D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat Rev Endocrinol, vol.6, pp.279-89, 2010.

H. Jaïdane and D. Hober, Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes, Diabetes Metab, vol.34, pp.537-585, 2008.

D. Fairweather, K. A. Stafford, and Y. K. Sung, Update on coxsackievirus B3 myocarditis, Curr Opin Rheumatol, vol.24, pp.401-408, 2012.
DOI : 10.1097/bor.0b013e328353372d

URL : http://europepmc.org/articles/pmc4536812?pdf=render

D. Hober and F. Sane, Enteroviral pathogenesis of type 1 diabetes, Discov Med, vol.10, pp.151-60, 2010.

W. Yeung, W. D. Rawlinson, and M. E. Craig, Enterovirus infection and type 1 diabetes mellitus: systematic review and metaanalysis of observational molecular studies, BMJ, vol.342, p.35, 2011.

D. Hober and F. Sane, Enteroviruses and type 1 diabetes, BMJ, vol.342, p.7072, 2011.

H. Jaïdane, P. Sauter, F. Sane, A. Goffard, J. Gharbi et al., Enteroviruses and type 1 diabetes: towards a better understanding of the relationship, Rev Med Virol, vol.20, pp.265-80, 2010.

M. J. Richer and M. S. Horwitz, Coxsackievirus infection as an environmental factor in the etiology of type 1 diabetes, Autoimmun Rev, vol.8, pp.611-616, 2009.

, Coxsackievirus B4 and inflammation

M. Y. Donath, J. Størling, L. A. Berchtold, N. Billestrup, and T. Mandrup-poulsen, Cytokines and beta-cell biology: from concept to clinical translation, Endocr Rev, vol.29, pp.334-50, 2008.

S. Nair, K. C. Leung, W. D. Rawlinson, Z. Naing, and M. E. Craig, Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells, J Med Virol, vol.82, pp.1950-1957, 2010.

K. Triantafilou and M. Triantafilou, Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4, J Virol, vol.78, pp.11313-11333, 2004.

A. Henke, C. Mohr, H. Sprenger, C. Graebner, A. Stelzner et al., Coxsackievirus B3-induced production of tumor necrosis factor-alpha, IL-1 beta, and IL-6 in human monocytes, J Immunol, vol.148, pp.2270-2277, 1992.

G. R. Vreugdenhil, P. G. Wijnands, M. G. Netea, J. W. Van-der-meer, W. J. Melchers et al., Enterovirus-induced production of pro-inflammatory and T-helper cytokines by human leukocytes, Cytokine, vol.12, pp.1793-1799, 2000.

C. C. Kemball, M. Alirezaei, and J. L. Whitton, Type B coxsackieviruses and their interactions with the innate and adaptive immune systems, Future Microbiol, vol.5, pp.1329-1376, 2010.

M. J. Richer, D. J. Lavallée, I. Shanina, and M. S. Horwitz, Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection, PLoS One, vol.4, p.4127, 2009.

A. M. Milstone, J. Petrella, M. D. Sanchez, M. Mahmud, J. C. Whitbeck et al., Interaction with coxsackievirus and adenovirus receptor, but not with decay-accelerating factor (DAF), induces A-particle formation in a DAF-binding coxsackievirus B3 isolate, J Virol, vol.79, pp.655-60, 2005.

P. Sauter and D. Hober, Mechanisms and results of the antibodydependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases, Microbes Infect, vol.11, pp.443-51, 2009.

S. B. Halstead, S. Mahalingam, M. A. Marovich, S. Ubol, and D. M. Mosser, Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes, Lancet Infect Dis, vol.10, pp.712-734, 2010.

A. Takada and Y. Kawaoka, Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications, Rev Med Virol, vol.13, pp.387-98, 2003.

D. Hober, W. Chehadeh, A. Bouzidi, and P. Wattré, Antibodydependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-alpha synthesis, J Infect Dis, vol.184, pp.1098-108, 2001.

D. Hober, W. Chehadeh, J. Weill, C. Hober, M. C. Vantyghem et al., Circulating and cell-bound antibodies increase coxsackievirus B4-induced production of IFN-alpha by peripheral blood mononuclear cells from patients with type 1 diabetes, J Gen Virol, vol.83, pp.2169-76, 2002.

W. Chehadeh, A. Bouzidi, G. Alm, P. Wattré, and D. Hober, Human antibodies isolated from plasma by affinity chromatography increase the coxsackievirus B4-induced synthesis of interferonalpha by human peripheral blood mononuclear cells in vitro, J Gen Virol, vol.82, pp.1899-907, 2001.

D. Hober, L. Shen, S. Benyoucef, D. De-groote, V. Deubel et al., Enhanced TNF alpha production by monocytic-like cells exposed to dengue virus antigens, Immunol Lett, vol.53, pp.115-135, 1996.
DOI : 10.1016/s0165-2478(96)02620-x

P. Hofmann, M. Schmidtke, A. Stelzner, and D. Gemsa, Suppression of proinflammatory cytokines and induction of IL-10 in human monocytes after coxsackievirus B3 infection, J Med Virol, vol.64, pp.487-98, 2001.

W. X. Khong, D. Foo, S. L. Trasti, E. L. Tan, and A. S. , Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model, J Virol, vol.85, pp.3067-76, 2011.

W. Chehadeh, P. E. Lobert, P. Sauter, A. Goffard, B. Lucas et al., Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4-and B3-induced synthesis of alpha interferon, J Virol, vol.79, pp.13882-91, 2005.

P. Sauter, P. E. Lobert, B. Lucas, R. Varela-calvino, G. Alm et al., Role of the capsid protein VP4 in the plasmadependent enhancement of the Coxsackievirus B4E2-infection of human peripheral blood cells, Virus Res, vol.125, pp.183-90, 2007.

P. Sauter, W. Chehadeh, P. E. Lobert, M. Lazrek, A. Goffard et al., A part of the VP4 capsid protein exhibited by coxsackievirus B4 E2 is the target of antibodies contained in plasma from patients with type 1 diabetes, J Med Virol, vol.80, pp.866-78, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02266790

J. F. Han, R. Y. Cao, Y. Q. Deng, X. Tian, T. Jiang et al., Antibody dependent enhancement infection of enterovirus 71 in vitro and in vivo, Virol J, vol.8, p.106, 2011.

A. K. Berg, A. Olsson, O. Korsgren, and G. Frisk, Antiviral treatment of Coxsackie B virus infection in human pancreatic islets, Antiviral Res, vol.74, pp.65-71, 2007.

H. Ja?-idane, P. Sauter, F. Sane, A. Goffard, J. Gharbi et al., Enteroviruses and type 1 diabetes: towards a better understanding of the relationship, Rev Med Virol, vol.20, pp.265-80, 2010.

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat Rev Endocrinol, vol.6, pp.279-89, 2010.

D. Hober and F. Sane, Enteroviruses and type 1 diabetes, BMJ, vol.342, p.7072, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02266780

D. Hober and E. K. Alidjinou, Enteroviral pathogenesis of type 1 diabetes: queries and answers, Curr Opin Infect Dis, vol.26, pp.263-272, 2013.

P. Ylipaasto, K. Klingel, A. M. Lindberg, T. Otonkoski, R. Kandolf et al., Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells, Diabetologia, vol.47, pp.225-264, 2004.

M. Anagandula, S. J. Richardson, M. S. Oberste, A. Sioofy-khojine, H. Hy?-oty et al., Infection of human islets of langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway, J Med Virol, vol.86, pp.1402-1413, 2014.

F. Dotta, S. Censini, A. Van-halteren, L. Marselli, M. Masini et al., Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients, Proc Natl Acad Sci, vol.104, pp.5115-5135, 2007.

S. J. Richardson, A. Willcox, A. J. Bone, A. K. Foulis, and N. G. Morgan, The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes, Diabetologia, vol.52, pp.1143-51, 2009.

M. Oikarinen, S. Tauriainen, S. Oikarinen, T. Honkanen, P. Collin et al., Type 1 diabetes is associated with enterovirus infection in gut mucosa, Diabetes, vol.61, pp.687-91, 2012.

W. Yeung, W. D. Rawlinson, and M. E. Craig, Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies, BMJ, vol.342, p.35, 2011.

H. Yin, A. Berg, T. Tuvemo, and G. Frisk, Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset, Diabetes, vol.51, pp.1964-71, 2002.

B. M. Schulte, J. Bakkers, K. Lanke, W. Melchers, C. Westerlaken et al., Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection, Viral Immunol, vol.23, pp.99-104, 2010.

A. Toniolo, G. Maccari, G. Federico, A. Salvatoni, G. Bianchi et al., Are enterovirus infections linked to the early stages of Type 1 diabetes? Abstract, 2010.

A. Salvatoni, A. Baj, G. Bianchi, G. Federico, M. Colombo et al., Intrafamilial spread of enterovirus infections at the clinical onset of type 1 diabetes, Pediatr Diabetes, vol.14, pp.407-423, 2013.

W. Chehadeh, J. Weill, M. C. Vantyghem, G. Alm, J. Lef-ebvre et al., Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection, J Infect Dis, vol.181, pp.1929-1968, 2000.

D. Hober, W. Chehadeh, A. Bouzidi, and . Wattr-e-p, Antibody-dependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-alpha synthesis, J Infect Dis, vol.184, pp.1098-108, 2001.

W. Chehadeh, J. Kerr-conte, F. Pattou, G. Alm, J. Lefebvre et al., Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells, J Virol, vol.74, pp.10153-64, 2000.

S. J. Richardson, P. Leete, S. Dhayal, M. A. Russell, M. Oikarinen et al., Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas, Diabetologia, vol.57, pp.392-401, 2014.

I. Leparc, F. Fuchs, H. Kopecka, and M. Aymard, Use of the polymerase chain reaction with a murine model of picornavirus-induced myocarditis, J Clin Microbiol, vol.31, pp.2890-2894, 1993.

L. Andr-eoletti, D. Hober, C. Hober-vandenberghe, S. Belaich, M. C. Vantyghem et al., Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus, J Med Virol, vol.52, pp.121-128, 1997.

C. M. Filippi and M. G. Herrath, Viral trigger for type 1 diabetes: pros and cons, Diabetes, vol.57, pp.2863-71, 2008.

J. Haller-hasskamp, J. L. Zapas, and E. G. Elias, Dendritic cell counts in the peripheral blood of healthy adults, Am J Hematol, vol.78, pp.314-319, 2005.

C. Xia, R. Peng, A. V. Chernatynskaya, L. Yuan, C. Carter et al., Increased IFN-a-producing plasmacytoid dendritic cells (pDCs) in human Th1-mediated type 1 diabetes: pDCs augment Th1 responses through IFN-a production, J Immunol, vol.193, pp.1024-1058, 2014.

D. Hober, W. Chehadeh, J. Weill, C. Hober, M. Vantyghem et al., Circulating and cell-bound antibodies increase coxsackievirus B4-induced production of IFN-alpha by peripheral

, Stichting European Society for Clinical Investigation Journal Foundation E. K. ALIDJINOU ET AL. www.ejci-online.com blood mononuclear cells from patients with type 1 diabetes, J Gen Virol, vol.83, pp.2169-76, 2002.

P. E. Tam and R. P. Messner, Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution, J Virol, vol.73, pp.10113-10134, 1999.

D. Matteucci, M. Paglianti, A. M. Giangregorio, M. R. Capobianchi, F. Dianzani et al., Group B coxsackieviruses readily establish persistent infections in human lymphoid cell lines, J Virol, vol.56, pp.651-655, 1985.

A. Goffard, E. K. Alidjinou, F. San-e, L. Choteau, C. Bouquillon et al., Antibodies enhance the infection of phorbol-esterdifferentiated human monocyte-like cells with coxsackievirus B4, Microbes Infect, vol.15, pp.18-27, 2013.

. Mckinney-re, S. L. Katz, and C. M. Wilfert, Chronic enteroviral meningoencephalitis in agammaglobulinemic patients, Rev Infect Dis, vol.9, pp.334-56, 1987.

E. Halliday, J. Winkelstein, and A. Webster, Enteroviral infections in primary immunodeficiency (PID): a survey of morbidity and mortality, J Infect, vol.46, pp.1-8, 2003.

J. Julien, I. Leparc-goffart, L. B. Fuchs, F. Foray, S. Janatova et al., Postpolio syndrome: poliovirus persistence is involved in the pathogenesis, J Neurol, vol.246, pp.472-478, 1999.

I. Leparc-goffart, J. Julien, F. Fuchs, I. Janatova, M. Aymard et al., Evidence of presence of poliovirus genomic sequences in cerebrospinal fluid from patients with postpolio syndrome, J Clin Microbiol, vol.34, pp.2023-2029, 1996.

J. Chia, The role of enterovirus in chronic fatigue syndrome, J Clin Pathol, vol.58, pp.1126-1158, 2005.

J. Chia and A. Y. Chia, Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach, J Clin Pathol, vol.61, pp.43-51, 2008.

J. Chia, A. Chia, M. Voeller, T. Lee, and R. Chang, Acute enterovirus infection followed by myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and viral persistence, J Clin Pathol, vol.63, pp.165-173, 2010.
DOI : 10.1136/jcp.2009.070466

N. M. Chapman and K. S. Kim, Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy, Curr Top Microbiol Immunol, vol.323, pp.275-92, 2008.
DOI : 10.1007/978-3-540-75546-3_13

D. M. See and J. G. Tilles, Pathogenesis of virus-induced diabetes in mice, J Infect Dis, vol.171, pp.1131-1139, 1995.
DOI : 10.1093/infdis/171.5.1131

F. Brilot, W. Chehadeh, C. Charlet-renard, H. Martens, V. Geenen et al., Persistent infection of human thymic epithelial cells by coxsackievirus B4, J Virol, vol.76, pp.5260-5265, 2002.
DOI : 10.1128/jvi.76.10.5260-5265.2002

URL : https://jvi.asm.org/content/jvi/76/10/5260.full.pdf

N. Knowles, . Hovi, T. Hyypiä, A. M. King, A. M. Lindberg et al., Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, pp.855-880, 2012.

C. Tapparel, F. Siegrist, T. J. Petty, and L. Kaiser, Picornavirus and enterovirus diversity with associated human diseases, Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis, vol.14, pp.282-293, 2013.
DOI : 10.1016/j.meegid.2012.10.016

J. R. Romero, Pediatric group B coxsackievirus infections, Curr. Top. Microbiol. Immunol, vol.323, pp.223-239, 2008.
DOI : 10.1007/978-3-540-75546-3_10

D. Hober and E. K. Alidjinou, Enteroviral pathogenesis of type 1 diabetes: Queries and answers, Curr. Opin. Infect. Dis, vol.26, pp.263-269, 2013.
DOI : 10.1097/qco.0b013e3283608300

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: Interplay between enterovirus and host, Nat. Rev. Endocrinol, vol.6, pp.279-289, 2010.
DOI : 10.1038/nrendo.2010.27

H. Yin, A. Berg, T. Tuvemo, and G. Frisk, Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset, Diabetes, vol.51, 1964.

B. M. Schulte, J. Bakkers, K. H. Lanke, W. J. Melchers, C. Westerlaken et al., Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection, Viral Immunol, vol.23, pp.99-104, 2010.

A. Toniolo, G. Maccari, G. Federico, A. Salvatoni, G. Bianchi et al., Are enterovirus infections linked to the early stages of Type 1 diabetes? Abstract, Proceedings of the American Society of Microbiology Meeting, pp.23-27, 2010.

A. Salvatoni, A. Baj, G. Bianchi, G. Federico, M. Colombo et al., Intrafamilial spread of enterovirus infections at the clinical onset of type 1 diabetes, Pediatr. Diabetes, vol.14, pp.407-416, 2013.

E. K. Alidjinou, W. Chehadeh, J. Weill, M. Vantyghem, C. Stuckens et al., Monocytes of patients with type 1 diabetes harbour enterovirus RNA, Eur. J. Clin. Investig, vol.45, pp.918-924, 2015.
DOI : 10.1111/eci.12485

D. Hober, W. Chehadeh, A. Bouzidi, and P. Wattré, Antibody-dependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-? synthesis, J. Infect. Dis, vol.184, pp.1098-1108, 2001.

A. Goffard, E. K. Alidjinou, F. Sané, L. Choteau, C. Bouquillon et al., Antibodies enhance the infection of phorbol-ester-differentiated human monocyte-like cells with coxsackievirus B4, Microbes Infect. Inst. Pasteur, vol.15, pp.18-27, 2013.

D. Hober, W. Chehadeh, J. Weill, C. Hober, M. Vantyghem et al., Circulating and cell-bound antibodies increase coxsackievirus B4-induced production of IFN-? by peripheral blood mononuclear cells from patients with type 1 diabetes, J. Gen. Virol, vol.83, pp.2169-2176, 2002.

W. Chehadeh, P. Lobert, P. Sauter, A. Goffard, B. Lucas et al., Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4-and B3-induced synthesis of alpha interferon, J. Virol, vol.79, pp.13882-13891, 2005.

E. K. Alidjinou, F. Sané, I. Engelmann, and D. Hober, Serum-dependent enhancement of coxsackievirus B4-induced production of IFN?, IL-6 and TNF? by peripheral blood mononuclear cells, J. Mol. Biol, vol.425, pp.5020-5031, 2013.

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nat. Rev. Immunol, vol.11, pp.762-774, 2011.
DOI : 10.1038/nri3070

URL : http://europepmc.org/articles/pmc3947780?pdf=render

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol, vol.11, pp.723-737, 2011.

Y. Tsunetsugu-yokota, K. Akagawa, H. Kimoto, K. Suzuki, M. Iwasaki et al., Monocyte-derived cultured dendritic cells are susceptible to human immunodeficiency virus infection and transmit virus to resting T cells in the process of nominal antigen presentation, J. Virol, vol.69, pp.4544-4547, 1995.

P. M. De-graaff, E. C. De-jong, T. M. Van-capel, M. E. Van-dijk, P. J. Roholl et al., Respiratory syncytial virus infection of monocyte-derived dendritic cells decreases their capacity to activate CD4 T cells, J. Immunol, vol.175, pp.5904-5911, 2005.

C. Le-nouën, S. Munir, S. Losq, C. C. Winter, T. Mccarty et al., Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3, Virology, vol.385, pp.169-182, 2009.

E. K. Alidjinou, F. Sané, I. Engelmann, and D. Hober, Serum-dependent enhancement of coxsackievirus B4-induced production of IFN?, IL-6 and TNF? by peripheral blood mononuclear cells, 2013.

, J. Mol. Biol, vol.425, pp.5020-5031

E. K. Alidjinou, F. Sané, A. Bertin, D. Caloone, and D. Hober, Persistent infection of human pancreatic cells with Coxsackievirus B4 is cured by fluoxetine, Antiviral Res, vol.116, pp.51-54, 2015.
DOI : 10.1016/j.antiviral.2015.01.010

M. Anagandula, S. J. Richardson, M. S. Oberste, A. Sioofy-khojine, H. Hyöty et al., Infection of human islets of langerhans with two strains of, 2014.

, Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway, J. Med. Virol, vol.86, pp.1402-1411

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, pp.215-233, 2009.

F. Beaulieux, Y. Zreik, C. Deleage, V. Sauvinet, V. Legay et al.,

J. M. Bergelson, J. A. Cunningham, G. Droguett, E. A. Kurt-jones, A. Krithivas et al., Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5, Science, vol.275, pp.1320-1323, 1997.

Y. Chang, B. Ho, S. Sher, S. Yu, Y. et al., miR-146a and miR-370 coordinate enterovirus 71-induced cell apoptosis through targeting SOS1 and GADD45?, Cell, 2015.

. Microbiol, , vol.17, pp.802-818

N. M. Chapman, K. Kim, K. M. Drescher, K. Oka, T. et al., 5' terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart, Virology, vol.375, pp.480-491, 2008.

W. Chehadeh, J. Kerr-conte, F. Pattou, G. Alm, J. Lefebvre et al., , 2000.

C. Chen, N. Servant, J. Toedling, A. Sarazin, A. Marchais et al., ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data, Bioinforma. Oxf. Engl, vol.28, pp.3147-3149, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00770015

A. Dörner, D. Xiong, K. Couch, T. Yajima, and K. U. Knowlton, Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection, J. Biol. Chem, vol.279, pp.18497-18503, 2004.

F. Dotta, S. Censini, A. G. Van-halteren, L. Marselli, M. Masini et al.,

A. O. Muda and S. Del-prato, Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.5115-5120, 2007.

A. Heim, A. Canu, P. Kirschner, T. Simon, G. Mall et al., , 1992.

, Synergistic interaction of interferon-beta and interferon-gamma in coxsackievirus B3-infected carrier cultures of human myocardial fibroblasts, J. Infect. Dis, vol.166, pp.958-965

A. Heim, C. Brehm, M. Stille-siegener, G. Müller, S. Hake et al., , 1995.

, Cultured human myocardial fibroblasts of pediatric origin: natural human interferon-alpha is more effective than recombinant interferon-alpha 2a in carrier-state coxsackievirus B3 replication, J. Mol. Cell. Cardiol, vol.27, pp.2199-2208

B. Ho, S. Yu, J. J. Chen, S. Chang, B. Yan et al., Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E, Cell Host Microbe, vol.9, pp.58-69, 2011.

B. Ho, I. Yu, L. Lu, A. Rudensky, H. Chen et al., Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon, Nat. Commun, vol.5, p.3344, 2014.

B. Ho, P. Yang, Y. , and S. , MicroRNA and Pathogenesis of Enterovirus Infection, Viruses, vol.8, 2016.

D. Hober, A. , and E. K. , Enteroviral pathogenesis of type 1 diabetes: queries and answers, Curr. Opin. Infect. Dis, vol.26, pp.263-269, 2013.

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat. Rev. Endocrinol, vol.6, pp.279-289, 2010.

M. Hodik, A. Lukinius, O. Korsgren, and G. Frisk, Tropism Analysis of Two Coxsackie B5, 2013.

, Strains Reveals Virus Growth in Human Primary Pancreatic Islets but not in Exocrine Cell Clusters In Vitro, Open Virol. J, vol.7, pp.49-56

H. Jaïdane and D. Hober, Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes, Diabetes Metab, vol.34, pp.537-548, 2008.

H. Jaïdane, P. Sauter, F. Sane, A. Goffard, J. Gharbi et al., Enteroviruses and type 1 diabetes: towards a better understanding of the relationship, Rev. Med. Virol, vol.20, pp.265-280, 2010.

H. Y. Jin, A. Gonzalez-martin, A. V. Miletic, M. Lai, S. Knight et al.,

M. S. Macauley, R. C. Rickert, X. , and C. , Transfection of microRNA Mimics Should Be Used with Caution, Front. Genet, vol.6, p.340, 2015.

H. Kim, H. Choi, and S. K. Lee, Epstein-Barr Virus MicroRNA miR-BART20-5p Suppresses Lytic Induction by Inhibiting BAD-Mediated caspase-3-Dependent Apoptosis, J. Virol, vol.90, pp.1359-1368, 2016.
DOI : 10.1128/jvi.02794-15

URL : https://jvi.asm.org/content/90/3/1359.full.pdf

K. Kim, S. Tracy, W. Tapprich, J. Bailey, C. Lee et al., 5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and 101 cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA, J. Virol, vol.79, pp.7024-7041, 2005.

K. Kim, N. M. Chapman, T. , and S. , Replication of coxsackievirus B3 in primary cell cultures generates novel viral genome deletions, J. Virol, vol.82, pp.2033-2037, 2008.

K. W. Kim, A. Ho, A. Alshabee-akil, A. A. Hardikar, T. W. Kay et al., Coxsackievirus B5 Infection Induces Dysregulation of microRNAs Predicted to Target Known Type 1 Diabetes Risk Genes in Human Pancreatic Islets, Diabetes, vol.65, pp.996-1003, 2016.

N. J. Knowles, T. Hovi, T. Hyypiä, A. M. King, A. M. Lindberg et al.,

P. Simmonds, T. Skern, and . Stanway, Picornaviridae. In: Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, 2012.

A. M. King, M. J. Adams, E. B. Carstens, E. J. Lefkowitz, and . San-diego, , pp.855-880

U. Kuehl, D. Lassner, M. Gast, A. Stroux, M. Rohde et al., Differential Cardiac MicroRNA Expression Predicts the Clinical Course in Human Enterovirus Cardiomyopathy, Circ. Heart Fail, vol.8, pp.605-618, 2015.

W. Y. Lam, A. C. Cheung, C. K. Tung, A. C. Yeung, K. L. Ngai et al., miR-466 is putative negative regulator of Coxsackie virus and Adenovirus Receptor, vol.589, pp.246-254, 2015.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods San Diego Calif, vol.25, pp.402-408, 2001.

M. I. Love, W. Huber, A. , and S. , Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

P. A. Lysy, G. C. Weir, and S. Bonner-weir, Making ? cells from adult cells within the pancreas, Curr. Diab. Rep, vol.13, pp.695-703, 2013.

D. Matteucci, M. Paglianti, A. M. Giangregorio, M. R. Capobianchi, F. Dianzani et al.,

, Group B coxsackieviruses readily establish persistent infections in human lymphoid cell lines

, J. Virol, vol.56, pp.651-654

M. Oikarinen, S. Tauriainen, T. Honkanen, K. Vuori, P. Karhunen et al., Analysis of pancreas tissue in a child positive for islet cell antibodies, Diabetologia, vol.51, pp.1796-1802, 2008.

I. Pelletier, G. Duncan, N. Pavio, and F. Colbère-garapin, Molecular mechanisms of poliovirus persistence: key role of capsid determinants during the establishment phase, Cell. Mol. Life Sci. CMLS, vol.54, pp.1385-1402, 1998.
URL : https://hal.archives-ouvertes.fr/pasteur-00167030

I. Thoelen, C. Magnusson, S. Tågerud, C. Polacek, M. Lindberg et al., , 2001.

, Identification of alternative splice products encoded by the human coxsackie-adenovirus receptor gene, Biochem. Biophys. Res. Commun, vol.287, pp.216-222

D. W. Thomson, C. P. Bracken, J. M. Szubert, and G. J. Goodall, On measuring miRNAs after transient transfection of mimics or antisense inhibitors, PloS One, vol.8, p.55214, 2013.

L. Tong, L. Lin, S. Wu, Z. Guo, T. Wang et al.,

, MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence, Nucleic Acids Res, vol.41, pp.3760-3771

S. Tracy, S. Smithee, A. Alhazmi, and N. Chapman, Coxsackievirus can persist in murine pancreas by deletion of 5' terminal genomic sequences, J. Med. Virol, vol.87, pp.240-247, 2015.

B. Wen, H. Dai, Y. Yang, Y. Zhuang, and R. Sheng, MicroRNA-23b inhibits enterovirus 71 replication through downregulation of EV71 VPl protein, Intervirology, vol.56, pp.195-200, 2013.

D. Werk, S. Schubert, V. Lindig, H. Grunert, H. Zeichhardt et al., Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor, Biol. Chem, vol.386, pp.857-863, 2005.

A. Willcox, S. J. Richardson, A. J. Bone, A. K. Foulis, M. et al., Immunohistochemical analysis of the relationship between islet cell proliferation and the production of the enteroviral capsid protein, VP1, in the islets of patients with recent-onset type 1 diabetes, Diabetologia, vol.54, pp.2417-2420, 2011.

H. Yin, A. Berg, J. Westman, C. Hellerström, and G. Frisk, effects on insulin release, proinsulin synthesis, and cell morphology, J. Med, 2002.

. Virol, , vol.68, pp.544-557

P. Ylipaasto, K. Klingel, A. M. Lindberg, T. Otonkoski, R. Kandolf et al., Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells, Diabetologia, vol.47, pp.225-239, 2004.

Q. Zhang, Z. Xiao, F. He, J. Zou, S. Wu et al., MicroRNAs regulate the pathogenesis of CVB3-induced viral myocarditis, Intervirology, vol.56, pp.104-113, 2013.

Z. Zheng, X. Ke, M. Wang, S. He, Q. Li et al., , 2013.

, Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome, J. Virol, vol.87, pp.5645-5656

R. Bibliographique,

E. D. Abston, M. J. Coronado, A. Bucek, J. A. Onyimba, J. E. Brandt et al., TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.304, pp.267-277, 2013.

E. K. Alidjinou and D. Hober, Enteroviruses and Type 1 Diabetes: Candidate Genes Linked With Innate Immune Response, vol.2, pp.636-637, 2015.

E. K. Alidjinou and D. Hober, L'infection virale joue-t-elle un rôle dans la genèse du diabète de type 1 ?, Feuill. Biol, vol.331, pp.1-10, 2016.

E. K. Alidjinou, F. Sané, I. Engelmann, V. Geenen, and D. Hober, Enterovirus persistence as a mechanism in the pathogenesis of type 1 diabetes, Discov. Med, vol.18, pp.273-282, 2014.

M. A. Atkinson, M. A. Bowman, L. Campbell, B. L. Darrow, D. L. Kaufman et al., Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulindependent diabetes, J. Clin. Invest, vol.94, pp.2125-2129, 1994.

J. Bao, L. , and L. , MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-?B pathway during acute viral myocarditis, Eur. Rev. Med. Pharmacol. Sci, vol.18, pp.2349-2356, 2014.

Y. Bao, W. Peng, A. Verbitsky, J. Chen, L. Wu et al., Human coxsackie adenovirus receptor (CAR) expression in transgenic mouse prostate tumors enhances adenoviral delivery of genes, The Prostate, vol.64, pp.401-407, 2005.

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, pp.215-233, 2009.

J. M. Bergelson, J. G. Mohanty, R. L. Crowell, N. F. St-john, D. M. Lublin et al., , 1995.

, Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55), J. Virol, vol.69, pp.1903-1906

J. M. Bergelson, J. A. Cunningham, G. Droguett, E. A. Kurt-jones, A. Krithivas et al., Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5, Science, vol.275, pp.1320-1323, 1997.

E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, vol.409, pp.363-366, 2001.

G. M. Borchert, W. Lanier, D. , and B. L. , RNA polymerase III transcribes human microRNAs, Nat. Struct. Mol. Biol, vol.13, pp.1097-1101, 2006.

K. R. Bowles, J. Gibson, J. Wu, L. G. Shaffer, J. A. Towbin et al., Genomic organization and chromosomal localization of the human Coxsackievirus B-adenovirus receptor gene, Hum. Genet, vol.105, pp.354-359, 1999.
DOI : 10.1203/00006450-199904020-00123

URL : https://www.nature.com/articles/pr1999237.pdf

I. A. Buskiewicz, A. Koenig, S. A. Huber, and R. C. Budd, Caspase-8 and FLIP regulate RIGI/MDA5-induced innate immune host responses to picornaviruses, Future Virol, vol.7, pp.1221-1236, 2012.
DOI : 10.2217/fvl.12.115

URL : http://europepmc.org/articles/pmc3595017?pdf=render

M. Caggana, P. Chan, R. , and A. , Identification of a single amino acid residue in the capsid protein VP1 of coxsackievirus B4 that determines the virulent phenotype, J. Virol, vol.67, pp.4797-4803, 1993.

C. L. Cameron-wilson, Y. A. Pandolfino, H. Y. Zhang, B. Pozzeto, A. et al., Nucleotide sequence of an attenuated mutant of coxsackievirus B3 compared with the cardiovirulent wildtype: assessment of candidate mutations by analysis of a revertant to cardiovirulence, Clin. Diagn. Virol, vol.9, pp.99-105, 1998.

S. D. Carson, N. N. Chapman, T. , and S. M. , Purification of the putative coxsackievirus B receptor from HeLa cells, Biochem. Biophys. Res. Commun, vol.233, pp.325-328, 1997.

H. Champsaur, E. Dussaix, D. Samolyk, M. Fabre, C. Bach et al., Diabetes and Coxsackie virus B5 infection, Lancet Lond. Engl, vol.1, p.251, 1980.
DOI : 10.1016/s0140-6736(80)90731-x

N. M. Chapman, K. , and K. S. , Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy, Curr. Top. Microbiol. Immunol, vol.323, pp.275-292, 2008.
DOI : 10.1007/978-3-540-75546-3_13

N. M. Chapman, K. Kim, K. M. Drescher, K. Oka, T. et al., 5' terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart, Virology, vol.375, pp.480-491, 2008.

W. Chehadeh, J. Kerr-conte, F. Pattou, G. Alm, J. Lefebvre et al., Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells, J. Virol, vol.74, pp.10153-10164, 2000.

W. Chehadeh, P. Lobert, P. Sauter, A. Goffard, B. Lucas et al., Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4-and B3-induced synthesis of alpha interferon, J. Virol, vol.79, pp.13882-13891, 2005.

I. Chrétien, A. Marcuz, M. Courtet, K. Katevuo, O. Vainio et al., CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates, Eur. J. Immunol, vol.28, pp.4094-4104, 1998.

P. G. Conaldi, C. Serra, A. Mossa, V. Falcone, F. Basolo et al., Persistent infection of human vascular endothelial cells by group B coxsackieviruses, J. Infect. Dis, vol.175, pp.693-696, 1997.

K. T. Coppieters, F. Dotta, N. Amirian, P. D. Campbell, T. W. Kay et al., Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients, J. Exp. Med, vol.209, pp.51-60, 2012.

C. B. Coyne and J. M. Bergelson, Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions, Cell, vol.124, pp.119-131, 2006.

C. B. Coyne, L. Shen, J. R. Turner, and J. M. Bergelson, Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5, Cell Host Microbe, vol.2, pp.181-192, 2007.

S. P. Crampton, J. A. Deane, L. Feigenbaum, and S. Bolland, Ifih1 gene dose effect reveals MDA5-mediated chronic type I IFN gene signature, viral resistance, and accelerated autoimmunity, J. Immunol. Baltim. Md, vol.188, pp.1451-1459, 1950.

M. K. Crow, Type I interferon in organ-targeted autoimmune and inflammatory diseases, Arthritis Res. Ther, vol.12, 2010.

R. L. Crowell and B. J. Landau, A short history and introductory background on the coxsackieviruses of group B, Curr. Top. Microbiol. Immunol, vol.223, pp.1-11, 1997.

B. R. Cullen, Transcription and processing of human microRNA precursors, Mol. Cell, vol.16, pp.861-865, 2004.
DOI : 10.1016/j.molcel.2004.12.002

URL : https://doi.org/10.1016/j.molcel.2004.12.002

M. F. Cusick, J. E. Libbey, and R. S. Fujinami, Molecular mimicry as a mechanism of autoimmune disease, Clin. Rev. Allergy Immunol, vol.42, pp.102-111, 2012.

G. Dalldorf and G. M. Sickles, An Unidentified, Filtrable Agent Isolated From the Feces of Children With Paralysis, Science, vol.108, pp.61-62, 1948.

E. Delorme-axford, Y. Sadovsky, and C. B. Coyne, Lipid raft-and SRC family kinasedependent entry of coxsackievirus B into human placental trophoblasts, J. Virol, vol.87, pp.8569-8581, 2013.

A. Dörner, D. Xiong, K. Couch, T. Yajima, and K. U. Knowlton, Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection, J. Biol. Chem, vol.279, pp.18497-18503, 2004.

K. M. Drescher, K. Kono, S. Bopegamage, S. D. Carson, T. et al., Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection, Virology, vol.329, pp.381-394, 2004.

A. M. Duursma, M. Kedde, M. Schrier, C. Le-sage, A. et al., miR-148 targets human DNMT3b protein coding region, RNA N. Y. N, vol.14, pp.872-877, 2008.

S. Eringsmark-regnéll and A. Lernmark, The environment and the origins of islet autoimmunity and Type 1 diabetes, Diabet. Med. J. Br. Diabet. Assoc, vol.30, pp.155-160, 2013.

B. D. Evavold, J. Sloan-lancaster, K. J. Wilson, J. B. Rothbard, A. et al., Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands, Immunity, vol.2, pp.655-663, 1995.

K. J. Excoffon, N. D. Gansemer, M. E. Mobily, P. H. Karp, K. R. Parekh et al., , 2010.

, Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia, PloS One, vol.5, p.9909

D. Fairweather, R. , and N. R. , Inflammatory heart disease: a role for cytokines, Lupus, vol.14, pp.646-651, 2005.

H. Fechner, M. Noutsias, C. Tschoepe, K. Hinze, X. Wang et al., Induction of coxsackievirus-adenovirus-receptor expression during myocardial tissue formation and remodeling: identification of a cell-to-cell contact-dependent regulatory mechanism, Circulation, vol.107, pp.876-882, 2003.

H. Fechner, S. Pinkert, X. Wang, I. Sipo, L. Suckau et al., Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor, Gene Ther, vol.14, pp.960-971, 2007.

Q. Feng, M. A. Langereis, M. Lork, M. Nguyen, S. V. Hato et al., Enterovirus 2Apro targets MDA5 and MAVS in infected cells, J. Virol, vol.88, pp.3369-3378, 2014.

R. C. Ferreira, H. Guo, R. M. Coulson, D. J. Smyth, M. L. Pekalski et al., A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes, Diabetes, vol.63, pp.2538-2550, 2014.

R. Feuer and J. L. Whitton, Preferential coxsackievirus replication in proliferating/activated cells: implications for virus tropism, persistence, and pathogenesis, Curr. Top. Microbiol. Immunol, vol.323, pp.149-173, 2008.

R. Feuer, I. Mena, R. Pagarigan, M. K. Slifka, and J. L. Whitton, Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro, J. Virol, vol.76, pp.4430-4440, 2002.

R. Feuer, I. Mena, R. R. Pagarigan, D. E. Hassett, and J. L. Whitton, Coxsackievirus replication and the cell cycle: a potential regulatory mechanism for viral persistence/latency, Med. Microbiol. Immunol. (Berl.), vol.193, pp.83-90, 2004.

P. Freimuth, L. Philipson, C. , and S. D. , The coxsackievirus and adenovirus receptor, Curr. Top. Microbiol. Immunol, vol.323, pp.67-87, 2008.

G. Frisk, Mechanisms of chronic enteroviral persistence in tissue, Curr. Opin. Infect. Dis, vol.14, pp.251-256, 2001.

M. Füchtenbusch, A. Irnstetter, G. Jäger, and A. G. Ziegler, No evidence for an association of coxsackie virus infections during pregnancy and early childhood with development of islet autoantibodies in offspring of mothers or fathers with type 1 diabetes, J. Autoimmun, vol.17, pp.333-340, 2001.

M. Funabiki, H. Kato, Y. Miyachi, H. Toki, H. Motegi et al., Autoimmune disorders associated with gain of function of the intracellular sensor MDA5, Immunity, vol.40, pp.199-212, 2014.

D. R. Gamble, M. L. Kinsley, M. G. Fitzgerald, R. Bolton, T. et al., Viral antibodies in diabetes mellitus, Br. Med. J, vol.3, pp.627-630, 1969.

A. Gangaplara, C. Massilamany, D. M. Brown, G. Delhon, A. K. Pattnaik et al., Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-?-reactive CD4 T cells in A/J mice, Clin. Immunol. Orlando Fla, vol.144, pp.237-249, 2012.

D. R. Getts, E. M. Chastain, R. L. Terry, and S. D. Miller, Virus infection, antiviral immunity, and autoimmunity, Immunol. Rev, vol.255, pp.197-209, 2013.

I. G. Goodfellow, D. J. Evans, A. M. Blom, D. Kerrigan, J. S. Miners et al., Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors, J. Virol, vol.79, pp.12016-12024, 2005.

E. Gottwein, N. Mukherjee, C. Sachse, C. Frenzel, W. H. Majoros et al., A viral microRNA functions as an orthologue of cellular miR-155, Nature, vol.450, pp.1096-1099, 2007.

P. M. Graves, H. A. Rotbart, W. A. Nix, M. A. Pallansch, H. A. Erlich et al., Prospective study of enteroviral infections and development of beta-cell autoimmunity. Diabetes autoimmunity study in the young (DAISY), Diabetes Res. Clin. Pract, vol.59, pp.51-61, 2003.

J. Green, D. Casabonne, N. , and R. , Coxsackie B virus serology and Type 1 diabetes mellitus: a systematic review of published case-control studies, Diabet. Med. J. Br. Diabet. Assoc, vol.21, pp.507-514, 2004.

F. Grey, R. Tirabassi, H. Meyers, G. Wu, S. Mcweeney et al., A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs, PLoS Pathog, vol.6, p.1000967, 2010.

A. Grishok, A. E. Pasquinelli, D. Conte, N. Li, S. Parrish et al., Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing, Cell, vol.106, pp.23-34, 2001.

M. Ha, K. , and V. N. , Regulation of microRNA biogenesis, Nat. Rev. Mol. Cell Biol, vol.15, pp.509-524, 2014.

S. B. Halstead, S. Mahalingam, M. A. Marovich, S. Ubol, and D. M. Mosser, Intrinsic antibodydependent enhancement of microbial infection in macrophages: disease regulation by immune complexes, Lancet Infect. Dis, vol.10, pp.712-722, 2010.

S. M. Hammond, An overview of microRNAs, Adv. Drug Deliv. Rev, vol.87, pp.3-14, 2015.

S. M. Hammond, E. Bernstein, D. Beach, and G. J. Hannon, An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, vol.404, pp.293-296, 2000.

H. Harvala, H. Kalimo, L. Dahllund, J. Santti, P. Hughes et al., Mapping of tissue tropism determinants in coxsackievirus genomes, J. Gen. Virol, vol.83, pp.1697-1706, 2002.

H. Harvala, H. Kalimo, J. Bergelson, G. Stanway, and T. Hyypiä, Tissue tropism of recombinant coxsackieviruses in an adult mouse model, J. Gen. Virol, vol.86, pp.1897-1907, 2005.

M. Hattori, A. Fujiyama, T. D. Taylor, H. Watanabe, T. Yada et al., The DNA sequence of human chromosome 21, Nature, vol.405, pp.311-319, 2000.

R. A. Hawkes and K. J. Lafferty, The enchancement of virus infectivity by antibody, Virology, vol.33, pp.250-261, 1967.

Y. He, P. R. Chipman, J. Howitt, C. M. Bator, M. A. Whitt et al., Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor, Nat. Struct. Biol, vol.8, pp.874-878, 2001.

A. Heim, A. Canu, P. Kirschner, T. Simon, G. Mall et al., , 1992.

, Synergistic interaction of interferon-beta and interferon-gamma in coxsackievirus B3-infected carrier cultures of human myocardial fibroblasts, J. Infect. Dis, vol.166, pp.958-965

A. Heim, C. Brehm, M. Stille-siegener, G. Müller, S. Hake et al., Cultured human myocardial fibroblasts of pediatric origin: natural human interferon-alpha is more effective than recombinant interferon-alpha 2a in carrier-state coxsackievirus B3 replication, J. Mol. Cell. Cardiol, vol.27, pp.2199-2208, 1995.

A. Heim, S. Zeuke, S. Weiss, W. Ruschewski, and I. M. Grumbach, Transient induction of cytokine production in human myocardial fibroblasts by coxsackievirus B3, Circ. Res, vol.86, pp.753-759, 2000.

A. Henke, C. Mohr, H. Sprenger, C. Graebner, A. Stelzner et al., , 1992.

, Coxsackievirus B3-induced production of tumor necrosis factor-alpha, IL-1 beta, and IL-6 in human monocytes, J. Immunol. Baltim. Md, vol.148, pp.2270-2277, 1950.

B. Ho, P. Yang, Y. , and S. , MicroRNA and Pathogenesis of Enterovirus Infection, Viruses, vol.8, 2016.
DOI : 10.3390/v8010011

URL : https://www.mdpi.com/1999-4915/8/1/11/pdf

D. Hober, A. , and E. K. , Enteroviral pathogenesis of type 1 diabetes: queries and answers, Curr. Opin. Infect. Dis, vol.26, pp.263-269, 2013.

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat. Rev. Endocrinol, vol.6, pp.279-289, 2010.

D. Hober, W. Chehadeh, A. Bouzidi, and P. Wattré, Antibody-dependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-alpha synthesis, J. Infect. Dis, vol.184, pp.1098-1108, 2001.

D. Hober, W. Chehadeh, J. Weill, C. Hober, M. Vantyghem et al., Circulating and cell-bound antibodies increase coxsackievirus B4-induced production of IFN-alpha by peripheral blood mononuclear cells from patients with type 1 diabetes, J. Gen. Virol, vol.83, pp.2169-2176, 2002.

D. Hober, F. Sane, K. Riedweg, I. Moumna, A. Goffard et al., Viruses and Type 1 Diabetes: Focus on the Enteroviruses, Type 1 Diabetes, pp.25-69, 2013.

T. Honda, H. Saitoh, M. Masuko, T. Katagiri-abe, K. Tominaga et al., The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain, Brain Res. Mol. Brain Res, vol.77, pp.19-28, 2000.

V. Hornung, J. Ellegast, S. Kim, K. Brzózka, A. Jung et al., 5'-Triphosphate RNA is the ligand for RIG-I, Science, vol.314, pp.994-997, 2006.

M. H. Hühn, S. A. Mccartney, K. Lind, E. Svedin, M. Colonna et al., , 2010.

, Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after Coxsackievirus infection, Virology, vol.401, pp.42-48

G. Hutvágner, J. Mclachlan, A. E. Pasquinelli, E. Bálint, T. Tuschl et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA, Science, vol.293, pp.834-838, 2001.

H. Hyöty, M. Hiltunen, M. Knip, M. Laakkonen, P. Vähäsalo et al., A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM, Childhood Diabetes in Finland (DiMe) Study Group. Diabetes, vol.44, pp.652-657, 1995.

H. Jaïdane and D. Hober, Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes, Diabetes Metab, vol.34, pp.537-548, 2008.

H. Jaïdane and D. Hober, Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes, Diabetes Metab, vol.34, pp.537-548, 2008.

H. Jaïdane, P. Sauter, F. Sane, A. Goffard, J. Gharbi et al., Enteroviruses and type 1 diabetes: towards a better understanding of the relationship, Rev. Med. Virol, vol.20, pp.265-280, 2010.

Z. Jiang, T. W. Mak, G. Sen, L. , and X. , Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.3533-3538, 2004.

C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA, Science, vol.309, pp.1577-1581, 2005.

H. Kallionpää, L. L. Elo, E. Laajala, J. Mykkänen, I. Ricaño-ponce et al., Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility, Diabetes, vol.63, pp.2402-2414, 2014.

Y. Kang, N. K. Chatterjee, M. J. Nodwell, and J. W. Yoon, Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain, J. Med. Virol, vol.44, pp.353-361, 1994.

T. Kanno, K. Kim, K. Kono, K. M. Drescher, N. M. Chapman et al., Group B coxsackievirus diabetogenic phenotype correlates with replication efficiency, J. Virol, vol.80, pp.5637-5643, 2006.

H. Kato, O. Takeuchi, S. Sato, M. Yoneyama, M. Yamamoto et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, vol.441, pp.101-105, 2006.

T. Kawai, A. , and S. , Innate immune recognition of viral infection, Nat. Immunol, vol.7, pp.131-137, 2006.

M. Keller, A. Rüegg, S. Werner, and H. Beer, Active caspase-1 is a regulator of unconventional protein secretion, Cell, vol.132, pp.818-831, 2008.

C. C. Kemball, M. Alirezaei, and J. L. Whitton, Type B coxsackieviruses and their interactions with the innate and adaptive immune systems, Future Microbiol, vol.5, pp.1329-1347, 2010.

K. Kim, S. Tracy, W. Tapprich, J. Bailey, C. Lee et al., 5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA, J. Virol, vol.79, pp.7024-7041, 2005.

K. Kim, N. M. Chapman, T. , and S. , Replication of coxsackievirus B3 in primary cell cultures generates novel viral genome deletions, J. Virol, vol.82, pp.2033-2037, 2008.

M. Knip and O. Simell, Environmental Triggers of Type 1 Diabetes. Cold Spring Harb, Perspect. Med, vol.2, pp.7690-007690, 2012.

N. J. Knowles, T. Hovi, T. Hyypiä, A. M. King, A. M. Lindberg et al., Picornaviridae. In: Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, pp.855-880, 2012.

K. U. Knowlton, E. S. Jeon, N. Berkley, R. Wessely, and S. Huber, A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3, J. Virol, vol.70, pp.7811-7818, 1996.

L. Krogvold, B. Edwin, T. Buanes, G. Frisk, O. Skog et al., Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes, 2014.

C. Lauber and A. E. Gorbalenya, Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses, J. Virol, vol.86, pp.3890-3904, 2012.

I. Lee, S. S. Ajay, J. I. Yook, H. S. Kim, S. H. Hong et al., New class of microRNA targets containing simultaneous 5'-UTR and 3'UTR interaction sites, Genome Res, vol.19, pp.1175-1183, 2009.

X. Lei, X. Xiao, W. , and J. , Innate Immunity Evasion by Enteroviruses: Insights into VirusHost Interaction, Viruses, vol.8, 2016.

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, pp.15-20, 2005.

L. Liao, R. Sindhwani, M. Rojkind, S. Factor, L. Leinwand et al., Antibodymediated autoimmune myocarditis depends on genetically determined target organ sensitivity, J. Exp. Med, vol.181, pp.1123-1131, 1995.

P. J. Lincez, I. Shanina, and M. S. Horwitz, Reduced Expression of the MDA5 Gene IFIH1 Prevents Autoimmune Diabetes, Diabetes, vol.64, pp.2184-2193, 2015.

K. Lind, M. H. Hühn, and M. Flodström-tullberg, Immunology in the clinic review series; focus on type 1 diabetes and viruses: the innate immune response to enteroviruses and its possible role in regulating type 1 diabetes, Clin. Exp. Immunol, vol.168, pp.30-38, 2012.

M. Lönnrot, K. Salminen, M. Knip, K. Savola, P. Kulmala et al., Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study. Childhood Diabetes in Finland (DiMe) Study Group, J. Med. Virol, vol.61, pp.214-220, 2000.

M. Lönnrot, K. Korpela, M. Knip, J. Ilonen, O. Simell et al., Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study, Diabetes, vol.49, pp.1314-1318, 2000.

F. Loustalot, E. J. Kremer, and S. Salinas, Membrane Dynamics and Signaling of the Coxsackievirus and Adenovirus Receptor, Int. Rev. Cell Mol. Biol, vol.322, pp.331-362, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187333

A. Lu, V. G. Magupalli, J. Ruan, Q. Yin, M. K. Atianand et al., Unified polymerization mechanism for the assembly of ASCdependent inflammasomes, Cell, vol.156, pp.1193-1206, 2014.

V. Marjomäki, P. Turkki, and M. Huttunen, Infectious Entry Pathway of Enterovirus B Species, Viruses, vol.7, pp.6387-6399, 2015.

C. Massilamany, A. Koenig, J. Reddy, S. Huber, and I. Buskiewicz, Autoimmunity in picornavirus infections, Curr. Opin. Virol, vol.16, pp.8-14, 2016.

I. Mena, C. Fischer, J. R. Gebhard, C. M. Perry, S. Harkins et al., , 2000.

, Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology, Virology, vol.271, pp.276-288

J. K. Muckelbauer, M. Kremer, I. Minor, L. Tong, A. Zlotnick et al., Structure determination of coxsackievirus B3 to 3.5 A resolution, Acta Crystallogr. D Biol. Crystallogr, vol.51, pp.871-887, 1995.

A. Mukherjee, S. A. Morosky, E. Delorme-axford, N. Dybdahl-sissoko, M. S. Oberste et al., The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling, PLoS Pathog, vol.7, p.1001311, 2011.

M. Muroi and K. Tanamoto, TRAF6 distinctively mediates MyD88-and IRAK-1-induced activation of NF-kappaB, J. Leukoc. Biol, vol.83, pp.702-707, 2008.

S. E. Myers, L. Brewer, D. P. Shaw, W. H. Greene, B. C. Love et al., Prevalent human coxsackie B-5 virus infects porcine islet cells primarily using the coxsackie-adenovirus receptor, Xenotransplantation, vol.11, pp.536-546, 2004.

S. Nair, K. Leung, W. D. Rawlinson, Z. Naing, C. et al., Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells, J. Med. Virol, vol.82, pp.1950-1957, 2010.

H. Negishi, T. Osawa, K. Ogami, X. Ouyang, S. Sakaguchi et al., A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.20446-20451, 2008.

S. Nejentsev, N. Walker, D. Riches, M. Egholm, T. et al., Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes, Science, vol.324, pp.387-389, 2009.

N. Neu, K. W. Beisel, M. D. Traystman, N. R. Rose, C. et al., Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis, J. Immunol. Baltim. Md, vol.138, pp.2488-2492, 1950.

M. Noutsias, H. Fechner, H. De-jonge, X. Wang, D. Dekkers et al., Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections, Circulation, vol.104, pp.275-280, 2001.

M. S. Oberste, Comparative genomics of the coxsackie B viruses and related enteroviruses, Curr. Top. Microbiol. Immunol, vol.323, pp.33-47, 2008.

M. Oikarinen, S. Tauriainen, T. Honkanen, K. Vuori, P. Karhunen et al., Analysis of pancreas tissue in a child positive for islet cell antibodies, Diabetologia, vol.51, pp.1796-1802, 2008.

L. J. Organtini, A. M. Makhov, J. F. Conway, S. Hafenstein, C. et al., Kinetic and structural analysis of coxsackievirus B3 receptor interactions and formation of the A-particle, J. Virol, vol.88, pp.5755-5765, 2014.

M. A. Pallansch, M. S. Oberste, and J. L. Whitton, Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and Newer Enteroviruses, Fields Virology, pp.490-530, 2013.

J. H. Park and C. Shin, MicroRNA-directed cleavage of targets: mechanism and experimental approaches, BMB Rep, vol.47, pp.417-423, 2014.

L. Du-pasquier, M. Courtet, C. , and I. , Duplication and MHC linkage of the CTX family of genes in Xenopus and in mammals, Eur. J. Immunol, vol.29, pp.1729-1739, 1999.

K. Salminen, K. Sadeharju, M. Lönnrot, P. Vähäsalo, A. Kupila et al., Enterovirus infections are associated with the induction of beta-cell autoimmunity in a prospective birth cohort study, J. Med. Virol, vol.69, pp.91-98, 2003.

P. Sauter and D. Hober, Mechanisms and results of the antibody-dependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases, Microbes Infect. Inst. Pasteur, vol.11, pp.443-451, 2009.

P. Sauter, P. Lobert, B. Lucas, R. Varela-calvino, G. Alm et al., Role of the capsid protein VP4 in the plasma-dependent enhancement of the Coxsackievirus B4E2infection of human peripheral blood cells, Virus Res, vol.125, pp.183-190, 2007.

P. Sauter, W. Chehadeh, P. Lobert, M. Lazrek, A. Goffard et al., A part of the VP4 capsid protein exhibited by coxsackievirus B4 E2 is the target of antibodies contained in plasma from patients with type 1 diabetes, J. Med. Virol, vol.80, pp.866-878, 2008.

N. C. Schloot, S. J. Willemen, G. Duinkerken, J. W. Drijfhout, R. R. De-vries et al., Molecular mimicry in type 1 diabetes mellitus revisited: T-cell clones to GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not crossreact with homologous counterpart, Hum. Immunol, vol.62, pp.299-309, 2001.

M. Schmidtke, H. C. Selinka, A. Heim, B. Jahn, M. Tonew et al., Attachment of coxsackievirus B3 variants to various cell lines: mapping of phenotypic differences to capsid protein VP1, Virology, vol.275, pp.77-88, 2000.

P. Sean and B. L. Semler, Coxsackievirus B RNA replication: lessons from poliovirus, Curr. Top. Microbiol. Immunol, vol.323, pp.89-121, 2008.

M. Simonen-tikka, M. Pflueger, P. Klemola, C. Savolainen-kopra, T. Smura et al., Human enterovirus infections in children at increased risk for type 1 diabetes: the Babydiet study, Diabetologia, vol.54, pp.2995-3002, 2011.

S. Sozzani, D. Bosisio, M. Scarsi, and A. Tincani, Type I interferons in systemic autoimmunity, Autoimmunity, vol.43, pp.196-203, 2010.

I. Spagnuolo, S. J. Richardson, G. Sebastiani, F. Mancarella, A. Patti et al., Pancreatic islet expression of enteroviral receptors and dsRNA sensors in human type 1 diabetes, Diabetol, vol.56, pp.139-140

O. B. Spiller, I. G. Goodfellow, D. J. Evans, S. J. Hinchliffe, M. et al., Coxsackie B viruses that use human DAF as a receptor infect pig cells via pig CAR and do not use pig DAF, J. Gen. Virol, vol.83, pp.45-52, 2002.

N. Standart, J. , and R. J. , MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation, Genes Dev, vol.21, pp.1975-1982, 2007.

L. C. Stene, R. , M. Taylor, K. W. Hyoty, H. Toniolo et al., Defining Causal Relationships Between Viral Infections and Human Diabetes, Diabetes and Viruses, pp.233-243, 2013.

L. C. Stene, S. Oikarinen, H. Hyöty, K. J. Barriga, J. M. Norris et al., Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY), Diabetes, vol.59, pp.3174-3180, 2010.

D. A. Suhy, T. H. Giddings, K. , and K. , Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles, J. Virol, vol.74, pp.8953-8965, 2000.

U. R. De-verdugo, H. C. Selinka, M. Huber, B. Kramer, J. Kellermann et al., Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses, J. Virol, vol.69, pp.6751-6757, 1995.

G. R. Vreugdenhil, P. G. Wijnands, M. G. Netea, J. W. Van-der-meer, W. J. Melchers et al., Enterovirus-induced production of pro-inflammatory and T-helper cytokines by human leukocytes, Cytokine, vol.12, pp.1793-1796, 2000.

B. Wang, X. Xi, X. Lei, X. Zhang, S. Cui et al., Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses, PLoS Pathog, vol.9, p.1003231, 2013.

J. P. Wang, A. Cerny, D. R. Asher, E. A. Kurt-jones, R. T. Bronson et al., MDA5 and MAVS mediate type I interferon responses to coxsackie B virus, J. Virol, vol.84, pp.254-260, 2010.

L. Wang, Y. Qin, L. Tong, S. Wu, Q. Wang et al., MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region, Antiviral Res, vol.93, pp.270-279, 2012.

Y. Wang, B. Gao, and S. Xiong, Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis, Am. J. Physiol. Heart Circ. Physiol, vol.307, pp.1438-1447, 2014.

D. Werk, S. Schubert, V. Lindig, H. Grunert, H. Zeichhardt et al., Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor, Biol. Chem, vol.386, pp.857-863, 2005.

R. Wessely, K. Klingel, K. U. Knowlton, and R. Kandolf, Cardioselective infection with coxsackievirus B3 requires intact type I interferon signaling: implications for mortality and early viral replication, Circulation, vol.103, pp.756-761, 2001.

J. P. White, A. M. Cardenas, W. E. Marissen, L. , and R. E. , Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase, Cell Host Microbe, vol.2, pp.295-305, 2007.

J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat. Cell Biol, vol.11, pp.228-234, 2009.

J. Wong, J. Zhang, X. Si, G. Gao, I. Mao et al., Autophagosome supports coxsackievirus B3 replication in host cells, J. Virol, vol.82, pp.9143-9153, 2008.

L. Wu, J. Fan, and J. G. Belasco, MicroRNAs direct rapid deadenylation of mRNA, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.4034-4039, 2006.

A. Xagorari, C. , and K. , Toll-like receptors and viruses: induction of innate antiviral immune responses, Open Microbiol. J, vol.2, pp.49-59, 2008.

H. Xu, Y. Ding, Y. Shen, A. Xue, H. Xu et al., MicroRNA-1 represses Cx43 expression in viral myocarditis, Mol. Cell. Biochem, vol.362, pp.141-148, 2012.

T. Yajima and K. U. Knowlton, Viral myocarditis: from the perspective of the virus, Circulation, vol.119, pp.2615-2624, 2009.

N. Yan, C. , and Z. J. , Intrinsic antiviral immunity, Nat. Immunol, vol.13, pp.214-222, 2012.

X. Ye, M. G. Hemida, Y. Qiu, P. J. Hanson, H. M. Zhang et al., MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/?-catenin signal pathways, Cell. Mol. Life Sci. CMLS, vol.70, pp.4631-4644, 2013.

X. Ye, H. M. Zhang, Y. Qiu, P. J. Hanson, M. G. Hemida et al., Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components, PLoS Pathog, vol.10, p.1004070, 2014.

W. G. Yeung, W. D. Rawlinson, C. , and M. E. , Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies, BMJ, vol.342, p.35, 2011.

H. Yin, A. Berg, J. Westman, C. Hellerström, and G. Frisk, Complete nucleotide sequence of a Coxsackievirus B-4 strain capable of establishing persistent infection in human pancreatic islet cells: effects on insulin release, proinsulin synthesis, and cell morphology, J. Med. Virol, vol.68, pp.544-557, 2002.

P. Ylipaasto, K. Klingel, A. M. Lindberg, T. Otonkoski, R. Kandolf et al., Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells, Diabetologia, vol.47, pp.225-239, 2004.

J. W. Yoon, M. Austin, T. Onodera, and A. L. Notkins, Isolation of a virus from the pancreas of a child with diabetic ketoacidosis, N. Engl. J. Med, vol.300, pp.1173-1179, 1979.

S. Y. Yoon, Y. E. Ha, J. E. Choi, J. Ahn, H. Lee et al., , 2008.

, Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons, J. Virol, vol.82, pp.11976-11978

M. M. Zanone, E. Favaro, P. G. Conaldi, J. Greening, A. Bottelli et al., Persistent infection of human microvascular endothelial cells by coxsackie B viruses induces increased expression of adhesion molecules, J. Immunol. Baltim. Md, vol.171, pp.438-446, 1950.

A. E. Zautner, U. Körner, A. Henke, C. Badorff, and M. Schmidtke, Heparan sulfates and coxsackievirus-adenovirus receptor: each one mediates coxsackievirus B3 PD infection, J. Virol, vol.77, pp.10071-10077, 2003.

A. E. Zautner, B. Jahn, E. Hammerschmidt, P. Wutzler, M. Schmidtke et al., Infection of human islets of Langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway, References Anagandula M, vol.80, pp.1402-1411, 2006.

K. M. Bedard and B. L. Semler, Regulation of picornavirus gene expression, Microbes Infect, vol.6, pp.702-713, 2004.

S. Bopegamage, J. Kovacova, A. Vargova, J. Motusova, A. Petrovicova et al., Coxsackie B virus infection of mice: inoculation by the oral route protects the pancreas from damage, but not from infection, J Gen Virol, vol.86, pp.3271-3280, 2005.

F. Brilot, W. Chehadeh, C. Charlet-renard, H. Martens, V. Geenen et al., Persistent infection of human thymic epithelial cells by coxsackievirus B4, J Virol, vol.76, pp.5260-5265, 2002.

F. Brilot, V. Geenen, D. Hober, and C. A. Stoddart, Coxsackievirus B4 infection of human fetal thymus cells, J Virol, vol.78, pp.9854-9861, 2004.

F. Brilot, H. Jaïdane, V. Geenen, and D. Hober, Coxsackievirus B4 infection of murine foetal thymus organ cultures, J Med Virol, vol.80, pp.659-666, 2008.

J. A. Carrero, B. Calderon, F. Towfic, M. N. Artyomov, and E. R. Unanue, Defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse, PloS One, vol.8, p.59701, 2013.

P. Cavalcante, M. Barberis, M. Cannone, F. Baggi, C. Antozzi et al., Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis, Neurology, vol.74, pp.1118-1126, 2010.

N. M. Chapman and K. S. Kim, Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy, Curr Top Microbiol Immunol, vol.323, pp.275-292, 2008.

N. M. Chapman, K. S. Kim, K. M. Drescher, K. Oka, and S. Tracy, 5? terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart, Virology, vol.375, pp.480-491, 2008.

W. Chehadeh, J. Kerr-conte, F. Pattou, G. Alm, J. Lefebvre et al., Persistent infection of human pancreatic islets by coxsack

, Discovery Medicine, vol.18, issue.100, 2014.

, Enterovirus Persistence and Pathogenesis of type 1 diabetes ievirus B is associated with alpha interferon synthesis in beta cells, J Virol, vol.74, pp.10153-10164, 2000.

W. Chehadeh, J. Weill, M. C. Vantyghem, G. Alm, J. Lefèbvre et al., Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection, J Infect Dis, vol.181, pp.1929-1939, 2000.

W. Chehadeh, P. E. Lobert, P. Sauter, A. Goffard, B. Lucas et al., Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4-and B3induced synthesis of alpha interferon, J Virol, vol.79, pp.13882-13891, 2005.

J. Chia, A. Chia, M. Voeller, T. Lee, and R. Chang, Acute enterovirus infection followed by myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and viral persistence, J Clin Pathol, vol.63, pp.165-168

K. T. Coppieters, V. Herrath, and M. G. , Histopathology of type 1 diabetes: old paradigms and new insights, Rev Diabet Stud, vol.6, pp.85-96, 2009.

L. Cunningham, N. E. Bowles, R. J. Lane, V. Dubowitz, and L. C. Archard,

F. Dotta, S. Censini, A. G. Van-halteren, L. Marselli, M. Masini et al., Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients, Proc Natl Acad Sci U S A, vol.104, pp.5115-5120, 2007.

G. Duncan and F. Colbère-garapin,

, Gen Virol, vol.80, pp.2601-2605, 1999.

G. Duncan, I. Pelletier, and F. Colbère-garapin, Two amino acid substitutions in the type 3 poliovirus capsid contribute to the establishment of persistent infection in HEp-2c cells by modifying virus-receptor interactions, Virology, vol.241, pp.14-29, 1998.
URL : https://hal.archives-ouvertes.fr/pasteur-00166788

A. Elshebani, A. Olsson, J. Westman, T. Tuvemo, O. Korsgren et al., Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes, Virus Res, vol.124, pp.193-203, 2007.

H. Fechner, S. Pinkert, X. Wang, I. Sipo, L. Suckau et al., Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor, Gene Ther, vol.14, pp.960-971, 2007.

R. Feuer and J. L. Whitton, Preferential coxsackievirus replication in proliferating/activated cells: implications for virus tropism, persistence, and pathogenesis, Curr Top Microbiol Immunol, vol.323, pp.149-173, 2008.

R. Feuer, I. Mena, R. Pagarigan, M. K. Slifka, and J. L. Whitton, Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro, J Virol, vol.76, pp.4430-4440, 2002.

R. Feuer, I. Mena, R. R. Pagarigan, D. E. Hassett, and J. L. Whitton, Coxsackievirus replication and the cell cycle: a potential regulatory mechanism for viral persistence/latency, Med Microbiol Immunol, vol.193, pp.83-90, 2004.

G. Frisk, Mechanisms of chronic enteroviral persistence in tissue

, Curr Opin Infect Dis, vol.14, pp.251-256, 2001.

G. Frisk and H. Diderholm, Tissue culture of isolated human pancreatic islets infected with different strains of coxsackievirus B4: assessment of virus replication and effects on islet morphology and insulin release, Int J Exp Diabetes Res, vol.1, pp.165-175, 2000.

G. Frisk, T. Elfström, H. Diderholm, A. Goffard, E. K. Alidjinou et al., Poliovirus-induced apoptosis is reduced in cells expressing a mutant CD155 selected during persistent poliovirus infection in neuroblastoma cells, J Virol Methods, vol.98, pp.283-290, 2001.

H. Harvala, H. Kalimo, L. Dahllund, J. Santti, P. Hughes et al., Mapping of tissue tropism determinants in coxsackievirus genomes, J Gen Virol, vol.83, pp.1697-1706, 2002.

A. Heim, A. Canu, P. Kirschner, T. Simon, G. Mall et al., Synergistic interaction of interferon-beta and interferongamma in coxsackievirus B3-infected carrier cultures of human myocardial fibroblasts, J Infect Dis, vol.166, pp.958-965, 1992.

A. Heim, C. Brehm, M. Stille-siegener, G. Müller, S. Hake et al., Cultured human myocardial fibroblasts of pediatric origin: natural human interferon-alpha is more effective than recombinant interferon-alpha 2a in carrier-state coxsackievirus B3 replication, J Mol Cell Cardiol, vol.27, pp.2199-2208, 1995.

H. S. Hiemstra, N. C. Schloot, P. A. Van-veelen, S. J. Willemen, K. L. Franken et al., Cytomegalovirus in autoimmunity: T cell cross-reactivity to viral antigen and autoantigen glutamic acid decarboxylase, Proc Natl Acad Sci U S A, vol.98, pp.3988-3991, 2001.

M. Hindersson, A. Orn, R. A. Harris, and G. Frisk, Strains of coxsackie virus B4 differed in their ability to induce acute pancreatitis and the responses were negatively correlated to glucose tolerance, Arch Virol, vol.149, 1985.

D. Hober and E. K. Alidjinou, Enteroviral pathogenesis of type 1 diabetes: queries and answers, Curr Opin Infect Dis, vol.26, pp.263-269, 2013.

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat Rev Endocrinol, vol.6, pp.279-289, 2010.

D. Hober, W. Chehadeh, A. Bouzidi, and P. Wattré, Antibody-dependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-alpha synthesis, J Infect Dis, vol.184, pp.1098-1108, 2001.

M. Hodik, A. Lukinius, O. Korsgren, and G. Frisk, Tropism Analysis of Two Coxsackie B5 Strains Reveals Virus Growth in Human Primary Pancreatic Islets but not in Exocrine Cell Clusters In Vitro, Open Virol J, vol.7, pp.49-56, 2013.

M. C. Honeyman, N. L. Stone, B. A. Falk, G. Nepom, and L. C. Harrison, Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens, J Immunol, vol.184, pp.2204-2210, 2010.

J. Hou, C. Said, D. Franchi, P. Dockstader, and N. K. Chatterjee, Antibodies to glutamic acid decarboxylase and P2-C peptides in sera from coxsackie virus B4-infected mice and IDDM patients, Diabetes, vol.43, pp.1260-281

, Discovery Medicine, vol.18, issue.100, 2014.

H. Jaïdane and D. Hober, Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes, Diabetes Metab, vol.34, pp.537-548, 2008.

H. Jaïdane, J. Gharbi, P. E. Lobert, B. Lucas, R. Hiar et al., Prolonged viral RNA detection in blood and lymphoid tissues from coxsackievirus B4 E2 orallyinoculated Swiss mice, Microbiol Immunol, vol.50, pp.971-974, 2006.

H. Jaïdane, P. Sauter, F. Sane, A. Goffard, J. Gharbi et al., Enteroviruses and type 1 diabetes: towards a better understanding of the relationship, Rev Med Virol, vol.20, pp.265-280, 2010.

H. Jaïdane, F. Sané, R. Hiar, A. Goffard, J. Gharbi et al., Immunology in the clinic review series; focus on type 1 diabetes and viruses: enterovirus, thymus and type 1 diabetes pathogenesis, Clin Exp Immunol, vol.168, pp.39-46, 2012.

H. Jaïdane, D. Caloone, P. E. Lobert, F. Sane, O. Dardenne et al., Persistent infection of thymic epithelial cells with coxsackievirus B4 results in decreased expression of type 2 insulin-like growth factor, J Virol, vol.86, issue.20, pp.11151-11162, 2012.

J. Julien, I. Leparc-goffart, L. B. Fuchs, F. Foray, S. Janatova et al., Postpolio syndrome: poliovirus persistence is involved in the pathogenesis, J Neurol, vol.246, pp.472-476, 1999.

H. Kato, O. Takeuchi, S. Sato, M. Yoneyama, M. Yamamoto et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, vol.441, pp.101-105, 2006.

D. L. Kaufman, M. G. Erlander, C. -. Salzler, M. Atkinson, M. A. Maclaren et al., Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus, J Clin Invest, vol.89, pp.283-292, 1992.

O. Kecha-kamoun, I. Achour, H. Martens, J. Collette, P. J. Lefebvre et al., Thymic expression of insulin-related genes in an animal model of autoimmune type 1 diabetes, Diabetes Metab Res Rev, vol.17, pp.146-152, 2001.

K. S. Kim, S. Tracy, W. Tapprich, J. Bailey, C. K. Lee et al., 5?-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA, J Virol, vol.79, pp.7024-7041, 2005.

K. S. Kim, N. M. Chapman, and S. Tracy, Replication of coxsackievirus B3 in primary cell cultures generates novel viral genome deletions, J Virol, vol.82, pp.2033-2037, 2008.

L. Klein, M. Hinterberger, G. Wirnsberger, and B. Kyewski, Antigen presentation in the thymus for positive selection and central tolerance induction, Nat Rev Immunol, vol.9, pp.833-844, 2009.

K. Klingel, C. Hohenadl, A. Canu, M. Albrecht, M. Seemann et al., Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation, Proc Natl Acad Sci, vol.89, pp.314-318, 1992.

M. Knip and O. Simell, Environmental Triggers of Type 1 Diabetes, Cold Spring Harb Perspect Med, vol.2, pp.7690-007690, 2012.

N. J. Knowles, T. Hovi, T. Hyypiä, A. King, A. M. Lindberg et al., Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, pp.855-880, 2012.

T. Kobayashi, Y. Nishida, S. Tanaka, and A. K. , Pathological changes in the pancreas of fulminant type 1 diabetes and slowly progressive insulin-dependent diabetes mellitus (SPIDDM): innate immunity in fulminant type 1 diabetes and SPIDDM, Diabetes Metab Res Rev, vol.27, pp.965-970, 2011.

O. H. Laitinen, H. Honkanen, O. Pakkanen, S. Oikarinen, M. M. Hankaniemi et al., Coxsackievirus B1 is associated with induction of ?-cell autoimmunity that portends type 1 diabetes, Diabetes, vol.63, pp.446-455, 2014.

I. Leparc-goffart, J. Julien, F. Fuchs, I. Janatova, M. Aymard et al., Evidence of presence of poliovirus genomic sequences in cerebrospinal fluid from patients with postpolio syndrome, J Clin Microbiol, vol.34, pp.2023-2026, 1996.

P. A. Lysy, G. C. Weir, and S. Bonner-weir, Making ? cells from adult cells within the pancreas, Curr Diab Rep, vol.13, pp.695-703, 2013.

A. Mercalli, A. Mercalli, V. Lampasona, K. Klingel, L. Albarello et al., No evidence of enteroviruses in the intestine of patients with type 1 diabetes, Diabetologia, vol.55, pp.2479-2488, 2012.

N. G. Morgan and S. J. Richardson, Enteroviruses as causative agents in type 1 diabetes: loose ends or lost cause? Trends Endocrinol Metab, epub ahead of print, 2014.

S. Nejentsev, N. Walker, D. Riches, M. Egholm, and J. A. Todd, Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes, Science, vol.324, pp.387-389, 2009.

M. Oikarinen, S. Tauriainen, T. Honkanen, K. Vuori, P. Karhunen et al., Analysis of pancreas tissue in a child positive for islet cell antibodies, Diabetologia, vol.51, pp.1796-1802, 2008.

M. Oikarinen, S. Tauriainen, T. Honkanen, S. Oikarinen, K. Vuori et al., Detection of enteroviruses in the intestine of type 1 diabetic patients, Clin Exp Immunol, vol.151, pp.71-75, 2008.

M. Oikarinen, S. Tauriainen, S. Oikarinen, T. Honkanen, C. P. Rantala et al., Type 1 diabetes is associated with enterovirus infection in gut mucosa, Diabetes, vol.61, pp.687-691, 2012.

S. Oikarinen, M. Martiskainen, S. Tauriainen, H. Huhtala, J. Ilonen et al., Enterovirus RNA in blood is linked to the development of type 1 diabetes, Diabetes, vol.60, pp.276-279, 2011.

N. Pavio, T. Couderc, S. Girard, J. Y. Sgro, B. Blondel et al., Expression of mutated poliovirus receptors in human neuroblastoma cells persistently infected with poliovirus, Virology, vol.274, pp.331-342, 2000.
URL : https://hal.archives-ouvertes.fr/pasteur-00167028

I. Pelletier, G. Duncan, N. Pavio, and F. Colbère-garapin, Molecular mechanisms of poliovirus persistence: key role of capsid determinants during the establishment phase, Cell Mol Life Sci, vol.54, pp.1385-1402, 1998.
URL : https://hal.archives-ouvertes.fr/pasteur-00167030

S. Pinkert, K. Klingel, V. Lindig, A. Dörner, H. Zeichhardt et al., Virus-host coevolution in a persistently coxsackievirus B3-infected cardiomyocyte cell line, J Virol, vol.85, pp.13409-13419, 2011.

A. Pugliese, Advances in the etiology and mechanisms of type 1 diabetes, Discov Med, vol.18, issue.98, pp.141-150, 2014.

S. Riabi, I. Gaaloul, R. Harrath, and M. Aouni, Persistent infection of human intestinal Caco-2 cell line by Coxsackieviruses B, Pathol Biol, vol.60, pp.347-351, 2012.

S. J. Richardson, A. Willcox, A. J. Bone, A. K. Foulis, and N. G. Morgan, The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes, Diabetologia, vol.52, pp.1143-1151

S. J. Richardson, P. Leete, A. J. Bone, A. K. Foulis, and N. G. Morgan, Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1, Diabetologia, vol.56, pp.185-193, 2013.

S. J. Richardson, N. G. Morgan, and A. K. Foulis, Pancreatic pathology in type 1 diabetes mellitus, Endocr Pathol, vol.25, pp.80-92, 2014.

B. O. Roep and T. Tree, Immune modulation in humans: implications for type 1 diabetes mellitus, Nat Rev Endocrinol, vol.10, pp.229-242, 2014.

B. O. Roep, F. S. Kleijwegt, A. Van-halteren, V. Bonato, U. Boggi et al., Islet inflammation and CXCL10 in recent-onset type 1 diabetes, Clin Exp Immunol, vol.159, pp.338-343, 2010.

M. Roivainen, P. Ylipaasto, C. Savolainen, J. Galama, T. Hovi et al., Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains, Diabetologia, vol.45, pp.693-702, 2002.

J. R. Romero, Pediatric group B coxsackievirus infections, Curr Top Microbiol Immunol, vol.323, pp.223-239, 2008.

A. Salvatoni, A. Baj, G. Bianchi, G. Federico, M. Colombo et al., Intrafamilial spread of enterovirus infections at the clinical onset of type 1 diabetes, Pediatr Diabetes, vol.14, pp.407-416, 2013.

F. Sane, D. Caloone, V. Gmyr, I. Engelmann, S. Belaich et al., Coxsackievirus B4 can infect human pancreas ductal cells and persist in ductal-like cell cultures which results in inhibition of Pdx1 expression and disturbed formation of islet-like cell aggregates, Cell Mol Life Sci, vol.70, pp.4169-4180

S. A. Sarkar, C. E. Lee, F. Victorino, T. T. Nguyen, J. A. Walters et al., Expression and regulation of chemokines in murine and human type 1 diabetes, Diabetes, vol.61, pp.436-446, 2012.

M. Schmidtke, H. C. Selinka, A. Heim, B. Jahn, M. Tonew et al., Attachment of coxsackievirus B3 variants to various cell lines: mapping of phenotypic differences to capsid protein VP1, Virology, vol.275, pp.77-88, 2000.

B. M. Schulte, J. Bakkers, K. H. Lanke, W. J. Melchers, C. Westerlaken et al., Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection, Viral Immunol, vol.23, pp.99-104, 2010.

Y. Shi, C. Chen, U. Lisewski, U. Wrackmeyer, M. Radke et al., Cardiac deletion of the Coxsackievirus-adenovirus receptor abolishes Coxsackievirus B3 infection and prevents myocarditis in vivo, J Am Coll Cardiol, vol.53, pp.1219-1226, 2009.

D. J. Smyth, J. D. Cooper, R. Bailey, S. Field, O. Burren et al., A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferoninduced helicase (IFIH1) region, Nat Genet, vol.38, pp.617-619, 2006.

I. Spagnuolo, A. Patti, G. Sebastiani, L. Nigi, and F. Dotta, The case for virusinduced type 1 diabetes, Curr Opin Endocrinol Diabetes Obes, vol.20, pp.292-298, 2013.

P. E. Tam and R. P. Messner, Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution, J Virol, vol.73, pp.10113-10121, 1999.

S. Tanaka, K. Aida, Y. Nishida, and T. Kobayashi, Pathophysiological mechanisms involving aggressive islet cell destruction in fulminant type 1 diabetes, Endocr J, vol.60, pp.837-845, 2013.

C. Tapparel, F. Siegrist, T. J. Petty, and L. Kaiser, Picornavirus and enterovirus diversity with associated human diseases, Infect Genet Evol, vol.14, pp.282-293, 2013.

A. Toniolo, G. Maccari, G. Federico, A. Salvatoni, G. Bianchi et al., Are enterovirus infections linked to the early stages of Type 1 diabetes?, for Microbiology Meeting, 2010.

S. Tracy, K. Höfling, S. Pirruccello, P. H. Lane, S. M. Reyna et al.,

, Group B coxsackievirus myocarditis and pancreatitis: connection between viral virulence phenotypes in mice, J Med Virol, vol.62, pp.70-81, 2000.

S. Tracy, S. Smithee, A. Alhazmi, and N. Chapman, Coxsackievirus can persist in murine pancreas by deletion of 5? terminal genomic sequences, J Med Virol, 2014.

D. Werk, S. Schubert, V. Lindig, H. P. Grunert, H. Zeichhardt et al., Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor, Biol Chem, vol.386, pp.857-863, 2005.

M. Westerholm-ormio, O. Vaarala, P. Pihkala, J. Ilonen, E. Savilahti et al., Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes, Clin Exp Immunol, vol.52, pp.173-181, 2003.

A. Willcox, S. J. Richardson, A. J. Bone, A. K. Foulis, and N. G. Morgan, Immunohistochemical analysis of the relationship between islet cell proliferation and the production of the enteroviral capsid protein, VP1, in the islets of patients with recent-onset type 1 diabetes, Diabetologia, vol.54, pp.2417-2420, 2011.

W. Yeung, W. D. Rawlinson, and M. E. Craig, Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies, BMJ, vol.342, p.35, 2011.

H. Yin, A. K. Berg, J. Westman, C. Hellerström, and G. Frisk, Complete nucleotide sequence of a Coxsackievirus B-4 strain capable of establishing persistent infection in human pancreatic islet cells: effects on insulin release, proinsulin synthesis, and cell morphology, J Med Virol, vol.68, pp.544-557, 2002.

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat Rev Endocrinol, vol.6, pp.279-89, 2010.

K. T. Coppieters, T. Boettler, V. Herrath, and M. , Virus infections in type 1 diabetes, Cold Spring Harb Perspect Med, vol.2, p.7682, 2012.

C. S. Bergamin and S. A. Dib, Enterovirus and type 1 diabetes: what is the matter?, World J Diabetes, vol.6, pp.828-867, 2015.

J. L. Hillebrands, N. Van-der-werf, F. A. Klatter, C. A. Bruggeman, and J. Rozing, Role of peritoneal macrophages in cytomegalovirus-induced acceleration of autoimmune diabetes in BB-rats, Clin Dev Immunol, vol.10, pp.133-142, 2003.

N. Van-der-werf, J. L. Hillebrands, F. A. Klatter, I. Bos, C. A. Bruggeman et al., Cytomegalovirus infection modulates cellular immunity in an experimental model for autoimmune diabetes, Clin Dev Immunol, vol.10, pp.153-60, 2003.

M. J. Smelt, M. M. Faas, B. J. De-haan, J. Hofstede, C. Cheung et al., Rat pancreatic bcells and cytomegalovirus infection, Pancreas, vol.39, pp.47-56, 2010.

H. S. Hiemstra, N. C. Schloot, P. A. Van-veelen, S. J. Willemen, K. L. Franken et al., Cytomegalovirus infection in early infancy: risk of induction and progression of autoimmunity associated with type 1 diabetes, Proc Natl Acad Sci, vol.98, issue.8, pp.769-72, 2001.

K. E. Ellerman, C. A. Richards, D. L. Guberski, W. R. Shek, and A. A. Like, Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat, Diabetes, vol.45, pp.557-62, 1996.

Y. H. Chung, H. S. Jun, Y. Kang, K. Hirasawa, B. R. Lee et al., Role of macrophages and macrophage-derived cytokines in the pathogenesis of Kilham rat virus-induced autoimmune diabetes in diabetes-resistant BioBreeding rats, J Immunol, vol.159, pp.466-71, 1997.

Y. H. Chung, H. S. Jun, M. Son, M. Bao, H. Y. Bae et al., Cellular and molecular mechanism for Kilham rat virus-induced autoimmune diabetes in DR-BB rats, J Immunol, vol.165, pp.2866-76, 2000.

D. Zipris, J. L. Hillebrands, R. M. Welsh, J. Rozing, J. X. Xie et al., Infections that induce autoimmune diabetes in BBDR rats modulate CD4 + CD25 + T cell populations, J Immunol, vol.170, pp.3592-602, 2003.

D. Zipris, L. E. Nair, A. Xie, J. X. Greiner, D. L. Mordes et al., TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat, Ann N Y Acad Sci, vol.178, issue.14, pp.112-134, 2007.

D. W. Brown, R. M. Welsh, and A. A. Like, Infection of peripancreatic lymph nodes but not islets precedes Kilham rat virus-induced diabetes in BB/Wor rats, J Virol, vol.67, pp.5873-5881, 1993.

A. K. Alkanani, N. Hara, R. Gianani, and D. Zipris, Kilham rat virus-induced type 1 diabetes involves beta cell infection and intra-islet JAK-STAT activation prior to insulitis, Virology, pp.19-27, 2014.

A. Kasuga, R. Harada, and T. Saruta, Insulin-dependent diabetes mellitus associated with parvovirus B19 infection, Ann Intern Med, vol.125, pp.700-701, 1996.

O. 'brayan, T. A. Beck, M. J. Demers, L. M. Naides, and S. J. , Human parvovirus B19 infection in children with new onset Type 1 diabetes mellitus, Diabet Med, vol.22, pp.1778-1787, 2005.

Y. Munakata, T. Kodera, T. Saito, and T. Sasaki, Rheumatoid arthritis, type 1 diabetes, and Graves' disease after acute parvovirus B19 infection, Lancet, vol.366, p.780, 2005.

A. Von-poblotzki, C. Gerdes, U. Reischl, H. Wolf, and S. Modrow, Lymphoproliferative responses after infection with human parvovirus B19, J Virol, vol.70, pp.7327-7357, 1996.

E. Balada, M. Vilardell-tarrés, and J. Ordi-ros, Implication of human endogenous retroviruses in the development of autoimmune diseases, Int Rev Immunol, vol.29, pp.351-70, 2010.

S. Marguerat, W. Y. Wang, J. A. Todd, and B. Conrad, Association of human endogenous retrovirus K-18 polymorphisms with type 1 diabetes, Diabetes, vol.53, pp.852-856, 2004.

N. Sutkowski, B. Conrad, D. A. Thorley-lawson, and B. T. Huber, Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen, Immunity, vol.15, pp.579-89, 2001.

A. K. Tai, J. Luka, D. Ablashi, and B. T. Huber, HHV-6A infection induces expression of HERV-K18-encoded superantigen, J Clin Virol, vol.46, pp.47-55, 2009.

F. Ramondetti, S. Sacco, M. Comelli, G. Bruno, A. Falorni et al., Type 1 diabetes and measles, mumps and rubella childhood infections within the Italian Insulin-dependent Diabetes Registry, Diabet Med, vol.29, pp.761-767, 2012.

E. J. Rayfield, K. J. Kelly, and J. W. Yoon, Rubella virus-induced diabetes in the hamster, Diabetes, vol.35, pp.1278-81, 1986.

H. Viskari, J. Paronen, P. Keskinen, S. Simell, B. Zawilinska et al., Humoral b-cell autoimmunity is rare in patients with the congenital rubella syndrome, Clin Exp Immunol, vol.133, pp.378-83, 2003.

K. Helmke, A. Otten, and W. Willems, Islet cell antibodies in children with mumps infection, Lancet, vol.2, pp.211-213, 1980.
DOI : 10.1007/978-1-4613-2085-2_7

H. Hyöty, P. Parkkonen, M. Rode, O. Bakke, and P. Leinikki, Common peptide epitope in mumps virus nucleocapsid protein and MHC class II-associated invariant chain, Scand J Immunol, vol.37, pp.550-558, 1993.

M. C. Honeyman, B. S. Coulson, N. L. Stone, S. A. Gellert, P. N. Goldwater et al., Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes, Diabetes, vol.49, pp.1319-1343, 2000.
DOI : 10.2337/diabetes.49.8.1319

URL : http://diabetes.diabetesjournals.org/content/49/8/1319.full.pdf

M. C. Honeyman, N. L. Stone, B. A. Falk, G. Nepom, and L. C. Harrison, Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens, J Immunol, vol.184, pp.2204-2214, 2010.
DOI : 10.4049/jimmunol.0900709

URL : http://www.jimmunol.org/content/184/4/2204.full.pdf

K. L. Graham, N. Sanders, Y. Tan, A. J. Kay, T. W. Coulson et al., Rotavirus infection accelerates type 1 diabetes in mice with established insulitis, J Virol, vol.82, pp.6139-6188, 2008.
DOI : 10.1128/jvi.00597-08

URL : http://jvi.asm.org/content/82/13/6139.full.pdf

J. A. Pane, N. L. Webster, K. L. Graham, G. Holloway, C. Zufferey et al., Rotavirus acceleration of murine type 1 diabetes is associated with a T helper 1-dependent specific serum antibody response and virus effects in regional lymph nodes, Diabetologia, vol.56, pp.573-82, 2013.

J. A. Pane, N. L. Webster, and B. S. Coulson, Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells, PLoS Pathog, vol.10, p.1003998, 2014.
DOI : 10.1371/journal.ppat.1003998

URL : https://doi.org/10.1371/journal.ppat.1003998

S. Lappalainen, S. Ylitalo, A. Arola, A. Halkosalo, S. Räsänen et al., Simultaneous presence of human herpesvirus 6 and adenovirus infections in intestinal intussusception of young children, Acta Paediatr, vol.101, pp.663-70, 2012.

A. Shimada and T. Maruyama, Encephalomyocarditisvirus-induced diabetes model resembles "fulminant" type 1 diabetes in humans, Diabetologia, vol.47, pp.1854-1859, 2004.
DOI : 10.1007/s00125-004-1538-9

URL : https://link.springer.com/content/pdf/10.1007%2Fs00125-004-1538-9.pdf

S. A. Mccartney, W. Vermi, S. Lonardi, C. Rossini, K. Otero et al., RNA sensor-induced type 1 IFN prevents diabetes caused by a bcell-tropic virus in mice, J Clin Invest, vol.121, pp.1497-507, 2011.

J. W. Yoon and H. S. Jun, Viruses cause type 1 diabetes in animals, Ann N Y Acad Sci, vol.1079, pp.138-184, 2006.

H. S. Jun, Y. Kang, A. L. Notkins, and J. W. Yoon, Gain or loss of diabetogenicity resulting from a single point mutation in recombinant encephalomyocarditis virus, J Virol, vol.71, pp.9782-9787, 1997.

H. S. Jun, Y. Kang, H. S. Yoon, K. H. Kim, A. L. Notkins et al., Determination of encephalomyocarditis viral diabetogenicity by a putative binding site of the viral capsid protein, Diabetes, vol.47, pp.576-82, 1998.

B. Niklasson, K. E. Heller, B. Schønecker, M. Bildsøe, T. Daniels et al., Development of type 1 diabetes in wild bank voles associated with islet autoantibodies and the novel ljungan virus, Int J Exp Diabesity Res, vol.4, pp.35-44, 2003.

J. P. Mordes, R. Bortell, E. P. Blankenhorn, A. A. Rossini, and D. L. Greiner, Rat models of type 1 diabetes: genetics, environment, and autoimmunity, ILAR J, vol.45, pp.278-91, 2004.

R. Holmberg, W. Klitz, M. Blixt, P. O. Berggren, L. Junttiberggren et al., Antiviral treatments reduce severity of diabetes in Ljungan virus-infected CD-1 mice and delay onset in diabetes-prone BB rats, Microbiol Immunol, vol.53, pp.567-72, 2009.

B. Niklasson, T. Hultman, R. Kallies, M. Niedrig, R. Nilsson et al., The BioBreeding rat diabetes model is infected with Ljungan virus, Diabetologia, vol.50, pp.1559-60, 2007.

A. L. Nilsson, F. Vaziri-sani, P. Broberg, A. Elfaitouri, R. Pipkorn et al., Serological evaluation of possible exposure to Ljungan virus and related parechovirus in autoimmune (type 1) diabetes in children, J Med Virol, vol.87, pp.1130-1170, 2015.

G. Tapia, O. Cinek, T. Rasmussen, B. Grinde, L. C. Stene et al., Longitudinal study of parechovirus infection in infancy and risk of repeated positivity for multiple islet autoantibodies: the MIDIA study, Pediatr Diabetes, vol.12, pp.58-62, 2011.

D. R. Gamble, M. L. Kinsley, M. G. Fitzgerald, R. Bolton, and K. W. Taylor, Viral antibodies in diabetes mellitus, Br Med J, vol.3, pp.627-657, 1969.

J. W. Yoon, M. Austin, T. Onodera, and A. L. Notkins, Isolation of a virus from the pancreas of a child with diabetic ketoacidosis, N Engl J Med, vol.300, pp.1173-1182, 1979.

H. Champsaur, E. Dussaix, D. Samolyk, M. Fabre, C. Bach et al., Diabetes and Coxsackie virus B5 infection, Lancet, vol.1, p.251, 1980.

N. Knowles, T. Hovi, T. Hyypiä, A. M. King, A. M. Lindberg et al., Classification and Nomenclature of Viruses, Ninth Report of the International Committee on Taxonomy of Viruses, Virus Taxonomy, vol.2012, pp.282-93, 2013.

H. Harvala, H. Kalimo, L. Dahllund, J. Santti, P. Hughes et al., Mapping of tissue tropism determinants in coxsackievirus genomes, J Gen Virol, vol.83, pp.1697-706, 2002.

J. R. Romero, Pediatric group B coxsackievirus infections, Curr Top Microbiol Immunol, vol.323, pp.223-262, 2008.
DOI : 10.1007/978-3-540-75546-3_10

W. C. Yeung, W. D. Rawlinson, and M. E. Craig, Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies, BMJ, vol.342, p.35, 2011.

L. C. Stene, S. Oikarinen, H. Hyöty, K. J. Barriga, J. M. Norris et al., Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY), Diabetes, vol.59, pp.3174-80, 2010.

M. Lönnrot, K. Korpela, M. Knip, J. Ilonen, O. Simell et al., Enterovirus infection as a risk factor for b-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study, Diabetes, vol.49, pp.1314-1322, 2000.

S. Oikarinen, M. Martiskainen, S. Tauriainen, H. Huhtala, J. Ilonen et al., Enterovirus RNA in blood is linked to the development of type 1 diabetes, Diabetes, vol.60, pp.276-285, 2011.

W. Chehadeh, J. Weill, M. C. Vantyghem, G. Alm, J. Lefèbvre et al., Increased level of interferon-ain blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection, J Infect Dis, vol.181, pp.1929-1968, 2000.

A. Salvatoni, A. Baj, G. Bianchi, G. Federico, M. Colombo et al., Intrafamilial spread of enterovirus infections at the clinical onset of type 1 diabetes, Pediatr Diabetes, vol.14, pp.407-423, 2013.

B. M. Schulte, J. Bakkers, K. H. Lanke, W. J. Melchers, C. Westerlaken et al., Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection, Viral Immunol, vol.23, pp.99-104, 2010.

H. Yin, A. K. Berg, T. Tuvemo, and G. Frisk, Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset, Diabetes, vol.51, pp.1964-71, 2002.

E. K. Alidjinou, W. Chehadeh, J. Weill, M. C. Vantyghem, C. Stuckens et al., Monocytes of patients with type 1 diabetes harbour enterovirus RNA, Eur J Clin Invest, vol.45, pp.918-942, 2015.

E. K. Alidjinou, F. Sané, I. Engelmann, V. Geenen, and D. Hober, Enterovirus persistence as a mechanism in the pathogenesis of type 1 diabetes, Discov Med, vol.18, pp.273-82, 2014.

E. K. Alidjinou, F. Sané, J. Trauet, M. C. Copin, and D. Hober, Coxsackievirus B4 can infect human peripheral blood-derived macrophages, Viruses, vol.7, pp.6067-79, 2015.
DOI : 10.3390/v7112924

URL : http://www.mdpi.com/1999-4915/7/11/2924/pdf

D. Hober, W. Chehadeh, A. Bouzidi, and P. Wattré, Antibody-dependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-asynthesis, J Infect Dis, vol.184, pp.1098-108, 2001.

W. Chehadeh, P. E. Lobert, P. Sauter, A. Goffard, B. Lucas et al., Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4-and B3induced synthesis of alpha interferon, J Virol, vol.79, pp.13882-91, 2005.

P. Ylipaasto, K. Klingel, A. M. Lindberg, T. Otonkoski, R. Kandolf et al., Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells, Diabetologia, vol.47, pp.225-264, 2004.

F. Dotta, S. Censini, A. G. Van-halteren, L. Marselli, M. Masini et al., Coxsackie B4 virus infection of b cells and natural killer cell insulitis in recentonset type 1 diabetic patients, Proc Natl Acad Sci, vol.104, pp.5115-5135, 2007.
DOI : 10.1073/pnas.0700442104

URL : http://www.pnas.org/content/104/12/5115.full.pdf

S. J. Richardson, A. Willcox, A. J. Bone, A. K. Foulis, and N. G. Morgan, The prevalence of enteroviral capsid protein VP1 immunostaining in pancreatic islets in human type 1 diabetes, Diabetologia, vol.52, pp.1143-51, 2009.

A. Willcox, S. J. Richardson, A. J. Bone, A. K. Foulis, and N. G. Morgan, Immunohistochemical analysis of the relationship between islet cell proliferation and the production of the enteroviral capsid protein, VP1, in the islets of patients with recent-onset type 1 diabetes, Diabetologia, vol.54, pp.2417-2437, 2011.

L. Krogvold, B. Edwin, T. Buanes, G. Frisk, O. Skog et al., Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes, Diabetes, vol.64, pp.1-682, 2014.

S. J. Richardson, A. Willcox, A. J. Bone, N. G. Morgan, and A. K. Foulis, Immunopathology of the human pancreas in type-1 diabetes, Semin Immunopathol, vol.33, pp.9-21, 2011.

M. Oikarinen, S. Tauriainen, T. Honkanen, S. Oikarinen, K. Vuori et al., Detection of enteroviruses in the intestine of type 1 diabetic patients, Clin Exp Immunol, vol.151, pp.71-76, 2008.

M. Oikarinen, S. Tauriainen, S. Oikarinen, T. Honkanen, C. P. Rantala et al., Type 1 diabetes is associated with enterovirus infection in gut mucosa, Diabetes, vol.61, pp.687-91, 2012.

A. Mercalli, V. Lampasona, K. Klingel, L. Albarello, C. Lombardoni et al., No evidence of enteroviruses in the intestine of patients with type 1 diabetes, Diabetologia, vol.55, pp.2479-88, 2012.

B. O. Roep and T. I. Tree, ) Imagawa A, Hanafusa T. Fulminant type 1 diabetesan important subtype in East Asia, Diabetes Metab Res Rev, vol.10, issue.78, pp.959-64, 2011.

H. Jaïdane and D. Hober, Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes, Diabetes Metab, vol.34, pp.537-585, 2008.

K. T. Coppieters, F. Dotta, N. Amirian, P. D. Campbell, T. W. Kay et al., Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients, J Exp Med, vol.209, pp.51-60, 2012.

K. Lind, M. H. Hühn, and M. Flodström-tullberg, Immunology in the clinic review series; focus on type 1 diabetes and viruses: the innate immune response to enteroviruses and its possible role in regulating type 1 diabetes, Clin Exp Immunol, vol.168, pp.30-38, 2012.

D. Hober and E. K. Alidjinou, Enteroviral pathogenesis of type 1 diabetes: queries and answers, Curr Opin Infect Dis, vol.26, pp.263-272, 2013.

R. C. Ferreira, H. Guo, R. Coulson, D. J. Smyth, M. L. Pekalski et al., A type 1 interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes, Diabetes, vol.63, pp.2538-50, 2014.

H. Kallionpää, L. L. Elo, E. Laajala, J. Mykkänen, I. Ricaño-ponce et al., Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility, Diabetes, vol.63, pp.2402-2416, 2014.

W. Chehadeh, J. Kerr-conte, F. Pattou, G. Alm, J. Lefebvre et al., Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in b cells, J Virol, vol.74, pp.10153-64, 2000.

F. Sané, D. Caloone, V. Gmyr, I. Engelmann, S. Belaich et al., Coxsackievirus B4 can infect human pancreas ductal cells and persist in ductallike cell cultures which results in inhibition of Pdx1 expression and disturbed formation of islet-like cell aggregates, Cell Mol Life Sci, vol.70, pp.4169-80, 2013.

D. Hober, F. Sané, H. Jaïdane, K. Riedweg, A. Goffard et al., Immunology in the clinic review series; focus on type 1 diabetes and viruses: role of antibodies enhancing the infection with coxsackievirus B in the pathogenesis of type 1 diabetes, Microbiol Immunol, vol.168, issue.88, pp.40-46, 2008.

F. Brilot, W. Chehadeh, C. Charlet-renard, H. Martens, V. Geenen et al., Persistent infection of human thymic epithelial cells by coxsackievirus B4, J Virol, vol.76, pp.5260-5265, 2002.

F. Brilot, H. Jaïdane, V. Geenen, and D. Hober, Coxsackievirus B4 infection of murine foetal thymus organ cultures, J Med Virol, vol.80, pp.659-66, 2008.

H. Jaïdane, D. Caloone, P. E. Lobert, F. Sané, O. Dardenne et al., Persistent infection of thymic epithelial cells with Coxsackievirus B4 results in decreased expression of type 2 insulin-like growth factor, J Virol, vol.86, pp.11151-62, 2012.

H. Jaïdane, F. Sané, R. Hiar, A. Goffard, J. Gharbi et al., Immunology in the clinic review series; focus on type 1 diabetes and viruses: enterovirus, thymus and type 1 diabetes pathogenesis, Clin Exp Immunol, vol.168, pp.39-46, 2012.

D. Hober, F. Sané, K. Riedweg, I. Moumna, A. Goffard et al., Viruses and type 1 diabetes: focus on the Enteroviruses, vol.2013, pp.25-69

S. Oikarinen, S. Tauriainen, D. Hober, B. Lucas, A. Vazeou et al., Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes, Diabetes, vol.63, pp.655-62, 2014.

L. Sarmiento, I. Cubas-dueñas, and E. Cabrera-rode, Evidence of association between type 1 diabetes and exposure to enterovirus in Cuban children and adolescents, MEDICC Rev, vol.15, pp.29-32, 2013.

E. F. Foxman and A. Iwasaki, Genome-virome interactions: examining the role of common viral infections in complex disease, Nat Rev Microbiol, vol.9, pp.254-64, 2011.

K. Vehik and D. Dabelea, The changing epidemiology of type 1 diabetes: why is it going through the roof?, Diabetes Metab Res Rev, vol.27, pp.3-13, 2011.

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat Rev Endocrinol, vol.6, pp.279-289, 2010.

L. C. Stene and M. Rewers, Immunology in the clinic review series; focus on type 1 diabetes and viruses: the enterovirus link to type 1 diabetes: critical review of human studies, Clin Exp Immunol, vol.168, pp.12-23, 2012.

K. T. Coppieters, A. Wiberg, and S. M. Tracy, Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma, Clin Exp Immunol, vol.168, pp.5-11, 2012.

D. Hober and F. Sane, Enteroviruses and type 1 diabetes, BMJ, vol.342, p.7072, 2011.

W. C. Yeung, W. D. Rawlinson, and M. E. Craig, Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies, BMJ, vol.342, p.35, 2011.

K. Lind, M. H. Hü-hn, and M. Flodströ-m-tullberg, Immunology in the clinic review series; focus on type 1 diabetes and viruses: the innate immune response to enteroviruses and its possible role in regulating type 1 diabetes, Clin Exp Immunol, vol.168, pp.30-38, 2012.

C. M. Filippi and M. G. Herrath, 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: viruses, autoimmunity and immunoregulation, Clin Exp Immunol, vol.160, pp.113-119, 2010.

M. Elfving, J. Svensson, and S. Oikarinen, Maternal enterovirus infection during pregnancy as a risk factor in offspring diagnosed with type 1 diabetes between 15 and 30 years of age, Exp Diabetes Res, p.271958, 2008.

S. Re?icre?ic´re?ic´lindehammer, H. Honkanen, and W. A. Nix, Seroconversion to islet autoantibodies after enterovirus infection in early pregnancy, Viral Immunol, vol.25, pp.254-261, 2012.

H. Viskari, M. Knip, and S. Tauriainen, Maternal enterovirus infection as a risk factor for type 1 diabetes in the exposed offspring, Diabetes Care, vol.35, pp.1328-1332, 2012.

S. Tracy, K. M. Drescher, and N. M. Chapman, Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulindependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence, J Virol, vol.76, pp.12097-12111, 2002.

C. M. Filippi, E. A. Estes, and J. E. Oldham, Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice, J Clin Invest, vol.119, pp.1515-1523, 2009.

J. Green, D. Casabonne, and R. Newton, Coxsackie B virus serology and type 1 diabetes mellitus: a systematic review of published case-control studies, Diabet Med, vol.21, pp.507-514, 2004.

M. Westerholm-ormio, O. Vaarala, and P. Pihkala, Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes, Diabetes, vol.52, pp.2287-2295, 2003.

M. Oikarinen, S. Tauriainen, and T. Honkanen, Detection of enteroviruses in the intestine of type 1 diabetic patients, Clin Exp Immunol, vol.151, pp.71-75, 2008.

M. Oikarinen, S. Tauriainen, and S. Oikarinen, Type 1 diabetes is associated with enterovirus infection in gut mucosa, Diabetes, vol.61, pp.687-691, 2012.

A. Mercalli, V. Lampasona, and K. Klingel, This work found no detection of enteroviruses, either by in-situ hybridization or reverse transcriptase-PCR, Diabetologia, vol.55, pp.2479-2488, 2012.

F. Dotta, S. Censini, and A. Van-halteren, Coxsackie B4 virus infection of cells and natural killer cell insulitis in recent-onset type 1 diabetic patients, Proc Natl Acad Sci, vol.104, p.5115, 2007.

S. Richardson, A. Willcox, and A. Bone, The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes, Diabetologia, vol.52, pp.1143-1151, 2009.

H. Hyö-ty, Enterovirus infections and type 1 diabetes, Ann Med, vol.34, pp.138-147, 2002.

D. Merkler, E. Horvath, and W. Bruck, Viral dé jà vu' elicits organ-specific immune disease independent of reactivity to self, J Clin Invest, vol.16, pp.1254-1263, 2006.

C. Filippi and M. Von-herrath, How viral infections affect the autoimmune process leading to type 1 diabetes, Cell Immunol, vol.233, pp.125-132, 2005.

S. Tauriainen, S. Oikarinen, and M. Oikarinen, Enteroviruses in the pathogenesis of type 1 diabetes, Semin Immunopathol, vol.33, pp.45-55, 2011.

L. C. Stene, S. Oikarinen, and H. Hyö-ty, Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY), Diabetes, vol.59, pp.3174-3180, 2010.

P. Concannon, S. S. Rich, and G. T. Nepom, Genetics of type 1A diabetes, N Engl J Med, vol.360, pp.1646-1654, 2009.

D. J. Smyth, J. D. Cooper, and R. Bailey, A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferoninduced helicase (IFIH1) region, Nat Genet, vol.38, pp.617-619, 2006.

H. Kato, O. Takeuchi, and S. Sato, Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, vol.441, pp.101-105, 2006.

M. H. Hü-hn, S. A. Mccartney, and K. Lind, Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after Coxsackievirus infection, Virology, vol.401, pp.42-48, 2010.

S. Nejentsev, N. Walker, and D. Riches, Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes, Science, vol.324, pp.387-389, 2009.

T. Shigemoto, M. Kageyama, and R. Hirai, Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes, J Biol Chem, vol.284, pp.13348-13354, 2009.

K. Downes, M. Pekalski, and K. L. Angus, Reduced expression of IFIH1 is protective for type 1 diabetes, PLoS One, vol.5, p.12646, 2010.
DOI : 10.1371/journal.pone.0012646

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012646&type=printable

S. Liu, H. Wang, and Y. Jin, IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells, Hum Mol Genet, vol.18, pp.358-365, 2009.
DOI : 10.1093/hmg/ddn342

URL : https://academic.oup.com/hmg/article-pdf/18/2/358/17247087/ddn342.pdf

C. Winkler, C. Lauber, and K. Adler, An interferon induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes, Diabetes, vol.60, pp.685-690, 2011.
DOI : 10.2337/db10-1269

URL : http://diabetes.diabetesjournals.org/content/60/2/685.full.pdf

O. &&-cinek, G. Tapia, and E. Witsø, :e48409. In this study, the IFIH1 common SNP was associated with enterovirus RNA detection in the blood of healthy children, but no association was found with the rare polymorphisms. Authors suggested that the common IFIH1 SNP may modify the frequency of enterovirus infection, PLoS One, vol.7, 2012.

P. Sauter and D. Hober, Mechanisms and results of the antibody-dependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases, Microbes Infect, vol.11, pp.443-451, 2009.

D. Hober, F. Sane, and H. Ja?¨daneja?¨dane, Immunology in the clinic review series; focus on type 1 diabetes and viruses: role of antibodies enhancing the infection with Coxsackievirus-B in the pathogenesis of type 1 diabetes, Clin Exp Immunol, vol.168, pp.47-51, 2012.

B. M. Schulte, K. H. Lanke, and J. D. Piganelli, Cytokine and chemokine production by human pancreatic islets upon enterovirus infection, Diabetes, vol.61, pp.2030-2036, 2012.
DOI : 10.2337/db11-1547

URL : http://diabetes.diabetesjournals.org/content/diabetes/61/8/2030.full.pdf

P. Ylipaasto, T. Smura, and P. Gopalacharyulu, Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction, Diabetologia, vol.55, pp.3273-3283, 2012.
DOI : 10.1007/s00125-012-2713-z

URL : https://link.springer.com/content/pdf/10.1007%2Fs00125-012-2713-z.pdf

&. Yeung, W. C. , A. , A. Pang, and C. N. , Children with islet autoimmunity and enterovirus infection demonstrate a distinct cytokine profile, Diabetes, vol.61, pp.1500-1508, 2012.
DOI : 10.2337/db11-0264

URL : http://diabetes.diabetesjournals.org/content/diabetes/61/6/1500.full.pdf

M. B. &&-oldstone, K. H. Edelmann, and D. B. Mcgavern, :e1003044. In this work, authors quantified CD8 T cells infiltrating islets in a virus-induced T1D. Using a transgenic model of virus-induced T1D, a panel of viruses with CD8 T cell epitope mutations and in-situ tetramer hybridization, Authors showed a marked and primarily proinflammatory cytokine profile, along with some immunoregulatory and anti-inflammatory effects, in children with islet autoimmunity, vol.42, 2012.

H. Ja?¨daneja?¨dane, P. Sauter, and F. Sane, Enteroviruses and type 1 diabetes: towards a better understanding of the relationship, Rev Med Virol, vol.20, pp.265-280, 2010.

H. Ja?¨daneja?¨dane, F. Sané, and R. Hiar, Immunology in the clinic review series: focus on type 1 diabetes and viruses: enterovirus, thymus and type 1 diabetes pathogenesis, Clin Exp Immunol, vol.168, pp.39-46, 2012.

H. Ja?¨daneja?¨dane, D. Caloone, and P. E. Lobert, Persistent infection of thymic epithelial cells with coxsackievirus B4 results in decreased expression of type 2 insulinlike growth factor, J Virol, vol.86, pp.11151-11162, 2012.

D. L. Eizirik, M. Colli, and F. Ortis, The role of inflammation in insulitis and beta cell loss in type 1 diabetes, Nat Rev Endocrinol, vol.5, pp.219-226, 2009.

C. M. Filippi and M. G. Herrath, Viral trigger for type 1 diabetes: pros and cons, Diabetes, vol.57, pp.2863-2871, 2008.

S. Tracy, K. M. Drescher, and J. D. Jackson, Enteroviruses, type 1 diabetes and hygiene: a complex relationship, Rev Med Virol, vol.20, pp.106-116, 2010.

M. Von-herrath, Diabetes: a virus-gene collaboration, Nature, vol.459, pp.518-519, 2009.

M. Von-herrath, Can we learn from viruses how to prevent type 1 diabetes? The role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies, Diabetes, vol.58, pp.2-11, 2009.

L. Ea3610, F. Boulanger, H. Calmette, C. , B. Du-pr et al., MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA, Hum. Mol. Genet, vol.19, pp.135-146, 2010.

P. Concannon, S. S. Rich, and G. T. Nepom, Genetics of type 1A diabetes, N. Engl. J. Med, vol.360, pp.1646-1654, 2009.

D. Hober and P. Sauter, Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host, Nat. Rev. Endocrinol, vol.6, pp.279-289, 2010.

K. Izumi, K. Mine, and Y. Inoue, Reduced Tyk2 gene expression in ?-cells due to natural mutation determines susceptibility to virus-induced diabetes, Nat. Commun, vol.6, p.6748, 2015.

P. J. Lincez, I. Shanina, and M. S. Horwitz, Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes, Diabetes, vol.64, pp.2184-2193, 2015.

S. Nagafuchi, Y. Kamada-hibio, and K. Hirakawa, TYK2 promoter variant and diabetes mellitus in the Japanese, EBioMedicine, vol.2, pp.742-747, 2015.

S. Nejentsev, N. Walker, D. Riches, M. Egholm, and J. A. Todd, Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes, Science, vol.324, pp.387-389, 2009.

B. O. Roep and T. I. Tree, Immune modulation in humans: implications for type 1 diabetes mellitus, Nat. Rev. Endocrinol, vol.10, pp.229-242, 2014.

I. Santin and D. L. Eizirik, Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and ?-cell apoptosis, Diabetes Obes. Metab, vol.15, pp.71-81, 2013.

C. Wallace, D. J. Smyth, M. Maisuria-armer, N. M. Walker, J. A. Todd et al., The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes, Nat. Genet, vol.42, pp.68-71, 2010.

E. K. Alidjinou and D. , Hober / EBioMedicine, vol.2, pp.634-635, 2015.