T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.8206-8216, 2000.

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett, vol.19, pp.780-782, 1994.

M. Gustafsson, Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol, vol.9, pp.627-634, 1999.

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc, vol.198, pp.82-89, 2000.

E. Betzig, Imaging intracellular fluorescent proteins at nanometer resolution, Science, vol.313, pp.1642-1647, 2006.

M. Heilemann, S. Van-de-linde, A. Mukherjee, and M. Sauer, Super-resolution imaging with small organic fluorophores, Angew. Chem. Int. Ed. Engl, vol.48, pp.6903-6911, 2009.

D. T. Burnette, P. Sengupta, Y. Dai, J. Lippincott-schwartz, and B. Kachar, Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.21081-21087, 2011.

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, vol.3, pp.793-798, 2006.

S. Van-de-linde, M. Sauer, and M. Heilemann, Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores, J. Struct

, Biol, vol.164, pp.250-254, 2008.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, J. Biomed. Opt, 2006.

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, The fluorescent toolbox for assessing protein location and function, Science, vol.312, pp.217-224, 2006.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nat. Methods, vol.8, pp.1027-1036, 2011.

S. , O. Johnson, F. H. Saiga, and Y. , Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell

, Comp. Physiol, vol.59, pp.223-262, 1962.

P. H. Winston, L. Marvin, and . Minsky, Nature, vol.530, p.282, 2016.

U. Kubitscheck, O. Kückmann, T. Kues, and R. Peters, Imaging and Tracking of Single GFP Molecules in Solution, Biophys. J, vol.78, pp.2170-2179, 2000.

M. Dyba, S. Jakobs, and S. W. Hell, Immunofluorescence stimulated emission depletion microscopy, Nat. Biotechnol, vol.21, pp.1303-1307, 2003.

G. Donnert, Two-color far-field fluorescence nanoscopy, Biophys. J, vol.92, pp.67-76, 2007.

A. Punge, 3D reconstruction of high-resolution STED microscope images, Microsc. Res. Tech, vol.71, pp.644-650, 2008.

K. Y. Han, Three-dimensional stimulated emission depletion microscopy of nitrogenvacancy centers in diamond using continuous-wave light, Nano Lett, vol.9, pp.3323-3332, 2009.

L. Schermelleh, Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy, Science, vol.320, pp.1332-1338, 2008.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, A guide to super-resolution fluorescence microscopy, J. Cell Biol, vol.190, pp.165-75, 2010.

M. P. Gordon, T. Ha, and P. R. Selvin, Single-molecule high-resolution imaging with photobleaching, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.6462-6467, 2004.

B. A. Millis, D. T. Burnette, J. Lippincott-schwartz, and B. Kachar, Superresolution imaging with standard fluorescent probes, Curr. Protoc. cell Biol, vol.60, 2013.

M. Heilemann, Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew. Chem. Int. Ed. Engl, vol.47, pp.6172-6178, 2008.

S. Van-de-linde, Direct stochastic optical reconstruction microscopy with standard fluorescent probes, Nat. Protoc, vol.6, pp.991-1009, 2011.

A. Löschberger, Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution, J. Cell Sci, vol.125, pp.570-575, 2012.

A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, and J. Schmoranzer, Multi-colour direct STORM with red emitting carbocyanines, Biol. Cell, vol.104, pp.229-237, 2012.

S. Wolter, U. Endesfelder, S. Van-de-linde, M. Heilemann, and M. Sauer, Measuring localization performance of super-resolution algorithms on very active samples, Opt. Express, vol.19, pp.7020-7033, 2011.

N. Ehmann, Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states, Nat. Commun, vol.5, p.4650, 2014.

J. Fölling, Fluorescence nanoscopy by ground-state depletion and single-molecule return, Nat. Methods, vol.5, pp.943-948, 2008.

O. Ronneberger, Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls, Chromosome Res, vol.16, pp.523-62, 2008.

H. Shroff, H. White, and E. Betzig, Photoactivated localization microscopy (PALM) of adhesion complexes, Curr. Protoc. cell Biol. Chapter, 2008.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, Total internal inflection fluorescent microscopy, J. Microsc, vol.129, pp.19-28, 1983.

S. Pageon, Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.5454-63, 2016.

F. Sanchez-madrid, Three distinct antigens associated with human T-lymphocytemediated cytolysis: LFA-1, LFA-2, and LFA-3, Proc. Natl. Acad. Sci. U. S. A, vol.79, pp.7489-93, 1982.

L. L. Lanier, M. A. Arnaout, R. Schwarting, N. L. Warner, and G. Ross, p150/95, Third member of the LFA-1/CR3 polypeptide family identified by anti-Leu M5 monoclonal antibody

, Eur. J. Immunol, vol.15, pp.713-721, 1985.

B. A. Miller, G. Antognetti, and T. A. Springer, Identification of cell surface antigens present on murine hematopoietic stem cells, J. Immunol, vol.134, pp.3286-90, 1985.

D. Davignon, E. Martz, T. Reynolds, K. Kürzinger, and T. Springer, Lymphocyte functionassociated antigen 1 (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing, Proc. Natl. Acad. Sci. U. S. A, vol.78, pp.4535-4544, 1981.

D. Davignon, E. Martz, T. Reynolds, K. Kürzinger, and T. A. Springer, Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): mechanism of blockade of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions, J. Immunol, vol.127, pp.590-595, 1981.

F. Sanchez-madrid, J. A. Nagy, E. Robbins, P. Simon, and T. A. Springer, A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac1), and the p150,95 molecule, J. Exp. Med, vol.158, pp.1785-1803, 1983.

T. W. Lebien and J. H. Kersey, A monoclonal antibody (TA-1) reactive with human T lymphocytes and monocytes, J. Immunol, vol.125, pp.2208-2222, 1980.

A. M. Krensky, The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions, J. Immunol, vol.131, pp.611-617, 1983.

F. Sanchez-madrid, P. Simon, S. Thompson, and T. A. Springer, Mapping of antigenic and functional epitopes on the alpha-and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1, J. Exp. Med, vol.158, pp.586-602, 1983.

K. D. Pischel, H. G. Bluestein, and V. L. Woods, Very late activation antigens (VLA) are human leukocyte-neuronal crossreactive cell surface antigens, J. Exp. Med, vol.164, pp.393-406, 1986.

S. H. Gromkowski, M. Krensky, E. Martz, and S. J. Burakoff, Functional distinctions between the LFA-1, LFA-2, and LFA-3 membrane proteins on human CTL are revealed with trypsinpretreated target cells, J. Immunol, vol.134, pp.244-253, 1985.

D. Haskard, D. Cavender, P. Beatty, T. Springer, and M. Ziff, T lymphocyte adhesion to endothelial cells: mechanisms demonstrated by anti-LFA-1 monoclonal antibodies, J. Immunol, vol.137, pp.2901-2907, 1986.

E. F. Lind, S. E. Prockop, H. E. Porritt, and H. T. Petrie, Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development, J. Exp. Med, vol.194, pp.127-161, 2001.

D. Campana, B. Sheridan, N. Tidman, A. V. Hoffbrand, and G. Janossy, Human leukocyte function-associated antigens on lympho-hemopoietic precursor cells, Eur. J. Immunol, vol.16, pp.537-579, 1986.

H. T. Petrie, Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus

, Nat. Rev. Immunol, vol.3, pp.859-66, 2003.

N. Hogg, How T cells use LFA-1 to attach and migrate, Immunol. Lett, vol.92, pp.51-54, 2004.

T. O. Bose, S. L. Colpitts, Q. Pham, L. Puddington, and L. Lefrançois, CD11a is essential for normal development of hematopoietic intermediates, J. Immunol, vol.193, pp.2863-72, 2014.

C. Halin, J. R. Mora, C. Sumen, and U. Von-andrian, vivo imaging of lymphocyte trafficking

, Annu. Rev. Cell Dev. Biol, vol.21, pp.581-603, 2005.

R. Mitnacht, M. Tacke, and T. Hünig, Expression of cell interaction molecules by immature rat thymocytes during passage through the CD4+8+ compartment: developmental regulation and induction by T cell receptor engagement of CD2, CD5, CD28, CD11a, CD44 and CD53, Eur. J. Immunol, vol.25, pp.328-360, 1995.

S. L. Swain, D. P. Dialynas, F. W. Fitch, and M. English, Monoclonal antibody to L3T4 blocks the function of T cells specific for class 2 major histocompatibility complex antigens, J. Immunol, vol.132, pp.1118-1141, 1984.

W. Savino, The Thymus Is a Common Target Organ in Infectious Diseases, PLoS Pathog, vol.2, p.62, 2006.

D. Sakata, Impaired T lymphocyte trafficking in mice deficient in an actin-nucleating protein, mDia1, J. Exp. Med, vol.204, pp.2031-2039, 2007.

B. Nal, Coronin-1 expression in T lymphocytes: insights into protein function during T cell development and activation, Int. Immunol, vol.16, pp.231-271, 2004.

N. Föger, L. Rangell, D. M. Danilenko, and A. C. Chan, Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis, Science, vol.313, pp.839-881, 2006.

A. Hamann, D. Jablonski-westrich, H. Thiele, and . ???g, Contact interaction between lymphocytes is a general event following activation and is mediated by LFA-1, Eur. J. Immunol, vol.16, pp.847-50, 1986.

T. Aoshi, Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells, Immunity, vol.29, pp.476-86, 2008.

A. Fischer, Deficiency of the adhesive protein complex lymphocyte function antigen 1, complement receptor type 3, glycoprotein p150,95 in a girl with recurrent bacterial infections. Effects on phagocytic cells and lymphocyte functions, J. Clin. Invest, vol.76, pp.2385-92, 1985.

M. De-la-roche, Y. Asano, and G. M. Griffiths, Origins of the cytolytic synapse, Nat. Rev. Immunol, vol.16, pp.421-453, 2016.

D. Hamann, Phenotypic and functional separation of memory and effector human CD8+ T cells, J. Exp. Med, vol.186, pp.1407-1425, 1997.

Y. Sanchez-ruiz, S. Valitutti, and L. Dupre, Stepwise maturation of lytic granules during differentiation and activation of human CD8+ T lymphocytes, PLoS One, vol.6, p.27057, 2011.

. Grakoui, D. L. Donermeyer, O. Kanagawa, K. M. Murphy, and P. M. Allen, TCR-independent pathways mediate the effects of antigen dose and altered peptide ligands on Th cell polarization, J. Immunol, vol.162, pp.1923-1953, 1999.

M. Krensky, Heritable lymphocyte function-associated antigen-1 deficiency: abnormalities of cytotoxicity and proliferation associated with abnormal expression of LFA-1

, J. Immunol, vol.135, pp.3102-3110, 1985.

S. Kohl, L. S. Loo, F. S. Schmalstieg, and D. C. Anderson, The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150,95 in humans is associated with defective antibodydependent cellular cytotoxicity in vitro and defective protection against herpes simplex virus infection in vivo, J. Immunol, vol.137, pp.1688-94, 1986.

S. Kohl, T. A. Springer, F. C. Schmalstieg, L. S. Loo, and D. C. Anderson, Defective natural killer cytotoxicity and polymorphonuclear leukocyte antibody-dependent cellular cytotoxicity in patients with LFA-1/OKM-1 deficiency, J. Immunol, vol.133, pp.2972-2980, 1984.

F. Sallusto, D. Lenig, R. Förster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.401, pp.708-720, 1999.

P. Reichardt, A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes, EMBO J, vol.32, pp.829-872, 2013.

K. Kürzinger, A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure, J. Immunol, vol.127, pp.596-602, 1981.

T. A. Springer, LFA-1 and Lyt-2,3, molecules associated with T lymphocyte-mediated killing; and Mac-1, an LFA-1 homologue associated with complement receptor function

, Immunol. Rev, vol.68, pp.171-95, 1982.

M. L. Dustin, T. G. Bivona, and M. R. Philips, Membranes as messengers in T cell adhesion signaling, Nat. Immunol, vol.5, pp.363-72, 2004.

K. Kürzinger and T. A. Springer, Purification and structural characterization of LFA-1, a lymphocyte function-associated antigen, and Mac-1, a related macrophage differentiation antigen associated with the type three complement receptor, J. Biol. Chem, vol.257, pp.12412-12420, 1982.

A. Qu and D. J. Leahy, Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.10277-81, 1995.

D. Craig, M. Gao, K. Schulten, and V. Vogel, Structural insights into how the MIDAS ion stabilizes integrin binding to an RGD peptide under force, Structure, vol.12, pp.2049-58, 2004.

G. D. Keizer, Biochemical and functional characteristics of the human leukocyte membrane antigen family LFA-1, Mo-1 and p150,95, Eur. J. Immunol, vol.15, pp.1142-1150, 1985.

C. Lu, M. Ferzly, J. Takagi, and T. Springer, Epitope mapping of antibodies to the C-terminal region of the integrin beta 2 subunit reveals regions that become exposed upon receptor activation, J. Immunol, vol.166, pp.5629-5666, 2001.

M. E. Anderson, B. Tejo, T. Yakovleva, and T. J. Siahaan, Characterization of binding properties of ICAM-1 peptides to LFA-1: inhibitors of T-cell adhesion, Chem. Biol. Drug Des, vol.68, pp.20-28, 2006.

R. C. Landis, R. I. Bennett, and N. Hogg, A novel LFA-1 activation epitope maps to the I domain

, J. Cell Biol, vol.120, pp.1519-1546, 1993.

B. Leitinger and N. Hogg, Effects of I domain deletion on the function of the beta2 integrin lymphocyte function-associated antigen-1, Mol. Biol. Cell, vol.11, pp.677-90, 2000.

M. E. Binnerts and Y. Van-kooyk, How LFA-1 binds to different ligands, Immunol. Today, vol.20, pp.240-245, 1999.

R. C. Landis, Involvement of the 'I' domain of LFA-1 in selective binding to ligands ICAM1 and ICAM-3, J. Cell Biol, vol.126, pp.529-566, 1994.

S. Ortlepp, P. E. Stephens, N. Hogg, C. G. Figdor, and M. K. Robinson, Antibodies that activate beta 2 integrins can generate different ligand binding states, Eur. J. Immunol, vol.25, pp.637-680, 1995.

P. Kukic, Structure and dynamics of the integrin LFA-1 I-domain in the inactive state underlie its inside-out/outside-in signaling and allosteric mechanisms, Structure, vol.23, pp.745-53, 2015.

M. J. Williams, P. E. Hughes, T. E. O'toole, and M. H. Ginsberg, The inner world of cell adhesion: integrin cytoplasmic domains, Trends Cell Biol, vol.4, pp.109-121, 1994.

M. Ohkuro and I. Hishinuma, The alpha integrin cytoplasmic motif KXGFFKR is essential for integrin-mediated leukocyte adhesion, Int. J. Mol. Med, vol.25, pp.439-483, 2010.

C. Liu, P. Leclair, S. Q. Yap, and C. J. Lim, The membrane-proximal KXGFFKR motif of ?-integrin mediates chemoresistance, Mol. Cell. Biol, vol.33, pp.4334-4379, 2013.

M. Coppolino, C. Leung-hagesteijn, S. Dedhar, and J. Wilkins, Inducible interaction of integrin alpha 2 beta 1 with calreticulin. Dependence on the activation state of the integrin, J. Biol

, Chem, vol.270, pp.23132-23140, 1995.

M. Kim, C. Carman, and T. A. Springer, Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins, Science, vol.301, pp.1720-1725, 2003.

P. Hu and B. Luo, Integrin ?IIb?3 transmembrane domain separation mediates bi-directional signaling across the plasma membrane, PLoS One, vol.10, p.116208, 2015.

S. Liu, D. A. Calderwood, and M. H. Ginsberg, Integrin cytoplasmic domain-binding proteins, J. Cell Sci, vol.113, pp.3563-71, 2000.

M. V. Rojiani, B. B. Finlay, V. Gray, and S. Dedhar, In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits, Biochemistry, vol.30, pp.9859-66, 1991.

C. Y. Leung-hagesteijn, K. Milankov, M. Michalak, J. Wilkins, and S. Dedhar, Cell attachment to extracellular matrix substrates is inhibited upon downregulation of expression of calreticulin, an intracellular integrin alpha-subunit-binding protein, J. Cell Sci, vol.107, pp.589-600, 1994.

J. O. Lee, P. Rieu, M. A. Arnaout, and R. Liddington, Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18), Cell, vol.80, pp.631-639, 1995.

M. Dimanche and . ???t, LFA-1 beta-chain synthesis and degradation in patients with leukocyte-adhesive proteins deficiency, Eur. J. Immunol, vol.17, pp.417-426, 1987.

K. Yuki, N. S. Astrof, C. Bracken, S. G. Soriano, and M. Shimaoka, Sevoflurane binds and allosterically blocks integrin lymphocyte function-associated antigen-1, Anesthesiology, vol.113, pp.600-609, 2010.

J. M. Casasnovas, T. A. Springer, J. H. Liu, S. C. Harrison, and J. H. Wang, Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface, Nature, vol.387, pp.312-317, 1997.

G. Song, An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin alphaLbeta2, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.3366-71, 2005.

G. Ostermann, K. S. Weber, A. Zernecke, A. Schröder, and C. Weber, JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes, Nat. Immunol, vol.3, pp.151-159, 2002.

D. E. Staunton, M. L. Dustin, and T. A. Springer, Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1, Nature, vol.339, pp.61-65, 1989.

S. D. Marlin and T. A. Springer, Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1), Cell, vol.51, pp.813-822, 1987.

R. Rothlein, M. L. Dustin, S. D. Marlin, and T. Springer, A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1, J. Immunol, vol.137, pp.1270-1274, 1986.

E. O. Long, ICAM-1: getting a grip on leukocyte adhesion, J. Immunol, vol.186, pp.5021-5024, 2011.

O. Steiner, Differential Roles for Endothelial ICAM-1, ICAM-2, and VCAM-1 in ShearResistant T Cell Arrest, Polarization, and Directed Crawling on Blood-Brain Barrier Endothelium, J. Immunol, vol.185, pp.4846-4855, 2010.

M. L. Dustin and T. A. Springer, Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J. Cell Biol, vol.107, pp.321-352, 1988.

K. Yuki, S. G. Soriano, and M. Shimaoka, Sedative drug modulates T-cell and lymphocyte function-associated antigen-1 function, Anesth. Analg, vol.112, pp.830-838, 2011.

I. Chamma, O. Rossier, G. Giannone, O. Thoumine, and M. Sainlos, Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin, Nat. Protoc, vol.12, pp.748-763, 2017.

S. Chakraborty, FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1) with intercellular adhesion molecule-1 (ICAM-1), PLoS One, vol.9, p.102572, 2014.

C. Carman and T. A. Springer, Integrin avidity regulation: are changes in affinity and conformation underemphasized?, Curr. Opin. Cell Biol, vol.15, pp.547-56, 2003.

Y. Van-kooyk and C. G. Figdor, Avidity regulation of integrins: the driving force in leukocyte adhesion, Curr. Opin. Cell Biol, vol.12, pp.542-549, 2000.

R. Evans, Integrins in immunity. J. Cell Sci, vol.122, pp.215-240, 2009.

M. Stewart, M. Thiel, and N. Hogg, Leukocyte integrins, Curr. Opin. Cell Biol, vol.7, pp.690-696, 1995.

N. Hogg, I. Patzak, and F. Willenbrock, The insider's guide to leukocyte integrin signalling and function, Nat. Rev. Immunol, vol.11, pp.416-442, 2011.

X. Liu, Endogenous tumor-reactive CD8 + T cells are differentiated effector cells expressing high levels of CD11a and PD-1 but are unable to control tumor growth, Oncoimmunology, vol.2, p.23972, 2013.

E. Traunecker, Blocking of LFA-1 enhances expansion of Th17 cells induced by human CD14 + CD16 ++ nonclassical monocytes, Eur. J. Immunol, vol.45, pp.1414-1425, 2015.

P. Stanley, Intermediate-affinity LFA-1 binds alpha-actinin-1 to control migration at the leading edge of the T cell, EMBO J, vol.27, pp.62-75, 2008.

Q. Ma, Activation-induced conformational changes in the I domain region of lymphocyte function-associated antigen 1, J. Biol. Chem, vol.277, pp.10638-10679, 2002.

K. Peter and T. E. O'toole, Modulation of cell adhesion by changes in alpha L beta 2 (LFA-1, CD11a/CD18) cytoplasmic domain/cytoskeleton interaction, J. Exp. Med, vol.181, pp.315-341, 1995.

G. Constantin, Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow, Immunity, vol.13, pp.759-69, 2000.

C. T. Lefort, Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation, Blood, vol.119, pp.4275-82, 2012.

T. A. Springer and M. L. Dustin, Integrin inside-out signaling and the immunological synapse, Curr. Opin. Cell Biol, vol.24, pp.107-122, 2012.

K. Katagiri, M. Shimonaka, and T. Kinashi, Rap1-mediated lymphocyte function-associated antigen-1 activation by the T cell antigen receptor is dependent on phospholipase C-gamma1

, J. Biol. Chem, vol.279, pp.11875-81, 2004.

N. Hogg, I. Patzak, and F. Willenbrock, The insider's guide to leukocyte integrin signalling and function, Nat. Rev. Immunol, vol.11, pp.416-442, 2011.

Y. Zhang and H. Wang, Integrin signalling and function in immune cells, Immunology, vol.135, pp.268-75, 2012.

A. Smith, A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes, J. Cell Biol, vol.170, pp.141-51, 2005.

M. Moser, K. R. Legate, R. Zent, and R. Fässler, The tail of integrins, talin, and kindlins, Science, vol.324, pp.895-904, 2009.

R. Hart, P. Stanley, P. Chakravarty, and N. Hogg, The kindlin 3 pleckstrin homology domain has-253an essential role in lymphocyte function-associated antigen 1 (LFA-1) integrin-mediated B cell adhesion and migration, J. Biol. Chem, vol.288, pp.14852-14862, 2013.

K. Katagiri, A. Maeda, M. Shimonaka, and T. Kinashi, RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1, Nat. Immunol, vol.4, pp.741-748, 2003.

A. Gérard, A. E. Mertens, R. A. Van-der-kammen, and J. G. Collard, The Par polarity complex regulates Rap1-and chemokine-induced T cell polarization, J. Cell Biol, vol.176, pp.863-75, 2007.

T. S. Gomez and D. D. Billadeau, T cell activation and the cytoskeleton: you can't have one without the other, Adv. Immunol, vol.97, pp.1-64, 2008.

M. Shimaoka, J. Takagi, and T. A. Springer, Conformational regulation of integrin structure and function, Annu. Rev. Biophys. Biomol. Struct, vol.31, pp.485-516, 2002.

I. Dransfield, C. Cabañas, A. Craig, and N. Hogg, Divalent cation regulation of the function of the leukocyte integrin LFA-1, J. Cell Biol, vol.116, pp.219-245, 1992.

K. G. Campellone and M. D. Welch, A nucleator arms race: cellular control of actin assembly, Nat. Rev. Mol. Cell Biol, vol.11, pp.237-51, 2010.

A. Tomar, Regulation of cell motility by tyrosine phosphorylated villin, Mol. Biol. Cell, vol.15, pp.4807-4824, 2004.

L. Blanchoin, R. Boujemaa-paterski, C. Sykes, and J. Plastino, Actin dynamics, architecture, and mechanics in cell motility, Physiol. Rev, vol.94, pp.235-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943523

L. Dupré, R. Houmadi, C. Tang, J. Rey-barroso, and . Lymphocyte, Migration: An Action Movie Starring the Actin and Associated Actors, Front. Immunol, vol.6, p.586, 2015.

E. Klotzsch, J. Stiegler, E. Ben-ishay, and K. Gaus, Do mechanical forces contribute to nanoscale membrane organisation in T cells?, Biochim. Biophys. Acta, vol.1853, pp.822-831, 2015.

A. Chazeau, Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion, EMBO J, vol.33, pp.2745-64, 2014.

E. D. Goley and M. D. Welch, The ARP2/3 complex: an actin nucleator comes of age, Nat. Rev. Mol. Cell Biol, vol.7, pp.713-739, 2006.

M. D. Welch and M. Way, Arp2/3-mediated actin-based motility: a tail of pathogen abuse, Cell Host Microbe, vol.14, pp.242-55, 2013.

H. Miki, K. Miura, and T. Takenawa, N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases, EMBO J, vol.15, pp.5326-5361, 1996.

J. C. Nolz, The WAVE2 complex regulates T cell receptor signaling to integrins via Abland CrkL-C3G-mediated activation of Rap1, J. Cell Biol, vol.182, 2008.

H. D. Ochs and A. J. Thrasher, The Wiskott-Aldrich syndrome, J. Allergy Clin. Immunol, vol.117, p.739, 2006.

M. Peacocke and K. A. Siminovitch, Linkage of the Wiskott-Aldrich syndrome with polymorphic DNA sequences from the human X chromosome, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.3430-3433, 1987.

A. J. Thrasher and S. O. Burns, WASP: a key immunological multitasker, Nat. Rev. Immunol, vol.10, pp.182-92, 2010.

M. P. Blundell, Phosphorylation of WASp is a key regulator of activity and stability in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.15738-15781, 2009.

G. Bouma, Cytoskeletal remodeling mediated by WASp in dendritic cells is necessary for normal immune synapse formation and T-cell priming, Blood, vol.118, pp.2492-501, 2011.

J. De-meester, R. Calvez, S. Valitutti, and L. Dupré, The Wiskott-Aldrich syndrome protein regulates CTL cytotoxicity and is required for efficient killing of B cell lymphoma targets, J. Leukoc. Biol, vol.88, pp.1031-1071, 2010.

L. Dupré, Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation, Immunity, vol.17, pp.157-66, 2002.

G. Bouma, S. O. Burns, and A. J. Thrasher, Wiskott-Aldrich Syndrome: Immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation, Immunobiology, vol.214, pp.778-90, 2009.

Y. Ideses, Y. Brill-karniely, L. Haviv, A. Ben-shaul, and A. Bernheim-groswasser, Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro, PLoS One, vol.3, p.3297, 2008.

N. Ramesh, I. M. Antón, J. H. Hartwig, and R. S. Geha, WIP, a protein associated with wiskottaldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells

, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.14671-14677, 1997.

M. D. Gallego, WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1alpha, Int. Immunol, vol.18, pp.221-253, 2006.

S. Fried, Triple-color FRET analysis reveals conformational changes in the WIP-WASp actin-regulating complex, Sci. Signal, vol.7, p.60, 2014.

M. A. De-la-fuente, WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP)

, Proc. Natl. Acad. Sci, vol.104, pp.926-931, 2007.

A. Konno, M. Kirby, S. A. Anderson, P. L. Schwartzberg, and F. Candotti, The expression of Wiskott-Aldrich syndrome protein (WASP) is dependent on WASP-interacting protein (WIP)

, Int. Immunol, vol.19, pp.185-192, 2007.

Y. Sasahara, WASP-WIP complex in the molecular pathogenesis of Wiskott-Aldrich syndrome, Pediatr. Int, vol.58, pp.4-7, 2016.

G. Lanzi, A novel primary human immunodeficiency due to deficiency in the WASPinteracting protein WIP, J. Exp. Med, vol.209, pp.29-34, 2012.

Y. Watanabe, T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation, J. Allergy Clin. Immunol, vol.132, p.1, 2013.

H. Chou, WIP regulates the stability and localization of WASP to podosomes in migrating dendritic cells, Curr. Biol, vol.16, pp.2337-2381, 2006.

N. S. Poulter, Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex, Nat. Commun, vol.6, p.7254, 2015.

C. M. Labno, Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP, Curr. Biol, vol.13, pp.1619-1624, 2003.

T. N. Sims, Opposing Effects of PKC?? and WASp on Symmetry Breaking and Relocation of the Immunological Synapse, Cell, vol.129, pp.773-785, 2007.

J. L. Cannon and J. K. Burkhardt, Differential roles for Wiskott-Aldrich syndrome protein in immune synapse formation and IL-2 production, J. Immunol, vol.173, pp.1658-1662, 2004.

M. Kim, C. V. Carman, W. Yang, A. Salas, and T. A. Springer, The primacy of affinity over clustering in regulation of adhesiveness of the integrin {alpha}L{beta}2, J. Cell Biol, vol.167, pp.1241-53, 2004.

A. Cambi, Organization of the integrin LFA-1 in nanoclusters regulates its activity, Mol. Biol. Cell, vol.17, pp.4270-81, 2006.

M. Ishibashi, Integrin LFA-1 regulates cell adhesion via transient clutch formation, Biochem. Biophys. Res. Commun, vol.464, pp.459-66, 2015.

J. Qin, O. Vinogradova, and E. F. Plow, Integrin bidirectional signaling: a molecular view, PLoS Biol, vol.2, p.169, 2004.

M. P. Blundell, A. Worth, G. Bouma, and A. J. Thrasher, The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function, Dis. Markers, vol.29, pp.157-75, 2010.

L. S. Westerberg, Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes, J Exp Med, vol.207, pp.1145-1152, 2010.

H. D. Ochs, A. H. Filipovich, P. Veys, M. J. Cowan, and N. Kapoor, Wiskott-Aldrich Syndrome: Diagnosis, Clinical and Laboratory Manifestations, and Treatment, Biol. Blood Marrow Transplant, vol.15, pp.84-90, 2009.

V. M. Sanders, J. M. Snyder, J. W. Uhr, and E. S. Vitetta, Characterization of the physical interaction between antigen-specific B and T cells, J. Immunol, vol.137, pp.2395-404, 1986.

. Miller, H. C. Morse, J. Winkelstein, and N. Nathanson, The role of antibody in recovery from experimental rabies. I. Effect of depletion of B and T cells, J. Immunol, vol.121, pp.321-326, 1978.

B. Alarcón, D. Mestre, and N. Martínez-martín, The immunological synapse: a cause or consequence of T-cell receptor triggering?, Immunology, vol.133, pp.420-425, 2011.

C. Brossard, Multifocal structure of the T cell-dendritic cell synapse, Eur. J. Immunol, vol.35, pp.1741-53, 2005.

C. R. Monks, . Freiberg, H. Kupfer, N. Sciaky, and . Kupfer, Three-dimensional segregation of supramolecular activation clusters in T cells, Nature, vol.395, pp.82-86, 1998.

W. Comrie, A. Babich, and J. K. Burkhardt, F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse, J. Cell Biol, vol.208, pp.475-91, 2015.

A. Hashimoto-tane, Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation, J. Exp. Med, vol.213, pp.1609-1634, 2016.

T. Yokosuka, Spatiotemporal Regulation of T Cell Costimulation by TCR-CD28 Microclusters and Protein Kinase C ??, Translocation. Immunity, vol.29, pp.589-601, 2008.

T. Yokosuka and T. Saito, Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters, Immunol. Rev, vol.229, pp.27-40, 2009.

W. A. Comrie and J. K. Burkhardt, Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse, Front. Immunol, vol.7, p.68, 2016.

J. Zhu, Structure of a Complete Integrin Ectodomain in a Physiologic Resting State and Activation and Deactivation by Applied Forces, Mol. Cell, vol.32, pp.849-861, 2008.

J. Theorell, Sensitive and viable quantification of inside-out signals for LFA-1 activation in human cytotoxic lymphocytes by flow cytometry, J. Immunol. Methods, vol.366, pp.106-118, 2011.

S. D. Marlin, C. C. Morton, D. C. Anderson, and T. Springer, LFA-1 immunodeficiency disease. Definition of the genetic defect and chromosomal mapping of alpha and beta subunits of the lymphocyte function-associated antigen 1 (LFA-1) by complementation in hybrid cells, J. Exp

. Med, , vol.164, pp.855-67, 1986.

F. Miedema, Immunologic studies with LFA-1 and Mo1-deficient lymphocytes from a patient with recurrent bacterial infections, J. Immunol, vol.134, pp.3075-3081, 1985.

Y. Kaufmann and G. Berke, Monoclonal cytotoxic T lymphocyte hybridomas capable of specific killing activity, antigenic responsiveness, and inducible interleukin secretion, J Immunol, vol.131, pp.50-56, 1983.

A. T. Ritter, Actin depletion initiates events leading to granule secretion at the immunological synapse, Immunity, vol.42, pp.864-76, 2015.

J. C. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. M. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.444, pp.236-236, 2006.

A. C. Brown, Remodelling of cortical actin where lytic granules dock at Natural Killer cell immune synapses revealed by super-resolution microscopy, PLoS Biol, vol.9, 2011.

A. T. Ritter, Cortical actin recovery at the immunological synapse leads to termination of lytic granule secretion in cytotoxic T lymphocytes, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.6585-6594, 2017.

R. Basu, Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing, Cell, vol.165, pp.100-110, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01317871

N. Nishida, Activation of leukocyte beta2 integrins by conversion from bent to extended conformations, Immunity, vol.25, pp.583-94, 2006.

A. Kechkar, D. Nair, M. Heilemann, D. Choquet, and J. B. Sibarita, Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy, PLoS One, vol.8, 2013.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, Multicolor super-resolution imaging with photo-switchable fluorescent probes, Science, vol.317, 2007.

D. R. Whelan and T. D. Bell, Image artifacts in Single Molecule Localization Microscopy: why optimization of sample preparation protocols matters, Sci. Rep, vol.5, p.7924, 2015.

S. Avilov, In cellulo evaluation of phototransformation quantum yields in fluorescent proteins used as markers for single-molecule localization microscopy, PLoS One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093348

K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, Innovation: Photoactivatable fluorescent proteins, Nat. Rev. Mol. Cell Biol, vol.6, pp.885-91, 2005.

N. C. Shaner, G. H. Patterson, and M. W. Davidson, Advances in fluorescent protein technology

, J. Cell Sci, vol.120, pp.4247-60, 2007.

A. J. Ridley, Life at the leading edge, Cell, vol.145, pp.1012-1022, 2011.

M. A. Kiskowski, J. F. Hancock, and A. K. Kenworthy, On the use of Ripley's K-function and its derivatives to analyze domain size, Biophys. J, vol.97, pp.1095-1103, 2009.

J. Rossy, D. M. Owen, D. J. Williamson, Z. Yang, and K. Gaus, Conformational states of the kinase Lck regulate clustering in early T cell signaling, Nat. Immunol, vol.14, pp.82-89, 2012.

D. M. Owen, PALM imaging and cluster analysis of protein heterogeneity at the cell surface, J. Biophotonics, vol.3, pp.446-454, 2010.

P. Kanchanawong, Nanoscale architecture of integrin-based cell adhesions, Nature, vol.468, pp.580-584, 2010.

R. Shamri, Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines, Nat. Immunol, vol.6, pp.497-506, 2005.

C. W. Cairo, R. Mirchev, and D. E. Golan, Cytoskeletal regulation couples LFA-1 conformational changes to receptor lateral mobility and clustering, Immunity, vol.25, pp.297-308, 2006.

J. Yi, X. S. Wu, T. Crites, and J. A. Hammer, Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells

, Mol. Biol. Cell, vol.23, pp.834-52, 2012.

N. Anikeeva, Distinct role of lymphocyte function-associated antigen-1 in mediating effective cytolytic activity by cytotoxic T lymphocytes, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.6437-6479, 2005.

K. Somersalo, Cytotoxic T lymphocytes form an antigen-independent ring junction, J. Clin. Invest, vol.113, pp.49-57, 2004.

C. R. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer, Pillars article: Threedimensional segregation of supramolecular activation clusters in T cells, J. Immunol, vol.395, pp.4061-4066, 1998.

. Grakoui, The immunological synapse: a molecular machine controlling T cell activation, Science, vol.285, pp.221-228, 1999.

Y. Kaizuka, A. D. Douglass, R. Varma, M. L. Dustin, and R. D. Vale, Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells, Proc. Natl. Acad. Sci, vol.104, pp.20296-20301, 2007.

M. R. Sarantos, S. Raychaudhuri, A. F. Lum, D. E. Staunton, and S. I. Simon, Leukocyte function-associated antigen 1-mediated adhesion stability is dynamically regulated through affinity and valency during bond formation with intercellular adhesion molecule-1, J. Biol

, Chem, vol.280, pp.28290-28298, 2005.

T. S. Van-zanten, Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.18557-18562, 2009.

P. Nordenfelt, H. L. Elliott, and T. A. Springer, Coordinated integrin activation by actindependent force during T-cell migration, Nat. Commun, vol.7, p.13119, 2016.

S. Kumari, Actin foci facilitate activation of the phospholipase C-? in primary T lymphocytes via the WASP pathway, Elife, vol.4, pp.1-31, 2015.

E. Tabdanov, Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells, Integr. Biol. (Camb), vol.7, pp.1272-84, 2015.

J. C. Stinchcombe, G. Bossi, S. Booth, and G. M. Griffiths, The immunological synapse of CTL contains a secretory domain and membrane bridges, Immunity, vol.15, pp.751-761, 2001.

R. Calvez, The wiskott-aldrich syndrome protein permits assembly of a focused immunological synapse enabling sustained T-cell receptor signaling, Haematologica, vol.96, pp.1415-262

Z. Vasconcelos, Individual Human Cytotoxic T Lymphocytes Exhibit Intraclonal Heterogeneity during Sustained Killing, Cell Rep, vol.11, pp.1474-1485, 2015.

Z. Fan and K. Ley, Leukocyte Adhesion Deficiency IV. Monocyte Integrin Activation Deficiency in Cystic Fibrosis, Am. J. Respir. Crit. Care Med, vol.193, pp.1075-1082, 2016.

T. W. Kuijpers, Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins, J. Clin. Invest, vol.100, pp.1725-1758, 1997.

A. Smith, The role of the integrin LFA-1 in T-lymphocyte migration, Immunol. Rev, vol.218, pp.135-146, 2007.

B. E. Bierer and S. J. Burakoff, T cell adhesion molecules, FASEB J, vol.2, pp.2584-90, 1988.

J. M. Serrador, M. Nieto, and F. Sánchez-madrid, Cytoskeletal rearrangement during migration and activation of T lymphocytes, Trends Cell Biol, vol.9, pp.228-292, 1999.

E. P. Wojcikiewicz, M. H. Abdulreda, X. Zhang, and V. T. Moy, Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2, Biomacromolecules, vol.7, pp.3188-95, 2006.

M. A. Del-pozo, M. Vicente-manzanares, R. Tejedor, J. M. Serrador, and F. Sánchez-madrid, Rho GTPases control migration and polarization of adhesion molecules and cytosketetal ERM components in T lymphocytes, Eur. J. Immunol, vol.29, pp.3609-3620, 1999.

M. Bolomini-vittori, Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module, Nat. Immunol, vol.10, pp.185-194, 2009.

K. S. Weber, L. B. Klickstein, and C. Weber, Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains, Mol. Biol. Cell, vol.10, pp.861-73, 1999.

G. Cascio, CXCL12 Regulates through JAK1 and JAK2 Formation of Productive Immunological Synapses, J. Immunol, vol.194, pp.5509-5528, 2015.

E. Woolf, Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces, Nat. Immunol, vol.8, pp.1076-1085, 2007.

B. Molon, T cell costimulation by chemokine receptors, Nat. Immunol, vol.6, pp.465-71, 2005.

S. W. Feigelson, Kindlin-3 is required for the stabilization of TCR-stimulated LFA-1:ICAM1 bonds critical for lymphocyte arrest and spreading on dendritic cells, Blood, vol.117, pp.7042-52, 2011.

L. Y. Romanova and J. F. Mushinski, Central role of paxillin phosphorylation in regulation of LFA1 integrins activity and lymphocyte migration, Cell Adhes. Migr, vol.5, pp.457-462, 2011.

G. L. Burn, Superresolution imaging of the cytoplasmic phosphatase PTPN22 links integrin-mediated T cell adhesion with autoimmunity, Sci. Signal, vol.9, p.99, 2016.

P. Sengupta, Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis, Nat. Methods, vol.8, pp.969-975, 2011.

A. Basil, W. Wassef, and . Endomicroscopy, Confocal Laser Microscopy-Principles and Applications in Medicine, Biology, and the Food Sciences, 2013.

, Organisation spatiale de LFA-1 à la synapse immunologique des lymphocytes T cytotoxiques : approches de microscopie de super-résolution

, LFA-1 (Lymphocyte Function Associated antigen-1) est une intégrine centrale dans la fonction cytotoxique des lymphocytes T CD8 + car elle permet la formation de la synapse immunologique avec les cellules cibles. La régulation de cette interaction cellulaire est contrôlée par la qualité de l'engagement de LFA-1 avec son ligand ICAM-1

, Le but de ce projet de thèse est d'étudier l'organisation précise de la distribution de LFA-1 à la synapse immunologique en relation avec l'actine corticale sous-jacente au contact entre lymphocytes T cytotoxiques et les cellules présentatrices d'antigènes. Pour ce faire, des approches de microscopies de super-résolution SIM (Structured Illumination Microscopy), dSTORM (direct STochastic Optical Reconstruction Microscopy) et TIRF (Total Internal Reflexion Fluorescence microscopy) ont été développées. Elles ont été appliquées à des lymphocytes T humains non transformés dérivés de contrôles sains et de patients atteints d'une immunodéficience congénitale, le Syndrome de Wiskott-Aldrich (WAS), caractérisé par un défaut de remodelage du cytosquelette d'actine à la synapse immunologique. L'emploi de l'approche de dSTORM en mode TIRF nous a permis de révéler que dans sa conformation activée, LFA-1 forme à la synapse une ceinture radiale composée de centaines de nano-clusters. L'intégrité du cytosquelette d'actine et notamment la protéine WASP s'avèrent importantes pour la formation de la ceinture de nano-clusters de LFA-1, comme le montre le défaut de formation de cette ceinture dans les lymphocytes de patients WAS. L'approche de SIM multi-couleur nous a permis de révéler le rôle de la ceinture de LFA-1 dans le confinement des granules lytiques. Par comparaison de marquages avec des anticorps spécifiques de différentes conformations de LFA-1, notre travail montre également que l'activation de LFA-1 s'opère de manière digitale, dans le sens où les nano-clusters fonctionnent comme des unités au sein desquelles l'activation de LFA-1, Un support clef au contrôle spatio-temporel de l'activation de LFA-1 est le cytosquelette d'actine cortical dans lequel est ancré LFA-1 par son domaine intracellulaire. Comment LFA-1 est organisée à la synapse immunologique et comment la coordination entre LFA-1 et cytosquelette d'actine s'opère de manière précise au sein des lymphocytes T CD8 + cytotoxiques sont des questions non résolues