S. S. Iyer and Y. Xie, Light Emission from Silicon Carbide, Science, vol.260, pp.40-46, 1993.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity, Scientific Reports, vol.4, p.5040, 2014.

P. Moontragoon, Z. Ikoni´cikoni´c, and P. Harrison, Band structure calculations of Si-Ge-Sn alloys : achieving direct band gap materials, Semiconductor Science and Technology, vol.22, issue.7, pp.742-748, 2007.

R. People and S. A. Jackson, Indirect, quasidirect, and direct optical transitions in the pseudomorphic (44)-monolayer Si-Ge strained-layer superlattice on Si(001), Physical Review B, vol.36, issue.2, pp.1310-1313, 1987.

K. Dohnalová, A. N. Poddubny, A. Prokofiev, W. D. De-boer, C. P. Umesh et al., Surface brightens up Si quantum dots : direct bandgap-like size-tunable emission, Light : Science & Applications, vol.2, issue.1, p.47, 2013.

C. Zhang, C. Li, Z. Liu, J. Zheng, C. Xue et al., Enhanced photoluminescence from porous silicon nanowire arrays, Nanoscale Research Letters, vol.8, p.277, 2013.

F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Krapek et al., Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress, Physical Review Letters, vol.104, issue.6, p.67405, 2010.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu et al., Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars, Small, vol.11, issue.45, pp.6071-6077, 2015.

I. J. Luxmoore, R. Toro, O. Del-pozo-zamudio, N. A. Wasley, E. A. Chekhovich et al., Tartakovskii. III-V quantum light source and cavity-QED on, Silicon. Scientific Reports, vol.3, pp.20-23, 2013.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang et al., IIIV/silicon photonics for on-chip and intra-chip optical interconnects, Laser and Photonics Reviews, vol.4, issue.6, pp.751-779, 2010.

Z. Zhou, B. Yin, and J. Michel, On-chip light sources for silicon photonics, Light : Science & Applications, vol.4, issue.11, p.358, 2015.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-hasnain et al., Critical diameter for III-V nanowires grown on lattice-mismatched substrates, Applied Physics Letters, vol.90, issue.4, p.43115, 2007.

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati et al., Selective-Area Epitaxy of Pure Wurtzite InP Nanowires : High Quantum Efficiency and Room-Temperature Lasing, Nano Letters, vol.14, pp.5206-5211, 2014.

R. G. Hobbs, N. Petkov, and J. D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms, Chemistry of Materials, vol.24, issue.11, pp.1975-1991, 2012.

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater et al., Tunable visible and near-IR emission from sub-10 nm etched singlecrystal Si nanopillars, Nano Letters, vol.10, issue.11, pp.4423-4428, 2010.

R. S. Wagner and W. C. Ellis, Vaporliquidsolid mechanism of single crystal growth, Applied Physics Letters, vol.4, issue.5, p.89, 1964.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos et al., Prospects for Silicon Mid-IR Raman Lasers, PDF. Journal of Selected Topics in Quantum Electronics, vol.12, issue.6, pp.1618-1627, 2006.

N. Gregersen, T. R. Nielsen, J. Claudon, J. Gérard, and J. Mørk, Controlling the emission profile of a nanowire with a conical taper, Optics Letters, vol.33, issue.15, pp.1693-1695, 2008.

Z. Lin, M. Gendry, and X. Letartre, Optical mode study of III-V-nanowire-based nanophotonic crystals for an integrated infrared band microlaser. Photonics Research, vol.2, p.182, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01489902

J. Barakat, Croissance autocatalysée de Nanofils d'InP sur silicium par Épitaxie par Jets Moléculaires en mode Vapeur-Liquide-Solide. Application aux Interconnexions Optiques sur Puce, 2015.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish et al., Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy, Nanotechnology, vol.24, issue.21, p.214006, 2013.

J. Claudon, N. Gregersen, P. Lalanne, and J. Gérard, Harnessing light with photonic nanowires : fundamentals and applications to quantum optics, ChemPhysChem, vol.14, issue.11, pp.2393-2402, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850473

V. G. Dubrovskii, N. V. Sibirev, R. Suris, G. É. Cirlin, V. M. Ustinov et al., The Role of Surface Diffusion of Adatoms in the Formation of Nanowire Crystals, Semiconductors, vol.40, issue.9, pp.1075-1082, 2006.

V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, G. E. Cirlin, J. C. Harmand et al., Diffusion-controlled growth of semiconductor nanowires : Vapor pressure versus high vacuum deposition, Surface Science, vol.601, issue.18, pp.4395-4401, 2007.

V. G. Dubrovskii and N. V. Sibirev, General form of the dependences of nanowire growth rate on the nanowire radius, Journal of Crystal Growth, vol.304, issue.2, pp.504-513, 2007.

V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Growth kinetics and crystal structure of semiconductor nanowires, Physical Review B, vol.78, issue.23, p.235301, 2008.

F. Glas, J. Harmand, and G. Patriarche, Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors ?, Physical Review Letters, vol.99, issue.14, p.146101, 2007.

F. Jabeen, G. Patriarche, F. Glas, and J. C. Harmand, GaP/GaAs 1?x P x nanowires fabricated with modulated fluxes : A step towards the realization of superlattices in a single nanowire, Journal of Crystal Growth, vol.323, issue.1, pp.293-296, 2011.

S. D. Carnevale, C. Marginean, P. J. Phillips, T. F. Kent, A. Sarwar et al., Coaxial nanowire resonant tunneling diodes from nonpolar AlN/GaN on silicon, Applied Physics Letters, vol.100, issue.14, p.38, 2012.

A. W. Dey, J. Svensson, M. Ek, E. Lind, C. Thelander et al., Combining axial and radial nanowire heterostructures : Radial Esaki diodes and tunnel field-effect transistors, Nano Letters, vol.13, issue.12, pp.5919-5924, 2013.

L. Pavesi, F. Piazza, A. Rudra, J. F. Carlin, and M. Ilegems, Temperature dependence of the InP band gap from a photoluminescence study, Physical Review B, vol.44, issue.16, pp.9052-9055, 1991.

T. T. Vu, T. Zehender, M. A. Verheijen, S. Plissard, G. W. Immink et al., High optical quality single crystal phase wurtzite and zincblende InP nanowires, Nanotechnology, vol.24, issue.11, p.115705, 2013.

M. H. Hadj-alouane, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi et al., Excitonic properties of wurtzite InP nanowires grown on silicon substrate, Nanotechnology, vol.24, p.35704, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01734647

A. Zilli, M. De-luca, D. Tedeschi, H. A. Fonseka, A. Miriametro et al., Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires, ACS Nano, vol.9, issue.4, pp.4277-4287, 2015.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy, Journal of Applied Physics, vol.67, issue.11, pp.7034-7039, 1990.

M. Möller, M. M. De-lima, A. Cantarero, T. Chiaramonte, M. A. Cotta et al., Optical emission of InAs nanowires, Nanotechnology, vol.23, issue.37, p.375704, 2012.

L. C. Dacal and A. Cantarero, Ab initio calculations of indium arsenide in the wurtzite phase : structural, electronic and optical properties, Materials Research Express, vol.1, issue.1, p.15702, 2014.

Z. Zanolli, F. Fuchs, J. Furthmüller, U. V. Barth, and F. Bechstedt, Model GW band structure of InAs and GaAs in the wurtzite phase, Physical Review B, vol.75, issue.24, p.245121, 2007.

S. Chuang and C. Chang, K-P Method for Strained Wurtzite Semiconductors, Physical Review B, vol.54, issue.4, pp.2491-2504, 1996.

M. Munsch, J. Claudon, J. Bleuse, N. S. Malik, E. Dupuy et al., Linearly polarized, single-mode spontaneous emission in a photonic nanowire, Physical Review Letters, vol.108, issue.7, p.77405, 2012.

P. Kuyanov and R. R. Lapierre, Photoluminescence and photocurrent from InP nanowires with InAsP quantum dots grown on Si by molecular beam epitaxy, Nanotechnology, vol.26, issue.31, p.315202, 2015.
DOI : 10.1088/0957-4484/26/31/315202

M. Murayama and T. Nakayama, Chemical trend of band offsets at wurtzite/zincblende heterocrystalline semiconductor interfaces, Physical Review B, vol.49, issue.7, pp.4710-4724, 1994.
DOI : 10.1103/physrevb.49.4710

N. Akopian, G. Patriarche, L. Liu, J. Harmand, and V. Zwiller, Crystal Phase Quantum Dots, Nano Letters, vol.10, issue.4, pp.1198-1201, 2010.

P. Mohan, J. Motohisa, and T. Fukui, Fabrication of InPInAsInP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy, Applied Physics Letters, vol.88, issue.13, p.133105, 2006.
DOI : 10.1063/1.2189203

URL : https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/8416/1/ApplPhysLett_88_133105.pdf

M. H. Hadj-alouane, R. Anufriev, N. Chauvin, H. Khmissi, K. Naji et al.,

, Wurtzite InP/InAs/InP core-shell nanowires emitting at telecommunication wavelengths on Si substrate, Nanotechnology, vol.22, p.405702, 2011.

D. Lindgren, K. Kawaguchi, M. Heurlin, M. T. Borgström, M. Pistol et al., Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires, Nanotechnology, vol.24, issue.22, p.225203, 2013.

Y. Masumoto, Y. Hirata, P. Mohan, J. Motohisa, and T. Fukui, Polarized photoluminescence from single wurtzite InP/InAs/InP core-multishell nanowires, Applied Physics Letters, vol.98, issue.21, p.211902, 2011.

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates, Optics Express, vol.22, issue.10, pp.11713-11726, 2014.

K. Naji, Croissance de Nanofils d'InP sur silicium par Épitaxie par Jets Moléculaires en mode Vapeur-Liquide-Solide, 2010.

K. Naji, G. Saint-girons, J. Penuelas, G. Patriarche, L. Largeau et al., Influence of catalyst droplet diameter on the growth direction of InP nanowires grown on Si(001) substrate, Applied Physics Letters, vol.102, p.243113, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01939998

N. Chauvin, M. H. Hadj-alouane, R. Anufriev, H. Khmissi, K. Naji et al., Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates, Applied Physics Letters, vol.100, p.11906, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01735186

H. Khmissi, K. Naji, M. H. Hadj-alouane, N. Chauvin, C. Bru-chevallier et al., InAs/InP nanowires grown by catalyst assisted molecular beam epitaxy on silicon substrates, Journal of Crystal Growth, vol.344, pp.45-50, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01735120

R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, J. B. Barakat et al., Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths, Journal of Applied Physics, vol.113, p.193101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01735112

R. Anufriev, J. Barakat, G. Patriarche, X. Letartre, C. Bru-chevallier et al., Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires, Nanotechnology, vol.26, p.395701, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489428

R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, G. Patriarche et al., Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate, Applied Physics Letters, vol.104, p.183101, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01489881

K. Tateno, G. Zhang, H. Gotoh, and T. Sogawa, VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures, Nano Letters, vol.12, issue.6, pp.2888-2893, 2012.

J. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron et al., InP1-xAsx quantum dots in InP nanowires : A route for single photon emitters, Journal of Crystal Growth, vol.378, pp.519-523, 2013.

G. Zhang, K. Tateno, M. D. Birowosuto, M. Notomi, T. Sogawa et al., Controlled 1.1-1.6 µm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires, Nanotechnology, vol.26, issue.11, p.115704, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01004188

M. H. Van-weert, N. Akopian, F. Kelkensberg, U. Perinetti, M. P. Van-kouwen et al., , p.40

. Insa-lyon, . P. Bibliographie-l, V. Kouwenhoven, and . Zwiller, Orientation-dependent optical-polarization properties of single quantum dots in nanowires, Small, vol.5, issue.19, p.2134, 2009.

N. Sköld, M. E. Pistol, K. A. Dick, C. Pryor, J. B. Wagner et al., Microphotoluminescence studies of tunable wurtzite InAs0.85 P0.15 quantum dots embedded in wurtzite InP nanowires, Physical Review B, vol.80, issue.4, p.41312, 2009.

D. Dalacu, K. Mnaymneh, X. Wu, J. Lapointe, G. C. Aers et al., Selective-area vapor-liquid-solid growth of tunable InAsP quantum dots in nanowires, Applied Physics Letters, vol.98, issue.25, p.251101, 2011.

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. Poole et al., Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires, Nano Letters, vol.12, issue.11, pp.5919-5923, 2012.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck et al., Bright singlephoton sources in bottom-up tailored nanowires, Nature Communications, vol.3, p.737, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02071152

T. Huber, A. Predojevi´cpredojevi´c, M. Khoshnegar, D. Dalacu, P. J. Poole et al., Polarization entangled photons from quantum dots embedded in nanowires, Nano Letters, vol.14, issue.12, pp.7107-7114, 2014.

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole et al., Observation of strongly entangled photon pairs from a nanowire quantum dot, Nature Communications, vol.5, p.5298, 2014.

H. Okamoto and T. B. Massalski, The Au-Si (Gold-Silicon) System, Bulletin of Alloy Phase Diagram, vol.4, issue.2, pp.190-198, 1983.

A. L. Roest, M. A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem et al., Position-controlled epitaxial III-V nanowires on silicon, Nanotechnology, vol.17, issue.11, p.271, 2006.

K. Naji, Croissance de Nanofils d'InP sur silicium par Épitaxie par Jets Moléculaires en mode Vapeur-Liquide-Solide, 2010.

H. Okamoto, Au-In ( Gold-Indium ), J. of Phase Equilibria and Diffusion, vol.25, issue.2, pp.197-198, 2004.

K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson et al., A new understanding of au-assisted growth of III-V semiconductor nanowires, Advanced Functional Materials, vol.15, issue.10, pp.1603-1610, 2005.

K. A. Dick, Z. Geretovszky, A. Mikkelsen, L. S. Karlsson, E. Lundgren et al., Improving InAs nanotree growth with composition-controlled Au-In nanoparticles, Nanotechnology, vol.17, issue.5, pp.1344-1350, 2006.

J. Barakat, Croissance autocatalysée de Nanofils d'InP sur silicium par Épitaxie par Jets Moléculaires en mode Vapeur-Liquide-Solide. Application aux Interconnexions Optiques sur Puce, 2015.

H. S. Liu, Y. Cui, K. Ishida, and Z. P. Jin, Thermodynamic reassessment of the Au-In binary system. Calphad : Computer Coupling of Phase Diagrams and Thermochemistry, vol.27, pp.27-37, 2003.

P. Wodniecki, A. Kulí-nska, B. Wodniecka, and A. Z. Hrynkiewicz, Electric Field Gradients at the In Site in Au-In Compounds, Z. Naturfrosch, vol.53, pp.349-354, 1998.

H. Jagannathan, Y. Nishi, M. Reuter, M. Copel, E. Tutuc et al., Effect of oxide overlayer formation on the growth of gold catalyzed epitaxial silicon nanowires, Applied Physics Letters, vol.88, p.103113, 2006.

D. Ferrah, Étude des propriétés physico-chimiques d'interfaces par photoémission, 2013.

F. Ruffino and M. G. Grimaldi, Au nanoparticles decorated SiO2 nanowires by dewetting on curved surfaces : Facile synthesis and nanoparticles-nanowires sizes correlation, Journal of Nanoparticle Research, vol.15, issue.9, p.1909, 2013.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-hasnain et al., Critical diameter for III-V nanowires grown on lattice-mismatched substrates, Applied Physics Letters, vol.90, issue.4, p.43115, 2007.

C. T. Tsai and R. S. Williams, Chemical reactions at the Au-InP interface, Journal of Material Research, vol.1, p.820, 1986.

J. Bao, D. Bell, F. Capasso, N. Erdman, D. Wei et al., Nanowire-induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate, Advanced Materials, vol.21, pp.3654-3658, 2009.

P. Rueda-fonseca, E. Bellet-almaric, R. Vigliaturo, M. Den-hertog, R. Genuist et al., Structure and Morphology in Diffusion-Driven Growth of Nanowires : The Case of ZnTe, Nano Letters, vol.14, pp.1877-1883, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017404

, INSA Lyon, tous droits réservés CHAPITRE 2. NANOFILS D'INP SUR SI

V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Nucleation mechanisms of epitaxial GaN nanowires : Origin of their self-induced formation and initial radius, Physical Review B, vol.81, issue.8, p.85310, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01067583

Z. Zhang, Z. Lu, P. Chen, W. Lu, and J. Zou, Defect-Free Zinc-Blende Structured InAs Nanowires Realized by in-situ Two-V/III-Ratio Growth in Molecular Beam Epitaxy, Nanoscale, vol.7, issue.29, pp.12592-12597, 2015.

F. Boudaa, N. P. Blanchard, A. Descamps-mandine, A. Benamrouche, M. Gendry et al., Structure and morphology of Ge nanowires on Si (001) : Importance of the Ge islands on the growth direction and twin formation, Journal of Applied Physics, vol.117, issue.5, p.55302, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489327

J. Johansson, L. S. Karlsson, C. P. Svensson, T. Mårtensson, B. A. Wacaser et al., Structural properties of (111) B-oriented III-V nanowires, Nature materials, vol.5, issue.7, pp.574-580, 2006.

F. Glas, J. Harmand, and G. Patriarche, Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors ?, Physical Review Letters, vol.99, issue.14, p.146101, 2007.

R. Vogel, R. Dobbener, and O. Strathmann, The Second Boiling Point in the Systems Silver-Phosphorus and Gold-Phosphorus, Z. Metallkd, vol.50, issue.3, pp.130-135, 1959.

H. Okamoto and T. B. Massalski, The Au-P (Gold-Phosphorus) System, Bulletin of Alloy Phase Diagram, vol.5, issue.5, pp.490-491, 1984.

M. H. Hadj-alouane, R. Anufriev, N. Chauvin, H. Khmissi, K. Naji et al.,

, Wurtzite InP/InAs/InP core-shell nanowires emitting at telecommunication wavelengths on Si substrate, Nanotechnology, vol.22, p.405702, 2011.

K. Khmissi, K. Naji, M. H. Hadjalouane, N. Chauvin, C. Bru-chevallier et al., Inas/inp nanowires grown by catalyst assisted molecular beam epitaxy on siliconsubstrates, Journal of Crystal Growth, vol.344, pp.45-50, 2012.

N. Chauvin, M. H. Hadj-alouane, R. Anufriev, H. Khmissi, K. Naji et al., Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates, Applied Physics Letters, vol.100, p.11906, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01735186

B. Nikoobakht, C. Burda, M. Braun, M. Hun, and M. A. El-sayed, The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution. Photochemistry and photobiology, vol.75, pp.591-597, 2002.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes et al., On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles, Nano Letters, vol.7, issue.10, pp.3157-3164, 2007.

R. Carminati, J. Greffet, C. Henkel, and J. M. Vigoureux, Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle, Optics Communications, vol.261, issue.2, pp.368-375, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133243

A. Mishra, L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith et al., Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires, Applied Physics Letters, vol.91, issue.26, p.263104, 2007.

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink et al., High optical quality single crystal phase wurtzite and zincblende InP nanowires, Nanotechnology, vol.24, issue.11, p.115705, 2013.

M. H. Hadj-alouane, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi et al., Excitonic properties of wurtzite InP nanowires grown on silicon substrate, Nanotechnology, vol.24, p.35704, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01734647

M. H. Van-weert, O. Wunnicke, A. L. Roest, T. J. Eijkemans, A. Y. Silov et al., Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning, Applied Physics Letters, vol.88, issue.4, p.43109, 2006.

B. J. Skromme and G. E. Stillman, Photoluminescence identification of the C and Be acceptor levels in InP B, Journal of Electronic Materials, vol.13, issue.3, pp.463-491, 1984.

Y. Rosenwaks, I. Tsimberova, H. Gero, and M. Molotskii, Minority-carrier recombination in p ? InP single crystals, Physical Review B, vol.68, issue.11, p.115210, 2003.

M. Murayama and T. Nakayama, Chemical trend of band offsets at wurtzite/zincblende heterocrystalline semiconductor interfaces, Physical Review B, vol.49, issue.7, pp.4710-4724, 1994.

N. N. Ledentsov, J. Bohrer, M. Beer, F. Heinrichsdorff, M. Grundmann et al., Radiative states in type-II GaSb/GaAs, vol.52, pp.58-66, 1995.

R. M. Sieg, B. Chatterjee, and S. A. , Evidence for enhanced zinc interstitial concentration in strain-relaxed heteroepitaxial indium phosphide, Applied Physics Letters, vol.66, issue.23, pp.3108-3110, 1995.

H. Yu, J. Li, R. A. Loomis, L. Wang, and W. E. Buhro, Two-versus threedimensional quantum confinement in indium phosphide wires and dots, Nature materials, vol.2, pp.517-520, 2003.

M. S. Gudiksen, J. F. Wang, and C. M. Lieber, Size-dependent photoluminescence from single indium phosphide nanowires, Journal of Physical Chemistry B, vol.106, issue.16, pp.4036-4039, 2002.

N. Yamamoto, S. Bhunia, and Y. Watanabe, Polarized cathodoluminescence study of InP nanowires by transmission electron microscopy, Applied Physics Letters, vol.88, issue.15, p.153106, 2006.

C. Wilhelm, A. Larrue, X. Dai, D. Migas, and C. Soci, Anisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase, Nanoscale, vol.4, issue.5, p.1446, 2012.

M. De-luca, A. Polimeni, H. A. Fonseka, A. J. Meaney, P. C. Christianen et al., MagnetoOptical Properties of Wurtzite-Phase InP Nanowires, Nanao Letters, vol.14, issue.8, pp.4250-4256, 2014.

T. E. Crumbaker, H. Y. Lee, M. J. Hafich, G. Y. Robinson, M. M. Aljassim et al., Heteroepitaxy of InP on Si : Reduction of defects by substrate misorientation and thermal annealing, Journal of Vacuum Science & Technology B, vol.8, issue.2, p.261, 1990.

H. J. Joyce, J. Wong-leung, C. K. Yong, C. J. Docherty, S. Paiman et al., Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy, Nano Letters, vol.12, issue.10, pp.5325-5330, 2012.

, INSA Lyon, tous droits réservés CHAPITRE 2. NANOFILS D'INP SUR SI

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati et al., Selective-Area Epitaxy of Pure Wurtzite InP Nanowires : High Quantum Efficiency and Room-Temperature Lasing, Nano Letters, vol.14, pp.5206-5211, 2014.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish et al., Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy, Nanotechnology, vol.24, issue.21, p.214006, 2013.

U. Heim, Evidence for donor-acceptor recombination in inp by time-resolved photoluminescence spectroscopy, Solid State Communications, vol.7, pp.445-447, 1969.

N. Akopian, G. Patriarche, L. Liu, J. Harmand, and V. Zwiller, Crystal Phase Quantum Dots, Nano Letters, vol.10, issue.4, pp.1198-1201, 2010.

L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith, J. M. Yarrison-rice et al., Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires, Applied Physics Letters, vol.89, issue.5, p.53119, 2006.

P. J. Poole, D. Dalacu, X. Wu, J. Lapointe, and K. Mnaymneh, Interplay between crystal phase purity and radial growth in InP nanowires, Nanotechnology, vol.23, issue.38, p.385205, 2012.
DOI : 10.1088/0957-4484/23/38/385205

G. Bulgarini, D. Dalacu, P. J. Poole, J. Lapointe, M. E. Reimer et al., Far field emission profile of pure wurtzite InP nanowires, Applied Physics Letters, vol.105, 2014.
DOI : 10.1063/1.4901437

W. E. Buhro and V. L. Colvin, Semiconductor Nanocrystals : Shape Matters, Nature materials, vol.2, pp.138-139, 2003.

A. Zilli, M. De-luca, D. Tedeschi, H. A. Fonseka, A. Miriametro et al., Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires, ACS Nano, vol.9, pp.4277-4287, 2015.
DOI : 10.1021/acsnano.5b00699

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, pp.149-154, 1967.

L. Viña, S. Logothetidis, and M. Cardona, Temperature dependence of the dielectric function of germanium, Physical Review B, vol.30, issue.4, pp.1979-1991, 1984.

A. De and C. E. Pryor, Predicted band structures of III-V semiconductors in the wurtzite phase, Physical Review B, vol.81, issue.15, p.155210, 2010.

A. De and C. E. Pryor, Optical dielectric functions of wurtzite III-V semiconductors, Physical Review B, vol.85, issue.12, p.125201, 2012.
DOI : 10.1103/physrevb.85.125201

URL : http://arxiv.org/pdf/1011.3081

F. Bechstedt and A. Belabbes, Structure, energetics, and electronic states of III-V compound polytypes, Journal of Physics : Condensed Matters, vol.25, p.273201, 2013.
DOI : 10.1088/0953-8984/25/27/273201

C. Hajlaoui, L. Pedesseau, F. Raouafi, F. B. Cheikhlarbi, J. Even et al., Firstprinciples density functional theory study of strainedwurtziteInP and InAs, Journal of Physics D : Applied Physics, vol.46, pp.4-8, 2013.

Y. M. Sirenko, J. B. Jeon, B. C. Lee, K. W. Kim, and M. A. Littlejohn, Hole scattering and optical transitions in wide-band-gap nitrides : Wurtzite and zinc-blende structures, Physics Review B, vol.55, issue.7, pp.4360-4375, 1997.
DOI : 10.1103/physrevb.55.4360

C. Y. Yeh, S. H. Wei, and A. Zunger, Relationships between the band gaps of the zinc-blende and wurtzite modifications of semiconductors, Physics Review B, vol.50, issue.4, pp.2715-2718, 1994.

G. Signorello, E. Lortscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj et al., Inducing a direct-to-pseudodirect bandgap transition in wurtzite gaas nanowires with uniaxial stress, Nature Communications, vol.5, p.3655, 2014.
DOI : 10.1038/ncomms4655

URL : https://www.nature.com/articles/ncomms4655.pdf

C. L. Santos and P. Piquini, Diameter dependence of mechanical, electronic, and structural properties of InAs and InP nanowires : A first-principles study, Physical Review B, vol.81, issue.7, pp.1-10, 2010.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. Gérard et al., Inhibition, enhancement, and control of spontaneous emission in photonic nanowires, Physical Review Letters, vol.106, issue.10, p.103601, 2011.
DOI : 10.1103/physrevlett.106.103601

URL : https://hal.archives-ouvertes.fr/hal-00680596

W. E. Buhro and V. L. Colvin, Semiconductor Nanocrystals : Shape Matters, Nature materials, vol.2, pp.138-139, 2003.

M. S. Gudiksen, J. F. Wang, and C. M. Lieber, Size-dependent photoluminescence from single indium phosphide nanowires, Journal of Physical Chemistry B, vol.106, issue.16, pp.4036-4039, 2002.
DOI : 10.1021/jp014392n

C. Li, W. Guo, Y. Kong, and H. Gao, First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures, Physical Review B, vol.76, issue.3, pp.1-8, 2007.

J. Li and L. W. Wang, Deformation potentials of CdSe quantum dots, Applied Physics Letters, vol.85, issue.14, pp.2929-2931, 2004.
DOI : 10.1063/1.1800288

URL : https://digital.library.unt.edu/ark:/67531/metadc791914/m2/1/high_res_d/861501.pdf

Y. Chen, Q. Gao, Y. Wang, X. An, X. Liao et al., Determination of Youngs Modulus of Ultrathin Nanomaterials, Nano Letters, vol.15, issue.8, pp.5279-5283, 2015.
DOI : 10.1021/acs.nanolett.5b01603

I. R. Shein, V. S. Kiiko, Y. N. Makurin, M. A. Gorbunova, and A. L. Ivanovskii, Elastic parameters of single-crystal and polycrystalline wurtzite-like oxides BeO and ZnO : Ab initio calculations, Physics of the Solid State, vol.49, issue.6, pp.1067-1073, 2007.

C. Hajlaoui, L. Pedesseau, F. Raouafi, F. Ben-cheikh-larbi, J. Even et al., Ab initio calculations of polarization, piezoelectric constants, and elastic constants of InAs and InP in the wurtzite phase, Journal of Experimental and Theoretical Physics, vol.121, issue.2, pp.246-249, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01242391

R. M. Martin, Relation between elastic tensors of Wurtzite and zinc-blende structure materials, Physical Review B, vol.6, issue.12, pp.4546-4553, 1972.

J. F. Wager, Native oxide formation and electrical instabilities at the insulator/InP interface, Journal of Vacuum Science & Technology B, vol.1, issue.3, p.778, 1983.

G. Hollinger, E. Bergignat, J. Joseph, and Y. Robach, On the nature of oxides on InP-surfaces, J. Vac. Sci. Technol. A-Vac. Surf. Films, vol.3, pp.2082-2088, 1985.

S. Lopez-moreno and D. Errandonea, Ab initio prediction of pressure-induced structural phase transitions of CrVO 4-type orthophosphates, Physical Review B, vol.86, issue.10, pp.1-14, 2012.

M. T. Kim, Influence of substrates on the elastic reaction of films for the microindentation tests, Thin Film Solid, vol.283, pp.12-16, 1996.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, What is the Young ' s Modulus of Silicon ?, Journal of Electromechanical Systems, vol.19, issue.2, pp.229-238, 2010.

A. I. Persson, M. W. Larsson, S. Stenström, B. J. Ohlsson, L. Samuelson et al., Solid-phase diffusion mechanism for GaAs nanowire growth, Nature materials, vol.3, issue.10, pp.677-81, 2004.

K. A. Dick, K. Deppert, T. Mårtensson, B. Mandl, L. Samuelson et al., Failure of the Vapor-Liquid-Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires, Nano Letters, vol.5, issue.4, pp.761-764, 2005.

M. W. Larsson, J. B. Wagner, M. Wallin, H. Paul, L. E. Froberg et al., Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires, Nanotechnology, vol.18, p.15504, 2007.

L. Rigutti, A. De-luna-bugallo, M. Tchernycheva, G. Jacopin, F. H. Julien et al., Si incorporation in InP nanowires grown by Au-assisted molecular beam epitaxy, Journal of Nanomaterials, p.435451, 2009.

N. V. Sibirev, M. Tchernycheva, M. A. Timofeeva, J. Harmand, G. E. Cirlin et al., Influence of shadow effect on the growth and shape of InAs nanowires, Journal of Applied Physics, vol.111, issue.10, p.104317, 2012.

M. H. Hadj-alouane, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi et al., Bru-Chevallier. Excitonic properties of wurtzite InP nanowires grown on silicon substrate, Nanotechnology, vol.24, p.35704, 2013.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics, vol.89, issue.11, p.5815, 2001.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. Tran et al., Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon, Nano Letters, vol.14, issue.1, pp.183-190, 2014.

D. Tedeschi, M. De-luca, H. A. Fonseka, Q. Gao, F. Mura et al., Long-lived Hot Carriers in III-V Nanowires, Nano Letters, vol.16, issue.5, pp.3085-3093, 2016.

R. Trommer, H. Muller, M. Cardona, and P. Vogl, Dependence of the phonon spectrum of inp on hydrostatic pressure, Physics Review B, vol.21, issue.10, p.99, 1980.

E. Hydrostatique, INSA Lyon, tous droits réservés CHAPITRE 3

C. S. Menoni, H. D. Hochheimer, and I. L. Spain, High-pressure study of photoluminescence in indium phosphide at low temperature, Physics Review B, vol.33, issue.8, pp.5896-5898, 1986.

S. Wei and A. Zunger, Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors : Chemical trends, Physics Review B, vol.60, issue.8, pp.5404-5411, 1999.

N. E. Christensen and I. Gorczyca, Optical and structural properties of III-V nitrides under pressure, Physics Review B, vol.50, issue.7, pp.4397-4415, 1994.

B. Gil, O. Briot, and R. Aulombard, Valence-band physics and the optical properties of gan epilayers grown onto sapphire with wurtzite symmetry, Physics Review B, vol.52, issue.24, pp.28-31, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00547098

W. Shan, R. J. Hauenstein, A. J. Fischer, and J. J. Song, Strain effects on excitonic transitions in GaN : Deformation potentials, Physics Review B, vol.54, issue.19, pp.460-463, 1996.

W. Shan, J. Walukiewicz, K. Iii, Y. Yu, S. Zhang et al., Pressure-dependent photoluminescence study of ZnO nanowires, Applied Physics Letters, vol.86, pp.98-101, 2005.

T. Soma, Y. Takahashi, and H. Matsuo-kagaya, Pressure-volume relations and bulk modulus under pressure of tetrahedral compounds. Solid State Communications, vol.53, pp.801-803, 1985.

C. S. Menoni and I. L. Spain, Equation of state of InP to 19 GPa, Physical Review B, vol.35, issue.14, pp.7520-7525, 1987.

P. Y. Yu and B. Welber, High pressure photoluminescence and resonant raman study of GaAs. Solid State Communication, vol.25, pp.209-211, 1978.

J. Wallentin, K. Mergenthaler, M. Ek, L. R. Wallenberg, L. Samuelson et al., Highly Doped InP Nanowires, Nano Letters, vol.11, pp.2286-2290, 2011.

S. Perera, T. Shi, M. A. Fickenscher, H. E. Jackson, L. M. Smith et al., Illuminating the Second Conduction Band and Spin-Orbit Energy in Single Wurtzite InP Nanowires, Nano Letters, vol.13, pp.5367-5372, 2013.

Z. Zanolli, L. E. Froberg, M. T. Bjork, M. Pistol, and L. Samuelson, Fabrication, optical characterization and modeling of strained core-shell nanowires, Thin Film Solid, vol.515, pp.793-796, 2006.

D. Ferrand and J. Cibert, Strain in crystalline core-shell nanowires, The European Physical Journal Applied Physics, vol.67, issue.3, p.30403, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058875

M. Möller, M. M. De-lima, A. Cantarero, T. Chiaramonte, M. A. Cotta et al., Optical emission of InAs nanowires, Nanotechnology, vol.23, issue.37, p.375704, 2012.

L. C. Dacal and A. Cantarero, Ab initio calculations of indium arsenide in the wurtzite phase : structural, electronic and optical properties, Materials Research Express, vol.1, issue.1, p.15702, 2014.

. , 102 4.2 Croissance de boîtes quantiques (BQs) et disques quantiques (DQs) d'InAs, Boites quantiques d'InAs(P) dans des NFs

. , 3.1 Cas des BQs (H/D ? 1) et effet de la température de croissance, Spectres d'émission

. , Cas des DQs (H/D ? 0,1)

. .. Dqs, 118 4.4.1 Contribution due à la contrainte, Modélisation pour les énergies d'émission des BQs, vol.120

. .. Etude-en-température,

. , 6.5 Influence de la source d'excitation

.. .. Étude-sur-des-bqs-d'inasp,

. .. Conclusion,

. .. Bibliographie,

R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, J. B. Barakat et al., Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths, Journal of Applied Physics, vol.113, issue.19, p.193101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01735112

M. H. Hadj-alouane, R. Anufriev, N. Chauvin, H. Khmissi, K. Naji et al.,

, Wurtzite InP/InAs/InP core-shell nanowires emitting at telecommunication wavelengths on Si substrate, Nanotechnology, vol.22, p.405702, 2011.

J. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron et al., InP 1?x As x quantum dots in InP nanowires : A route for single photon emitters, Journal of Crystal Growth, vol.378, pp.519-523, 2013.

R. Anufriev, Optical Properties of InAs/InP Nanowire Heterostructures, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01127210

J. E. Cunningham, M. D. Williams, R. N. Pathak, and W. Jan, Non-linear As(P) incorporation in GaA(1-y)Py on GaAs and InAs(1-y)Py on InP, Journal of Crystal Growth, vol.150, pp.492-496, 1995.

A. I. Persson, M. T. Björk, S. Jeppesen, J. B. Wagner, L. R. Wallenberg et al., InAs 1-x P x Nanowires for Device Engineering, Nano Letters, vol.6, issue.3, pp.403-407, 2006.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander et al., One-dimensional Steeplechase for Electrons Realized, Nano Letters, vol.2, pp.87-89, 2002.

M. W. Larsson, J. B. Wagner, M. Wallin, H. Paul, L. Froberg et al., Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires, Nanotechnology, vol.18, p.15504, 2007.

M. T. Borgstrom, M. A. Verheijen, G. Immink, T. De, and E. P. Smet, Bakkers. Interface study on heterostructured GaP-GaAs nanowires, Nanotechnology, vol.17, pp.4010-4013, 2006.

F. Jabeen, G. Patriarche, F. Glas, and J. C. Harmand, GaP/GaAs1-xPx nanowires fabricated with modulated fluxes : A step towards the realization of superlattices in a single nanowire, Journal of Crystal Growth, vol.323, issue.1, pp.293-296, 2011.

G. Priante, G. Patriarche, F. Oehler, F. Glas, and J. Harmand, Abrupt GaP/GaAs Interfaces in Self-Catalyzed Nanowires, Nano Letters, vol.15, issue.9, pp.6036-6041, 2015.

V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov-;-tonkikh, N. V. Sibirev, Y. B. Samsonenko et al., Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy : Theory and experiment, Physical Review B, vol.71, issue.20, p.205325, 2005.

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates, Optics Express, vol.22, issue.10, p.11713, 2014.

N. Sköld, M. E. Pistol, K. A. Dick, C. Pryor, J. B. Wagner et al., Microphotoluminescence studies of tunable wurtzite InAs0.85 P0.15 quantum dots embedded in wurtzite InP nanowires, Physical Review B, vol.80, p.41312, 2009.

M. H. Van-weert, N. Akopian, F. Kelkensberg, U. Perinetti, M. P. Van-kouwen et al., Orientation-dependent optical-polarization properties of single quantum dots in nanowires, Small, vol.5, issue.19, p.2134, 2009.

T. Huber, A. Predojevi´cpredojevi´c, M. Khoshnegar, D. Dalacu, P. J. Poole et al., Polarization entangled photons from quantum dots embedded in nanowires, Nano letters, vol.14, issue.12, pp.7107-7114, 2014.

G. Zhang, K. Tateno, M. D. Birowosuto, M. Notomi, T. Sogawa et al., Controlled 1.1-1.6 µm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires, Nanotechnology, vol.26, issue.11, p.115704, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01004188

B. Pal, K. Goto, M. Ikezawa, Y. Masumoto, P. Mohan et al., Type-II behavior in wurtzite InP/InAs/InP core-multishell nanowires, Applied Physics Letters, vol.93, issue.7, p.73105, 2008.

N. Chauvin, M. H. Alouane, R. Anufriev, H. Khmissi, K. Naji et al., Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates, Applied Physics Letters, vol.100, p.11906, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01735186

Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa et al., Molecular beam epitaxial growth of InAs self-assembled quantum dots with lightemission at 1.3µm, Journal of Crystal Growth, vol.208, pp.93-99, 2000.

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki et al., Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer, Applied Physics Letters, vol.81, issue.16, pp.3067-3069, 2002.

E. C. Le-ru, J. Fack, and R. Murray, Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots, Physical Review B, vol.67, issue.24, p.245318, 2003.

L. Kong, Z. C. Feng, Z. Wu, and W. Lu, Temperature dependent and time-resolved photoluminescence studies of InAs self-assembled quantum dots with InGaAs strain reducing layer structure, Journal of Applied Physics, vol.106, issue.1, p.13512, 2009.

S. K. Jana, P. Mukhopadhyay, S. Kabi, N. N. Halder, A. Bag et al., Biswas. Growth and Characterization of Self-Assembled InAs Quantum Dots on Si (100) for Monolithic Integration by MBE, Transactions on Nanotechnology, vol.13, issue.5, pp.917-925, 2014.

J. Kwoen, K. Watanabe, S. Iwamoto, and Y. Arakawa, InAs Quantum Dots Grown Directly on Unpatterned Si ( 100 ) On-Axis Substrates. MBE2016, 2016.

A. Badolato, K. Hennessy, M. Atature, E. Dreiser, J. Hu et al., Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes. Sience, vol.308, pp.1158-1162, 2005.

J. Claudon, N. Gregersen, P. Lalanne, and J. Gérard, Harnessing light with photonic nanowires : fundamentals and applications to quantum optics, ChemPhysChem, vol.14, issue.11, pp.2393-2402, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850473

L. Bouzaïene, L. Sfaxi, M. Baira, H. Maaref, and C. Bru-chevallier, Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots, Journal of Nanoparticle Research, vol.13, issue.1, pp.257-262, 2011.

R. Anufriev, J. Barakat, and G. Patriarche, Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires, Nanotechnology, vol.26, issue.39, p.395701
URL : https://hal.archives-ouvertes.fr/hal-01489428

D. Ferrand and J. Cibert, Strain in crystalline core-shell nanowires, The European Physical Journal Applied Physics, vol.67, issue.3, p.30403, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058875

C. Hajlaoui, L. Pedesseau, F. Raouafi, F. B. Cheikhlarbi, J. Even et al., Firstprinciples density functional theory study of strainedwurtziteInP and InAs, Journal of Physics D : Applied Physics, vol.46, p.505106, 2013.

Z. Zanolli, F. Fuchs, J. Furthmüller, U. V. Barth, and F. Bechstedt, Model GW band structure of InAs and GaAs in the wurtzite phase, Physical Review B, vol.75, issue.24, p.245121, 2007.

R. Nedzinskas, V. Karpus, B. Cechavi?ius, J. Kavaliauskas, and G. Valu?is, Electron energy spectrum in cylindrical quantum dots and rods : approximation of separation of variables, Physica Scripta, vol.90, issue.6, p.65801, 2015.

A. De and C. E. Pryor, Predicted band structures of III-V semiconductors in the wurtzite phase, Physical Review B, vol.81, issue.15, p.155210, 2010.

L. C. Dacal and A. Cantarero, Ab initio calculations of indium arsenide in the wurtzite phase : structural, electronic and optical properties, Materials Research Express, vol.1, issue.1, p.15702, 2014.

F. Ning, L. Tang, Y. Zhang, and K. Chen, First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires, Journal of Applied Physics, vol.114, issue.22, p.224304, 2013.

A. Belabbes, C. Panse, J. Furthmüller, and F. Bechstedt, Electronic bands of III-V semiconductor polytypes and their alignment, Physical Review B, vol.86, issue.7, p.75208, 2012.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics, vol.89, issue.11, p.5815, 2001.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, Temperature dependence of the optical properties of InAs/Al y Ga 1?y As self-organized quantum dots, Physical Review B, vol.59, issue.7, pp.5064-5068, 1999.

L. M. Kong, Z. C. Feng, Z. Y. Wu, and W. Lu, Emission dynamics of InAs selfassembled quantum dots with different cap layer structures, Semiconductor Science And Technology, vol.23, p.75044, 2008.

E. Grilli, M. Guzzi, R. Zamboni, and L. Pavesi, High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide, Physical Review B, vol.45, issue.4, pp.1638-1644, 1992.

Y. Masumoto, Y. Hirata, P. Mohan, J. Motohisa, and T. Fukui, Polarized photoluminescence from single wurtzite InP/InAs/InP core-multishell nanowires, Applied Physics Letters, vol.98, issue.21, p.211902, 2011.

M. Zielí, Fine structure of light-hole excitons in nanowire quantum dots, Physical Review B, vol.88, issue.11, p.115424, 2013.

Y. Niquet and D. Mojica, Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures : Electronic and optical properties, Physical Review B, vol.77, issue.11, p.115316, 2008.

G. Bulgarini, M. E. Reimer, and V. Zwiller, Optical polarization properties of a nanowire quantum dot probed along perpendicular orientations, Applied Physics Letters, vol.101, issue.11, p.111112, 2012.

J. Wang, Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires, Science, vol.293, issue.5534, pp.1455-1457, 2001.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. Bakkers et al., Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides, Applied Physics Letters, vol.100, issue.12, p.121106, 2012.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck et al., Bright singlephoton sources in bottom-up tailored nanowires, Nature Communications, vol.3, p.737, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02071152

T. Kita, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, Polarization-independent photoluminescence from columnar InAs/GaAs self-assembled quantum dots, Japanese Journal of Applied Physics, issue.10 B, pp.1143-1145, 2002.

K. F. Karlsson, V. Troncale, D. Y. Oberli, A. Malko, E. Pelucchi et al., Optical polarization anisotropy and hole states in pyramidal quantum dots, Applied Physics Letters, vol.89, issue.25, p.251113, 2006.

Y. H. Huo, B. J. Witek, S. Kumar, J. R. Cardenas, J. X. Zhang et al., A light-hole exciton in a quantum dot, Nature Physics, vol.10, issue.1, pp.46-51, 2014.

V. Y. Aleshkin, B. N. Zvonkov, I. G. Malkina, Y. N. Safyanov, A. L. Chernov et al., Polarization of in-plane photoluminescence from InAs/Ga(In)As quantum-well layers grown by metallorganic vapor-phase epitaxy, Semiconductors, vol.32, issue.10, pp.1119-1124, 1998.

M. De-luca, A. Zilli, H. A. Fonseka, S. Mokkapati, A. Miriametro et al., Polarized light absorption in wurtzite InP nanowire ensembles, Nano Letters, vol.15, issue.2, pp.998-1005, 2015.

M. R. Ramdani, J. Harmand, F. Glas, G. Patriarche, and L. Travers, Arsenic pathways in self-catalyzed growth of GaAs nanowires, Crystal Growth and Design, vol.13, issue.1, pp.91-96, 2013.

J. L. Birman, Some Selection Rules for Band-Band Transitions in Wurtzite Structure, Physical Review, vol.114, issue.6, pp.1490-1492, 1959.

S. Chuang and C. Chang, KP Method for Strained Wurtzite Semiconductors, Physical Review B, vol.54, issue.4, pp.2491-2504, 1996.

A. Mishra, L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith et al., Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires, Applied Physics Letters, vol.91, issue.26, p.263104, 2007.

G. L. Tuin, Master Thesis : Optical characterization of Wurtzite Indium Phosphide, 2010.

E. G. Gadret, G. O. Dias, L. C. Dacal, M. M. De-lima, C. V. Ruffo et al., , p.142

, INSA Lyon, tous droits réservés BIBLIOGRAPHIE tarero. Valence-band splitting energies in wurtzite InP nanowires : Photoluminescence spectroscopy and ab initio calculations, Physical Review B, vol.82, issue.12, p.125327, 2010.

K. Naji, Croissance de Nanofils d'InP sur silicium par Épitaxie par Jets Moléculaires en mode Vapeur-Liquide-Solide, 2010.

P. Mohan, J. Motohisa, and T. Fukui, Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy, Applied Physics Letters, vol.88, issue.13, p.133105, 2006.

R. Thierry, G. Perillat-merceroz, P. H. Jouneau, P. Ferret, and G. Feuillet, Core-shell multi-quantum wells in ZnO/ZnMgO nanowires with high optical efficiency at room temperature, Nanotechnology, vol.23, issue.8, p.85705, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787485

P. Kuyanov and R. R. Lapierre, Photoluminescence and photocurrent from InP nanowires with InAsP quantum dots grown on Si by molecular beam epitaxy, Nanotechnology, vol.26, issue.31, p.315202, 2015.

L. and V. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Zeitschrift für Physik, vol.5, issue.1, pp.17-26, 1921.

L. Samuelson, P. Omling, and H. G. Grimmeiss, Alloying mechanisms in MOVPE GaAs 1?x P x, Journal of Crystal Growth, vol.61, issue.2, pp.425-426, 1983.

X. Wang, I. Zardo, S. Yazji, K. W. Ng, W. S. Ko et al., Valence Band Splitting in Wurtzite InGaAs Nanoneedles Studied by Photoluminescence Excitation, ACS Nano, vol.8, pp.11440-11446, 2014.

S. Adachi, Properties of Semiconductor Alloys : Group-IV, III-V and II-VI Semiconductors, 2009.

. , INSA Lyon, tous droits réservés Modification de l'émission d'un NF par ajout d'une coquille diélectrique Sommaire 5.1 Introduction

P. .. De, 160 5.6.2 Modification de l'efficacité d'absorption, Discussion des résultats

. .. Conclusion,

. .. Bibliographie,

A. Henneghien, B. Gayral, Y. Désières, and J. Gérard, Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections, Journal of the Optical Society of America B, vol.26, issue.12, p.2396, 2009.

P. Martin, M. El, L. Skouri, C. Chusseau, H. Alibert et al., Accurate refractive index measurements of doped and undoped InP by a grating coupling technique, Applied Physics Letters, vol.67, issue.7, p.881, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01904260

S. Mukhopadhyay and D. A. Stewart, First-principles study of the phonon dispersion and dielectric properties of wurtzite InP : Role of In 4d electrons, Physical Review B, vol.89, issue.5, p.54302, 2014.

A. De and C. E. Pryor, Optical dielectric functions of wurtzite III-V semiconductors, Physical Review B, vol.85, issue.12, p.125201, 2012.

R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, J. B. Barakat et al., Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths, Journal of Applied Physics, vol.113, issue.19, p.193101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01735112

J. Claudon, N. Gregersen, P. Lalanne, and J. Gérard, Harnessing light with photonic nanowires : fundamentals and applications to quantum optics, Chemphyschem, vol.14, issue.11, pp.2393-402, 2013.
DOI : 10.1002/cphc.201300033

URL : https://hal.archives-ouvertes.fr/hal-00850473

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. Gérard et al., Inhibition, enhancement, and control of spontaneous emission in photonic nanowires, Physical Review Letters, vol.106, issue.10, p.103601, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00680596

W. Lu, C. Wang, W. Yue, and L. Chen, Si/PEDOT :PSS core/shell nanowire arrays for efficient hybrid solar cells, Nanoscale, vol.3, issue.9, pp.3631-3634, 2011.
DOI : 10.1039/c1nr10629e

S. K. Kim, X. Zhang, D. J. Hill, K. D. Song, J. S. Park et al., Doubling absorption in nanowire solar cells with dielectric shell optical antennas, Nano Letters, vol.15, issue.1, pp.753-758, 2015.
DOI : 10.1021/nl504462e

URL : https://doi.org/10.1021/nl504462e

S. S. Nonnenmann, M. A. Islam, B. R. Beatty, E. M. Gallo, T. M. et al., The Ferroelectric Field Effect within an Integrated Core/Shell Nanowire, Advanced Functional Materials, vol.22, issue.23, pp.4957-4961, 2012.
DOI : 10.1002/adfm.201200865

L. F. Cui, C. K. Chan, R. Ruffo, H. Peng, and Y. Cui, Crystalline-amorphous nanowires for battery electrodes, 2015.
DOI : 10.1021/nl8036323

M. B. Bavinck, M. Zielí-nski, B. J. Witek, T. Zehender, E. P. Bakkers et al., Controlling a nanowire quantum dot band gap using a straining dielectric envelope, Nano Letters, vol.12, issue.12, pp.6206-6211, 2012.

P. Stepanov, M. E. Aizarna, J. Bleuse, N. S. Malik, Y. Curé et al., Large and uniform optical emission shifts in quantum dots externally strained along their growth axis, Nano Letters, vol.16, issue.5, pp.3215-3220, 2016.
DOI : 10.1021/acs.nanolett.6b00678

URL : http://arxiv.org/pdf/1602.06729

F. Fabbri, F. Rossi, G. Attolini, G. Salviati, S. Iannotta et al., Enhancement of the core nearband-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure : the case of SiC/SiO2 core/shell self-organized nanowires, Nanotechnology, vol.21, issue.34, p.345702, 2010.

Z. Li, J. Zhao, M. Zhang, J. Xia, and A. Meng, SiC nanowires with thicknesscontrolled SiO2 shells : Fabrication, mechanism, reaction kinetics and photoluminescence properties, Nano Research, vol.7, issue.4, pp.1-11, 2014.
DOI : 10.1007/s12274-014-0413-3

Y. Zhang, H. Lu, T. Wang, Q. Ren, Y. Gu et al., Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires, Nanoscale, vol.7, issue.37, pp.15462-15468, 2015.

S. Park, S. Kim, S. Choi, S. Lee, and C. Lee, Photoluminescence properties of polymethyl methacrylate-coated Zn2SnO4 nanowires, Thin Solid Films, vol.591, pp.336-340, 2015.
DOI : 10.1016/j.tsf.2015.04.064

T. Cremel, M. Elouneg-jamroz, E. Bellet-amalric, L. Cagnon, S. Tatarenko et al., Bottom-up approach to control the photon outcoupling of a II-VI quantum dot with a photonic wire, Physica Status Solidi (C), issue.7-8, pp.1263-1266, 2014.

. Logiciel,

N. Gregersen, T. R. Nielsen, J. Claudon, J. Gérard, and J. Mørk, Controlling the emission profile of a nanowire with a conical taper, Optics letters, vol.33, issue.15, pp.1693-1695, 2008.

Y. Xu, J. S. Vuckovic, R. K. Lee, O. J. Painter, A. Scherer et al., Finitedifference time-domain calculation of spontaneous emission lifetime in a microcavity, J. Opt. Soc. Am. B, vol.16, issue.3, pp.465-474, 1999.

R. Anufriev, J. Barakat, G. Patriarche, X. Letartre, C. Bru-chevallier et al., Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires, Nanotechnology, vol.26, issue.39, p.395701, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489428

D. Pierce and W. Spicer, Electronic Structure of Amorphous Si from Photoemission and Optical Studies, Physical Review B, vol.5, issue.8, pp.3017-3029, 1972.

J. Vuckkovic, M. Loncar, H. Mabuchi, and A. Scherer, Optimization of the Q factor in photonic crystal microcavities, Journal of Quantum Electronics, vol.38, issue.7, pp.850-856, 2002.

R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, M. Gendry et al., Impact of substrate-induced strain and surface effects on the optical properties of InP nanowires, Applied Physics Letters, vol.101, issue.7, p.72101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01735117

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko et al., Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy, Journal of Applied Physics, vol.103, issue.12, p.124309, 2008.

K. Haruna, H. Maeta, K. Ohashi, and T. Koike, The thermal expansion coefficient and Gruneisen parameter of InP crystal at low temperatures, Solid State Physics, vol.20, pp.5275-5279, 1987.

J. Fabian and P. Allen, Thermal Expansion and Grüneisen Parameters of Amorphous Silicon : A Realistic Model Calculation, Physical Review Letters, vol.79, pp.1885-1888, 1997.

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, Optical design of nanowire absorbers for wavelength selective photodetectors, Scientific Reports, vol.5, p.15339, 2015.

R. C. Chuang, Emission properties of amorphous silicon and carbon films, Journal of Luminescence, vol.49, pp.631-635, 1991.

Y. Kanemitsu, Efficient light emission from crystalline and amorphous silicon nanostructures, J. Lumin, vol.100, p.209, 2002.

M. Zerrad, J. Sorrentini, G. Soriano, and C. Amra, Gradual loss of polarization in light scattered from rough surfaces : electromagnetic prediction, Optics express, vol.18, issue.15, pp.15832-15843, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00942798

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole et al., Observation of strongly entangled photon pairs from a nanowire quantum dot, Nature Communications, vol.5, p.5298, 2014.

J. G. Rivas, O. L. Muskens, M. T. Borgström, S. L. Diedenhofen, and E. P. Bakkers, Optical anisotropy of semiconductor nanowires, One-Dimensional Nanostructures, pp.127-145, 2008.

S. Giordano, Effective medium theory for dispersions of dielectric ellipsoids, Journal of Electrostatics, vol.58, issue.1-2, pp.59-76, 2003.

A. Kirchner, K. Busch, and C. M. Soukoulis, Transport properties of random arrays of dielectric cylinders, Physical Review B, vol.57, issue.1, pp.277-288, 1998.

M. Mulato, I. Chambouleyron, E. G. Birgin, and J. M. Martinez, Determination of thickness and optical constants of amorphous silicon films from transmittance data, Applied Physics Letters, vol.77, issue.14, p.2133, 2000.

A. Zilli, M. D. Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro et al., Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires, ACS nano, vol.9, issue.4, pp.4277-4287, 2015.

I. Jen?i?, M. W. Bench, I. M. Robertson, and M. A. Kirk, Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs, Journal of Applied Physics, vol.78, issue.2, pp.974-982, 1995.

Z. W. Xu and A. H. Ngan, TEM study of electron beam-induced crystallization of amorphous GeSi films, Philosophical Magazine Letters, vol.84, issue.11, pp.719-728, 2004.

, Growth of wurtzite GaP in InP / GaP core-shell nanowires by selective-area, Journal of Crystal Growth, vol.411, pp.71-75, 2015.

N. Skold, J. B. Wagner, G. Karlsson, T. Hernan, W. Seifert et al., Phase Segregation in AlInP Shells on GaAs Nanowires, vol.6, pp.2743-2747, 2006.

K. Tomioka, M. Yoshimura, and T. Fukui, A III-V nanowire channel on silicon for high-performance vertical transistors, Nature, vol.488, pp.189-193, 2012.

M. Heurlin, T. Stankevic, S. Mickevic, S. Yngman, D. Lindgren et al., Structural Properties of Wurtzite InP-InGaAs Nanowire Core-Shell Heterostructures, Nano Letters, vol.15, issue.4, pp.2462-2467, 2015.