. .. Conclusões-e-perspectivas,

.. .. Résumé-Étendu-de-la-thèse,

A. Modelo-de-doniach-sunjic-da-fotoemissão and .. .. ,

B. Modelo-de-hopfield-wertheim-citrin and .. .. ,

, Referências bibliográficas do capítulo 5

M. R. Alexander, G. E. Thompson, and X. Zhou, Quantification of oxide film thickness at the surface of aluminium using XPS, Surface and interface analysis, vol.34, issue.1, pp.485-489, 2002.

N. W. Ashcroft, ND Mermin Solid State Physics, p.671, 1976.

M. Cazzaniga, W. Hans-christian, . Huotari, and . Simo, Dynamical response function in sodium and aluminum from time-dependent density-functional theory, Physical Review B, vol.84, p.75109, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00696002

I. Costina and R. Franchy, Band gap of amorphous and well-ordered Al 2 O 3 on Ni 3 Al

, Applied physics letters, vol.78, pp.4139-4141, 2002.

L. S. De-bernardez, J. Ferron, and E. C. Goldberg, The effect of surface roughness on XPS and AES, Surface science, vol.139, issue.2-3, pp.541-548, 1984.

T. Duc and . Minh, Analyse de surface par ESCA. Principe et instrumentation. Techniques de l'ingénieur, Analyse et caractérisation, vol.4, pp.2625-2626, 1998.

C. S. Fadley, R. J. Baird, and W. Siekhaus, Surface analysis and angular distributions in x-ray photoelectron spectroscopy, Journal of Electron Spectroscopy and Related Phenomena, vol.4, issue.2, pp.93-137, 1974.

R. H. French, H. Müllejans, . Jones, and J. David, Optical Properties of Aluminum Oxide: Determined from Vacuum Ultraviolet and Electron Energy-Loss Spectroscopies, Journal of the American Ceramic Society, vol.81, pp.2549-2557, 1998.

T. Herrmann, G. , M. Lee, and M. J. , Optical reflectance anisotropy of Al (110): Experiment and ab initio calculation, Physical Review B, vol.69, p.165406, 2004.

N. V. Nguyen, O. A. Kirillov, and W. Jiang, Band offsets of atomic-layerdeposited Al2O3 on GaAs and the effects of surface treatment, Applied Physics Letters, vol.93, p.82105, 2008.

E. D. Palik, Handbook of optical constants of solids, _, vol.184, 1998.

. Sampath, . Sridhar, . Maydannik, . Philipp, and T. Ivanova, Structural and morphological characterization of Al2O3 coated macro-porous silicon by atomic layer deposition, Thin Solid Films, vol.616, pp.628-634, 2016.

D. Y. Smith and B. Segall, Intraband and interband processes in the infrared spectrum of metallic aluminum, Physical Review B, vol.34, p.5191, 1986.

P. Steiner, H. Höchst, H. Et, and S. , XPS investigation of simple metals, Zeitschrift für Physik B Condensed Matter, vol.30, issue.2, pp.129-143, 1978.

S. Valkealahti and R. M. Nieminen, Molecular dynamics simulation of the damage production in Al (110) surface with slow argon ions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.18, pp.365-369, 1986.

. Van-den, J. Brand, W. G. Sloof, and H. Terryn, Correlation between hydroxyl fraction and O/Al atomic ratio as determined from XPS spectra of aluminium oxide layers, Surface and interface analysis, vol.36, issue.1, pp.81-88, 2004.

J. Webber, Identificação e caracterização dos sítios superficiais de partículas de alumina e interações de adsorção com o ácido esteárico. Tese de Doutorado, 2014.

, ne%20Webber.pdf?sequence=1

G. Wertheim and P. Citrin, Fermi surface excitations in X-ray photoemission line shapes from metals. Photoemission in Solids I, pp.197-236, 1978.

F. Wooten, Optical Properties of Solids. Academic, 1972.

Y. L. Yan, M. A. Helfand, and C. R. Clayton, Evaluation of the effect of surface roughness on thin film thickness measurements using variable angle XPS, Applied surface science, vol.37, pp.395-405, 1989.

, Nous analysons enfin différents paramètres résultant de l'analyse PEELS-FT, tels que l'énergie de plasmon de volume (EP), l'énergie de plasmon de surface (ES)

, Rennes, avec l'expertise technique de Bruno Lépine et Arnaud Le Pottier

S. Ababou-girard, Elles ont permis d'évaluer le taux résiduel d'atomes d'oxygène, de l'ordre de 0.02 nm d'oxyde pour une surface optimisée, Des analyses complémentaires de la topographie de surface, p.2

, L'obtention de la TF de la fonction de perte fait intervenir le rapport entre d'une part la différence des TF du spectre brut mesuré J(E) et du pic sans perte calculé ZLP(E), et d'autre part d'une combinaison linéaire de ces deux TF, dont les coefficients reflètent les taux de création des plasmons extrinsèque (a) et intrinsèque (b) pour l

+. ,