, G. Hayashi, E. Napoli, T. Akiyama et al., Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model, Antioxid Redox Signal, vol.19, pp.1481-1493, 2013.

S. A. Shoichet, A. Bäumer, D. Stamenkovic, H. Sauer, A. Pfeiffer et al., Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro, Hum Mol Genet, vol.11, pp.815-821, 2002.

M. Sparaco, Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities, J Neurol Sci, vol.287, pp.111-118, 2009.

R. E. Stadtman and L. R. Levine, Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, vol.25, pp.207-218, 2003.

O. Stehling, C. Wilbrecht, and R. Lill, Mitochondrial iron-sulfur protein biogenesis and human disease, Biochimie, vol.100, pp.61-77, 2014.

O. Stehling, H. P. Elsasser, B. Bruckel, U. Muhlenhoff, and R. Lill, Iron-sulfur protein maturation in human cells: evidence for a function of frataxin, Hum Mol Genet, vol.13, pp.3007-3015, 2004.

J. Adamec, F. Rusnak, W. G. Owen, S. Naylor, L. M. Benson et al., Iron dependent self-assembly of recombinant yeast frataxin-impliation for Friedreich's ataxia, Am. J. Hum. Genet, vol.67, pp.549-562, 2000.

K. Aloria, B. Schilke, A. Andrew, and E. A. Craig, Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo, EMBO Rep, vol.5, pp.1096-1101, 2004.

A. Atkinson and D. R. Winge, Metal acquisition and availability in the mitochondria, Chem Rev, vol.109, pp.4708-4721, 2009.

A. Bayot, R. Santos, J. M. Camadro, and R. P. , Friedreich's ataxia: the vicious circle hypothesis revisited, BMC Med, vol.9, p.112, 2011.

C. F. Bernasconi, Relaxation kinetics, 1976.

F. Bou-abdallah, S. Adinolfi, A. Pastore, T. M. Laue, D. Chasteen et al., Iron binding and oxidation kinetics in frataxin CyaY of Escherichia coli, J Mol Biol, vol.341, pp.605-615, 2004.

A. L. Bulteau, S. Planamente, L. Jornea, A. Dur, E. Lesuisse et al., Changes in mitochondrial glutathione levels and protein thiol oxidation in yfh1 yeast cells and the lymphoblasts of patients with Friedreich's ataxia, Biochim Biophys Acta, vol.1822, pp.212-225, 2012.

I. Gostimskaya and C. M. Grant, Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system, Free Radic Biol Med, vol.94, pp.55-65, 2016.

P. M. Hanna, R. Tamilarasan, and D. R. Mcmillin, Cu(I) analysis of blue copper proteins, Biochem J, vol.256, pp.1001-1004, 1988.

R. C. Hider and X. L. Kong, Glutathione: a key component of the cytoplasmic labile iron pool, Biometals, vol.24, pp.1179-1187, 2011.

J. Huang, E. Dizin, and J. A. Cowan, Mapping iron binding sites on human frataxin: implications for cluster assembly on the ISU Fe-S cluster scaffold protein, J Biol Inorg Chem, vol.13, pp.825-836, 2008.

K. C. Kondapalli, N. M. Kok, A. Dancis, and T. L. Stemmler, Drosophila Frataxin: An Iron Chaperone during Cellular Fe?S Cluster Bioassembly, Biochemistry, vol.47, pp.6917-6927, 2008.

C. Kumar, A. Igbaria, D. 'autreaux, B. Planson, A. G. Junot et al., Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control, EMBO J, vol.30, pp.2044-2056, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00606359

S. P. Mccormick, M. J. Moore, and P. A. Lindahl, Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria, Biochemistry, vol.54, pp.3442-3453, 2015.

D. M. Mcdonald-mcginn, Hemizygous mutations in SNAP29 unmask autosomal recessive conditions and contribute to atypical findings in patients with 22q11.2DS, J Med Genet, vol.50, pp.80-90, 2013.

M. Nair, S. Adinolfi, C. Pastore, G. Kelly, P. Temussi et al., Solution structure of the bacterial frataxin ortholog, CyaY: mapping the iron binding sites, Structure, vol.12, pp.2037-2048, 2004.

M. E. Noguera, E. A. Roman, J. B. Rigal, A. Cousido-siah, A. Mitschler et al., Structural characterization of metal binding to a cold-adapted frataxin, J Biol Inorg Chem, vol.20, pp.653-664, 2015.

R. Osterberg, R. Ligaarden, and D. Persson, Copper(I) complexes of penicillamine and glutathione, J Inorg Biochem, vol.10, pp.341-355, 1979.

A. Pandey, D. M. Gordon, J. Pain, T. L. Stemmler, A. Dancis et al., Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly, J Biol Chem, vol.288, pp.36773-36786, 2013.

A. Parent, X. Elduque, D. Cornu, L. Belot, L. Caer et al., Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols, Nat Commun, vol.6, p.5686, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01111365

C. Pastore, M. Franzese, F. Sica, P. Temussi, and A. Pastore, Understanding the binding properties of an unusual metal-binding protein-a study of bacterial frataxin, FEBS J, vol.274, pp.4199-4210, 2007.

F. Pierrel, P. A. Cobine, and D. R. Winge, Metal Ion availability in mitochondria, Biometals, vol.20, pp.675-682, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00375433

A. Pilotelle-bunner, F. Cornelius, P. Sebban, P. W. Kuchel, and R. J. Clarke, Mechanism of Mg2+ binding in the Na+,K+-ATPase, Biophys J, vol.96, pp.3753-3761, 2009.

W. Qi, J. Li, C. Y. Chain, G. A. Pasquevich, A. F. Pasquevich et al., Glutathione complexed FeS centers, J Am Chem Soc, vol.134, pp.10745-10748, 2012.

N. J. Robinson and D. R. Winge, Copper metallochaperones, Annu Rev Biochem, vol.79, pp.537-562, 2010.

A. C. Rosenzweig and T. V. O'halloran, Structure and chemistry of the copper chaperone proteins, Curr Opin Chem Biol, vol.4, pp.140-147, 2000.
DOI : 10.1016/s1367-5931(99)00066-6

A. Seguin, A. Bayot, A. Dancis, A. Rogowska-wrzesinska, F. Auchere et al.,

E. Lesuisse, Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on ironsulfur cluster assembly, heme synthesis and resistance to oxidative stress, Mitochondrion, vol.9, pp.130-138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00503012

A. Seguin, Evidence that yeast frataxin is not an iron storage protein in vivo, Biochim Biophys Acta, vol.1802, pp.531-538, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518156

C. A. Soderberg, S. Rajan, A. V. Shkumatov, O. Gakh, S. Schaefer et al., The molecular basis of iron-induced oligomerization of frataxin and the role of the ferroxidation reaction in oligomerization, J Biol Chem, vol.288, pp.8156-8167, 2013.

T. L. Stemmler, E. Lesuisse, D. Pain, and A. Dancis, Frataxin and mitochondrial FeS cluster biogenesis, J Biol Chem, vol.285, pp.26737-26743, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518153

L. C. Thompson, S. Goswami, D. S. Ginsberg, D. E. Day, I. M. Verhamme et al., Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition, Protein Sci, vol.20, pp.353-365, 2011.

M. B. Toledano, A. Delaunay-moisan, C. E. Outten, and A. Igbaria, Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast, Antioxid Redox Signal, vol.18, pp.1699-1711, 2013.

R. A. Vaubel and G. Isaya, Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia, Mol Cell Neurosci, vol.55, pp.50-61, 2013.

L. Wang, B. Ouyang, Y. Li, Y. Feng, J. P. Jacquot et al., Glutathione regulates the transfer of iron-sulfur cluster from monothiol and dithiol glutaredoxins to apo ferredoxin, Protein Cell, vol.3, pp.714-721, 2012.

H. Yoon, S. A. Knight, A. Pandey, J. Pain, Y. Zhang et al., Frataxin-bypassing Isu1: characterization of the bypass activity in cells and mitochondria, Biochem J, vol.459, pp.71-81, 2014.

H. Yoon, S. A. Knight, A. Pandey, J. Pain, S. Turkarslan et al., Turning Saccharomyces cerevisiae into a Frataxin-Independent Organism, PLoS Genet, vol.11, p.1005135, 2015.

H. Yoon, R. Golla, E. Lesuisse, J. Pain, J. E. Donald et al., Mutation in the Fe-S scaffold protein Isu bypasses frataxin deletion, Biochem J, vol.441, pp.473-480, 2012.

T. Yoon and J. A. Cowan, iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins, J. Am. Chem. Soc, vol.125, pp.6078-6084, 2003.

I. A. Abreu and D. E. Cabelli, Superoxide dismutases-a review of the metal-associated mechanistic variations, Biochim Biophys Acta, vol.1804, pp.263-274, 2010.

F. Acquaviva, I. D. Biase, L. Nezi, G. Ruggiero, F. Tatangelo et al., Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2, The journal of cell science, vol.118, pp.3917-3924, 2005.

J. S. Armstrong, O. Khdour, and S. M. Hecht, Does oxidative stress contribute to the pathology of Friedreich's ataxia? A radical question, FASEB J, vol.24, pp.2152-2163, 2010.

A. Bafana, S. Dutt, S. Kumar, and P. S. Ahuja, Superoxide dismutase: an industrial perspective, Critical Reviews in Biotechnology, vol.31, pp.65-76, 2011.

A. Bonamore and A. Boffi, Flavohemoglobin: structure and reactivity, IUBMB Life, vol.60, pp.19-28, 2008.

V. Campuzano, Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes, Hum Mol Genet, vol.6, pp.1771-1780, 1997.

D. Candas and J. J. Li, MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx, Antioxid Redox Signal, vol.20, pp.1599-1617, 2014.

I. Condo, N. Ventura, F. Malisan, B. Tomassini, and R. Testi, A pool of extramitochondrial frataxin that promotes cell survival, J Biol Chem, vol.281, pp.16750-16756, 2006.

I. Condo, F. Malisan, I. Guccini, D. Serio, A. Rufini et al., Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin, Hum Mol Genet, vol.19, pp.1221-1229, 2010.

J. D. Cook, K. C. Kondapalli, S. Rawat, W. C. Childs, Y. Murugesan et al., Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly, Biochemistry, vol.49, pp.8756-8765, 2010.

V. C. Culotta, M. Yang, and T. V. O'halloran, Activation of superoxide dismutases: putting the metal to the pedal, Biochim Biophys Acta, vol.1763, pp.747-758, 2006.

A. Duttaroy, A. Paul, M. Kundu, and A. Belton, A Sod2 null mutation confers severely reduced adult life span in Drosophila, Genetics, vol.165, pp.2295-2299, 2003.

E. El-hammi, E. Warkentin, U. Demmer, N. M. Marzouki, U. Ermler et al., Active site analysis of yeast flavohemoglobin based on its structure with a small ligand or econazole, FEBS J, vol.279, pp.4565-4575, 2012.

M. T. Forrester and M. W. Foster, Protection from nitrosative stress: a central role for microbial flavohemoglobin, Free Radic Biol Med, vol.52, pp.1620-1633, 2012.

A. D. Frey and P. T. Kallio, Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology, FEMS Microbiology Reviews, vol.27, pp.525-545, 2003.

P. R. Gardner, Hemoglobin: a nitric-oxide dioxygenase. Scientifica (Cairo) 2012: 683729. Chapter IV: Interactions of frataxin with proteins involved in anti oxidative stress and effects of frataxin on their activity, 2012.

P. R. Gardner, A. M. Gardner, L. A. Martin, Y. Dou, T. Li et al., Nitric-oxide dioxygenase activity and function of flavohemoglobins. sensitivity to nitric oxide and carbon monoxide inhibition, J Biol Chem, vol.275, pp.31581-31587, 2000.

P. Gonzalez-cabo, R. P. Vazquez-manrique, M. A. Garcia-gimeno, P. Sanz, and F. Palau, Frataxin interacts functionally with mitochondrial electron transport chain proteins, Hum Mol Genet, vol.14, pp.2091-2098, 2005.

M. J. Hitchler and F. E. Domann, Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis, Antioxid Redox Signal, vol.20, pp.1590-1598, 2014.

J. Hsu, Y. Hsieh, C. Tu, O. Connor, D. Nick et al., Catalytic Properties of Human Manganese Superoxide Dismutase, Journal of Biological Chemistry, vol.271, pp.17687-17691, 1996.

W. H. Ibrahim, H. M. Habib, H. Kamal, S. Clair, D. K. Chow et al., Mitochondrial superoxide mediates labile iron level: evidence from Mn-SOD-transgenic mice and heterozygous knockout mice and isolated rat liver mitochondria, Free Radic Biol Med, vol.65, pp.143-149, 2013.

V. Irazusta, E. Cabiscol, G. Reverter-branchat, R. J. Tamarit, and J. , Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia, J Biol Chem, vol.281, pp.12227-12232, 2006.

V. Irazusta, E. Obis, A. Moreno-cermeno, E. Cabiscol, R. J. Tamarit et al., Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage, Free Radic Biol Med, vol.48, pp.411-420, 2010.

S. Jiralerspong, B. Ge, T. J. Hudson, and M. Pandolfo, Manganese superoxide dismutase induction by iron is impaired in friedreich ataxia cells, FEBS Lett, vol.509, pp.101-105, 2001.

H. Kawamata and G. Manfredi, Import, Maturation, and Function of SOD1 and Its Copper Chaperone CCS in the Mitochondrial Intermembrane Space, Antioxidants & Redox Signaling, vol.13, pp.1375-1384, 2010.

J. H. Kim, M. Sedlak, Q. Gao, C. P. Riley, F. E. Regnier et al., Oxidative stress studies in yeast with a frataxin mutant : a proteomics perspective, J Proteome Res, vol.9, pp.730-736, 2009.

K. C. Kondapalli, N. M. Kok, A. Dancis, and T. L. Stemmler, Drosophila Frataxin: An Iron Chaperone during Cellular Fe?S Cluster Bioassembly, Biochemistry, vol.47, pp.6917-6927, 2008.

N. A. Kulak, G. Pichler, I. Paron, N. Nagaraj, and M. Mann, Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells, Nat Meth, vol.11, pp.319-324, 2014.

E. Lesuisse, R. Santos, B. F. Matzanke, S. A. Knight, J. M. Camadro et al., Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1), Human Molecular Genetics, vol.12, pp.879-889, 2003.

Y. Li, Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase, Nat Genet, vol.11, pp.376-381, 1995.

M. Martin, M. J. Colman, D. F. Gomez-casati, L. Lamattina, and E. J. Zabaleta, Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants, FEBS Lett, vol.583, pp.542-548, 2009.

, The genetic lanscape of a cell, Science, vol.327, 2010.

A. Mielcarek, B. Blauenburg, M. Miethke, and M. A. Marahiel, Molecular Insights into FrataxinMediated Iron Supply for Heme Biosynthesis in <italic>Bacillus subtilis</italic>, PLoS ONE, vol.10, p.122538, 2015.

K. Mizuno, M. M. Whittaker, H. P. Bachinger, and J. W. Whittaker, Calorimetric studies on the tight binding metal interactions of Escherichia coli manganese superoxide dismutase, J Biol Chem, vol.279, pp.27339-27344, 2004.

A. Moreno-cermeno, E. Obis, G. Belli, E. Cabiscol, R. J. Tamarit et al., Frataxin depletion in yeast triggers up-regulation of iron transport systems before affecting iron-sulfur enzyme activities, J Biol Chem, vol.285, pp.41653-41664, 2010.

E. Napoli, F. Taroni, and G. A. Cortopassi, Frataxin, Iron-Sulfur Clusters, Heme, ROS, and Aging, 2006.

, Antioxid Rdeox Signal, vol.8, pp.506-516

A. Naranuntarat, L. T. Jensen, S. Pazicni, J. E. Penner-hahn, and V. C. Culotta, The interaction of mitochondrial iron with manganese superoxide dismutase, J Biol Chem, vol.284, pp.22633-22640, 2009.

J. Perry, D. S. Shin, E. D. Getzoff, and J. A. Tainer, The structural biochemistry of the superoxide dismutases, Biochimica et biophysica acta, vol.1804, pp.245-262, 2010.

D. Poburski, J. B. Boerner, M. Koenig, M. Ristow, and R. Thierbach, Time-resolved functional analysis of acute impairment of frataxin expression in an inducible cell model of Friedreich ataxia, Biol Open, vol.5, pp.654-661, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01870399

F. Prischi, P. V. Konarev, C. Iannuzzi, C. Pastore, S. Adinolfi et al., Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly, Nat Commun, vol.1, p.95, 2010.

A. R. Reddi, L. T. Jensen, and V. C. Culotta, Manganese Homeostasis in Saccharomyces cerevisiae, Chemical Reviews, vol.109, pp.4722-4732, 2009.

A. P. Runko, A. J. Griswold, and K. T. Min, Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila, FEBS Lett, vol.582, pp.715-719, 2008.

Y. Saint-georges, M. Garcia, T. Delaveau, L. Jourdren, L. Crom et al., Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization, PLoS One, vol.3, p.2293, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00333137

S. Schmucker, M. Argentini, N. Carelle-calmels, A. Martelli, and H. Puccio, The in vivo mitochondrial two-step maturation of human frataxin, Hum Mol Genet, vol.17, pp.3521-3531, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350838

A. Seguin, A. Bayot, A. Dancis, A. Rogowska-wrzesinska, F. Auchere et al., Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on ironsulfur cluster assembly, heme synthesis and resistance to oxidative stress, Mitochondrion, vol.9, pp.130-138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00503012

H. Seznec, Friedreich ataxia: the oxidative stress paradox, Hum Mol Genet, vol.14, pp.463-474, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187760

S. A. Shoichet, A. Bäumer, D. Stamenkovic, H. Sauer, A. Pfeiffer et al., Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro, Hum Mol Genet, vol.11, pp.815-821, 2002.

F. Tafuri, D. Ronchi, F. Magri, G. P. Comi, and S. Corti, SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis, Frontiers in Cellular Neuroscience, vol.9, p.336, 2015.

J. Tamarit, È. Obis, and R. J. , Oxidative stress and altered lipid metabolism in Friedreich ataxia, Free Radical Biology and Medicine, 2016.

B. F. Van-gelder and E. C. Slater, The extinction coefficient of cytochrome c, Biochimica et Biophysica Acta, vol.58, pp.593-595, 1962.

J. W. Whittaker, Metal uptake by manganese superoxide dismutase, Biochim Biophys Acta, vol.1804, pp.298-307, 2010.

M. Yang, P. A. Cobine, S. Molik, A. Naranuntarat, R. Lill et al., The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2, The EMBO Journal, vol.25, pp.1775-1783, 2006.

T. Yoon and J. A. Cowan, Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis, J Biol Chem, vol.279, pp.25943-25946, 2004.

I. Barr and F. Guo, Pyridine Hemochromagen Assay for Determining the Concentration of Heme in Purified Protein Solutions, Bio-protocol, vol.5, p.1594, 2015.

R. A. Binstead, A. D. Zuberbühler, and B. Jung, SPECFIT global analysis system version, 2003.

R. H. Broyles, B. M. Pack, S. Berger, and A. R. Dorn, Quantification of small amounts of hemoglobin in polyacrylamide gels with benzidine, Analytical Biochemistry, vol.94, pp.211-219, 1979.

. N. Buisson and R. Labbe-bois, Flavohemoglobin Expression and Function in Saccharomyces cerevisiae: no relationship with respiration and complex response to oxidative stress, The journal of Biological chemistry, vol.273, pp.9527-9533, 1997.

M. R. Ciriolo, A. Desideri, M. Paci, and G. Rotilio, Reconstitution of Cu,Zn-superoxide dismutase by the Cu(I).glutathione complex, J Biol Chem, vol.265, pp.11030-11034, 1990.

V. C. Culotta, M. Yang, and T. V. O&apos;halloran, Activation of superoxide dismutases: putting the metal to the pedal, Biochim Biophys Acta, vol.1763, pp.747-758, 2006.

J. M. El-hage-chahine and D. Fain, The mechanism of iron release from transferrin. Slow-protontransfer-induced loss of nitrilotriacetatoiron(III) complex in acidic media, Eur J Biochem, vol.223, pp.581-587, 1994.

E. El-hammi, E. Warkentin, U. Demmer, N. M. Marzouki, U. Ermler et al., Active site analysis of yeast flavohemoglobin based on its structure with a small ligand or econazole, FEBS J, vol.279, pp.4565-4575, 2012.

P. R. Gardner, Assay and Characterization of the NO Dioxygenase Activity of Flavohemoglobins, vol.436, pp.217-237, 2008.

P. M. Hanna, R. Tamilarasan, and D. R. Mcmillin, Cu(I) analysis of blue copper proteins, Biochem J, vol.256, pp.1001-1004, 1988.

K. G. Paul, H. Theorell, and A. Akeson, The molar light absorption of Pyridine Ferroprotoporphyrine (Pyridine haemochromogen), Acta Chemica Scandinavica, vol.7, pp.1284-1287, 1953.

P. M. Schenk, S. Baumann, R. Mattes, and H. H. Steinbiss, Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare (Arg)tRNAs, BioTechniques, 1995.

A. L. Yergey, J. R. Coorssen, B. Jr, P. S. Blank, P. S. Humphrey et al., De novo sequencing of peptides using MALDI/TOF-TOF, Journal of the American Society for Mass Spectrometry, vol.13, pp.784-791, 2002.

X. Zheng, C. Bi, Z. Li, M. Podariu, and D. S. Hage, Analytical methods for kinetic studies of biological interactions: A review, Journal of Pharmaceutical and Biomedical Analysis, vol.113, pp.163-180, 2015.