Skip to Main content Skip to Navigation
Theses

On the quantum structure of spacetime and its relation to the quantum theory of fields : k-Poincaré invariant field theories and other examples

Abstract : As many theoretical studies point out, the classical description of spacetime, as a continuum, might be no longer adequate to reconcile gravity with quantum mechanics at very high energy (the relevant energy scale being often regarded as the Planck scale). Instead, a more appropriate description could be provided by the data of a noncommutative algebra of coordinate operators replacing the usual commutative local coordinates on smooth manifold. Once the noncommutative nature of spacetime is assumed, it is to expect that the (classical and quantum) properties of field theories on noncommutative background differ from the ones of field theories on classical background. This is the aim of Non-Commutative Field Theory (NCFT) to explore and study these new properties.In the present dissertation, we consider two families of quantum spacetimes of Lie algebra type noncommutativity. The first family is characterised by su(2) noncommutativity and appears in the description of some models of quantum gravity in 3-dimensions. The other family of quantum spacetimes is known in the physics literature as the 4-d kappa-Minkowski space. The importance of this quantum spacetime lies into the fact that its symmetries are provided by the (quantum) kappa-Poincaré algebra (a deformation of the classical Poincaré algebra) together with the fact that the deformation parameter 'kappa', which is of mass dimension, provides a natural energy scale at which the quantum gravity effects may be relevant (and is often regarded as being related to the Planck scale). For these reasons, the kappa-Minkowski space appears as a good candidate for a spacetime to be involved in the description of Doubly Special Relativity and Relative Locality models.To study NCFT it is often convenient to introduce a star product characterising the (noncommutative) C*-algebra of fields modelling the quantum spacetime under consideration. We emphasise that a canonical star product can be obtained by using the group algebraic structures underlying the construction of such Lie algebra type quantum spaces, namely by making use of harmonic analysis on the corresponding Lie group together with the Weyl quantisation scheme. The explicit derivation of such star product for kappa-Minkowski is given. In addition, we show that su(2) Lie algebras of coordinate operators related to quantum spaces with su(2) noncommutativity can be conveniently represented by SO(3)-equivariant poly-differential involutive representations and show that the quantized plane waves obtained from the quantization map action on the usual exponential functions are determined by polar decomposition of operators combined with constraint stemming from the Wigner theorem for SU(2). We finally indicate a convenient way to extend this construction to other semi-simple but non simply connected Lie groups by making use of results from group cohomology with value in an abelian group that would replace the constraints stemming from the simple Wigner theorem.Then, we investigate the quantum properties of various models of interacting scalar field theory on noncommutative background making use of the aforementioned star product formalism to construct physically reasonable expressions for the action functional. Considering quantum spacetime with su(2) noncommutativity, we find that the one-loop 2-point function for complex scalar field theories with quartic interactions is finite, the deformation parameter playing the role of a natural UV cut-off. Special attention is paid to the derivation of the one-loop corrections to both the 2-point and 4-point functions for various models of kappa-Poincaré invariant scalar field theory with quartic interactions. In that case, we show that for some models the 2-point function divergences linearly thus slightly milder than their commutative counterpart, while the one-loop 4-point function is shown to be finite. The results we obtained together with their consequences are finally discussed.
Complete list of metadatas

Cited literature [170 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01923401
Contributor : Abes Star :  Contact
Submitted on : Thursday, November 15, 2018 - 11:33:15 AM
Last modification on : Monday, October 19, 2020 - 11:12:18 AM
Long-term archiving on: : Saturday, February 16, 2019 - 1:51:33 PM

File

76074_POULAIN_2018_archivage.p...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01923401, version 1

Collections

Citation

Timothé Poulain. On the quantum structure of spacetime and its relation to the quantum theory of fields : k-Poincaré invariant field theories and other examples. Mathematical Physics [math-ph]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLS331⟩. ⟨tel-01923401⟩

Share

Metrics

Record views

239

Files downloads

156