A. Einstein, Eine neue Bestimmung der Moleküldimensionen, Annalen der Physik, vol.324, pp.289-306, 1906.

A. Einstein, Eine neue Bestimmung der Moleküldimensionen, Annalen der Physik, vol.339, pp.591-592, 1911.

O. Gold, Beiträge zur Hydrodynamik der zähen Flüssigkeiten, 1936.

E. Guth and R. Simha, Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen, Colloid & Polymer Science, vol.74, pp.266-275, 1936.

G. K. Batchelor and J. T. Green, The determination of the bulk stress in a suspension of spherical particles to order c 2, Journal of Fluid Mechanics, vol.56, issue.03, pp.401-427, 1972.

G. K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics, vol.83, pp.97-117, 1977.

H. Eilers, Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration, pp.313-321, 1941.

S. H. Maron and P. E. Pierce, Application of Ree-Eyring generalized flow theory to suspensions of spherical particles, Journal of Colloid Science, vol.11, issue.1, pp.80-95, 1956.

I. M. Krieger and T. J. Dougherty, A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres, Transactions of The Society of Rheology, vol.3, pp.137-152, 1959.

G. B. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.102, pp.161-179, 1922.

G. L. Hand, A theory of dilute suspensions, Archive for Rational Mechanics and Analysis, vol.7, pp.81-86, 1961.

H. Brenner, Suspension rheology in the presence of rotary Brownian motion and external couples: elongational flow of dilute suspensions, Chemical Engineering Science, vol.27, pp.80021-80027, 1972.

E. J. Hinch and L. G. Leal, The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, Journal of Fluid Mechanics, vol.52, p.683, 1972.

G. Lipscomb, M. Denn, D. Hur, and D. Boger, The flow of fiber suspensions in complex geometries, In: Journal of Non-Newtonian Fluid Mechanics, vol.26, pp.80023-80028, 1988.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, vol.6, 1987.

G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge Mathematical Library, p.9780521663960, 1985.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics. Kluwer, pp.90-247, 1983.

M. A. Lauffer, Motion in viscous liquids: Simplified derivations of the Stokes and Einstein equations, Journal of Chemical Education, vol.58, pp.250-256, 1981.

B. M. Haines and A. L. Mazzucato, A Proof of Einstein's Effective Viscosity for a Dilute Suspension of Spheres". en, SIAM Journal on Mathematical Analysis, vol.44, issue.3, pp.2120-2145, 2012.

H. Ammari, P. Garapon, H. Kang, and H. Lee, Effective viscosity properties of dilute suspensions of arbitrarily shaped particles, Asymptotic Analysis, vol.80, pp.189-211, 2012.

J. R. Bautista-quijano, F. Avilés, J. O. Aguilara, and A. Tapia, Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film, Sensors and Actuators, vol.159, pp.135-140, 2010.

J. R. Bautista-quijano, P. Pötschke, H. Brünig, and G. Heinrich, Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning, Polymer (United Kingdom), vol.82, pp.181-189, 2016.

E. S. Bhagavatheswaran, Construction of an Interconnected Nanostructured Carbon Black Network: Development of Highly Stretchable and Robust Elastomeric Conductors, Journal of Physical Chemistry C, vol.119, pp.21723-21731, 2015.

D. Y. Borin, G. V. Stepanov, and S. Odenbach, Tuning the tensile modulus of magnetorheological elastomers with magnetically hard powder, Journal of Physics: Conference Series, vol.412, p.12040, 2013.

C. W. Karl, J. Mcintyre, T. Alshuth, and M. Klüppel, Magneto-rheological elastomers with switchable mechanical properties, KGK Kautschuk Gummi Kunststoffe, vol.66, pp.46-53, 2013.

C. Hintze, Soft magnetic Elastomers with controllable Stiffness: Experiments and Modelling, Kautschuk Gummi Kunststoffe, vol.67, pp.53-59, 2014.

F. R. Costa, M. Saphiannikova, U. Wagenknecht, and G. Heinrich, Layered Double Hydroxide Based Polymer Nanocomposites, Wax Crystal Control · Nanocomposites · Stimuli-Responsive Polymers. Advances in Polymer Science, pp.101-168, 2007.

T. A. Osswald and N. Rudolph, Polymer Rheology, 2015.

D. J. Highgate and R. W. Whorlow, Rheological properties of suspensions of spheres in non-Newtonian media, Rheologica Acta, vol.9, pp.569-576, 1970.

L. Nicodemo and L. Nicolais, Viscosity of bead suspensions in polymeric solutions, Journal of Applied Polymer Science, vol.18, pp.2809-2818, 1974.

A. J. Poslinski, M. E. Ryan, R. K. Gupta, S. G. Seshadri, and F. J. Frechette, Rheological Behavior of Filled Polymeric Systems I. Yield Stress and Shear-Thinning Effects, Journal of Rheology, vol.32, p.703, 1988.

B. Lee and M. Mear, Effect of inclusion shape on the stiffness of nonlinear two-phase composites, Journal of the Mechanics and Physics of Solids, vol.39, pp.627-649, 1991.

J. Laven and H. N. Stein, The Einstein coefficient of suspensions in generalized Newtonian liquids, Journal of Rheology, vol.35, p.1523, 1991.

X. Chateau, G. Ovarlez, and K. L. Trung, Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids, Journal of Rheology, vol.52, p.489, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00490785

R. I. Tanner, F. Qi, and K. D. Housiadas, A differential approach to suspensions with power-law matrices, In: Journal of Non-Newtonian Fluid Mechanics, vol.165, pp.1677-1681, 2010.

A. G. Gibson and S. Toll, Mechanics of the squeeze flow of planar fibre suspensions, In: Journal of Non-Newtonian Fluid Mechanics, vol.82, p.127, 1999.

B. Souloumiac and M. Vincent, Steady shear viscosity of short fibre suspensions in thermoplastics, Rheologica Acta, vol.37, pp.289-298, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00574898

G. D'avino, Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results, Journal of Rheology, vol.52, p.1331, 2008.

Y. J. Choi and M. A. Hulsen, Alignment of particles in a confined shear flow of a viscoelastic fluid, Journal of Non-Newtonian Fluid Mechanics, pp.89-103, 2012.

G. D'avino, M. A. Hulsen, F. Greco, and P. L. Maffettone, Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid, Physical Review E, vol.89, p.43006, 2014.

M. Trofa, Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow, Computers & Fluids, vol.107, pp.214-223, 2015.

G. , Computational rheology of solid suspensions, 2009.

O. Harlen, M. Walkley, and S. Yoon, Two particle interactions in a confined viscoelastic fluid under shear, In: Journal of Non-Newtonian Fluid Mechanics, pp.39-48, 2012.

G. D'avino, F. Greco, M. A. Hulsen, and P. L. Maffettone, Rheology of viscoelastic suspensions of spheres under small and large amplitude oscillatory shear by numerical simulations, In: Journal of Rheology, vol.57, p.813, 2013.

M. Kamal and A. Mutel, Rheological Properties of Suspensions in Newtonian and Non-Newtonian Fluids, Journal of Polymer Engineering, vol.5, pp.293-382, 1985.

A. B. Metzner, Rheology of Suspensions in Polymeric Liquids, Journal of Rheology, vol.29, p.739, 1985.

A. Y. Malkin, Rheology of filled polymers, Advances in Polymer Science, vol.96, pp.69-97, 1990.

H. A. Barnes, A Review Of The Rheology Of Filled Viscoelastic Systems, Rheology Reviews, pp.1-36, 2003.

Y. Wang, J. Xu, E. Bechtel, and K. K. , Melt shear rheology of carbon nanofiber/polyestyrene composites, Rheologica Acta, vol.45, pp.919-941, 2006.

C. Kagarise, K. W. Koelling, Y. Wang, and S. E. Bechtel, A unified model for polystyrenenanorod and polystyrene-nanoplatelet melt composites, Rheologica Acta, vol.47, pp.1061-1076, 2008.

R. G. Larson, The Structure and Rheology of Complex Fluids, pp.978-0195121971, 1999.

C. W. Macosko, Rheology-Principles, Measurements and Applications, pp.978-0471185758, 1994.

L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol.9, pp.2993-3009, 1965.

J. Domurath, M. Saphiannikova, and G. Heinrich, The concept of hydrodynamic amplification in filled elastomers, KGK Kautschuk Gummi Kunststoffe, vol.70, pp.40-43, 2017.

H. Chen and A. Acrivos, The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations, International Journal of Solids and Structures, vol.14, pp.90017-90020, 1978.

H. M. Laun, Rheological properties of aqueous polymer dispersions, Macromolecular Materials and Engineering, vol.123, pp.335-359, 1984.

J. Mewis and N. J. Wagner, Colloidal Suspension Rheology. Cambridge Series in Chemical Engineering, p.9780521515993, 2012.

R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Fluid Mechanics, vol.1, pp.978-978, 1987.

P. J. Carreau, D. Kee, and R. Chhabra, Rheology of Polymeric Systems: Principles and Applications, p.9781569902189, 1997.

R. H. Colby, D. C. Boris, W. E. Krause, and S. Dou, Shear thinning of unentangled flexible polymer liquids, Rheologica Acta, vol.46, issue.5, pp.569-575, 2006.

J. Domurath, M. Saphiannikova, G. Ausias, and G. Heinrich, Modelling of stress and strain amplification effects in filled polymer melts, Journal of Non-Newtonian Fluid Mechanics, pp.8-16, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00987075

P. Suquet, Effective properties of nonlinear composites, Continuum Micromechanics, p.9783211829028, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00111291

M. Schikowsky, Theoretische Untersuchungen zum Spannungs-Dehnungs-Verhalten rußgefüllter Netzwerke, 1988.

S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, p.9780750691734, 1991.

J. L. Ericksen, Transversely isotropic fluids". In: Kolloid-Zeitschrift, vol.173, pp.117-122, 1960.

H. Giesekus, Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmungen sämtliche Normalspannungskomponenten verschieden groß sind, Rheologica Acta, vol.2, issue.1, pp.50-62, 1962.

E. J. Hinch and L. G. Leal, Time-dependent shear flows of a suspension of particles with weak Brownian rotations, Journal of Fluid Mechanics, vol.57, p.753, 1973.

C. Binetruy, F. Chinesta, and R. Keunings, Flows in Polymers, Reinforced Polymers and Composites, 2015.

G. K. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes flow, Journal of Fluid Mechanics, vol.44, pp.419-440, 1970.

G. K. Batchelor, The stress generated in a non-dilute suspension of elongated particles by pure straining motion, Journal of Fluid Mechanics, vol.46, p.813, 1971.

G. Ausias, Une rhéologie des suspensions : Applications aux composites à matrices thermoplastiques". Habilitation, 2007.

J. Férec, Nonlinear rheology of non-spherical particle suspensions, Habilitation. Université de, 2016.

J. Thomasset, P. J. Carreau, B. Sanschagrin, and G. Ausias, Rheological properties of long glass fiber filled polypropylene, Journal of Non-Newtonian Fluid Mechanics, vol.125, pp.25-34, 2005.

J. Férec, Investigation of the rheological properties of short glass fiber-filled polypropylene in extensional flow, Rheologica Acta, vol.48, pp.59-72, 2009.

C. Geuzaine and J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.79, pp.1309-1331, 2009.

G. Astarita, Scale-up problems arising with non-Newtonian fluids, In: Journal of NonNewtonian Fluid Mechanics, vol.4, pp.80001-80005, 1979.

M. J. Crochet, A. R. Davies, and K. Walters, Numerical Simulation of Non-Newtonian Flow, pp.0-444, 1984.

A. B. Metzner and J. C. Reed, Flow of non-newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions, AIChE Journal, vol.1, pp.434-440, 1955.

K. Madlener, B. Frey, and H. K. Ciezki, Generalized reynolds number for non-newtonian fluids, Progress in Propulsion Physics, vol.1, pp.237-250, 2009.

,

I. T. Dosunmu and S. N. Shah, Pressure drop predictions for laminar pipe flow of carreau and modified power law fluids, Canadian Journal of Chemical Engineering, vol.93, pp.929-934, 2015.

R. P. Chhabra, Motion of spheres in power law (viscoinelastic) fluids at intermediate Reynolds numbers: a unified approach, Chemical Engineering and Processing, vol.28, pp.89-94, 1990.

D. I. Graham and T. E. Jones, Settling and Transport of Spherical-Particles in PowerLaw Fluids At Finite Reynolds-Number, Journal of NonNewtonian Fluid Mechanics, vol.54, pp.80037-80042, 1994.

N. Kishore and R. R. Ramteke, Slip in flows of power-law liquids past smooth spherical particles, Acta Mechanica, vol.226, pp.2555-2571, 2015.

C. Lin, J. H. Peery, and W. R. Schowalter, Simple shear flow round a rigid sphere: inertial effects and suspension rheology, Journal of Fluid Mechanics, vol.44, pp.1-17, 1970.

C. Großmann and H. G. Roos, Numerische Behandlung partieller Differentialgleichungen. Teubner Studienbücher Mathematik, p.9783519220893, 2005.

M. Larson and F. Bengzon, The finite element method: theory, implementation, and applications, vol.10, pp.978-981, 2013.

D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, vol.44, 2013.

A. Logg and G. N. Wells, DOLFIN: Automated Finite Element Computing, ACM Transactions on Mathematical Software, vol.37, pp.1-28, 2010.

, Automated Solution of Differential Equations by the Finite Element Method, Lecture Notes in Computational Science and Engineering, vol.84, 2012.

M. S. Alnaes, The FEniCS Project Version 1.5, Archive of Numerical Software, vol.3, pp.9-23, 2015.

, FEniCS Web page, 2016.

P. R. Amestoy, I. S. Duff, J. -y.-l'excellent, and J. Koster, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, pp.15-41, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00808293

. Mumps-web-page, , 2016.

S. Balay, W. D. Gropp, L. C. Mcinnes, and B. F. Smith, Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.

S. Balay, ANL-95/11-Revision 3.6. Argonne National Laboratory, 2015.

S. Balay, PETSc Web page, 2016.

H. H. Hu, N. Patankar, and M. Zhu, Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique, Journal of Computational Physics, vol.169, pp.427-462, 2001.

G. K. Batchelor, The stress system in a suspension of force-free particles, Journal of Fluid Mechanics, vol.41, pp.545-570, 1970.

R. Hill, Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, vol.11, issue.63, p.90036, 1963.

Z. Hashin, Theory of Mechanical Behavior of Heterogeneous Media, In: Applied Mechanics Reviews, vol.17, pp.1-9, 1964.

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, p.9780387951676, 2002.

G. Milton, Cambridge monographs on applied and computational mathematics, vol.6, pp.0-521, 2002.

T. Zohdi and P. Wriggers, An Introduction to Computational Micromechanics, Lecture Notes in Applied and Computational Mechanics, p.9783540774822, 2008.

M. H. Wagner, Zur Netzwerktheorie von Polymer-Schmelzen, Rheologica Acta, vol.18, pp.33-50, 1979.

P. P. Castañeda, The effective mechanical properties of nonlinear isotropic composites, Journal of the Mechanics and Physics of Solids, vol.39, p.90030, 1991.

M. Doi and S. F. Edwards, Dynamics of concentrated polymer systems. Part 2.-Molecular motion under flow, Journal of the Chemical Society, vol.2, pp.1802-1817, 1978.

M. E. Gurtin, E. Fried, and L. Anand, The Mechanics and Thermodynamics of Continua, 2010.

A. .. Abbreviations, Transversely Isotropic Fluid List of Figures 1.1. Relative change in viscosity for a LDPE melt filled with nano clay

. , Viscosity data of Poslinski et al. [31] for a thermoplastic melt filled with glass spheres, Viscosity vs. shear stress for a suspension of polymer spheres in water, from Laun [56]

. , Sketch of the shift factors for a generalized Newtonian fluid

. Data-of-poslinski, 18 2.6. Sketch of a spheroidal particle, p.29

. .. Domain, Sketch of a fluid domain with one immersed particle, vol.45

. , Comparison of the intrinsic viscosity for a Newtonian fluid using the volume average and the stresslet

.. .. , Example meshes for different values of a used to check the convergence of volume average and stresslet

, Sketch of the different regions in the Carreau model (2.17) and their corresponding intrinsic viscosities after homogenization, p.55

. , Shift factors extracted from the data of Poslinski et al. [31] by fitting to the Carreau model

, Rheological coefficients , and for the TIF equation, p.23

. , Unique configurations in uniaxial and planar

, Stress and strain amplification in non-Newtonian fluids filled with spherical and anisometric particles, 2017.

, Stress and strain amplification in non-Newtonian fluids filled with spherical and anisometric particles, 2017.

M. Liebscher, J. Domurath, B. Krause, M. Saphiannikova, G. Heinrich et al., Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt mixing parameters, filler dispersion and filler aspect ratio, Journal of Polymer Science Part B: Polymer Physics, vol.56, pp.79-88, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02069309

J. Domurath, M. Saphiannikova, and G. Heinrich, The concept of hydrodynamic amplification in filled elastomers, KGK Kautschuk Gummi Kunststoffe, vol.70, pp.40-43, 2017.

J. Domurath, M. Saphiannikova, J. Férec, G. Ausias, and G. Heinrich, Stress and strain amplification in a dilute suspension of spherical particles based on a Bird-Carreau model, In: Journal of Non-Newtonian Fluid Mechanics, vol.221, issue.0, pp.95-102, 2015.

J. Domurath, M. Saphiannikova, and G. Heinrich, Non-Linear Viscoelasticity of Filled Polymer Melts: Stress and Strain Amplification Approach, Macromolecular Symposia, vol.338, pp.54-61, 2014.

J. Domurath, M. Saphiannikova, G. Ausias, and G. Heinrich, Modelling of stress and strain amplification effects in filled polymer melts, Journal of Non-Newtonian Fluid Mechanics, pp.8-16, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00987075

P. Schneider, L. Zybell, J. Domurath, G. Heinrich, S. V. Roth et al., Investigation of time dependence of dissipation and strain induced crystallization in natural rubber under cyclic and impact loading, Constitutive Models for Rubber X: Proceedings of the European Conference on Constitutive Models for Rubbers X. (Munich, pp.173-177, 2017.

L. Zybell, J. Domurath, and K. Schneider, Thermomechanics of strain-induced crystallization in natural rubber under cyclic loading, PAMM (submitted, 2017.

J. ;. Domurath, M. Domurath, G. Saphiannikova, . ;. Heinrich, M. Domurath et al., Stress and strain amplification in a dilute suspension of spherical particles in a generalized Newtonian fluid, 5th Workshop of the ECEMP International Graduate School, vol.67, p.17, 2014.

J. Domurath, M. Saphiannikova, G. Ausias, J. Férec, and G. Heinrich, Viscosity amplification in dilute suspensions of non-spherical particles in a Carreau matrix fluid, Annual European Rheology Conference (AERC2017), 2017.

L. Zybell, J. Domurath, and K. Schneider, Thermomechanics of strain-induced crystallization in carbon black filled natural rubber under cyclic loading, 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics, 2017.

J. Domurath, M. Saphiannikova, J. Férec, G. Ausias, and G. Heinrich, Viscosity Amplification In Dilute Suspensions Of Non-Spherical Particles In A Non-Newtonian Matrix Fluid, 32nd International Conference of the Polymer Processing Society, 2016.

J. Domurath, M. Saphiannikova, J. Férec, G. Ausias, and G. Heinrich, Viscosity amplification in dilute suspensions of spherical particles with a non-Newtonian matrix fluid, 2014.

J. Domurath and M. Saphiannikova, Approaches to hydrodynamic reinforcement in polymer melts and networks, Dresden Polymer Discussion, p.14, 2014.

S. Westermann, W. Pyckhout-hintzen, J. Domurath, M. Meyer, M. Saphiannikova et al., Matrix chain deformation in reinforced networks-a SANS approach, Dresden Polymer Discussion, p.14, 2014.

J. Domurath, M. Saphiannikova, J. Férec, G. Ausias, and G. Heinrich, Viscosity amplification in dilute suspensions of spherical particles with a non-Newtonian matrix fluid, 9th Annual European Rheology Conference (AERC2014), 2014.

J. Domurath, M. Saphiannikova, T. Horst, and G. Heinrich, Modelling of strain amplification effects in filled elastomers, Rubber Reinforcement by Fillers, Fibres and Textiles, 2012.

J. Domurath, M. Saphiannikova, and G. Heinrich, Modelling of stress and strain amplification effects in filled polymer melts, 7th Annual European Rheology Conference, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00987075

J. Domurath, M. Saphiannikova, and G. Heinrich, Modelling of stress and strain amplification effects in filled polymer melts, DPG Spring Meeting, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00987075

J. Domurath, M. Saphiannikova, and G. Heinrich, Viscosity amplification in dilute suspensions of non-spherical particles in a non-Newtonian matrix fluid, 6th Annual European Rheology Conference, 2010.

J. Domurath, Rheologische Beschreibung gefüllter Polymere, Vorlesungsreihe "Werkstoffe der Zukunft, 2016.

J. Domurath, Estimation of mechanical properties of suspensions with non-Newtonian matrices: analytical and numerical approaches, Institute of Scientific Computing, 2015.

J. Domurath, M. Saphiannikova, G. Ausias, J. Férec, and G. Heinrich, Viscosity amplification in dilute suspensions of non-spherical particles in a Carreau matrix fluid, 2nd Berlin Dresden Prague Würzburg Workshop on "Mathematics of Continuum Mechanics, 2016.

J. Domurath, M. Saphiannikova, J. Férec, G. Ausias, and G. Heinrich, Rheological behaviour of dilute suspensions of non-spherical particles in a non-Newtonian matrix fluid, 10th Annual European Rheology Conference (AERC2015), 2015.

J. Domurath, M. Saphiannikova, T. Horst, and G. Heinrich, Strain amplification effects in filled elastomers, Dresden Polymer Discussion, p.14, 2014.

J. Domurath, M. Saphiannikova, and G. Heinrich, Nonlinear viscoelasticity of filled polymer melts: Stress and strain amplification approach, 9th EUROFILLERS International Conference, 2011.

J. Domurath, M. Saphiannikova, and G. Heinrich, Effects of strain and stress amplification in filled polymer melts, DPG Spring Meeting, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00987075