, WHO: World Malaria Report, 2008.

C. Sayang, M. Gausseres, N. Vernazza-licht, D. Malvy, D. Bley et al., Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in urban health facilities in Yaounde, central province, Cameroon, Malar J, vol.8, p.176, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01984252

R. N. Price, A. C. Uhlemann, A. Brockman, R. Mcgready, A. E. Phaipun et al., Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number, vol.364, pp.438-447, 2004.

A. B. Sidhu, A. C. Uhlemann, S. G. Valderramos, J. C. Valderramos, S. Krishna et al., Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin, J Infect Dis, vol.194, pp.528-535, 2006.

P. Lim, A. P. Alker, N. Khim, N. K. Shah, S. Incardona et al., Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia, Malar J, vol.8, p.11, 2009.

V. I. Carrara, J. Zwang, E. A. Ashley, R. N. Price, K. Stepniewska et al., Nosten F: Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment, PLoS One, vol.4, p.4551, 2009.

K. Begum, H. S. Kim, Y. Okuda, Y. Wataya, M. Kimura et al., Genomic analysis of mefloquine-resistant Plasmodium falciparum, Nucleic Acids Res Suppl, vol.2, pp.223-224, 2002.

F. Teuscher, M. L. Gatton, N. Chen, J. Peters, D. E. Kyle et al., Artemisinininduced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure, J Infect Dis, vol.202, pp.1362-1368, 2010.

N. B. Gadalla, I. Adam, S. E. Elzaki, S. Bashir, I. Mukhtar et al., Increased pfmdr1 Copy Number and Sequence Polymorphisms in Plasmodium falciparum

. Menard, Malaria Journal, vol.11, p.113, 2012.

, Isolates from Sudanese Malaria Patients Treated with ArtemetherLumefantrine, Antimicrob Agents Chemother, vol.55, pp.5408-5411, 2011.

A. B. Sidhu, S. G. Valderramos, and D. A. Fidock, mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum, Mol Microbiol, vol.57, pp.913-926, 2005.

M. T. Duraisingh, P. Jones, I. Sambou, L. Von-seidlein, M. Pinder et al., The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin, Mol Biochem Parasitol, vol.108, pp.13-23, 2000.

A. Martensson, J. Stromberg, C. Sisowath, M. I. Msellem, J. P. Gil et al., Efficacy of artesunate plus amodiaquine versus that of artemether-lumefantrine for the treatment of uncomplicated childhood Plasmodium falciparum malaria in Zanzibar, Clin Infect Dis, vol.41, pp.1079-1086, 2005.

F. N. Baliraine and P. J. Rosenthal, Prolonged selection of pfmdr1 polymorphisms after treatment of falciparum malaria with artemether-lumefantrine in Uganda, J Infect Dis, vol.204, pp.1120-1124, 2011.

C. Sisowath, J. Stromberg, A. Martensson, M. Msellem, C. Obondo et al., In vivo selection of Plasmodium falciparum pfmdr1 86 N coding alleles by artemether-lumefantrine (Coartem), J Infect Dis, vol.191, pp.1014-1017, 2005.

A. F. Some, Y. Y. Sere, C. Dokomajilar, I. Zongo, N. Rouamba et al., Selection of known Plasmodium falciparum resistance-mediating polymorphisms by artemether-lumefantrine and amodiaquine-sulfadoxine-pyrimethamine but not dihydroartemisininpiperaquine in Burkina Faso, Antimicrob Agents Chemother, vol.54, pp.1949-1954, 2010.

E. O. Ochong, I. V. Van-den-broek, K. Keus, and A. Nzila, Short report: association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the upper Nile in southern Sudan, Am J Trop Med Hyg, vol.69, pp.184-187, 2003.

G. Holmgren, J. P. Gil, P. M. Ferreira, M. I. Veiga, C. O. Obonyo et al., Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y, Infect Genet Evol, vol.6, pp.309-314, 2006.

C. T. Happi, G. O. Gbotosho, O. A. Folarin, O. M. Bolaji, A. Sowunmi et al., Association between mutations in Plasmodium falciparum chloroquine resistance transporter and P. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in P. falciparum malaria-infected children in Nigeria, Am J Trop Med Hyg, vol.75, pp.155-161, 2006.

H. Tinto, L. Guekoun, I. Zongo, R. T. Guiguemde, D. 'alessandro et al., Chloroquine-resistance molecular markers (Pfcrt T76 and Pfmdr-1 Y86) and amodiaquine resistance in Burkina Faso, Trop Med Int Health, vol.13, pp.238-240, 2008.

A. A. Djimde, B. Fofana, I. Sagara, B. Sidibe, S. Toure et al., Efficacy, safety, and selection of molecular markers of drug resistance by two ACTs in Mali, Am J Trop Med Hyg, vol.78, pp.455-461, 2008.

F. Nawaz, S. L. Nsobya, M. Kiggundu, M. Joloba, and P. J. Rosenthal, Selection of parasites with diminished drug susceptibility by amodiaquine-containing antimalarial regimens in Uganda, J Infect Dis, vol.200, pp.1650-1657, 2009.

M. Alifrangis, M. B. Dalgaard, J. P. Lusingu, L. S. Vestergaard, T. Staalsoe et al., Occurrence of the Southeast Asian/South American SVMNT haplotype of the chloroquine-resistance transporter gene in Plasmodium falciparum in Tanzania, J Infect Dis, vol.193, pp.1738-1741, 2006.

B. E. Gama, G. A. Pereira-carvalho, L. Kosi, F. J. , A. Oliveira et al., Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene, Malar J, vol.9, p.174, 2010.

J. M. Sa and O. Twu, Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the pfcrt SVMNT type, Malar J, vol.9, p.374, 2010.

J. M. Sa, O. Twu, K. Hayton, S. Reyes, M. P. Fay et al., Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine, Proc Natl Acad Sci, vol.106, pp.18883-18889, 2009.

C. V. Plowe and T. E. Wellems, Molecular approaches to the spreading problem of drug resistant malaria, Adv Exp Med Biol, vol.390, pp.197-209, 1995.

B. Witkowski, M. L. Nicolau, P. N. Soh, X. Iriart, S. Menard et al., Plasmodium falciparum isolates with increased pfmdr1 copy number circulate in West Africa, Antimicrob Agents Chemother, vol.54, pp.3049-3051, 2010.

A. Vessiere, A. Berry, R. Fabre, F. Benoit-vical, and J. F. Magnaval, Detection by realtime PCR of the pfcrt T76 mutation, a molecular marker of chloroquineresistant Plasmodium falciparum strains, Parasitol Res, vol.93, pp.5-7, 2004.

F. Prugnolle, B. Ollomo, P. Durand, E. Yalcindag, C. Arnathau et al., African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains, Proc Natl Acad Sci, vol.108, pp.11948-11953, 2011.

R. Kumar, S. K. Singh, A. A. Koshkin, V. K. Rajwanshi, M. Meldgaard et al., The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2'-thio-LNA, Bioorg Med Chem Lett, vol.8, pp.2219-2222, 1998.

A. Fratczak, R. Kierzek, and E. Kierzek, LNA-modified primers drastically improve hybridization to target RNA and reverse transcription, Biochemistry, vol.48, pp.514-516, 2009.

L. A. Ugozzoli, D. Latorra, R. Puckett, K. Arar, and K. Hamby, Real-time genotyping with oligonucleotide probes containing locked nucleic acids, Anal Biochem, vol.324, pp.143-152, 2004.

A. Senescau, A. Berry, F. Benoit-vical, O. Landt, R. Fabre et al., Use of a locked-nucleic-acid oligomer in the clampedprobe assay for detection of a minority pfcrt K76T mutant population of Plasmodium falciparum, J Clin Microbiol, vol.43, pp.3304-3308, 2005.

S. G. Valderramos, J. C. Valderramos, L. Musset, L. A. Purcell, O. Mercereau-puijalon et al., Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum, PLoS Pathog, vol.6, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00577266

L. K. Basco, Molecular epidemiology of malaria in Cameroon. XIII. Analysis of pfcrt mutations and in vitro chloroquine resistance, Am J Trop Med Hyg, vol.67, pp.388-391, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01774343

L. K. Basco and P. Ringwald, Molecular epidemiology of malaria in Cameroon. X. Evaluation of pfmdr1 mutations as genetic markers for resistance to amino alcohols and artemisinin derivatives, Am J Trop Med Hyg, vol.66, pp.667-671, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01774343

W. F. Mbacham, M. S. Evehe, P. M. Netongo, I. A. Ateh, P. N. Mimche et al., Efficacy of amodiaquine, sulphadoxinepyrimethamine and their combination for the treatment of uncomplicated Plasmodium falciparum malaria in children in Cameroon at the time of policy change to artemisinin-based combination therapy, Malar J, vol.9, p.34, 2010.

J. G. Kublin, J. F. Cortese, E. M. Njunju, R. A. Mukadam, J. J. Wirima et al., Reemergence of chloroquinesensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi, J Infect Dis, vol.187, pp.1870-1875, 2003.

T. Mita, A. Kaneko, J. K. Lum, B. Bwijo, M. Takechi et al., Recovery of chloroquine sensitivity and low prevalence of the Plasmodium falciparum chloroquine resistance transporter gene mutation K76T following the discontinuance of chloroquine use in Malawi, Am J Trop Med Hyg, vol.68, pp.413-415, 2003.

L. Mwai, E. Ochong, A. Abdirahman, S. M. Kiara, S. Ward et al., Chloroquine resistance before and after its withdrawal in Kenya, Malar J, vol.8, p.106, 2009.

X. Wang, J. Mu, G. Li, P. Chen, X. Guo et al., Decreased prevalence of the Plasmodium falciparum chloroquine resistance transporter 76T marker associated with cessation of chloroquine use against P. falciparum malaria in Hainan, People's Republic of China, Am J Trop Med Hyg, vol.72, pp.410-414, 2005.

C. Sisowath, I. Petersen, M. I. Veiga, A. Martensson, Z. Premji et al., In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa, J Infect Dis, vol.199, pp.750-757, 2009.

Z. Yang, Z. Zhang, X. Sun, W. Wan, L. Cui et al., Molecular analysis of chloroquine resistance in Plasmodium falciparum in Yunnan Province, China. Trop Med Int Health, vol.12, pp.1051-1060, 2007.

. Menard, Malaria Journal, vol.11, issue.113, 2012.

, References 1. WHO: Briefing on malaria treatment guidelines and artemisinin monotherapies. Geneva: World Health Organization, 2006.

H. Noedl, Y. Se, K. Schaecher, B. L. Smith, D. Socheat et al., Evidence of artemisinin-resistant malaria in western Cambodia, N Engl J Med, vol.359, pp.2619-2639, 2008.

A. M. Dondorp, F. Nosten, P. Yi, D. Das, A. P. Phyo et al., Artemisinin resistance in Plasmodium falciparum malaria, N Engl J Med, vol.361, pp.455-67, 2009.

A. P. Phyo, S. Nkhoma, K. Stepniewska, E. A. Ashley, S. Nair et al., Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study, Lancet, vol.379, pp.1960-1966, 2012.

C. Amaratunga, S. Sreng, S. Suon, E. S. Phelps, K. Stepniewska et al., Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study, Lancet Infect Dis, vol.12, pp.851-859, 2012.

T. T. Hien, N. T. Thuy-nhien, N. H. Phu, M. F. Boni, N. V. Thanh et al., vivo susceptibility of Plasmodium falciparum to artesunate in, vol.11, p.355, 2012.

M. P. Kyaw, M. H. Nyunt, K. Chit, M. M. Aye, K. H. Aye et al., Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar, PLoS ONE, vol.8, p.57689, 2013.

R. W. Snow, J. F. Trape, and K. Marsh, The past, present and future of childhood malaria mortality in Africa, Trends Parasitol, vol.17, pp.593-600, 2001.

J. F. Trape, G. Pison, M. P. Preziosi, C. Enel, D. Lou et al., Impact of chloroquine resistance on malaria mortality, C R Acad Sci III, vol.321, pp.689-97, 1998.

S. G. Vreden, J. K. Jitan, R. D. Bansie, and M. R. Adhin, Evidence of an increased incidence of day 3 parasitaemia in Suriname: an indicator of the emerging resistance of Plasmodium falciparum to artemether, Mem Inst Oswaldo Cruz, vol.108, pp.968-73, 2013.

B. Witkowski, J. Lelievre, M. J. Barragan, V. Laurent, X. Z. Su et al., Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism, Antimicrob Agents Chemother, vol.54, pp.1872-1879, 2010.

S. Menard, B. Haddou, T. Ramadani, A. P. Ariey, F. Iriart et al., Induction of multidrug tolerance in Plasmodium falciparum by extended artemisinin pressure, Emerg Infect Dis, vol.21, pp.1733-1774, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01925135

F. Ariey, B. Witkowski, C. Amaratunga, J. Beghain, A. C. Langlois et al., A molecular marker of artemisinin-resistant Plasmodium falciparum malaria, Nature, vol.505, pp.50-55, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00921203

J. Straimer, N. F. Gnadig, B. Witkowski, C. Amaratunga, V. Duru et al., Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates, Science, vol.347, pp.428-459, 2015.

B. Witkowski, C. Amaratunga, N. Khim, S. Sreng, P. Chim et al., Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies, Lancet Infect Dis, vol.13, pp.1043-1052, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00863935

, World Health Organisation, WHO: Status report on artemisinin and ACT resistance, 2015.

R. A. Cooper, M. D. Conrad, Q. D. Watson, S. J. Huezo, H. Ninsiima et al., Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays, Antimicrob Agents Chemother, vol.59, pp.5061-5065, 2015.

M. Torrentino-madamet, B. Fall, N. Benoit, C. Camara, R. Amalvict et al., Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Malar J, vol.13, p.472, 2014.

E. Kamau, S. Campino, L. Amenga-etego, E. Drury, D. Ishengoma et al., K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa, J Infect Dis, vol.211, pp.1352-1357, 2015.

M. Hawkes, A. L. Conroy, R. O. Opoka, S. Namasopo, K. Zhong et al., Slow clearance of Plasmodium falciparum in severe pediatric malaria, Emerg Infect Dis, vol.21, pp.1237-1246, 2015.

E. A. Ashley, M. Dhorda, R. M. Fairhurst, C. Amaratunga, P. Lim et al., Spread of artemisinin resistance in Plasmodium falciparum malaria, N Engl J Med, vol.371, pp.411-434, 2014.

S. M. Taylor, C. M. Parobek, D. K. Deconti, K. Kayentao, S. O. Coulibaly et al., Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study, J Infect Dis, vol.211, pp.680-688, 2015.

P. A. Ndour, T. M. Lopera-mesa, S. A. Diakite, S. Chiang, O. Mouri et al., Plasmodium falciparum clearance is rapid and pitting independent in immune Malian children treated with artesunate for malaria, J Infect Dis, vol.211, pp.290-297, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01989275

T. M. Lopera-mesa, S. Doumbia, S. Chiang, A. E. Zeituni, D. S. Konate et al., Plasmodium falciparum clearance rates in response to artesunate in Malian children with malaria: effect of acquired immunity, J Infect Dis, vol.207, pp.1655-63, 2013.

J. Zwang, G. Dorsey, A. Martensson, U. Alessandro, J. L. Ndiaye et al., Plasmodium falciparum clearance in clinical studies of artesunateamodiaquine and comparator treatments in sub-Saharan Africa, Malar J, vol.13, p.114, 1999.

. Wwarn, Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data, 212. References 1. World Health Organization. World malaria report, vol.13, 2014.

, World Health Organization Global Malaria Programme, Status report on artemisinin resistance. WHO/HTM/GMP/20149, 2014.

S. Takala-harrison, C. G. Jacob, C. Arze, M. P. Cummings, J. C. Silva et al., Independent emergence of Plasmodium falciparum artemisinin resistance mutations in Southeast Asia, J Infect Dis, vol.211, pp.670-679, 2015.

E. A. Ashley, M. Dhorda, R. M. Fairhurst, C. Amaratunga, P. Lim et al., Spread of artemisinin resistance in Plasmodium falciparum malaria, N Engl J Med, vol.371, pp.411-434, 2014.

K. M. Tun, M. Imwong, K. M. Lwin, A. A. Win, T. M. Hlaing et al., Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker, Lancet Infect Dis, vol.15, issue.15, pp.70032-70032, 2015.

O. Miotto, R. Amato, E. A. Ashley, B. Macinnis, J. Almagro-garcia et al., Genetic architecture of artemisinin-resistant Plasmodium falciparum, Nat Genet, vol.47, pp.226-260, 2015.

S. Borrmann, P. Sasi, L. Mwai, M. Bashraheil, A. Abdallah et al., Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast, PLoS ONE, vol.6, 2011.

S. G. Vreden, J. K. Jitan, R. D. Bansie, and M. R. Adhin, Evidence of an increased incidence of day 3 parasitaemia in Suriname: an indicator of the emerging resistance of Plasmodium falciparum to artemether, Mem Inst Oswaldo Cruz, vol.108, pp.968-73, 2013.

B. Witkowski, J. Lelievre, M. J. Barragan, V. Laurent, X. Z. Su et al., Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism, Antimicrob Agents Chemother, vol.54, pp.1872-1879, 2010.

F. Ariey, B. Witkowski, C. Amaratunga, J. Beghain, A. C. Langlois et al., A molecular marker of artemisinin resistant Plasmodium falciparum malaria, Nature, vol.505, pp.50-55, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00921203

B. Witkowski, N. Khim, P. Chim, S. Kim, S. Ke et al., Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia, Antimicrob Agents Chemother, vol.57, pp.914-937, 2013.

B. Witkowski, C. Amaratunga, N. Khim, S. Sreng, P. Chim et al., Novel phenotypic assays for the detection of artemisininresistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies, Lancet Infect Dis, vol.13, pp.1043-1052, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00863935

J. Straimer, N. F. Gnadig, B. Witkowski, C. Amaratunga, V. Duru et al., K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates, Science, vol.347, pp.428-459, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01925134

C. Amaratunga, B. Witkowski, D. Dek, V. Try, N. Khim et al., Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro, Antimicrob Agents Chemother, vol.58, pp.4935-4942, 2014.

C. Amaratunga, B. Witkowski, N. Khim, D. Menard, and R. M. Fairhurst, Artemisinin resistance in Plasmodium falciparum, Lancet Infect Dis, vol.14, issue.14, pp.70777-70784, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01925134

K. Lewis, Persister cells, Annu Rev Microbiol, vol.64, pp.357-72, 2010.

J. S. Wolfson, D. C. Hooper, G. L. Mchugh, M. A. Bozza, and M. N. Swartz, Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and ?-lactam antimicrobial agents, Antimicrob Agents Chemother, vol.34, pp.1938-1981, 1990.

H. S. Moyed and K. P. Bertrand, hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis, J Bacteriol, vol.155, pp.768-75, 1983.

B. Witkowski, J. Lelievre, M. L. Nicolau-travers, X. Iriart, N. Soh et al., Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs, PLoS ONE, vol.7, issue.32620, 2012.

F. Benoit-vical, J. Lelievre, A. Berry, C. Deymier, O. Dechy-cabaret et al., Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes, Antimicrob Agents Chemother, vol.51, pp.1463-72, 2007.

R. E. Desjardins, C. J. Canfield, J. D. Haynes, and J. D. Chulay, Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique, Antimicrob Agents Chemother, vol.16, pp.710-718, 1979.

C. C. Dawson, C. Intapa, and J. Ma, Persisters": survival at the cellular level, PLoS Pathog, vol.7, 2011.

N. Chen, A. N. Lacrue, F. Teuscher, N. C. Waters, M. L. Gatton et al., Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum, Antimicrob Agents Chemother, vol.58, pp.4773-81, 2014.

S. Mok, E. A. Ashley, P. E. Ferreira, L. Zhu, Z. Lin et al., Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance, Science, vol.347, pp.431-436, 2015.

M. I. Veiga, P. E. Ferreira, B. A. Schmidt, U. Ribacke, A. Bjorkman et al., Antimalarial exposure delays Plasmodium

H. Noedl, Y. Se, K. Schaecher, B. L. Smith, D. Socheat et al., Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium (2008) Evidence of artemisinin-resistant malaria in western Cambodia, The New England journal of medicine, vol.359, issue.24, pp.2619-2620

A. M. Dondorp, F. Nosten, P. Yi, D. Das, A. P. Phyo et al., Artemisinin resistance in Plasmodium falciparum malaria, vol.361, pp.455-467, 2009.

T. Mita, A. Kaneko, J. K. Lum, B. Bwijo, M. Takechi et al., Recovery of chloroquine sensitivity and low prevalence of the Plasmodium falciparum chloroquine resistance transporter gene mutation K76T following the discontinuance of chloroquine use in Malawi, The American journal of tropical medicine and hygiene, vol.68, issue.4, pp.413-415, 2003.

J. G. Kublin, J. F. Cortese, E. M. Njunju, R. A. Mukadam, J. J. Wirima et al., Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi, The Journal of infectious diseases, vol.187, issue.12, pp.1870-1875, 2003.

A. E. Frosch, M. K. Laufer, D. P. Mathanga, S. Takala-harrison, J. Skarbinski et al., Return of widespread chloroquine-sensitive Plasmodium falciparum to Malawi, The Journal of infectious diseases, vol.210, issue.7, pp.1110-1114, 2014.

M. K. Laufer, P. C. Thesing, N. D. Eddington, R. Masonga, F. K. Dzinjalamala et al., Return of chloroquine antimalarial efficacy in Malawi, The New England journal of medicine, vol.355, pp.1959-1966, 2006.

I. M. Hastings, Complex dynamics and stability of resistance to antimalarial drugs, Parasitology, vol.132, pp.615-624, 2006.

W. M. Hastings-im-&watkins, Intensity of malaria transmission and the evolution of drug resistance, Acta tropica, vol.94, issue.3, pp.218-229, 2005.

M. T. Tchioffo, L. Abate, A. Boissiere, S. E. Nsango, G. Gimonneau et al., An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, vol.43, pp.22-30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02003695

S. E. Nsango, L. Abate, M. Thoma, J. Pompon, M. Fraiture et al., Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae, International journal for parasitology, vol.42, issue.6, pp.589-595, 2012.

I. Morlais, S. E. Nsango, W. Toussile, L. Abate, Z. Annan et al., Plasmodium falciparum mating patterns and mosquito infectivity of natural isolates of gametocytes, PloS one, vol.10, issue.4, p.123777, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01806473

A. P. Arez, J. Pinto, K. Palsson, G. Snounou, T. G. Jaenson et al., Transmission of mixed Plasmodium species and Plasmodium falciparum genotypes, The American journal of tropical medicine and hygiene, vol.68, issue.2, pp.161-168, 2003.

C. Ribaut, A. Berry, S. Chevalley, K. Reybier, I. Morlais et al., Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species, Malaria journal, vol.7, p.45, 2008.

C. Harris, I. Morlais, T. S. Churcher, P. Awono-ambene, L. C. Gouagna et al., Plasmodium falciparum produce lower infection intensities in local versus foreign Anopheles gambiae populations, PloS one, vol.7, issue.1, p.30849, 2012.

S. Mharakurwa, M. Sialumano, K. Liu, A. Scott, and P. Thuma, Selection for chloroquine-sensitive Plasmodium falciparum by wild Anopheles arabiensis in Southern Zambia, Malaria journal, vol.12, p.453, 2013.

S. Mharakurwa, T. Kumwenda, M. A. Mkulama, M. Musapa, S. Chishimba et al., Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.18796-18801, 2011.

A. R. Wargo, S. Huijben, J. C. De-roode, J. Shepherd, and A. F. Read, Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model, Proceedings of the National Academy of Sciences of the United States of America, vol.104, issue.50, pp.19914-19919, 2007.

J. C. De-roode, R. Pansini, S. J. Cheesman, M. E. Helinski, S. Huijben et al., Virulence and competitive ability in genetically diverse malaria infections, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.21, pp.7624-7628, 2005.

A. S. Bell, J. C. De-roode, D. Sim, and A. F. Read, Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success, Evolution, vol.60, issue.7, pp.1358-1371, 2006.

A. R. Wargo, J. C. De-roode, S. Huijben, D. R. Drew, and A. F. Read, Transmission stage investment of malaria parasites in response to in-host competition, Proceedings. Biological sciences / The Royal Society, vol.274, pp.2629-2638, 1625.

G. Pichon, H. P. Awono-ambene, and V. Robert, High heterogeneity in the number of Plasmodium falciparum gametocytes in the bloodmeal of mosquitoes fed on the same host, Parasitology, vol.121, issue.2, pp.115-120, 2000.

F. O. Gaillard, C. Boudin, N. P. Chau, V. Robert, and G. Pichon, Togetherness among Plasmodium falciparum gametocytes: interpretation through simulation and consequences for malaria transmission, Parasitology, vol.127, pp.427-435, 2003.

R. K. Barraclough, L. Duval, A. M. Talman, F. Ariey, and V. Robert, Attraction between sexes: malefemale gametocyte behaviour within a Leucocytozoon toddi (Haemosporida), Parasitology research, vol.102, issue.6, pp.1321-1327, 2008.

S. E. Reece, D. R. Drew, and A. Gardner, Sex ratio adjustment and kin discrimination in malaria parasites, Nature, vol.453, issue.7195, pp.609-614, 2008.

S. Vinayak, M. T. Alam, T. Mixson-hayden, A. M. Mccollum, R. Sem et al., Origin and evolution of sulfadoxine resistant Plasmodium falciparum, PLoS pathogens, vol.6, issue.3, p.1000830, 2010.

P. J. Rosenthal, The interplay between drug resistance and fitness in malaria parasites, Molecular microbiology, vol.89, issue.6, pp.1025-1038, 2013.

A. Vessiere, A. Berry, R. Fabre, F. Benoit-vical, and J. F. Magnaval, Detection by real-time PCR of the Pfcrt T76 mutation, a molecular marker of chloroquine-resistant Plasmodium falciparum strains, Parasitology research, vol.93, issue.1, pp.5-7, 2004.

F. Prugnolle, B. Ollomo, P. Durand, E. Yalcindag, C. Arnathau et al., African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains, Proceedings of the National Academy of Sciences of the United States of America, vol.108, issue.29, pp.11948-11953, 2011.

T. J. Anderson, B. Haubold, J. T. Williams, J. G. Estrada-franco, L. Richardson et al., Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum, Molecular biology and evolution, vol.17, issue.10, pp.1467-1482, 2000.

Z. Annan, P. Durand, F. J. Ayala, C. Arnathau, P. Awono-ambene et al., Population genetic structure of Plasmodium falciparum in the two main African vectors, Anopheles gambiae and Anopheles funestus, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.7987-7992, 2007.

A. M. Dondorp, Artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med, vol.361, pp.455-467, 2009.

, World Health Organization. Global Report on Antimalarial Drug Efficacy and Drug, pp.2000-2010, 2010.

T. Mita, Limited geographical origin and global spread of sulfadoxineresistant dhps alleles in Plasmodium falciparum populations, J. Infect. Dis, vol.204, 1980.

C. Roper, Intercontinental spread of pyrimethamine-resistant malaria, Science, vol.305, p.1124, 2004.

J. C. Wootton, Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum, Nature, vol.418, pp.320-323, 2002.

C. Amaratunga, Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study, Lancet Infect. Dis, vol.12, pp.851-858, 2012.

M. P. Kyaw, Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar, PLoS ONE, vol.8, p.57689, 2013.

H. Noedl, Evidence of artemisinin-resistant malaria in western Cambodia, N. Engl. J. Med, vol.359, pp.2619-2620, 2008.

A. P. Phyo, Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study, Lancet, vol.379, pp.1960-1966, 2012.

T. T. Hien, vivo susceptibility of Plasmodium falciparum to artesunate in, vol.11, p.355, 2012.

J. A. Flegg, Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator, Malar. J, vol.10, p.339, 2011.

N. J. White, The parasite clearance curve, Malar. J, vol.10, p.278, 2011.

B. Witkowski, Novel phenotypic assays for the detection of artemisininresistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drugresponse studies, Lancet Infect. Dis, vol.13, pp.1043-1049, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00863935

I. H. Cheeseman, A major genome region underlying artemisinin resistance in malaria, Science, vol.336, pp.79-82, 2012.

O. Miotto, Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia, Nature Genet, vol.45, pp.648-655, 2013.

S. Takala-harrison, Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia, Proc. Natl Acad. Sci. USA, vol.110, pp.240-245, 2013.

T. M. Lopera-mesa, Plasmodium falciparum clearance rates in response to artesunate in Malian children with malaria: effect of acquired immunity, J. Infect. Dis, vol.207, pp.1655-1663, 2013.

B. Witkowski, Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism, Antimicrob. Agents Chemother, vol.54, pp.1872-1877, 2010.

N. Klonis, Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion, Proc. Natl Acad. Sci. USA, vol.108, pp.11405-11410, 2011.

I. Vigan-womas, An in vivo and in vitro model of Plasmodium falciparum rosetting and autoagglutination mediated by varO, a group A var gene encoding a frequent serotype, Infect. Immun, vol.76, pp.5565-5580, 2008.

L. Cui, Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum, Mol. Microbiol, vol.86, pp.111-128, 2012.

R. Leang, Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, Antimicrob. Agents Chemother, vol.57, pp.818-826, 2008.

A. B. Sidhu, Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations, Science, vol.298, pp.210-213, 2002.

S. G. Valderramos, Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum, PLoS Pathog, vol.6, p.1000887, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00577266

J. Bhisutthibhan, The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin, J. Biol. Chem, vol.273, pp.16192-16198, 1998.

T. Eichhorn, Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum, Biochem. Pharmacol, vol.85, pp.38-45, 2013.

C. P. Sanchez, Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum, Mol. Microbiol, vol.70, pp.786-798, 2008.

M. I. Veiga, Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance, PLoS ONE, vol.6, p.20212, 2011.

D. K. Raj, Disruption of a Plasmodium falciparum multidrug resistanceassociated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione, J. Biol. Chem, vol.284, pp.7687-7696, 2009.

T. J. Anderson, Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance?, Antimicrob. Agents Chemother, vol.49, pp.2180-2188, 2005.

R. Jambou, Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6, Lancet, vol.366, pp.1960-1963, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00590989

S. Krishna, Artemisinins and the biological basis for the PfATP6/SERCA hypothesis, Trends Parasitol, vol.26, pp.517-523, 2010.

P. Hunt, Gene encoding a deubiquitinating enzyme is mutated in artesunateand chloroquine-resistant rodent malaria parasites, Mol. Microbiol, vol.65, pp.27-40, 2007.

P. Hunt, Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites, BMC Genomics, vol.11, p.499, 2010.

S. Borges, Genome-wide scan reveals amplification of mdr1 as a common denominator of resistance to mefloquine, lumefantrine, and artemisinin in Plasmodium chabaudi malaria parasites, Antimicrob. Agents Chemother, vol.55, pp.4858-4865, 2011.

M. Chavchich, Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum, Antimicrob. Agents Chemother, vol.54, pp.2455-2464, 2010.

N. Chen, Deamplification of pfmdr1-containing amplicon on chromosome 5 in Plasmodium falciparum is associated with reduced resistance to artelinic acid in vitro, Antimicrob. Agents Chemother, vol.54, pp.3395-3401, 2010.

S. Picot, A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria, Malar. J, vol.8, p.89, 2009.

R. N. Price, Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number, Lancet, vol.364, pp.438-447, 2004.
DOI : 10.1016/s0140-6736(04)16767-6

URL : http://europepmc.org/articles/pmc4337987?pdf=render

A. B. Sidhu, Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin, J. Infect. Dis, vol.194, pp.528-535, 2006.
DOI : 10.1086/507115

URL : https://academic.oup.com/jid/article-pdf/194/4/528/18050382/194-4-528.pdf

J. Yuan, Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets, Science, vol.333, pp.724-729, 2011.
DOI : 10.1126/science.1205216

URL : http://europepmc.org/articles/pmc3396183?pdf=render

A. Amambua-ngwa, Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites, PLoS Genet, vol.8, p.1002992, 2012.

J. Adams, The kelch repeat superfamily of proteins: propellers of cell function, Trends Cell Biol, vol.10, pp.17-24, 2000.

S. Prag and J. C. Adams, Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals, BMC Bioinformatics, vol.4, p.42, 2003.

B. Witkowski, Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia, Antimicrob. Agents Chemother, vol.57, pp.914-923, 2013.

B. Padmanabhan, Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer, Mol. Cell, vol.21, pp.689-700, 2006.

L. M. Boyden, Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities, Nature, vol.482, pp.98-102, 2012.
DOI : 10.1038/nature10814

URL : http://europepmc.org/articles/pmc3278668?pdf=render

X. Li, D. Zhang, M. Hannink, and L. J. Beamer, Crystal structure of the Kelch domain of human Keap1, J. Biol. Chem, vol.279, pp.54750-54758, 2004.

K. Itoh, Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev, vol.13, pp.76-86, 1999.

D. D. Zhang and M. Hannink, Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress, Mol. Cell. Biol, vol.23, pp.8137-8152, 2003.

Z. Bozdech and H. Ginsburg, Antioxidant defense in Plasmodium falciparum-data mining of the transcriptome, Malar. J, vol.3, p.23, 2004.

N. K. Nesser, D. O. Peterson, and D. K. Hawley, RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo, Proc. Natl Acad. Sci. USA, vol.103, pp.3268-3273, 2006.
DOI : 10.1073/pnas.0511330103

URL : http://www.pnas.org/content/103/9/3268.full.pdf

H. Kettenberger, K. J. Armache, and P. Cramer, Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage, Cell, vol.114, pp.347-357, 2003.
DOI : 10.1016/s0092-8674(03)00598-1

URL : https://doi.org/10.1016/s0092-8674(03)00598-1

D. Dorin-semblat, A. Sicard, C. Doerig, L. Ranford-cartwright, and C. Doerig, Disruption of the PfPK7 gene impairs schizogony and sporogony in the human malaria parasite Plasmodium falciparum, Eukaryot. Cell, vol.7, pp.279-285, 2008.

R. Tewari, The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission, Cell Host Microbe, vol.8, pp.377-387, 2010.

P. J. Rosenthal, J. H. Mckerrow, M. Aikawa, H. Nagasawa, and J. H. Leech, A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum, J. Clin. Invest, vol.82, pp.1560-1566, 1988.

P. S. Sijwali, Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites, Proc. Natl Acad. Sci. USA, vol.101, pp.8721-8726, 2004.

P. S. Sijwali, J. Koo, N. Singh, and P. J. Rosenthal, Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum, Mol. Biochem. Parasitol, vol.150, pp.96-106, 2006.

N. Klonis, Altered temporal response of malaria parasites determines differential sensitivity to artemisinin, Proc. Natl Acad. Sci. USA, vol.110, pp.5157-5162, 2013.

C. A. Lobo, H. Fujioka, M. Aikawa, and N. Kumar, Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in P. falciparum, Mol. Cell, vol.3, pp.793-798, 1999.

A. Olivieri, The Plasmodium falciparum protein Pfg27 is dispensable for gametocyte and gamete production, but contributes to cell integrity during gametocytogenesis, Mol. Microbiol, vol.73, pp.180-193, 2009.

A. Sharma, I. Sharma, D. Kogkasuriyachai, and N. Kumar, Structure of a gametocyte protein essential for sexual development in Plasmodium falciparum, Nature Struct. Biol, vol.10, pp.197-203, 2003.

, Extended Data Figure 3 | Correlation between the frequency of wild-type K13-propeller alleles and the prevalence of day 3 positivity after ACT treatment in eight Cambodian provinces. The frequency of day 3 positivity is plotted against the frequency of wild-type K13-propeller alleles. Data are derived from patients treated with an ACT for P. falciparum malaria in 20102012 in eight Cambodian provinces

. Pursat, WHO therapeutic efficacy study, dihydroartemisinin-piperaquine), p.32, 2012.

O. Meanchey, NAMRU-2 therapeutic efficacy study, artesunate-mefloquine), vol.5, p.32, 2010.

K. Som and /. Speu,

. Battambang, WHO therapeutic efficacy study, dihydroartemisinin-piperaquine), 2012.

. Kratie, WHO therapeutic efficacy study, dihydroartemisininpiperaquine), p.15, 2011.

, WHO therapeutic efficacy study, dihydroartemisinin-piperaquine), 2011.

. Ratanakiri, WHO therapeutic efficacy study, dihydroartemisinin-piperaquine). Spearman's coefficient of rank correlation, p.32, 2010.

D. Ménard, N. Khim, J. Beghain, A. A. Adegnika, M. Shafiul­alam et al., Geneva: World Health Organization, 2014.

S. Bhatt, D. J. Weiss, and E. Cameron, The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015, Nature, vol.526, pp.207-218, 2015.

, Geneva: World Health Organization, Status report on artemisinin and ACT resistance, 2015.

, Guidelines for the treatment of malaria, 2015.

B. Witkowski, C. Amaratunga, and N. Khim, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies, Lancet Infect Dis, vol.13, pp.1043-1052, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00863935

B. Witkowski, N. Khim, and P. Chim, Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia, Antimicrob Agents Chemother, vol.57, pp.914-937, 2013.

M. B. Denis, R. Tsuyuoka, and P. Lim, Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia

, Trop Med Int Health, vol.11, pp.1800-1807, 2006.

M. B. Denis, R. Tsuyuoka, Y. Poravuth, and . Et,

A. M. Dondorp, F. Nosten, and P. Yi, Artemisinin resistance in Plasmodium falciparum malaria, N Engl J Med, vol.361, pp.455-67, 2009.

H. Noedl, Y. Se, K. Schaecher, B. L. Smith, D. Socheat et al., Evidence of artemisinin-resistant malaria in western Cambodia, N Engl J Med, vol.359, pp.2619-2639, 2008.

C. Amaratunga, S. Sreng, and S. Suon, Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study, Lancet Infect Dis, vol.12, pp.851-859, 2012.

E. A. Ashley, M. Dhorda, and R. M. Fairhurst, Spread of artemisinin resistance in Plasmodium falciparum malaria, N Engl J Med, vol.371, pp.411-434, 2014.

T. T. Hien, N. T. Thuy-nhien, and N. H. Phu, vivo susceptibility of Plasmodium falciparum to artesunate in, vol.11, p.355, 2012.

F. Huang, S. Takala-harrison, and C. G. Jacob, A single mutation in K13 predominates in southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment, J Infect Dis, vol.212, pp.1629-1664, 2015.

M. P. Kyaw, M. H. Nyunt, and K. Chit, Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study, PLoS One, vol.8, issue.3, pp.1960-1966, 2012.

K. Thriemer, N. V. Hong, and A. Rosanasurgell, Delayed parasite clearance after treatment with dihydroartemisininpiperaquine in Plasmodium falciparum malaria patients in central Vietnam, Antimicrob Agents Chemother, vol.58, pp.7049-55, 2014.

C. Roper, R. Pearce, S. Nair, B. Sharp, F. Nosten et al., Intercontinental spread of pyrimethamine-resistant malaria, Science, vol.305, p.1124, 2004.

C. Wongsrichanalai, A. L. Pickard, W. H. Wernsdorfer, and S. R. Meshnick, Epidemiology of drug-resistant malaria, Lancet Infect Dis, vol.2, pp.209-227, 2002.

J. F. Trape, The public health impact of chloroquine resistance in Africa, Am J Trop Med Hyg, vol.64, pp.12-19, 2001.

J. F. Trape, G. Pison, A. Spiegel, C. Enel, and C. Rogier, Combating malaria in Africa, Trends Parasitol, vol.18, pp.224-254, 2002.

S. Vinayak, M. T. Alam, and T. Mixson-hayden, Origin and evolution of sulfadoxine resistant Plasmodium falciparum, Geneva: World Health Organization, vol.6, issue.3, 2009.

F. Ariey, B. Witkowski, and C. Amaratunga, A molecular marker of artemisininresistant Plasmodium falciparum malaria, Nature, vol.505, pp.50-55, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00921203

J. Straimer, N. F. Gnädig, and B. Witkowski, Drug resistance: K13-propeller mutations confer artemisinin resistance in, Plasmodium falciparum clinical isolates. Science, vol.347, pp.428-459, 2015.

C. Amaratunga, B. Witkowski, and D. Dek, Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro, Antimicrob Agents Chemother, vol.58, pp.4935-4942, 2014.
DOI : 10.1128/aac.03055-14

URL : http://aac.asm.org/content/58/8/4935.full.pdf

C. Amaratunga, B. Witkowski, N. Khim, D. Menard, and R. M. Fairhurst, Artemisinin resistance in Plasmodium falciparum, Lancet Infect Dis, vol.14, pp.449-50, 2014.

S. Takala-harrison, C. G. Jacob, and C. Arze, Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia, J Infect Dis, vol.211, pp.670-679, 2015.

O. Miotto, R. Amato, and E. A. Ashley, Genetic architecture of artemisinin-resistant Plasmodium falciparum, Nat Genet, vol.47, pp.226-260, 2015.
DOI : 10.1038/ng.3189

URL : http://europepmc.org/articles/pmc4545236?pdf=render

T. E. Carter, A. Boulter, and A. Existe, Artemisinin resistance-associated polymorphisms at the K13-propeller locus are absent in Plasmodium falciparum isolates from Haiti, Am J Trop Med Hyg, vol.92, pp.552-556, 2015.
DOI : 10.4269/ajtmh.14-0664

URL : http://www.ajtmh.org/deliver/fulltext/14761645/92/3/552.pdf?itemId=/content/journals/10.4269/ajtmh.14-0664&mimeType=pdf&containerItemId=content/journals/14761645

N. Mishra, S. K. Prajapati, and K. Kaitholia, Surveillance of artemisinin resistance in Plasmodium falciparum in India using the kelch13 molecular marker, Antimicrob Agents Chemother, vol.59, pp.2548-53, 2015.

F. Huang, L. Tang, and H. Yang, Molecular epidemiology of drug resistance markers of Plasmodium falciparum in Yunnan Province, China, Malar J, vol.11, p.243, 2012.

J. Feng, D. Zhou, Y. Lin, H. Xiao, H. Yan et al., Amplification of pfmdr1, pfcrt, pvmdr1, and K13 propeller polymorphisms associated with Plasmodium falciparum and Plasmodium vivax isolates from the China-Myanmar border, Antimicrob Agents Chemother, vol.59, pp.2554-2563, 2015.

A. N. Mohon, M. S. Alam, and A. G. Bayih, Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh, 2009.
DOI : 10.1186/1475-2875-13-431

URL : https://malariajournal.biomedcentral.com/track/pdf/10.1186/1475-2875-13-431

, Malar J, vol.13, p.431, 2014.

M. D. Conrad, V. Bigira, and J. Kapisi, Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children, PLoS One, vol.9, issue.8, p.105690, 2014.

R. A. Cooper, M. D. Conrad, and Q. D. Watson, Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays, Antimicrob Agents Chemother, vol.59, pp.5061-5065, 2015.

R. Isozumi, H. Uemura, and I. Kimata, Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum, Emerg Infect Dis, vol.21, pp.490-492, 2015.

E. Kamau, S. Campino, and L. Amenga-etego,

, A Map of P. falciparum K13-Propeller Polymorphisms Plasmodium falciparum parasites from subSaharan Africa, J Infect Dis, vol.211, pp.1352-1357, 2015.

A. Ouattara, A. Kone, and M. Adams, Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali, Am J Trop Med Hyg, vol.92, pp.1202-1208, 2015.

S. M. Taylor, C. M. Parobek, and D. K. Deconti, Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study, J Infect Dis, vol.211, pp.680-688, 2015.

M. Torrentino-madamet, B. Fall, and N. Benoit, Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Malar J, vol.13, p.472, 2014.

S. Borrmann, J. Straimer, and L. Mwai,

, Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in, Kenya. Sci Rep, vol.3, p.3318, 2013.

G. Henriques, R. L. Hallett, and K. B. Beshir, Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT, J Infect Dis, vol.210, pp.2001-2009, 2014.

M. Hawkes, A. L. Conroy, and R. O. Opoka, Slow clearance of Plasmodium falciparum in severe pediatric malaria, 2011.

, Emerg Infect Dis, vol.21, pp.1237-1246, 2015.

D. Menard and F. Ariey, Towards real-time monitoring of artemisinin resistance, Lancet Infect Dis, vol.15, pp.367-375, 2015.

C. Roper, M. Alifrangis, and F. Ariey, Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc Natl Acad Sci U S A, vol.14, pp.5269-73, 1979.

M. Nei, Molecular evolutionary genetics, 1987.

M. Kimura, The neutral theory of molecular evolution, 1983.

P. Librado and J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, vol.25, pp.1451-1453, 2009.

I. H. Cheeseman, M. Mcdew-white, A. P. Phyo, K. Sriprawat, F. Nosten et al., Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar, Clin Infect Dis, vol.32, pp.1208-1223, 2015.

Z. Wang, S. Shrestha, and X. Li, Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker, Tun KM, Imwong M, vol.14, pp.415-436, 2015.

E. Talundzic, S. A. Okoth, and K. Congpuong, Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign, PLoS Pathog, vol.11, issue.4, p.1004789, 2015.

J. Feng, J. Li, H. Yan, X. Feng, and Z. Xia, Evaluation of antimalarial resistance marker polymorphism in returned migrant workers in China, Antimicrob Agents Chemother, vol.59, pp.326-356, 2015.

. P. Malariagen and . Falciparum, Community Project data (beta release), 2015.

C. Escobar, S. Pateira, and E. Lobo, Polymorphisms in Plasmodium falciparum K13-propeller in Angola and Mozambique after the introduction of the ACTs, PLoS One, vol.10, issue.3, p.119215, 2015.

O. Miotto, J. Almagro-garcia, and M. Manske, Plasmodium falciparum clearance rates in response to artesunate in Malian children with malaria: effect of acquired immunity, J Infect Dis, vol.45, pp.1655-63, 2013.

, Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data, BMC Med, vol.13, p.212, 2015.

A. Mbengue, S. Bhattacharjee, and T. Pandharkar, A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria, Nature, vol.520, pp.683-690, 2015.

©. Copyright, Massachusetts Medical Society, 2016.

T. Reach, Visit the article page at NEJM.org and click on the Metrics tab for a dashboard that logs views, citations, media references, and commentary, with easy linking. Learn more at www

M. T. Alam, S. Vinayak, K. Congpuong, C. Wongsrichanalai, W. Satimai et al., Tracking origins and spread of sulfadoxine-resistant Plasmodium falciparum dhps alleles in Thailand, Antimicrobial agents and chemotherapy, vol.55, pp.155-164, 2011.

M. Alifrangis, M. B. Dalgaard, J. P. Lusingu, L. S. Vestergaard, T. Staalsoe et al., Occurrence of the Southeast Asian/South American SVMNT haplotype of the chloroquine-resistance transporter gene in Plasmodium falciparum in Tanzania, The Journal of infectious diseases, vol.193, pp.1738-1741, 2006.

M. Alifrangis, M. M. Lemnge, A. M. Ronn, M. D. Segeja, S. M. Magesa et al., Increasing prevalence of wildtypes in the dihydrofolate reductase gene of Plasmodium falciparum in an area with high levels of sulfadoxine/pyrimethamine resistance after introduction of treated bed nets, The American journal of tropical medicine and hygiene, vol.69, pp.238-243, 2003.

A. P. Alker, P. Lim, R. Sem, N. K. Shah, P. Yi et al., Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border, The American journal of tropical medicine and hygiene, vol.76, pp.641-647, 2007.

A. S. Aly, A. M. Vaughan, and S. H. Kappe, Malaria parasite development in the mosquito and infection of the mammalian host, Annu Rev Microbiol, vol.63, pp.195-221, 2009.

C. Amaratunga, P. Lim, S. Suon, S. Sreng, S. Mao et al., Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. The Lancet Infectious diseases, vol.16, pp.357-365, 2016.

C. Amaratunga, S. Sreng, S. Suon, E. S. Phelps, K. Stepniewska et al., Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study, The Lancet Infectious diseases, vol.12, pp.851-858, 2012.

C. Amaratunga, B. Witkowski, N. Khim, D. Menard, and R. M. Fairhurst, , 2014.

, Artemisinin resistance in Plasmodium falciparum. The Lancet Infectious diseases 14, pp.449-450

R. Amato, P. Lim, O. Miotto, C. Amaratunga, D. Dek et al., Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study, 2016.

T. J. Anderson, B. Haubold, J. T. Williams, J. G. Estrada-franco, L. Richardson et al., Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum, Molecular biology and evolution, vol.17, pp.1467-1482, 2000.

T. J. Anderson and C. Roper, The origins and spread of antimalarial drug resistance: lessons for policy makers, Acta tropica, vol.94, pp.269-280, 2005.

C. Antonio-nkondjio, P. Awono-ambene, J. C. Toto, J. Y. Meunier, S. Zebaze-kemleu et al., High malaria transmission intensity in a village close to Yaounde, the capital city of Cameroon, Journal of medical entomology, vol.39, pp.350-355, 2002.

F. Ariey, J. B. Duchemin, R. , and V. , Metapopulation concepts applied to falciparum malaria and their impacts on the emergence and spread of chloroquine resistance. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 2, pp.185-192, 2003.

F. Ariey, B. Witkowski, C. Amaratunga, J. Beghain, A. C. Langlois et al., A molecular marker of artemisinin-resistant Plasmodium falciparum malaria, Nature, vol.505, pp.50-55, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00921203

W. Asawamahasakda, I. Ittarat, Y. M. Pu, H. Ziffer, and S. R. Meshnick, Reaction of antimalarial endoperoxides with specific parasite proteins, Antimicrobial agents and chemotherapy, vol.38, pp.1854-1858, 1994.

E. A. Ashley, M. Dhorda, R. M. Fairhurst, C. Amaratunga, P. Lim et al., Spread of artemisinin resistance in Plasmodium falciparum malaria, vol.371, pp.411-423, 2014.

H. A. Babiker, I. M. Hastings, and G. Swedberg, Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies, Expert Rev Anti Infect Ther, vol.7, pp.581-593, 2009.

H. A. Babiker, S. J. Pringle, A. Abdel-muhsin, M. Mackinnon, P. Hunt et al., High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfmdr1, The Journal of infectious diseases, vol.183, pp.1535-1538, 2001.

M. L. Baniecki, D. F. Wirth, C. , and J. , High-throughput Plasmodium falciparum growth assay for malaria drug discovery, Antimicrobial agents and chemotherapy, vol.51, pp.716-723, 2007.

L. K. Basco, Molecular epidemiology of malaria in Cameroon. XIII. Analysis of pfcrt mutations and in vitro chloroquine resistance, The American journal of tropical medicine and hygiene, vol.67, pp.388-391, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01774343

L. K. Basco, Molecular epidemiology of malaria in Cameroon. XIX. Quality of antimalarial drugs used for self-medication, The American journal of tropical medicine and hygiene, vol.70, pp.245-250, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01774343

L. K. Basco, L. Bras, and J. , Reversal of chloroquine resistance with cyproheptadine in 'wild' strains of Plasmodium falciparum, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.85, pp.204-205, 1991.

L. K. Basco, R. , and P. , Molecular epidemiology of malaria in Cameroon. X. Evaluation of PFMDR1 mutations as genetic markers for resistance to amino alcohols and artemisinin derivatives, The American journal of tropical medicine and hygiene, vol.66, pp.667-671, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01774343

T. N. Bennett, A. D. Kosar, L. M. Ursos, S. Dzekunov, . Singh et al., Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH, Molecular and biochemical parasitology, vol.133, pp.99-114, 2004.

J. Bhisutthibhan, X. Q. Pan, P. A. Hossler, D. J. Walker, C. A. Yowell et al., The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin, The Journal of biological chemistry, vol.273, pp.16192-16198, 1998.

A. Bjorkman and P. A. Phillips-howard, The epidemiology of drug-resistant malaria, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.84, pp.177-180, 1990.

S. Bonnet, L. C. Gouagna, R. E. Paul, I. Safeukui, J. Y. Meunier et al., Estimation of malaria transmission from humans to mosquitoes in two neighbouring villages in south Cameroon: evaluation and comparison of several indices, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.97, pp.53-59, 2003.

E. F. Boudreau, H. K. Webster, K. Pavanand, and L. Thosingha, Type II mefloquine resistance in Thailand, Lancet, vol.2, p.1335, 1982.

P. G. Bray, S. R. Hawley, M. Mungthin, and S. A. Ward, Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum, Molecular pharmacology, vol.50, pp.1559-1566, 1996.

P. G. Bray, R. E. Martin, L. Tilley, S. A. Ward, K. Kirk et al., Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance, Molecular microbiology, vol.56, pp.323-333, 2005.

P. G. Bray, M. Mungthin, I. M. Hastings, G. A. Biagini, D. K. Saidu et al., PfCRT and the transvacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX, Molecular microbiology, vol.62, pp.238-251, 2006.

S. Briolant, N. Wurtz, A. Zettor, C. Rogier, P. et al., Susceptibility of Plasmodium falciparum isolates to doxycycline is associated with pftetQ sequence polymorphisms and pftetQ and pfmdt copy numbers, The Journal of infectious diseases, vol.201, pp.153-159, 2010.

A. Brockman, S. Singlam, L. Phiaphun, S. Looareesuwan, N. J. White et al., Field evaluation of a novel colorimetric method-double-site enzyme-linked lactate dehydrogenase immunodetection assay-to determine drug susceptibilities of Plasmodium falciparum clinical isolates from northwestern Thailand, Antimicrobial agents and chemotherapy, vol.48, pp.1426-1429, 2004.

D. R. Brooks, P. Wang, M. Read, W. M. Watkins, P. F. Sims et al., Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine, European journal of biochemistry / FEBS, vol.224, pp.397-405, 1994.

K. M. Brown, M. S. Costanzo, W. Xu, S. Roy, E. R. Lozovsky et al., Compensatory mutations restore fitness during the evolution of dihydrofolate reductase, Molecular biology and evolution, vol.27, pp.2682-2690, 2010.

D. J. Bzik, W. B. Li, T. Horii, and J. Inselburg, Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene, Proceedings of the National Academy of Sciences of the United States of America, vol.84, pp.8360-8364, 1987.

N. Campanale, C. Nickel, C. A. Daubenberger, D. A. Wehlan, J. J. Gorman et al., Identification and characterization of heme, p.168, 2003.

, proteins in the malaria parasite, Plasmodium falciparum, The Journal of biological chemistry, vol.278, pp.27354-27361

M. Camps, G. Arrizabalaga, and J. Boothroyd, An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii, Molecular microbiology, vol.43, pp.1309-1318, 2002.

C. M. Castillo, L. E. Osorio, P. , and G. I. , Assessment of therapeutic response of Plasmodium vivax and Plasmodium falciparum to chloroquine in a Malaria transmission free area in Colombia, Mem Inst Oswaldo Cruz, vol.97, pp.559-562, 2002.

I. H. Cheeseman, B. A. Miller, S. Nair, S. Nkhoma, A. Tan et al., A major genome region underlying artemisinin resistance in malaria, Science, vol.336, pp.79-82, 2012.

N. Chen, D. E. Kyle, C. Pasay, E. V. Fowler, J. Baker et al., pfcrt allelic types with two novel amino acid mutations in chloroquine-resistant Plasmodium falciparum isolates from the Philippines, Antimicrobial agents and chemotherapy, vol.47, pp.3500-3505, 2003.

N. Chen, A. N. Lacrue, F. Teuscher, N. C. Waters, M. L. Gatton et al., Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum, Antimicrobial agents and chemotherapy, vol.58, pp.4773-4781, 2014.

I. Chopra and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews : MMBR 65, pp.232-260, 2001.

D. F. Clyde, The problem of drug-resistant malaria. The American journal of tropical medicine and hygiene 21, pp.736-743, 1972.

D. F. Clyde and G. T. Shute, Resistance of Plasmodium falciparum in Tanganyika to pyrimethamine administered at weekly intervals, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.51, pp.505-513, 1957.

R. A. Cooper, M. D. Conrad, Q. D. Watson, S. J. Huezo, H. Ninsiima et al., Lack of Artemisinin Resistance in Plasmodium falciparum in Uganda Based on Parasitological and Molecular Assays, Antimicrobial agents and chemotherapy, vol.59, pp.5061-5064, 2015.

R. A. Cooper, C. L. Hartwig, and M. T. Ferdig, pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: a functional and evolutionary perspective, Acta tropica, vol.94, pp.170-180, 2005.

Y. Corbett, L. Herrera, J. Gonzalez, L. Cubilla, T. L. Capson et al., A novel DNA-based microfluorimetric method to evaluate antimalarial drug activity, The American journal of tropical medicine and hygiene, vol.70, pp.119-124, 2004.

M. S. Costanzo, K. M. Brown, and D. L. Hartl, Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum, PloS one, vol.6, 2011.

G. Covell and W. D. Nicol, Studies on a West African strain of Plasmodium falciparum; the efficacy of paludrine as a therapeutic agent, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.42, pp.465-476, 1949.

A. F. Cowman, D. Galatis, and J. K. Thompson, Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine, Proceedings of the National Academy of Sciences of the United States of America, vol.91, pp.1143-1147, 1994.

A. F. Cowman and S. R. Karcz, The pfmdr gene homologues of Plasmodium falciparum, Acta Leidensia, vol.60, pp.121-129, 1991.

A. F. Cowman, M. J. Morry, B. A. Biggs, G. A. Cross, and S. J. Foote, Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum, Proceedings of the National Academy of Sciences of the United States of America, vol.85, pp.9109-9113, 1988.

A. R. Crofts, The cytochrome bc1 complex: function in the context of structure, Annual review of physiology, vol.66, pp.689-733, 2004.

E. L. Dahl and P. J. Rosenthal, Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast, Antimicrobial agents and chemotherapy, vol.51, pp.3485-3490, 2007.

S. Dahlstrom, A. Aubouy, O. Maiga-ascofare, J. F. Faucher, A. Wakpo et al., Plasmodium falciparum Polymorphisms associated with ex vivo drug susceptibility and clinical effectiveness of artemisinin-based combination therapies in Benin, Antimicrobial agents and chemotherapy, vol.58, pp.1-10, 2014.

S. Dahlstrom, P. E. Ferreira, M. I. Veiga, N. Sedighi, L. Wiklund et al., Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa, The Journal of infectious diseases, vol.200, pp.1456-1464, 2009.

S. Dahlstrom, M. I. Veiga, A. Martensson, A. Bjorkman, G. et al., Polymorphism in PfMRP1 (Plasmodium falciparum multidrug resistance protein 1) amino acid 1466 associated with resistance to sulfadoxine-pyrimethamine treatment, Antimicrobial agents and chemotherapy, vol.53, pp.2553-2556, 2009.

K. A. Dantley, H. K. Dannelly, and V. Burdett, Binding interaction between Tet(M) and the ribosome: requirements for binding, vol.180, pp.4089-4092, 1998.

D. G. Davey and G. I. Robertson, Experiments with antimalarial drugs in man. IV. An experiment to investigate the prophylactic value of proguanil against a strain of Plasmodium falciparum known to be resistant to therapeutic treatment, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.51, pp.463-466, 1957.

R. E. Desjardins, C. J. Canfield, J. D. Haynes, and J. D. Chulay, Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique, Antimicrobial agents and chemotherapy, vol.16, pp.710-718, 1979.

A. A. Djimde, B. Fofana, I. Sagara, B. Sidibe, S. Toure et al., Efficacy, safety, and selection of molecular markers of drug resistance by two ACTs in Mali, The American journal of tropical medicine and hygiene, vol.78, pp.455-461, 2008.

C. Dokomajilar, S. L. Nsobya, B. Greenhouse, P. J. Rosenthal, D. et al., Selection of Plasmodium falciparum pfmdr1 alleles following therapy with artemetherlumefantrine in an area of Uganda where malaria is highly endemic, Antimicrobial agents and chemotherapy, vol.50, pp.1893-1895, 2006.

A. Dondorp, F. Nosten, K. Stepniewska, N. Day, N. White et al., Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial, Lancet, vol.366, pp.717-725, 2005.

A. M. Dondorp, R. M. Fairhurst, L. Slutsker, J. R. Macarthur, J. G. Breman et al., The threat of artemisinin-resistant malaria, The New England journal of medicine, vol.365, pp.1073-1075, 2011.

A. M. Dondorp, C. I. Fanello, I. C. Hendriksen, E. Gomes, A. Seni et al., Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial, Lancet, vol.376, pp.1647-1657, 2010.

A. M. Dondorp, F. Nosten, P. Yi, D. Das, A. P. Phyo et al., Artemisinin resistance in Plasmodium falciparum malaria, The New England journal of medicine, vol.361, pp.455-467, 2009.

D. L. Doolan, C. Dobano, and J. K. Baird, Acquired immunity to malaria, Clin Microbiol Rev, vol.22, pp.13-36, 2009.

C. C. Draper, G. Brubaker, A. Geser, V. A. Kilimali, and W. H. Wernsdorfer, Serial studies on the evolution of chloroquine resistance in an area of East Africa receiving intermittent malaria chemosuppression, Bulletin of the World Health Organization, vol.63, pp.109-118, 1985.

P. Druilhe, A. Moreno, C. Blanc, P. H. Brasseur, J. et al., A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay, The American journal of tropical medicine and hygiene, vol.64, pp.233-241, 2001.

V. Durrand, A. Berry, R. Sem, P. Glaziou, J. Beaudou et al., Variations in the sequence and expression of the Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and their relationship to chloroquine resistance in vitro, Molecular and biochemical parasitology, vol.136, pp.273-285, 2004.

V. Duru, N. Khim, R. Leang, S. Kim, A. Domergue et al., Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations, BMC medicine, vol.13, p.305, 2015.

S. M. Dzekunov, L. M. Ursos, R. , and P. D. , Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine, Molecular and biochemical parasitology, vol.110, pp.107-124, 2000.

A. Ecker, A. M. Lehane, J. Clain, and D. A. Fidock, PfCRT and its role in antimalarial drug resistance, Trends in parasitology, vol.28, pp.504-514, 2012.

T. J. Egan, Haemozoin formation, Molecular and biochemical parasitology, vol.157, pp.127-136, 2008.

T. J. Egan, Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation, Journal of inorganic biochemistry, vol.102, pp.1288-1299, 2008.

K. K. Eggleson, K. L. Duffin, and D. E. Goldberg, Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum, The Journal of biological chemistry, vol.274, pp.32411-32417, 1999.

R. M. Fairhurst, Understanding artemisinin-resistant malaria: what a difference a year makes, Current opinion in infectious diseases, vol.28, pp.417-425, 2015.

R. Ferone, Folate metabolism in malaria, Bulletin of the World Health Organization, vol.55, pp.291-298, 1977.

M. E. Fichera, R. , and D. S. , A plastid organelle as a drug target in apicomplexan parasites, Nature, vol.390, pp.407-409, 1997.
DOI : 10.1038/37132

D. A. Fidock, T. Nomura, A. K. Talley, R. A. Cooper, S. M. Dzekunov et al., Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance, Molecular cell, vol.6, pp.861-871, 2000.

J. Field and .. E. Jfb, Paludrine resistant falciparum malaria, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.43, pp.233-236, 1949.
DOI : 10.1016/0035-9203(49)90046-2

S. Filler, L. M. Causer, R. D. Newman, A. M. Barber, J. M. Roberts et al., Malaria surveillanceUnited States, MMWR Surveill Summ, vol.52, pp.1-14, 2001.

C. D. Fitch, Mode of action of antimalarial drugs, Ciba Found Symp, vol.94, pp.222-232, 1983.

S. Fogh, S. Jepsen, E. , and P. , Chloroquine-resistant Plasmodium falciparum malaria in Kenya, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.73, pp.228-229, 1979.
DOI : 10.1016/0035-9203(79)90220-7

A. L. Fontanet, D. B. Johnston, A. M. Walker, W. Rooney, K. Thimasarn et al., High prevalence of mefloquine-resistant falciparum malaria in eastern Thailand, Bulletin of the World Health Organization, vol.71, pp.377-383, 1993.

A. E. Frosch, M. K. Laufer, D. P. Mathanga, S. Takala-harrison, J. Skarbinski et al., Return of widespread chloroquine-sensitive Plasmodium falciparum to Malawi, The Journal of infectious diseases, vol.210, pp.1110-1114, 2014.
DOI : 10.1093/infdis/jiu216

URL : https://academic.oup.com/jid/article-pdf/210/7/1110/18070572/jiu216.pdf

M. Fry and M. Pudney, Site of action of the antimalarial hydroxynaphthoquinone, 2[trans-4-(4'-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80), Biochemical pharmacology, vol.43, pp.1545-1553, 1992.

T. Gaillard, K. Sriprawat, S. Briolant, C. Wangsing, N. Wurtz et al., Molecular markers and in vitro susceptibility to Doxycycline in Plasmodium falciparum isolates from Thailand, Antimicrobial agents and chemotherapy, vol.59, pp.5080-5083, 2015.
DOI : 10.1128/aac.00345-15

URL : https://aac.asm.org/content/59/8/5080.full.pdf

B. E. Gama, G. A. Pereira-carvalho, F. J. Lutucuta-kosi, N. K. Almeida-de-oliveira, F. Fortes et al., Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene, Malaria journal, vol.9, p.174, 2010.

M. J. Gardner, J. E. Feagin, D. J. Moore, K. Rangachari, D. H. Williamson et al., Sequence and organization of large subunit rRNA genes from the extrachromosomal 35 kb circular DNA of the malaria parasite Plasmodium falciparum, Nucleic acids research, vol.21, pp.1067-1071, 1993.

M. L. Gatton, W. Hogarth, and A. Saul, Time of treatment influences the appearance of drug-resistant parasites in Plasmodium falciparum infections, Parasitology, vol.123, pp.537-546, 2001.

H. Ginsburg, O. Famin, J. M. Zhang, and M. Krugliak, Inhibition of glutathionedependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action, Biochemical pharmacology, vol.56, pp.1305-1313, 1998.

I. Y. Gluzman, S. E. Francis, A. Oksman, C. E. Smith, K. L. Duffin et al., Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway, The Journal of clinical investigation, vol.93, pp.1602-1608, 1994.
DOI : 10.1172/jci117140

URL : http://www.jci.org/articles/view/117140/files/pdf

D. E. Goldberg, Hemoglobin degradation in Plasmodium-infected red blood cells, Seminars in cell biology, vol.4, pp.355-361, 1993.
DOI : 10.1006/scel.1993.1042

D. E. Goldberg, A. F. Slater, R. Beavis, B. Chait, A. Cerami et al., , 1991.

, Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease, J Exp Med, vol.173, pp.961-969

D. E. Goldberg, A. F. Slater, A. Cerami, H. , and G. B. , Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle, Proceedings of the National Academy of Sciences of the United States of America, vol.87, pp.2931-2935, 1990.

C. D. Goodman, J. E. Siregar, V. Mollard, J. Vega-rodriguez, D. Syafruddin et al., Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes, Science, vol.352, pp.349-353, 2016.

C. D. Goodman, V. Su, and G. I. Mcfadden, The effects of anti-bacterials on the malaria parasite Plasmodium falciparum, Molecular and biochemical parasitology, vol.152, pp.181-191, 2007.

B. M. Greenwood, D. A. Fidock, D. E. Kyle, S. H. Kappe, P. L. Alonso et al., Malaria: progress, perils, and prospects for eradication, The Journal of clinical investigation, vol.118, pp.1266-1276, 2008.

A. Gregson and C. V. Plowe, Mechanisms of resistance of malaria parasites to antifolates, Pharmacol Rev, vol.57, pp.117-145, 2005.

C. E. Griffin, J. M. Hoke, U. Samarakoon, J. Duan, J. Mu et al., Mutation in the Plasmodium falciparum CRT protein determines the stereospecific activity of antimalarial cinchona alkaloids, Antimicrobial agents and chemotherapy, vol.56, pp.5356-5364, 2012.

C. A. Gritzmacher, R. , and R. T. , Protein and nucleic acid synthesis during synchronized growth of Plasmodium falciparum, Journal of bacteriology, vol.160, pp.1165-1167, 1984.

B. Gupta, S. Xu, Z. Wang, L. Sun, J. Miao et al., Plasmodium falciparum multidrug resistance protein 1 (pfmrp1) gene and its association with in vitro drug susceptibility of parasite isolates from north-east Myanmar, The Journal of antimicrobial chemotherapy, vol.69, pp.2110-2117, 2014.

W. E. Gutteridge and P. I. Trigg, Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro, Parasitology, vol.62, pp.431-444, 1971.

D. J. Hammond, J. R. Burchell, and M. Pudney, Inhibition of pyrimidine biosynthesis de novo in Plasmodium falciparum by 2-(4-t-butylcyclohexyl)-3-hydroxy-1,4-naphthoquinone in vitro, Molecular and biochemical parasitology, vol.14, pp.97-109, 1985.

W. E. Harrington, T. K. Mutabingwa, A. Muehlenbachs, B. Sorensen, M. C. Bolla et al., Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.9027-9032, 2009.

M. Hawkes, A. L. Conroy, R. O. Opoka, S. Namasopo, K. Zhong et al., Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, vol.21, pp.1237-1239, 2015.

R. K. Haynes, D. Monti, D. Taramelli, N. Basilico, S. Parapini et al., , 2003.

, Artemisinin antimalarials do not inhibit hemozoin formation, Antimicrobial agents and chemotherapy, vol.47, p.1175

R. Hayward, K. J. Saliba, K. , and K. , The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance, Journal of cell science, vol.119, pp.1016-1025, 2006.

A. Heinberg and L. Kirkman, The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations, Annals of the New York Academy of Sciences, vol.1342, pp.10-18, 2015.

T. T. Hien, N. T. Thuy-nhien, N. H. Phu, M. F. Boni, N. V. Thanh et al., vivo susceptibility of Plasmodium falciparum to artesunate in, vol.11, p.355, 2012.

G. Holmgren, J. Hamrin, J. Svard, A. Martensson, J. P. Gil et al., Selection of pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, vol.7, pp.562-569, 2007.

A. Hott, D. Casandra, K. N. Sparks, L. C. Morton, G. G. Castanares et al., Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes, Antimicrobial agents and chemotherapy, vol.59, pp.3156-3167, 2015.

A. Hott, M. S. Tucker, D. Casandra, K. Sparks, K. et al., Fitness of artemisinin-resistant Plasmodium falciparum in vitro, The Journal of antimicrobial chemotherapy, vol.70, pp.2787-2796, 2015.

P. Hunt, P. V. Cravo, P. Donleavy, J. M. Carlton, and D. Walliker, Chloroquine resistance in Plasmodium chabaudi: are chloroquine-resistance transporter (crt) and multi-drug resistance (mdr1) orthologues involved?, Molecular and biochemical parasitology, vol.133, pp.27-35, 2004.

C. Hunte, H. Palsdottir, and B. L. Trumpower, Protonmotive pathways and mechanisms in the cytochrome bc1 complex, FEBS letters, vol.545, pp.39-46, 2003.

E. S. Hurwitz, D. Johnson, and C. C. Campbell, Resistance of Plasmodium falciparum malaria to sulfadoxine-pyrimethamine ('Fansidar') in a refugee camp in Thailand, Lancet, vol.1, pp.1068-1070, 1981.

J. E. Hyde, Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes and infection, Institut Pasteur, vol.4, pp.165-174, 2002.

R. L. Jacobs and L. C. Koontz, Plasmodium berghei: development of resistance to clindamycin and minocycline in mice, Experimental parasitology, vol.40, pp.116-123, 1976.

H. Jiang, J. J. Patel, M. Yi, J. Mu, J. Ding et al., Genome-wide compensatory changes accompany drug-selected mutations in the Plasmodium falciparum crt gene, PloS one, vol.3, 2008.

D. J. Johnson, D. A. Fidock, M. Mungthin, V. Lakshmanan, A. B. Sidhu et al., Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents, Molecular cell, vol.15, pp.867-877, 2004.

J. D. Johnson, R. A. Dennull, L. Gerena, M. Lopez-sanchez, N. E. Roncal et al., Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening, Antimicrobial agents and chemotherapy, vol.51, pp.1926-1933, 2007.

R. Jones, . Jr, and T. N. Pullman, The therapeutic effectiveness of large doses of paludrine in acute attacks of sporozoite-induced vivax malaria, Chesson strain, The Journal of clinical investigation, vol.27, pp.51-55, 1948.

H. Kaddouri, S. Nakache, S. Houze, F. Mentre, L. Bras et al., Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration, Antimicrobial agents and chemotherapy, vol.50, pp.3343-3349, 2006.

E. Kamau, S. Campino, L. Amenga-etego, E. Drury, D. Ishengoma et al., K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa, vol.211, pp.1352-1355, 2015.

R. Kannan, D. Sahal, and V. S. Chauhan, Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization, Chemistry & biology, vol.9, pp.321-332, 2002.

C. Karema, M. Imwong, C. I. Fanello, K. Stepniewska, A. Uwimana et al., Molecular correlates of high-level antifolate resistance in Rwandan children with Plasmodium falciparum malaria, Antimicrobial agents and chemotherapy, vol.54, pp.477-483, 2010.

C. Kidgell, S. K. Volkman, J. Daily, J. O. Borevitz, D. Plouffe et al., A systematic map of genetic variation in Plasmodium falciparum, PLoS pathogens, vol.2, p.57, 2006.

E. Y. Klein, D. L. Smith, M. F. Boni, and R. Laxminarayan, Clinically immune hosts as a refuge for drug-sensitive malaria parasites, Malaria journal, vol.7, p.67, 2008.

E. Y. Klein, D. L. Smith, R. Laxminarayan, L. , and S. , Superinfection and the evolution of resistance to antimalarial drugs, Proceedings Biological sciences / The Royal Society, vol.279, pp.3834-3842, 2012.

N. Klonis, O. Tan, K. Jackson, D. Goldberg, M. Klemba et al., Evaluation of pH during cytostomal endocytosis and vacuolar catabolism of haemoglobin in Plasmodium falciparum, The Biochemical journal, vol.407, pp.343-354, 2007.

J. B. Koenderink, R. A. Kavishe, S. R. Rijpma, R. , and F. G. , The ABCs of multidrug resistance in malaria, Trends in parasitology, vol.26, pp.440-446, 2010.

L. C. Koontz, R. L. Jacobs, W. L. Lummis, and L. H. Miller, Plasmodium berghei: uptake of clindamycin and its metabolites by mouse erythrocytes with clindamycin-sensitive and clindamycin-resistant parasites, Experimental parasitology, vol.48, pp.206-212, 1979.

P. G. Kremsner, Clindamycin in malaria treatment, The Journal of antimicrobial chemotherapy, vol.25, pp.9-14, 1990.

J. Krungkrai, H. K. Webster, Y. , and Y. , De novo and salvage biosynthesis of pteroylpentaglutamates in the human malaria parasite, Plasmodium falciparum, Molecular and biochemical parasitology, vol.32, pp.25-37, 1989.

J. G. Kublin, J. F. Cortese, E. M. Njunju, R. A. Mukadam, J. J. Wirima et al., Reemergence of chloroquinesensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi, The Journal of infectious diseases, vol.187, pp.1870-1875, 2003.

Y. Kuhn, P. Rohrbach, and M. Lanzer, Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin, Cellular microbiology, vol.9, pp.1004-1013, 2007.

K. Kumpornsin, C. Modchang, A. Heinberg, E. H. Ekland, P. Jirawatcharadech et al., Origin of robustness in generating drug-resistant malaria parasites, Molecular biology and evolution, vol.31, pp.1649-1660, 2014.

M. P. Kyaw, M. H. Nyunt, K. Chit, M. M. Aye, K. H. Aye et al., Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar, PloS one, vol.8, p.57689, 2013.

M. K. Laufer, P. C. Thesing, N. D. Eddington, R. Masonga, F. K. Dzinjalamala et al., Return of chloroquine antimalarial efficacy in Malawi, The New England journal of medicine, vol.355, pp.1959-1966, 2006.

L. Bras, J. , D. , and R. , The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum, Fundamental & clinical pharmacology, vol.17, pp.147-153, 2003.

R. Leang, A. Barrette, D. M. Bouth, D. Menard, R. Abdur et al., Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, Antimicrobial agents and chemotherapy, vol.57, pp.818-826, 2008.

R. Leang, W. R. Taylor, D. M. Bouth, L. Song, J. Tarning et al., Evidence of Plasmodium falciparum Malaria Multidrug Resistance to Artemisinin and Piperaquine in Western Cambodia: Dihydroartemisinin-Piperaquine Open-Label Multicenter Clinical Assessment, Antimicrobial agents and chemotherapy, vol.59, pp.4719-4726, 2015.

R. Leclercq, Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, vol.34, pp.482-492, 2002.

O. Leri, P. Perinelli, T. Losi, M. Mastropasqua, C. Peri et al., , 1997.

, Clin Ter, vol.148, pp.655-665

C. Loup, J. Lelievre, F. Benoit-vical, and B. Meunier, Trioxaquines and hemeartemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine, Antimicrobial agents and chemotherapy, vol.51, pp.3768-3770, 2007.

F. Lu, R. Culleton, M. Zhang, A. Ramaprasad, L. Von-seidlein et al., Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa, 2017.

N. W. Lucchi, F. Komino, S. A. Okoth, I. Goldman, P. Onyona et al., In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity, Antimicrobial agents and chemotherapy, vol.59, pp.7540-7547, 2015.

M. Madamet, T. Gaillard, G. Velut, C. Ficko, P. Houze et al., Malaria Prophylaxis Failure with Doxycycline, vol.21, pp.1485-1486, 2014.

P. B. Madrid, N. T. Wilson, J. L. Derisi, and R. K. Guy, Parallel synthesis and antimalarial screening of a 4-aminoquinoline library, Journal of combinatorial chemistry, vol.6, pp.437-442, 2004.

B. G. Maegraith and A. R. Adams, Studies on synthetic antimalarial drugs; results of a preliminary investigation of the therapeutic action of 4888 (paludrine) on acute attacks of malignant tertian malaria, Annals of tropical medicine and parasitology, vol.39, pp.232-236, 1945.

B. G. Maegraith, A. R. Adams, J. D. King, M. M. Tottey, D. J. Rigby et al., Paludrine in the Treatment of Malaria, British medical journal, vol.1, pp.903-905, 1946.

J. D. Maguire, I. W. Sumawinata, S. Masbar, B. Laksana, P. Prodjodipuro et al., Chloroquine-resistant Plasmodium malariae in south Sumatra, vol.360, pp.58-60, 2002.

M. Malmberg, B. Ngasala, P. E. Ferreira, E. Larsson, I. Jovel et al., Temporal trends of molecular markers associated with artemether-lumefantrine tolerance/resistance in Bagamoyo district, Tanzania. Malaria journal, vol.12, p.103, 2013.

R. E. Martin, A. S. Butterworth, D. L. Gardiner, K. Kirk, J. S. Mccarthy et al., Saquinavir inhibits the malaria parasite's chloroquine resistance transporter, Antimicrobial agents and chemotherapy, vol.56, pp.2283-2289, 2012.

R. E. Martin, R. V. Marchetti, A. I. Cowan, S. M. Howitt, S. Broer et al., , 2009.

, Chloroquine transport via the malaria parasite's chloroquine resistance transporter, Science, vol.325, pp.1680-1682

S. K. Martin, A. M. Oduola, and W. K. Milhous, Reversal of chloroquine resistance in Plasmodium falciparum by verapamil, Science, vol.235, pp.899-901, 1987.

W. F. Mbacham, M. S. Evehe, P. M. Netongo, I. A. Ateh, P. N. Mimche et al., Efficacy of amodiaquine, sulphadoxine-pyrimethamine and their combination for the treatment of uncomplicated Plasmodium falciparum malaria in children in Cameroon at the time of policy change to artemisinin-based combination therapy, Malaria journal, vol.9, p.34, 2010.

A. Mbengue, S. Bhattacharjee, T. Pandharkar, H. Liu, G. Estiu et al., A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria, Nature, vol.520, pp.683-687, 2015.

D. Menard, N. Khim, J. Beghain, A. A. Adegnika, M. Shafiul-alam et al., A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms, vol.374, pp.2453-2464, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01336483

S. Menard, I. Morlais, R. Tahar, C. Sayang, P. I. Mayengue et al., Molecular monitoring of Plasmodium falciparum drug susceptibility at the time of the introduction of artemisinin-based combination therapy in Yaounde, Cameroon: implications for the future, Malaria journal, vol.11, p.113, 2012.

S. R. Meshnick, Is haemozoin a target for antimalarial drugs? Annals of tropical medicine and parasitology 90, pp.367-372, 1996.

S. R. Meshnick, Artemisinin: mechanisms of action, resistance and toxicity, International journal for parasitology, vol.32, pp.1655-1660, 2002.

S. R. Meshnick, T. E. Taylor, and S. Kamchonwongpaisan, Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy, Microbiological reviews, vol.60, pp.301-315, 1996.

S. Mharakurwa, T. Kumwenda, M. A. Mkulama, M. Musapa, S. Chishimba et al., Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.18796-18801, 2011.

S. Mharakurwa, S. L. Mutambu, R. Mudyiradima, T. Chimbadzwa, S. K. Chandiwana et al., Association of house spraying with suppressed levels of drug resistance in Zimbabwe, Malaria journal, vol.3, p.35, 2004.

S. Mharakurwa, M. Sialumano, K. Liu, A. Scott, and P. Thuma, Selection for chloroquine-sensitive Plasmodium falciparum by wild Anopheles arabiensis in Southern Zambia, Malaria journal, vol.12, p.453, 2013.

T. Mita, A. Kaneko, J. K. Lum, B. Bwijo, M. Takechi et al., Recovery of chloroquine sensitivity and low prevalence of the Plasmodium falciparum chloroquine resistance transporter gene mutation K76T following the discontinuance of chloroquine use in Malawi, The American journal of tropical medicine and hygiene, vol.68, pp.413-415, 2003.

T. Mita, K. Tanabe, and K. Kita, Spread and evolution of Plasmodium falciparum drug resistance, Parasitology international, vol.58, pp.201-209, 2009.

T. Mita, M. Venkatesan, J. Ohashi, R. Culleton, N. Takahashi et al., Limited geographical origin and global spread of sulfadoxine-resistant dhps alleles in Plasmodium falciparum populations, The Journal of infectious diseases, vol.204, pp.1980-1988, 2011.

F. P. Mockenhaupt, J. May, Y. Bergqvist, O. G. Ademowo, P. E. Olumese et al., Concentrations of chloroquine and malaria parasites in blood in Nigerian children, Antimicrobial agents and chemotherapy, vol.44, pp.835-839, 2000.

S. Mok, E. A. Ashley, P. E. Ferreira, L. Zhu, Z. Lin et al., Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance, Science, vol.347, pp.431-435, 2015.

C. A. Morris, S. Duparc, I. Borghini-fuhrer, D. Jung, C. S. Shin et al., Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration, Malaria journal, vol.10, p.263, 2011.

M. Mushtaque and S. , Reemergence of chloroquine (CQ) analogs as multitargeting antimalarial agents: a review, Eur J Med Chem, vol.90, pp.280-295, 2015.

L. Mwai, E. Ochong, A. Abdirahman, S. M. Kiara, S. Ward et al., Chloroquine resistance before and after its withdrawal in Kenya, Malaria journal, vol.8, p.106, 2009.

I. Naidoo and C. Roper, Mapping 'partially resistant', 'fully resistant', and 'super resistant' malaria, Trends in parasitology, vol.29, pp.505-515, 2013.

C. I. Newbold, D. B. Boyle, C. C. Smith, and K. N. Brown, Stage specific protein and nucleic acid synthesis during the asexual cycle of the rodent malaria Plasmodium chabaudi, Molecular and biochemical parasitology, vol.5, pp.33-44, 1982.

G. L. Nixon, C. Pidathala, A. E. Shone, T. Antoine, N. Fisher et al., Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era, Future Med Chem, vol.5, pp.1573-1591, 2013.

S. Nkhoma, S. Nair, M. Mukaka, M. E. Molyneux, S. A. Ward et al., , 2009.

, Parasites bearing a single copy of the multi-drug resistance gene (pfmdr-1) with wild-type SNPs predominate amongst Plasmodium falciparum isolates from Malawi, Acta tropica, vol.111, pp.78-81

H. Noedl, Y. Se, K. Schaecher, B. L. Smith, D. Socheat et al., Evidence of artemisinin-resistant malaria in western Cambodia, Cambodia 1 (ARC1) Study Consortium, vol.359, pp.2619-2620, 2008.

H. Noedl, W. H. Wernsdorfer, H. Kollaritsch, S. Looareesuwan, R. S. Miller et al., Malaria drug-susceptibility testing. HRP2-based assays: current data, future perspectives, Wiener klinische Wochenschrift, vol.115, pp.23-27, 2003.

T. Nomura, J. M. Carlton, J. K. Baird, H. A. Del-portillo, D. J. Fryauff et al., Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria, The Journal of infectious diseases, vol.183, pp.1653-1661, 2001.

N. Noranate, R. Durand, A. Tall, L. Marrama, A. Spiegel et al., Rapid dissemination of Plasmodium falciparum drug resistance despite strictly controlled antimalarial use, PloS one, vol.2, p.139, 2007.

F. Nosten, F. Ter-kuile, T. Chongsuphajaisiddhi, C. Luxemburger, H. K. Webster et al., Mefloquine-resistant falciparum malaria on the Thai-Burmese border, vol.337, pp.1140-1143, 1991.

S. E. Nsango, L. Abate, M. Thoma, J. Pompon, M. Fraiture et al., Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae, International journal for parasitology, vol.42, pp.589-595, 2012.

P. M. O'neill, P. G. Bray, S. R. Hawley, S. A. Ward, and B. K. Park, 4Aminoquinolines-past, present, and future: a chemical perspective, Pharmacology & therapeutics, vol.77, pp.29-58, 1998.

M. C. Oguike, C. O. Falade, E. Shu, I. G. Enato, I. Watila et al., Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V, International journal for parasitology Drugs and drug resistance, vol.6, pp.220-229, 2016.

L. Pang, N. Limsomwong, and P. Singharaj, Prophylactic treatment of vivax and falciparum malaria with low-dose doxycycline, The Journal of infectious diseases, vol.158, pp.1124-1127, 1988.

D. Payne, Spread of chloroquine resistance in Plasmodium falciparum, Parasitology today, vol.3, pp.241-246, 1987.

C. L. Peatey, M. Chavchich, N. Chen, K. J. Gresty, K. A. Gray et al., Mitochondrial Membrane Potential in a Small Subset of ArtemisininInduced Dormant Plasmodium falciparum Parasites In Vitro, The Journal of infectious diseases, vol.212, pp.426-434, 2015.

J. M. Peters, N. Chen, M. Gatton, M. Korsinczky, E. V. Fowler et al., Mutations in cytochrome b resulting in atovaquone resistance are associated with loss of fitness in Plasmodium falciparum, Antimicrobial agents and chemotherapy, vol.46, pp.2435-2441, 2002.

D. S. Peterson, D. Walliker, and T. E. Wellems, Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria, Proceedings of the National Academy of Sciences of the United States of America, vol.85, pp.9114-9118, 1988.

A. P. Phyo, S. Nkhoma, K. Stepniewska, E. A. Ashley, S. Nair et al., Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study, Lancet, vol.379, pp.1960-1966, 2012.

C. V. Plowe, J. F. Cortese, A. Djimde, O. C. Nwanyanwu, W. M. Watkins et al., Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance, The Journal of infectious diseases, vol.176, pp.1590-1596, 1997.

C. V. Plowe, A. Djimde, T. E. Wellems, S. Diop, B. Kouriba et al., Community pyrimethamine-sulfadoxine use and prevalence of resistant Plasmodium falciparum genotypes in Mali: a model for deterring resistance, The American journal of tropical medicine and hygiene, vol.55, pp.467-471, 1996.

C. V. Plowe, J. G. Kublin, and O. K. Doumbo, P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: epidemiology and role in clinical resistance to antifolates, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, vol.1, pp.389-396, 1998.

C. V. Plowe and T. E. Wellems, Molecular approaches to the spreading problem of drug resistant malaria, Adv Exp Med Biol, vol.390, pp.197-209, 1995.

R. N. Price, A. C. Uhlemann, A. Brockman, R. Mcgready, E. Ashley et al., Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number, vol.364, pp.438-447, 2004.

D. K. Raj, J. Mu, H. Jiang, J. Kabat, S. Singh et al., Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione, The Journal of biological chemistry, vol.284, pp.7687-7696, 2009.

M. B. Reed, K. J. Saliba, S. R. Caruana, K. Kirk, and A. F. Cowman, Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum, Nature, vol.403, pp.906-909, 2000.

K. H. Rieckmann, D. R. Davis, and D. C. Hutton, Plasmodium vivax resistance to chloroquine?, Lancet, vol.2, pp.1183-1184, 1989.

P. Rohrbach, C. P. Sanchez, K. Hayton, O. Friedrich, J. Patel et al., Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum, The EMBO journal, vol.25, pp.3000-3011, 2006.

P. J. Rosenthal, J. H. Mckerrow, M. Aikawa, H. Nagasawa, and J. H. Leech, A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum, The Journal of clinical investigation, vol.82, pp.1560-1566, 1988.

T. K. Ruebush, J. Zegarra, J. Cairo, E. M. Andersen, M. Green et al., Chloroquine-resistant Plasmodium vivax malaria in Peru, The American journal of tropical medicine and hygiene, vol.69, pp.548-552, 2003.

J. M. Sa and O. Twu, Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type, Malaria journal, vol.9, p.374, 2010.

J. M. Sa, O. Twu, K. Hayton, S. Reyes, M. P. Fay et al., , 2009.

, Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.18883-18889

C. P. Sanchez, A. Dave, W. D. Stein, and M. Lanzer, Transporters as mediators of drug resistance in Plasmodium falciparum, International journal for parasitology, vol.40, pp.1109-1118, 2010.

C. P. Sanchez, A. Rotmann, W. D. Stein, and M. Lanzer, Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum, Molecular microbiology, vol.70, pp.786-798, 2008.

C. P. Sanchez, W. D. Stein, and M. Lanzer, Is PfCRT a channel or a carrier? Two competing models explaining chloroquine resistance in Plasmodium falciparum, Trends in parasitology, vol.23, pp.332-339, 2007.

C. Sayang, M. Gausseres, N. Vernazza-licht, D. Malvy, D. Bley et al., Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in urban health facilities in, Malaria journal, vol.8, p.176, 2009.
URL : https://hal.archives-ouvertes.fr/halshs-00473209

B. Schwobel, M. Alifrangis, A. Salanti, J. , and T. , Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker, Malaria journal, vol.2, p.5, 2003.

D. R. Seaton, L. , and E. M. , Acquired resistance to proguanil in Plasmodium vivax, Lancet, vol.1, p.394, 1949.
DOI : 10.1016/s0140-6736(49)90706-0

M. W. Service, Mosquito (Diptera: Culicidae) dispersal-the long and short of it, Journal of medical entomology, vol.34, pp.579-588, 1997.

M. Shah, S. Kariuki, J. Vanden-eng, A. J. Blackstock, K. Garner et al., Effect of transmission reduction by insecticide-treated bednets (ITNs) on antimalarial drug resistance in western Kenya, PloS one, vol.6, 2011.

P. Sharma, K. Wollenberg, M. Sellers, K. Zainabadi, K. Galinsky et al., An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake, The Journal of biological chemistry, vol.288, pp.19429-19440, 2013.
DOI : 10.1074/jbc.m113.468371

URL : http://www.jbc.org/content/288/27/19429.full.pdf

I. W. Sherman, Amino acid metabolism and protein synthesis in malarial parasites, Bulletin of the World Health Organization, vol.55, pp.265-276, 1977.

I. W. Sherman, Biochemistry of Plasmodium (malarial parasites), Microbiological reviews, vol.43, pp.453-495, 1979.

I. W. Sherman and I. P. Ting, Carbon dioxide fixation in malaria (Plasmodium iophurae), Nature, vol.212, pp.1387-1388, 1966.

A. B. Sidhu, Q. Sun, L. J. Nkrumah, M. W. Dunne, J. C. Sacchettini et al., , 2007.

, In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin, The Journal of biological chemistry, vol.282, pp.2494-2504

A. B. Sidhu, A. C. Uhlemann, S. G. Valderramos, J. C. Valderramos, S. Krishna et al., Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin, The Journal of infectious diseases, vol.194, pp.528-535, 2006.

J. E. Siregar, G. Kurisu, T. Kobayashi, M. Matsuzaki, K. Sakamoto et al., Direct evidence for the atovaquone action on the Plasmodium cytochrome bc1 complex, Parasitology international, vol.64, pp.295-300, 2015.

J. E. Siregar, D. Syafruddin, H. Matsuoka, K. Kita, and S. Marzuki, Mutation underlying resistance of Plasmodium berghei to atovaquone in the quinone binding domain 2 (Qo(2)) of the cytochrome b gene, Parasitology international, vol.57, pp.229-232, 2008.

C. Sisowath, P. E. Ferreira, L. Y. Bustamante, S. Dahlstrom, A. Martensson et al., The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Tropical medicine & international health, TM & IH, vol.12, pp.736-742, 2007.

T. G. Smith, K. Ayi, L. Serghides, C. D. Mcallister, and K. C. Kain, Innate immunity to malaria caused by Plasmodium falciparum, Clin Invest Med, vol.25, pp.262-272, 2002.

G. Snounou and H. P. Beck, The use of PCR genotyping in the assessment of recrudescence or reinfection after antimalarial drug treatment, Parasitology today, vol.14, pp.462-467, 1998.

J. Soto, J. Toledo, P. Gutierrez, M. Luzz, N. Llinas et al., Plasmodium vivax clinically resistant to chloroquine in Colombia, The American journal of tropical medicine and hygiene, vol.65, pp.90-93, 2001.

M. D. Spring, J. T. Lin, J. E. Manning, P. Vanachayangkul, S. Somethy et al., Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study, The Lancet Infectious diseases, vol.15, pp.683-691, 2015.

B. St-laurent, B. Miller, T. A. Burton, C. Amaratunga, S. Men et al., Artemisinin-resistant Plasmodium falciparum clinical isolates can infect diverse mosquito vectors of Southeast Asia and Africa, Nat Commun, vol.6, p.8614, 2015.

J. Straimer, N. F. Gnadig, B. Witkowski, C. Amaratunga, V. Duru et al., Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates, Science, vol.347, pp.428-431, 2015.

X. Su, L. A. Kirkman, H. Fujioka, and T. E. Wellems, Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa, Cell, vol.91, pp.593-603, 1997.

C. J. Sutherland, H. Fifer, R. J. Pearce, F. Bin-reza, M. Nicholas et al., Novel pfdhps haplotypes among imported cases of Plasmodium falciparum malaria in the United Kingdom, Antimicrobial agents and chemotherapy, vol.53, pp.3405-3410, 2009.

C. J. Sutherland, M. Laundy, N. Price, M. Burke, Q. L. Fivelman et al., Mutations in the Plasmodium falciparum cytochrome b gene are associated with delayed parasite recrudescence in malaria patients treated with atovaquoneproguanil, Malaria journal, vol.7, p.240, 2008.

D. Syafruddin, J. E. Siregar, and S. Marzuki, Mutations in the cytochrome b gene of Plasmodium berghei conferring resistance to atovaquone, Molecular and biochemical parasitology, vol.104, pp.185-194, 1999.

S. Takala-harrison, T. G. Clark, C. G. Jacob, M. P. Cummings, O. Miotto et al., Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.240-245, 2013.

S. M. Taylor, C. M. Parobek, D. K. Deconti, K. Kayentao, S. O. Coulibaly et al., Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study, vol.211, pp.680-688, 2015.

M. T. Tchioffo, L. Abate, A. Boissiere, S. E. Nsango, G. Gimonneau et al., An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, vol.43, pp.22-30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02003695

P. Teja-isavadharm, F. Nosten, D. E. Kyle, C. Luxemburger, T. Kuile et al., Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay, Br J Clin Pharmacol, vol.42, pp.599-604, 1996.

M. C. Thomson, S. J. Connor, M. L. Quinones, M. Jawara, J. Todd et al., Movement of Anopheles gambiae s.l. malaria vectors between villages in The Gambia, Med Vet Entomol, vol.9, pp.413-419, 1995.

M. Torrentino-madamet, B. Fall, N. Benoit, C. Camara, R. Amalvict et al., Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, vol.13, p.472, 2014.

J. F. Trape, A. Tall, C. Sokhna, A. B. Ly, N. Diagne et al., The rise and fall of malaria in a West African rural community, Dielmo, Senegal, from 1990 to 2012: a 22 year longitudinal study, The Lancet Infectious diseases, vol.14, pp.476-488, 2014.

C. A. Trieber, N. Burkhardt, K. H. Nierhaus, T. , and D. E. , Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent, Biological chemistry, vol.379, pp.847-855, 1998.

T. Triglia and A. F. Cowman, Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum, Proceedings of the National Academy of Sciences of the United States of America, vol.91, pp.7149-7153, 1994.

T. Triglia and A. F. Cowman, The mechanism of resistance to sulfa drugs in Plasmodium falciparum, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, vol.2, pp.15-19, 1999.

T. Triglia, S. J. Foote, D. J. Kemp, and A. F. Cowman, Amplification of the multidrug resistance gene pfmdr1 in Plasmodium falciparum has arisen as multiple independent events, Molecular and cellular biology, vol.11, pp.5244-5250, 1991.

P. Tumwebaze, M. D. Conrad, A. Walakira, N. Leclair, O. Byaruhanga et al., Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from ugandan children, Antimicrobial agents and chemotherapy, vol.59, pp.3018-3030, 2015.

J. Ursing, P. E. Kofoed, L. Rombo, G. , and J. P. , No pfmdr1 amplifications in samples from Guinea-Bissau and Liberia collected between 1981 and 2004, The Journal of infectious diseases, vol.194, pp.718-719, 2006.

H. H. Van-es, S. Karcz, F. Chu, A. F. Cowman, S. Vidal et al., Expression of the plasmodial pfmdr1 gene in mammalian cells is associated with increased susceptibility to chloroquine, Molecular and cellular biology, vol.14, pp.2419-2428, 1994.

M. Venkatesan, N. B. Gadalla, K. Stepniewska, P. Dahal, C. Nsanzabana et al., Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine, The American journal of tropical medicine and hygiene, vol.91, pp.833-843, 2014.

J. Verdrager, Epidemiology of the emergence and spread of drug-resistant falciparum malaria in South-East Asia and Australasia, J Trop Med Hyg, vol.89, pp.277-289, 1986.

S. Vinayak, M. T. Alam, T. Mixson-hayden, A. M. Mccollum, R. Sem et al., Origin and evolution of sulfadoxine resistant Plasmodium falciparum, PLoS pathogens, vol.6, 2010.

A. J. Walker and F. J. Lopez-antunano, Response to drugs of South American strains of Plasmodium falciparum, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.62, pp.654-667, 1968.

M. R. Wallace, T. W. Sharp, B. Smoak, C. Iriye, P. Rozmajzl et al., Malaria among United States troops in Somalia, The American journal of medicine, vol.100, pp.49-55, 1996.

P. Wang, C. S. Lee, R. Bayoumi, A. Djimde, O. Doumbo et al., Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins, Molecular and biochemical parasitology, vol.89, pp.161-177, 1997.

S. A. Ward, Mechanisms of chloroquine resistance in malarial chemotherapy, Trends Pharmacol Sci, vol.9, pp.241-246, 1988.

D. C. Warhurst, J. C. Craig, and I. S. Adagu, Lysosomes and drug resistance in malaria, Lancet, vol.360, pp.1527-1529, 2002.

G. Watt, G. W. Long, M. Grogl, M. , and S. K. , Reversal of drug-resistant falciparum malaria by calcium antagonists: potential for host cell toxicity, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.84, pp.187-190, 1990.

T. N. Wells, R. Hooft-van-huijsduijnen, and W. C. Van-voorhis, Malaria medicines: a glass half full?, Nat Rev Drug Discov, vol.14, pp.424-442, 2015.

W. H. Wernsdorfer, Epidemiology of drug resistance in malaria, Acta tropica, vol.56, pp.143-156, 1994.

N. J. White, Assessment of the pharmacodynamic properties of antimalarial drugs in vivo, Antimicrobial agents and chemotherapy, vol.41, pp.1413-1422, 1997.

N. J. White, Antimalarial drug resistance, The Journal of clinical investigation, vol.113, pp.1084-1092, 2004.

N. J. White, Qinghaosu (artemisinin): the price of success, Science, vol.320, pp.330-334, 2008.

, Susceptibility of Plasmodium falciparum to antimalarial drugs: report on global monitoring, 1996.

, Methods for surveillance of antimalarial drug efficacy, WHO, 2009.

, Guidelines for the treatment of malaria, WHO, 2010.

, WHO Policy recommendation on intermittent preventive treatment during infancy with sulphadoxine-pyrimethamine (IPTi-SP) for Plasmodium falciparum malaria control in Africa, WHO, 2010.

, Intermittent preventive treatment for infants using sulfadoxinepyrimethamine (SP-IPTi) for malaria control in Africa: IMPLEMENTATION FIELD GUIDE, 2011.

, Information Exchange System Drug Alert No. 130-Falsified batches of Coartem recently circulating in Cameroon, WHO, 2013.

, Global Malaria Programme. Status report on artemisinin resistance, 2014.

, WHO, 2014.

, Status report on artemisinin and ACT resistance, 2015.

, Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of eighth biannual meeting, Malaria journal, vol.15, 2015.

O. Wichmann, T. A. Eggelte, S. Gellert, M. E. Osman, F. Mylius et al., High residual chloroquine blood levels in African children with severe malaria seeking healthcare, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.101, pp.637-642, 2007.

B. Witkowski, C. Amaratunga, N. Khim, S. Sreng, P. Chim et al., Novel phenotypic assays for the detection of artemisininresistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies, The Lancet Infectious diseases, vol.13, pp.1043-1049, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00863935

B. Witkowski, A. Berry, and F. Benoit-vical, Resistance to antimalarial compounds: methods and applications, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, vol.12, pp.42-50, 2009.

B. Witkowski, V. Duru, N. Khim, L. S. Ross, B. Saintpierre et al., A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01400955

C. Wongsrichanalai and S. R. Meshnick, Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border, Emerging infectious diseases, vol.14, pp.716-719, 2008.

C. Wongsrichanalai, A. L. Pickard, W. H. Wernsdorfer, and S. R. Meshnick, Epidemiology of drug-resistant malaria, The Lancet Infectious diseases, vol.2, pp.209-218, 2002.

C. J. Woodrow, K. , and S. , Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance, Cell Mol Life Sci, vol.63, pp.1586-1596, 2006.

J. C. Wootton, X. Feng, M. T. Ferdig, R. A. Cooper, J. Mu et al., Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum, Nature, vol.418, pp.320-323, 2002.

C. W. Wright, J. Addae-kyereme, A. G. Breen, J. E. Brown, M. F. Cox et al., Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents, Journal of medicinal chemistry, vol.44, pp.3187-3194, 2001.

W. M. Wu, Y. L. Chen, Z. Zhai, S. H. Xiao, and Y. L. Wu, Study on the mechanism of action of artemether against schistosomes: the identification of cysteine adducts of both carboncentred free radicals derived from artemether, Bioorganic & medicinal chemistry letters, vol.13, pp.1645-1647, 2003.

Y. Wu, How might qinghaosu (artemisinin) and related compounds kill the intraerythrocytic malaria parasite? A chemist's view, Accounts of chemical research, vol.35, pp.255-259, 2002.

Y. Z. Yang, W. Asawamahasakda, and S. R. Meshnick, Alkylation of human albumin by the antimalarial artemisinin, Biochemical pharmacology, vol.46, pp.336-339, 1993.

Y. Z. Yang, B. Little, and S. R. Meshnick, Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure, Biochemical pharmacology, vol.48, pp.569-573, 1994.

W. Yavo, A. Konate, F. K. Kassi, V. Djohan, E. K. Angora et al., Efficacy and Safety of Artesunate-Amodiaquine versus Artemether-Lumefantrine in the Treatment of Uncomplicated Plasmodium falciparum Malaria in Sentinel Sites across Cote d'Ivoire. Malaria research and treatment, p.878132, 2015.

E. Yeh and J. L. Derisi, Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum, PLoS Biol, vol.9, 2011.

W. Yorke and J. Macfie, Certain observations on malaria made during treatment of general paralysis, Trans R Soc Trop Med Hyg, vol.18, pp.13-33, 1924.

Y. Yuthavong, Basis for antifolate action and resistance in malaria. Microbes and infection, Institut Pasteur, vol.4, pp.175-182, 2002.

J. Zhang, A detailed chronological record of Project 523 and the discovery and development of qinghaosu (artemisinin), vol.193, 2005.

S. Zhang, G. , and G. S. , Heme activates artemisinin more efficiently than hemin, inorganic iron, or hemoglobin, Bioorganic & medicinal chemistry, vol.16, pp.7853-7861, 2008.

Z. Zhou, S. M. Griffing, A. M. De-oliveira, A. M. Mccollum, W. M. Quezada et al., Decline in sulfadoxine-pyrimethamine-resistant alleles after change in drug policy in the Amazon region of Peru, Antimicrobial agents and chemotherapy, vol.52, pp.739-741, 2008.

J. Zwang, G. Dorsey, A. Djimde, C. Karema, A. Martensson et al., Clinical tolerability of artesunate-amodiaquine versus comparator treatments for uncomplicated falciparum malaria: an individual-patient analysis of eight randomized controlled trials in sub-Saharan Africa, Malaria journal, vol.11, p.260, 2012.