J. W. David-titterton, Strapdown Inertial Navigation Technology (Institution of Engineering and Technology, 2004.

K. U. Schreiber, G. E. Stedman, H. Igel, and A. Flaws, Ring laser gyroscopes as rotation sensors for seismic wave studies, dans "Earthquake Source Asymmetry, Structural Media and Rotation Effects, pp.377-390

L. I. Schiff, Possible new experimental test of general relativity theory, Phys. Rev. Lett, vol.4, pp.215-217, 1960.

C. W. Everitt, D. B. Debra, B. W. Parkinson, J. P. Turneaure, J. W. Conklin et al., Gravity probe b: Final results of a space experiment to test general relativity, Phys. Rev. Lett, vol.106, 2011.

M. Weinberg and A. Kourepenis, Error sources in in-plane silicon tuningfork MEMS gyroscopes, Journal of Microelectromechanical Systems, vol.15, pp.479-491, 2006.

G. Sagnac, Effet tourbillonnaire optique. la circulation de l'ether lumineux dans un interferographe tournant, J. Phys. Theor. Appl, vol.4, pp.177-195, 1914.
URL : https://hal.archives-ouvertes.fr/jpa-00241884

H. J. Arditty and H. C. Lefèvre, Sagnac effect in fiber gyroscopes, Optics Letters, vol.6, p.401, 1981.

H. J. Arditty and H. C. Lefèvre, Theoretical basis of sagnac effect in fiber gyroscopes, Springer Series in Optical Sciences, pp.44-51, 1982.

H. C. Lefèvre, The fiber-optic gyroscope, a century after sagnac's experiment: The ultimate rotation-sensing technology?, Comptes Rendus Physique, vol.15, pp.851-858, 2014.

G. B. Malykin, Sagnac effect in ring lasers and ring resonators. how does the refractive index of the optical medium influence the sensitivity to rotation?, Physics-Uspekhi, vol.57, pp.714-720, 2014.

K. U. Schreiber, A. Gebauer, H. Igel, J. Wassermann, R. B. Hurst et al., The centennial of the sagnac experiment in the optical regime: From a tabletop experiment to the variation of the earth's rotation, Comptes Rendus Physique, vol.15, pp.859-865, 2014.

P. Storey and C. Cohen-tannoudji, The feynman path integral approach to atomic interferometry. a tutorial, J. Phys. II France, vol.4, pp.1999-2027, 1994.
URL : https://hal.archives-ouvertes.fr/jpa-00248106

J. L. Staudenmann, S. A. Werner, R. Colella, and A. W. Overhauser, Gravity and inertia in quantum mechanics, Phys. Rev. A, vol.21, pp.1419-1438, 1980.

F. Hasselbach and M. Nicklaus, An electron optical sagnac experiment, Physica B C, vol.151, pp.230-234, 1988.

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, Optical ramsey spectroscopy in a rotating frame: Sagnac effect in a matterwave interferometer, Phys. Rev. Lett, vol.67, pp.177-180, 1991.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein et al., Rotation sensing with an atom interferometer, Phys. Rev. Lett, vol.78, pp.760-763, 1997.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Precision rotation measurements with an atom interferometer gyroscope, Phys. Rev. Lett, vol.78, pp.2046-2049, 1997.

T. L. Gustavson, A. Landragin, and M. A. Kasevich, Rotation sensing with a dual atom-interferometer sagnac gyroscope, Class. Quantum Grav, vol.17, pp.2385-2398, 2000.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils et al., Six-axis inertial sensor using cold-atom interferometry, Phys. Rev. Lett, p.97, 2006.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, Multiaxis inertial sensing with long-time point source atom interferometry, Phys. Rev. Lett, vol.111, 2013.

G. W. Hoth, B. Pelle, S. Riedl, J. Kitching, and E. A. Donley, Point source atom interferometry with a cloud of finite size, Appl. Phys. Lett, vol.109, p.71113, 2016.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. G. Alzar et al., Continuous cold-atom inertial sensor with1 nrad/secRotation stability, Phys. Rev. Lett, vol.116, 2016.

M. Meunier, I. Dutta, R. Geiger, C. Guerlin, and C. L. Alzar, Stability enhancement by joint phase measurements in a single cold atomic fountain, Phys. Rev. A, vol.90, 2014.

J. Fils, F. Leduc, P. Bouyer, D. Holleville, N. Dimarcq et al., Influence of optical aberrations in an atomic gyroscope, The European Physical Journal D, vol.36, pp.257-260, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00005869

A. S. Arnold, C. S. Garvie, and E. E. Riis, Large magnetic storage ring for Bose-Einstein condensates, Phys. Rev. A, vol.73, 2006.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-kurn, Bose-Einstein condensation in a circular waveguide, Phys. Rev. Lett, vol.95, 2005.

P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz et al., Matter-wave interferometers using TAAP rings, New Journal of Physics, vol.18, p.75014, 2016.

W. H. Heathcote, E. Nugent, B. T. Sheard, and C. J. Foot, A ring trap for ultracold atoms in an RF-dressed state, New Journal of Physics, vol.10, p.43012, 2008.

J. A. Sauer, M. D. Barrett, and M. S. Chapman, Storage ring for neutral atoms, Phys. Rev. Lett, vol.87, 2001.

P. M. Baker, J. A. Stickney, M. B. Squires, J. A. Scoville, E. J. Carlson et al., Adjustable microchip ring trap for cold atoms and molecules, Phys. Rev. A, vol.80, 2009.

E. M. Wright, J. Arlt, and K. Dholakia, Toroidal optical dipole traps for atomic Bose-Einstein condensates using laguerre-gaussian beams, Phys. Rev. A, vol.63, 2000.

K. Henderson, C. Ryu, C. Maccormick, and M. G. Boshier, Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates, New Journal of Physics, vol.11, p.43030, 2009.

T. A. Bell, J. A. Glidden, L. Humbert, M. W. Bromley, S. A. Haine et al., Bose-Einstein condensation in large time-averaged optical ring potentials, vol.18, p.35003, 2016.

S. Wu, E. Su, and M. Prentiss, Demonstration of an area-enclosing guidedatom interferometer for rotation sensing, Phys. Rev. Lett, p.99, 2007.

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth et al., Matter-wave interferometry in a double well on an atom chip, Nat Phys, vol.1, pp.57-62, 2005.

Y. Shin, C. Sanner, G. Jo, T. A. Pasquini, M. Saba et al., Interference of Bose-Einstein condensates split with an atom chip, Phys. Rev. A, vol.72, 2005.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, Beam splitter for guided atoms, Phys. Rev. Lett, vol.85, pp.5483-5487, 2000.

J. D. Pritchard, A. N. Dinkelaker, A. S. Arnold, P. F. Griffin, and E. E. Riis, Demonstration of an inductively coupled ring trap for cold atoms, New Journal of Physics, vol.14, p.103047, 2012.

T. Müller, X. Wu, A. Mohan, A. Eyvazov, Y. Wu et al., New Journal of Physics, vol.10, p.73006, 2008.

J. Reichel and V. Vuletic, Atom Chips, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01727926

M. Keil, O. Amit, S. Zhou, D. Groswasser, Y. Japha et al., Fifteen years of cold matter on the atom chip: promise, realizations, and prospects, Journal of Modern Optics, vol.63, pp.1840-1885, 2016.

C. Garrido-alzar, Interférométrie optique et atomique dans l'ingénierie d'états quantiques et les mesures de précision, 2016.

P. Cladé, S. Guellati-khélifa, F. Nez, and F. Biraben, Large momentum beam splitter using bloch oscillations, Phys. Rev. Lett, vol.102, 2009.

J. Trebbia, C. L. Alzar, R. Cornelussen, C. I. Westbrook, and E. I. Bouchoule, Roughness suppression via rapid current modulation on an atom chip, Phys. Rev. Lett, vol.98, p.3, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00127098

R. Stevenson, M. R. Hush, T. Bishop, I. Lesanovsky, and T. Fernholz, Sagnac interferometry with a single atomic clock, Phys. Rev. Lett, vol.115, 2015.

W. Gerlach and O. Stern, Der experimentelle nachweis der richtungsquantelung im magnetfeld, Zeitschrift fuer Anorganische und Allgemeine Chemier Physik, vol.9, pp.349-352, 1922.

W. Ketterle and D. E. Pritchard, Trapping and focusing ground state atoms with static fields, Applied Physics B Photophysics and Laser Chemistry, vol.54, pp.403-406, 1992.

J. Schmiedmayer, A wire trap for neutral atoms, Applied Physics B Laser and Optics, vol.60, pp.169-179, 1995.

J. Schmiedmayer, Guiding and trapping a neutral atom on a wire, Phys. Rev. A, vol.52, pp.13-16, 1995.

J. D. Weinstein and K. G. Libbrecht, Microscopic magnetic traps for neutral atoms, Phys. Rev. A, vol.52, pp.4004-4009, 1995.

J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Miniaturized wire trap for neutral atoms, Phys. Rev. Lett, vol.81, pp.5310-5313, 1998.

T. H. Bergeman, P. Mcnicholl, J. Kycia, H. Metcalf, and N. L. Balazs, Quantized motion of atoms in a quadrupole magnetostatic trap, J. Opt. Soc. Am. B, vol.6, pp.2249-2256, 1989.

I. Lesanovsky and P. Schmelcher, Spectral properties and lifetimes of neutral fermions and bosons in a magnetic quadrupole trap, Phys. Rev. A, vol.71, 2005.

E. A. Hinds and C. Eberlein, Quantum propagation of neutral atoms in a magnetic quadrupole guide, Phys. Rev. A, vol.61, p.33614, 2000.

E. A. Hinds and C. Eberlein, Erratum: Quantum propagation of neutral atoms in a magnetic quadrupole guide, phys. rev. a, vol.61, p.39902, 2000.

R. M. Potvliege and V. Zehnlé, Complex scaling calculation of the decaying quantum-propagation modes of neutral atoms in a magnetic guide, Phys. Rev. A, vol.63, 2001.

C. V. Sukumar and D. M. Brink, Spin-flip transitions in a magnetic trap, Phys. Rev. A, vol.56, pp.2451-2454, 1997.

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann et al., Combined chips for atom optics, Phys. Rev. A, vol.71, p.63619, 2005.

J. Thywissen, M. Olshanii, G. Zabow, M. Drndi?, K. Johnson et al., Microfabricated magnetic waveguides for neutral atoms, The European Physical Journal D -Atomic, Molecular, Optical and Plasma Physics, vol.7, pp.361-367, 1999.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith et al., Guiding neutral atoms on a chip, Phys. Rev. Lett, vol.84, pp.1124-1127, 2000.

J. Estève, T. Schumm, J. Trebbia, I. Bouchoule, A. Aspect et al., Realizing a stable magnetic double-well potential on an atom chip, The European Physical Journal D -Atomic, Molecular, Optical and Plasma Physics, vol.35, pp.141-146, 2005.

T. Davis, 2d magnetic traps for ultra-cold atoms: a simple theory using complex numbers, Molecular, Optical and Plasma Physics, vol.18, pp.27-36, 2001.

X. Luo, P. Krüger, K. Brugger, S. Wildermuth, H. Gimpel et al., Atom fiber for omnidirectional guiding of cold neutral atoms, Optics Letters, vol.29, p.2145, 2004.

M. B. Crookston, P. M. Baker, and M. P. Robinson, A microchip ring trap for cold atoms, J. Phys. B: At. Mol. Opt. Phys, vol.38, pp.3289-3298, 2005.

X. Jiang, X. Li, X. Xu, H. Zhang, and Y. Wang, Archimedean-spiral-based microchip ring waveguide for cold atoms, Physics Letters, vol.32, p.20301, 2015.

P. F. Griffin, E. Riis, and A. S. Arnold, Smooth inductively coupled ring trap for atoms, Phys. Rev. A, vol.77, 2008.

R. V. Lovelace, C. Mehanian, T. J. Tommila, and D. M. Lee, Magnetic confinement of a neutral gas, Nature, vol.318, pp.30-36, 1985.

R. J. Spreeuw, C. Gerz, L. S. Goldner, W. D. Phillips, S. L. Rolston et al., Demonstration of neutral atom trapping with microwaves, Phys. Rev. Lett, vol.72, pp.3162-3165, 1994.

E. A. Cornell, C. Monroe, and C. E. Wieman, Multiply loaded, ac magnetic trap for neutral atoms, Phys. Rev. Lett, vol.67, pp.2439-2442, 1991.

L. Xu, J. Yin, and Y. Wang, A proposal for guiding and trapping of cold atoms in the AC field of current-carrying wires, Jnl Chinese Chemical Soc, vol.48, pp.549-553, 2001.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, vol.269, pp.198-201, 1995.

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms, Phys. Rev. Lett, vol.74, pp.3352-3355, 1995.

A. S. Arnold, Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein condensates, J. Phys. B: At. Mol. Opt. Phys, vol.37, pp.29-33, 2003.

T. Bergeman, G. Erez, and H. J. Metcalf, Magnetostatic trapping fields for neutral atoms, Phys. Rev. A, vol.35, pp.1535-1546, 1987.

O. Zobay and B. M. Garraway, Two-dimensional atom trapping in fieldinduced adiabatic potentials, Phys. Rev. Lett, vol.86, pp.1195-1198, 2001.

O. Zobay and B. M. Garraway, Atom trapping and two-dimensional BoseEinstein condensates in field-induced adiabatic potentials, Phys. Rev. A, vol.69, 2004.

Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V. Lorent et al., Ultracold atoms confined in rf-induced two-dimensional trapping potentials, Europhysics Letters (EPL), vol.67, pp.593-599, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00001226

B. M. Garraway and H. Perrin, Recent developments in trapping and manipulation of atoms with adiabatic potentials, J. Phys. B: At. Mol. Opt. Phys, vol.49, p.172001, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494027

I. Lesanovsky, T. Schumm, S. Hofferberth, L. M. Andersson, P. Krüger et al., Adiabatic radio-frequency potentials for the coherent manipulation of matter waves, Phys. Rev. A, vol.73, 2006.

S. Hofferberth, B. Fischer, T. Schumm, J. Schmiedmayer, and E. I. Lesanovsky, Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation, Phys. Rev. A, vol.76, 2007.

I. Lesanovsky and W. Von-klitzing, Time-averaged adiabatic potentials: Versatile matter-wave guides and atom traps, Phys. Rev. Lett, p.99, 2007.

B. E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, and C. J. Foot, Timeaveraged adiabatic ring potential for ultracold atoms, Phys. Rev. A, vol.83, 2011.

S. Kraft, A. G. Nther, H. Ott, D. Wharam, C. Zimmermann et al., Anomalous longitudinal magnetic field near the surface of copper conductors, J. Phys. B: At. Mol. Opt. Phys, vol.35, pp.469-474, 2002.

T. Schumm, J. Estève, C. Figl, J. Trebbia, C. Aussibal et al., Atom chips in the real world: the effects of wire corrugation, The European Physical Journal D, vol.32, pp.171-180, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00002220

D. Wang, M. D. Lukin, and E. E. Demler, Disordered Bose-Einstein condensates in quasi-one-dimensional magnetic microtraps, Phys. Rev. Lett, vol.92, 2004.

M. Vangeleyn, B. M. Garraway, H. Perrin, and A. S. Arnold, Inductive dressed ring traps for ultracold atoms, J. Phys. B: At. Mol. Opt. Phys, vol.47, p.71001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987443

G. A. Sinuco-león, K. A. Burrows, A. S. Arnold, and B. M. Garraway, Inductively guided circuits for ultracold dressed atoms, Nature Communications, vol.5, p.5289, 2014.

J. M. Reeves, O. Garcia, B. Deissler, K. L. Baranowski, K. J. Hughes et al., Time-orbiting potential trap for Bose-Einstein condensate interferometry, Phys. Rev. A, vol.72, 2005.

K. L. Baranowski and C. A. Sackett, A stable ac current source for magnetic traps, J. Phys. B: At. Mol. Opt. Phys, vol.39, pp.2949-2957, 2006.

S. Rahav, I. Gilary, and E. S. Fishman, Time independent description of rapidly oscillating potentials, Phys. Rev. Lett, p.91, 2003.

R. J. Cook, D. G. Shankland, and A. L. Wells, Quantum theory of particle motion in a rapidly oscillating field, Phys. Rev. A, vol.31, pp.564-567, 1985.

I. Bouchoule, J. Trebbia, and C. L. Alzar, Limitations of the modulation method to smooth wire-guide roughness, Phys. Rev. A, vol.77, 2008.

S. Gov and S. Shtrikman, Dynamic stability of the time-averaged orbiting potential trap: Exact classical analysis, J. Appl. Phys, vol.86, p.2250, 1999.

S. Gov, S. Shtrikman, and H. Thomas, 1D toy model for magnetic trapping, American Journal of Physics, vol.68, p.334, 2000.

R. Franzosi, B. Zambon, and E. E. Arimondo, Nonadiabatic effects in the dynamics of atoms confined in a cylindric time-orbiting-potential magnetic trap, Phys. Rev. A, vol.70, 2004.

B. Zambon and R. Franzosi, Dynamics of atoms in a time-orbiting-potential trap: consequences of the classical description, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.43, p.85302, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569909

N. Blanchard and A. Zozulya, Transverse heating due to nonadiabatic propagation of cold atoms in an atomic guide, Optics Communications, vol.190, pp.231-237, 2001.

M. W. Bromley and B. D. Esry, Classical aspects of ultracold atom wave packet motion through microstructured waveguide bends, Phys. Rev. A, vol.69, 2004.

P. L. Halkyard, M. P. Jones, and S. A. Gardiner, Rotational response of two-component Bose-Einstein condensates in ring traps, Phys. Rev. A, vol.81, 2010.

O. Dutta, M. Jääskeläinen, and P. Meystre, Single-mode acceleration of matter waves in circular waveguides, Phys. Rev. A, vol.74, 2006.

S. Waldenstrøm and K. Naqvi, The overlap integrals of two harmonicoscillator wavefunctions: some remarks on originals and reproductions, Chemical Physics Letters, vol.85, pp.581-584, 1982.

C. L. Alzar, W. Yan, and A. Landragin, Towards high sensitivity rotation sensing using an atom chip, Research in Optical Sciences, 2012.

E. Giese, A. Roura, G. Tackmann, E. M. Rasel, and W. P. Schleich, Double Bragg diffraction: A tool for atom optics, Phys. Rev. A, vol.88, 2013.

C. Ryu and M. G. Boshier, Integrated coherent matter wave circuits, New Journal of Physics, vol.17, p.92002, 2015.

F. Ansbacher, A note on the overlap integral of two harmonic oscillator wave functions, Zeitschrift für Naturforschung A, vol.14, 1959.

J. Reichel, W. Hänsel, and T. W. Hänsch, Atomic micromanipulation with magnetic surface traps, Phys. Rev. Lett, vol.83, pp.3398-3401, 1999.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Trapping of neutral sodium atoms with radiation pressure, Phys. Rev. Lett, vol.59, pp.2631-2634, 1987.

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts et al., Optical molasses, Journal of the Optical Society of America B, vol.6, p.2084, 1989.

C. Adams and E. Riis, Laser cooling and trapping of neutral atoms, Progress in Quantum Electronics, vol.21, pp.1-79, 1997.

W. Yan, Design of a magnetic guide for rotation sensing by on chip atom interferometry, 2014.

F. Reinhard, Design and construction of an atomic clock on a chip, vol.5, p.11, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00414386

A. Browaeys, J. Poupard, A. Robert, S. Nowak, W. Rooijakkers et al., Two body loss rate in a magneto-optical trap of metastable he, The European Physical Journal D -Atomic, Molecular and Optical Physics, vol.8, pp.199-203, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00575995

T. Arpornthip, C. A. Sackett, and K. J. Hughes, Vacuum-pressure measurement using a magneto-optical trap, Phys. Rev. A, vol.85, 2012.

R. W. Moore, L. A. Lee, E. A. Findlay, L. Torralbo-campo, G. D. Bruce et al., Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method, Rev. Sci. Instrum, vol.86, p.93108, 2015.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Very cold trapped atoms in a vapor cell, Phys. Rev. Lett, vol.65, pp.1571-1574, 1990.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Threedimensional viscous confinement and cooling of atoms by resonance radiation pressure, Phys. Rev. Lett, vol.55, pp.48-51, 1985.

L. Russell, R. Kumar, V. Tiwari, and S. N. Chormaic, Measurements on release-recapture of cold 85rb atoms using an optical nanofibre in a magneto-optical trap, Optics Communications, vol.309, pp.313-317, 2013.

J. H. Burke and C. A. Sackett, Scalable Bose-Einstein-condensate sagnac interferometer in a linear trap, Phys. Rev. A, vol.80, 2009.

O. Garcia, B. Deissler, K. J. Hughes, J. M. Reeves, and C. A. Sackett, Bose-Einstein-condensate interferometer with macroscopic arm separation, Phys. Rev. A, vol.74, 2006.

S. Wu, Y. Wang, Q. Diot, and M. Prentiss, Splitting matter waves using an optimized standing-wave light-pulse sequence, Phys. Rev. A, vol.71, 2005.

K. J. Hughes, B. Deissler, J. H. Burke, and C. A. Sackett, High-fidelity manipulation of a Bose-Einstein condensate using an optical standing wave, Phys. Rev. A, vol.76, 2007.

S. Groth, P. Kruger, S. Wildermuth, R. Folman, T. Fernholz et al., Atom chips: Fabrication and thermal properties, Appl. Phys. Lett, vol.85, p.2980, 2004.

S. Groth, Development, fabrication, and characterisation of atom chips, Theses, 2006.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, Trappedatom interferometer in a magnetic microtrap, Phys. Rev. A, vol.64, 2001.

P. W. Courteille, B. Deh, J. Fortágh, A. Günther, S. Kraft et al., Highly versatile atomic micro traps generated by multifrequency magnetic field modulation, J. Phys. B: At. Mol. Opt. Phys, vol.39, pp.1055-1064, 2006.

K. Moler, D. S. Weiss, M. Kasevich, and E. S. Chu, Theoretical analysis of velocity-selective raman transitions, Phys. Rev. A, vol.45, pp.342-348, 1992.

C. , Réalisation d'un condesat de Bose-Einstein sur une microstructure, 2003.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt et al., Optimized magneto-optical trap for experiments with ultracold atoms near surfaces, Phys. Rev. A, vol.69, 2004.

J. , Microchip traps and bose einstein condensation, Applied Physics B: Lasers and Optics, vol.74, pp.469-487, 2002.