, + 1-ethyl-3-methylimidazolium

, Br-AlCl3 1-ethylpyridinium bromide and aluminum

, TFSI] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide

, + l-butyl-3-methylimidazolium

, Cl-AlCl3 1-butylpyridinium chloride and aluminum (III) chloride [C5mIm][PF6] 1-pentyl-3-methylimidazolium hexafluorophosphate [CnmIm] + 1-alkyl-3-methylimidazolium

, Cl-AlCl3 1-alkyl-3-methylimidazolium chloroaluminates

M. A. Susan, T. Kaneko, A. Noda, and M. Watanabe, Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes, Trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide [TfO]-Trifluoromethanesulfonate (108), vol.127, pp.4976-4983, 2005.

L. Zhao, Y. Li, X. Cao, J. You, and W. Dong, Multifunctional Role of an Ionic Liquid in Melt-Blended Poly(methyl Methacrylate)/multi-Walled Carbon Nanotube Nanocomposites, Nanotechnology, vol.2012, issue.25, pp.255702-255703

A. M. Dias, S. Marceneiro, M. E. Braga, J. F. Coelho, A. G. Ferreira et al., Phosphonium-Based Ionic Liquids as Modifiers for Biomedical Grade Poly(vinyl Chloride), Acta Biomater, vol.8, issue.3, pp.1366-1379, 2012.

B. K. Chen, T. Y. Wu, Y. M. Chang, and A. F. Chen, Ductile Polylactic Acid Prepared with Ionic Liquids, Chem. Eng. J, pp.886-893, 2013.

M. P. Scott, C. S. Brazel, M. G. Benton, J. W. Mays, D. Holbrey et al., Application of Ionic Liquids as Plasticizers for Poly(methyl Methacrylate), Chem. Commun, issue.13, pp.1370-1371, 2002.

M. P. Scott, M. Rahman, and C. S. Brazel, Application of Ionic Liquids as Low-Volatility Plasticizers for PMMA, Eur. Polym. J, vol.39, issue.10, pp.1947-1953, 2003.

S. K. Mahadeva and J. Kim, Addition of 1-Butyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl) Imide to Improve the Thermal Stability of Regenerated Cellulose, J. Appl. Polym. Sci, vol.121, issue.2, pp.750-755, 2011.

A. Sankri, A. Arhaliass, I. Dez, A. C. Gaumont, Y. Grohens et al., Thermoplastic Starch Plasticized by an Ionic Liquid, Carbohydr. Polym, vol.82, issue.2, pp.256-263, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00879869

S. Ramesh, C. Liew, and K. Ramesh, Evaluation and Investigation on the Effect of Ionic Liquid onto PMMA-PVC Gel Polymer Blend Electrolytes, J. Non. Cryst. Solids, vol.357, issue.10, pp.2132-2138, 2011.

E. Leroy, P. Jacquet, G. Coativy, A. L. Reguerre, and D. Lourdin, Compatibilization of Starch-Zein Melt Processed Blends by an Ionic Liquid Used as Plasticizer, Carbohydr. Polym, vol.2012, issue.3, pp.955-963

P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco et al., Gas Transport Properties of Pebax/room Temperature Ionic Liquid Gel Membranes, Sep. Purif. Technol, vol.97, pp.73-82, 2012.

M. Rahman and C. S. Brazel, Ionic Liquids: New Generation Stable Plasticizers for Poly(vinyl Chloride), Polym. Degrad. Stab, vol.91, issue.12, pp.3371-3382, 2006.

C. Fourquet-bandeira, S. R. Montoro, and T. Brocks, Thermoset-Thermoplastic Nanostructured Blends. In Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems

S. Thomas, R. Shanks, and S. Chandran, , pp.1-13, 2015.

I. W. Hamley, Nanostructure Fabrication Using Block Copolymers, Nanotechnology, vol.39, issue.10, pp.39-54, 2003.

S. Livi, J. Gérard, and J. Duchet-rumeau, Ionic Liquids: Structuration Agents in a Fluorinated Matrix, Chem. Commun. (Camb), issue.12, pp.3589-3591, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649293

S. Livi, J. Duchet-rumeau, and J. F. Gérard, Nanostructuration of Ionic Liquids in Fluorinated Matrix: Influence on the Mechanical Properties, pp.1523-1531, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649273

J. Yang, S. Pruvost, S. Livi, and J. Duchet-rumeau, Understanding of Versatile and Tunable Nanostructuration of Ionic Liquids on Fluorinated Copolymer, Macromolecules, vol.48, issue.13, pp.4581-4590, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221483

S. Livi, V. Bugatti, B. G. Soares, and J. Duchet-rumeau, Structuration of Ionic Liquids in a Poly(butyleneAdipate-Co-Terephthalate) Matrix: Its Influence on the Water Vapour Permeability and Mechanical Properties, Can. J. Chem. Eng, vol.80, issue.8, pp.1008-1016, 2002.

L. C. Lins, S. Livi, J. Duchet-rumeau, and J. Gérard, Phosphonium Ionic Liquids as New Compatibilizing Agents of Biopolymer Blends Composed of Poly(butylene-Adipate-Co-Terephtalate)/poly(lactic Acid) (PBAT/PLA), RSC Adv, vol.2015, issue.73, pp.59082-59092
URL : https://hal.archives-ouvertes.fr/hal-01221473

B. Megevand, S. Pruvost, L. C. Lins, S. Livi, J. Gérard et al., Probing Nanomechanical Properties with AFM to Understand the Structure and Behavior of Polymer Blends Compatibilized with Ionic Liquids, RSC Adv, vol.2016, issue.98, pp.96421-96430
URL : https://hal.archives-ouvertes.fr/hal-01416183

M. Yousfi, S. Livi, and J. Duchet-rumeau, Ionic Liquids: A New Way for the Compatibilization of Thermoplastic Blends, INSA Lyon, tous droits réservés (129), vol.255, pp.513-524, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01089684

C. Stefanescu, W. H. Daly, and I. I. Negulescu, Biocomposite Films Prepared from Ionic Liquid Solutions of Chitosan and Cellulose, Carbohydr. Polym, vol.2012, issue.1, pp.435-443

J. Hu, Q. Yang, L. Yang, Z. Zhang, B. Su et al., Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene, ACS Catal, vol.2015, issue.11, pp.6724-6731

Y. Liu, L. Qiao, Y. Xiang, and R. Guo, Adsorption Behavior of Low-Concentration Imidazolium-Based Ionic Liquid Surfactant on Silica Nanoparticles, Langmuir, vol.32, issue.11, pp.2582-2590, 2016.

A. A. Shamsuri and R. Daik, Applications of Ionic Liquids and Their Mixtures for Preparation of Advanced Polymer Blends and Composites: A Short Review, Rev. Adv. Mater. Sci, vol.2015, issue.1, pp.45-59

J. E. Gieseking, The Mechanism of Cation Exchange in the Montmorillonite-Beidellite-Nontronite Type of Clay Minerals, Soil Sci, vol.1939, issue.1, pp.1-14

S. B. Hendricks, Base Exchange of the Clay Mineral Montmorillonite for Organic Cations and Its Dependence upon Adsorption due to van Der Waals Forces, J. Phys. Chem, vol.45, issue.1, pp.65-81, 1941.

W. H. Awad, J. W. Gilman, M. Nyden, R. H. Harris, T. E. Sutto et al., Thermal Degradation Studies of Alkyl-Imidazolium Salts and Their Application in Nanocomposites, Thermochim. Acta, vol.409, issue.1, pp.3-11, 2004.

S. Livi, J. Duchet-rumeau, T. N. Pham, and J. F. Gérard, A Comparative Study on Different Ionic Liquids Used as Surfactants: Effect on Thermal and Mechanical Properties of High-Density Polyethylene Nanocomposites, J. Colloid Interface Sci, vol.349, issue.1, pp.424-433, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00600165

S. Livi, J. Duchet-rumeau, T. N. Pham, and J. Gérard, Synthesis and Physical Properties of New Surfactants Based on Ionic Liquids: Improvement of Thermal Stability and Mechanical Behaviour of High Density Polyethylene Nanocomposites, J. Colloid Interface Sci, vol.354, issue.2, pp.555-562, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649298

Y. Ding, X. Zhang, R. Xiong, S. Wu, M. Zha et al., Effects of Montmorillonite Interlayer MicroCircumstance on the PP Melting Intercalation, Studies on Poly(vinylidene Fluoride)-Clay Nanocomposites: Effect of Different Clay Modifiers, vol.44, pp.3486-3499, 2008.

A. Pucci, V. Liuzzo, B. Melai, C. S. Pomelli, and C. Chiappe, Polymerizable Ionic Liquids for the Preparation of Polystyrene/clay Composites, Polym. Int, vol.2012, issue.3, pp.426-433

A. Das, K. W. Stöckelhuber, R. Jurk, J. Fritzsche, M. Klüppel et al., Coupling Activity of Ionic Liquids between Diene Elastomers and Multi-Walled Carbon Nanotubes, vol.47, pp.3313-3321, 2009.

R. K. Donato, M. A. Benvegnú, L. G. Furlan, R. S. Mauler, and H. S. Schrekker, Imidazolium Salts as Liquid Coupling Agents for the Preparation of Polypropylene-Silica Composites, J. Appl. Polym. Sci, vol.116, issue.1, pp.304-307, 2010.

R. K. Donato, L. Mat?jka, H. S. Schrekker, J. Ple?til, A. Jigounov et al., The Multifunctional Role of Ionic Liquids in the Formation of Epoxy-Silica Nanocomposites, J. Mater. Chem, vol.21, issue.36, pp.13801-13810, 2011.

Y. Ohsawa, R. Takahashi, S. Maruyama, and Y. Matsumoto, Direct Synthesis of Porous Polyurea Films by Vapor Deposition Polymerization in Ionic Liquid, ACS Macro Lett, vol.5, issue.9, pp.1009-1013, 2016.

F. Yan, J. Texter, L. Zhu, C. Huang, Y. H. Patel et al., Synthesis of Porous Polyurea with RoomTemperature Ionic Liquids via Interfacial Polymerization, Macromol. Rapid Commun, vol.27, issue.25, pp.1306-1311, 2006.

S. Kim, J. Seo, and U. S. Shin, Application of Room-Temperature Ionic Liquids in Preparation of Highly Porous Polymer Membranes and Microspheres, Bull. Korean Chem. Soc, vol.36, issue.2, pp.643-649, 2015.

L. Chen, D. Rende, L. S. Schadler, and R. Ozisik, Polymer Nanocomposite Foams, J. Mater. Chem. A, vol.2013, issue.12, pp.3837-3850

Y. Sun, S. K. Gray, and S. Peng, Surface Chemistry: A Non-Negligible Parameter in Determining Optical Properties of Small Colloidal Metal Nanoparticles, Phys. Chem. Chem. Phys, issue.173, pp.11814-11826, 2011.

Y. Xing, J. Zhao, P. S. Conti, and K. Chen, Radiolabeled Nanoparticles for Multimodality Tumor Imaging, Theranostics, vol.2014, issue.3, pp.290-306

H. Emamipour, D. L. Johnsen, M. J. Rood, M. Jain, and G. Skandan, Novel Activated Carbon Fiber Cloth Filter with Functionalized Silica Nanoparticles for Adsorption of Toxic Industrial Chemicals, Adsorption, vol.21, issue.4, pp.265-272, 2015.

M. Lundqvist, I. Sethson, and B. H. Jonsson, Protein Adsorption onto Silica Nanoparticles: Conformational Changes Depend on the Particles' Curvature and the Protein Stability, Langmuir, vol.20, issue.24, pp.10639-10647, 2004.

S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi et al., Surface Modification of Inorganic Nanoparticles for Development of Organic-inorganic nanocomposites-A Review, Prog. Polym. Sci, vol.2013, issue.8, pp.1232-1261

I. A. Rahman and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocompositesa Review, J. Nanomater, pp.132424-132425, 2012.

W. Stöber and A. Fink, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci, vol.26, issue.1, pp.62-69, 1968.

J. K. Bailey and M. L. Mecartney, Formation of Colloidal Silica Particles from Alkoxides. Colloids and Surfaces, vol.63, pp.131-138, 1992.

N. Plumeré, A. Ruff, B. Speiser, V. Feldmann, and H. A. Mayer, Stöber Silica Particles as Basis for Redox Modifications: Particle Shape, Size, Polydispersity, and Porosity, J. Colloid Interface Sci, vol.2012, issue.1, pp.208-219

I. Ibrahim and .. M. Zikry, Preparation of Spherical Silica Nanoparticles: Stober Silica, J. Am. Sci, vol.2010, issue.11, pp.985-989

V. M. Masalov, N. S. Sukhinina, E. A. Kudrenko, and G. A. Emelchenko, Mechanism of Formation and Nanostructure of Stöber Silica Particles, Nanotechnology, vol.22, issue.27, pp.275718-275719, 2011.

C. L. Wu, M. Q. Zhang, M. Z. Rong, and K. Friedrich, Silica Nanoparticles Filled Polypropylene: Effects of Particle Surface Treatment, Matrix Ductility and Particle Species on Mechanical Performance of the Composites, Compos. Sci. Technol, vol.65, issue.3-4, pp.635-645, 2005.

L. T. Zhuravlev, Surface Characterization of Amorphous Silica-a Review of Work from the Former USSR, Colloids Surfaces A Physicochem. Eng. Asp, vol.74, issue.185, pp.71-90, 1993.

S. K. Parida, S. Dash, S. Patel, and B. K. Mishra, Adsorption of Organic Molecules on Silica Surface, Adv. Colloid Interface Sci, vol.121, issue.1-3, pp.77-110, 2006.

T. Bandosz, Analysis of Silica Surface Heterogeneity Using Butane and Butene Adsorption Data, J. Colloid Interface Sci, vol.193, issue.1, pp.127-131, 1997.

L. Diaz, C. M. Liauw, M. Edge, N. S. Allen, A. Mcmahon et al., Investigation of Factors Affecting the Adsorption of Functional Molecules onto Gel Silicas: 1. Flow Microcalorimetry and Infrared Spectroscopy, J. Colloid Interface Sci, vol.287, issue.2, pp.379-387, 2005.

Z. Zhao, L. Zhang, and Y. Lin, Thermodynamics of Adsorption of Organic Compounds at the SilicaGel/Nonpolar Solvent Interfaces, J. Colloid Interface Sci, vol.166, issue.1, pp.23-28, 1994.

P. K. Misra, B. K. Mishra, and P. Somasundaran, Organization of Amphiphiles-V. In Situ Fluorescence Probing of the Adsorbed Layers of Polyoxyethylated Alkyl Phenols at Silica-Water Interfaces, J. Colloid Interface Sci, vol.265, issue.1, pp.1-8, 2003.

A. Haouam and E. Pefferkorn, Adsorption and Desorption of Macromolecules at a Solid-Liquid Interface, Colloids and Surfaces, vol.34, pp.371-379

E. Mubarekyan and M. Santore, Adsorption and Exchange Dynamics in Aging Hydroxyethylcellulose Layers on Silica, J. Colloid Interface Sci, vol.227, issue.2, pp.334-344, 2000.

K. Wannerberger and T. Arnebrant, Adsorption of Lipase to Silica and Methylated Silica Surfaces, J. Colloid Interface Sci, vol.177, issue.2, pp.316-324, 1996.

N. P. Patel, J. M. Zielinski, J. Samseth, and R. J. Spontak, Effects of Pressure and Nanoparticle Functionality on CO2-Selective Nanocomposites Derived from Crosslinked Poly(ethylene Glycol), INSA Lyon, tous droits réservés, pp.2409-2419, 2004.

M. Roy, J. K. Nelson, R. K. Maccrone, L. S. Schadler, C. W. Reed et al., Polymer Nanocomposite Dielectrics-the Role of the Interface, Dielectr. Electr. Insul. IEEE Trans, vol.12, issue.4, pp.629-643, 2005.

U. Ali, K. J. Karim, and N. A. Buang, A Review of the Properties and Applications of Poly(Methyl Methacrylate) (PMMA), Polym. Rev, vol.55, issue.4, pp.678-705, 2015.

R. Goseki and T. Ishizone, Poly(methyl Methacrylate) (PMMA), Encyclopedia of Polymeric Nanomaterials

C. M. Roland, , pp.1701-1710, 2014.

C. E. Carraher, Free Radical Chain Polymerization: Addition Polymerization. In Introduction to Polymer Chemistry, 2012.

S. Agrawal, D. Patidar, M. Dixit, K. Sharma, N. S. Saxena et al., Investigation of Thermo-Mechanical Properties of PMMA, AIP Conf. Proc, vol.79, pp.79-82, 2010.

F. R. Dimaio, The Science of Bone Cement: A Historical Review, Orthopedics, vol.25, issue.243, pp.1399-1407, 2002.

E. Pawar, W. A. Higgs, P. Lucksanasombool, R. Higgs, and M. V. Swain, Comparison of the Material Properties of PMMA and Glass Ionomer Based Cements for Use in Orthopedic Surgery, Review Article on Acrylic PMMA. IOSR J. Mech. Civ. Eng, vol.13, issue.2, pp.453-460, 2001.

R. Q. Frazer, R. T. Byron, P. B. Osborne, and K. P. West, PMMA: An Essential Material in Medicine and Dentistry, J. Long. Term. Eff. Med. Implants, vol.15, issue.6, pp.629-639, 2005.

M. L. Saladino, T. E. Motaung, .. S. Luyt, . Spinella, G. Nasillo et al., The Effect of Silica Nanoparticles on the Morphology, Mechanical Properties and Thermal Degradation Kinetics of PMMA, Polym. Degrad. Stab, vol.2012, issue.3, pp.452-459

S. Etienne, C. Becker, D. Ruch, B. Grignard, G. Cartigny et al., Effects of Incorporation of Modified Silica Nanoparticles on the Mechanical and Thermal Properties of PMMA, J. Therm. Anal. Calorim, vol.87, issue.1, pp.101-104, 2007.

M. M. Jayasuriya and D. J. Hourston, The Effect of Composition and the Level of Crosslinking of the Poly(methylmethacrylate) Phase on the Properties of Natural Rubber-Poly(methylmethacrylate) Semi

H. Duan, L. Zhang, and G. Chen, Plasticizer-Assisted Bonding of poly(Methyl Methacrylate) Microfluidic Chips at Low Temperature, J. Appl. Polym. Sci, vol.2012, issue.7, pp.160-166, 2010.

X. H. Flora, Role of Different Plasticizers in Li-Ion Conducting Poly(Acrylonitrile)-Poly(Methyl Methacrylate) Hybrid Polymer Electrolyte, Int. J. Polym. Mater. Polym. Biomater, vol.62, issue.14, pp.37-41, 2013.

A. Bistolfi, G. Massazza, E. Verné, A. Massè, D. Deledda et al., Antibiotic-Loaded Cement in Orthopedic Surgery: A Review, pp.290851-290852, 2011.

H. L. Tan, W. T. Lin, and T. T. Tang, The Use of Antimicrobial-Impregnated PMMA to Manage Periprosthetic Infections: Controversial Issues and the Latest Developments, Int. J. Artif. Organs, vol.2012, issue.10, pp.832-839

Y. Hu, C. Chen, and C. Wang, Viscoelastic Properties and Thermal Degradation Kinetics of silica/PMMA Nanocomposites, Polym. Degrad. Stab, vol.84, issue.3, pp.545-553, 2004.

X. Wang, P. Wang, Y. Jiang, Q. Su, and J. Zheng, Facile Surface Modification of Silica Nanoparticles with a Combination of Noncovalent and Covalent Methods for Composites Application, Compos. Sci. Technol, vol.104, pp.1-8, 2014.

, INSA Lyon, tous droits réservés (61) Luo, W.; Liu, W. Incubation Time to Crazing in Stressed Poly(methyl Methacrylate), Polym. Test, vol.26, issue.3, pp.413-418, 2007.

E. H. Andrews and L. Bevan, 64) Scheirs, J. Compositional and Failure Analysis of Polymers: A Practical Approach, J. Mater. Sci, vol.2012, issue.7, pp.1399-1405, 1972.

P. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

, INSA Lyon, tous droits réservés PMMA PMMA/Si12

. Pmma/si12,

. Pmma/si12,

. Pmma/si12,

. Pmma/si12,

, Stress / MPa Strain

. Pmma/si12,

. Pmma/si12,

. Pmma/si12,

. Pmma/si12,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

, Stress / MPa Strain

. Pmma/si180,

. Pmma/si180,

. Pmma/si180,

P. Kilaru, P. Baker, G. A. Scovazzo, P. Ueno, K. Fukai et al., Density and Surface Tension Measurements of Imidazolium-, Quaternary Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids: Data and Correlations, J. Chem. Eng. Data, vol.52, issue.42, pp.3228-3235, 2007.
DOI : 10.1021/je800030s

URL : https://pubs.acs.org/doi/pdf/10.1021/je800030s

J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. Broker et al., Relative Hydrophobicity and Hydrophilicity of some "Ionic liquid" Anions Determined by the 1-Propanol Probing Methodology: A Differential Thermodynamic Approach, J. Phys. Chem. B, vol.3, issue.4, pp.2655-2660, 2001.

N. García, T. Corrales, J. Guzmán, and P. Tiemblo, Understanding the Role of Nanosilica Particle Surfaces in the Thermal Degradation of Nanosilica-poly(methyl Methacrylate) Solution-Blended Nanocomposites: From Low to High Silica Concentration, Polym. Degrad. Stab, vol.92, issue.4, pp.635-643, 2007.

Y. Hu, C. Chen, C. Wang, K. Chrissafis, D. Bikiaris et al., ) Fragiadakis, D.; Pissis, P. Glass Transition and Segmental Dynamics in Poly(dimethylsiloxane)/silica Nanocomposites Studied by Various Techniques, Viscoelastic Properties and Thermal Degradation Kinetics of silica/PMMA Nanocomposites, vol.84, pp.1947-1953, 2003.

J. Yang, J. J. Zhao, C. R. Han, J. F. Duan, Y. Feng et al., Keys to Enhancing Mechanical Properties of Silica Nanoparticle Composites Hydrogels: The Role of Network Structure and Interfacial Interactions, Compos. Sci. Technol, vol.95, issue.55, pp.3844-3850, 2004.

S. Livi and J. Duchet-rumeau, Processing of Polymer Nanocomposite Foams in Supercritical CO2, Polymer Nanocomposite Foams

V. Mittal, . Ed, C. Forest, P. Chaumont, P. Cassagnau et al., Controlling Foam Morphology of Poly(methyl Methacrylate) via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters, Sonntag, P. Nanofoaming of PMMA Using a Batch CO2 Process: Influence of the PMMA Viscoelastic Behaviour. Polym, vol.34, pp.157-163, 1999.

N. H. Fletcher, Size Effect in Heterogeneous Nucleation, J. Chem. Phys, vol.1958, issue.3, pp.572-64
DOI : 10.1063/1.1744540

J. Yang, Y. Sang, F. Chen, Z. Fei, and M. Zhong, Synthesis of Silica Particles Grafted with Poly(ionic Liquid) and Their Nucleation Effect on Microcellular Foaming of Polystyrene Using Supercritical Carbon Dioxide, J. Supercrit. Fluids, vol.62, pp.197-203, 2012.

S. Livi, T. N. Pham, J. Gérard, and J. Duchet-rumeau, 66) Klähn, M.; Seduraman, A. What Determines CO2 Solubility in Ionic Liquids? A Molecular Simulation Study, J. Phys. Chem. B, vol.240, issue.31, pp.10066-10078, 2014.

. , 2.1.3. Synthesis of the series of 1-(3-trimethoxysilylpropyl)-3-alkylimidazolium chloride ILs (imidazolium IL-functionalized silanes)

. , Surface modification of silica nanoparticles under scCO2

. , Processing of PMMA/Si-g-ImCx nanocomposites

. , 3.1. Surface modification of silica nanoparticles under scCO2

. , 3.1.1.1. Imidazolium IL-functionalized silanes content (percentage in mass) onto silica surface after surface treatment under scCO2, Thermal stability of grafted Si-g-ImCx nanoparticles

I. , .3.1.2. Morphology and particle size aggregates of Si-g-ImCx nanoparticles

. , 3.2.1. Morphologies of PMMA/Si-g-ImCx nanocomposites, Influence of the presence of Si-g-ImCx nanoparticles on the resulting properties of PMMA-based nanocomposites

. , Surface properties of PMMA/Si-g-ImCx nanocomposites

. , Thermal stability of PMMA/Si-g-ImCx nanocomposites

. , Rheological properties of PMMA/Si-g-ImCx nanocomposites

, Dynamic mechanical properties of PMMA/Si-g-ImCx nanocomposites, p.186

. , Mechanical properties of PMMA/Si-g-ImCx nanocomposites

A. B. Iii,

A. B. Iii,

A. B. Iii,

, INSA Lyon, tous droits réservés, p.140

P. Si, ImC1 PMMA/Si-g-ImC4 PMMA/Si-g-ImC8 PMMA/Si-g-ImC18 bare

, INSA Lyon, tous droits réservés

N. Barkoula, T. Peijs, T. Schimanski, J. Loos, M. Salami-kalajahi et al., A Study on the Properties of PMMA/silica Nanocomposites Prepared via RAFT Polymerization, INSA Lyon, tous droits réservés III.B.5. REFERENCES (1), vol.26, pp.1-11, 2005.

Y. Xing, J. Zhao, P. S. Conti, and K. Chen, Radiolabeled Nanoparticles for Multimodality Tumor Imaging, Theranostics, vol.2014, issue.3, pp.290-306
DOI : 10.7150/thno.7341

URL : http://www.thno.org/v04p0290.pdf

S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi et al., Surface Modification of Inorganic Nanoparticles for Development of Organic-inorganic nanocomposites-A Review, Prog. Polym. Sci, vol.2013, issue.8, pp.1232-1261

I. A. Rahman and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocompositesa Review, J. Nanomater, pp.132424-132425, 2012.

J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau et al., Current Issues in Research on Structure-Property Relationships in Polymer Nanocomposites. Polymer (Guildf), vol.2010, issue.15, pp.3321-3343

K. Chrissafis and D. Bikiaris, Can Nanoparticles Really Enhance Thermal Stability of Polymers? Part I: An Overview on Thermal Decomposition of Addition Polymers, Thermochim. Acta, vol.523, issue.1-2, pp.1-24, 2011.

S. A. Sajjadi, H. R. Ezatpour, and H. Beygi, Microstructure and Mechanical Properties of Al-Al2O3 Micro and Nano Composites Fabricated by Stir Casting, Mater. Sci. Eng. A, pp.8765-8771, 2011.

H. Zou, S. Wu, and J. Shen, Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications, Chem. Rev, vol.108, issue.9, pp.3893-3957, 2008.

Y. Xie, C. Hill, S. Xiao, Z. Militz, H. Mai et al., Silane Coupling Agents Used for Natural Fiber/polymer Composites: A Review, Compos. Part A Appl. Sci. Manuf, vol.338, issue.7, pp.117-123, 1985.

J. Duchet, B. Chabert, J. P. Chapel, J. F. G?rard, J. M. Chovelon et al., Influence of Deposition Process on the Structure of Grafted Alkylsilane Layers, Langmuir, vol.13, issue.6, pp.2271-2278, 1998.

J. Duchet, J. Gérard, J. Chapel, B. Chabert, A. R. Yadav et al., Comparative Study of Solution-Phase and VaporPhase Deposition of Aminosilanes on Silicon Dioxide Surfaces, Situ Infrared Studies of the Adsorption and Reaction of Organosilanes on Silica. Langmuir, vol.8, pp.7870-7875, 1999.

N. M. Scully, L. O. Healy, T. ;-o'mahony, J. D. Glennon, B. Dietrich et al., Gradual Hydrophobic Surface Functionalization of Dry Silica Aerogels by Reaction with Silane Precursors Dissolved in Supercritical Carbon Dioxide, J. Supercrit. Fluids, vol.84, issue.18, pp.74-79, 2008.

E. Loste, M. A. Fanovich, J. Fraile, G. F. Woerlee, C. Domingo et al., The Adsorption and Reaction of a Titanate Coupling Reagent on the Surfaces of Different Nanoparticles in Supercritical CO2, J. Colloid Interface Sci, vol.16, issue.8, pp.152-159, 2004.

D. Stojanovic, A. Orlovic, S. B. Glisic, S. Markovic, V. Radmilovic et al., Preparation of MEMO Silane-Coated SiO2 Nanoparticles under High Pressure of Carbon Dioxide and Ethanol, INSA Lyon, tous droits réservés, vol.52, pp.1-21, 2010.

Z. Ma, J. Yu, S. Dai, C. Janiak, S. Livi et al., Synthesis and Physical Properties of New Surfactants Based on Ionic Liquids: Improvement of Thermal Stability and Mechanical Behaviour of High Density Polyethylene Nanocomposites, Preparation of Inorganic Materials Using Ionic Liquids, vol.22, pp.13614-13619, 2010.

H. Okada, Y. Kajiwara, K. Tanaka, Y. Chujo, H. Valizadeh et al., Ionic Liquid 1-(3-Trimethoxysilylpropyl)-3Methylimidazolium Nitrite as a New Reagent for the Efficient Diazotization of Aniline Derivatives and in Situ Synthesis of Azo Dyes, Nanofiller Structure and Reinforcement in Model Silica/rubber Composites: A Quantitative Correlation Driven by Interfacial Agents. Macromolecules, vol.428, pp.5365-5378, 2011.

J. K. Percus and G. J. Yevick, Analysis of Classical Statistical Mechanics by Means of Collective Coordinates, Phys. Rev, vol.110, issue.1, pp.1-13, 1958.

D. K. Owens, R. C. Wendt, S. Ek, A. Root, M. Peussa et al., Determination of the Hydroxyl Group Content in Silica by Thermogravimetry and a Comparison with 1H MAS NMR Results, J. Appl. Polym. Sci, vol.13, issue.8, pp.201-212, 1969.

R. Mueller, H. K. Kammler, K. Wegner, S. E. Pratsinis, R. F. De-farias et al., Thermogravimetry as a Reliable Tool to Estimate the Density of Silanols on a Silica Gel Surface, Zhuravlev Model. Colloids Surfaces A Physicochem. Eng. Asp, vol.19, issue.11, pp.1-38, 1998.

W. H. Awad, J. W. Gilman, M. Nyden, R. H. Harris, T. E. Sutto et al., Thermal Degradation Studies of Alkyl-Imidazolium Salts and Their Application in Nanocomposites, Thermochim. Acta, vol.409, issue.1, pp.3-11, 2004.

J. Mcelwee, R. Helmy, and A. Y. Fadeev, Thermal Stability of Organic Monolayers Chemically Grafted to Minerals, J. Colloid Interface Sci, vol.285, issue.2, pp.551-556, 2005.

A. Y. Fadeev, T. J. Mccarthy, N. Nishiyama, K. Horie, T. Asakura et al., Self-Assembly Is Not the Only Reaction Possible between Alkyltrichlorosilanes and Surfaces: Monomolecular and Oligomeric Covalently Attached Layers of Dichloroand Trichloroalkylsilanes on Silicon, INSA Lyon, tous droits réservés (42), vol.16, pp.127-149, 1971.

P. Yee, J. K. Shah, E. J. Maginn, A. Y. Fadeev, and T. J. Mccarthy, Trialkylsilane Monolayers Covalently Attached to Silicon Surfaces: Wettability Studies Indicating That Molecular Topography Contributes to Contact Angle Hysteresis, J. Phys. Chem. B, vol.2013, issue.41, pp.3759-3766, 1999.

S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi et al., Nanosilica/PMMA Composites Obtained by the Modification of Silica Nanoparticles in a Supercritical Carbon Dioxide-Ethanol Mixture, Progress in Polymer Science, vol.44, issue.51, pp.6223-6232, 2009.

Q. Zhang, L. A. Archer, and . Poly, Silica Nanocomposites: Structure and Rheology. Langmuir, vol.18, pp.10435-10442, 2002.

K. Ueno, T. Fukai, T. Nagatsuka, T. Yasuda, and M. Watanabe, Solubility of Poly(methyl Methacrylate) in Ionic Liquids in Relation to Solvent Parameters, Langmuir, vol.30, issue.11, pp.3228-3235, 2014.

J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker et al., Density and Surface Tension Measurements of Imidazolium-, Quaternary Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids: Data and Correlations, J. Chem. Eng. Data, vol.3, issue.4, pp.2306-2314, 1999.

M. G. Freire, P. J. Carvalho, A. M. Fernandes, I. M. Marrucho, A. J. Queimada et al., Surface Tensions of Imidazolium Based Ionic Liquids: Anion, Cation, Temperature and Water Effect, J. Colloid Interface Sci, vol.314, issue.2, pp.621-630, 2007.

L. M. Santos, J. N. Lopes, J. M. Esperança, L. R. Gomes, I. M. Marrucho et al., Ionic Liquids: First Direct Determination of Their Cohesive Energy, J. Am. Chem. Soc, vol.129, issue.2, pp.284-285, 2007.

N. García, T. Corrales, J. Guzmán, and P. Tiemblo, Understanding the Role of Nanosilica Particle Surfaces in the Thermal Degradation of Nanosilica-Poly(methyl Methacrylate) Solution-Blended Nanocomposites: From Low to High Silica Concentration, Polym. Degrad. Stab, vol.92, issue.4, pp.635-643, 2007.

Y. Hu, C. Chen, C. Wang, S. Vyazovkin, A. K. Burnham et al., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, INSA Lyon, tous droits réservés, vol.84, pp.1-19, 2004.

M. L. Saladino, T. E. Motaung, A. S. Luyt, A. Spinella, G. Nasillo et al., The Effect of Silica Nanoparticles on the Morphology, Mechanical Properties and Thermal Degradation Kinetics of PMMA, Polym. Degrad. Stab, vol.2012, issue.3, pp.452-459

S. N. Tripathi, R. S. Malik, V. Choudhary, H. Zhang, W. G. Bin;-zheng et al., The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethylmethacrylate Composites, Polym. Adv. Technol, vol.26, issue.12, pp.5117-5125, 2015.

X. Hao, J. Kaschta, D. W. Schubert, M. Wang, A. Mabrouk et al., Keys to Enhancing Mechanical Properties of Silica Nanoparticle Composites Hydrogels: The Role of Network Structure and Interfacial Interactions, Viscous and Elastic Properties of Polylactide Melts Filled with Silica Particles: Effect of Particle Size and Concentration. Compos. Part B Eng, vol.89, pp.3844-3850, 1998.

M. Simic, N. Paunovic, I. Boric, J. Randjelovic, S. Vojnovic et al., Functionalised Isocoumarins as Antifungal Compounds: Synthesis and Biological Studies, INSA Lyon, tous droits réservés References: (1), vol.26, pp.235-239, 2016.

M. Bahnous, A. Bouraiou, M. Chelghoum, S. Bouacida, T. Roisnel et al., Synthesis, Crystal Structure and Antibacterial Activity of New Highly Functionalized Ionic Compounds Based on the Imidazole Nucleus, pp.1274-1278, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01494086

H. Valizadeh, L. Dinparast, S. Noorshargh, and M. M. Heravi, Microwave Assisted Synthesis of Hydroxychromenes Using Imidazole-Functionalized Silica Nanoparticles as a Catalyst under Solvent-Free Conditions, Comptes Rendus Chim, vol.19, issue.3, pp.394-401, 2016.

J. E. Bara, Versatile and Scalable Method for Producing N-Functionalized Imidazoles, Ind. Eng. Chem. Res, vol.50, issue.4, pp.13614-13619, 2011.

G. Liu, M. Hou, T. Wu, T. Jiang, H. Fan et al., Pd(ii) Immobilized on Mesoporous Silica by N-Heterocyclic Carbene Ionic Liquids and Catalysis for Hydrogenation, Phys. Chem. Chem. Phys, vol.13, issue.6, p.2062, 2011.

T. Ishii, T. Enoki, T. Mizumo, J. Ohshita, and Y. Kaneko, Preparation of Imidazolium-Type Ionic Liquids Containing Silsesquioxane Frameworks and Their Thermal and Ion-Conductive Properties, RSC Adv, vol.2015, issue.20, pp.15226-15232

P. Anastas and N. Eghbali, Green Chemistry: Principles and Practice, Chem. Soc. Rev, vol.39, issue.1, pp.301-312, 2010.

B. K. Chan, N. Chang, and M. R. Grimmett, The Synthesis and Thermolysis of Imidazole Quaternary Salts, Aust. J. Chem, vol.30, issue.9, pp.2005-2013, 1977.

K. J. Baranyai, G. B. Deacon, D. R. Macfarlane, J. M. Pringle, J. L. Scott et al., Thermal Degradation of Ionic Liquids at Elevated Temperatures, Thermochim. Acta, vol.57, issue.2, pp.97-102, 2000.

Y. Hao, J. Peng, S. Hu, J. Li, M. Zhai et al., Crystal Polymorphism in 1-Butyl-3-Methylimidazolium Halides : Supporting Ionic Liquid Formation by Inhibition of Crystallization, Thermochim. Acta, vol.501, issue.1-2, pp.1636-1637, 2003.