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Abstract
This thesis presents the development of a high-accuracy optical fre-

quency standard based on neutral mercury 199Hg trapped in an optical
lattice.

We will present the experimental setup and the improvements that
were made during this thesis, which have allowed us to perform spec-
troscopy on the doubly forbidden 1S0 → 3P0 mercury clock transition
at the Hz level resolution.

With such a resolution, we have been able to perform an in-depth
study of the physical effects affecting the clock transition.

This study represents a factor 60 improvement in accuracy on the
knowledge of the clock transition frequency, pushing the accuracy be-
low the current realization of the SI second by the best cesium atomic
fountains.

Finally, we will present the results of several comparison cam-
paigns between the mercury clock and other state-of-the-art frequency
standards, both in the optical and in the microwave domain.

Résumé
L’objet de cette thèse est le développement d’un étalon de fréquence

optique basé sur l’atome de mercure 199Hg piégé dans un réseau op-
tique.

Nous présenterons le dispositif expérimental, les améliorations ap-
portées au cours de la thèse qui ont permis d’effectuer la spectroscopie
de la transition doublement interdite 1S0 → 3P0 du mercure dans le
domaine ultraviolet avec une résolution de l’ordre du Hz. Une telle
résolution nous a permis de mener une étude approfondie des effets
physiques affectant la fréquence de la transition d’horloge.

Cette étude a permis un gain d’un facteur 60 sur la connaissance
de la fréquence de la transition d’horloge, et de pousser l’incertitude
au delà de la réalisation de la seconde SI par les étalons de fréquence
basés sur le césium.

Enfin nous présenterons les résultats de plusieurs campagnes de
comparaison entre notre étalon au mercure et d’autres horloges de
très haute précision fonctionnant dans le domaine optique ainsi que
dans le domaine micro-onde.
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Introduction

0.1 Optical Atomic Clocks

Optical clocks are the new state of the art in the world of atomic
frequency standards, and have surpassed microwave frequency stan-
dards in both stability [37] [7] and accuracy [75] [39] [113].

It has been recognized decades ago that an unperturbed atom with
quantized energy levels can provide an ideal frequency reference by
linking the energy difference between two energy levels with a fre-
quency through Planck’s relation:

∆E = Ee − Eg = hν0 (1)

An atomic frequency standard realizes the physical implementation of

Figure 1. Principle of a frequency standard based on an atomic transition. The fre-
quency of a tunable macroscopic (local) oscillator ν(t) is compared against the frequency
of an ultrastable atomic reference ν0. The difference in frequency δ(t) is used to correct
the frequency fluctuations and drifts of the oscillator thanks to a servo-system and keep
it locked to the atomic reference. The in-loop output of the oscillator provides the useful
signal of the clock which can be sent to potential users, for example via optical fiber
links or microwave links.

this concept into a useful macroscopic device (see Figure 1).

1



2 Introduction

In this short introduction, we will review the key aspects of such
devices, as an introduction to the rest of the manuscript which deals
with the implementation of an optical frequency standard based on
the interrogation of laser-cooled and trapped neutral mercury atoms
by an ultrastable laser.

The two most commonly used figures of merit for atomic frequency
standards are accuracy and stability. The accuracy is the difference
between the mean frequency of the macroscopic oscillator (usually in
the microwave or optical domains) and its reference value, defined as
the frequency of a specific transition of a hypothetical single, isolated,
unperturbed atom in its own rest frame. The stability represents the
frequency noise of the oscillator. This can be formally represented by
the equation:

νosc(t) = ν0(1 + ε+ y(t)) (2)

Here, ν0 is the reference frequency , ε is the offset of the mean oscilla-
tor frequency with respect to ν0, which arises because of environmental
perturbation of the atom’s energy levels (the detailed study of such per-
turbations in the case of a clock based on neutral mercury will be the
subject of Chapter 5), and y(t) is the frequency noise of the oscillator.
In the frequency metrology community, the uncertainty that we have
on the knowledge of ε is called the uncertainty of the frequency stan-
dard, and y(t) is called its frequency (in)stability, often characterized
using the Allan variance [2] and throughout this manuscript, we will
use as a measure of clock noise performance the fractional frequency
instability, i.e. the square-root of the Allan variance.

Another key parameter governing the performances of any frequency
discriminator is its quality factor

Qat = ν0/∆ν (3)

where ν0 is the frequency of the oscillator and ∆ν is its linewidth.
The fractional frequency instability of an oscillator locked to an

atomic transition with a quality factor Qat often shows white frequency
noise behavior, and we can write it as:

σy(τ) ∝ 1

Qosc

1

S/N

√
1

τ
(4)

where S/N is the signal to noise ratio of the spectroscopic signal, and
τ is the integration time. As can be seen from Equations 4 and 3,
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for a given linewidth of the atomic signal ∆ν (which is usually set by
the time spent interrogating the atomic reference, see Section 3.1.3
for a more detailed discussion in the context of this thesis), a huge
gain in clock performance is to be expected when switching from mi-
crowave to optical frequency standards owing to the dependence of σy
on the transition frequency. Indeed, microwave frequency standards
have transition frequencies in the vicinity of 1010 Hz, while optical fre-
quency standards possess clock frequencies above 1014 Hz, promising
a potential improvement of the clock stability by more than 4 orders of
magnitude. This is the main motivation for building optical frequency
standards.

Historically, the main hindrance to the development of optical fre-
quency standards was the evaluation and control of frequency shifts
(Doppler, recoil) related to atomic motion. Indeed, a first manifesta-
tion of this occurs when probing a gas of atoms at finite temperature.
A broadening of the spectroscopic signal much larger than the fun-
damental linewidth associated with the interrogation of a single atom
can be observed [91]. This so-called Doppler broadening arises be-
cause different atoms in the gas have distinct thermal velocities, and
therefore experience different Doppler shifts of the laser frequency. For
a large ensemble of atoms of mass m at temperature T , this broaden-
ing is linked to the velocity distribution of the atoms in the gas and it
can be written [91]:

∆ν

ν
= 2

√
2ln(2)

kBT

mc2
(5)

where kB is the Boltzmann constant. This Doppler broadening is on
the order of 10−9 for 199Hg atom at 100 µK, which is representative of
the case studied in this thesis. With the clock transition frequency of '
1015 Hz, this yields a Doppler-broadened linewidth of 100 kHz, much
higher than the natural linewidth of the atomic transition (sub-Hz).
In order to suppress frequency shifts associated with atomic motion,
the most effective solution is to trap the atoms to such a small length
scale (less than a wavelength of the light used to interrogate them) that
atomic motion becomes quantized, the so-called Lamb-Dicke regime
[117].

In this regime, the change in kinetic energy associated with the
absorption of a single probe photon is small compared to the quantized
energy spacing of the trap levels. An alternative way to think about
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this is to consider that if an atom is confined to much less than a
wavelength of the probing light, the spread of its atomic wavefunction
in position space ∆xat verifies:

∆xat �
λph
4π

(6)

where λph is the probe wavelength. In addition, Heisenberg’s uncer-
tainty principle states that

∆kat∆xat > 1/2 (7)

where ∆kat is the spread in atomic wavefunction in momentum space.
Combining Equation 6 with Equation 7, we obtain

∆kat >>
2π

λph
= kph (8)

This implies that in momentum space, the absorption of a probe pho-
ton induces a minor change of the atomic wave packet, or equivalently,
when reasoning in terms of energy conservation, the shift of the reso-
nance frequency induced by the absorption of a probe photon is small.
More quantitatively, this regime is parametrized by the Lamb Dicke
parameter η, which for an harmonic trapping potential writes:

η = kph

√
h̄

2mωtrap
(9)

where m is the mass of the ion, ωtrap is the trapping frequency, and
kph is the probe wave-vector. The Lamb-Dicke regime is reached when
η � 1.

A more complete description of this regime and the physics asso-
ciated with probing strongly confined atoms in the context of optical
lattice clocks is discussed in Section 3.1.1.

0.1.1 Ion-based optical clocks

Trapping in the Lamb-Dicke regime was first realized with ions,
since their electric charge provides a convenient mean of trapping
them using the Coulomb interaction in a Paul [81] or Penning trap
[19]. The conditions for Lamb-Dicke interrogation are routinely attain-
able using a single ion in most ion trapping apparatus which feature
trapping potentials with trap frequencies in the MHz range and rela-
tively heavy ions.
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In this regime, the atomic motion in the trap appears as motional
sidebands far apart (' MHz) from the carrier which is free of motional
effects, and frequency shifts associated with 1st order Doppler effect
and recoil effects vanish almost completely. For high accuracy stan-
dards, the 2nd order Doppler effect (or time-dilation shift) is still a
dominant contribution to the clock accuracy, but recently this effect
has been shown to be manageable at the low 10−18 level by realizing
sympathetic cooling of the Al+ clock ion to the 3D motional ground
state, contributing a final shift of −1.9(1)× 10−18 [12].

Another advantage of ion clocks is that, thanks to the large con-
finement strength and trap depth attainable in ions traps, an ion can
be trapped for several days, up to months or even years, providing
long interrogation times (mostly limited by local oscillator noise) in a
metrological environment, provided that the external heating rates are
small enough so that they do not expel the ion out of the trap. An
evaluation of these rates was performed in [22] on a Hg+ ion clock,
and the experimental findings yield a heating time constant of 95 h,
mainly due to stray noise fields at radio frequencies. Incidentally, this
heating rate corresponds to 6 motional quantas per second, and limits
the attainable temperature after sideband cooling.

Up until a couple of years ago, optical ion clocks have held the
record for atomic clock accuracy, with a Al+ clock showing an accu-
racy of 8.6×10−18 [13], allowing for frequency ratio measurements at
the 17th digit accuracy [96]. More recently, a Yb+ clock at PTB has
demonstrated an accuracy of 3×10−18 [39].

However, because of the strong Coulomb interaction between nearby
trapped ions, operating an optical clock using multiple ions simultane-
ously trapped and interrogated has proven very challenging. Progress
have been made towards this goal [47], but so far optical ion clocks
have been mainly limited to a regime in which only a single ion is in-
terrogated, greatly limiting the achievable clock stability, (see equation
4 and Section 4.3.1).

0.1.2 Optical lattice clocks

To benefit from the frequency stability enhancement associated
with the interrogation of many atoms on an optical transition, we
therefore have to work with neutral atoms. Since they do not have
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an electric charge, we need to find another way to trap these particles.
Luckily, focused laser light can create optical dipole traps, light struc-
tures that trap atoms by inducing an ac Stark shift of the atomic levels
which is proportional to the intensity of the light [30]:

En = −1

2
αn(ω)|Epot(ω, t)|2 (10)

Where |n〉 is the particular quantum state under consideration, αn(ω)

is its atomic polarizability and Epot(ω, t) is the external electric field. If
ω is chosen such that αn(ω) > 0, then En becomes negative and it is
therefore energetically favorable for the atoms to sit in the regions of
space where the light is most intense.

A one-dimensional optical lattice consists in an array of such op-
tical dipole traps created by counter-propagating high-intensity laser
beams, possibly in an enhancement cavity configuration (see Section
1.3.3 in Chapter 1) [31]. The optical lattice potential has the form [6]:

U(r, z) = U0 exp

[
−2

(
r

w(z)

)2
]

cos2(klz) (11)

Where U0 is the trap depth, defined as the difference between the
asymptotic value of the potential and the potential minimum, r is the
transverse coordinate, w(z) is the beam width as a function of the lon-
gitudinal coordinate z, and kl is the lattice-laser wave-vector. In the
context of optical lattice clocks, the natural energy scale to describe
the trap depth is the lattice recoil energy

Erec =
h̄2k2

lat

2m
(12)

where m is the 199Hg mass and klat = 2π/λlat. Erec is the kinetic energy
that a mercury atom would have if it acquired a momentum kick equal
to that of a lattice photon. In the case of mercury, Erec ' h × 7.57 kHz.

Such a potential can trap several thousands of neutral atoms for
extended periods of time (a few seconds in a 1D lattice, up to 1 minute
in a 3D lattice [10]) allowing long interrogation pulses and therefore
narrow spectroscopic resonances in the optical domain (at the Hz level
or better [10]), provided that the trapping light is sufficiently far de-
tuned from any atomic resonance in order to avoid heating the atoms
out of the trap. For a detuning ∆ = ωL − ω0 of the trapping laser fre-
quency ωL from an atomic resonance with frequency ω0 and excited
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state decay rate Γ, the condition |∆| >> Γ needs to be satisfied. The
high attainable trap depths (several tens of recoil energies) allow com-
plete cancellation of motional effects below the 10−19 level of accuracy.

However, as seen from Equation 10, in order to confine neutral
atoms in the Lamb-Dicke regime, one needs an intense optical field,
which creates a strong AC-Stark shift of the clock levels. One key
point to note is that the overall shift of the the atomic clock transition
is given by the differential AC-Stark shift between the two clock lev-
els. The concept of Optical Lattice Clock put forward by H. Katori in
the early 2000s [43],[106], [45] lies in the fact that since the shift is
proportional to the difference in the atomic polarizability of the two
relevant clock levels at the lattice light frequency ∆νLS ∝ ∆α(νlattice) ×
|Epot(ω, t)|2, if we can find a frequency νm for which ∆α(νm) = αe(νm)−
αe(νm) = 0 (while αn ' a few tens of a.u., in order to get reasonable trap
depths), then the frequency shift vanishes and becomes independent
from trapping light intensity fluctuations, at least to 1st order. For a
given atom, there usually exist several frequencies νm, and in the case
of 199Hg, explored in this thesis, the most convenient magic wavelength
is found close to 362 nm.

A key advantage of using neutral atoms as opposed to ions is that
inter-atomic interactions are much weaker (dipole-dipole interactions
rather than Coulomb interaction), which means that we can trap and
interrogate several thousand atoms at the same time in metrological
conditions. This confers to the optical lattice clock technology a great
gain in frequency stability compared to optical frequency standards
based on a single trapped ion (about

√
N were N is the number of

atoms being interrogated, see Section 4.3.1).

In summary, provided that the optical-lattice-related shifts can be
managed to the desired degree of uncertainty, we have found in the
optical lattice clock the equivalent of having multiple uncorrelated ion
clocks working in parallel.

0.1.3 Current and prospective applications of optical fre-
quency standards

I would now like to emphasize several new envisioned applications
for optical frequency standards, which provide the motivation for world-
wide research efforts towards increasingly high levels of clock fre-
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quency accuracy and stability, and for this thesis in particular.

Figure 2. Schematics of the optical fiber network linking optical atomic clocks located
at PTB in Braunschweig, Germany and at SYRTE in Paris, France. Picture taken from
[56].

The first one is chronometric geodesy, namely that a measurement
of the gravitational redshift of the clock transition with respect to the
known bare-transition frequency can allow a local probing of the grav-
itational field at the position of the atoms [109]. On earth, the gravi-
tational redshift scales as 1×10−16 per meter of elevation. This means
that a clock working with an accuracy of 10−18 can probe the gravi-
tational field with a resolution of 1 cm, making it a very useful tool
for testing geoid models and for geophysics applications. To that end,
transportable optical clocks are being developed in several laboratories
around the world [49].

Another topic of high interest to the optical clock community is the
possible redefinition of the SI second in terms of (an) optical transi-
tion(s), and the dissemination of optical time and frequency references
via optical fibers networks [94]. Such a network is currently being
built on the French side in a collaboration between our group and
the LPL (Laboratoire de Physique des Laser) group in Villetaneuse,
linking SYRTE (SYstèmes de Références Temps-Espace) in Paris with
other national metrology institutes in Europe, namely NPL (National
Physical Laboratory) in the UK, PTB (Physikalisch-Technische Bunde-
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sanstalt) in Germany and INRIM (Istituto Nazionale di Ricerca Metro-
logica) in Italy [56] (see Figure 2). These fiber links also allow distant
comparisons of optical clocks for fundamental physics tests [20].

Finally, another application in fundamental physics is the probing
and monitoring of the variation of fundamental constants of nature,
such as the fine structure constant, by looking at the time evolution
of frequency ratios between clocks based on different atomic species
over a few years [114] (see Section 0.2 for a more detailed discus-
sion). These variations are predicted by many theories aiming at uni-
fying electroweak and strong interactions (Standard Model) with grav-
ity (currently described by General Relativity), a longstanding goal of
modern physics.

0.1.4 Context and objectives of my PhD work

My PhD work, performed in the optical frequency group of SYRTE
in Paris Observatory, is part of a global effort to improve the perfor-
mances of optical clocks to a level compatible with applications men-
tioned above.

In our lab, two Strontium optical lattice clocks are currently under
development, which have reached an accuracy of 4.1 × 10−17 [57] and
have shown nice agreement when compared with each other, as well
as great reproducibility when comparing with microwave clocks [52],
[57].

On an international scale, a single clock instability of 1.4 × 10−15

at one second has been demonstrated for a single Al+ ion optical clock
[13], optical lattice clocks have shown instabilities as low as 1.4 ×
10−16 at one second [102], reaching 10−18 measurement precision af-
ter a few thousand seconds. As far as accuracy is concerned, single
ion clocks have long been the reference for optical clocks, with a sin-
gle ion Al+ clock demonstrating a total frequency uncertainty of 8.6 ×
10−18 [13]. Recently, a single ion Yb+ clock has improved upon this
remarkable accuracy with a record 3 × 10−18 total frequency uncer-
tainty [39]. Optical lattice clocks are now reaching similar accuracies
at the 10−18 level [75], [113].

However, I want to emphasize the fact that in order to be useful
tool for precision measurements, clocks have to be compared with
each other, and most of the applications detailed in Section 0.1.3 rely
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upon comparison of optical clocks over long distances which has been
demonstrated by [109] with a resolution of 5.9 × 10−18, and/or com-
parison of optical clocks based on different atomic elements for which
the best published accuracy is the ratio reported in [73] with an accu-
racy of 4 × 10−17.

At the beginning of this thesis, the mercury clock had demonstrated
a short term stability of 5.7 × 10−15 at one second averaging time
[63], and the overall accuracy of the clock was 5.4 × 10−15 [65]. The
objective of my PhD work was to lower the instability and improve
the accuracy of the mercury clock below the performances of state of
the art microwave frequency standards, and perform clock compar-
isons with the mercury clock once the accuracy was established. This
manuscript details the technical improvements which allowed to push
the short term stability to 1.2 × 10−15 at one second, to subsequently
lower the uncertainty to 9.6 × 10−17, and finally to measure three fre-
quency ratios involving the mercury clock.

0.2 The Mercury Atom: a Short Overview

In our experiment, we have chosen to use neutral mercury atoms
as a frequency reference. I would now like to highlight a few basic
properties of the mercury element.

Mercury is a chemical element with symbol Hg and atomic number
80, making it the second heaviest chemical elements ever laser-cooled.
It is a liquid at room temperature (freezing point ∼ -40◦C), remov-
ing the need for an atomic oven from the experimental constraints for
building a mercury clock.

Mercury forms amalgams with many other metals. This property
is important since the vacuum chamber is built out of metallic (alu-
minum and titanium) and glass parts, and therefore mercury will likely
be adsorbed on the surface of the metallic walls of the vacuum cham-
ber instead of being pumped out, which could have implications for
the long-term quality of the vacuum reached in the science chamber.

Mercury has 7 stable isotopes, which can be found in Table 1 along
with their abundance and nuclear spin. Two of these isotopes are
fermions with relatively high abundance, and therefore suitable for
use in a 1D optical lattice clock. This rich isotope structure allows
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Atomic Mass Number Natural Abundance Nuclear Spin

196 0.15 % 0

198 9.97 % 0

199 16.87 % 1/2

200 23.10 % 0

201 13.18 % 3/2

202 29.86 % 0

204 6.87 % 0

Table 1. List of the naturally occurring isotopes of mercury, along with their relative
abundance and nuclear spin.

for studies of collisional properties, and since different isotopes can
have very different collisional properties, this gives us the freedom to
shift from one fermion to the other if collisional shift ever becomes a
problem for clock accuracy.

All the experiments discussed in this thesis have been performed
using the isotope 199Hg, owing to its simple atomic structure and rela-
tive abundance.

0.3 Mercury Level Structure: the Key to a Highly
Accurate Frequency Standard

Following Klechkowski’s rule, the electronic configuration for mer-
cury can be written [Xe]4f145d106s2. It is an alkaline-earth-like atom
with 2 valence electrons, giving rise to two categories of electronic
states with spin singlet and spin triplet states exhibiting long lived
metastable states, making it an ideal candidate for a high accuracy
frequency standard.

The structure of the energy levels of 199Hg relevant for our work is
shown on Figure 3. The ground state is 1S0, and in our experiment,
the relevant excited states are those of the triplet P state (3P1 and 3P0).
In commonly used alkaline-earth-like atoms like Yb or Sr, the atoms
are first cooled using the broad 1S0 → 1P1 transition. However, in the
particular case of mercury, this transition has a wavelength of 185
nm, making it highly impractical for laser cooling, and it has a 119
MHz natural linewidth, corresponding to a Doppler temperature of 2.8
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Figure 3. Level scheme of the first excited states of neutral mercury. The atomic
transitions that are used throughout this thesis to manipulate and probe the atoms are
all linking the 1S0 ground state to the triplet P states (see text for more details).

mK, too high for directly loading an optical lattice.

Instead, we use single-stage cooling on the 1S0 → 3P1 inter-combi-
nation line at a wavelength of 254 nm (more details on the mercury
laser-cooling can be found in Chapter 1). This transition is in principle
not electric-dipole-coupled, due to the dipole selection rule ∆S = 0, and
is only weakly allowed due to the breakdown of LS coupling (A = 8.17
× 106 s−1 [35]). This weak but closed dipole transition permits single-
stage cooling below 100 µK temperatures and straightforward loading
in the optical lattice.

Similarly, the 1S0 → 3P0 transition is in principle strictly forbidden,
but for the fermionic isotope, the presence of a non zero nuclear spin
allows the hyperfine interaction to weakly mix the 3P0 state with the
1P1 and 3P1 states, giving rise to a very weak dipole coupling (A = 0.76
s−1 for 199Hg [4], [87]). This very weak transition has a lifetime of 1.3 s
(199Hg) and a natural linewidth of ∆ν = A/2π = 121 mHz, making it a
very good narrow “clock” transition. However, the wavelength of 265.6
nm presents a challenge for high resolution spectroscopy, as we will
discuss in Chapter 1. Furthermore, the frequency of this clock transi-
tion is highly immune to many environmental perturbations which are
the source of frequency offsets and fluctuations of atomic frequency
standards. Of particular interest is the weak sensitivity of mercury to
the blackbody radiation shift, which stems from the low polarizability
of neutral mercury. This frequency shift is one of the limiting factor
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of many neutral-atom-based optical clocks (see Section 5.5 for an in
depth discussion of this effect).

We can therefore argue that the mercury atom possess key prop-
erties that make it a potential highly accurate frequency standard at
room temperature, provided that the experimental challenges related
to the complex laser systems needed to manipulate it can be overcome.

0.4 Thesis Overview

The thesis is structured as follows:

• Chapter 1 is intended as a general description of the physics of
the mercury optical lattice clock, an introduction to the experi-
mental setup and provides the necessary background to appre-
hend the rest of the thesis. Some technical improvement, mainly
to the lattice laser system are also highlighted.

• Chapter 2 presents the new laser system for cooling of Hg which
I designed and built at the beginning of my thesis, a crucial im-
provement to the experimental setup which enabled the results
presented in the final chapters.

• Chapter 3 deals with high resolution (Hz level) spectroscopic
measurements on trapped neutral mercury atoms, an impor-
tant step towards a high-stability frequency standard. A study
of atomic motion inside the trap has also been performed, and
used as a diagnostic tool to characterize the trapping potential,
a key result for accurate evaluation of frequency shifts related to
the optical lattice AC Stark effect.

• Chapter 4 draws on the results of Chapter 3 to study experimen-
tally and theoretically the stability of the mercury clock when
locked to the atomic resonance. We then turn to the implemen-
tation of a spectral purity transfer via the operational optical
frequency comb to realize correlated mercury/strontium lattice
clock interrogation for high-stability frequency ratio measure-
ments.

• Chapter 5 details an in-depth study of the physical effects af-
fecting the atoms and resulting in frequency shifts of the clock
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transition. Several quantities are measured and, when available,
compared to similar measurements reported in the literature.

• Chapter 6 contains a detailed description of frequency ratios
measurements against other SYRTE’s frequency standards and
a discussion of the relevance of such frequency ratios for physics
and metrology.



Chapter 1

A Mercury Optical Lattice
Clock

This chapter serves as a general introduction to the experimental
setup and physics of the mercury optical lattice clock experiment that
we are building at SYRTE.

The mercury experiment was started in 2005 from an empty lab.
The vacuum chamber and a first generation of cooling laser system
based on Yb:YAG disk laser technology allowed Magneto-Optical trap-
ping of neutral mercury in 2008 [84]. The first major result fro the
experiment was the first spectroscopy of the ultra-narrow clock tran-
sition performed on free falling atoms, using the newly constructed
clock laser, yielding an improved (4 orders of magnitude) measurement
of the 199Hg clock transition frequency with an uncertainty of 5 kHz
[83]. These results are reported in the PhD thesis of M. Petersen [85].
Subsequently, lattice trapping of neutral mercury using a home-made
Ti:Sa laser allowed for the first determination of the magic wavelength
[120] and the first clock spectroscopy performed on trapped mercury
atoms [68]. Finally, a first accuracy evaluation of the mercury clock
was performed in 2012 with an uncertainty of 5.7 × 10−15, and the
mercury clock was compared to a Cs microwave fountain [65]. These
results were mainly limited by the poor available trap depth (20 Erec)
and the unreliability of the cooling laser system. The PhD thesis of
R. Tyumenev [112], with whom I had a one year overlap, describes
key steps toward operating the mercury experiment as a clock, with
the implementation of a new doubling cavity for the generation of the
cooling light at 254 nm, and a new under vacuum lattice cavity which

15
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allowed trap depth of 50 Erec to be reached.

1.1 Overview of the Experimental Setup

The purpose of this brief section is to give a general description of
the mercury experiment, the different building blocks and their pur-
poses, before providing more details in dedicated sections in the re-
mainder of the chapter.

Figure 1.1. Overview of the experimental setup of the mercury clock. The highlighted
subsystems are described in more details in the text. PDH: Pound-Drever-Hall, YDFA:
Ytterbium-Doped Fiber-Amplifier, SHG: Second-Harmonic Generation, OFC: Optical Fre-
quency Comb, ECDL: External-Cavity Diode-Laser, EM-CCD: Electron-Multiplied Charge-
Coupled Device, AOM: Acousto-Optic Modulator.

An overview of the experimental setup is show on Figure 1.1.
We can separate it in 5 main subsystems, which will be the subject

of detailed explanations in the next sections:

• The science chamber, where the atoms are cooled trapped and
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probed. It has a very compact design, with minimal optical ac-
cess, which allows for a more uniform blackbody environment
around the atoms. The atomic source is a droplet of liquid mer-
cury kept at -40◦C in a copper tube thanks to a Peltier element.
The atoms go through the 2D-MOT section, linked to the 3D-MOT
chamber by a differential pumping section consisting of a 1.5 mm
wide conical gold-plated segment, and are interrogated in a very-
high-vacuum environment of ' 10−9 mbar in the science cham-
ber. The science chamber also contains under-vacuum curved
mirrors forming a build-up cavity for enhanced trapping power.

• The cooling laser system, which will be the subject of Chapter
2. Briefly, we start with a home-built external cavity diode laser
at 1014.9 nm, which we amplify in a commercial fiber amplifier
(YDFA). This light is frequency doubled twice, first in a commer-
cial, single-pass setup, and then in a home-built doubling cavity
to reach the cooling wavelength for 199Hg of 253.7 nm. This sys-
tem can reliably (over the course of months) provide 50 mW of UV
light to cool down mercury atoms in a 3D Magneto-Optical Trap
(3D-MOT), which we will investigate in section 1.2.

• Once cooled down to a few tens of µK [64], the atoms are trapped
in a vertical one-dimensional optical lattice in order to suppress
Doppler effects. As was previously mentioned our setup uses a
build-up cavity trap, to reach high trap depths (' 100 Erec). The
trapping laser systems which is used to generate the 1D opti-
cal lattice, starts with a commercial Ti:Sa laser outputting up to
5.5 W at 725.2 nm, followed by frequency doubling to 362.6 nm,
which is the magic wavelength for mercury [120]. The laser is ref-
erenced either to a commercial wavemeter for crude calibration
and frequency-locking at the magic wavelength, or to a frequency
comb when ultra-high accuracy is needed. More details can be
found in section 1.3.

• The probe (or clock) laser is the local oscillator of our clock. We
use it to interrogate the atoms trapped in the 1D lattice in the
direction of strong confinement. We start with a Yb fiber laser
at 1062.5 nm, whose linewidth is narrowed to a few hundreds
of mHz by locking it to an Ultra-Stable Cavity (USC) [71], [17].
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The laser is then frequency doubled twice to reach the probing
wavelength close to 265.6 nm.

• The Detection is done by detecting fluorescence on the 1S0 → 3P1

transition on a Electron-Multiplied Charged-Coupled Device (EM-
CCD) camera. Some more details will be provided in Section 1.5.

1.2 Cooling of Mercury Atoms in a Magneto-Optical
Trap

Ultimately, our goal is to trap mercury atoms in the optical lattice
to suppress the huge motional (Doppler, recoil) frequency shifts asso-
ciated with operating an optical frequency standards.

Since the lattice trap has a depth of a few tens of µK, we have to
cool down the atomic sample to a temperature below 100 µK. One very
efficient way to do that is to use laser light to Doppler-cool and trap
them in a magneto-optical trap operated on a cyclic optical transition
[89].

In the case of bosonic species, which lack hyperfine structure, a
good estimate for the minimal obtainable temperature is given by the
Doppler limit. If Γ is the natural linewidth of the cooling transition,
the minimum attainable temperature in the Doppler cooling regime is

TDop =
h̄Γ

2kB
(1.1)

where kB is the Boltzmann constant.
In the case of mercury, this corresponds to 50 µK, cold enough to

trap atoms in the optical lattice. Moreover, in the case of 199Hg, our
group has demonstrated sub-Doppler cooling effects to temperatures
as low as 30 µK [64].

1.2.1 The cooling-laser system

The laser system used to cool down mercury atoms needs to be
designed taking into account the target wavelength, of course, but
also the specific properties of the interrogated atomic transition. The
cooling transition 1S0 → 3P1 has a natural linewidth Γ3P1

= 1.3 MHz,
at a wavelength of 254 nm. These parameters put stringent technical
constraints on the laser system.
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The most straightforward way to reach such a low wavelength is
to take a laser in the infra-red at 1015 nm, and frequency-double
twice to reach the deep UV at 254 nm. Since several tens of mW
are needed to drive the MOT transition, the infrared seed laser must
be both powerful enough to yield several milliwatts of power after two
stages of doubling, and have a narrow enough linewidth (sub MHz) to
efficiently cool the atoms.

Prior to the beginning of this thesis, a commercial Yb:YAG thin-
disk laser, designed to output 50 W at 1030 nm was modified and
adapted to work at 1015 nm in order to provide the first step of the
cooling system. This laser was troublesome and took several hours to
warm-up.

In the meantime, high-power ytterbium-doped fiber amplifiers be-
came commercially available. We therefore decided to design and build
a new laser system for cooling mercury atoms, which will be described
in its entirety in Chapter 2.

1.2.2 3D-MOT of 199Hg

We will now give a few experimental details about the MOT. The
MOT is operated with three orthogonal σ-polarized beams with an ap-
proximate waist of 3.3 mm retro-reflected on themselves thanks to
mirrors mounted on the vacuum chamber. One of these beams is hor-
izontal and lies along the axis of the detection (see section 1.5 for more
details). The experimental sequence for the MOT is shown on Figure
1.2.

The MOT is first operated red detuned (-5.5 Γ) from resonance for
750 ms, with a quadrupole magnetic field gradient of 0.10 T m−1 (10 G
cm−1 to catch as many atoms as possible in a broad range of velocity
classes. The magnetic field gradient is then increased in 5 ms to 150
µT/mm and the cooling laser frequency is shifted closer to resonance
(-1.5 Γ). This operation compresses the MOT cloud and allows us to
get a colder and smaller cloud of atoms, greatly enhancing the loading
efficiency into the optical lattice. The compression phase lasts roughly
50 ms and yields a cloud of mercury atoms whose temperature and
diameter we estimate to be respectively 60 µK and 120 µm thanks to
a time of flight measurement [68]. The parameters of detuning and
magnetic filed gradient mentioned above are empirically determined
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(a)

(b)

Figure 1.2. (a) MOT experimental sequence. The loading phase is followed by a com-
pression phase during which the magnetic filed is ramped-up and the cooling laser is
tuned closer to resonance. The MOT is off during probing, and on again during detection.
VMOT: vertical MOT arms, HMOT: horizontal MOT arm, DET: detuning (b) Fluorescence
signal of the MOT trapped atoms as imaged on the EMCCD.

capture as many atoms as possible in the MOT. The MOT light is then
turned off during the probing of the atoms with the clock laser, and the
vertical MOT (VMOT) beams are then turned back on for the detection.

In total, the loading time of the MOT is 800 ms and yields ' 106

atoms with a total (sum of the 3 MOT arms beams) UV power of 50
mW.

1.2.3 Vapor pressure and MOT lifetime

We model the MOT loading process by a constant loading rate Γload,
and a loss rate Γloss which scales with the number of atoms. The atom
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number then follows a simple rate equation:

dN

dt
= Γload − Γloss ×N (1.2)

The solution to this equation is:

N(t) =
1

Γloss
(Γload − e−t/τ ) (1.3)

where N0 = Γload/Γloss is the number of atoms at MOT saturation, and
τ = 1/Γloss is the loading time of the MOT. A MOT loading curve can
be seen on Figure 1.3 (a). The loading time of the MOT (during the
uncompressed phase) is incrementally increased until the MOT satu-
ration is reached. We then fit the obtained curve with equation 1.3
and extract the MOT loading time of 1.0 second and atom counts at
saturation of 4 × 106 counts.

The study of the MOT loading process also gives us information
about the mercury vapor pressure inside the science chamber, which
is linked to the lifetime of the atoms in the lattice trap. This parameter
is crucial for the clock when targeting ultimate accuracies, since col-
lisions with hot background mercury atoms can expel atoms from the
trap, reducing the achievable interrogation time, and can also create a
frequency shift of the clock transition.

Over the course of one month, we have studied the effect of a re-
duced background pressure on the loading time of the MOT. We es-
timate that the residual background pressure at our operating point
is ' 3×10−9 mbar for a current running through the Peltier element
which cools down the mercury source of 0.5 A. By increasing the cur-
rent driving the Peltier, we can decrease the temperature of the source,
and therefore we reduce the background pressure of mercury in the
science chamber.

On the plot of Figure 1.3 (b), the current in the Peltier was raised
from 0.4 A to 0.55 A on the 1st of February, and again from 0.55 A to
0.6 A on the 11th. We see that it takes several days for the pressure to
reach an equilibrium, and that a gain of a factor 2 on the loading time
of the MOT is easily attainable.

However, this increase in lifetime comes at the price of an equal de-
crease in the number of trapped atoms in the MOT, which means that
we have to find a compromise between good vacuum conditions for
longer lifetimes in the MOT and in the lattice, and higher background
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Figure 1.3. (a) Curve of the MOT loading. Shown here is the fluorescence counts as
a function of the loading time (the data points represent the average of 3 identical MOT
loading curves). The solid line shows a fit with equation 1.2 which allows us to extract
the key MOT loading parameters. (b) Evolution of the MOT loading time as a function of
days during the course of one month while decreasing the mercury vapor pressure.

pressure to trap more atoms. In the end, we run the experiment with
a background pressure close to 4×10−9 mbar which we have found to
be a good compromise in term of atom number and lifetime.

1.2.4 Pre-cooling with a 2D-MOT

In the very near future, we plan to enhance the MOT loading rate
by using a 2D-MOT. The 2D-MOT creates a bright beam of pre-cooled
atoms [95], and therefore its main effect is to greatly enhance the load-
ing rate of the 3D-MOT.

A foreseeable benefit of this enhancement lies in the prospect of
lowering the pressure in the 3D-MOT chamber. The lifetime of the
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atoms in the optical lattice is approximately 300 ms (see inset of Fig-
ure 1.3 (a)). Based on our study of the MOT loading time as a function
of the mercury atoms background pressure (1.3 (b)), we have good
reason to believe that this lifetime, and therefore the lattice lifetime, is
limited by collisions with the hot background gas of mercury atoms,
whose pressure is set relatively high (several 10−9 mbar) to allow effi-
cient loading in the 3D-MOT. A more efficient loading with the 2D-MOT
would therefore allow us decrease the vapor pressure of mercury in the
chamber, resulting in an increased lifetime of the atoms in the lattice.
With longer lifetimes, we could interrogate the atoms for several hun-
dreds of ms while keeping a good signal to noise ratio, and therefore
obtain narrower linewidths.

Finally, the 2D-MOT will allow us to trap more atoms (potentially
up to a factor of 10 [84], [85]), which will provide a great increase in
signal to noise ratio, as well as a much needed increase in lever arm
for study of collisional properties of mercury (see Chapter 5), which
has been very little studied in the cold and ultra-cold regimes.

1.3 Trapping in a 1D “Magic” Optical Lattice

We will now present the experimental setup for trapping mercury
atoms at the magic wavelength. As we have briefly mentioned in the
introduction, the chosen magic wavelength for neutral mercury is ex-
pected to lie close to 362.5 nm. At this wavelength, the polarizability
of the 2 clock states is equal to first order, and rather small ('20 a.
u., or 5.7 kHz/(kW/cm2)) [80], [44]. This implies that a given lattice
intensity will create a magic trap of relatively small depth compared
for example to the case of Sr, for which the polarizability at the magic
wavelength is close to 9 times higher.

The low polarizability at the magic wavelength and the need for ac-
curate and stable control of the lattice light frequency put stringent
constraints on the laser system needed to trap the atoms. Our ex-
perimental effort to meet these constraints will be the subject of the
following chapter.
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1.3.1 The trapping laser system

Several requirements must be met by the trapping laser system in
order to reach clock performances below the 10−17 level.

We need a highly tunable laser, over several hundreds of MHz to
study lattice light shifts and accurately pinpoint the magic wavelength.
Moreover, we also want a laser which is able to generate intensities on
the atoms of several Watts, both for normal clock operation, which
supposes a trap depth between 50 and 100 recoil energies (corre-
sponding to 20 W incident power on the atoms), and for lattice light-
shift studies.

Finally, we want to operate the laser at the magic wavelength,
whose value was measured to be close to 362.6 nm [120].

A natural choice to meet all those demands is a doubled Ti:Sa laser
seeding a build-up cavity.

Figure 1.4. Photo of the new commercial Ti:Sa laser pumped by a commercial system
at 532 nm. This system produces the fundamental light for the lattice trap.

We have installed and tested during the course of this thesis a new
commercial Ti:Sa laser from Msquared (SolsTiS model, see Figure 1.4).
This laser is pumped by 16 W of green light at 532 nm (Verdi V18) and
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can output up to 5.5 W of light at 725 nm. Moreover, it is highly
tunable in frequency, without mode-hop over several GHz. This laser
allowed a gain of a factor 5 on the available trap depth for our exper-
iment, greatly improving the lever-arm for the measurement of lattice
related frequency shifts (see Section 5.3 for more details) as well as the
number of atoms transferred from the MOT to the lattice.

This laser is fed into a home-built doubling bow-tie cavity contain-
ing a 15 mm LBO crystal and locked at resonance using the Hänsch-
Couillaud locking technique. We have produced up to 800 mW of dou-
bled light at 362.6 nm with this setup, but usually operate it with 200
mW of UV being produced out of the doubling cavity.

The SolsTiS laser has two frequency modulation inputs whose char-
acteristics are detailed in Table 1.1.

Actuator Voltage range Freq. range Sensitivity Bandwidth
Slow PZT ± 10 V ± 15 GHz 1.5 GHz/V 50 Hz

Fast PZT ± 10 V ± 40 MHz 4 MHz/V 100 kHz

Table 1.1. List of the different frequency actuators for the SolsTiS laser, along with
their frequency ranges and sensitivities

1.3.2 Locking scheme for the lattice light

Our prime focus is to lock the the Ti:Sa laser to (twice) the magic
wavelength in order to minimize lattice light-shifts, and subsequently
frequency double it to 362.5 nm. We will see in the next section (1.3.3)
that in order to get a high trap depth, synonymous with many trapped
atoms and potentially great lever arm on lattice light-shift measure-
ments, a build-up cavity scheme has been implemented. Therefore, we
also need to find a way to lock the Ti:Sa at resonance with the TEM00

mode of the build-up cavity. A few constrains need to be emphasized
at this point:

(i) In order to be able to control the lattice light shifts at or below the
10−16 level of accuracy, one needs to control the Ti:Sa frequency
down to a few MHz. Indeed, since the linear lattice-shift coeffi-
cient has been measured to be ∂∆κS

∂ν (νmagic = a = 1.17(6) × 10−4

Hz/Erec/MHz (see section 5.3), with an operating trap depth of 60
Erec, we find easily that a detuning of only 15 MHz (10−8 for a car-
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rier of 826 855 533 MHz) introduces a shift of 10−16 on the clock
transition.

(ii) One of the lattice cavity mirrors is mounted on a PZT which allows
for slow tuning of the cavity resonance. However, the bandwidth
of the actuator is limited to a few Hz, therefore it is not fast enough
to keep the cavity at resonance with the doubled Ti:Sa laser.

(iii) It is necessary, for lattice light-shift measurements as well as cold
atoms manipulations in the lattice (see section 3.4) to be able to
dynamically and programmatically vary the lattice depth.

This list of constraints, coupled with the available actuators on the
Ti:Sa laser (see Table 1.1) shape the design of the frequency lock chain
shown on Figure 1.5:

Figure 1.5. Overall scheme of the lattice light setup. The power out of the Ti:Sa system
is kept constant (5.5 W at a Verdi power of 16 W) while the power sent through the
doubling cavity can be adjusted manually (Power adjustment part of the setup sym-
bolized by the blue-dotted area). The light at 725 nm is then frequency doubled to the
magic wavelength at 362 nm and coupled to the under-vacuum lattice cavity. Vref , the
voltage offset of the sidelock to the lattice cavity resonance, is digitally varied to change
the lattice depth for different experiments. BD: Beam Dump, HWP: Half-Wave Plate, PD:
Photo-Diode, AOM: Acousto-Optical Modulator.

(i) We start by digitally locking the Ti:Sa laser to a commercial waveme-
ter (PIwavemeter on the scheme), whose frequency accuracy is ' 6



Trapping in a 1D “Magic” Optical Lattice 27

MHz, using the slow PZT actuator. The typical timescale of the
applied frequency corrections is 5s.

The doubling cavity is then kept at resonance with the light from
the SolsTiS via a Hänsch-Couillaud lock reacting on one of the
mirrors of the cavity (PISHG on the scheme).

(ii) We then sidelock the 362.6 nm light to the build-up cavity actu-
ating on the fast PZT input of the laser (PIsl, with a bandwidth of
' 10 kHz. The remaining long term cavity drifts are compensated
by feeding back onto the lattice cavity PZT actuator (PIcav on the
scheme), slowly enough (a few Hz bandwidth) so that it doesn’t
interfere with the sidelock.

(iii) The sidelock scheme allows us to dynamically change the lattice
depth by digitally varying Vref . For fast lattice modulation, an
AOM, which is shown in gray on the scheme is used to modulate
the build-up cavity input light intensity by “dumping” light into
its 1st diffracted order.

We need to stress one potential issue with the sidelock scheme,
which is that it creates an asymetric lattice light spectrum, yield-
ing a potential frequency shift that needs to be tested when aiming
for uncertainties below 10−17.

We will now focus more specifically on the in-vacuum build-up cavity,
a crucial part of the setup allowing us to reach the high trap depths (<
100 Erec) necessary for efficient estimation of lattice light-shifts.

1.3.3 A build-up cavity for a deeper trap

Mercury has a low polarizability at the magic wavelength and there-
fore requires high intensity light to create a lattice deep enough to trap
atoms well in the Lamb-Dicke regime. For this reason, our trap is
realized thanks to a build-up cavity scheme. This part of the setup
was described in detials in [112] but we will quickly review the most
important features.

The build-up cavity was designed to have a waist of 69 µm at the
position of the atoms. To implement this, one possibility, which is the
one that was chosen for our experiment is to form a cavity with two
curved mirrors with radii of curvature 150 mm. The corresponding
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finesse of the build-up cavity, which in first approximation is propor-
tional to the equivalent circulating power enhancement Peq ' F/π, was
measured to be about 300.

At a constant optical power circulating in the build-up cavity set
by the available laser power at the magic wavelength of 362.5 nm,
one needs to find a compromise between increasing the intensity and
limiting the long term damage to optics due to exposure to UV light.
The depth of the lattice trap corresponding to the nominal circulating
power of 5.5 W inside the build-up cavity was measured to be 60 Erec.
However, in order to accurately measure the lattice light-shift, we need
to be able to vary the trap depth between two values with a lever arm
as high as possible. Ideally we would like to explore trap depths above
200 Erec, which could allow us to resolve non-linear lattice shifts.

We have therefore performed optical-damage tests of the lattice cav-
ity mirrors and of the 362.5 nm doubling cavity optics. We estimate
that operating the trap at 150 Erec should pose not threat to the in-
tegrity of the lattice cavity mirrors.

1.3.4 Absolute frequency calibration with a frequency comb

In the near future, our express purpose is to control the frequency
of the magic trap to the 10−18 level accuracy and below. With this goal
in mind, we will need a better control over the lattice light-shift, and
since this light-shift is proportional to the detuning of the trapping
laser from the magic frequency (see section 5.3), we therefore need to
control and measure this detuning better than the MHz level. As we
have seen in Section 1.3.2, the commercial wavemeter which we used
so far to reference the frequency of the lattice light has a frequency
accuracy of 5 MHz if properly calibrated (at least every hour), and is
therefore not suited for this purpose.

To resolve this issue, we have decided to reference our laser to
the operational optical-frequency-comb of SYRTE. Unfortunately, the
wavelength range in which the comb has a good enough signal to noise
ratio to allow for a beatnote between the Ti:Sa and the comb to be
realized doesn’t reach below 800 nm, whereas as we have seen above,
the Ti:Sa is operating at twice the magic wavelength, close to 725 nm.
Therefore, in order to reference the laser to the comb, we have to divise
a slightly more complicated scheme, which is shown schematically on
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Figure 1.6. Schematics of the setup used to lock the frequency of the Ti:Sa to the
optical frequency comb using the 1450 nm ECDL as a transfer oscillator (see text).

Figure 1.6.

We use a transfer oscillator scheme [110] to bridge the frequency
gap using a ECDL laser outputting 100 mW (To check) at 1450 nm
(Toptica DL100pro). A small fraction (' 1 mW) of the ECDL light is
sent to the comb lab using an uncompensated optical fiber, and beat
with a comb tooth close to 1450 nm. The resulting optical beatnote is
mixed with a DDS at 34 MHz. In order to realize a digital frequency
modulation lock, the DDS is frequency modulated at 1 MHz, to probe
the mid-points of higher slope at the half-maxima of the beatnote. The
electronics beatnote is then filtered in a 1 MHz bandwidth and sub-
sequently demodulated providing and error signal to react on the PZT
of the ECDL and lock the ECDL to the comb. In this scheme, the
micro-controller is used as a digital lock-in amplifier.

The remainder of the ECDL light is frequency doubled in a single-
pass configuration in a PPLN crystal to yield about 100 µW of light at
725 nm. We beat the Ti:Sa to the ECDL using the same digital lock-in
modulation technique as the ECDL to the comb, using a second DDS
at 70 MHz. The whole locking system and the laser fit in a standard 3U
rack unit, and can stay locked for several hours without interruption.
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With this, the frequency of the Ti:Sa is controlled below 100 kHz,
which is good enough to control lattice-related light-shifts below the
10−17 level.

1.3.5 Lifetime of the atoms in the lattice

A crucial parameter for clock operation is the amount of time that
the atoms stay trapped in the optical lattice before leaving the trap,
because of collision with the background gas. Indeed, long trapping
times allow for long interrogation with the clock laser, and therefore
narrow spectroscopy signals and low clock instability.

Figure 1.7 shows the exponential decrease of the atom number in
the lattice as a function of holding time for the most favorable case we
have seen so far. To plot this curve, we trap the atoms in the optical
lattice, and we hold them in the dark (all lasers and magnetic fields off)
for a certain time before detecting. We do the experiment several time
while sequentially increasing the holding time, and we plot the atomic
fluorescence as a function of hold time. The experimental data are
then fitted with a decreasing exponential and we extract from the fit
the lifetime of the atoms in the lattice. At our nominal working point,
the lifetime is ' 300 ms.
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Figure 1.7. Curve of the lifetime of the atoms in the optical lattice. The detection
fluorescence is plotted as a function of the holding time of the atoms in the lattice (see
text for more details). The experimental points are fitted with a decreasing exponential
with a time constant of 503 (48) ms.
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1.4 An Ultra-Stable Laser System for Coherent
Atomic Interrogation

The last remaining part of the setup is the local oscillator (LO) of the
clock, with which we interrogate the cooled and lattice-trapped atoms.
In the case of optical clocks, this local oscillator is a laser, which has to
be made ultra-stable in order to be able to resolve atomic transitions as
narrow as a few Hz. We will now describe the interrogation laser of the
mercury clock, starting with a few basic ideas about laser stabilization
in general before describing the experimental setup fro the mercury
ultrastable laser.

1.4.1 Fabry-Perot cavity for laser stabilization

In order to build a laser with an ultra-narrow frequency spectrum,
two main solutions can be envisioned.

The first solution, which is currently being pursued in several groups
around the world is to use a laser with a very narrow gain medium,
such as the forbidden optical clock transition in alkaline-earth like
atoms [67]. A first proof-of-principle was demonstrated in 2011 using
Ramn transition in cold Rb atoms [8], and since then, several other ex-
periments have been realized on 87Sr atoms in a magic optical lattice
[77] and on thermal untrapped 88Sr atoms interrogated in an optical
cavity [115]. This approach is often dubbed the ”bad-cavity” approach,
since the linewidth of the “bare” cavity (with no atoms inside) is much
larger than the linewidth of the lasing atomic transition.

Another approach, which has been very successfully followed by
most optical clock experiments worldwide in the past 20 years [48]
is to use an ultra-stable cavity as an optical frequency reference and
feedback onto a tunable laser (usually an ECDL or a fiber laser) using
the Pound-Drever-Hall (PDH) technique. The general principle is that
a cavity with length L and length fluctuations ∆L will introduce on a
carrier of frequency ν0 frequency fluctuation ∆ν according to:

∆ν

ν0
' ∆L

L
(1.4)

From equation 1.4 we immediately see that if we can make ∆L
L very

small, the cavity will act as a frequency reference for the coupled light,
and we can use the signal resulting from the light/cavity interaction to
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stabilize the initial laser. The ultra-stable cavity provides an excellent
length reference, which is used to measure the frequency fluctuations
of the laser, using the fact that the cavity is a Fabry-Perot interfer-
ometer with high-finesse, therefore providing a narrow frequency-filter
around the center-frequency of the cavity mode, leading to a good fre-
quency discriminator.

Figure 1.8. Technical drawing of the USC taken from reference [17].

This frequency discriminator provides an error signal to feedback
on the original laser and suppress its frequency noise, down to the
limit of the length fluctuations of the cavity (which usually comes from
thermal noise on the cavity mirrors and coatings).

Our optical reference is a commercial fiber laser locked to a 850
000 finesse ultra-stable cavity (USC) via the PDH technique. The cav-
ity is made of two high-finesse mirrors (one flat and one concave with
a 500 mm radius of curvature) optically contacted to a 10 cm long
ULE (Ultra-Low Expansion glass) spacer (chosen for its high insensi-
tivity to temperature fluctuations) [17]. This cavity is then enclosed in
three thermal shields whose temperature are stabilized and monitored
continuously, and put under vacuum as shown on Figure 1.8. This
system has demonstrated a flicker FM noise floor corresponding to a
stability of less than 5× 10−16, verified by beating it with another simi-
lar system [71]. Table 1.2 summarizes the characteristics of the USC.
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Length 10 cm

Finesse 850 000

Cavity linewidth 1.5 kHz

Flicker 5× 10−16

Locked-laser linewidth < 1 Hz

Table 1.2. Important parameters of the USC and probe laser system.

1.4.2 Ultra-stable laser setup

Let us now describe the setup used to bring ultrastable light in the
UV at 265.6 nm to the mercury atoms trapped in the optical lattice
inside the vacuum chamber. The overall clock laser system is shown
on Figure 1.9.

Figure 1.9. Clock laser setup, generating tunable ultra-stable light at 265.6 nm for
interrogating mercury atoms on the clock transition. AOM1 allows for active dedrift
of the clock laser and phase-noise cancellation of the optical fiber link bringing the
ultrastable light to the main table, AOM2 is used to phase-lock the YDFA to the input
seed signal, and AOM3 produces the clock light pulses for atomic interrogation.

We start with the 1062 nm commercial fiber laser (Koheras Boostik)
which is PDH-locked to the USC as described in section 1.4.1 above.
We then send the Ultra-stable Light (USL) via a fiber-noise canceled
optical fiber to the main optical table, and amplify it in two stages. The
first stage is a semiconductor amplifier, followed by a commercial Yb
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doped Fiber-Amplifier1 (YDFA) yielding up to 2 W of light at 1062 nm.
This amplification step is necessary to provide us with enough power
before frequency quadrupling to the clock wavelength close to 265.6
nm, but it can also introduce some unwanted phase-noise on the USL.
We therefore implement a phase locked loop by beating the output of
the amplifier with its input, and reacting on AOM1 (see scheme of
Figure 1.9).

Finally, two stages of resonant frequency doubling are implemented
with a PPsLT followed by a BBO crystal placed in two cascaded bow-
tie optical cavities to reach 265.6 nm. AOM3, driven at 180 MHz, is
used to produce the clock pulses with tunable power and durations
as needed for the clock operations. The frequency of the clock laser
can be tuned thanks to a Stanford SRDS35 digital synthesizer driving
AOM2, while a second synthesizer provides a tunable dedrift removing
the drift of the USC on the light seen by the atoms.

1.4.3 Laser noise and frequency doubling

We now want to estimate the laser noise added through the optical
doubling process, to try to evaluate the laser noise imprinted onto the
atoms in the UV. We first characterize the noise of the USL in the
infrared looking at the error signal of the PDH lock. The FFT of the in-
loop error signal is shown on Figure 1.10. A more detailed discussion
of the noise level and impact on the stability of the clock can be found
in Chapter 4.

We then characterize the added noise caused by the beam passing
through the doubling cavities and the doubling process by looking at
the RIN of the photodiodes used to lock the doubling cavities at reso-
nance. The RIN curves are shown on Figure 1.11.

The assumption here is that the light intensity fluctuations inside
the cavities are mainly caused by frequency noise, and therefore look-
ing at the RIN of the locking photodiodes when the cavities are locked
gives us an idea of the noise added to the laser. The RINs show an
increase of 6 dB of white noise after the first frequency doubling stage,
and another 6 dB after the second one, compatible with the expected
added phase noise on the laser after frequency doubling of a factor of
4 (factor of 16 in total, 12 dB for two doubling stages).

1From Nufern
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Figure 1.10. Fast Fourier transform of the error signal of the PDH (Pound Drever Hall)
lock to the ultra-stable cavity.
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Figure 1.11. Relative Intensity Noise (RIN) of the locking photodiodes of the doubling
cavities for the probe beam. The red trace shows the infrared leakage from the funda-
mental signal of the first doubling cavity, the green trace show the doubled green light
from the first doubling stage, and the blue trace shows the monitoring of the UV light
generated after the second doubling stage.
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We can therefore assume that the atoms are probed in the UV with
a clock laser which characteristics are the ones shown on Figure 1.10
with a factor of 16 added white phase noise.

This simple analysis leaves out the fact that there is a several tens
of centimeter uncompensated path length between the second dou-
bling cavity and the atoms, as well as the AOM used to shape the
clock pulses (AOM3 of Figure 1.9) which is susceptible to add a phase
chirp to the probe laser field creating an unwanted frequency shift
when interrogating the atoms (more on that in Section 5.6).

1.5 Fluorescence Detection

Once the atoms have been trapped in the lattice and interrogated
by the clock laser, their quantum state must be read-out by a suitable
detection system to provide the useful clock output signal. The detec-
tion setup is shown on Figure 1.12. In the present scheme, we detect
the atoms on the same path as one of the MOT arms [68], reducing
the required optical access on the setup.

In order to do that, one has to take advantage of the fact that the
MOT beam is collimated, while the atoms fluorescence is roughly emit-
ted from a point source (the MOT, which has a radius of ' 100 µm).
Therefore, lens L can be used both to collimate the fluorescence from
the atoms onto a half-mirror, (HM in the picture) and redirect it toward
the detection arm at 90◦ from the MOT arm, and to focus the MOT arm
in order to purposely miss the half-mirror and avoid sending parasitic
light towards the CCD.

The magnification of the optical system used to image the MOT
fluorescence is 100/90 = 1.1, and the EMCCD (Andor 897) is cooled
down to -80 ◦C to reduce dark noise. A very important parameter
of the clock is the number of atoms being probed and subsequently
detected in the optical lattice. It is especially relevant to the study of
the collisional frequency shift and needs to be estimated.

We therefore need to derive the link between the measured num-
ber of counts on the CCD, Ncounts, and the effective number of atoms
Natoms.

Natoms =
ηe

ηphGFγpτexp
×Ncounts (1.5)

Where ηe = 22.4 is the number of electrons per count, ηph = 0.33 is
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Figure 1.12. Optical setup for the detection of the atoms along one of the MOT arms.
The MOT light is focused by lens L and misses the HM, while the atomic fluorescence is
collimated and sent to the detection system. QWP: Quarter-Wave Plate, HM: Half-Mirror,
M: Mirror, f: focal length.

the quantum efficiency (number of electrons generated per photon in-
cident on the CCD), G is the electron multiplication gain, F is the col-
lected fraction of fluorescence photons, which we will compute thanks
to the aperture of the detection system, γp is the scattering rate of the
atoms, and τexp is the exposure time. The scattering rate γp can be
written:

γp =
2s0Γ

1 + s0 + (2δ/Γ)2
(1.6)

Where s0 = I/Isat is the 254 nm beam total intensity normalized by
the saturation intensity. s0 is also called the saturation parameter.
Our detection is carried out at a constant detuning of -1.5 Γ from
resonance. Moreover, we usually run the clock with 50 mW of light
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at 254 nm collimated to a beam of ' 15 mm diameter, yielding an
intensity of 284 W/m2 and an s0 of 2.8. Therefore, we estimate γp to
be 0.56 × 106 photons/s.

The only parameter left to estimate is the collected fraction of fluo-
rescence photons F . We know that the solid angle in which are emitted
the photons susceptible to reach the CCD is half the solid angle of the
cône of apex α = arctan(11.5/90) where 11.5 mm is the radius of the
collimating lens and 90 mm is its focal length. We can write this solid
angle as Ω = 1/2× 2π(1− cos(α)). Moreover, the solid angle of the total
sphere in which the photons are emitted is 4π steradians. This yields
a modest fraction of collected photons F = Ω/4π = 0.2 %. Moreover, we
have installed an interference bandpass filter centered around 254 nm
on the path to the CCD camera in order to filter-out potential sources
of parasitic light from the useful fluorescence signal, which cuts out
70 % of the fluorescence light at 254 nm.

We can finally estimate the Natoms corresponding to one CCD count
thanks to equation 1.5 and for a usual CCD gain of 100 we obtain 0.09
atom per count or 1/0.09 counts per atom.



Chapter 2

A New Laser System for
Cooling Mercury Atoms

Cooling neutral mercury atoms requires continuous wave laser light
at 254 nm with relatively narrow linewidth (on the order of 10 kHz)
and high enough power (on the order of 50 mW to well saturate the
atomic transition). What is more, building an optical clock adds to
the equation a constraint of robustness and reliability, for continuous
operation over several hours, days or even months! I will describe in
this chapter the technical solutions that I have found to meet these
challenging requirements.

Historically, the development of SYRTE’s mercury optical lattice
clock has been hampered by recurrent problems with the cooling laser
system. Prior to the beginning of this thesis, before commercial high-
power and narrow linewidth Ytterbium-Doped Fiber-Amplifier (YDFA)
technology was available, the cooling light was produced by a fre-
quency quadrupled thin disk laser1. This laser was very difficult to op-
erate, with a warm-up time of several hours and frequent mode hops,
which prompted us to think about a better solution.

During the course of this thesis, I designed a laser architecture
based on newly available commercial YDFA technology and two sys-
tems were built for cooling mercury 199Hg atoms on the 1S0 → 3P1

transition. One of these systems is used to power the 3D-MOT (see
Section 1.2), while the second will be used to power the 2D-MOT, and
it is frequency locked onto the first one (see Sections 1.2.4 and 2.3.1).

1Versadisk from ELS
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2.1 Requirements

In this section, we study requirements for our cooling light system
in order to efficiently cool down mercury atoms in a magneto-optical
trap and perform atom counting by fluorescence detection. From these
prerequisites, we will draw a set of specifications, which we will use to
design a suitable architecture for our purpose.

2.1.1 Spectral purity

As seen in the Introduction, the linewidth of the cooling transition
is about 1.3 MHz. Therefore, to cool efficiently the atoms (down to the
Doppler temperature of 30 µK), we have to build a laser system in the
UV at 254 nm, with a linewidth narrow with respect to 1.3 MHz. If we
take a factor 10 of margin, we therefore need to build a system with
linewidth smaller than 100 kHz in the deep UV.

To our knowledge, no CW laser source with this kind of linewidth
is available at 254 nm, and a similar argument applies for a source
at 2×254 nm = 508 nm. Consequently, we anticipate that we will
start with a laser system working in the infrared (IR) around 1015 nm,
which will be doubled twice to reach the desired wavelength.

Taking into account that frequency quadrupling an optical signal
increases the linewidth (assuming that said linewidth is limited by
white phase noise) by a factor 16, we conclude that we need a linewidth
of the original IR laser below 6 kHz, which sets a significant technical
constraint.

2.1.2 Laser power

The power requirements for cooling neutral atoms is usually set
with respect to the saturation intensity [69]

Isat =
2π2hcΓ

3λ3
. (2.1)

For mercury, the value of this parameter is 102 W/m2. Since we have
3 MOT arms, we would ideally want I ' Isat for each of the MOT arms,
we would therefore need to have Itot ' 306 W/m2. Assuming a beam
area of 1 cm2, we therefore need more than 30 mW of total laser power
at 254 nm, reliably on a time scale of several hours to several days.
We expect that more than 50 mW should be reachable with our setup.
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2.2 Architecture of the Cooling Laser

Taking into account the specifications established above, I have
devised the architecture presented on Figure 2.1. The laser light is
generated by a home-built external cavity diode laser (ECDL) in the IR
at 1015 nm, providing a narrow spectrum before quadrupling.

Figure 2.1. Overall cooling laser architecture. The narrow linewidth ECDL at 1015 nm
is amplified in an YDFA, and frequency doubled twice to 254 nm. The light at 254 nm is
locked to the cooling transition via saturated absorption spectroscopy in a Hg cell (see
text for more details).

The light from this laser is injected into a Ytterbium doped fiber
amplifier (YDFA), which allows us to get high enough power before
frequency quadrupling while keeping the narrow linewidth properties
of the ECDL.

The amplified light is then frequency doubled to 507 nm in a sin-
gle pass configuration with a Periodically Poled Stoichiometric Lithium
Tantalate (PPsLT) crystal, and subsequently doubled in a resonant
doubling cavity containing a β-Barium Borate (BBO) crystal.

2.2.1 External-Cavity Diode Laser

The first stage of the system is designed to have a narrow linewidth
of at most a few kHz, tunable frequency output and a high enough
power to feed the subsequent amplifier. It is a home-built ECDL
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mounted in Littrow configuration (recoupling of the 1st diffracted or-
der from the grating into the diode) that I designed and assembled at
the beginning of my PhD. A scheme of the ECDL can be seen on figure
2.2.

Figure 2.2. Scheme of the ECDL seed laser for the cooling laser system. The home-
made aluminum enclosure is shown in blue. TEC: temperature controller, HV: high-
voltage, PZT: piezo-electric transducer.

External-cavity diode lasers offer high frequency tunability over dif-
ferent ranges: coarse tunability on the nm scale with the grating angle
thanks to the spectral dispersion of the reflected light on the grating,
finer tunability by mounting the grating on a Piezo-Electric Transducer
(PZT), on the hundreds of MHz scale, with up to a few kHz bandwidth,
and finally fast tunability by reacting weakly on the current for high-
bandwidth locking of the laser. This makes it a very versatile and
tunable laser, with narrow linewidth, ideal as a seeder, provided we
can keep it single frequency [90].

Since we need a linewidth below 6 kHz, we have chosen a long
extended cavity architecture, with a distance between the diode chip
(TOPTICA single-frequency diode laser, specified linewidth ≥1 MHz)
and the grating (Edmund Optics) of 12 cm used in Littrow configura-
tion.

With such a long cavity, I needed to make sure that the seeder
would keep a single mode behavior over a wide enough range of fre-
quencies (several GHz ideally). To that end, the laser diode is mounted
with thermal glue on a copper piece and glued to a Peltier element
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Figure 2.3. Picture of the homemade ECDL seeder for the cooling laser system. The
diode and the grating can be seen in the aluminum enclosure on the left of the picture.
On the right, the setup for frequency-locking of the 2 seeds is visible, see Section 2.3.1
for more details.

for active temperature stabilization and frequency tuning. The optical
setup (diode plus grating) is contained in an aluminum enclosure (also
home-built) which can also be temperature stabilized if needed. Care
was taken to avoid mechanical resonances, by putting the grating on
a brass piece, and by setting the whole aluminum enclosure on spring
washers. Finally, I put the breadboard containing the aluminum box
(see Figure 2.3) in yet another box that I assembled with aluminum
profiles and PVC foam, and mounted on sorbothane pads for further
vibration isolation from the rest of the environment.

The seed laser outputs close to 15 mW of light at 1015 nm, and by
beating it with the previous cooling laser system (Versadisk), we have
verified that its linewidth is below 1 kHz on short timescales.

2.2.2 Laser amplifier and single stage doubling to 507 nm

For amplification of the 1015 nm light prior to frequency doubling,
I have designed and tested in a proof of principle setup a YDFA sys-
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tem which was then manufactured in collaboration with an industrial
partner2.

The YDFA consists of two stages of optical amplification in a fiber
gain-medium doped with Ytterbium (Yb3+), pumped with light from
diode lasers at 976 nm co-propagating with the seeder signal to be
amplified.

The 2-stages amplifier yields an overall gain of 28 dB (from 15 mW
to 10 W). Experimentally, I had to find a trade-off between a long ac-
tive (Yb-doped) fiber of the amplifier, yielding a higher gain, and a low
enough amount of ASE (Amplified Spontaneous Emission), performing
successive fiber cutbacks while monitoring the output power and ASE
spectrum.

Several stages of optical isolation have been installed in the final
manufactured product to reduce the risk of damage to the pumps or
the seeder, which might occur due to Q-switching in the fiber amplifier.
In spite of these precautions, the amplifier had to be shipped back to
the manufacturer several times during the course of the PhD because
of damages to the fiber gain medium.

The resulting 10 W of 1015 nm light are focused onto a oven-
stabilized PPsLT crystal for frequency doubling to 507 nm. The fun-
damental pump signal at ω is separated from the frequency doubled
signal at 2ω by a dichroı̈c mirror and damped into a beam-dump. The
overall architecture of the YDFA system is shown on figure 2.4.

Thanks to the fibered technology, this system necessitates almost
no warm-up time, and can operate reliably for several months, after
which we have found that the seed laser usually acquires a slightly
multimode behavior and the recoupling into the diode needs to be ad-
justed via realignment of the grating.

Furthermore, it can be installed in a dedicated rack, freeing pre-
cious real-estate on the main optical table.

2.2.3 Frequency doubling to 254 nm

The final step of our cooling laser apparatus is frequency doubling
to 254 nm to couple to the 1S0 → 3P1 cooling transition.

For this, we use resonant doubling in a cavity in a BBO crystal.
BBO was chosen for its high doubling conversion efficiency, trans-

2ALS, Talence
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Figure 2.4. Scheme of the two-stage Ytterbium fiber amplifier for amplification of the
seed power to 10W and subsequent single-stage frequency doubling. ECDL: external-
cavity diode laser, OI: optical isolator, WDM: wavelength division multiplexing, PPLT:
Periodically Poled Stoichiometric Lithium Tantalate, DM: dichroic mirror.

parency in the deep UV, and more importantly because it has a high
damage threshold and durability in the UV, which are absolutely cru-
cial features for our application. The cavity is realized in a bow-tie
configuration, with a total length of 84.2 cm and a waist at the posi-
tion of the crystal of 30 µm. The finesse is approximately 220.

A sidelock scheme is used to lock the cavity (reacting on one of
the flat mirrors of the cavity glued to a piezo-elctric transducer) to the
side of the optical resonance with a tunable offset which allows us to
easily adjust the UV power sent to laser-cool the atoms. One of the
drawback is that the sidelock scheme is intrinsically asymmetric (we
lock to one side of the fringe), which creates and asymmetric spectrum
of the generated UV light at the output of the cavity. However, since
the cooling laser has been designed to have a linewidth much smaller
than the decay rate of the cooling transition, we don’t expect this to be
an issue for the atomic cooling efficiency. Figure 2.5 (a) shows a plot
of the optical power output from the doubling cavity at 254 nm as a
function of the offset of the cavity sidelock. From an input 2 W of light
at 507 nm, we get a peaked signal on the locking photodiode of the
cavity of 2.5 V. If we take the graph of Figure 2.5 (a), fit it with a linear
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Figure 2.5. (a) Characterization of the UV power at 254 nm from the doubling cavity
as a function of the offset of the cavity sidelock and (b) Picture of the new 254 doubling
cavity with the crystal positioner visible in the center.

model and extrapolate to this value, we estimate that locking at 2.5 V
on the sidelock would yield 370 mW of light at 254 nm, but at the risk
of damaging the doubling crystal and UV optics in a matter of minutes.
We therefore operate with a more reasonable sidelock offset between
300 and 350 mV, giving a usable ' 50 mW of UV light, fulfilling the
requirements set in Section 2.1.

Moreover, it has been empirically observed that operating in a pure
oxygen environment reduces the risks of UV-damage to the BBO crys-
tal as well as the optics of the doubling cavity. A airtight aluminum
enclosure hooked to a medical-grade oxygen bottle has therefore been
designed during the PhD thesis of R. Tyumenev and surrounds the
cavity with a well-controlled quasi-pure O2 environment. In the course
of my PhD, this design has been improved to include a new crystal
holder and positioner which can be controlled without having to open
the aluminum enclosure, which was a source of contamination of the
crystal environment in the previous system. The new doubling cavity
is shown on Figure 2.5 (b).

2.2.4 Locking to the cooling transition via saturated-absorption
spectroscopy

In order to tune the laser at a tunable frequency offset from the
cooling transition, it needs to be offset-locked to the resonance via
saturated absorption spectroscopy. Saturated-absorption is a tech-
nique used to obtain narrow-line optical lineshapes for locking or spec-
troscopy, free of 1st order Doppler effects.
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A strong pump beam (with wave-vector
−→
kl ) is sent through a ther-

mal gas of atoms and saturates the transition of interest. Let us con-
sider the particular case where this beam is slightly detuned with re-
spect to the atomic resonance by a quantity δ = ν − ν0 where ν is the
laser beam frequency and ν0 the atomic transition frequency. Then
atoms with a velocity ~v such that

−→
kl .~v = δ (2.2)

will be pumped to the excited state, thus creating a hole in the ground-
state velocity distribution centered around ~v.

If now a second laser beam with the same frequency but opposite
propagation direction (with wave-vector −

−→
kl ) interacts with the atoms,

equation 2.2 becomes
(−
−→
kl ).(−~v) = δ (2.3)

We see that in order to satisfy equation 2.3, atoms with a velocity −~v
will be pumped to the excited state, creating another hole in the atomic
velocity distribution centered around −~v.

If the 2 counter-propagating laser beams are now at resonance with
the atoms (δ = 0), then the only way to satisfy both equation 2.2 and
equation 2.3 is that both laser beams interact with atoms for which
~v = 0, creating an absorption feature in the velocity distribution which
is the sum of the contribution from both laser beams centered around
~v = 0 and therefore free of 1st order Doppler effects (further details on
saturated-absorption locking can be found in [92]).

Picture 2.6 (a) shows the overall locking setup of the cooling sys-
tem. AOM1 is used to dynamically control the detuning of the light
going to the Magneto-Optical Trap for the capture and compression
phases, as discussed in Section 1.2.2. It works around 180 MHz,
with a digitally tunable detuning ∆ which varies between -1.5 Γ and
-5.5 Γ. The detuned light is then sent to AOM2, which is also cen-
tered around 180 MHz and used to generate a modulation at 300
kHz for frequency-modulation locking of the ECDL to the Doppler-free
saturated-absorption feature shown in blue on Figure 2.6 (b).
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Figure 2.6. (a) Scheme of the locking to the cooling transition via saturated absorp-
tion spectroscopy. and (b) Experimental signals. The blue trace is the Doppler-free
saturated-absorption signal, and the red trace is the dispersive error signal generated
by the modulation of the beam with AOM2. Both signals are observed by scanning the
frequency of the laser across the atomic resonance.
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In order to generate this signal, the modulated light is sent through
a 1-mm-long quartz cell containing Hg vapor at ' 0.25 Pa at room tem-
perature surrounded by a magnetic field to resolve the fine structure
of the 3P1 level. The beam incoming on the cell is split by a PBS, and
the reflected part is sent to a photodiode (PD1 on the scheme) to act
as a reference signal for background noise suppression.

The transmitted beam goes once through the cell, is retro-reflected
on mirror M, and goes through the cell again to generate the saturated
absorption signal on photodiode PD2. Its polarization is controlled by
a quarter wave-plate which is tuned experimentally to balance the two
photodiodes and maximize the signal to noise ratio of the Doppler-free
feature. The subtracted signal from the photodiodes is then mixed
with the 300 kHz modulation and serves as the error signal for the
lock (red curve of Figure 2.6 (b)).

As can be seen on Figure 2.6 (a), in order to lock the laser to the
Hg signal, we use a double integrator to feedback onto both the cur-
rent and the PZT of the grating of the ECDL. The current allows high-
bandwidth locking, and the PZT increases the capture range of the
lock.

2.3 A Second System for the 2D-MOT

The second system which we will use to run the 2D-MOT is an
almost exact copy of the first one (including the ECDL seed laser),
except for the slightly higher laser power (2 W instead of 1.5 W at 507
nm).

This laser doesn’t need to be tuned in frequency, since the 2D-MOT
works at a fixed detuning from the cooling transition, chosen experi-
mentally to maximize the loading rate into the 3D-MOT. Therefore, we
have decided to implement a simple offset frequency lock between the
two seed lasers with a feed-forwarding system to keep the 2D-MOT
laser at a fixed detuning from the cooling transition while moving the
detuning of the 3D-MOT system for MOT compression as discussed in
Chapter 1.
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2.3.1 Frequency locking of the two seed lasers for 2D-MOT
operation

Since optical coherence between the two lasers is not a require-
ment, we can devise a simple scheme to lock the 2D-MOT cooling laser
to the atomic transition by frequency locking it to the 3D-MOT laser.
The frequency lock between the two seed lasers follows the scheme of
Figure 2.7.

Seed 1 is locked to the atomic transition via saturated absorption
spectroscopy as described in section 2.2.3. An AOM is inserted af-
ter the second seed, to generate on the photodiode (PD) a heterodyne
beatnote around 180 MHz between the two ECDLs. This beatnote is
fed into a frequency to voltage converter (F to U), which delivers a volt-
age proportional to the frequency of the input signal. We then subtract
a voltage offset from this signal to generate the error signal which we
correct using a proportional-integrator gain and we feed this back onto
the PZT of the second seed laser with a bandwidth of 5 kHz. The de-
tails of the locking electronics, that I designed and built during my
thesis are shown on Figure 2.8. I have included a few offset inputs,
one of which will allow us to tune the frequency of Seed 2 directly with
the program that control the rest of the experiment.

Another input is used to feed forward to the Seed 2 the detuning
applied to the Seed 1. Indeed, as the frequency of the Seed 1 is mod-
ulated during the MOT sequence, as described in Chapter 1.2 from
5.5 Γ to 1.5 Γ, this will create a perturbation on the frequency of the
2D-MOT light, since Seed 2 will follow the frequency of Seed 1.

To get rid of this issue, we use a 2nd offset input to be able to
realize a feed-forwarding scheme, which we will use to null the effect
of the detuning of Seed 1.
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Figure 2.7. Scheme of the frequency lock between the two seeds. The AOM is used to
create a heterodyne beat between the two lasers on a photodiode. The frequency differ-
ence between the seeds is converted into a voltage by a frequency to voltage converter
and compared to a reference, tunable offset which defines the lock point. PD: PhotoDi-
ode, PBS: Polarizing Beam-Splitter, F to U: frequency to voltage converter, ε: error signal,
PI: Proportional-Integral.

Figure 2.8. Controller electronics scheme of the frequency lock between the two seeds.
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Chapter 3

High-Resolution
Spectroscopy in an Optical
Lattice Trap

In this chapter, we consider the coherent interrogation of our sam-
ple of cold atoms by the ultrastable clock laser. Scanning the fre-
quency of the laser, we are able to resolve the strongly forbidden clock
transition, which will provide the frequency discriminator for our clock.
We will see that, using a weak probe laser well aligned with the optical
lattice, we are able to probe the carrier transition free of any motional
effects. In this configuration, we have recorded very high resolution
spectra, and demonstrated the coherent manipulation of the internal
quantum states of the atoms for probing times as long as several hun-
dreds of milliseconds.

However, the effects of atomic motion in the lattice trap still need to
be taken into account, as they can be a very serious issue for clock ac-
curacy, creating motion-dependent lattice-related light-shifts and ex-
citation inhomogeneities. Information on atomic motion and tempera-
ture can be extracted from clock spectroscopy by looking at the side-
band structure around the motion-less carrier transition. In lattice
clock experiments, longitudinal sidebands are usually probed using a
high-power (enough to strongly saturate the carrier transition) probe
beam, and fitted to obtain an accurate measurement of the lattice trap
depth, as well as atomic temperature [6]. However, in our experiment,
the lack of power in the UV prevents us from using this technique as

53
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a diagnostic tool. However, if we introduce an angle between the probe
and the lattice, transverse motional sidebands will be coupled to our
interrogation laser even for relatively weak probe powers. We will use
this fact to our advantage and extract useful information about the
trapping potential from the frequency of the transverse sidebands.

To check the consistency of these information, we have also studied
the effect of parametric heating of the atoms out of the lattice trap. We
will see that this technique provides physical insight into the physics of
the atoms in the trap, giving complementary information with respect
to sideband spectroscopy.

3.1 Theory: Spectroscopy in a 1D Optical Lattice

In this first section, we introduce the basic concepts and parame-
ters of the physics of the interrogation of neutral atoms trapped in an
optical lattice, which is needed to interpret the experimental spectro-
scopic curves of Section 3.2.

3.1.1 Clock spectroscopy in the Lamb-Dicke regime

High-resolution spectroscopy of neutral atoms in a magic optical
lattice trap has been the subject of intense research in the past ten
years [6], drawing inspiration from spectroscopy of tightly trapped ions
[116]. The lattice trap is mainly characterized by its depth, which is
usually expressed in units of the lattice recoil energy Erec, as men-
tioned in the Introduction (see Equation 12).

The potential experienced by the atoms close to the waist of the
lattice build-up cavity can be written:

U(r, z) = U0

(
1− e

−r2

2w(z)

)
× cosκz2 +mgz (3.1)

where z is the coordinate along the axis of the lattice, r =
√
x2 + y2 is

the radial coordinate, w(z) is the lattice beam radius at the position z,
g is the gravitational acceleration (g = 9.81 m/s2) and U0 is the trap
depth.

We can expand this potential around the antinodes of the lattice,
where the atoms are trapped, because at the high lattice depths ex-
plored in our work (U0 � 20), tunneling between lattice sites is negli-
gible and we can therefore neglect the effects due to the periodicity of
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the optical lattice. The eigenstates of the atomic motion in the trap are
those of a harmonic oscillator in the z and r directions with different
spring constants which we note in the following ν‖ and ν⊥ respectively,
and which we can relate to the trapping parameters [5]:

ν‖ = 2νrec

√
U0

hνrec

ν⊥ =

√
U0

mπ2w2
0

(3.2)

As we will see in Section 3.3, rewriting Equation 3.2 in a different way
will allow us to derive the trap depth from the spectroscopic determi-
nation of the transverse sidebands frequency.

We now incorporate to our model the interaction of the probe laser
with the harmonically confined atoms. The probe beam waist at the
position of the atom is close to 200 µm, while the lattice beam waist
is close to 69 µm, we therefore neglect interrogation homogeneities
introduced by the gaussian intensity profile of the probe beam. This
interaction couples the internal atomic levels with the incident probe
laser field modeled as a plane wave, and the effective Rabi frequency
characterizing the coupling from state |n〉 to |n′〉 is

Ωnn′ = Ω0〈n |eikclock.x̂|n′〉 (3.3)

Where kclock is the clock laser k-vector, Ω0 = −d.Eh̄ is the free-space
Rabi frequency describing the atom-light coupling strength, d is the
atomic dipole moment and E the electric field strength. Re-writing
the position operator x̂ in terms of the annihilation and destruction
operators, x = x0(â+ â†), and introducing the parameter η = kclockx0

√
2,

we finally can re-write Equation 3.4 as

Ωnn′ = Ω0〈n |eiη(â+â†)|n′〉 (3.4)

η is called the Lamb-Dicke parameter, and is the appropriate param-
eter to describe the effect of the external confinement on the atomic
spectroscopy [53]. Along the axis i of the trap,

ηi = k
(i)
clock

√
h̄

2mωi
=

√
ωrec
ωi

(3.5)

where k(i)
clock is the projection of the clock laser k-vector along the trap

axis i (i = x,y or z). Operating in the Lamb-Dicke regime of atomic
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confinement (η � 1) suppresses Doppler and recoil effects, which is
crucial for high accuracy clock operation. This happens in two cases
for a 1D lattice:

• In the transverse direction when the probe k-vector is well aligned
on the lattice axis, the projection of kclock along the transverse
direction of the lattice is zero (k(x)

clock = k
(y)
clock = k

(⊥)
clock ' 0), which

means that η⊥ ' 0.

• When probing in the strong confinement axis of the lattice, we
can manage to have ω⊥ � ωrec, then we get η‖ ' 0.

In our case, νproberec ' 100 Hz, and we generally operate with U0 '
100 Erec, which yields a longitudinal trapping frequency νtrap‖ ' 100
kHz in the direction of strong confinement, putting the mercury clock
operation deep into the Lamb-Dicke regime. We will see later in this
chapter the impact of the probe laser alignment on the spectroscopy
curves.

3.1.2 Structure of the clock transition

In order to control the magnetic environment seen by the atoms, we
perform spectroscopy in the presence of an external (quasi-) homoge-
neous magnetic bias field, which also lifts the degeneracy between the
mF = ± 1/2 states. The procedure to verify that the magnetic field is
well defined is described in Section 3.2.1 below. By aligning the polar-
ization of the probe beam along the direction of the external field, we
are able to selectively excite the so-called π components (+1/2 → +1/2

and −1/2 → −1/2) of the transition, for which ∆mF = 0, as shown
schematically on Figure 3.1. We therefore expect a spectrum featuring
two peaks, separated in frequency by ∆ν = 2mF δgFµBBz where δgF is
the difference between the g-factor of the excited state and the g-factor
of the ground state, µB is Bohr’s magneton in frequency units and Bz

is the projection of the bias magnetic field along the polarization of the
probe beam.

Lifting the clock states degeneracy also allows us to perform a sim-
ple state selection procedure to spin-polarize the atomic sample. At
the end of the MOT loading, we start with a sample of atoms in the 1S0

clock ground state with an approximately equal population in both mF

states. We first apply a 15 ms Rabi π pulse resonant with the clock
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Figure 3.1. Relative orientation of the lattice and probe wave-vectors, their polariza-
tions and the bias magnetic field. In the current configuration, only the π transitions are
excited (red on the right side of the figure).

transition which transfers up to 80% of the atoms in one mF state to
the excited clock state, leaving the other (−mF ) state atoms in the clock
ground state. We then apply resonant light on the 1S0 → 3P1, heating
and pushing the atoms that are left in the ground state out of the lat-
tice trap, and leaving us with a sample of spin-polarized atoms in the
excited clock state. This procedure results in a spin-polarized atomic
sample with a state purity exceeding 98% (we verified this by checking
that no atoms are detected if we apply only the resonant pulse), with
only 50 % atom loss, while being simple to implement and potentially
very fast.

Working with a spin-polarized sample is highly desirable for the
clock as collisional shifts mechanisms can be suppressed thanks to
Pauli’s exclusion principle (see Section 5.2). This is only partially
true, mainly because motional effects contribute to probing inhomo-
geneities, which renders the atoms discernable and therefore suscep-
tible to collide again, but it is however a good starting point. Moreover,
it allows us to perform spectroscopy on a dark background. Indeed, as
described in Section 1.5 we detect the atoms via fluorescence on the
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1S0 → 3P1 transition, which is much broader than the Zeeman splitting
between the two π components of the clock transition. When operating
the clock, we selectively probe one of the Zeeman components, exciting
a fraction of the atoms to the 3P0 state which is dark for the fluores-
cence light. We then want to detect how many atoms have made the
transition, by shining detection light onto the atoms that remain on the
ground state. However, the atoms from the second Zeeman sublevel
have not been excited to the 3P0 state and are therefore still coupled
to the detection light, contributing some parasitic fluorescence, and
adding significant detection noise to the clock signal.

3.1.3 Rabi and Ramsey spectroscopy

By engineering the sequence of probe pulses sent to the atoms,
different spectroscopic experiments can be performed. In clock exper-
iments, two types of spectroscopy are most commonly performed:

• Rabi spectroscopy, where only one pulse of the clock light is ap-
plied to transfer atomic population and create the atomic reso-
nance for frequency locking.

The Rabi transition lineshape as a function of the probe laser
detuning ν is given by:

LRabi(ν) = A
Ω0

2

Ω2
sin2

(
πΩ

2Ω0

)
+B (3.6)

where Ω0 is the Rabi frequency, Ω =
√

Ω2
0 + (2πν)2. In the case

of pure Rabi interrogation of a two level atom by a square pulse,
A = 1 and B = 0. These two parameters are added to the model
in an ad hoc way to fit the experimental data and account for
experimental imperfection (i.e. residual background, atoms in-
homogeneities reducing the contrast of the fringe, etc.). When
performing Rabi spectroscopy, we apply a π pulse of the clock
light (i.e. which transfers a maximum number of atoms from the
initial 3P0 state (see Section 3.1.2) to the 1S0 ground state).

In the case of Rabi spectroscopy (A = 1 and B = 0), the linewidth
of the obtained spectroscopy curve is roughly

δνRabi = 0.8/τπ (3.7)
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where τπ is the temporal length of the π pulse. However, ex-
perimental imperfections and noise sources are susceptible to
broaden the line.

From Equation 3.7, we see that longer probe pulses will provide
narrower spectra.

• Ramsey spectroscopy, which makes use of a pulse sequence com-
prising a first π/2 pulse to create a coherent quantum superposi-
tion of the ground and excited states, followed by a free evolution
period during which the probe laser is turned off, and its phase
and the atomic phase evolve independently. Finally, a second
π/2 pulse is applied to close the atomic interferometer and cre-
ates a state superposition which depends on the free evolution
period and the probe laser detuning with respect to the atomic
resonance.

The Ramsey lineshape as a function of the probe laser detuning
ν is given by the equation:

LRamsey(ν) = A
Ω0

2

Ω4

[
Ω cos

(ωτFE
2

)
sin

(
πΩ

2Ω0

)
− 2ω sin

(ωτFE
2

)
sin2

(
πΩ

4Ω0

)]2

+B

(3.8)
where Ω0 and Ω are the same quantities as those defined in the
case of the Rabi lineshape, ω = 2πν, and τFE is the Free-Evolution
time. Again, A and B are ad hoc parameters accounting for ex-
perimental deviations from the ideal lineshape (A = 1 and B =
0).

In the case of Ramsey spectroscopy (A = 1 and B = 0), the
linewidth of the obtained spectroscopy curve is

δνRamsey = 1/(2τFE) (3.9)

3.2 Experimental Spectroscopic Signals and Their
Interpretation

Let us now turn to experimental spectra obtained by scanning the
clock laser frequency across the atomic resonance.
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3.2.1 Magnetic field zeroing using clock spectroscopy mea-
surements

The first step toward high resolution spectroscopy of the clock tran-
sition is to make sure that the magnetic field at the position of the
atoms is well defined, and aligned with respect to the probe beam

To that end, we use compensation magnetic coils wrapped around
the vacuum chamber to zero the magnetic field at the position of the
atoms, and we then apply a well controlled quantization magnetic field
with a small bias coil as can be seen on Figure 3.2. To make sure

Figure 3.2. Scheme of the compensation coils around the vacuum chamber. Two sets
of coils (blue and red on the scheme) are used for cancellation of stray magnetic fields
perpendicular to the quantization axis, which is formed by the Bias coil (green). The
vertical direction on the picture is the direction of earth’s gravity, which is also the
direction of the lattice trapping.

that the magnetic field coming from the environment is properly com-
pensated, we use the atoms as a magnetometer, by monitoring the
splitting of the π Zeeman transitions, and null this splitting by varying
the current applied to the compensation coils in the directions of space
orthogonal to the bias field. We can see on Figure 3.3 The result of two
iterations of this procedure in both direction perpendicular to the bias
field. Applying no bias field, if the stray magnetic fields at the position
of the atoms are well compensated, we should only see two Zeeman
peaks corresponding to the two π transitions, collapsed onto one an-
other, since the splitting (linear part of equation 5.12) is proportional
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Figure 3.3. Calibration curves of the environmental magnetic field (a) in the vertical
direction and (b) in the West-East direction (the quantization axis is applied in the North-
South direction).
The extra peaks appearing on the spectra are σ transitions which start to appear when
the bias magnetic field is no longer well defined and aligned with the polarization of the
probe beam.

to the quantization field. However, the violet trace on plot (a) features 4
peaks corresponding to the two π transitions (small peaks in the mid-
dle) but also the two σ transitions, meaning that the magnetic field is
poorly aligned. By varying the current feed to the compensation coils
in the vertical direction, we end up with a spectroscopy looking like
the red trace.

We then go on to optimize the West-East direction, applying the
same procedure, starting from the blue trace, and we end up with a
spectroscopy trace looking like the red one, where the σ components
have almost disappeared and the π components are overlapped, mean-
ing that our magnetic field is well aligned, to within the linewidth of
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the transitions of 50 Hz on this particular trace.
By performing the operation with narrower linewidth scans (longer

clock pulses) and using the first order Zeeman coefficient, we estimate
that the magnetic field at the atoms is zeroed to within a resolution of
3 µT in the three directions.

3.2.2 Carrier spectroscopy of the two Zeeman sublevels

Applying the clock sequence depicted on Figure 3.4 (a), we indeed
obtain the expected spectrum featuring the two π Zeeman components
as discussed in Section 3.1.2. For a typical spectroscopy run with a
15 ms-long probe pulse, the result is shown on Figure 3.4 (b).
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Figure 3.4. (a) Clock sequence for spectroscopy without normalization and (b) Spec-
troscopy on the two π Zeeman components with a 15 ms probe beam. We see two
carriers, corresponding to the two Zeeman sublevels +mf → +mf and −mf → −mf .
The small sidebands visible on each side of the π transitions are residual probing of
atomic motion along the transverse confinement (see 3.3.1).
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The Zeeman frequency splitting on this particular curve is 480 Hz,
but can be adjusted by varying the strength of the bias magnetic field.
The small sidebands on both sides of the π Zeeman components are
residual transverse motional sidebands because of imperfect align-
ment of the probe beam on this particular data run (see Section 3.3.1).

3.2.3 Control of atomic noise: implementing a normalized
detection

Transition probability and normalized spectra

The spectra shown in Section 3.2, allow us to lock to the atomic
resonance and operate the clock with a stability close to the 10−15 level
at one second, but they are nevertheless affected by atom number
fluctuations. Indeed, from one cycle to the next, the number of loaded
atoms into the MOT, and even more so the number of atoms trapped
in the lattice can fluctuate, depending on the operating conditions by
as much as 20%. If we want to approach the limits of the mercury
clock, we have to get rid of these fluctuations.

The obvious way to do that is to apply the interrogation pulse,
which will transfer to the ground state a certain fraction of the atoms.
These atoms are detected and therefore lost from the trap, yielding a
first detected signal that we note Pe. Subsequently, during the same
clock cycle, the atoms that have not made the transition to the ground
state are then transferred back to the ground state, and detected,
yielding a second detected signal Pg. We call transition probability

Figure 3.5. Clock sequence for spectroscopy with normalization. We use a π pulse of
the clock light to transfer the atoms back to the ground state and apply another detection
pulse in order to obtain the clock transition probability.
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the quantity

P =
Pe

Pe + Pg
(3.10)

This ratio is naturally immune to atom number fluctuations, since
these will be equal for Pe and Pg.

Since we do not yet have repumpers to recycle atoms from the 3P0

state back to the ground state via the 3S1 level, we resort to another
method, which is to use a short and spectrally broad π pulse of the
clock light to transfer the atoms (coherently). The whole sequence
including normalization is shown on figure 3.5.
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Figure 3.6. Rabi spectroscopy with 15 ms π pulse (a) without atom number normaliza-
tion and (b) with atom number normalization. Both curves are an average of 3 realiza-
tions of the experiment and are fit with Equation 3.6.
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Figure 3.6 shows the difference on a single 15 ms π pulse spec-
troscopy between a non-normalized and a normalized signal and taken
in otherwise the same experimental conditions. We can see that the
signal to noise ratio is improved, and looking at the residuals of both
fits (normalized by the amplitude of the spectra to be able to com-
pare them), we see that the normalized spectrum fits better with the
expected Rabi lineshape of Equation 3.6.

3.2.4 Towards improved stability: high-resolution Rabi and
Ramsey spectroscopy

We have demonstrated that we can use the clock laser to probe
the atoms in the lattice in a configuration which is free from cycle-to-
cycle atom number fluctuations. However, so far we have only used
short pulses of the clock light which give “broad” (' 50 Hz) lineshapes.
When locking to the atomic resonance to operate a clock, one wants
to maximize the slope of the frequency discriminator. To do that, the
length of the clock pulses has to be increased, while still keeping a
good signal to noise ratio of the atomic signal in order to servo the
clock laser to the atomic resonance.
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Figure 3.7. Spectroscopy curve for robust frequency locking using Rabi spectroscopy
with 80 ms (π) probe pulse. The fit with eq 3.6 gives the expected 10 Hz Fourier limited
FWHM resonance.

We have found that a good trade-off, using clock instability as a
criterion (see Chapter 4 for more details) is obtained for probe pulses
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of 80 ms, corresponding to a transition linewidth of 10 Hz. A spec-
troscopy curve taken in this configuration is shown on Figure 3.7.

Using a slightly more complicated pulse sequence, we can also per-
form Ramsey spectroscopy. In that case, as described in Section 3.1.3,
the laser creates a coherent clock states superposition, after which the
laser phase and the atomic phase are left free to evolve independently
for a variable amount of time, and are finally recombined, creating a
fringe pattern as a function of the clock laser detuning with respect to
the atomic resonance which is shown on Figure 3.8. In that case when
comparing with Figure 3.7 for which the interrogation time was 80
ms, 50 ms of free-evolution time yield the same central fringe width of
10 Hz, illustrating the favorable scaling of the transition linewidth for
Ramsey free evolution time (Equation 3.9) versus Rabi time (Equation
3.7). Here we have used π/2 pulses of 7.5 ms to create the quantum
superposition of the clock levels and to close the atomic interferometer.
The favorable scaling of the transition linewidth seems to indicate that
Ramsey interrogation is more beneficial for clock operation. However,
the clock noise scales differently as a function of Fourier frequency
for Rabi and Ramsey interrogation, and with our clocks duty cycle, we
expect that it is still favorable (and simpler given our signal to noise
ratio) to use the clock performing Rabi interrogation, and in the rest
of the thesis all experiments are done using Rabi spectroscopy.
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Figure 3.8. Spectroscopy curves for robust frequency locking using Ramsey spec-
troscopy with 7.5 ms (π/2) pulses and 50 ms free evolution time. The fit with eq 3.8
gives a 10 Hz full-width at half maximum (FWHM) central fringe as expected.
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Using clock spectroscopy, we can look for the limits in atom/probe
coherence by increasing the length of the interrogation pulses, adjust-
ing the power to still apply a π pulse to the atoms, and see how nar-
row we can make the clock transition lineshape. In order to perform
these narrow spectra, the probe laser frequency drift must be thor-
oughly compensated since slow laser frequency excursions can create
an (asymmetric) line broadening.

We expect that when increasing the interrogation time, several mech-
anisms can create line broadenings, such as loss of atom-laser coher-
ence, density-related broadening and scattering of lattice photons.

As it turns out, the current status of the experiment doesn’t allow
us to probe these effects. Indeed, the limitation to the interrogation
time does not come from a loss of coherence, but rather from a loss
of atoms from the lattice, because of the limited atomic lifetime of '
300 ms in the trap, which degrades the signal to noise ratio of the
spectroscopy for long interrogation pulses.

Indeed, we see on Figure 3.9 that increasing the Rabi pulse length
by a factor of two to 160 ms, and another time up to a 320 ms long
pulse, we keep a nice Fourier-limited lineshape, which testifies to the
fact that atom laser coherence is still preserved at these long interro-
gation times. We observe however an increasingly degraded signal to
noise ratio, mainly because of atoms loss from the lattice, presumably
due to background gas collisions. In order to resolve narrower spec-
tra, an increase in the lifetime of the atoms in the lattice trap will be
needed, probably by improving the vacuum conditions. Nevertheless,
using a 320 ms long pulse, we have been able to resolve a record (in
the history of the mercury clock) transition linewidth of 2.5 Hz. The
plot is shown on Figure 3.9 (b)). At the carrier frequency of 1.128 PHz,
this corresponds to an atomic quality factor Qat = 4.5 × 1014 in the
deep UV.
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Figure 3.9. Spectroscopy curves for long clock pulses (a) Rabi spectroscopy with 160
ms (π) probe pulse. The fit with eq 3.6 gives a FWHM of 4.6 Hz, close to the expected 5
Hz Fourier limited resonance. (b) Rabi spectroscopy with 320 ms (π) probe pulse. The
fit with eq 3.6 gives the expected 2.5 Hz Fourier limited FWHM resonance.



Experimental Spectroscopic Signals and Their Interpretation
69

3.2.5 Rabi flopping and excitation inhomogeneities

Another way to characterize atom/probe coupling is to perform a
Rabi flopping experiment. The clock laser is set at resonance with
the 1S0 → 3P0 and the area of the probe pulse is varied, either by
varying the pulse length at constant power, or varying the probe power
while keeping the Rabi time constant. Experimentally, by applying a
probe pulse of variable duration and constant power, we observe a
damped oscillation of the atomic populations between the ground and
the excited state as a function of increasing pulse area. The damping
yields information on the relative coupling of the probe laser and the
atoms.

Such Rabi flopping curves have been observed on our experiment
for the first time during the course of my PhD work, an improvement
which was made possible by the implementation of the normalized
detection and the improved reliability of the whole laser systems.
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Figure 3.10. Transition probability as a function of probe time for a given probe power.
For this particular run, a clock π pulse corresponds to 18 ms.

On Figure 3.10, I plot the transition probability for the -1/2→ -1/2
Zeeman component as a function of the probe pulse duration. The ex-
perimental data are fitted with a damped sinusoidal, yielding a Rabi
frequency of Ω = 2π × 27 Hz, a contrast of 0.45 and a characteristic
decay time of the oscillation γ = 75 ms. The damping of the oscilla-
tions is most certainly due to excitation inhomogeneities across the
atomic sample. On our experiment, the atoms are not cooled inside
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the lattice (e.g. via sideband cooling), which means that they populate
several motionally excited states, leading to different atoms having dif-
ferent Rabi frequencies (see Section 3.1 for more details), leading to a
dephasing of the Rabi oscillation. Hints of experimental evidence of
behavior can be seen on the plot of Figure 3.17 where we perform Rabi
oscillation experiments on atomic samples with different temperature
distribution, see Section 3.4.2.

The period of the oscillating signal allows us to calibrate and engi-
neer the probe pulse (power and length) to reach any desired atomic
transition probability.

3.3 Estimation of the Trap Depth with Transverse
Sideband Spectroscopy

3.3.1 Spectroscopy with a misaligned probe beam

All the curves shown above have been obtained by carefully over-
lapping the probe beam on the lattice, to ensure that we are probing
the atoms in the direction of strong confinement of the trap. We esti-
mate based on the geometry of the experiment, the alignment proce-
dure (overlapping both beams before and after the lattice cavity) and
the size of the beams that we can get the alignment correct to within
' 10 mrad. However, if we intentionally misalign the probe beam,
we should see some sidebands appearing on either side of the carrier
transition, which will reveal information about the transverse atomic
motion in the quasi-harmonic confinement.

Indeed, figure 3.11 shows such a scan with a misalignment angle
estimated to be ' 20 mrad. We can see clearly two narrow carriers,
corresponding to both π transitions, as well as motional sidebands ap-
pearing on each sides (red and blue) of both carriers. Due to the weak
power of our probe beam, and the very small coupling, only the first or-
der sidebands, corresponding to the transition | e;ntrans〉 → | e;ntrans+1〉
(blue-shifted sideband) and | e;ntrans〉 → | e;ntrans − 1〉 (red-shifted side-
band) are visible on the plot.
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Figure 3.11. Spectroscopy on the two π Zeeman components with a misaligned probe
beam. We see appearing on each side of the 2 carrier π transitions motional sidebands
due to the quantified transverse confinement in the optical lattice. The solid line is a fit
with a sum of Gaussian lineshapes.

3.3.2 Estimation of the trap depth

Even though detrimental from a metrological point of view, as they
can create systematic shifts such as line pulling, the motional side-
bands give us precious information about the lattice potential, and
more specifically, knowing the waist of the lattice trap, we can directly
extract the trap depth looking at the sidebands frequency.

Indeed, there is a simple relation between trap depth and (trans-
verse) sideband frequency:

ω⊥ =
2
√

2Erec
h̄klatw0

√
U0

Erec
(3.11)

where Erec is the lattice recoil energy (equation 12), w0 the lattice waist,
in our case 69 µm, and U0/Erec is the trap depth in units of the lattice
recoil energy.

If we assume a linear relationship between the total flux of the lat-
tice light (and therefore U0) and the signal detected by the photodiode
monitoring the lattice cavity transmission S, in V units (see layout
of the lattice optics and locking electronics in Section 1.3.2), we can
rewrite Equation 3.11 as

ω⊥ = Aωrec

√
κPDS

Erec
= Ah̄−1

√
Erec

√
κPDS (3.12)
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where A = 2
√

2
klatw0

=
√

2λlat
πw0

is a dimensionless scaling factor, ωrec = 2π×
7.5 kHz and κPD is a calibration factor with dimension of (Erec/V). κ
is of chief importance for clock operation, since S is our only way to
monitor and vary the lattice depth, which is a crucial parameter for
the estimation of lattice-related frequency shifts (see Section 5.3).

Investigating the sidebands frequency separation from the carrier
for several lattice intensities, and using Equation 3.12, we are able to
experimentally measure κPD, and therefore express the voltage offset
of the sidelock of the lattice cavity in units of lattice recoils. Prior to
my PhD, in order to do this calibration, we were using an estimation
of the power coupled to the buildup cavity from the specification of the
cavity mirrors and a measurement of the power before the cavity to
determine the trap depth with a few percent uncertainty at best. We
expect that the method using atomic sideband spectroscopy will yield
a much more accurate result.
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Figure 3.12. Spectroscopy curves featuring the transverse sideband spectra at multi-
ple lock point (or intensities) of the lattice. From a fit with multiple Gaussian functions,
we extract the sideband frequencies with respect to the carriers (see main text). The
curves are shifted vertically for visibility.

Figure 3.12 shows the experimental sideband spectra for different
trapping powers. We fit each spectrum with a sum of gaussian func-
tions (Figure 3.11 shows an example of such a fit) and extract the
center of each of the six gaussians. We then take the difference be-
tween the center of the carrier and the center of the two sidebands for
both Zeeman carriers, which gives us four estimations of the sideband
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frequency, ωred⊥ (−1/2 → −1/2), ωblue⊥ (−1/2 → −1/2), ωred⊥ (+1/2 → +1/2)

and ωblue⊥ (+1/2 → +1/2). Under the assumption that the sidebands
are symmetric around the carrier and that the red and blue sidebands
have the same frequency (in absolute value), we finally compute the
sideband frequency ω⊥(mean) (which we will note ω⊥ in the following),
taken as the average of the four frequencies mentioned above.
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Figure 3.13. Sideband frequencies as a function of sidelock offset. From a fit with the
model of equation 3.13 we can deduce the conversion factor between V on the sidelock
and trap depth in Erec (red curve). The uncertainty on the fit is visualized by the shaded
light red area.

We then plot the sideband frequencies extracted from the spectra
as a function of S, which is shown on Figure 3.13. We can see that
as expected from Equation 3.12, ω⊥ increases with increasing lattice
depth S with a square root dependence. A fit to the function

ω⊥ = 2πB
√
S (3.13)

gives us B = 59.8(6) Hz/
√

V. By comparing Equations 3.12 and 3.13,
we obtain

κPD =

(
B

Aνrec

)2

= 11.1(1)
Erec
V

(3.14)

Previously, we had estimated κPD to be close to 14 Erec/V based
on the specifications of the lattice mirrors, the expected beam waist of
69 µm inside the lattice cavity and crude parametric heating measure-
ments.
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In Section 3.4, we will check the consistency of our measurement
by studying the dynamics of the atoms in the lattice through the pro-
cess of resonant parametric excitation.

3.4 Studies of Parametric Excitation in the Trap

Parametric excitation is a physical phenomenon encountered in a
wide range of situations and physical systems. It has been used to
characterize trapping conditions and atom dynamics in optical lattice
traps [41].

To perform parametric excitation in an oscillating physical system,
one needs to modulate the natural frequency of the oscillator. When
the modulation frequency, ωm is twice the trapping frequency, energy
is transferred from the modulation source to the atoms, which are
then expelled from the trap.

Figure 3.14. Scheme of the lattice parametric excitation setup. VCO: Voltage-Controlled
Oscillator, SHG: Second Harmonic Generation.

In our case, we modulate the intensity of the lattice laser using an
AOM on the path to the lattice cavity (we are sending the 0th order to
the cavity, and are dumping more or less light into the 1st order to
modulate the intensity). By doing so, we are able to resonantly excite
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the oscillating motion of the atoms in the harmonic wells of the lattice,
and observe losses of atoms from the trap.

One important issue arises due to the fact that the frequency re-
sponse of the amplitude modulation of the AOM is non-linear. When
modulating the amplitude of the AOM at frequency ω, we will generate
an unwanted modulation at frequency 2ω, which will spoil the spectra
of parametric excitation.

A good way to get rid of this issue is to actually work near zero
offset amplitude, where the behavior is almost completely quadratic.
In that case, we have checked on the spectrum of the light from the
AOM that only the second harmonic of the modulation frequency is
generated, with more than 30 dBm difference between the power at ω
and the power at 2ω, provided that the modulation amplitude is small.
The experimental setup is shown on Figure 3.14.

A Stanford digital synthesizer SRDS45, which is digitally controlled
sends a voltage modulation onto the amplitude modulation port of the
AOM driver, which drives the AOM at frequency ω. The laser beam
going through the AOM get amplitude-modulated at frequency 2ω, and
is sent to the lattice buildup cavity.

3.4.1 Trap depth estimation

We first study parametric excitation of the atomic motion along the
transverse direction of the lattice, shaking the lattice at a frequency
close to the transverse frequency of the lattice trap (' 100 Hz), since
this provides us with a direct comparison with the lattice sideband
spectra of section 3.3.1. The parametric excitation curves shown on
Figure 3.15 (a) have been taken with a 20 ms long modulation, with
an amplitude of 1.2 V (modulation depth of ' 30 %).

We clearly see the resonance occurring for a driving frequency close
to twice the transverse motional sideband frequency in the lattice trap,
with the exact frequency depending on the offset of the lattice sidelock
(or equivalently the trap depth). We have checked that the scaling
goes roughly as a square root law, as was the case for the sideband
frequency in the spectra of section 3.3.1.
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Figure 3.15. Lattice shaking spectra, taken for different trap depth. The frequency
shown on the x-axis is the frequency at which the lattice trap is modulated. (a) Trans-
verse lattice shaking spectra and (b) Longitudinal lattice shaking spectra. The inset
shows the square root dependence of the resonance frequency as a function of lattice
depth, obtained by fitting the resonance spectra with a gaussian lineshape.
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The coefficient extracted from a fit with Equation 3.13 gives B =
57(3) Erec/V, in perfect agreement with the result obtained in Section
3.3.2 by fitting the transverse sidebands. This good agreement gives
us confidence that we know the trap depth down to the few-% level.
We have also checked that we can parametrically excite the atoms out
of the trap by shaking it at a frequency close to twice the longitudinal
trapping frequency (' 100 kHz).

A few spectra are shown on Figure 3.15 (b) for different trap depth.
All the parametric excitation curves shown on the figure have been
taken with a 200 ms modulation, with a modulation amplitude of 0.1
V (that is a modulation depth of 2 to 4 %). In that case, the scaling
also goes as a square root law, as expected from studies of longitudi-
nal sideband spectra (see inset of Figure 3.15 (b)) realized by several
groups on other atoms [6]. Since we cannot excite the longitudinal
sidebands in the lattice trap with the clock laser due to a lack of laser
power, these spectra provide us with a way to evaluate the trapping
conditions in the longitudinal direction. There are however limits to
the validity of this picture, for example the dynamics of the expulsion
of atoms from the trap which is hard to model, and the anharmonicity
of the trapping potential which is not taken into account.

3.4.2 Atomic temperature filtering

We have seen that parametric oscillation of atoms in the lattice
trap gives information about the spring constant of the trap itself, but
it turns out that the width of the parametric spectrum also provides
us with qualitative information about the atoms dynamics in the trap.

Indeed, we apply a procedure which consists in lowering the lattice
depth by a controlled amount (expressed in V on the lattice sidelock
offset on Figure 3.16), to filter-out the hotter atoms and let them leave
the lattice trap. We characterize the effect of the filtering by looking at
lattice shaking spectra. By varying the amplitude of the lattice ramp-
down we are able to modify the atomic velocity distribution in a con-
trolled way, as shown on the curves of Figure 3.16. All the parametric
excitation curves shown above have been taken by first ramping down
the lattice depth in 5 ms, waiting for the hot atoms to escape during
20 ms, and then ramping the lattice depth back up in 5 ms. This fil-
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Figure 3.16. (a) Hot atom filtering sequence and (b) Parametric excitation spectra
obtained by ramping down the lattice depth to get rid of the hotter atoms according
to the experimental sequence above (colored dots). We fit the curves with a gaussian
lineshape (full lines). The linewidth (in kHz) extracted from the fits is plotted in the inset
as a function of the lattice ramp-down.

tering period is then followed by the parametric excitation diagnostic,
applying a 200 ms long modulation with a modulation depth of 0.1 V.

The filtering procedure has a significant impact on the width of the
parametric excitation spectra. We have tried to quantify this statement
by fitting the width of the parametric resonances with a gaussian line-
shape, and plotting the width as a function of the amplitude of the
lattice ramp-down. This is shown on the inset of Figure 3.16.

We are able to reduce the width of the sideband spectrum by al-
most factor of two, at the price of a decrease in the number of atoms.
In our current experimental conditions, this decrease is too impor-
tant for robust clock operation. However, when the 2D-MOT is oper-
ational, yielding increased atom numbers, this simple and fast proce-
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dure might be a very efficient way to modify the atomic temperature
distribution, which is expected to have an impact on clock accuracy
(see Section 5.3.3 for more details).

One interesting thing to note is that the filtering reduces the width
of the distribution in a clearly asymmetric fashion. Indeed, the blue
edge (at higher frequencies) of the spectra is fixed, only the red edge
of the resonance gets shifted when the resonance narrows as a conse-
quence of the lattice ramp-down. This asymmetric narrowing is rem-
iniscent of longitudinal blue-sideband spectra, which also feature an
asymmetry where the slope of the curve is much steeper on the blue
side of the resonance than on the red. In this regard, a simple model
of the lattice shaking dynamics would be valuable, in order to be able
to fit the spectra with parameters related to the thermal distribution
of atoms in the trap, and the trapping potential.
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Figure 3.17. Carrier Rabi flopping curves without (blue dots) and with (red diamonds)
atom filtering. The full lines are fit with a damped sinusoidal function.

We can also visualize the impact of hot atoms filtering by looking at
Rabi flopping curves. Since due to imperfections in the experimental
setup, the probe is not perfectly aligned with the lattice axis. There-
fore, the Rabi frequency of the carrier transition is impacted by the
transverse atomic motion, and modifying the transverse atomic tem-
perature distribution by ramping down the lattice depth should have
an impact on the Rabi flopping experiments.

Figure 3.17 shows the Rabi flopping curves obtained when applying
the filtering procedure (red diamonds) and without any filtering (blue
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dots).
The parameters extracted from the fit (see Section 3.2.5) to the fil-

tered curve are Ωfilt = 2π × 28 Hz (Ω = 2π × 27 Hz), Cfilt = 0.4 (C
= 0.4), and γfilt = 91 ms (γ = 75 ms) for the filtered (unfiltered) data
respectively, showing the slightly improved coupling of the clock laser
to the atoms when operating with the filtered atomic distribution.



Chapter 4

Clock Operation and
Short-Term Stability
Optimization

In this chapter, we turn to the characterization of the frequency
instability of the mercury optical lattice clock, which is to say the ul-
trastable clock laser referenced to the 1S0 → 3P0 atomic transition.

Frequency instability is a key figure of merit for clocks, as it is a
measure of the clock frequency noise. As we shall see in the following
sections, a proper analysis of this noise provides physical insight into
the nature of the different noise processes affecting the clock tran-
sition frequency, and the experimental levers which can be used to
eliminate or reduce them.

From a metrology standpoint, the frequency instability is also the
statistical uncertainty affecting a given clock frequency measure-
ment. If the clock frequency is averaging as 1/

√
τ (dominated by white

frequency noise) as is often the case for atomic clocks, starting from
10−15 at 1 second averaging time, we will need 100 seconds to reach
the 10−16 level of statistical accuracy.

Therefore, instability is also a crucial parameter for frequency ra-
tio measurements and clock systematics evaluation, which will be the
topic of the last two chapters of this thesis.

As mentioned in the Introduction, in the community of frequency
metrology, clock instability is most commonly computed and visual-
ized thanks to the Allan standard deviation (ADEV) or the Overlapping

81
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Allan standard deviation [2].
The subject of this chapter is to first investigate the different sources

of frequency (in)stability of our clock, and quantify and characterize
them thanks to the Allan standards deviation, and second to find ways
to improve the stability of the clock for frequency-ratio measurements.
Our goal is to reach a clock stability of 10−15 at one second, giving
access to measurement resolutions at the level of 10−17 after approx-
imately half an hour of averaging, in order to characterize systematic
frequency shifts in a reasonable amount of time.

4.1 Locking to the Atomic Resonance

The apparatus works as a clock when the clock laser is servo-locked
to the atomic transition creating a composite system clock laser +
atoms. I will give a few details about how this atomic servo is im-
plemented on our experiment. In order to servo the clock laser to the
atomic transition, we use a square-wave frequency modulation lock-
ing scheme [63]: we probe the atomic population using a π pulse of the
clock light alternatively detuned by +δ and -δ from the expected cen-
ter of the resonance ν(t), where δ is the Half-Width at Half Maximum
(HWHM) of the transition lineshape, which for Rabi spectroscopy is

δ ' 1

2
× 0.8

Tπ
(4.1)

This alternative probing yields the measured populations (or tran-
sition probability on the case of normalized detection, see Section
3.2.3) p+(t) and p−(t). We then derive the error signal of the clock
εsig(t) = p+(t) − p−(t) and we use an integral servo to correct the fre-
quency of the laser and keep the error εsig close to zero:

yn = yn−1 + (−1)n−1Kiεn (4.2)

Where Ki is the integral gain which we adjust empirically. An example
is shown on Figure 4.1. If the populations p+(t) and p−(t) are un-
balanced (violet dots on the blue atomic resonance) then we apply a
correction to the laser frequency through a frequency shifter (a syn-
thesizer feeding and AOM on the beam path) to keep it locked to the
atomic transition.
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Figure 4.1. Principle of laser-locking to the atomic resonance: The dashed red line
represents the expected resonance frequency at time t. The laser is detuned by +δ then
-δ, and the corresponding atomic populations are measured (violet dots). The imbalance
between the two population measurements is used to determine the frequency correction
which needs to be applied to the laser to keep it at resonance with the atoms (in this
particular instance, the probe laser frequency has to be steered towards the negative
frequencies.

This scheme is quite simple and robust, however a major frequency
bias arises due to the quantization magnetic field which creates a lin-
ear Zeeman effect and splits the atomic transition into two Zeeman
lines (see Chapter 3 for more details). This means that by locking
the clock laser to one of the Zeeman lines, we introduce a shift with
respect to the unperturbed clock frequency of δνZeeman = µBδgmFB/h

where B is the magnetic field, and this shift is as large as 200 Hz in
normal configuration, which means that in order to keep the clock un-
certainty at the level of 10−18, we would have to know the magnetic
field down to an uncertainty of 10−5 (see Chapter 5 for more details).
Moreover, magnetic field fluctuations will impact the in-loop stability
of the clock to first order.

To mitigate these issues, a commonly used technique is to im-
plement a stretched-state servo loop on the two Zeeman components
[105].

The servo loop works as follows: we first interrogate the left side
of the 1S0(mF = −1/2) → 3P0(mF = −1/2) which we denote p

−1/2
− (t)

(left red dot on the left peak of Figure 4.2). We then interrogate the
left side of the 1S0(mF = +1/2) → 3P0(mF = +1/2) which we denote
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Figure 4.2. Theoretical stretched Zeeman state spectroscopy curve (blue trace). By
alternatively probing the two atomic resonances, we effectively lock the clock laser to
the unperturbed center-frequency, visualized by the vertical arrow. The splitting be-
tween the two Zeeman components is on the order of a few hundred Hz in typical clock
operation.

p
+1/2
− (t) (left violet dot on the right peak of Figure 4.2). We follow by

interrogating the right sides of the 1S0(mF = −1/2) → 3P0(mF = −1/2)

and 1S0(mF = +1/2) → 3P0(mF = +1/2), denoted respectively p
−1/2
+ (t)

(right red dot on the left peak of Figure 4.2) and p
+1/2
+ (t) (right violet

dot on the right peak of Figure 4.2).

We construct the error signals:

ε
+1/2
sig = p

+1/2
+ − p+1/2

−

ε
−1/2
sig = p

−1/2
+ − p−1/2

−

(4.3)

and we have two servo independent but interleaved loops such as the
one described above in the single Zeeman component case running in
parallel, keeping both errors signals close to zero, and thereby tracking
line centers of the two Zeeman components.

A typical data run looks like the graph shown on Figure 4.3. The
frequency data are extracted from the correction applied to the AOM
frequency shifter, and the interleaved signals are demodulated. As can
be seen on Figure 4.3, even though each integrator is updates every
two clock cycles, the fully interleaved frequency correction is extracted
every clock cycle.
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Figure 4.3. Typical frequency locking data as a function of time. Squares on the figure
represent probing of the right side of the transition, while the circles represent probing
on the left side. Blue data points are used for mF = -1/2 and red data points for mF =
+1/2. Finally, the violet crosses show the extracted center frequency from both servos
after demodulation. For each servo, an error is computed every 2 clock cycle, however
making use of the full interleaving of the data, we can derive the error signal of the clock
every cycle (frequencies represented in violet below the time axis).

4.2 Allan Deviation and Clock Stability

In the frequency metrology community, the Allan standard devia-
tion is a commonly used to characterize the noise of oscillators and
clocks, and it is the purpose of this section to introduce this notion in
the context of this thesis. The generic expression for the frequency of
an oscillator as a function of time is given by Equation 2.

Since we are only interested in the frequency stability, or in other
words the frequency noise affecting the oscillator, we can for the mo-
ment assume that the frequency offset ε is 0. We can then rewrite
Equation 2:

y(t) =
νHg(t)− ν0

ν0
(4.4)

We calculate the Allan variance [2] of y defined as :

σ2
y(τ) = 〈(yn+1 − yn)2

2
〉 (4.5)
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and we define from this variance what we call clock (or oscillator) frac-
tional frequency instability, often abbreviated stability in the litera-
ture, which is simply the square-root of the Allan variance of frequency
fluctuations.

Experimentally, there are several sources of noise which will de-
grade the stability of our frequency standard, and the Allan standard
deviation of clock frequency fluctuations is usually found to be for Rabi
spectroscopy:

σy(τ) ' 1

3.03Qat

√
τcycle
τ

√
1

Natoms
+

1

Natomsnph
+

2σ2
δN

N2
atoms

+ σ2
tech (4.6)

Where τcycle is the duration of a clock cycle, τ is the integration time,
Natoms is then number of probed atoms in the lattice, nph is the num-
ber of photons detected per atom (in our case nph ∼ 40), σδN is the
uncorrelated rms fluctuations of the atom number, and σ2

tech is the
contribution of the frequency noise of the local oscillator and

Qat =
ν0

∆νRabi
(4.7)

is the atomic quality factor of the Rabi-lineshape to which the clock is
locked.

We see that the clock stability is the sum of several noise contribu-
tions, which we will now examine one by one.

4.3 Fundamental Sources of Noise

We will first focus on types of noises which we call “fundamental”
noise processes, i.e. processes which are inherent to the cyclic oper-
ation of an atomic frequency standard using the detection of uncorre-
lated atoms via a protective quantum measurement.

These include cycle-synchronous local oscillator frequency fluctu-
ations, which are unavoidable when looking at the stability of a single
frequency standard operated in a cyclic fashion, but which we will be
able to suppress when comparing two clocks as we will see later on
(see Section 4.6), and noise coming from the quantum, probabilistic
nature of our frequency discriminator, namely the detected fluores-
cence which randomly projects the atoms in a particular quantum
state.
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Even with a 100 % efficiency of the detection scheme, these types
of noise will impact the frequency stability of our clock.

4.3.1 Quantum projection noise

The first noise contribution comes from the random nature of the
process involved in detecting the quantum state of the clock atoms.
Ideally, this fundamental quantum noise limit should be the dominant
noise contribution to our frequency standard.

Let us imagine for simplicity that we are probing a single two-level
atom, which is fine for modeling the mercury clock as long as interac-
tions between probed atoms or entanglement are negligible. This atom
can be in its ground state | g〉 or in its excited state | e〉.

Excitation by the clock laser creates a quantum superposition of
ground and excited states |φ〉 = cg| g〉+ ce| e〉.

We then detect the atoms, which has the effect of projecting the su-
perposition into one of the eigenstates | g〉 or | e〉 and the probability of
finding the system in | g〉 or | e〉 is respectively |cg|2 and |ce|2. However,
even though |cg|2 and |ce|2 follow a deterministic evolution, the projec-
tive measurement is intrinsically probabilistic and therefore the result
of the measurement cannot be determined a priori.

We will now see that from this indeterminacy arises a source of
noise on the clock signal, which is called in the literature Quantum
Projection Noise (QPN in short) [40]. For clock operation, we usually
excite a group of N atoms to a given excited state population fraction
p = |ce|2/

(
|ce|2 + |cg|2

)
(in general the clock is operated with p = 1/2,

which gives the best sensitivity for the frequency discriminator of the
clock).

For one atom, the variance of the measurement of the atomic state
population fraction due to the QPN reads [40]:

σ2
p = p(1− p) (4.8)

In the case of N uncorrelated atoms, this expression scales as 1/N
for the variance, and 1/

√
N for the standard deviation, yielding the

fluctuations in atomic state population fraction

σp(N) =

√
p(1− p)
N

(4.9)
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Since these fluctuations are indistinguishable from probe laser fre-
quency noise, they degrade the clock stability. Cold atom frequency
standards limited by QPN have already been demonstrated [100] in
the microwave domain, and it is the regime in which ion clocks usually
operate [42]. For optical lattice clocks QPN-limited operation is within
reach, but local-oscillator induced instabilities (see Section 4.3.2) still
prevents the routine operation of QPN-limited frequency standards [1].
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Figure 4.4. Overlapping Allan standard deviation model of the typical clock frequency
noise assuming a short term stability of 1.5 × 10−15 at 1 second and a flicker floor of
4 × 10−16 (red trace). Overlapping Allan standard deviation for QPN alone (green trace)
assuming a 1s cycle time, 100ms probe time and 500 atoms probed in the lattice.

In the case of Rabi spectroscopy, the link between the fluctuations
of transition probability and the frequency fluctuations is the slope of
the Rabi line shape at the point of locking . From this, we can obtain
an approximate formula for the frequency instability due to quantum
projection noise [1]:

σy(τ) =
1

3.03Qat

1√
Natoms

√
τcycle
τ

(4.10)

Where Qat is the atomic quality factor of the Rabi lineshape (see eq
4.7), Natoms is the number of atoms, τcycle is the cycle time and τ the
integration time.

In the case of Rabi spectroscopy, Qat can be simply evaluated, since
∆ν ' 0.8/Tπ where Tπ is the length of the π pulse used for interrogation.
This noise contribution scales as white noise, going down as 1/

√
τ , as

can be seen on figure 4.4.
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We see that QPN is not a limitation at our nominal interrogation
time of 100 ms, contributing 1.1 × 10−16 fractional frequency instabil-
ity for a realistic 500 atoms detected in the lattice.

4.3.2 The Dick effect

As previously mentioned, the clock is operated in a cyclic fashion,
because of the destructive nature of the detection method employed,
and therefore the need to reload atoms into the lattice after each suc-
cessful detection period.

Consequently, during this “dead-time” needed to cool the new sam-
ple of atoms and load it into the optical lattice (approximately 90%,
900 ms dedicated to atomic sample preparation out of a 1 s cycle),
the clock laser is not compared against the atoms and its noise is not
corrected. The noise of the clock laser is sampled by the atoms with a
sampling rate equal to the inverse of the cycle time of the clock.

This sampling introduces a phenomenon well know in signal pro-
cessing, the down-conversion of high-frequency noise from the local
oscillator through aliasing into the bandwidth of the lock to the atomic
transition [88]. This process degrades the stability of the clock, and
depending on the experimental conditions can even be the limiting fac-
tor to the stability of the clock. This effect depends on the sensitivity
function g(t) of the atomic sample to local oscillator noise and is de-
fined by [21], [98]:

δf =
1

2

w Tc

0
∆(t)g(t)dt (4.11)

where ∆(t) is the frequency noise on the laser and Tc is the cycle time.
In the case of Rabi spectroscopy, we can write an analytic formula
for the sensitivity function, and for its Fourier transform which is the
relevant parameter entering into the calculation of the instability in-
troduced by the Dick effect [62]:

g(t) = −
(

∆Ω2
0

Ω2

)[
sin(Ωt)− sin

(
π

Ω

Ω0

)
+ sin

[
Ω

Ω0
(π − tΩ0)

]]
(4.12)

g̃(ν) =
∆Ω2

0

Ω2(πνΩ2 − 4π3ν3)

[
Ω sin

(
π2ν

Ω0

)
sin

(
πΩ

Ω0

)
− 4πν cos

(
π2ν

Ω0

)
sin2

(
πΩ

2Ω0

)]
(4.13)

where Ω0 is the bare Rabi frequency, and Ω is the generalized Rabi
frequency defined as Ω =

√
Ω2

0 + ∆2. As the side-note, in Equation
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Figure 4.5. (a) Plot of the spectroscopic sensitivity function as a function of time in one
cycle and (b) Plot of the normalized Fourier coefficients of the sensitivity function as a
function of frequency.

4.12 the origin of time is taken at the beginning of the clock pulse
interrogation.

Both functions are plotted on Figure 4.5. We can see that the
atomic response acts as a low pass filter for the laser noise through
the sensitivity function, but nevertheless through the aliasing process,
some high-frequency noise will still contribute to the instability.

The resulting contribution of the Dick effect to the clock instability
can be written:

σ2
y(τ) =

1

τ

∞∑
n=1

Sν(n/τcycle)

ν2
0

|g̃(n/τcycle)|2

|g̃(0)|2
(4.14)

In the above expression, Sν(f) is the free-running probe laser fre-
quency noise power spectral density, which is therefore a crucial pa-
rameter in the estimation of the Dick effect. Based on a beating be-
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Figure 4.6. Laser frequency noise power spectral density expressed in dB(Hz2/Hz
as a function of the frequency. Our model assumes a frequency flicker noise floor of
4.10−16 with white phase and frequency noise.

tween our ultrastable laser and a similar system [71], we can build a
model for the noise of our laser:

Sν(f) =
h−1

f
+ h0 + h2f

2 (4.15)

This model, which is plotted on Figure 4.6 assumes 3 contributions:

• Flicker frequency noise, scaling as 1/f with a coefficient h−1 =
0.11 Hz2.

• A white frequency noise floor with coefficient h0 = 3.2 × 10−4

Hz2/Hz.

• White phase noise with a coefficient h2 = 5.1 × 10−9 (Hz2/Hz)2.

We can finally plot the contribution of the Dick effect to the clock
stability as a function of integration time (equation 4.14) for our nom-
inal clock interrogation time of 100 ms (Figure 4.7).

We can see that if it is not yet the limiting factor for our clock
stability, it lies only a factor of 2 below our currently estimated clock
stability at short timescales.

4.3.3 Optimization of clock stability

In operating the mercury clock, our goal is quite plainly to have
a fractional clock frequency instability compatible with the study of
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Figure 4.7. Overlapping Allan standard deviation model of the typical (atoms + clock
laser) frequency noise assuming a short term stability of 1.5 × 10−15 at 1 second and
a laser flicker floor of 4 × 10−16 (red trace). Overlapping Allan standard deviation for
Dick effect alone (blue trace) assuming a 1s cycle time and 100 ms probe time.

clock systematics with a resolution of 10−17 1000 seconds of integra-
tion time. This corresponds to a clock instability of 1 × 10−15 at one
second. In this section, taking into account the typical experimental
conditions, we estimate the smallest attainable frequency instability in
our setup based on the sum of the contributions from QPN and Dick
effect. Figure 4.8 shows the calculated clock instability due to the
combined contributions of the Dick effect and QPN. Shown on the plot
is the clock instability at one second of averaging time as a function
of the probing time, which is the most experimentally relevant param-
eter, impacting both QPN and Dick effect. Several parameters enter
into play:

If a longer probe time is desirable both to reduce quantum projec-
tion noise and the Dick effect, our model takes into account the fact
that in our present operating conditions, we measure an atom number
which is decreasing over time because of losses of atoms from the lat-
tice, with a time constant of 300 ms. Moreover, lengthening the prob-
ing time also increases the clock cycle time, which in turn degrades
the stability.

We indeed observe that in the limit of our model, there is a trade-off
between long interrogation times, high atom numbers and short cycle
times, which yields an expected optimum for the combined stability



Study of the Detection Noise 93

101 102 103 104

Probing time (ms)

10-17

10-16

10-15

10-14
O

v
e
rl

a
p
p
in

g
 A

D
E
V

Dick Effect

QPN

Combined

Figure 4.8. Calculated clock stability at 1 second as a function of interrogation time
(colored dots). The filled lines are just guides for the eyes.

with a probe time of 300 ms. Unfortunately, when operating with such
long probe pulses, the lock to the clock transition becomes unstable,
because of the degraded signal to noise ratio due to the lowering atom
number (see Section 3.2.4). However, with the implementation of the
2D-MOT, this regime should be attainable, and clock stabilities below
5 × 10−16 at one second should be well within reach.

4.4 Study of the Detection Noise

In practice, the stability of the clock may not be limited by one of
the sources of noise discussed before, but rather by technical noise,
either impacting the atoms themselves (for example, magnetic field
noise impacting the clock frequency noise via the Zeeman effect), or
most commonly through the detection process. In this section, we
want to characterize the noise coming from the detection, and gauge
how far we are from operating in a regime where the detection noise
is quantum-projection-noise limited. A preliminary discussion of the
detection and the atom number calibration was done in Chapter 1 from
geometrical and ray optics considerations. However, using the atomic
signal, and more specifically by relating the detected atom number to
the noise affecting the transition probability, it is possible to realize an
absolute characterization of the signal to noise ratio of the clock as a
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Figure 4.9. Allan deviation at one second of the transition probability as a function
of the detected number of CCD counts (green dots). The horizontal error bars are the
standard deviation of the atom number for each measurement run. This measurement
uses the normalized detection scheme described in Section 3.2.3. The dashed red line
is the expected scaling of the quantum projection noise, and the black line is a fit to the
model of Equation 4.6.

function of the atom number. The advantage of this characterization
is twofold:

• It allows us to devise the best working point for the clock using as
a criterion the signal to noise ratio of the detected atomic signal
and as a tuning parameter the number of atoms loaded into the
MOT, which directly impacts the clock cycle time and therefore
the clock stability.

• Provided that the technical detection noise is low enough, if we
can identify a region in which the fluctuations of the transition
probability as a function of atom number is limited by the quan-
tum projection noise, then the scaling is exactly 1/

√
N where N

is the number of atoms, which provides us with the calibration
coefficient relating the detected signal (fluorescence CCD counts)
to the number of atoms. This calibration is very relevant in view
of the estimation of the density shift affecting the clock transition.

One such measurement is shown on Figure 4.9. We use the calibration
factor found in Section 1.5 of 0.09 atoms/CCD count with a modified
EM gain of the CCD of 1500 for this particular measurement yielding
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a conversion factor of 0.0063 atoms/CCD count. This gives us a start-
ing point to estimate the number of detected atoms. In order to do the
measurement, the clock sequence is run on one of the two Zeeman
components by applying a resonant π/2 pulse of the clock light, and
gather statistics on the transition probability by staying at resonance.
This allows us to be sensitive to the impact of atom number fluctua-
tions on the transition probability, while being free of frequency noise
(both LO and atom related), at least to first order. Indeed, at resonance
the derivative of the transition lineshape as a function of frequency is
zero (see lineshapes in Chapter 3). The number of atoms is varied by
changing the duration of the MOT loading (for the curve shown above,
the loading was varied between 0.15 and 1.0 seconds).

The experimental points (in green) are fitted with the model of Equa-
tion 4.6 (black full line). The portion going down as

√
Ncounts (red

dashed line on the graph) is the expected quantum projection noise.
We see that around 5×103 detected atoms, we lie close to a factor of 2
above the QPN because of noise coming from the detection. From the
fit parameters, we estimate that the background noise of our detection
system without atoms corresponds to 14 atoms.

This measurement suffers from two potential limitations:

• Long term drifts of the ultra-stable laser can bring the laser out
of resonance from the atomic transition in the course of the mea-
surement. We have therefore carefully updated the drift rate of
the dedrifting DDS of the clock laser before each measurement
run in order to mitigate this effect.

• Intensity fluctuations of the probe laser light are indistinguish-
able from atom number fluctuations, and can bias the interpre-
tation of the results.

4.5 Estimating the Mercury Clock Stability With-
out Referencing to a Second Optical Clock

In this section, we will discuss the experimental evaluation of the
stability of the mercury clock. The only way to evaluate the stability
of an oscillator is usually to compare it to another more stable refer-
ence. However, in our case this second reference might not be available
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as it would mean either building a second mercury clock, or using a
complicated infrastructure to compare the mercury clock with another
optical clock, which we will do later. Nevertheless, several measure-
ments can be performed to evaluate the stability of the clock without
the need for a second clock (see Section 5.1.1). We will also show how
this short-term stability can be optimized with respect to the clock
cycle parameters, as outlined in the previous sections.

4.5.1 The atoms against the ultrastable cavity

As the ultra-stable cavity employed to stabilize the clock laser has
a frequency flicker noise limit of 4 × 10−16 (see Section 1.4.1), the
short-term instability of the frequency of the lattice-trapped atoms
clock transition can be determined by comparing the frequencies of
the clock laser and that of the clock transition (as long as it higher
than the instability of the laser, which is still the case for the mercury
clock below ' 10 seconds of averaging time). The frequency difference
between the two is given by the frequency correction applied to the
AOM to keep the clock laser at resonance with the atomic transition

Therefore, if we look at the Allan deviation of the frequency fluctu-
ations of the correction, we obtain a curve which carries information
about the combined frequency instability of the ultra-stable cavity, and
the atoms used as a frequency discriminator.

This stability is shown of Figure 4.10: After removing the linear drift
from the ultrastable cavity, we observe a stability at one second of 1.3
× 10−15 (blue curve) [101], which is representative of the clock (i.e.
the atoms) stability, a factor of two above the expected fundamental
limit (combination of Dick effect and QPN), meaning that we still have
some remaining technical noise, probably coming from the detection.
This stability is a factor of 4 better than the previous record of our
experiment [63].

This measurement also provides a characterization of the noise of
the ultrastable cavity, since the instability goes down as 1/

√
τ before

hitting the laser flicker frequency noise floor of 4 × 10−16, very close to
the value expected from the beating of our laser with a similar system
[71].

On last piece of information can be extracted by looking at the split-
ting of the two Zeeman components, shown in red on the plot, which
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Figure 4.10. Overlapping Allan deviation of the in loop correction signal sent to the
probe laser AOM to keep it at resonance with the atoms. The blue curve shows the
dedrifted data (linear drift removed), and the red curve is the deviation of the frequency
splitting between the two Zeeman components. The blue line shows a model corre-
sponding to a short term stability of 1.3 × 10−15 at 1 second, going down as 1/

√
τ and

flickering at 4 × 10−16, consistent with the laser noise model of Equation 4.15.

averages down as 1/
√
τ below the flicker of the cavity, since the laser

noise is in common mode for both Zeeman transitions. As we have
seen in Section 3.2.1 the measurement of the Zeeman splitting pro-
vides us with an in-situ calibration of the magnetic field at the posi-
tion of the atoms. With a statistical uncertainty of 5 × 10−17 in 1000
seconds (red trace), we can infer a potential resolution of 18 nT for the
magnetic field, knowing the linear Zeeman coefficient 3.1(2) Hz/µT.
In reality, in order to reach such a resolution the vector shift due to
the lattice light laser field on the atoms would need to be taken into
account and corrected.

4.5.2 Stability for systematics evaluation

When performing differential measurement, two independent servo
loops are run in an interleaved fashion on a time scale of 5 to 10
seconds, and the quantity of interest is the difference between the
corrections of the two integrators. Since we spend twice less time
interrogating each loop, the stability on the difference should degraded
by a factor 2

√
2. This is an important factor that needs to be taken into

account and characterized for the study of systematic frequency shifts,
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since we want to reach a statistical resolution of 10−16 below on the
measurements of the clock frequency shifts, which means that the
averaging time of the measurements must be set accordingly.

100 101 102 103

Time (s)

10-17

10-16

10-15

10-14

D
if
fe

n
ti

a
l 
o
v
e
rl

a
p
p
in

g
 A

D
E
V

Figure 4.11. Overlapping Allan deviation of the frequency difference of the correction
for the two integrators. The red line starts at 2.5 × 10−15 and goes down as 1/

√
τ .

A typical stability curve when performing differential measurements
of lattice light-shift with a 5 cycles interleaving is shown on Figure
4.11. We see that the stability goes down starting from 2.5 × 10−15 at
one second of averaging time, which is roughly a factor

√
2 higher than

the single-integrator stability, and averages as 1/
√
τ where τ is the in-

tegration time. The difference between the observed factor
√

2 increase
in instability for the differential measurement and the predicted fac-
tor 2

√
2 is attributed to improved experimental conditions for Figure

4.11 with respect to Figure 4.10. We therefore prove here that we can
reach a statistical uncertainty below 10−16 in 1000 seconds of averag-
ing time (' 20 minutes), which makes measurements of systematics
at the 10−17 level within reach with reasonably long averaging times of
a few hours.

4.6 Stability of a Two-Clocks Comparison: Corre-
lated Interrogation

Atomic clock comparisons are essential tools of frequency metrol-
ogy (see Chapter 6). When comparing two clocks, the same diagnostic
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tools that we have developed in the previous sections for one clock still
hold, and the instability of the ratio of the clock frequencies, which is
the quantity that we want to measure is an important parameter of
the comparison, which we want to optimize. In this Section, we study
a technique to reduce the noise of atomic clock comparisons, which is
the synchronous operations of both (or more) clocks being compared
using a shared interrogation laser. In this regime, all sources of com-
mon mode noise, including Dick noise are greatly suppressed.

4.6.1 Principle of correlated interrogation

Interrogation between two clocks is most commonly performed when
comparing two clocks based on the same atomic species [102].

In that case, one can use the same local oscillator to interrogate
both clocks. Therefore, all sources of noise related to the clock laser
will be common mode for both servos, and will drop out in the com-
parison, except for the Dick effect, if the two clocks are interrogated
with random synchronization. However, if it is possible to operate the
two clocks in a synchronous fashion (both clock cycles are of equal
duration and both atomic ensembles are probed and detected at the
same time), then the Dick effect also becomes common mode to the
ratio measurement and is greatly suppressed [74].

The degree of correlation is conveniently visualized by plotting the
transition probability for one clock as a function of the transition prob-
ability for the other. For two perfectly uncorrelated clocks, this plot will
show a disk, while for two correlated clocks, it will show an ellipse,
whose ellipticity is a measure of the degree of correlation.

In our case, we want to perform correlated interrogation between
the mercury clock and the strontium clock, which is a much more
difficult task since both clocks work at very different and incommen-
surable wavelengths (the ratio of the frequencies is close to 2.6, see
Chapter 6). A very elegant solution to tackle this problem is to use
a frequency comb to bridge the frequency gap and provide a nearly
perfect transfer oscillator to copy the noise of one clock laser onto the
other, to reproduce a situation in which a single laser is used to probe
both clocks.
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4.6.2 Transfer of spectral purity via the optical frequency
comb

Transfer of spectral purity using an optical frequency comb (OFC)
was demonstrated by Nicolodi et al. [76] in 2014, and is a very power-
ful technique, which allows one to share the frequency stability of any
lasers whose carrier frequency lies inside the comb locking bandwidth
and transfer it to one or several other lasers operating at any desired
frequency inside the bandwidth of the frequency comb.

The original goal is to transfer the good spectral properties of a laser
A working at frequency νA to a laser B working at frequency νB, such
that the difference between νA and νB makes it impossible to do so by
beating the two systems.

Figure 4.12. Principle of the transfer of spectral purity via an optical frequency comb.
PI: Proportional Integrator, ε: error signals.

One possible implementation, as shown on Figure 4.12, is to phase-
lock tightly the frequency comb onto laser A, and then beat laser B
with the comb and use the beatnote to phase-lock laser B to the comb.

One great advantage of the frequency comb is that the relative fre-
quency fluctuations between different comb teeth lies well below the
10−17 level, which means that the spectral purity transfer can work
with any currently existing state-of-the-art ultrastable lasers.
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In our case, the locking scheme is a bit different: The comb is

Figure 4.13. Experimental setup for transfer of spectral purity via the optical frequency
comb. εPDH: error signal for PDH locking, εTSP: error signal for the transfer of spectral
purity, FHG: Fourth Harmonic Generation. The uncompensated path is shown in violet.

tightly locked onto an ultra-stable cavity which we will call “CUS”
(french for Ultra Stable Cavity), which has a flicker frequency noise
floor of 10−15 and a central wavelength of 1.5 µm, and we transfer
the spectral purity of this laser via the OFC to the mercury laser and
to the strontium laser. The reason behind this choice is related to
the requirements of the measurement chain that is used, among other
things, for sending the optical fiber link to Strasbourg and London (see
Chapter 6), and it is therefore beyond our control.

One might argue that using a clock laser with higher noise should
degrade the performance of the two optical clocks. However, since
performing transfer of spectral purity in this way we end-up copying
the noise of the CUS onto both lasers, when measuring the frequency
ratio between the two clocks, this LO noise will be common mode, and
therefore will not affect the differential stability of the clocks.
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A general scheme of the experimental setup is shown in Figure
4.13. On the mercury side we have decided to react on the already ex-
isting PDH (Pound Drever Hall) lock to the mercury cavity to lock the
mercury laser onto the comb. The light from the mercury clock laser
at frequency νHg is sent to the comb lab, and beat with a small amount
of comb light onto a photodiode. The resulting beatnote at frequency
νHg/4 −Nfrep − f0 is first mixed with f0 to get rid of possible f0 fluctu-
ations, and then mixed with a synthesizer whose (fixed) frequency is
matched to the f0-free beatnote frequency. We then get a phase signal,
which is fed to a PI (proportional-integral) and summed to the error
signal of the PDH.

We expect that this noise cancellation will be effective and that the
relative instability of the two clocks in this configuration will mainly be
set by the contribution to the Hg clock laser noise of the two frequency-
doubling stages and the residual uncompensated path going to the
atoms of approximately 2 meters (Shown in violet on the scheme of
Figure 4.13).

I have chosen the bandwidth of the lock to be close to 10 Hz, small
with respect to the available frequency range of the PDH lock, but big
with respect to the clock cycle time, in order to be sure to copy the
CUS noise relevant for short timescales (' 1 second) stability.

4.6.3 Correlated interrogation - experiments

We now look at preliminary results of frequency ratio measure-
ments νHg/νSr using the scheme presented in the previous sections.
In this section, we will overlook clock accuracy, which will be the fo-
cus of the last two chapters, and focus solely on the clock stability.

In order to make sure that the measurement is indeed synchronous,
we send to the Sr lab the clocking signal of the National Instrument
board that is used to control the experimental sequence, as well as the
physical clock laser pulse recorded with a photodiode located after the
lattice build-up cavity and a trigger pulse corresponding to the begin-
ning of each cycle of the clock. Care is taken to temporally match the
clock laser pulses and keep them synchronized during the measure-
ment.

We can first look at the stability of the in loop frequency correction
applied to the clock AOM in order to keep it at resonance with the



Stability of a Two-Clocks Comparison: Correlated Interrogation
103

atoms, when the mercury laser is locked to the CUS. The overlapping
Allan deviation of the frequency correction is shown on Figure 4.14 (a)
as a function of the cycle time of the clock.

We see that even though the CUS is actively dedrifted by comparing
the microwave from the frequency comb to the H-maser drift, the drift
of the CUS is dominating the instability of the clock, even at very short
timescales of ' 1 second, preventing us from seeing the impact of the
servo-locking to the atomic transition.

In order to extract the stability of the correlated interrogation, we
need to correlate the transition probabilities pHg and pSr. Indeed, phys-
ically this is where the correlation lies since fluctuations of the clock
laser will induce fluctuations of the transition probability scaled by the
sensitivity function [107]:

δp = π
w TC

0
δf(t)g(t)dt (4.16)

Using the transfer of spectral purity as explained in Section 4.6.2,
both clock laser will have the same fluctuations (within the bandwidth
of the locks, and scaled by the ratio of the clock frequencies) and the
noise on the transition probabilities will become correlated.

Figure 4.14 (b) shows the Overlapping ADEV of the transition prob-
ability for the mercury clock when the transfer is active. We again see
that without adding the information of the Sr clock, the CUS noise
dominates completely. The inset shows the corresponding time-trace
of the frequency excursion.

We can now look at the measurement of the frequency ratio when
both atomic samples are referencing the same LO, and use the infor-
mation of the correlation to improve the stability of the measurement.
The time-traces are shown on Figure 4.15 (a). We observe a clear corre-
lation between the blue trace (Hg clock) and the orange trace (Sr clock),
meaning that the transfer of spectral purity is working as expected. In
order to be able to compare the trace one-to-one, the frequency cor-
rection to the Sr laser has been rescaled to account for the frequency
ratio between the two clocks.
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(a)

(b)

Figure 4.14. (a) Overlapping Allan deviation (ADEV) of the clock frequency correction
using the CUS as LO and (b) the corresponding Overlapping ADEV of the extracted
transition probability.
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The impact of the synchronous operation on the stability of the
frequency ratio measurement is shown on Figure 4.15 (b). At short
timescales, the noise of the LO dominates and cannot be perfectly re-
jected by the correlated interrogation. However, after 100 seconds, the
atomic servo lock has relaxed and the Overlapping ADEV is consistent
with white noise going down as 3×10−15/

√
t.

The stability of the ratio measurement is marginally better than
the stability obtained when performing uncorrelated measurements
locking each clock laser on its own LO (see Section 6.4), while the CUS
noise is much worse than either the mercury or the strontium cavities.

The conclusion of this first experiment is therefore that the transfer
of spectral purity does significantly improve the stability of the ratio
measurement, but the CUS instability is too high to be completely
eliminated by the spectral purity transfer scheme.

To improve on this measurement, the first step would be to lock the
Comb on the mercury or strontium ultra-stable cavities which have
better noise properties than the CUS, and do the purity transfer as de-
scribed here. Thanks to the study and experimental proof of principle
described here, this measurement is already possible and planned in
the near future.

On the long term, it is planned to replace the CUS by a long cavity
with flicker floor at the 10−16 level or below, which would automatically
improve the frequency ratio measurement stability below the 10−16,
allowing optical-to-optical clock comparison at the 10−18 level in only
three hours of averaging time.
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(a)

(b)

Figure 4.15. (a) Time-trace of the frequency corrections applied to the clock AOMs
during synchronized measurement and (b) Stability of the synchronous frequency ratio
measurement.



Chapter 5

Ascertaining the Mercury
Clock Uncertainty Beyond
the SI Second Accuracy

The definition of an atomic frequency standard always refers to an
isolated unperturbed atom in its own rest frame.

In practice, even in a laboratory environment, there are many phys-
ical mechanisms which can perturb the frequency of an atomic transi-
tion, comprising thermal radiation, electromagnetic fields, atomic in-
teractions.

In this chapter, I will describe how these perturbations can be
measured, evaluated and reduced. For some perturbations, we can
find experimental protocols to reduce the impact on clock accuracy.
Whenever the complete cancellation of a perturbation is impossible, it
needs to be evaluated in terms of clock frequency shifts, and the corre-
sponding frequency correction applied when comparing with another
frequency reference.

5.1 Clock Accuracy

Frequency standards are chosen among elements possessing at
least one transition which is very weakly coupled to these external
perturbations, such as the 1S0 → 3P0 transition in 199Hg.

However, this insensitivity to external fields must be experimentally
investigated and quantified in order to build an accurate and repro-
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ducible frequency standard. In more mathematical terms, we want
to evaluate the parameter ε of Equation 2, called the accuracy of our
clock, which we have neglected up to this point.

This is important, firstly because well characterized frequency stan-
dards periodically steering flywheel oscillators such as H-masers are
the basis for our current timescale [86], [97].

Also, a well characterized and accurate standard can act as a sec-
ondary representation of the SI second [32], [52], and therefore par-
ticipate to the realization of TAI (International Atomic Time). Thanks
(in part) to the work presented in this thesis, in 2017, the Consul-
tative Committee for Time and Frequency (CCTF) has recognized the
199Hg 1S0 → 3P0 clock transition as a Secondary Representation of the
Second (SRS).

Finally, assessing the frequency of the mercury clock and carefully
estimating the associated uncertainty is a necessary step for future
frequency comparisons with other optical clocks and measurements
of frequency ratios beyond the realization of the SI second.

During my PhD work, we have conducted two measurement cam-
paigns, in 2015 and 2017 to establish the accuracy of the mercury
clock.

5.1.1 Digital lock-in technique for studying systematics

In order to study the physical effects affecting the clock transition,
we use a technique akin to Digital Lock-In detection. We run several
independent integrators in an interleaved fashion, and for each inte-
grator we set a different value for a clock parameter, and then analyze
the frequency difference between the corrections applied to each inte-
grator to extract useful information about the impact of this parameter
on the clock transition frequency. Let us see how this work if we take
the example of collisional shift: we want to see how a change in the
atomic density affects the clock frequency.

We run two interleaved integrators in parallel, one for which the
atomic density is higher, as obtained by increasing the loading time of
the atoms in the lattice, and the other one for which the atomic density
is lower. Aside from the modulated atomic density, the atomic servos
operate in the same conditions. Each integrator is run for a few cycles
of loading/probing/detection, and then the other one is run for a few
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Figure 5.1. Principle of interleaved systematics measurements: we want to measure
the frequency difference between the clock transition for a reference configuration νref

(blue spectrum), and a configuration with a modulated parameter νmod which shifts the
atomic resonance by a small amount δν = νref − νmod (red spectrum), and study this
difference as a function of the modulation strength.

cycles, and the procedure is repeated.

Interleaving in a sufficiently fast manner the integrators allows for
common mode rejection of long term stationary noise processes, such
as local oscillator linear drift or atom number fluctuations, and al-
lows us to extract information about the specific physical effect that
we wish to study provided that the quantity that we are interested in
asymptotically converges towards its average value at long timescales.

However, we need to leave time for the servo loops to relax, so each
integrator must stay on for several cycles. In the end, we find that
interleaving every 10 clock cycles yields a good compromise.

Looking at the correction applied to the frequency shifter (AOM)
used to keep the laser at resonance with the atoms, and more specif-
ically the difference in the correction for both integrators, we are able
to extract the frequency shift associated with the modulation of the
atomic density, and doing so for several different atomic densities, we
are able to do a systematic study of this effect.

This technique is very general and was used for the majority of
frequency shift measurements featured in this thesis. However, it be-
comes useless when the physical effects we want to measure cannot
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be changed rapidly with respect to the duration of a clock cycle, as
is the case of the BBR shift for example. For those effects, we will
see that other schemes have to be devised to estimate and control the
frequency shifts (see e.g. Section 5.6.2).

5.2 Collisional Shift

Collisional shift or density shift arises due to interactions between
cold atoms in the lattice trap. It is the main limitation to the accuracy
of the best Cs and Rb [33] microwave frequency standards and has
been observed in both Sr [9] and Yb [55] optical lattice clocks.

5.2.1 Theoretical introduction

In quantum mechanics, the collision between two particles is treated
as a problem of scattering of the incoming particle’s wavepacket φ(r),
usually modeled as a plane wave, on the potential V (r) created by the
interaction with the other particle. The Hamiltonian describing such
and interaction for two cold atoms is:

Hcoll =
p2

1

2m
+

p2
2

2m
+ V (r1 − r2) (5.1)

where ri and pi are the position and momentum operators of the parti-
cles and V is the potential associated with Van der Waals interaction,
characterized by a 1/r6 dependence.

The approach commonly followed for low energy scattering events,
such as cold atoms collisions in a dilute gas, is the partial angular-
momentum wave expansion. The scattered wavefunction is first de-
composed into two components: the first component is the incident
unscattered plane wave, and the second is a sum of scattered, outgo-
ing spherical waves with different angular momenta l:

φ(r) = eik.r +
∞∑
l

fl(k, θ, φ)
eikr

r
(5.2)

where the angular dependence of fl(k, θ, φ) depends on the exact shape
of the potential V (r).

In the case of fermions cooled to tens of µK level temperatures, we
will only consider the lowest angular momentum waves, namely even
s-wave collisions (l = 0), and odd p-wave collisions (l = 1), since higher
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angular momenta processes are “frozen-out” by the centrifugal barrier
[51].

We now want to make the link between Equation 5.2 and the fre-
quency shift associated with atomic collisions. The effect of the po-
tential is to introduce a dephasing of the out-going partial wave with
respect to a spherical wave. This dephasing, in the limit of low en-
ergy collisions is characterized by a single constant real parameter,
the scattering length aij which depends on the internal states of the
two colliding atoms | i〉 and | j〉. In that case, the interatomic interac-
tions modify the total energy of the cold-atoms cloud by an amount
[16]

Eint =
4πh̄2

mHg
× aij × n×Nat (5.3)

where n is the atomic density and Nat the number of atoms. When
operating the clock, we apply a pulse of light which transfers the total
atomic population from | e〉 to | g〉 (see Section 3.1.2 for more details),
corresponding to the absorption of Nat UV photons of energy h̄ωat. The
difference in energy between these two situations is then

∆Eint =
4πh̄2

mHg
× (agg − aee)× n×Nat (5.4)

and by energy conservation considerations, this difference must be
equal to Nat × h̄(ωat − ωge) where ωge is the energy corresponding to
having the atoms in the excited state with no interaction. We can then
finally write the frequency shift associated with atomic interactions in
our simple picture

∆νint = νat − νge =
2h̄

mHg
× (agg − aee)× n (5.5)

In the general case, the shifts associated with s and p-waves colli-
sions can be written in the mean field approximation by respectively
[36]:

∆νeg
s−wave =

2h̄n

mHg
g[aggρgg − aeeρee + (ρee − ρgg)aeg] (5.6)

and
∆νeg

p−wave =
πh̄n

mHg
〈kT 2〉[vggρgg − veeρee + (ρee − ρgg)veg] (5.7)

where ρg (ρe) is the ground (excited) state population fraction, n is the
atomic density, mHg is the atomic mass of mercury, aij (vij) is the scat-
tering length (volume) parametrizing collisions between 2 particles in
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the | i〉 and | j〉 internal states, h̄2〈kT 2〉/mHg is the average collision en-
ergy and g is the two-particle correlation function at zero separation,
which is simply a constant in the case of coherent transfer of pop-
ulation conserving spatial correlations such as is the problem under
study.

In order to control this shift, several techniques have been imple-
mented. The first method makes use of transfer of population between
the two clock states by adiabatic passage to prepare samples of cold
atoms with precisely defined ratios of atomic density and atom num-
ber [82] in order to very accurately (at the 10−3 level) measure the cold
collision shift. Another method has been to use higher dimensional
lattice such as a 2D lattice to increase the interactions between cold
atoms, resulting in a interaction-induced reduction of the frequency
shift [104] analogous to dipole blockade in cold Rydberg gasses [60].
Fortunately, in our particular case, several factors should contribute
to the suppression of atomic collisions:

• We are working with low densities (as compared to a typical op-
tical lattice clock experiment) corresponding to less than three
atom per site on average.

• We are working with a very pure nuclear spin polarized sample
of fermionic atoms, therefore Pauli’s exclusion principle should
forbid s-wave collisions from taking place.

• Low atomic temperatures freeze-out odd-wave collisions

However, s-wave collisions have been observed in atomic samples of
spin polarized fermions [9], when interrogation inhomogeneities render
the fermions mutually distinguishable, in which case Pauli’s exclusion
principle doesn’t hold anymore [26].

We have decided to start with the study of the collision shift because
this effect scales with atomic density, and can therefore impact and
bias the measurement of other systematics. For example, measuring
the lattice light-shift implies varying the trap depth, which can modify
the atomic density in the trap. We therefore want to make sure that
atomic density shift is not a problem at our highest operating atomic
density.
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5.2.2 Experimental results

Experimentally, it is difficult to measure accurately, and therefore
precisely control the atomic density, and we have to estimate it based
on the atom number. However, given the MOT density and the lat-
tice temperature, we estimate that the density scales linearly with the
number of atoms in the lattice. We have used two different methods to
modulate the probed atom number between what we call a high den-
sity (HD) and a low density (LD) configuration in order to evaluate the
collisional shift.

In a first series of measurements, we modulated the duration of
the clock laser state selection pulse duration (see section 2.4), while
keeping the power constant, thereby changing the fraction of atoms
excited to the 3P0 state. We then try to fit the data with a linear model.
The results are presented on figure 5.2 (a).

In order to check for the presence of a bias in this technique such
as a phase transient in the AOM used to shape the state selection
pulses or a nonlinear change in the density distribution with the atom
number, we performed a second series of measurement by varying the
loading time of the MOT. The results are shown in figure 5.2 (b).

Table 5.1 shows the results for the two methods, extrapolating the
shifts to our nominal operating atom number of '900 atoms probed
in the lattice.

Method: Loading State sel. pulse Combined

Slope (10−20/atom) -2.6 -20 -6.5
1σ uncert. (10−20/atom) 8.8 16 7.8

Correction (10−17) -2.1 -16.2 5.2
1σ uncert. (10−17) 7.1 14.0 6.4

Table 5.1. Results of collisional shift measurements for the two methods used to vary
the atomic density: the MOT loading time, and the state-selection efficiency. We extract
the slopes (collisional shift coefficients expressed for one atom) for both methods and
the combined data from the fits of Figure 5.2 with the quoted uncertainty coming from
the fit uncertainty. The frequency clock correction for both methods and the combined
data is determined by using the collisional shifts coefficients and extrapolating to our
operating atom number. The table is meant to be read horizontally.
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Figure 5.2. Differential collisional shift shown in relative units as a function of the
population difference for (a) the state selection time variation method and (b) the MOT
loading time variation method. The data sets are fitted with straight lines with no offset,
since the differential method must give zero shift at zero modulation of the parameters.
The 1σ confidence interval is given by the shaded area on each curve. The vertical red
dashed line corresponds to the number of atoms probed during typical clock operation,
and allows for a graphical estimation of the residual shift in nominal configuration.
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We see that the extrapolated shift for the MOT loading time atom
number variation method at our operating point is −16.2(14) × 10−17,
and it is −2(7) × 10−17 for the state selection pulse length variation
method, both compatible with zero at the level of uncertainty. Since
we have no physical argument to favor one method over the other, we
combine both datasets treating them as a single one. Fitting with a
linear function, we find a frequency shift of −5.2(6.4) × 10−17 (or al-
ternatively a clock correction of 5.2(6.4) × 10−17), compatible with zero
within a 1σ uncertainty. The results of this procedure are shown in
the third column of Table 5.1.

Based on the results presented here, we conclude that collision
shift is controlled at the mid 10−17 level even for the highest atom
number that we can produce in our trap.

5.3 Lattice AC Stark-Shift

We will now consider the effect of the trapping light on the fre-
quency of the clock transition, including a short discussion about
high-order non-linear lattice shifts.

5.3.1 Linear shift

Trapping the atoms in a lattice allows for cancellation of Doppler
and other motional effects, but it has the consequence of introducing
an AC Stark shift on the clock levels, and in turn a frequency shift of
the clock transition.

As first pointed out in [45], tuning the frequency of the trapping
light to the so-called “magic frequency” νmagic for which the scalar po-
larizabilities of the clock states are equal allows for a cancellation to
first order of this frequency shift. Furthermore as 199Hg has spin 1/2,
the tensor component of differential polarizabilities are zero by sym-
metry.

Given the relatively small trap depth available in our experiment
and the predicted value of nonlinear terms for mercury [44], we expect
that nonlinear lattice shifts will not appear at our present resolution.
We therefore first analyzed the data according to a linear model of the
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lattice light shift (see [44]).

∆νLLS =
1

hαS1S0

∂∆αS

∂ν

∣∣
νMOD

(νlat − νmagic)Ulat =
∂∆κS

∂ν

∣∣
νlat

(νlat − νmagic)Ulat

(5.8)
where ∆αS(ν) = αS3P0

(ν) − αS1S0
(ν) is the difference between the values

of scalar polarizabilities of the ground and excited states of the clock
at the operating frequency of the lattice νlat, and Ulat is the operating
depth of the lattice.

We study this effect using digital lock-in detection having two in-
tegrators running on each one of the π components of the clock tran-
sition at the nominal depth UREF and a second pair of integrators
running at a different depth UMOD. Experimentally, U is estimated by
monitoring the offset of the lattice sidelock to the buildup cavity, using
the coefficient derived in Section 3.3.
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Figure 5.3. Lattice AC stark shift (Hz) as a function of the differential lattice depth
in recoil energy. The detuning (in MHz) from 826 855 533 MHz corresponding to each
curve is shown on the plot with matching color. The full lines show the result of a fit of
the whole dataset with a linear model.

During the first measurement campaign at the beginning of this
thesis, we were working with UREF = 56 Erec, with UMOD being varied
between 50 and 25 Erec.

By repeating these integrations for different lattice frequencies, we
obtain the dataset plotted on Figure 5.3 as a function of the difference
UREF - UMOD. In the figure we also plot a fit of the whole dataset with
the function: ∆ν = a(νlat − νmagic)(UREF − UMOD) with free parameters
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a and νmagic.

From the fit, we extract the coefficient a = ∂∆κS

∂ν (νmagic) = 1.25(7) ×
10−4 Hz/Erec/MHz and an estimation of the magic frequency νmagic =

826 855 539 (21) MHz, an improvement by more than two orders of
magnitude with respect to our previous determination [120] and in
agreement with the measurement from [118].

We have then made a second measurement campaign with a gain of
a factor of two on the lever arm thanks to the new Ti:Sa laser (see Sec-
tion 1.3.1) by operating the clock with higher trap depths, calibrating
the wavemeter every hour.

The results are presented on Figure 5.4. We can note a signifi-
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Figure 5.4. Lattice AC stark shift (Hz) as a function of the differential lattice depth
in recoil energy. The detuning (in MHz) from 826 855 533 MHz corresponding to each
curve is shown on the plot with matching color. The full lines show the result of a fit of
the whole dataset with a linear model.

cant dispersion of the data-points confirmed with a χ2 test yielding
a 0.1 probability on the global fit to the data, which we attribute to
frequency excursions of the wavemeter used to lock the Ti:Sa at the
magic wavelength.

Nevertheless, we see that the greater lever arm would unable us
to pinpoint the magic wavelength with an uncertainty of 7 MHz, more
than a factor of three better than during the first campaign (21 MHz
quoted above). However, the dispersion of the data points leads us
to believe that frequency excursions of the wavemeter could introduce
a potential bias in the measurement, and we therefore only use the
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value of νmagic determined during the first campaign.
We also get a second estimate of the coefficient ∂∆κS

∂ν (νmagic) = 1.17(6)
× 10−4 Hz/Erec/MHz in reasonable agreement with the coefficient ex-
tracted from the first campaign. We can note that this coefficient is
in agreement with the one found by the RIKEN group of 1.1(3) × 10−4

Hz/Erec/MHz within the stated error bars [118].
Overall, we can estimate the shift and the associated uncertainty at

our nominal lattice depth of 60 Erec. Working at a detuning of -2 MHz
from the measured magic wavelength to compensate the non-linear
and linear shifts, we obtain a clock correction ∆νLLS = -0.6 × 10−17

with an uncertainty of 5.1 × 10−17, at the same level of uncertainty as
the work of [118].

5.3.2 Vector shift

The vector light shift is given by [59]:

∆νV LS = αV
mF

2F
ξ
E2

2h
= κV ξE2 (5.9)

where ξ is the degree of ellipticity of the lattice light field, κV is the
vector light-shift coefficient, and E is the electric field.
The vector shift acts as a pseudo-magnetic field on the atoms, which
means that we can measure its effect by studying the splitting between
the two Zeeman components as a function of the trap depth (or equiv-
alently lattice intensity).
Such a study, realized by interleaving configurations with different
trap depth is shown on Figure 5.5. We observe the expected behav-
ior, which is that the splitting increases linearly as a function of trap
depth, because the vector shift creates the equivalent of a linear Zee-
man effect on the two π components of the clock transition, whose
strength depends on the amplitude of the trapping field at the position
of the atoms.

From a linear fit to the data, we extract an effective vector light-shift
coefficient for our clock, which encompasses the residual ellipticity of
the lattice light, κV(eff) = 0.087(1) Hz/Erec.

One important thing to note, is that this effect in independent of
the detuning from the magic wavelength.

At our nominal trap depth of 60 recoils, the splitting between the
two Zeeman components arising from the vector light-shift is 5.2 Hz.
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Figure 5.5. Lattice AC differential vector stark shift (Hz) as a function of the differential
lattice depth in recoil energy. The detuning (in MHz) from 826 855 533 MHz correspond-
ing to each curve is shown on the plot with matching color. The black line shows the
result of a fit of the data with a linear model, the shaded grey area is the 1σ confidence
intervals on the fit.

However, since this effect is strictly equivalent to a 1st order Zee-
man shift on the transition, it is rejected when locking with the stretched
servo on the two Zeeman components and is not an issue at our nom-
inal uncertainty.

5.3.3 Higher order terms

A χ2 test yields a probability of 0.96 for the linear fit of the first
systematics measurement campaign, which gives us confidence that
higher order terms are experimentally not resolved at our present level
of uncertainty.

Nevertheless, when aiming for the 10−17 level accuracy, these have
to be taken into account.

We evaluated the lattice light shift with the complete model pre-
sented in [44] using the theoretical estimation of coefficients of the
nonlinear terms and our experimental determination of the linear ones.

In this model, the total lattice light-shift including non-linear terms
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writes:

∆νLS =

(
∂∆κE1

∂ν
δν −∆κqm

)
(2n+ 1)

√
Erec
4αE1

I1/2

−
[
∂∆κE1

∂ν
δν + (∆β(ξ)/h)(2n2 + 2n+ 1)

3Erec
4αE1

]
I

+ (∆β(ξ)/h)(2n+ 1)

√
Erec
αE1

I3/2

−∆β(ξ)/hI2

(5.10)

∆νLS = c1/2I
1/2 + c1I + c3/2I

3/2 + c2I
2 (5.11)

Where ∆β(ξ) is the polarization-dependent differential hyperpolariz-
ability coefficient and ξ is the probe polarization ellipticity.

From this nonlinear model we generate datapoints at the values
of detuning and lattice depth probed experimentally and perform a
linear analysis in the same way as we do for the experimental data.
We check then that the values of ∂∆κS

∂ν (νmagic) and νmagic obtained are
consistent with the experimental ones. At our operating working point
of 60 Erec we get a clock correction of ∆νnon−lin.LLS = -6 × 10−17 with an
uncertainty of 4 × 10−17 assuming 10 % uncertainty on the theoretical
non-linear coefficients.

5.4 Zeeman Shift

We will now deal with the effect of an external magnetic field on the
clock transition, namely Zeeman frequency shifts.

The effect of an external magnetic field on the clock transition is to
introduce a frequency shift on the π Zeeman components given by

∆νmag = mF gFµBBz − βZB2
z (5.12)

where gF is the g-factor of the transition, µB is the Bohr’s magneton in
frequency units, βz is the 2nd order Zeeman coefficient and Bz is the
projection of the field along the polarization of the probe beam.

The first step towards the measurements of Zeeman effects is to
make sure that our magnetic field at the position of the atoms is well
defined. To do so, we perform spectroscopic measurements on the
clock transition, using the atoms as a magnetic probe (see Section
3.2.1).
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5.4.1 Linear Zeeman effect

Once the magnetic bias quantization axis is sufficiently well de-
fined, we can look at Zeeman shifts affecting the clock transition.

The linear (1st order) Zeeman effect is intrinsically rejected by our
method of interleaved integration on the two Zeeman components,
which I presented in Section 4.1.

However, the reading of the splitting of the two π transitions, which
is twice the 1st order Zeeman shift, provides us with a very nice in-
situ calibration and measurement of the value of the magnetic field at
the position of the atoms, in order to estimate the 2nd order Zeeman
effect. As we will see below, for a typical Zeeman splitting of 500 Hz,
this calibration is valid to the % level (and not higher because of the
vector shift of ' 5 Hz which biases the measurement).

5.4.2 Quadratic Zeeman effect

Similarly to the lattice light-shift case (see section 5.3) we perform
digital lock-in detection running four independent integrators, one pair
operating at a reference bias field BREF and locking on each of the two
π components, and another pair operating at a variable bias field Bbias,
also on the two π components of the transition. For each integrator
pair we then construct the two quantities:

νm(B) =
1

2
[νmag(π

+, B) + νmag(π
−, B)] (5.13)

∆ν(B) = νmag(π
+, B)− νmag(π−, B) (5.14)

which are related to the relevant parameters of equation 5.12 by:

νm(Bbias)− νm(BREF ) = −βz(B2
bias −B2

REF ) (5.15)

∆ν(B) = gFµBB + ∆νV LS (5.16)

where ∆νV LS is the vector component of the lattice light-shift, which is
indistinguishable from the linear Zeeman effect.

A measurement of this last quantity can be obtained by analyzing
the data presented in section 5.3 extracting the splitting between the
two π components as a function of the lattice depth. At our nominal
trap depth of 60 Erec we obtain ∆νV LS ' 5.2 Hz� ∆ν(Bbias), indicating
a residual ellipticity of the probe beam of about 3 % if we use the vector
polarizability given in [35].
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Now neglecting the vector light shift, we can use the measurement
of ∆ν(B) as an in situ calibration of the magnetic field and we get the
quadratic Zeeman shift

∆νQZS =
βZ

(gFµB)2
(∆ν(BREF )2 −∆ν(Bbias)

2) (5.17)

We plot in figure 5.6 the differential shift of the center frequency of
the clock transition as a function of the difference of the square of the
splittings for the two interleaved configurations.

We are able to vary the value of the bias magnetic field from 550
to 90 µT , which given the expected small sensitivity of the mercury
transition to magnetic fields is currently limiting the accuracy of the
measurement. From the slope of a fit to the data according to equation
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Figure 5.6. Quadratic Zeeman shift as a function of the square of the splitting between
the two π components. The plain black line is a linear fit to the data, and the shaded
area represent the 1σ confidence intervals on the fit. The red dotted line is our nominal
operating point.

5.17, we obtain the atomic coefficient γZ = βZ(gFµB)−2. We find γZ =

1.7(6) × 10−7 Hz−1, in good agreement with the value of 1.5(2) × 10−7

Hz−1 found in [118]. This results in a frequency shift of -2.5 × 10−17

at our nominal splitting of 400 Hz (corresponding to a bias magnetic
field of 120 µT ), with an uncertainty of 0.9 × 10−17. We therefore apply
a clock correction of 2.5 × 10−17.

This measurement is limited by the statistics of the measurement
and the small available lever arm on the magnetic field that we are able
to create, however toward the end of my PhD work we have installed a
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new magnetic coil on the vacuum chamber, which results in a factor
of 10 improvement on the maximum magnetic field that we are able to
create at the position of the atoms. Unfortunately, I didn’t have time
to take data using this improved lever arm during the course of my
thesis.

5.5 Blackbody Radiation Shift

The black body radiation (BBR) shift arises from a differential AC
Stark shift of the clock levels due to the electromagnetic radiation in
thermal equilibrium with the environment of the atomic sample.

The frequency shift induced by the environment at a temperature
T can be written as

δνBBR = − 2σ

hε0c
∆αsT

4(1 + ηT 2) (5.18)

where σ is the Stefan-Boltzmann constant, ∆αst is the differential
static polarizability between the excited and the ground state, and η

is the so-called dynamical coefficient which takes into account the de-
pendence of the differential polarizability on frequency. Based on the
frequencies of the relevant transitions we expect that Mercury should
behave similarly to Yb for which ηT 2 < 0.02 [3]. The resulting frequency
shift and associated uncertainty are in that case expected to be below
1 × 10−17 and therefore negligible with respect to the present uncer-
tainty over the static term.

From the above written equation, we can see that the BBR shift
depends both on atomic coefficients, which can be measured or cal-
culated, and on an accurate estimation of the thermal environment of
the atoms. It is this second point that is currently limiting most optical
lattice clocks BBR evaluations.

As the BBR shift is the most significant item in the uncertainty
budget of the best optical lattice clocks based on Sr [75], [24], [52] or
Yb [54] atoms, much effort has been devoted to tackling this problem
in several groups around the world. This includes ultra-precise in-situ
radiation thermometry [7], radiation shielding [3], or cryogenic setups
[113]. An alternative method is to use as a frequency standard an
atom which is very weakly sensitive to the BBR shift, such as Hg or
Mg [50].



124 Ascertaining the Mercury Clock Uncertainty Beyond the
SI Second Accuracy

In the case of Hg, the sensitivity to this effect is much smaller than
for Sr (30 times) or Yb (16 times) [44], and therefore controlling this
shift down to the 10−17 level uncertainty only requires the knowledge
of the thermal environment of the atoms at the level of a few Kelvin.
The limit to the evaluation of the BBR shift will then arise from the
uncertainty that we apply to the atomic coefficients, for which only
theoretical estimates are available.
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Figure 5.7. Temperature of the 3 calibrated Pt100 sensors surrounding the vacuum
chamber over the course of a 25 hours measurement run.

Nevertheless, in order to evaluate both temperature and thermal
gradients in the environment seen by the atoms, we have put three 100
ohms platinum resistors (Pt100) sensors in contact with the vacuum
chamber. As can be seen on figure 5.7, the three sensors measure
temperature differences no higher than 1.5 K over the course of 24h.

The average measured temperatures for Pt100 # 1, 2 and 3 are re-
spectively 300.1◦K, 301.1◦K and 300◦K over this representative mea-
surement run. We apply a 1.5K uncertainty on the measured temper-
ature (mean of the three Pt100 temperatures) at the atoms position.

Assuming a 10 % uncertainty on the calculated differential polar-
izability [35] and with a measured temperature around the atoms of
(301.0±1.5) K, we get a clock correction of 1.6×10−16 with an uncertainty
of 2× 10−17.

As the mercury clock progresses further down to the 10−18 range
accuracy, a direct measurement of the static differential polarizability,
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as was done on Sr [70] and Yb [103] will become crucial.

5.6 Measurement of the Phase Chirp Introduced
by the Pulsing of the Clock Acousto-Optics
Modulator

The switching on and off of the AOM to produce the clock and state
selection pulses introduce RF power transients in the AOM crystal.

The net effect of these transients is to introduce phase chirps on the
clock laser field, due to path length and index of refraction variations,
which in turn create a frequency shift on the clock.

This effect is quite challenging to measure via the digital lock-in
detection technique so we realized a pulsed, interferometric measure-
ment of the phase transients similar to the ones found in refs. [99],
[18], [46]. The clock light after passing through the AOM is beat with
a small part of the beam taken before the AOM, which forms a CW
reference arm. This reference light passes through another identical
AOM for heterodyning the beat signal.

The beatnote in the UV is collected onto a fast photodiode and an-
alyzed in the time domain to extract the phase information.

A schematic of the measurement setup is shown on figure 5.8:

5.6.1 Digital I/Q demodulation for phase estimation

We acquire the optical beatnote (signal), the RF beatnote (reference)
providing our phase reference, and a common time-tag.

The procedure for the analysis in the time domain, which allows us
to extract the phase information related to the pulsing of the AOM is
the following:

• We first compute the initial phase φ0 for both the signal and the
reference by fitting the time traces with a function of the form
A cos(2πft)−B sin(2πft) + C and extracting φ0 = atan(B/A).

• We then demodulate the signal and the reference by computing
the in-phase (I) and in quadrature (Q) components.

• The I/Q data are then filtered with a order 3 low-pass Butter-
worth filter with a cutoff frequency of 100 Hz and an anti-aliasing
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Figure 5.8. Scheme of the AOM phase-transient measurement setup. Two synthesizers
are used to drive the clock and the reference arm AOM, respectively at 180 and 180.1
MHz. The pulses are created via a TTL signal sent to the clock AOM. We take a small
amount of clock light at 266 nm from the output of the second harmonic generation cavity
using a beam-sampler (BS). This light is sent to the reference AOM (Ref AOM), while the
remaining light goes through the usual clock beam path and is pulsed through the clock
light AOM. The measurement and reference arms are overlapped at the output port of a
polarizing beam-splitter (PBS), their polarizations are matched thanks to a second PBS,
and sent to a photodiode (PD). The resulting beatnote at 100 kHz is acquired with a
digital oscilloscope and the phase is extracted by numerically computing the amplitude
of the in-phase and in-quadrature components. Two splitters and a mixer provide the
phase reference for the demodulation.

filter is applied (decimation by a factor 64).

• The obtained time traces are normalized by the quadratic mean
of the I and Q signals.

• Finally, the phase of each signal is computed according to the
formula φ(ref/sig) = atan(Q

(ref/sig)

I(ref/sig)
), followed by the absolute phase

φ = φ(sig) − φ(ref).

5.6.2 Results and shift estimation

The results of the averaging of 654 consecutive measurements is
shown on figure 5.9 (a) for several RF driving powers of the AOM: -4
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dBm, -9 dBm and -14 dBm on the software of the experiment, corre-
sponding respectively to 1.7 W, 0.5 W and 0.17 W of driving RF power.

The frequency shift ∆νprobe = 1
2π

dφ
dt corresponding to the slope of the

time traces is plotted in Figure 5.9 (b). We fit this graph with a linear
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Figure 5.9. (a) Typical time-trace of the computed phase of the beatnote inside the
probe pulses time window for several RF powers (b) Frequency shift introduced by the
AOM phase chirp as a function of the fractional RF power with respect to our nominal
RF power of 170 mW. The black dotted lines materialize 1σ confidence interval on the fit
represented in full black line, and the nominal operating point of the clock is indicated
by the red dotted line.

model, and extrapolate the shift to a RF power of 170 mW driving
the AOM, which corresponds to the typical value for the operation of
the clock at '0.1 s of Rabi time, we obtain a frequency correction of
3 × 10−18 (red dotted line on the plot) consistent with zero with an
uncertainty below 10−17.

The relatively big error bars of Figure 5.9 (b) are due to dispersion in
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the phase extracted from the different runs for each data point. This
dispersion might be because of the poor signal to noise ratio of the
measurement, which is quite hard to perform at 266 nm. Alternatively,
it can also come from the fact that the two arms of the interferome-
ter are not stabilized, which means that relative optical path-lengths
fluctuations can spoil the measurement.

In the future, when targeting below 10−17 uncertainties, a more
thorough estimation of this effect will become necessary, with more
work needed on the data acquisition, averaging procedure and to sta-
bilize the optical path-lengths in the interferometer. Moreover, the
contribution from the state selection pulses is hard to decouple from
the contribution of the clock pulse itself, and might be a significant
contribution to a potential frequency shift.

Figure 5.10. Time sequence for probing in Rabi configuration. The blue pulses rep-
resent the RF power sent to the clock AOM as a function of time, close to the atomic
resonance. The violet pulses are the cooling light applied to the atoms for pushing and
detecting.

Alternatively, Ramsey spectroscopy offers the possibility to mitigate
this shift. Indeed, when performing Rabi spectroscopy, the state selec-
tion pulses and the clock pulses are severely asymmetric (see Figure
5.10), because short state selection π pulses a desirable for efficient
population transfer, while long Rabi π pulses are needed for narrow
transition probing.

In the case of Ramsey spectroscopy, as shown on Figure 5.11, we
can easily have all pulses realized with the same RF power.

A simple yet efficient idea to mitigate the shift would therefore con-
sist in never switching off the AOM, but simply operating it at constant
power, and setting the detuning close to resonance during the probing
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Figure 5.11. Time sequence for probing in Ramsey configuration. The blue pulses
represent the RF power sent to the clock AOM as a function of time, close to the atomic
resonance. Alternatively, the red pulses represent the RF power sent to the clock AOM
far detuned from the atomic resonance. The violet pulses are the cooling light applied to
the atoms for pushing and detecting.

phases (blue rectangles of Figure 5.11) and far detuned from reso-
nance during the ”dark time” phases (red rectangles of Figure 5.11),
in order to avoid creating a light-shift on the atoms. Using this tech-
nique, the shift due to the AOM transient would be completely elim-
inated without the need for complex free-space Doppler cancellation
techniques. These techniques will be required however to cancel fluc-
tuations in the unavoidable free-space optical path-lengths associated
with probing the atoms with UV light, for which optical fibers are not
yet commercially available, although some progress have been made
recently [15], [61].

5.7 Other Shifts

5.7.1 Background gas collisions

The Van-der-Waals potential governing long-range neutral atoms
dipolar interactions is of the form:

V (R) = −C6

R6
(5.19)

Where R is the inter-particle separation, and C6 is a constant dis-
persion coefficient which depends on the nature of the two particles
colliding. For Hg - Hg collisions, this coefficient is 268 in units of Haa6

0

(Hartree times Bohr’s radius to the 6th power) [29]. The frequency
shift associated with this type of interaction stems from the different
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phase-shift acquired by the two clock states during the collision pro-
cess.

Under certain approximation (for example neglecting terms other
than C6/R6) and in the case of Ramsey spectroscopy, an approximate
formula can be written [27]:

− ∆ν

ν
= ∆A/(13.8πνTR)∆C6/C6 (5.20)

Where ∆A is the percentage of cold atoms ejected from the lattice dur-
ing the Ramsey/Rabi time TR.

∆A can be estimated based on the lifetime of the atoms in the opti-
cal lattice, which in our case is close to 300 ms.

Under these assumption, we calculate that the frequency correc-
tion associated with this shift is small enough to be neglected at our
present uncertainty.

Moreover, since Formula 5.20 very loosely applies to our case, ap-
plying a non-zero correction is dangerous at this point. In order to bet-
ter estimate this shift, the theoretical model has to be refined, and/or
an experimental characterization has to be performed, for example by
measuring the shift associated with a change of the background pres-
sure inside the vacuum chamber. This measurement is quite hard to
do, because changes in the background pressure occur very slowly,
and therefore another frequency standard has to be used as a fre-
quency reference, and the accuracies of both standards have to be
maintained over the several days/weeks that the measurement might
take.

5.8 Final Uncertainty Budget

The final uncertainty budget for the mercury clock at the end of
this thesis is presented on Figure 5.12. We apply a total correction of
17.4 × 10−17 (' 0.2 Hz) to the clock transition frequency in nominal
clock operation.

The main limitation to the accuracy is the linear lattice light-shift
(in red in the table). Some systematics (shown in violet in the ta-
ble) are only limited by the statistics of the measurements presented
above, and can therefore be easily reduced by taking more data. For
some other systematics, represented by the color yellow/orange, only
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Figure 5.12. Final uncertainty budget for the mercury clock, limited by the statistics
on the estimation of the linear lattice light-shift coefficient.

theoretical estimates are available. When targeting the 10−18 level of
accuracy, BBR coefficients, non-linear lattice light shifts and pressure
shifts will need to be experimentally characterized. Finally, the shifts
associated with the interrogation light pulses are shown in blue, and
we see that for both the probe light shift and the AOM phase chirp,
the correction applied is consistent with zero shift within the stated
uncertainty. This study of the physics of the mercury clock transition
has allowed us to measurement atomic coefficients specific to the mer-
cury atom (2nd order Zeeman coefficient, lattice light-shift coefficient
etc.) and that we can therefore compare with the values found in other
labs. Comparing with the only other available clock with similar per-
formances as ours, we have all found all coefficient to be in reasonable
agreement with the ones measured in [118].

The final uncertainty for the mercury clock is 9.6 × 10−17, a fac-
tor of 60 improvement with respect to the latest estimation before the
beginning of this thesis [65].

The mercury clock uncertainty is therefore slightly below the un-
certainty of the best cesium fountain clocks in the world [33], below
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the current physical realization of the SI second. This makes it impera-
tive to develop techniques to compare our clock with the best primary
frequency standards, but also with other standards whose accuracy
are below the realization of the SI, namely other optical clocks. This is
the subject of the next chapter of this thesis.



Chapter 6

Frequency Ratio
Measurements for
Fundamental Physics and
Metrology

The final chapter of this thesis deals with the measurement of fre-
quency ratios between highly-accurate atomic clocks via a fibered op-
tical frequency comb. Most of the results described in this chapter are
based on [111].

Frequency ratios are dimensionless physical quantities which play
an important role in frequency metrology and are paramount in as-
sessing the consistency and accuracy of clocks [58]. These measure-
ments are essential to compare clocks whose uncertainties are below
the limits of the physical artifacts used to realize the SI second.

A crude scheme, but nevertheless useful to understand the princi-
ple of the ratio measurement is sketched on figure 6.1.

The heart of the comparison is the optical frequency comb (OFC),
which provides a link between the optical and microwave domains as
well as an almost noiseless link between optical frequencies, [78].
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Figure 6.1. Overall scheme of the frequency ratios measurements setup using an
optical frequency comb.

6.1 Purpose of Frequency Ratios Measurements

6.1.1 Redefinition of the SI second

With the continuous improvement of optical frequency standards
uncertainties over the last decade, beyond the accuracy of the best
cesium frequency standards used to realize the SI second, there has
been much talk about a possible redefinition of the SI second in terms
of an optical frequency [93].

To date, several frequency standards report uncertainty budgets
in the low 10−18 range accuracy [39], [7], but these uncertainty bud-
gets are only ascertained via self-comparisons, using the techniques
discussed in Chapter 5, which means that these are only relative mea-
surements which might be overlooking potential frequency biases.

The only way to check the consistency of the uncertainty budgets
is to compare independent atomic clocks, by performing both com-
parisons between clocks based on the same species [113], [74], and
then by measuring ratios between the transition frequencies of differ-
ent atomic species [73], [108]. These measurements address dimen-
sionless and universal physical quantities of nature allowing for con-
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sistency checks to be performed in different labs around the world.
We therefore argue that frequency ratio measurements are essen-

tial tools to ascertain the reliability of optical atomic clocks and more
generally optical frequency metrology in view of the redefinition of the
SI second.

6.1.2 Time variation of fundamental constants

Paul Dirac was the first, in 1937, to introduce the idea that the
physical constants of Nature (parameters appearing in physical laws,
independent from measurement units, whose values cannot be calcu-
lated or inferred from operational theories, only measured experimen-
tally) might in fact not be proper constants, but rather parameters that
vary in time, and whose deep significance could be linked to cosmo-
logical parameters such as the age of the Universe [23].

Among those dimensionless physical constants, the fine structure
constant [72]

α =
e2

4πε0h̄c
∼ 1

137.035 999 160(33)
(6.1)

where e is the electron charge, ε0 is the vacuum permittivity, h̄ = h/2π
and c is the speed of light, is the coupling constant between electrons
and photons. As such, it is the dominant parameter for the value of
electronic transition frequencies in atoms, molecules, and ions.

Following this reasoning, a variation of the fine structure constant
entails a change in the frequencies of atomic spectra. The sensitivity
of a given atomic transition to the value of α is usually characterized
by a coefficient, which depends on the considered atomic species and
electronic transition [25]

δν

ν
= K(atom)

α

δα

α
(6.2)

One of the key aspects to take into account, is that since different
atoms have different electronic configurations, their sensitivity to a
putative variation of the fine structure constant will be different (see
Table 6.1 ). We can then write the sensitivity of frequency ratios to
variations of α:

δ(ν1/ν2)

ν1/ν2
= (K(1)

α −K(2)
α )

δα

α
(6.3)

It is worth noting that, unlike Equation 6.2, Equation 6.3 is completely
independent on the unit chosen to measure ν, reflecting the fact that
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Table 6.1. Sensitivity of a time variation of the fine structure constant for atoms cur-
rently used in optical clocks.

Atom transition wavelength (nm) Kα (calc) Transition
87Sr 698 0.062 1S0 → 3P0

171Yb 578 0.314 1S0 → 3P0

199Hg 266 0.813 1S0 → 3P0

27Al+ 267 0.008 1S0 → 3P0

171Yb+ 436 0.996 2S1/2 → 2D3/2 (E2)
171Yb+ 467 -5.953 2S1/2 → 2F7/2 (E3)
199Hg+ 282 -2.940 2S1/2 → 2D5/2

ν1/ν2, as pointed-out above, is a dimensionless quantity.
Several possible schemes can be envisioned to detect a potential

variation of the fine structure constant:

• Measure the frequency ratio between a transition which is sen-
sitive (for example mercury), and one which is almost insensitive
(for example strontium) to α variations. In that case, the stron-
tium clock would be used as an anchor, while the variation on
the ratio will be due to the mercury transition sensitivity.

• A second possibility is to find two transitions with are both sen-
sitive to α variations, but with opposite signs of sensitivity coef-
ficients. It is for example the case of the νHg/νYb+ (E3) frequency
ratio.

In this case, the sensitivity is clearly enhanced.

6.2 Detailed Experimental Scheme

The detailed layout of the frequency comparison setup is shown on
figure 6.2.

The light coming from the mercury and strontium clock laser is first
sent to the respective optical tables for atomic interrogation thanks to
a phase-compensated fiber link (using AOM1 and AOM6 as frequency
actuators for the PLL) and locked onto their respective atomic transi-
tion.
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Figure 6.2. Experimental scheme for comparing the mercury clock with microwave
and optical standards. A small amount of probe light from each clock is sent to the fiber
comb via frequency-stabilized optical fibers. For the mercury clock the stabilized path
does not include the two stages of frequency doubling. The fiber comb is also connected
to the (maser + CSO)ensemble via a frequency stabilized optical link, locked to the Cs
and Rb fountains. The comb simultaneously measures all the frequencies. Note that the
comb measures the frequency of the Hg clock in the infra-red and not in the UV. Picture
taken from [111].
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Simultaneously, the light is sent to the optical frequency comb via
actively phase-stabilized optical fiber links (using AOM5 and AOM2 as
actuator respectively for Sr and Hg) and beat with the light from the
comb, allowing frequency comparisons directly in the optical domain.

The mercury/comb beatnote, whose frequency can be tuned by
AOM3 (for example to make sure that it is sufficiently far away from
frep for a good signal to noise ratio) is usually kept around 140 MHz,
and can be either counted straightforwardly using a frequency counter
or actively used to perform spectral purity transfer (see Chapter 4).

The equations of the two optical beatnotes are:

νbeat
Hg = νUSL

Hg −NHgfrep (6.4)

νbeat
Sr = νUSL

Sr −NSrfrep (6.5)

as f0 is detected and mixed-out, implementing an effective carrier-
envelope-offset-free frequency comb. The two beatnotes are then counted
against the microwave clock ensemble, which is therefore in common
mode for the measurement, allowing optical frequency comparison at
the level of 10−20 [57], far below the accuracy of either clocks.

Similarly, the light coming from the microwave clock ensemble,
composed of a Cryogenic Sapphire Oscillator (CSO) and a hydrogen
maser interrogating the Rb and Cs fountains is sent to the comb via a
compensated microwave link. The ultrastable microwave derived from
the CSO at 11.98 GHz is down converted into a signal at 8.985 GHz
and used to modulate the amplitude of a 1.5µm laser diode injected
in a compensated 200 meter fiber. The 36th harmonics of the repe-
tition rate of the comb at a frequency around 9 GHz is detected by a
high-speed photodiode and counted against the 8.985 signal from the
microwave frequency standards, providing the “flywheel” to bridge the
frequency gap between the optical and microwave domains.

This signal is also used to clock all the auxiliary synthesizers en-
suring that its noise is common-mode with respect to every possible
frequency difference.
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6.3 Comparison With Microwave Frequency Stan-
dards

6.3.1 Hg/Cs frequency ratio

We performed a direct measurement of the mercury to cesium clock
transitions frequency ratio, which we find to be

νHg

νCs
= 122 769.552 729 311 011(45) (6.6)

with a total fractional accuracy of 3.7 × 10−16 where the total uncer-
tainty is the sum of three contributions: the systematic uncertainty
on the mercury clock, the accuracy of the 133Cs fountain [33] and of
the frequency comb and the statistical uncertainty over the ratio mea-
surement. The latter can be inferred from Figure 6.4 (a) where I plot
the Overlapping Allan deviation of the νHg

νCs
ratio measurement in rela-

tive units as a function of integration time. The statistical uncertainty
on the measurement, which is set by the quantum-projection-noise-
limited Cs fountain clock instability and the measurement time, is the
main contribution to the final uncertainty.
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Figure 6.3. Ratio between the measured absolute frequency of the mercury clock tran-
sition and the value of SYRTE’s measurement in 2012 taken as reference (offset by
unity). The 2012 measurement is in blue and the present measurement in violet. The
horizontal red line and pale red shaded area are respectively the weighted mean of the
two frequency measurements and the 1σ uncertainty on the mean.

This is the most accurate direct measurement of the absolute fre-
quency (i.e. with respect to a Cs frequency standard) of the mercury
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clock transition, νHg = 1128 575 290 808 154.62 Hz ±0.19 Hz (sta-
tistical) ±0.38 Hz (systematic including Cs accuracy). The previous
best direct measurement had been obtained by our group and pub-
lished in 2012 [65] with a fractional frequency uncertainty on the ratio
measurement of 5.7 × 10−15, the result is shown on Figure 6.3.

This work represents an improvement over the previous value by a
factor 15.

6.3.2 Hg/Rb frequency ratio

We performed the first ever direct-measurement of the mercury to
rubidium clock transitions frequency ratio. We obtain the value

Figure 6.4. Overlapping Allan deviation of the frequency ratio between Hg and FO2-Cs
(left) and Hg and FO2-Rb (right). The dotted lines represent the stabilities of the foun-
tains (limited by the quantum projection noise) over the length of the 2015 measurement
campaign (3 weeks, 40 h of useful data),averaging as τ−1/2. Picture taken from [111].

νHg

νRb
= 165 124.754 879 997 258(62) (6.7)

with a total fractional uncertainty of 3.8 × 10−16.

Using this measured value and the best know measurement of the
νRb/νCs frequency ratio, and noting that νHg = (νHg/νRb)(νRb/νCs)νCs,
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we can construct a 2nd “semi-independent”1 value of the absolute fre-
quency of the mercury clock transition, using Rb as a secondary repre-
sentation of the SI second [34]. We find a value of νHg = 1128 575 290
808 154.19 Hz ±0.15 Hz (statistical) ±0.40 Hz (systematics), in good
agreement with the direct measurement with Cs presented above.

The stability of the microwave comparisons can be seen on the
overlapping Allan deviation of clock frequency fluctuation of Figure
6.4. We can see on the plots the limit of the stability of the frequency
ratios measurements, set in both cases by the quantum projection
noise limited stability of the microwave clocks.

6.3.3 Gravitational redshift estimation and correction

General relativity dictates that the frequency of the clock is shifted
towards smaller frequencies when it is operated in a weaker gravita-
tional field by an amount [14]

∆ωrs =
gL

c2
ωclock (6.8)

At the surface of the earth, this gravitational redshift is approximately
10−16 per meter of elevation, which means that it is a significant cor-
rection to the measured frequency ratios at the stated uncertainty and
needs to be properly taken into account [66].

The results of the comparison presented above take into account
the gravitational redshift due to a height difference of 4.25(2) m (4.17(2)
m) between the Hg clock and the Cs (Rb) fountain, calculated based on
a leveling campaign carried out in 2013. The gravitational red shifts
introduced by the height difference of 3(1) cm between the Hg and Sr
clocks (Hg lying higher than Sr) contribute to less than 10−17.

6.4 Comparison With a Strontium Optical Lattice
Clock

For the first time during my thesis, thanks to the improvements
described in the previous chapters, we were able to perform several
direct optical-to-optical comparisons of the mercury clock with two

1The Cs and RB frequency references used in the comparison are operated within
a single dual-species fountain apparatus, and are therefore not fully independent.
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Figure 6.5. Stability of the Hg/Sr comparison against SrB (violet triangles) and Sr2
(red dots). The black dashed line represents a stability of 4 × 10−15 at 1 second going
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τ .

strontium clocks at SYRTE, which we will call SrB and Sr2 in the
following, over the course of the thesis.

Figure 6.5 shows the Allan deviation of the frequency difference
between the optical clocks for one such measurement over approxi-
mately 2 hours. The comparison averages down with a stability at one
second of around 4 × 10−15 and reaches the mid 10−17 range after one
hour of integration. We can note that the stability is much better than
in the case of the comparison of mercury with microwave frequency
standards, as expected from the increase in the atomic quality factor
for optical clock transitions.

The uncertainty budget for the comparison is shown on Figure 6.6
The uncertainty of the comparison is mainly limited by the accuracy
of the mercury clock evaluated as 1.7 × 10−16 (see Chapter 5), as the
Strontium clocks contribute only 4.0 × 10−17 to the final uncertainty
budget. As previously stated, the gravitational red-shift, correspond-
ing to a height difference of 3 cm between the atomic ensembles is not
relevant (below 10−17) for the level of accuracy tested here.

We extract from the data the ratio of the mercury to strontium clock
transitions:

νHg

νSr
= 2.629 314 209 898 909 15(46) (6.9)

with a total uncertainty of 1.8 × 10−16. This uncertainty is below the
accuracy of the best Cs fountain clocks in the world, and therefore is
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Figure 6.6. Final uncertainty budget for the mercury to strontium direct optical-to-
optical clock comparison. UB is the quadratic sum of the systematic uncertainty of the
two optical clocks. The statistical uncertainty UAtakes into account the flicker floor of
the frequency ratio measurement of 5 × 10−17.

below the accuracy of the current realization of the second from the SI
system of units, a landmark for the mercury clock on the way to its
ultimate accuracy. This frequency ratio has also been measured in the
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Figure 6.7. Ratio between the measured νHg/νSr from our work and the value from
the RIKEN group (offset by unity). We have plotted here the measurement in reference
[118] (black) and the measurement of this work (violet). The horizontal red line and pale
red shaded area are respectively the weighted mean of the two ratio values and the 1σ
uncertainty on the mean.

group of H. Katori at RIKEN (Japan) [118] with an uncertainty of 8.4
× 10−17, and as can be seen on Figure 6.7 with a good agreement with
our value. We can note that this level of agreement between two com-
pletely independent labs, four different optical lattice clocks setups
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on two sides of the world is a very good news for the mercury optical
lattice clock as an accurate and reproducible frequency standard.

To our knowledge the νHg/νSr frequency ratio is now one of the
best known physical quantities measured independently in different
laboratories.

6.5 Measurement of Frequency Ratios via Euro-
pean Fiber Network

Towards the end of this thesis, a European comparison involving
ultrastable fiber links [119] connecting SYRTE with PTB in Germany
[56] and NPL in the United Kingdom allowed us to measure the ratio
of the (optical) clock transition νHg/νYb+ for the first time, as well as
comparing our mercury clock with Sr clocks at PTB and NPL.

Figure 6.8. Stability of the Hg/Yb+ comparison through the European fiber link against
the PTB Yb+ ion clock. The inferred stability is around 2.5 × 10−15 at 1 second going
down as 1/

√
τ to the 1 × 10−17 level in 10 000 seconds.

The stability of the comparison against the νYb+ clock at PTB [39]
through the European fiber link is shown on Figure 6.8. The frequency
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ratio measurement reaches a statistical uncertainty of 1 × 10−17 in 10
000 seconds, with no sign of frequency flickering. During these mea-
surements, the magic wavelength frequency was continuously locked
to the operational optical frequency comb.

As was previously mentioned, this ratio is very relevant for the mon-
itoring of a potential variation of the fine structure constant α, since
the (E3) Yb+ clock transition is very sensitive to this variation, while
the Hg clock is relatively less sensitive, but with a sensitivity coeffi-
cient of opposite sign, enhancing the sensitivity of the νHg/νYb+ ratio
to α̇ (see Section 6.1.2).

6.6 Long-Term Monitoring and Fundamental Con-
stants

In the course of this thesis, the Hg/Sr clock frequency ratio has
been measured several times with uncertainties in the low 10−16 range.
As discussed in section 6.1, this is a first step towards long-term mon-
itoring of a potential variation of the fine structure constant.

Moreover, we have also measured the ratios Hg/Cs and Hg/Rb
down to the state of the art uncertainty of SYRTE’s microwave stan-
dards, which are very relevant to potential variation of the proton to
electron mass ratio µ [38] [28], as well as probing the coupling between
fundamental constants and Gravity [5].
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Conclusion

In this thesis manuscript, I have presented my main contributions
to the mercury optical lattice clock setup at SYRTE in order to reach
much higher clock performances. I have designed and built a new
cooling laser system working reliably over several weeks at an output
power of 50 mW at the challenging wavelength of 254 nm with minimal
maintenance, I have also installed a new Ti:Sa laser for the lattice
light, along with its frequency control, which will allow the study of
the systematics related to the trapping environment below the 10−17

level of fractional frequency accuracy. I have also helped contribute to
the installation of a new infrared amplifier for the clock light.

With these key technical improvements, the reliability and up-time
of the experiment was drastically increased, and the clock stability was
improved to a value of 1.2 × 10−15 at one second of integration time,
allowing measurement resolution at the 10−17 level for the study of the
physical parameters of the clock. I have demonstrated measurement
and control of the frequency systematics below the 10−16 level, with a
final uncertainty of 9.6 × 10−17, below the realization of the SI second
by Cs frequency standards [33].

With the increased accuracy, it became scientifically relevant to
compare our clock with Cs fountains. This measurement was already
realized in our group in 2012 [65] with an accuracy (limited by the
mercury clock) of 5.4 × 10−15. In this work, we reach an accuracy for
the clock comparison of 3.7 × 10−16, mainly limited by the microwave
standard, a factor of 15 improvement with respect to the previous mea-
surement. We also realized the first direct measurement of the Hg/Rb
frequency ratio, to the level of 3.8 × 10−16. Maybe even more impor-
tant, we have measured for the first time in our lab, and the second
time ever, the ratio of the clock transition frequencies νHg/νSr below
the current realization of the SI second, and in good agreement with

147



148 Conclusion

the previous value. These measurement as well as the ones performed
in the lab of Prof. Katori in RIKEN lead to the recognition of the 199Hg
clock transition as a Secondary Representation of the Second by the
2017 CCTF (Consultative Committee for Time and Frequency). Filling
and improving the list of Recommended values of standard frequencies
for applications including the practical realization of the metre and sec-
ondary representations of the second is an important task toward the
redefinition of the SI second.

We have also laid the groundwork for further improvements of the
clock setup. A second cooling laser system has been build and is now
producing UV light at 254 nm for use in a 2D-MOT which had been
used shortly in the early times of the experiment [85] before being
abandoned for lack of enough UV power to reliably operate it. The re-
operation of the 2D-MOT is expected to take place in the coming weeks
(all the optics necessary to bring the light to the 2D-MOT chamber are
still in place and the last step remains to align the new UV laser system
on the old optical path). This will enable a great increase in loading
rate into the MOT and the optical lattice, enabling shorter cycle times
and longer interrogation times, improving the stability of the clock by
potentially a factor of 5. With the longer lifetime of the atoms in the
optical lattice, it should be straightforward to measure for the first
time the lifetime of the clock state of mercury, which is the subject of
conflicting data in the literature. Indeed, [35] predicts a lifetime of '
100 seconds, while a more recent calculation expects a lifetime of 1.3
seconds [87]. Moreover, the 2D MOT will allow clock operation with
much higher atomic densities, enabling the study of density-related
frequency shifts in the mercury clock (so far still unresolved on our
experiment).

The results presented in this thesis show no limitation to the poten-
tial accuracy of a clock based on 199Hg, and mercury remains a good
candidate for a room temperature frequency standard with accuracy
of 10−18 or below. The referencing of the lattice light to the optical
frequency comb will prove essential in reducing the uncertainty asso-
ciated with the lattice light-shift below the 10−17 level, and allow the
investigation of higher-order lattice light-shifts, which need to be ex-
perimentally studied to determine to which extend they might limit the
mercury optical lattice clock accuracy at the low 10−18 level, and for
which theoretical calculations vary from one publication to the next
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[44], [79]. To reach the 10−18 level of uncertainty however, a measure-
ment of the static and dynamic BBR coefficients will be needed, either
through a direct measurement of the static polarizability, or thanks to
a new vacuum chamber cooled down to cryogenic temperatures and
compared to a room temperature mercury clock.

I expect that transfer of spectral purity using an optical frequency
comb will be an important enabling technique for the future of op-
tical frequency metrology, allowing to share the stability of a single
ultrastable clock laser between several users and/or experiments. A
first step towards this direction has been made by locking the mercury
clock laser to a 1.5 µm ultrastable cavity using the frequency comb,
and synchronized interrogation with the Sr clock has been performed
for the first time. The advantage of this method has not been fully
demonstrated in the attempt made in the course of this thesis with
only a modest improvement of the frequency ratio frequency stability
from 4 × 10−15 at one second for uncorrelated clocks to 3 × 10−15 at
one second for the synchronous measurement. The limit on this mea-
surement was set by the frequency drifts of the Fabry-Perot cavity at
1.5 µm used to stabilize the optical frequency comb. One simple solu-
tion to overcome this problem on the short term is to directly transfer
the spectral properties of the mercury cavity to the strontium clock
laser via the comb. On the long term, a first project aims at build-
ing a long Fabry-Perot cavity to provide a much improved frequency
reference with respect to the currently available cavities, while a sec-
ond project investigates laser frequency stabilization based on spectral
hole burning in rare-earth doped crystals. Both alternatives have the
potential to provide ultrastable frequency references to the comb, and
through the comb to the mercury laser, improving even more the sta-
bility of the clock to the low 10−16 level at 1 second.

Finally, with an accuracy at the 10−17 level and below, optical
clocks are expected to contribute to the monitoring of fundamental
constants, and the mercury clock provides a unique opportunity for
ultra-accurate frequency ratio measurement all over Europe thanks
to the newly built ultra-stable fiber network architecture [56]. Fre-
quency ratios with ionic species such as Yb+ (PTB, NPL), both on the
quadrupole and octupole transition [28], [39], have for example never
been measured and are scientifically exciting in view of searching for
putative variations of the fine structure constant.
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The prospect for the mercury clock are therefore numerous, but
other exciting opportunities lie in the study of ultra-cold mercury atoms
as provided by the setup. Collisional properties of mercury through
photo-associative spectroscopy would provide insight into the colli-
sional physics of mercury, and would allow for a better estimation
of collisional shifts through the measurement of clock states scatter-
ing lengths. Moreover, quantum degeneracy has not yet been reached
with mercury atoms, and ours is one of the very few setups in the
world for which this goal would be within reach, opening the door to a
three-dimensional Fermi-degenerate mercury optical lattice clock with
ultimate accuracy and stability below the 10−18 level at room temper-
ature [11].
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Clairon, Giorgio Santarelli, and Pierre Lemonde. The Dick effect
for an optical frequency standard. Journal of Optics B: Quantum
and Semiclassical Optics, 5(2):S150, 2003.

[89] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E.
Pritchard. Trapping of neutral sodium atoms with radiation
pressure. Phys. Rev. Lett., 59:2631–2634, Dec 1987.

[90] L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zim-
mermann, V. Vuletic, W. König, and T.W. Hänsch. A compact
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