, Science, vol.306, issue.5696, pp.666-669, 2004.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al.,

, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, vol.8, issue.3, pp.902-907, 2008.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias et al.,

, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer

, Phys. Rev. Lett, vol.100, issue.1, p.16602, 2008.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene

, Solid State Communications, vol.146, issue.9, pp.351-355, 2008.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene

, Science, issue.5887, pp.385-388, 2008.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-alonso et al.,

H. C. Adamson, X. Schniepp, R. S. Chen, S. T. Ruoff, I. A. Nguyen et al.,

, Functionalized graphene sheets for polymer nanocomposites, Nature nanotechnology, vol.3, issue.6, pp.327-331, 2008.

S. Stankovich, A. Dmitriy, . Dikin, H. B. Geoffrey, K. M. Dommett et al.,

E. A. Zimney, R. D. Stach, . Piner, T. Sonbinh, R. S. Nguyen et al.,

, BIBLIOGRAPHIE Graphene-based composite materials, Nature, vol.442, p.282, 2006.

B. Seger and P. V. Kamat,

, Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells

, The Journal of Physical Chemistry C, vol.113, pp.7990-7995, 2009.

Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang et al.,

, Intrinsic Current Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping

, Nano Letters, vol.7, issue.6, pp.1469-1473, 2007.

E. Yoo, J. Kim, E. Hosono, T. Hao-shen-zhou, I. Kudo et al., Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries

, Nano Letters, vol.8, issue.8, pp.2277-2282, 2008.

I. Forbeaux, J. Themlin, and J. Debever, Heteroepitaxial graphite on $6h\ensuremath-\mathrmSiC(0001) :$ Interface formation through conduction-band electronic structure

, Phys. Rev. B, vol.58, issue.24, pp.16396-16406, 1998.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al.,

, Electronic Confinement and Coherence in Patterned Epitaxial Graphene

, Science, 2006.

T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the Electronic Structure of Bilayer Graphene

, Science, vol.313, issue.5789, pp.951-954, 2006.

M. Eizenberg and J. M. Blakely, Carbon monolayer phase condensation on Ni

, Surface Science, vol.82, issue.1, pp.228-236, 1979.

Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen et al., Graphene segregated on Ni surfaces and transferred to insulators, BIBLIOGRAPHIE Applied Physics Letters, vol.93, issue.11, p.113103, 2008.

A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach,

. Substrate-free, Gas-Phase Synthesis of Graphene Sheets, Nano Letters, vol.8, issue.7, pp.2012-2016, 2008.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun et al.,

, High-yield production of graphene by liquid-phase exfoliation of graphite

, Nature Nanotechnology, vol.3, p.563, 2008.

S. Stankovich, A. Dmitriy, R. D. Dikin, K. A. Piner, A. Kohlhaas et al.,

, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

, Carbon, vol.45, issue.7, pp.1558-1565, 2007.

G. Eda, G. Fanchini, and M. Chhowalla,

, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material

, Nature Nanotechnology, vol.3, p.270, 2008.

S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology, vol.4, issue.4, pp.217-224, 2009.

W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, New insights into the structure and reduction of graphite oxide, Nature chemistry, vol.1, issue.5, pp.403-408, 2009.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller et al.,

S. Piner, I. Stankovich, D. A. Jung, C. A. Field, R. S. Ventrice et al.,

, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy

, Carbon, vol.47, issue.1, pp.145-152, 2009.

B. Athanasios and . Bourlinos, Vasilios Georgakilas, Radek Zboril, Theodore A. Steriotis, and Athanasios K. Stubos. BIBLIOGRAPHIE Liquid-phase exfoliation of graphite towards solubilized graphenes

, Small (Weinheim an der Bergstrasse, Germany), vol.5, issue.16, pp.1841-1845, 2009.

U. Khan, A. Neill, M. Lotya, S. De, and J. N. Coleman, High-Concentration Solvent Exfoliation of Graphene

, Small, vol.6, issue.7, pp.864-871, 2010.

M. Lotya, Y. Hernandez, P. J. King, J. Ronan, V. Smith et al.,

F. M. Karlsson, S. Blighe, Z. De, I. T. Wang, G. S. Mcgovern et al.,

, Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions, Journal of the American Chemical Society, vol.131, issue.10, pp.3611-3620, 2009.

M. Lotya, J. Paul, U. King, S. Khan, J. De et al.,

, ACS Nano, vol.4, issue.6, pp.3155-3162, 2010.

Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery

, Langmuir, vol.26, issue.5, pp.3208-3213, 2010.

D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. Bittolo-bon et al.,

, J. Mater. Chem, vol.21, issue.10, pp.3428-3431, 2011.

X. Zhou, T. Wu, K. Ding, B. Hu, M. Hou et al., Dispersion of graphene sheets in ionic liquid

, Chem. Commun, vol.46, issue.3, pp.386-388, 2010.

S. Vadukumpully, J. Paul, and S. Valiyaveettil, Cationic surfactant mediated exfoliation of graphite into graphene flakes

, Carbon, vol.47, issue.14, pp.3288-3294, 2009.

L. Guardia, M. J. Fernández-merino, J. I. Paredes, P. Solís-fernández, S. Villar-rodil et al.,

, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants, BIBLIOGRAPHIE Carbon, vol.49, issue.5, pp.1653-1662, 2011.

A. A. Green and M. C. Hersam, Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation, Nano Letters, vol.9, issue.12, pp.4031-4036, 2009.

S. De, P. J. King, M. Lotya, A. Neill, E. M. Doherty et al.,

T. Flexible, Conducting Films of Randomly Stacked Graphene from SurfactantStabilized, Oxide-Free Graphene Dispersions

, Small, vol.6, issue.3, pp.458-464, 2010.

A. S. Wajid, S. Das, H. S. Fahmida-irin, J. L. Ahmed, D. Shelburne et al.,

, Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production

, Carbon, vol.50, issue.2, pp.526-534, 2012.

B. Athanasios, V. Bourlinos, R. Georgakilas, T. A. Zboril, and . Steriotis, Athanasios K. Stubos, and Christos Trapalis

, Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes

, Solid State Communications, vol.149, issue.47, pp.2172-2176, 2009.

S. Das, H. S. Fahmida-irin, A. B. Ahmed, A. S. Cortinas, D. Wajid et al.,

, Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites

, Polymer, vol.53, issue.12, pp.2485-2494, 2012.

D. Shane, V. Bergin, P. V. Nicolosi, S. Streich, Z. Giordani et al.,

P. Windle, N. Ryan, P. Peter, . Niraj, T. Zhi-tao et al.,

, Towards Solutions of Single-Walled Carbon Nanotubes in Common Solvents

, Advanced Materials, vol.20, issue.10, pp.1876-1881, 2008.

R. Zacharia, H. Ulbricht, and T. Hertel, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons

, Phys. Rev. B, vol.69, issue.15, p.155406, 2004.

N. Ooi, A. Rairkar, and J. B. Adams, Density functional study of graphite bulk and surface properties

, Carbon, vol.44, issue.2, pp.231-242, 2006.

K. R. Paton, E. Varrla, C. Backes, J. Ronan, U. Smith et al.,

G. S. Duesberg, N. Mcevoy, and T. J. Pennycook,

, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature materials, vol.13, issue.6, pp.624-630, 2014.

J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar et al.,

, Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components

, Nano Letters, vol.15, issue.8, pp.5449-5454, 2015.

J. Lu, S. Nagase, X. Zhang, D. Wang, M. Ni et al.,

, Selective Interaction of Large or Charge-Transfer Aromatic Molecules with Metallic Single-Wall Carbon Nanotubes : Critical Role of the Molecular Size and Orientation, Journal of the American Chemical Society, vol.128, issue.15, pp.5114-5118, 2006.

J. Ronan, M. Smith, J. Lotya, and . Coleman, The importance of repulsive potential barriers for the dispersion of graphene using surfactants, New Journal of Physics, vol.12, issue.12, p.125008, 2010.

S. Wang, M. Yi, and Z. Shen, The effect of surfactants and their concentration on the liquid exfoliation of graphene, RSC Adv, vol.6, issue.61, pp.56705-56710, 2016.

G. Bepete, E. Anglaret, L. Ortolani, V. Morandi, K. Huang et al.,

, Surfactant-free single-layer graphene in water, Nature Chemistry, vol.9, p.347, 2016.

G. Bepete, A. Pénicaud, C. Drummond, and E. Anglaret,

, Raman Signatures of Single Layer Graphene Dispersed in Degassed Water

, The Journal of Physical Chemistry C, vol.120, issue.49, pp.28204-28214, 2016.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al.,

, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.10451-10453, 2005.

M. Yi and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene

, J. Mater. Chem. A, vol.3, issue.22, pp.11700-11715, 2015.

M. Yi, Z. Shen, and J. Zhu, A fluid dynamics route for producing graphene and its analogues

, Chinese Science Bulletin, vol.59, issue.16, pp.1794-1799, 2014.

M. Buzaglo, M. Shtein, S. Kober, and R. Lovrin?i´lovrin?i´c, Ayelet Vilan, and Oren Regev. Critical parameters in exfoliating graphite into graphene

, Physical Chemistry Chemical Physics, vol.15, issue.12, p.4428, 2013.

S. Vinayak, P. R. Sutkar, and . Gogate, Design aspects of sonochemical reactors : Techniques for understanding cavitational activity distribution and effect of operating parameters

, Chemical Engineering Journal, vol.155, issue.1, pp.26-36, 2009.

A. Ciesielski and P. Samorì, Grapheneviasonication assisted liquid-phase exfoliation

, Chem. Soc. Rev, vol.43, issue.1, pp.381-398, 2014.

X. Chen, J. F. Dobson, and C. L. Raston, Vortex fluidic exfoliation of graphite and boron nitride

, Chem. Commun, vol.48, issue.31, pp.3703-3705, 2012.

Z. Shen, J. Li, M. Yi, X. Zhang, and S. Ma, Preparation of graphene by jet cavitation

, Nanotechnology, vol.22, issue.36, p.365306, 2011.

S. Liang, M. Yi, Z. Shen, L. Liu, X. Zhang et al., One-step green synthesis of graphene nanomesh by fluid-based method

R. Adv, , vol.4, pp.16127-16131, 2014.

T. J. Nacken, C. Damm, J. Walter, A. Ruger, and W. Peukert, Delamination of graphite in a high pressure homogenizer

, RSC Adv, vol.5, issue.71, pp.57328-57338, 2015.

M. Yi, J. Li, Z. Shen, X. Zhang, and S. Ma, Morphology and structure of mono-and few-layer graphene produced by jet cavitation

, Applied Physics Letters, vol.99, issue.12, p.123112, 2011.

J. Li, M. Yi, Z. Shen, S. Ma, X. Zhang et al., Experimental study on a designed jet cavitation device for producing two-dimensional nanosheets

, Science China Technological Sciences, vol.55, issue.10, pp.2815-2819, 2012.

L. Liu, Z. Shen, S. Liang, M. Yi, X. Zhang et al.,

, Graphene for reducing bubble defects and enhancing mechanical properties of graphene/cellulose acetate composite films, Journal of Materials Science, vol.49, issue.1, pp.321-328, 2014.

M. Yi, Z. Shen, W. Zhang, J. Zhu, L. Liu et al.,

, Hydrodynamics-assisted scalable production of boron nitride nanosheets and their application in improving oxygen-atom erosion resistance of polymeric composites

, Nanoscale, vol.5, issue.21, pp.10660-10667, 2013.

S. Liang, Z. Shen, M. Yi, L. Liu, X. Zhang et al.,

, Effects of Processing Parameters on Massive Production of Graphene by Jet Cavitation, Journal of Nanoscience and Nanotechnology, vol.15, issue.4, pp.2686-2694, 2015.

Y. Arao, Y. Mizuno, K. Araki, and M. Kubouchi, Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow

, Carbon, vol.102, pp.330-338, 2016.

L. Liu, Z. Shen, M. Yi, X. Zhang, and S. Ma, A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces

R. Adv, , vol.4, pp.36464-36470, 2014.

U. Halim, C. R. Zheng, Y. Chen, Z. Lin, S. Jiang et al.,

, A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction

, Nature Communications, vol.4, p.2213, 2013.

U. Khan, A. Neill, H. Porwal, P. May, K. Nawaz et al.,

, Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation

, Carbon, vol.50, issue.2, pp.470-475, 2012.

C. Backes, B. M. Szyd?owska, A. Harvey, S. Yuan, V. Vega-mayoral et al.,

, Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation

, ACS Nano, vol.10, issue.1, pp.1589-1601, 2016.

F. Auguste, J. Magnaudet, and D. Fabre, Falling styles of disks, Journal of Fluid Mechanics, vol.719, pp.388-405, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00908124

C. Jannik, C. Meyer, R. Kisielowski, M. D. Erni, M. F. Rossell et al., Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes, Nano Letters, vol.8, issue.11, pp.3582-3586, 2008.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and E. ,

, Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films, Nano Letters, vol.6, issue.12, pp.2667-2673, 2006.

A. C. Ferrari, Raman spectroscopy of graphene and graphite : Disorder, electron-phonon coupling, doping and nonadiabatic effects

, Solid State Communications, vol.143, issue.1-2, pp.47-57, 2007.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al.,

, Raman Spectrum of Graphene and Graphene Layers

, BIBLIOGRAPHIE Phys. Rev. Lett, vol.97, issue.18, p.187401, 2006.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio et al., Studying disorder in graphite-based systems by Raman spectroscopy

, Phys. Chem. Chem. Phys, vol.9, issue.11, pp.1276-1290, 2007.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen et al., Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene, Nano Letters, vol.7, issue.2, pp.238-242, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00127913

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi et al., Solution-phase exfoliation of graphite for ultrafast photonics. physica status solidi (b), vol.247, pp.2953-2957, 2010.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell et al.,

, On the roughness of single-and bi-layer graphene membranes

, Solid State Communications, vol.143, issue.1, pp.101-109, 2007.

C. Jannik, A. K. Meyer, M. I. Geim, K. S. Katsnelson, T. J. Novoselov et al., The structure of suspended graphene sheets, Nature, vol.446, p.60, 2007.

C. Vallés, C. Drummond, H. Saadaoui, C. A. Furtado, M. He et al.,

, Solutions of Negatively Charged Graphene Sheets and Ribbons, Journal of the American Chemical Society, vol.130, issue.47, pp.15802-15804, 2008.

F. Tuinstra and J. L. Koenig,

, The Journal of Chemical Physics, vol.53, issue.3, pp.1126-1130, 1970.

C. Thomsen and S. Reich, Double Resonant Raman Scattering in Graphite

, Phys. Rev. Lett, vol.85, issue.24, pp.5214-5217, 2000.

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, vol.8, issue.4, pp.235-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, vol.473, issue.5-6, pp.51-87, 2009.

R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, Observation of Raman band shifting with excitation wavelength for carbons and graphites

, Solid State Communications, vol.39, issue.2, pp.341-344, 1981.

I. Pócsik, M. Hundhausen, M. Koós, and L. Ley, Origin of the D peak in the Raman spectrum of microcrystalline graphite, Journal of Non-Crystalline Solids, pp.1083-1086, 1998.

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, pp.14095-14107, 2000.

M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and M. Endo, Origin of dispersive effects of the Raman D band in carbon materials

, Physical Review B, vol.59, issue.10, pp.6585-6588, 1999.

R. J. Nemanich and S. A. Solin, First-and second-order Raman scattering from finite-size crystals of graphite, Physical Review B, vol.20, issue.2, pp.392-401, 1979.

J. M. Englert, J. Röhrl, C. D. Schmidt, R. Graupner, M. Hundhausen et al.,

, Soluble Graphene : Generation of Aqueous Graphene Solutions Aided by a PerylenebisimideBased Bolaamphiphile

, Advanced Materials, vol.21, issue.42, pp.4265-4269, 2009.

A. Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. Coleman,

, Graphene Dispersion and Exfoliation in Low Boiling Point Solvents

, The Journal of Physical Chemistry C, vol.115, issue.13, pp.5422-5428, 2011.

L. G. Cançado, M. A. Pimenta, B. R. Neves, M. S. Dantas, and A. Jorio, Influence of the Atomic Structure on the Raman Spectra of Graphite Edges, Physical Review Letters, vol.93, issue.24, 2004.

A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al.,

, BIBLIOGRAPHIE Probing the Nature of Defects in Graphene by Raman Spectroscopy, Nano Letters, vol.12, issue.8, pp.3925-3930, 2012.

O. Jones, An improvement in the calculation of turbulent friction in rectangular ducts

J. Eng, , vol.98, 1976.

O. Métais, Physique et modélisation de la turbulence

E. Cours, , 2001.

J. Boussinesq, Essai sur la théorie des eaux courantes

, Comptes rendus de l'Académie des Sciences, vol.23, pp.1-680, 1877.

. Estivalezes, Notes de cours enseeiht, toulouse, 2006.

S. Mossaz, F. Colombet, and . Ayela, Hydrodynamic cavitation of binary liquid mixtures in laminar and turbulent flow regimes
URL : https://hal.archives-ouvertes.fr/hal-01935734

, Experimental Thermal and Fluid Science, vol.80, pp.337-347, 2017.

M. Medrano, P. J. Zermatten, C. Pellone, J. P. Franc, and F. Ayela, Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids, Physics of Fluids, vol.23, issue.12, p.127103, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00700348

M. Medrano, C. Pellone, P. J. Zermatten, and F. Ayela, Hydrodynamic cavitation in microsystems. II. Simulations and optical observations, Physics of Fluids, vol.24, issue.4, p.47101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700348

X. Qiu, . Cherief, F. Colombet, and . Ayela, A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation, Journal of Micromechanics and Microengineering, vol.27, issue.4, p.47001, 2017.
DOI : 10.1088/1361-6439/aa5fa5

URL : https://hal.archives-ouvertes.fr/hal-01935737

N. Otsu, A threshold selection method from gray-level histograms
DOI : 10.1109/tsmc.1979.4310076

, IEEE Transactions on systems, issue.9, pp.62-66, 1979.

D. Colombet, . Legendre, . Cockx, . Guiraud, C. Risso et al., Experimental study of mass transfer in a dense bubble swarm, BIBLIOGRAPHIE Chemical Engineering Science, vol.66, issue.14, pp.3432-3440, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02115985

D. Colombet, . Legendre, . Risso, P. Cockx, and . Guiraud, Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction, Journal of Fluid Mechanics, vol.763, pp.254-285, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269183

A. Cartellier, Post-treatment for phase detection probes in non uniform two-phase flows, International Journal of Multiphase Flow, vol.25, issue.2, pp.201-228, 1999.

J. Vejra?ka, M. Ve?e?, S. Orvalho, P. Sechet, C. Marek et al.,

, International Journal of Multiphase Flow, vol.36, issue.7, pp.533-548, 2010.

B. Stutz and S. Legoupil,

, X-ray measurements within unsteady cavitation, Experiments in Fluids, vol.35, issue.2, pp.130-138, 2003.

S. Vincent-aeschlimann, S. Barre, and . Legoupil,

X. , attenuation measurements in a cavitating mixing layer for instantaneous twodimensional void ratio determination, Physics of Fluids, vol.23, issue.5, p.55101, 2011.

N. Rimbert, D. Castanet, and . Funfschilling, Measurement of thermal effects in a cavitating channel flow by 2clif, 8th International Conference on Multiphase Flow, pp.26-31, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01442134

L. Villegas, . Colombet, . Guiraud, . Legendre, A. Cazin et al., Image processing for the experimental investigation of dense dispersed flows : Application to bubbly flows
URL : https://hal.archives-ouvertes.fr/hal-02115961

, Submitted to International Journal of Multiphase Flow, 2018.

F. Takemura and . Yabe, Gas dissolution process of spherical rising bubbles

, Chem. Eng. Sci, vol.53, pp.2691-2699, 1998.

R. Pohorecki, W. Moniuk, P. Bielski, and A. Zdrójkowski, Modelling of the coalescence/redispersion processes in bubble columns

, Chemical Engineering Science, vol.56, pp.6157-6164, 2001.

. Bibliographie,

H. Daniel, J. Fruman, B. Reboud, and . Stutz, Estimation of thermal effects in cavitation of thermosensible liquids, International Journal of Heat and Mass Transfer, vol.42, issue.17, pp.3195-3204, 1999.

B. Stutz,

, X-ray measurements within unsteady cavitation, Experiments in Fluids, vol.35, p.130, 2003.

J. P. Franc, A. Rebattet, and . Coulon, produit soudainement, la phase vapeur conduit une chute de débit. La transition est remarquable parce qu'il est très bruyant, Transactions of the ASME, vol.126, p.716, 2004.

, Quand l'écoulement est dans le régime de cavitation, le débit continue à augmenter en augmentant la pression d'entrée dans le régime de cavitation

, On a également caractérisé un microventuri (exemple : vent 13 dans la figure 6) avec du butanol comme fluide de travail, La viscosité de butanol, p.4

·. Pa, , p.1

, Pa · s), et sa pression vapeur saturante (1740 Pa) est inférieure de celle de l'eau, 2300.

T. Gothsch, C. Schilcher, C. Richter, S. Beinert, A. Dietzel et al., , vol.18, pp.121-151, 2015.

O. Perk, M. Sesen, D. Gozuacik, and A. Kosar, , 2012.

, Ann. Biomed. Eng, vol.40, pp.1895-902

S. Mossaz, D. Colombet, and F. Ayela, Exp. Therm. Fluid Sci, vol.80, pp.337-384, 2017.

C. Mishra and Y. Peles, Phys. Fluids, vol.17, p.113602, 2005.

M. Medrano, P. Zermatten, C. Pellone, J. Franc, and F. Ayela, Phys. Fluids, vol.23, p.127103, 2011.

M. Medrano, C. Pellone, P. Zermatten, and F. Ayela, Phys. Fluids, vol.24, p.47101, 2012.

F. Ayela, M. Munoz, M. Amans, D. Dujardin, C. Brichart et al., , 2013.

, Phys. Rev. E, vol.88, p.43016

C. Iyer and S. Ceccio, Phys. Fluids, vol.14, pp.3414-3445, 2002.

M. Bao, X. Li, S. Shen, and H. Chen, Sensors Actuators A, vol.63, pp.217-238, 1997.

D. Resnik, D. Vrtacnik, and S. Amon, J. Micromech. Microeng, vol.10, pp.430-439, 2000.

K. S. Suslick and D. J. Flannigan, Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation, Annu. Rev. Phys. Chem, vol.59, pp.659-683, 2007.

C. Mishra and Y. Peles, Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel, Phys. Fluids, vol.17, p.113602, 2005.

C. Mishra and Y. Peles, Cavitation in flow through a microorifice inside a silicon microchannel, Phys. Fluids, vol.17, p.13601, 2005.

F. Rivas, D. Prosperetti, A. Zijlstra, A. G. Lohse, D. Gardeniers et al., Efficient sonochemistry through microbubbles generated with micromachined surfaces, Angew. Chem. Int. Ed, vol.49, pp.9699-9701, 2010.

O. S. Tandiono, -. Ow, D. S. Klaseboer, E. Wong, V. V. Dumke et al., Sonochemistry and sonoluminescence in microfluidics, Proc. Nat. Acad. Sci. USA, vol.108, pp.5996-5998, 2011.

J. Rooze, M. André, G. S. Van-der-gulik, D. Fernandez-rivas, J. G. Gardeniers et al., Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers, Microfluid Nanofluid, vol.12, pp.499-508, 2012.

M. Medrano, P. J. Zermatten, C. Pellone, J. P. Franc, and F. Ayela, Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids, Phys. Fluids, vol.23, p.127103, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00700348

N. T. Nguyen and S. T. Wereley, Fundamentals and applications of microfluidics, 2002.

M. Medrano, C. Pellone, P. Zermatten, and F. Ayela, Hydrodynamic cavitation in microsystems part II: Simulation and optical observations, Phys. Fluids, vol.24, p.47101, 2012.

J. Zhu, D. Zhao, L. Xu, and X. Zhang, Interactions of vortices, thermal effects and cavitation in liquid hydrogen cavitating flows, Int. J. Hydrogen Energy, vol.41, pp.614-631, 2016.

Z. He, W. Zhong, Q. Wang, Z. Jiang, and Z. Shao, Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle, Int. J. Therm. Sci, vol.70, pp.132-143, 2013.

J. Serras-pereira, Z. Van-romunde, P. G. Aleiferis, D. Richardson, S. Wallace et al., Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle, Fuel, vol.89, pp.2592-2607, 2010.

F. Ayela, M. Medrano-muñoz, D. Amans, C. Dujardin, T. Brichart et al., Experimental evidence of temperature gradients in cavitating microflows seeded with thermosensitive nanoprobes, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, vol.88, p.43016, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01935721

F. Ayela, D. Colombet, G. Ledoux, and O. Tillement, Thermal investigation of cavitating flows through microchannels, with the help of fluorescent nanoprobes, Houille Blanche-Revue, pp.102-108, 2015.

T. Vijayakumar, R. Thundil-karuppa-raj, and K. Nanthagopal, Effect of the injection pressure on the internal flow characteristics for diethyl and dimethyl ether and diesel fuel injectors, Therm. Sci, vol.15, pp.1123-1130, 2011.

S. Polat, An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether-ethanol fuel blends, Fuel Process. Technol, vol.143, pp.140-150, 2016.

S. Mossaz, D. Colombet, and F. Ayela, Hydrodynamic cavitation of binary liquid mixtures in laminar and turbulent flow regimes, Exp. Therm. Fluid Sci, vol.80, pp.337-347, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01935734

R. Singh and Y. Peles, The effects of fluid properties on cavitation in a micro domain, J. Micromech. Microeng, vol.19, p.25009, 2009.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-669, 2004.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, vol.7, pp.2898-2926, 2013.

A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature, vol.499, pp.419-425, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01986052

M. Yi and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A, vol.3, pp.11700-11715, 2015.

Y. Arao, Y. Mizuno, K. Araki, and M. Kubouchi, Mass production of high-aspect ratio few-layer-graphene by highspeed laminar flow, Carbon, vol.102, pp.330-338, 2016.

A. Ciesielski and P. Samori, Graphene via sonication assisted liquid-phase exfoliation, Chem. Soc. Rev, vol.43, pp.381-398, 2014.

K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nat. Mater, vol.13, pp.624-630, 2014.

Z. Shen, J. Li, M. Yi, X. Zhang, and S. Ma, Preparation of graphene by jet cavitation, Nanotechnology, vol.22, p.365306, 2011.

T. J. Nacken, C. Damm, J. Walter, A. Rüger, and W. Peukert, Delamination of graphite in a high pressure homogenizer, 2015.

J. Chevalier and F. Ayela, Microfluidic on chip viscometers, Rev. Sci. Instrum, vol.79, p.76102, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00399821

F. Ayela, W. Cherief, D. Colombet, G. Ledoux, M. Martini et al., Hydrodynamic Cavitation through, From Fundamentals to Applications, vol.72, p.19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695295