D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, The calpain system, Physiol Rev, vol.83, pp.731-801, 2003.

J. Peltier, A. Bellocq, J. Perez, S. Doublier, Y. C. Dubois et al., Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice, J Am Soc Nephrol, vol.17, pp.3415-3423, 2006.

L. Zafrani, G. Gerotziafas, C. Byrnes, X. Hu, J. Perez et al., Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release, Am J Respir Crit Care Med, vol.185, pp.744-755, 2012.

F. Wan, E. Letavernier, L. Saux, C. J. Houssaini, A. Abid et al.,

J. L. Dubois-rande, L. Baud, S. Adnot, G. Derumeaux, and B. Gellen, Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation, Am J Physiol Heart Circ Physiol, vol.11, pp.1883-1893, 2015.

B. Letavernier, L. Zafrani, D. Nassar, J. Perez, C. Levi et al., Calpains contribute to vascular repair in rapidly progressive form of glomerulonephritis: potential role of their externalization, Arterioscler Thromb Vasc Biol, vol.32, pp.335-342, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683076

Y. C. Lin, K. Brown, and U. Siebenlist, Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B, Proc Natl Acad Sci U S A, vol.92, pp.552-556, 1995.

Y. Kobayashi, K. Yamamoto, T. Saido, H. Kawasaki, J. J. Oppenheim et al., Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1 alpha, Proc Natl Acad Sci U S A, vol.14, pp.5548-5552, 1990.

P. A. Nuzzi, M. A. Senetar, and A. Huttenlocher, Asymmetric localization of calpain 2 during neutrophil chemotaxis, Mol Biol Cell, vol.18, pp.795-805, 2007.

A. Bellocq, S. Doublier, S. Suberville, J. Perez, B. Escoubet et al., Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpain-specific cleavage of Hsp 90, J Biol Chem, vol.52, pp.36891-36896, 1999.

E. Letavernier, J. Perez, A. Bellocq, L. Mesnard, A. De-castro-keller et al., Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension, Circ Res, vol.102, pp.720-728, 2008.

E. Letavernier, B. Dansou, M. Lochner, J. Perez, A. Bellocq et al., Critical role of the calpain/calpastatin balance in acute allograft rejection, Eur J Immunol, vol.41, pp.473-484, 2011.

T. Kamo, H. Akazawa, and I. Komuro, Pleiotropic Effects of Angiotensin II Receptor Signaling in Cardiovascular Homeostasis and Aging, Int Heart J, vol.56, pp.249-254, 2015.
DOI : 10.1536/ihj.14-429

M. Zatz and A. Starling, Calpains and disease, N Engl J Med, vol.352, pp.2413-2423, 2005.
DOI : 10.1056/nejmra043361

R. A. Nixon, The calpains in aging and aging-related diseases, Ageing Res Rev, vol.2, pp.407-418, 2003.
DOI : 10.1016/s1568-1637(03)00029-1

C. Franceschi and J. Campisi, Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases, J Gerontol A Biol Sci Med Sci, vol.69, pp.4-9, 2014.
DOI : 10.1093/gerona/glu057

URL : https://academic.oup.com/biomedgerontology/article-pdf/69/Suppl_1/S4/1580428/glu057.pdf

A. V. Orjalo, D. Bhaumik, B. K. Gengler, G. K. Scott, and J. Campisi, Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network, Proc Natl Acad Sci U S A, vol.106, pp.17031-17036, 2009.
DOI : 10.1073/pnas.0905299106

URL : http://www.pnas.org/content/106/40/17031.full.pdf

H. Manya, M. Inomata, T. Fujimori, N. Dohmae, Y. Sato et al., Klotho protein deficiency leads to overactivation of mu-calpain, J Biol Chem, vol.277, pp.35503-35508, 2002.
DOI : 10.1074/jbc.m206033200

URL : http://www.jbc.org/content/277/38/35503.full.pdf

F. Trinchese, &. Fa, S. Liu, H. Zhang, A. Hidalgo et al., Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease, J Clin Invest, vol.118, pp.2796-2807, 2008.

M. V. Rao, M. K. Mcbrayer, J. Campbell, A. Kumar, A. Hashim et al., Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice, J Neurosci, vol.34, pp.9222-9234, 2014.
DOI : 10.1523/jneurosci.1132-14.2014

URL : http://www.jneurosci.org/content/34/28/9222.full.pdf

R. Scalia, Y. Gong, B. Berzins, B. Freund, D. Feather et al., A novel role for calpain in the endothelial dysfunction induced by activation of angiotensin II type 1 receptor signaling, Circ Res, vol.108, pp.1102-1111, 2011.

R. 1. Goll, D. E. Thompson, V. F. Li, H. Wei, W. Cong et al., The calpain system, Physiol Rev, vol.83, pp.731-801, 2003.

A. Glading, F. Uberall, S. M. Keyse, D. A. Lauffenburger, and A. Wells, Membrane proximal ERK signaling is required for M-calpain activation downstream of epidermal growth factor receptor signaling, J Biol Chem, vol.276, pp.23341-23349, 2001.

Y. Su, Z. Cui, Z. Li, and E. R. Block, Calpain-2 regulation of VEGF-mediated angiogenesis, FASEB J, vol.20, pp.1443-51, 2006.

S. J. Franco and A. Huttenlocher, Regulating cell migration: calpains make the cut, J Cell Sci, vol.118, pp.3829-3867, 2005.

S. Dewitt and M. Hallett, Leukocyte membrane "expansion": a central mechanism for leukocyte extravasation, J Leukoc Biol, vol.81, pp.1160-1164, 2007.

M. C. Beckerle, K. Burridge, G. N. Demartino, and D. E. Croall, Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion, Cell, vol.51, pp.569-77, 1987.

Y. Han, S. Weinman, I. Boldogh, R. K. Walker, and A. R. Brasier, Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic mcalpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation, J Biol Chem, vol.274, pp.787-94, 1999.

J. Y. Youn, T. Wang, and H. Cai, An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production, Circ Res, vol.104, pp.50-59, 2009.

B. Letavernier, L. Zafrani, D. Nassar, J. Perez, and C. Levi, Calpains contribute to vascular repair in rapidly progressive form of glomerulonephritis: potential role of their externalization, Arterioscler Thromb Vasc Biol, vol.32, pp.335-377, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683076

T. Lu, Y. Xu, M. T. Mericle, and R. L. Mellgren, Participation of the conventional calpains in apoptosis, Biochim Biophys Acta, vol.1590, pp.16-26, 2002.

M. K. Squier, A. J. Sehnert, K. S. Sellins, A. M. Malkinson, and E. Takano, Calpain and calpastatin regulate neutrophil apoptosis, J Cell Physiol, vol.178, pp.311-320, 1999.

J. S. Arthur, J. S. Elce, C. Hegadorn, K. Williams, and P. A. Greer, Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division, Mol Cell Biol, vol.20, pp.4474-81, 2000.

M. Azam, S. S. Andrabi, K. E. Sahr, L. Kamath, and A. Kuliopulos, Disruption of the mouse mu-calpain gene reveals an essential role in platelet function, Mol Cell Biol, vol.21, pp.2213-2233, 2001.

P. Dutt, D. E. Croall, J. S. Arthur, T. D. Veyra, and K. Williams, ) m-Calpain is required for preimplantation embryonic development in mice, BMC Dev Biol, vol.24, p.3, 2006.

S. J. Storr, N. O. Carragher, M. C. Frame, T. Parr, and S. G. Martin, The calpain system and cancer, Nat Rev Cancer, vol.11, pp.364-74, 2011.

E. Shiba, J. I. Kambayashi, M. Sakon, T. Kawasaki, and T. Kobayashi, Ca2+-Dependent Neutral Protease (Calpain) Activity in Breast Cancer Tissue and Estrogen Receptor Status, Breast Cancer, vol.3, pp.13-17, 1996.

Y. Kimura, H. Koga, N. Araki, N. Mugita, and N. Fujita, The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas, Nat Med, vol.4, pp.915-937, 1998.

A. Lakshmikuttyamma, P. Selvakumar, R. Kanthan, S. C. Kanthan, and R. K. Sharma, Overexpression of m-calpain in human colorectal adenocarcinomas, Cancer Epidemiol Biomarkers Prev, vol.13, pp.1604-1613, 2004.

C. Braun, M. Engel, M. Seifert, B. Theisinger, and G. Seitz, Expression of calpain I messenger RNA in human renal cell carcinoma: correlation with lymph node metastasis and histological type, Int J Cancer, vol.84, pp.6-9, 1999.

D. S. Bai, Z. Dai, J. Zhou, Y. K. Liu, and S. J. Qiu, Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma, Hepatology, vol.49, pp.460-70, 2009.

D. Salehin, I. Fromberg, C. Haugk, B. Dohmen, and T. Georg, Immunhistochemical analysis for expression of calpain 1, calpain 2 and calpastatin in endometrial cancer, Anticancer Res, vol.30, pp.2837-2880, 2010.

Y. Yoshikawa, H. Mukai, F. Hino, K. Asada, and I. Kato, Isolation of two novel genes, down-regulated in gastric cancer, Jpn J Cancer Res, vol.91, pp.459-63, 2000.

R. Moreno-luna, A. Abrante, F. Esteban, M. A. González-moles, and M. Delgadorodríguez, Calpain 10 gene and laryngeal cancer: a survival analysis, Head Neck, vol.33, pp.72-78, 2011.
DOI : 10.1002/hed.21404

C. P. Frances, M. C. Conde, M. E. Saez, S. F. Diez, and C. M. Rey, Identification of a protective haplogenotype within CAPN10 gene influencing colorectal cancer susceptibility, J Gastroenterol Hepatol, vol.22, pp.2298-302, 2007.

D. Moretti, D. Bello, B. Cosci, E. Biagioli, M. Miracco et al., Novel variants of muscle calpain 3 identified in human melanoma cells: cisplatininduced changes in vitro and differential expression in melanocytic lesions, Carcinogenesis, vol.30, pp.960-967, 2009.

M. H. Kubbutat and K. H. Vousden, Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability, Mol Cell Biol, vol.17, pp.460-468, 1997.

D. A. Potter, J. S. Tirnauer, R. Janssen, D. E. Croall, and C. N. Hughes, Calpain regulates actin remodeling during cell spreading, J Cell Biol, vol.141, pp.647-62, 1998.
DOI : 10.1083/jcb.141.3.647

URL : http://jcb.rupress.org/content/141/3/647.full.pdf

R. Benetti, T. Copetti, S. Dell'orso, E. Melloni, and C. Brancolini, The calpain system is involved in the constitutive regulation of beta-catenin signaling functions, Biol Chem, vol.280, pp.22070-80, 2005.

J. Gafni, X. Cong, S. F. Chen, B. W. Gibson, and L. M. Ellerby, Calpain-1 cleaves and activates caspase-7, J Biol Chem, vol.284, pp.25441-25450, 2009.
DOI : 10.1074/jbc.m109.038174

URL : http://www.jbc.org/content/284/37/25441.full.pdf

G. Gao and Q. P. Dou, N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death, J Cell Biochem, vol.80, pp.53-72, 2000.

S. Hirai, H. Kawasaki, M. Yaniv, and K. Suzuki, Degradation of transcription factors, c-Jun and c-Fos, by calpain, FEBS Lett, vol.287, pp.57-61, 1991.

M. J. Kim, D. G. Jo, G. S. Hong, B. J. Kim, and M. Lai, Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death, Proc Natl Acad Sci U S A, vol.99, pp.9870-9875, 2002.

B. M. Polster, G. Basañez, A. Etxebarria, J. M. Hardwick, and D. G. Nicholls, Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria, J Biol Chem, vol.280, pp.6447-54, 2005.

F. Demarchi, C. Bertoli, T. Copetti, I. Tanida, and C. Brancolini, Calpain is required for macroautophagy in mammalian cells, J Cell Biol, vol.175, pp.595-605, 2006.

E. Letavernier, B. Dansou, M. Lochner, J. Perez, and A. Bellocq, Critical role of the calpain/calpastatin balance in acute allograft rejection, Eur J Immunol, vol.41, pp.473-84, 2011.

J. Peltier, A. Bellocq, J. Perez, S. Doublier, and Y. C. Dubois, Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice, J Am Soc Nephrol, vol.17, pp.3415-3438, 2006.

E. Letavernier, J. Perez, A. Bellocq, L. Mesnard, and A. De-castro-keller, Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension, Circ Res, vol.102, pp.720-728, 2008.

D. Nassar, E. Letavernier, L. Baud, S. Aractingi, and K. Khosrotehrani, Calpain activity is essential in skin wound healing and contributes to scar formation, PLoS One, vol.7, p.37084, 2012.

S. J. Storr, R. A. Mohammed, C. M. Woolston, A. R. Green, and T. Parr, Calpastatin is associated with lymphovascular invasion in breast cancer, Breast, vol.20, pp.413-421, 2011.

M. Calpastatin and . Www, , p.12

N. Fenouille, S. Grosso, S. Yunchao, D. Mary, and R. Pontier-bres, Calpain 2-dependent IkBa degradation mediates CPT-11 secondary resistance in colorectal cancer xenografts, J Pathol, vol.227, pp.118-147, 2012.

W. C. Ho, L. Pikor, Y. Gao, B. E. Elliott, and P. A. Greer, Calpain 2 regulates AktFoxO-p27(Kip1) protein signaling pathway in mammary carcinoma, J Biol Chem, vol.287, pp.15458-65, 2012.

C. Frangié, W. Zhang, J. Perez, Y. C. Dubois, and J. P. Haymann, Extracellular calpains increase tubular epithelial cell mobility. Implications for kidney repair after ischemia, J Biol Chem, vol.281, pp.26624-26656, 2006.

M. A. Lokuta, P. A. Nuzzi, and A. Huttenlocher, Calpain regulates neutrophil chemotaxis, Proc Natl Acad Sci U S A, vol.100, pp.4006-4017, 2003.

C. L. Cortesio, L. R. Boateng, T. M. Piazza, D. A. Bennin, and A. Huttenlocher, Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration, J Biol Chem, vol.286, pp.9998-10006, 2011.

A. Bellocq, S. Doublier, S. Suberville, J. Perez, and B. Escoubet, Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpain-specific cleavage of Hsp 90, J Biol Chem, vol.274, pp.36891-36897, 1999.

X. Wang, X. Song, W. Zhuo, Y. Fu, and H. Shi, The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy, Proc Natl Acad Sci U S A, vol.106, pp.21288-93, 2009.

N. Martin-orozco, P. Muranski, Y. Chung, X. O. Yang, and T. Yamazaki, T helper 17 cells promote cytotoxic T cell activation in tumor immunity, Immunity, vol.31, pp.787-98, 2009.

S. Loges, M. Mazzone, P. Hohensinner, and P. Carmeliet, Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited, Cancer Cell, vol.15, pp.167-70, 2009.

G. S. Getz, Calpain inhibition as a potential treatment of Alzheimer's disease, Am J Pathol, vol.181, pp.388-91, 2012.

M. Higuchi, N. Iwata, Y. Matsuba, J. Takano, and T. Suemoto, Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology, FASEB J, vol.26, pp.1204-1221, 2012.

L. Leloup and A. Wells, Calpains as potential anti-cancer targets, Expert Opin Ther Targets, vol.15, pp.309-332, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01740915

M. Calpastatin,

D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, The calpain system, Physiol. Rev, vol.83, pp.731-801, 2003.

K. Saito, J. S. Elce, J. E. Hamos, and R. A. Nixon, Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.2628-2632, 1993.

E. Letavernier, Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension, Circ. Res, vol.102, pp.720-728, 2008.

E. Letavernier, Critical role of the calpain/calpastatin balance in acute allograft rejection, Eur. J. Immunol, vol.41, pp.473-484, 2011.

S. D. Shumway, M. Maki, and S. Miyamoto, The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain, J. Biol. Chem, vol.274, pp.30874-30881, 1999.

Y. S. Kim, The role of calpains in ligand-induced degradation of the glucocorticoid receptor, Biochem. Biophys. Res. Commun, vol.374, pp.373-377, 2008.

S. J. Storr, N. Thompson, X. Pu, Y. Zhang, and S. G. Martin, Calpain in Breast Cancer: Role in Disease Progression and Treatment Response, Pathobiol. J. Immunopathol. Mol. Cell. Biol, vol.82, pp.133-141, 2015.

S. J. Storr, Expression of the calpain system is associated with poor clinical outcome in gastro-oesophageal adenocarcinomas, J. Gastroenterol, vol.48, pp.1213-1221, 2013.

C. Braun, Expression of calpain I messenger RNA in human renal cell carcinoma: correlation with lymph node metastasis and histological type, Int. J. Cancer, vol.84, pp.6-9, 1999.
DOI : 10.1002/(sici)1097-0215(19990219)84:1<6::aid-ijc2>3.3.co;2-k

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0215%2819990219%2984%3A1%3C6%3A%3AAID-IJC2%3E3.0.CO%3B2-T

C. Zhang, Prognostic significance of Capn4 overexpression in intrahepatic cholangiocarcinoma, PloS One, vol.8, p.54619, 2013.
DOI : 10.1371/journal.pone.0054619

URL : https://doi.org/10.1371/journal.pone.0054619

A. Huttenlocher, Regulation of cell migration by the calcium-dependent protease calpain, J. Biol. Chem, vol.272, pp.32719-32722, 1997.

L. Liu, D. Xing, and W. R. Chen, Micro-calpain regulates caspase-dependent and apoptosis inducing factor-mediated caspase-independent apoptotic pathways in cisplatin-induced apoptosis, Int. J. Cancer, vol.125, pp.2757-2766, 2009.
DOI : 10.1002/ijc.24626

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.24626

X. Zheng, Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.2560-2565, 2014.

Q. Raimbourg, The calpain/calpastatin system has opposing roles in growth and metastatic dissemination of melanoma, PloS One, vol.8, p.60469, 2013.

Z. Szomor, Externalization of calpain (calcium-dependent neutral cysteine proteinase) in human arthritic cartilage, Clin. Exp. Rheumatol, vol.17, pp.569-574, 1999.

B. Letavernier, Calpains contribute to vascular repair in rapidly progressive form of glomerulonephritis: potential role of their externalization, Arterioscler. Thromb. Vasc. Biol, vol.32, pp.335-342, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683076

J. Perez, Calpains Released by T Lymphocytes Cleave TLR2 To Control IL-17 Expression
DOI : 10.4049/jimmunol.1500749

URL : http://www.jimmunol.org/content/196/1/168.full.pdf

, J. Immunol. Baltim. Md, pp.168-181, 2016.

D. R. Leach, M. F. Krummel, and J. P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade, Science, vol.271, pp.1734-1736, 1996.

L. Lee, M. Gupta, and S. Sahasranaman, Immune Checkpoint inhibitors: An introduction to the next-generation cancer immunotherapy, J. Clin. Pharmacol, vol.56, pp.157-169, 2016.

P. Muranski, Tumor-specific Th17-polarized cells eradicate large established melanoma, Blood, vol.112, pp.362-373, 2008.

Y. Zhang, TLR1/TLR2 agonist induces tumor regression by reciprocal modulation of effector and regulatory T cells, J. Immunol. Baltim. Md, vol.186, 1950.

M. G. Fury, A phase I clinical pharmacologic study of pralatrexate in combination with probenecid in adults with advanced solid tumors, Cancer Chemother. Pharmacol, vol.57, pp.671-677, 2006.

D. Campos-arroyo, J. C. Martínez-lazcano, and J. Melendez-zajgla, Probenecid is a chemosensitizer in cancer cell lines, Cancer Chemother. Pharmacol, vol.69, pp.495-504, 2012.

X. Zhu, Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol, J. Lipid Res, vol.51, pp.3196-3206, 2010.

D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, The calpain system, Physiol. Rev, vol.83, pp.731-801, 2003.

P. Tompa, Y. Emori, H. Sorimachi, K. Suzuki, and P. Friedrich, Domain 2I of calpain is a ca2+regulated phospholipid-binding domain, Biochem. Biophys. Res. Commun, vol.280, pp.1333-1339, 2001.

A. Wendt, V. F. Thompson, and D. E. Goll, Interaction of calpastatin with calpain: a review, Biol. Chem, vol.385, pp.465-472, 2004.

E. Schád, A. Farkas, G. Jékely, P. Tompa, and P. Friedrich, A novel human small subunit of calpains, Biochem. J, vol.362, pp.383-388, 2002.

. Campdb, Calpain :: Overview. Available at, p.30, 2016.

E. Letavernier, Critical role of the calpain/calpastatin balance in acute allograft rejection, Eur. J. Immunol, vol.41, pp.473-484, 2011.

D. E. Goll, V. F. Thompson, R. G. Taylor, and T. Zalewska, Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin?, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.14, pp.549-556, 1992.

K. Suzuki and H. Sorimachi, A novel aspect of calpain activation, FEBS Lett, vol.433, pp.1-4, 1998.

M. Molinari, J. Anagli, and E. Carafoli, Ca(2+)-activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form, J. Biol. Chem, vol.269, pp.27992-27995, 1994.

T. Moldoveanu, K. Gehring, and D. R. Green, Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains, Nature, vol.456, pp.404-408, 2008.

S. Strobl, The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.588-592, 2000.

, Calpain Research Portal: Calpain Structure and Nomenclature, p.30, 2016.

H. Kitagaki, Autolysis of calpain large subunit inducing irreversible dissociation of stoichiometric heterodimer of calpain, Biosci. Biotechnol. Biochem, vol.64, pp.689-695, 2000.

T. Yoshizawa, H. Sorimachi, S. Tomioka, S. Ishiura, and K. Suzuki, Calpain dissociates into subunits in the presence of calcium ions, Biochem. Biophys. Res. Commun, vol.208, pp.376-383, 1995.

T. Yoshizawa, H. Sorimachi, S. Tomioka, S. Ishiura, and K. Suzuki, A catalytic subunit of calpain possesses full proteolytic activity, FEBS Lett, vol.358, pp.101-103, 1995.

J. L. Hood, W. H. Brooks, and T. L. Roszman, Subcellular mobility of the calpain/calpastatin network: an organelle transient, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.28, pp.850-859, 2006.

S. Gil-parrado, Subcellular localization and in vivo subunit interactions of ubiquitous mucalpain, J. Biol. Chem, vol.278, pp.16336-16346, 2003.

M. Molinari and E. Carafoli, Calpain: a cytosolic proteinase active at the membranes, J. Membr. Biol, vol.156, pp.1-8, 1997.

A. K. Chakrabarti, S. Dasgupta, R. H. Gadsden, E. L. Hogan, and N. L. Banik, Regulation of brain m calpain Ca2+ sensitivity by mixtures of membrane lipids: activation at intracellular Ca2+ level, J. Neurosci. Res, vol.44, pp.374-380, 1996.

J. Cong, D. E. Goll, A. M. Peterson, and H. P. Kapprell, The role of autolysis in activity of the Ca2+dependent proteinases (mu-calpain and m-calpain), J. Biol. Chem, vol.264, pp.10096-10103, 1989.

J. L. Hood, B. B. Logan, A. P. Sinai, W. H. Brooks, and T. L. Roszman, Association of the calpain/calpastatin network with subcellular organelles, Biochem. Biophys. Res. Commun, vol.310, pp.1200-1212, 2003.

A. Glading, P. Chang, D. A. Lauffenburger, and A. Wells, Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway, J. Biol. Chem, vol.275, pp.2390-2398, 2000.

H. Shiraha, A. Glading, J. Chou, Z. Jia, and A. Wells, Activation of m-calpain (calpain 2) by epidermal growth factor is limited by protein kinase A phosphorylation of m-calpain, Mol. Cell. Biol, vol.22, pp.2716-2727, 2002.

K. Asada, cDNA cloning of human calpastatin: sequence homology among human, pig, and rabbit calpastatins, J. Enzym. Inhib, vol.3, pp.49-56, 1989.

P. Raynaud, C. Jayat-vignoles, M. Laforêt, H. Levéziel, and V. Amarger, Four promoters direct expression of the calpastatin gene, Arch. Biochem. Biophys, vol.437, pp.69-77, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01211869

E. Takano and T. Murachi, Purification and some properties of human erythrocyte calpastatin, J. Biochem. (Tokyo), vol.92, pp.2021-2028, 1982.

J. Takano, M. Watanabe, K. Hitomi, and M. Maki, Four types of calpastatin isoforms with distinct amino-terminal sequences are specified by alternative first exons and differentially expressed in mouse tissues, J. Biochem. (Tokyo), vol.128, pp.83-92, 2000.

J. Takano, T. Kawamura, M. Murase, K. Hitomi, and M. Maki, Structure of mouse calpastatin isoforms: implications of species-common and species-specific alternative splicing, Biochem. Biophys. Res. Commun, vol.260, pp.339-345, 1999.

F. Huang, Cleavage of the calpain inhibitor, calpastatin, during postmortem ageing of beef skeletal muscle, Food Chem, vol.148, pp.1-6, 2014.

M. Maki, Analysis of structure-function relationship of pig calpastatin by expression of mutated cDNAs in Escherichia coli, J. Biol. Chem, vol.263, pp.10254-10261, 1988.

P. Tompa, Z. Mucsi, G. Orosz, and P. Friedrich, Calpastatin subdomains A and C are activators of calpain, J. Biol. Chem, vol.277, pp.9022-9026, 2002.

F. Salamino, Modulation of rat brain calpastatin efficiency by post-translational modifications, FEBS Lett, vol.412, pp.433-438, 1997.

S. D. Shumway, M. Maki, and S. Miyamoto, The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain, J. Biol. Chem, vol.274, pp.30874-30881, 1999.

S. Carillo, PEST motifs are not required for rapid calpain-mediated proteolysis of c-fos protein, Biochem. J, vol.313, pp.245-251, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02194118

A. Glading, D. A. Lauffenburger, and A. Wells, Cutting to the chase: calpain proteases in cell motility, Trends Cell Biol, vol.12, pp.46-54, 2002.

E. Robles, A. Huttenlocher, and T. M. Gomez, Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain, Neuron, vol.38, pp.597-609, 2003.
DOI : 10.1016/s0896-6273(03)00260-5

URL : https://doi.org/10.1016/s0896-6273(03)00260-5

K. Sato and S. Kawashima, Calpain function in the modulation of signal transduction molecules, Biol. Chem, vol.382, pp.743-751, 2001.

T. B. Shea, M. J. Spencer, M. L. Beermann, C. M. Cressman, and R. A. Nixon, Calcium influx into human neuroblastoma cells induces ALZ-50 immunoreactivity: involvement of calpain-mediated hydrolysis of protein kinase C, J. Neurochem, vol.66, pp.1539-1549, 1996.

Y. Nishizuka, Studies and perspectives of protein kinase C, Science, vol.233, pp.305-312, 1986.

T. Miyazaki, Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells, Circ. Res, vol.116, pp.1170-1181, 2015.

Z. Huang, Calpastatin prevents NF-?B-mediated hyperactivation of macrophages and attenuates colitis, J. Immunol. Baltim. Md, pp.3778-3788, 2013.
DOI : 10.4049/jimmunol.1300972

URL : http://www.jimmunol.org/content/191/7/3778.full.pdf

M. Pariat, The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers, Biochem. J. 345 Pt, vol.1, pp.129-138, 2000.

M. G. Woo, K. Xue, J. Liu, H. Mcbride, and B. K. Tsang, Calpain-mediated processing of p53associated parkin-like cytoplasmic protein (PARC) affects chemosensitivity of human ovarian cancer cells by promoting p53 subcellular trafficking, J. Biol. Chem, vol.287, pp.3963-3975, 2012.

C. Gélis, A. Mavon, and P. Vicendo, The contribution of calpains in the down-regulation of Mdm2 and p53 proteolysis in reconstructed human epidermis in response to solar irradiation, Photochem. Photobiol, vol.81, pp.975-982, 2005.

Q. Qin, G. Liao, M. Baudry, and X. Bi, Role of calpain-mediated p53 truncation in semaphorin 3Ainduced axonal growth regulation, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.13883-13887, 2010.

J. S. Arthur, J. S. Elce, C. Hegadorn, K. Williams, and P. A. Greer, Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division, Mol. Cell. Biol, vol.20, pp.4474-4481, 2000.

M. Azam, Disruption of the mouse mu-calpain gene reveals an essential role in platelet function, Mol. Cell. Biol, vol.21, pp.2213-2220, 2001.

P. Dutt, m-Calpain is required for preimplantation embryonic development in mice, BMC Dev. Biol, vol.6, p.3, 2006.

S. Dedieu, Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization, Exp. Cell Res, vol.292, pp.187-200, 2004.

N. O. Carragher, V. J. Fincham, D. Riley, and M. C. Frame, Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases, J. Biol. Chem, vol.276, pp.4270-4275, 2001.

C. Wang, Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation, Neurochem. Int, vol.97, pp.15-25, 2016.

A. Serapio-palacios, F. Navarro-garcia, and . Espc,

E. Escherichia, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage, 2016.

M. Chen, Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion, J. Biol. Chem, vol.276, pp.30724-30728, 2001.

X. Li, The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis, BMC Cardiovasc. Disord, vol.13, 2013.

Y. Huang and K. K. Wang, The calpain family and human disease, Trends Mol. Med, vol.7, pp.355-362, 2001.

S. G. Boaru, NLRP3 inflammasome expression is driven by NF-?B in cultured hepatocytes

, Biochem. Biophys. Res. Commun, vol.458, pp.700-706, 2015.

S. Song, Suppression of inducible nitric oxide synthase by (-)-isoeleutherin from the bulbs of Eleutherine americana through the regulation of NF-kappaB activity, Int. Immunopharmacol, vol.9, pp.298-302, 2009.

Y. S. Kim, The role of calpains in ligand-induced degradation of the glucocorticoid receptor

, Biochem. Biophys. Res. Commun, vol.374, pp.373-377, 2008.

A. Bellocq,

, J. Société Biol, vol.193, pp.381-383, 1999.

F. J. Schaub, Fas and Fas-associated death domain protein regulate monocyte chemoattractant protein-1 expression by human smooth muscle cells through caspase-and calpaindependent release of interleukin-1alpha, Circ. Res, vol.93, pp.515-522, 2003.

O. Gross, Inflammasome activators induce interleukin-1? secretion via distinct pathways with differential requirement for the protease function of caspase-1, Immunity, vol.36, pp.388-400, 2012.

M. A. Katsnelson, L. G. Rucker, H. M. Russo, and G. R. Dubyak, K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling, J. Immunol. Baltim. Md, pp.3937-3952, 2015.

D. A. Mccarthy, R. R. Clark, T. R. Bartling, M. Trebak, and J. A. Melendez, Redox control of the senescence regulator interleukin-1? and the secretory phenotype, J. Biol. Chem, vol.288, pp.32149-32159, 2013.

M. Hayakawa, Mature interleukin-33 is produced by calpain-mediated cleavage in vivo

, Biochem. Biophys. Res. Commun, vol.387, pp.218-222, 2009.

F. Wan, Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation, Am. J. Physiol. Heart Circ. Physiol, vol.309, pp.1883-1893, 2015.

S. A. Imam, Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients

, J. Neuroimmunol, vol.190, pp.139-145, 2007.

Z. Szomor, Externalization of calpain (calcium-dependent neutral cysteine proteinase) in human arthritic cartilage, Clin. Exp. Rheumatol, vol.17, pp.569-574, 1999.

H. A. Ménard and M. El-amine, The calpain-calpastatin system in rheumatoid arthritis, Immunol. Today, vol.17, pp.545-547, 1996.

S. Yamamoto, Calcium-dependent cysteine proteinase (calpain) in human arthritic synovial joints, Arthritis Rheum, vol.35, pp.1309-1317, 1992.

K. Suzuki, Characterization of proteoglycan degradation by calpain, Biochem. J, vol.285, pp.857-862, 1992.

M. Abe, N. Oda, and Y. Sato, Cell-associated activation of latent transforming growth factor-beta by calpain, J. Cell. Physiol, vol.174, pp.186-193, 1998.

B. Letavernier, Calpains contribute to vascular repair in rapidly progressive form of glomerulonephritis: potential role of their externalization, Arterioscler. Thromb. Vasc. Biol, vol.32, pp.335-342, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683076

J. Perez, Calpains Released by T Lymphocytes Cleave TLR2 To Control IL-17 Expression, J. Immunol. Baltim. Md, pp.168-181, 2016.

A. Laurence, Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation, Immunity, vol.26, pp.371-381, 2007.

E. Letavernier and L. Baud,

, Médecine Sci. MS, vol.32, pp.435-438, 2016.

R. S. Sohal and R. Weindruch, Oxidative stress, caloric restriction, and aging, Science, vol.273, pp.59-63, 1996.

M. W?troba and D. Szukiewicz, The role of sirtuins in aging and age-related diseases, Adv. Med. Sci, vol.61, pp.52-62, 2016.

A. Brunet, Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase, Science, vol.303, 2004.

H. Tran, A. Brunet, E. C. Griffith, and M. E. Greenberg, The many forks in FOXO's road, Sci. STKE Signal Transduct. Knowl. Environ, p.5, 2003.

G. J. Kops, Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress, Nature, vol.419, pp.316-321, 2002.

A. M. Cuervo and J. F. Dice, Age-related decline in chaperone-mediated autophagy, J. Biol. Chem, vol.275, pp.31505-31513, 2000.

M. P. Liebl and T. Hoppe, It's all about talking-two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin, Am. J. Physiol. Cell Physiol, 2016.

C. Hsu, J. T. Qiu, and Y. Chan, Cellular degradation activity is maintained during aging in longliving queen bees, Biogerontology, vol.118, pp.1577-1592, 2016.

D. C. Rubinsztein, G. Mariño, and G. Kroemer, Autophagy and aging. Cell, vol.146, pp.682-695, 2011.

I. M. Conboy, Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, vol.433, pp.760-764, 2005.

R. Moresi, Age-and gender-related alterations of the number and clonogenic capacity of circulating CD34+ progenitor cells, Biogerontology, vol.6, pp.185-192, 2005.

B. M. Hall, Aging of mice is associated with p16(Ink4a)-and ?-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells, Aging, 2016.

D. J. Baker, Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, vol.530, pp.184-189, 2016.
DOI : 10.1038/nature16932

URL : http://europepmc.org/articles/pmc4845101?pdf=render

M. J. Jonker, Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs, Aging Cell, vol.12, pp.901-909, 2013.
DOI : 10.1111/acel.12118

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772962

D. Park, RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney, Oncotarget, 2016.
DOI : 10.18632/oncotarget.9152

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=9152&path%5B%5D=28002

N. E. Sharpless and C. J. Sherr, Forging a signature of in vivo senescence, Nat. Rev. Cancer, vol.15, pp.397-408, 2015.

A. Freund, A. V. Orjalo, P. Desprez, and J. Campisi, Inflammatory networks during cellular senescence: causes and consequences, Trends Mol. Med, vol.16, pp.238-246, 2010.
DOI : 10.1016/j.molmed.2010.03.003

URL : http://europepmc.org/articles/pmc2879478?pdf=render

C. Franceschi, Inflamm-aging. An evolutionary perspective on immunosenescence, Ann. N. Y. Acad. Sci, vol.908, pp.244-254, 2000.

C. Franceschi, M. Bonafè, and S. Valensin, Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space, Vaccine, vol.18, pp.1717-1720, 2000.

U. Fagiolo, Increased cytokine production in mononuclear cells of healthy elderly people, Eur. J. Immunol, vol.23, pp.2375-2378, 1993.

R. Vescovini, Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells, Exp. Gerontol, vol.39, pp.1233-1243, 2004.

R. Coppola, D. Mari, A. Lattuada, and C. Franceschi, Von Willebrand factor in Italian centenarians, Haematologica, vol.88, pp.39-43, 2003.

A. Salminen, K. Kaarniranta, and A. Kauppinen, Inflammaging: disturbed interplay between autophagy and inflammasomes, Aging, vol.4, pp.166-175, 2012.

F. Song, Y. Ma, X. Bai, and X. Chen, The Expression Changes of Inflammasomes in the Aging Rat Kidneys, J. Gerontol. A. Biol. Sci. Med. Sci, 2015.

Y. Youm, Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging, Cell Metab, vol.18, pp.519-532, 2013.

B. Vandanmagsar, The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance, Nat. Med, vol.17, pp.179-188, 2011.

H. W. Stout-delgado, Age-Dependent Susceptibility to Pulmonary Fibrosis Is Associated with NLRP3 Inflammasome Activation, Am. J. Respir. Cell Mol. Biol, vol.55, pp.252-263, 2016.

W. Du, Age-associated vascular inflammation promotes monocytosis during atherogenesis, Aging Cell, vol.15, pp.766-777, 2016.

D. A. Costello, K. Keenan, R. M. Mcmanus, A. Falvey, and M. A. Lynch, The age-related neuroinflammatory environment promotes macrophage activation, which negatively impacts synaptic function, Neurobiol. Aging, vol.43, pp.140-148, 2016.

B. Giunta, Inflammaging as a prodrome to Alzheimer's disease, J. Neuroinflammation, vol.5, p.51, 2008.

L. Troiano, Evaluation of adrenal function in aging, J. Endocrinol. Invest, vol.22, pp.74-75, 1999.

M. O. Li, Y. Y. Wan, S. Sanjabi, A. L. Robertson, and R. A. Flavell, Transforming growth factor-beta regulation of immune responses, Annu. Rev. Immunol, vol.24, pp.99-146, 2006.

G. Carrieri, The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: a study in Italian centenarians, Aging Cell, vol.3, pp.443-448, 2004.

D. Lio, Gender-specific association between-1082 IL-10 promoter polymorphism and longevity, Genes Immun, vol.3, pp.30-33, 2002.

R. A. Nixon, Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease, Ann. N. Y. Acad. Sci, vol.747, pp.77-91, 1994.

D. E. Wood, Bax cleavage is mediated by calpain during drug-induced apoptosis, Oncogene, vol.17, pp.1069-1078, 1998.

S. Gil-parrado, Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members, J. Biol. Chem, vol.277, pp.27217-27226, 2002.

J. G. Valero, µ-Calpain conversion of antiapoptotic Bfl-1 (BCL2A1) into a prodeath factor reveals two distinct alpha-helices inducing mitochondria-mediated apoptosis, PloS One, vol.7, p.38620, 2012.

C. Reimertz, D. Kögel, S. Lankiewicz, M. Poppe, and J. H. Prehn, Ca(2+)-induced inhibition of apoptosis in human SH-SY5Y neuroblastoma cells: degradation of apoptotic protease activating factor-1 (APAF-1), J. Neurochem, vol.78, pp.1256-1266, 2001.

S. J. Crocker, Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease, J. Neurosci. Off. J. Soc. Neurosci, vol.23, pp.4081-4091, 2003.

D. Games, Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models, J. Neurosci. Off. J. Soc. Neurosci, vol.34, pp.9441-9454, 2014.

P. M. Mathews, Calpain activity regulates the cell surface distribution of amyloid precursor protein. Inhibition of calpains enhances endosomal generation of beta-cleaved C-terminal APP fragments, J. Biol. Chem, vol.277, pp.36415-36424, 2002.

C. Peterson and J. E. Goldman, Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.2758-2762, 1986.

E. Adamec, P. Mohan, J. P. Vonsattel, and R. A. Nixon, Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2, Acta Neuropathol. (Berl.), vol.104, pp.92-104, 2002.

M. S. Lee, Neurotoxicity induces cleavage of p35 to p25 by calpain, Nature, vol.405, pp.360-364, 2000.

W. Noble, Cdk5 is a key factor in tau aggregation and tangle formation in vivo, Neuron, vol.38, pp.555-565, 2003.

V. Shukla, S. Skuntz, and H. C. Pant, Deregulated Cdk5 activity is involved in inducing Alzheimer's disease, Arch. Med. Res, vol.43, pp.655-662, 2012.

M. Higuchi, Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.26, pp.1204-1217, 2012.

F. Trinchese, Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease, J. Clin. Invest, vol.118, pp.2796-2807, 2008.

A. L. Nikkel, The novel calpain inhibitor A-705253 prevents stress-induced tau hyperphosphorylation in vitro and in vivo, Neuropharmacology, vol.63, pp.606-612, 2012.

A. L. Müller and N. S. Dhalla, Role of various proteases in cardiac remodeling and progression of heart failure, Heart Fail. Rev, vol.17, pp.395-409, 2012.

Y. Zhao, Calpain-Calcineurin-Nuclear Factor Signaling and the Development of Atrial Fibrillation in Patients with Valvular Heart Disease and Diabetes, J. Diabetes Res, p.4639654, 2016.

C. Patterson, A. L. Portbury, J. C. Schisler, and M. S. Willis, Tear me down: role of calpain in the development of cardiac ventricular hypertrophy, Circ. Res, vol.109, pp.453-462, 2011.

R. Ni, Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide Generation in Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic Cardiomyopathy, Diabetes, vol.65, pp.255-268, 2016.
DOI : 10.2337/db15-0963

URL : http://diabetes.diabetesjournals.org/content/65/1/255.full.pdf

E. Letavernier, The role of calpains in myocardial remodelling and heart failure, Cardiovasc. Res, vol.96, pp.38-45, 2012.

Y. Li, Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes, Diabetes, vol.60, pp.2985-2994, 2011.

T. Miyazaki, Calpain and atherosclerosis, J. Atheroscler. Thromb, vol.20, pp.228-237, 2013.
DOI : 10.5551/jat.14787

URL : https://www.jstage.jst.go.jp/article/jat/20/3/20_14787/_pdf

D. A. Howatt, Leukocyte Calpain Deficiency Reduces Angiotensin 2-Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice, Arterioscler. Thromb. Vasc. Biol, vol.36, pp.835-845, 2016.
DOI : 10.1161/atvbaha.116.307285

URL : https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.116.307285

E. Letavernier, Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin 2-induced hypertension, Circ. Res, vol.102, pp.720-728, 2008.

M. Curcio, I. L. Salazar, M. Mele, L. M. Canzoniero, and C. B. Duarte, Calpains and neuronal damage in the ischemic brain: the swiss knife in synaptic injury, Prog. Neurobiol, 2016.

T. Ye, Over-expression of calpastatin inhibits calpain activation and attenuates post-infarction myocardial remodeling, PloS One, vol.10, p.120178, 2015.

J. Thompson, Y. Hu, E. J. Lesnefsky, and Q. Chen, Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release, Am. J. Physiol. Heart Circ. Physiol, vol.310, pp.376-384, 2016.

D. Zheng, G. Wang, S. Li, G. Fan, and T. Peng, Calpain-1 induces endoplasmic reticulum stress in promoting cardiomyocyte apoptosis following hypoxia/reoxygenation, Biochim. Biophys. Acta, vol.1852, pp.882-892, 2015.

P. K. Chatterjee, Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat, Kidney Int, vol.59, pp.2073-2083, 2001.

A. A. Sabe, Calpain inhibition improves collateral-dependent perfusion in a hypercholesterolemic swine model of chronic myocardial ischemia, J. Thorac. Cardiovasc. Surg, vol.151, pp.245-252, 2016.

L. L. David, J. W. Wright, and T. R. Shearer, Calpain 2 induced insolubilization of lens beta-crystallin polypeptides may induce cataract, Biochim. Biophys. Acta, vol.1139, pp.210-216, 1992.

M. J. Kelley, L. L. David, N. Iwasaki, J. Wright, and T. R. Shearer, alpha-Crystallin chaperone activity is reduced by calpain 2 in vitro and in selenite cataract, J. Biol. Chem, vol.268, pp.18844-18849, 1993.

M. Azuma, T. R. Shearer, T. Matsumoto, L. L. David, and T. Murachi, Calpain 2 in two in vivo models of sugar cataract, Exp. Eye Res, vol.51, pp.393-401, 1990.

M. Azuma, L. L. David, and T. R. Shearer, Cysteine protease inhibitor E64 reduces the rate of formation of selenite cataract in the whole animal, Curr. Eye Res, vol.10, pp.657-666, 1991.

G. Lynch and M. Baudry, Brain spectrin, calpain and long-term changes in synaptic efficacy, Brain Res. Bull, vol.18, pp.809-815, 1987.

M. Ibrahim, R. K. Upreti, and A. M. Kidwai, Calpain from rat intestinal epithelial cells: age-dependent dynamics during cell differentiation, Mol. Cell. Biochem, vol.131, pp.49-59, 1994.

M. Benuck, M. Banay-schwartz, T. Deguzman, and A. Lajtha, Changes in brain protease activity in aging, J. Neurochem, vol.67, pp.2019-2029, 1996.

H. Manya, Klotho protein deficiency leads to overactivation of mu-calpain, J. Biol. Chem, vol.277, pp.35503-35508, 2002.

M. Averna, Age-dependent degradation of calpastatin in kidney of hypertensive rats, J. Biol. Chem, vol.276, pp.38426-38432, 2001.

A. Benigni, Disruption of the Ang 2 type 1 receptor promotes longevity in mice, J. Clin. Invest, vol.119, pp.524-530, 2009.

M. Holzenberger, IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice, Nature, vol.421, pp.182-187, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01939325

L. Leloup, L. Daury, G. Mazères, P. Cottin, and J. Brustis, Involvement of the ERK/MAP kinase signalling pathway in milli-calpain activation and myogenic cell migration, Int. J. Biochem. Cell Biol, vol.39, pp.1177-1189, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01740981

L. Leloup, G. Mazères, L. Daury, P. Cottin, and J. Brustis, Involvement of calpains in growth factormediated migration, Int. J. Biochem. Cell Biol, vol.38, pp.2049-2063, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01740983

M. Kuro-o and . Klotho, Pflüg. Arch. Eur. J. Physiol, vol.459, pp.333-343, 2010.

A. Bartke, Long-lived Klotho mice: new insights into the roles of IGF-1 and insulin in aging, Trends Endocrinol. Metab. TEM, vol.17, pp.33-35, 2006.

H. Kurosu, Suppression of aging in mice by the hormone Klotho, Science, vol.309, pp.1829-1833, 2005.

P. Lu, S. Boros, Q. Chang, R. J. Bindels, and J. G. Hoenderop, The beta-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc, vol.23, pp.3397-3402, 2008.

M. Kuro-o, Mutation of the mouse klotho gene leads to a syndrome resembling ageing, Nature, vol.390, pp.45-51, 1997.

Y. Nabeshima, Calpain 1 inhibitor BDA-410 ameliorates ?-klotho-deficiency phenotypes resembling human aging-related syndromes, Sci. Rep, vol.4, p.5847, 2014.

C. Zhang, Prognostic significance of Capn4 overexpression in intrahepatic cholangiocarcinoma, PloS One, vol.8, p.54619, 2013.

S. J. Storr, Expression of the calpain system is associated with poor clinical outcome in gastrooesophageal adenocarcinomas, J. Gastroenterol, vol.48, pp.1213-1221, 2013.

S. J. Storr, Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla, BMC Cancer, vol.12, p.511, 2012.

S. J. Storr, The calpain system is associated with survival of breast cancer patients with large but operable inflammatory and non-inflammatory tumours treated with neoadjuvant chemotherapy, Oncotarget, 2016.

C. Braun, Expression of calpain I messenger RNA in human renal cell carcinoma: correlation with lymph node metastasis and histological type, Int. J. Cancer, vol.84, pp.6-9, 1999.

Y. Kimura, The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas, Nat. Med, vol.4, pp.915-922, 1998.

K. Starska, Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med, 2016.

M. Yoshida, The calpain inhibitor calpeptin suppresses pancreatic cancer by disrupting cancerstromal interactions in a mouse xenograft model, Cancer Sci, 2016.

Z. Dai, Capn4 contributes to tumour growth and metastasis of hepatocellular carcinoma by activation of the FAK-Src signalling pathways, J. Pathol, vol.234, pp.316-328, 2014.

J. Gu, Capn4 promotes non-small cell lung cancer progression via upregulation of matrix metalloproteinase 2, Med. Oncol. Northwood Lond. Engl, vol.32, p.51, 2015.

M. Billger, M. Wallin, and J. O. Karlsson, Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and 2. Difference in sensitivity of assembled and disassembled microtubules, Cell Calcium, vol.9, pp.33-44, 1988.

D. A. Potter, Calpain Regulates Actin Remodeling during Cell Spreading, J. Cell Biol, vol.141, pp.647-662, 1998.

V. Hoskin, Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion, Mol. Biol. Cell, vol.26, pp.3464-3479, 2015.

Q. Wang, Y. Wang, G. P. Downey, S. Plotnikov, and C. A. Mcculloch, A ternary complex comprising FAK, PTP? and IP3 receptor 1 functionally engages focal adhesions and the endoplasmic reticulum to mediate IL-1-induced Ca2+ signalling in fibroblasts, Biochem. J, vol.473, pp.397-410, 2016.

S. Franco, B. Perrin, and A. Huttenlocher, Isoform specific function of calpain 2 in regulating membrane protrusion, Exp. Cell Res, vol.299, pp.179-187, 2004.

L. Postovit, Calpain is required for MMP-2 and u-PA expression in SV40 large T-antigenimmortalized cells, Biochem. Biophys. Res. Commun, vol.297, pp.294-301, 2002.

J. Petranka, G. Wright, R. A. Forbes, and E. Murphy, Elevated calcium in preneoplastic cells activates NF-kappa B and confers resistance to apoptosis, J. Biol. Chem, vol.276, pp.37102-37108, 2001.

F. Demarchi, C. Bertoli, P. A. Greer, and C. Schneider, Ceramide triggers an NF-kappaB-dependent survival pathway through calpain, Cell Death Differ, vol.12, pp.512-522, 2005.

M. Conacci-sorrell, C. Ngouenet, S. Anderson, T. Brabletz, and R. N. Eisenman, Stress-induced cleavage of Myc promotes cancer cell survival, Genes Dev, vol.28, pp.689-707, 2014.

J. Gafni, X. Cong, S. F. Chen, B. W. Gibson, and L. M. Ellerby, Calpain-1 cleaves and activates caspase

, J. Biol. Chem, vol.284, pp.25441-25449, 2009.

Y. Tan, Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis, J. Biol. Chem, vol.281, pp.16016-16024, 2006.

C. Volbracht, The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide, J. Neurochem, vol.93, pp.1280-1292, 2005.

L. Liu, D. Xing, and W. R. Chen, Micro-calpain regulates caspase-dependent and apoptosis inducing factor-mediated caspase-independent apoptotic pathways in cisplatin-induced apoptosis, Int. J. Cancer, vol.125, pp.2757-2766, 2009.

L. Cabon, BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation, Cell Death Differ, vol.19, pp.245-256, 2012.
DOI : 10.1038/cdd.2011.91

URL : https://hal.archives-ouvertes.fr/hal-00657645

G. Gao and Q. P. Dou, N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death, J. Cell. Biochem, vol.80, pp.53-72, 2000.

A. Mandic, Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis, Mol. Cell. Biol, vol.22, pp.3003-3013, 2002.
DOI : 10.1128/mcb.22.9.3003-3013.2002

URL : https://mcb.asm.org/content/22/9/3003.full.pdf

I. A. Atencio, M. Ramachandra, P. Shabram, and G. W. Demers, Calpain inhibitor 1 activates p53dependent apoptosis in tumor cell lines, Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res, vol.11, pp.247-253, 2000.

R. Benetti, The death substrate Gas2 binds m-calpain and increases susceptibility to p53dependent apoptosis, EMBO J, vol.20, pp.2702-2714, 2001.
DOI : 10.1093/emboj/20.11.2702

URL : http://emboj.embopress.org/content/20/11/2702.full.pdf

J. Goldsmith, B. Levine, and J. Debnath, Autophagy and cancer metabolism, Methods Enzymol, vol.542, pp.25-57, 2014.

A. Eisenberg-lerner and A. Kimchi, The paradox of autophagy and its implication in cancer etiology and therapy, Apoptosis Int. J. Program. Cell Death, vol.14, pp.376-391, 2009.

H. Xia, Control of basal autophagy by calpain1 mediated cleavage of ATG5, Autophagy, vol.6, pp.61-66, 2010.

S. Yousefi, Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis, Nat. Cell Biol, vol.8, pp.1124-1132, 2006.
DOI : 10.1038/ncb1482

V. Pagliarini, Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response, Cell Death Differ, vol.19, pp.1495-1504, 2012.

Q. Raimbourg, The calpain/calpastatin system has opposing roles in growth and metastatic dissemination of melanoma, PloS One, vol.8, p.60469, 2013.

X. Zheng, Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.2560-2565, 2014.

X. Mo, Suppression of NHE1 by small interfering RNA inhibits HIF-1?-induced angiogenesis in vitro via modulation of calpain activity, Microvasc. Res, vol.81, pp.160-168, 2011.

J. Youn, T. Wang, and H. Cai, An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production, Circ. Res, vol.104, pp.50-59, 2009.

, Calpain-2 regulation of VEGF-mediated angiogenesis, p.29, 2016.

K. Anuja, Prolonged inflammatory microenvironment is crucial for pro-neoplastic growth and genome instability: a detailed review, Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al, 2016.

K. Wood and J. J. Luke, Optimal Use of BRAF Targeting Therapy in the Immunotherapy Era, Curr. Oncol. Rep, vol.18, p.67, 2016.

D. R. Leach, M. F. Krummel, and J. P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade, Science, vol.271, pp.1734-1736, 1996.

T. R. Simpson, Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma, J. Exp. Med, vol.210, pp.1695-1710, 2013.

G. J. Freeman, Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med, vol.192, pp.1027-1034, 2000.

L. Lee, M. Gupta, and S. Sahasranaman, Immune Checkpoint inhibitors: An introduction to the nextgeneration cancer immunotherapy, J. Clin. Pharmacol, vol.56, pp.157-169, 2016.

F. Pagès, In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.27, pp.5944-5951, 2009.

H. Kim and H. Cantor, CD4 T-cell Subsets and Tumor Immunity: The Helpful and the Not-so-Helpful, Cancer Immunol. Res, vol.2, pp.91-98, 2014.

T. Schüler, Z. Qin, S. Ibe, N. Noben-trauth, and T. Blankenstein, T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice, J. Exp. Med, vol.189, pp.803-810, 1999.

Z. Qin and T. Blankenstein, CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells, Immunity, vol.12, pp.677-686, 2000.

T. Nishimura, Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo, J. Exp. Med, vol.190, pp.617-627, 1999.

R. I. Tepper, R. L. Coffman, and P. Leder, An eosinophil-dependent mechanism for the antitumor effect of interleukin-4, Science, vol.257, pp.548-551, 1992.

A. Ochi, MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells, J. Exp. Med, vol.209, pp.1671-1687, 2012.

T. Tatsumi, Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma, J. Exp. Med, vol.196, pp.619-628, 2002.

Y. Miyahara, Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.15505-15510, 2008.

B. Zhang, The prevalence of Th17 cells in patients with gastric cancer, Biochem. Biophys. Res. Commun, vol.374, pp.533-537, 2008.

M. Numasaki, IL-17 enhances the net angiogenic activity and in vivo growth of human nonsmall cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis, J. Immunol. Baltim. Md, vol.175, pp.6177-6189, 1950.

M. R. Young, Th17 Cells in Protection from Tumor or Promotion of Tumor Progression, J. Clin. Cell. Immunol, vol.7, p.431, 2016.

I. Kryczek, S. Wei, W. Szeliga, L. Vatan, and W. Zou, Endogenous IL-17 contributes to reduced tumor growth and metastasis, Blood, vol.114, pp.357-359, 2009.

I. Kryczek, Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments, Blood, vol.114, pp.1141-1149, 2009.

N. Martin-orozco, T helper 17 cells promote cytotoxic T cell activation in tumor immunity, Immunity, vol.31, pp.787-798, 2009.

P. Muranski, Tumor-specific Th17-polarized cells eradicate large established melanoma, Blood, vol.112, pp.362-373, 2008.
DOI : 10.1182/blood-2007-11-120998

URL : http://www.bloodjournal.org/content/112/2/362.full.pdf

S. A. Quezada, Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts, J. Exp. Med, vol.207, pp.637-650, 2010.
DOI : 10.1084/jem.20091918

URL : http://jem.rupress.org/content/207/3/637.full.pdf

M. A. Curran, Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin, J. Exp. Med, vol.210, pp.743-755, 2013.

D. Coppola, Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling, Am. J. Pathol, vol.179, pp.37-45, 2011.

C. Gu-trantien, CD4 + follicular helper T cell infiltration predicts breast cancer survival, J. Clin. Invest, vol.123, pp.2873-2892, 2013.

C. C. Preston, The ratios of CD8+ T cells to CD4+CD25+ FOXP3+ and FOXP3-T cells correlate with poor clinical outcome in human serous ovarian cancer, PloS One, vol.8, p.80063, 2013.

N. Martin-orozco, Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells, Cancer Res, vol.70, pp.9581-9590, 2010.

A. Shameli, IL-2 promotes the function of memory-like autoregulatory CD8+ T cells but suppresses their development via FoxP3+ Treg cells, Eur. J. Immunol, vol.43, pp.394-403, 2013.

T. J. Curiel, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat. Med, vol.10, pp.942-949, 2004.

J. D. Shields, I. C. Kourtis, A. A. Tomei, J. M. Roberts, and M. A. Swartz, Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21, Science, vol.328, pp.749-752, 2010.

M. A. Morse, Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines, Blood, vol.112, pp.610-618, 2008.

D. J. Powell, Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo, J. Immunol. Baltim. Md, vol.179, pp.4919-4928, 1950.

S. A. Quezada, Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma, J. Exp. Med, vol.205, pp.2125-2138, 2008.

C. Feig, Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer, Proc. Natl. Acad. Sci, vol.110, pp.20212-20217, 2013.

E. Sato, Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.18538-18543, 2005.

Y. Naito, CD8+ T Cells Infiltrated within Cancer Cell Nests as a Prognostic Factor in Human Colorectal Cancer, Cancer Res, vol.58, pp.3491-3494, 1998.

B. Li, Comprehensive analyses of tumor immunity: implications for cancer immunotherapy

, Genome Biol, vol.17, p.174, 2016.

N. L. Mani, Quantitative assessment of the spatial heterogeneity of tumor-infiltrating lymphocytes in breast cancer, Breast Cancer Res. BCR, vol.18, p.78, 2016.

J. A. Joyce and D. T. Fearon, T cell exclusion, immune privilege, and the tumor microenvironment, Science, vol.348, pp.74-80, 2015.

S. F. Ngiow, A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1, Cancer Res, vol.75, pp.3800-3811, 2015.

A. Ganesan, Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma, J. Immunol. Baltim. Md, 2009.
DOI : 10.4049/jimmunol.1301317

URL : http://www.jimmunol.org/content/191/4/2009.full.pdf

S. Amatschek, CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells, Br. J. Cancer, vol.104, pp.469-479, 2011.

P. A. Hopkins and S. Sriskandan, Mammalian Toll-like receptors: to immunity and beyond, Clin. Exp. Immunol, vol.140, pp.395-407, 2005.
DOI : 10.1111/j.1365-2249.2005.02801.x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1809390

A. A. Beg, Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses, Trends Immunol, vol.23, pp.509-512, 2002.

M. Dajon, K. Iribarren, and I. Cremer, Toll-like receptor stimulation in cancer: A pro-and anti-tumor double-edged sword, Immunobiology, 2016.

Y. Zhang, TLR1/TLR2 agonist induces tumor regression by reciprocal modulation of effector and regulatory T cells, J. Immunol. Baltim. Md, vol.186, 1950.
DOI : 10.4049/jimmunol.1002320

URL : http://www.jimmunol.org/content/186/4/1963.full.pdf

A. M. Joseph, R. Srivastava, J. Zabaleta, and E. Davila, Cross-talk between 4-1BB and TLR1-TLR2
DOI : 10.1158/2326-6066.cir-15-0173

URL : http://cancerimmunolres.aacrjournals.org/content/canimm/4/8/708.full.pdf

, Signaling in CD8+ T Cells Regulates TLR2's Costimulatory Effects, Cancer Immunol. Res, vol.4, pp.708-716, 2016.

C. Wu, S. Liu, H. Chen, K. Shen, and C. Leng, A toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population, Oncotarget, 2016.

I. S. Mauldin, TLR2/6 agonists and interferon-gamma induce human melanoma cells to produce CXCL10, Int. J. Cancer, vol.137, pp.1386-1396, 2015.
DOI : 10.1002/ijc.29515

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.29515

E. L. Lowe, Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer, PloS One, vol.5, p.13027, 2010.

J. Peltier, Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice, J. Am. Soc. Nephrol. JASN, vol.17, pp.3415-3423, 2006.
DOI : 10.1681/asn.2006050542

URL : https://jasn.asnjournals.org/content/17/12/3415.full.pdf

L. Zafrani, Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release, Am. J. Respir. Crit. Care Med, vol.185, pp.744-755, 2012.
DOI : 10.1164/rccm.201109-1686oc

URL : http://europepmc.org/articles/pmc3326423?pdf=render

K. Saito, J. S. Elce, J. E. Hamos, and R. A. Nixon, Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.2628-2632, 1993.

F. Trinchese, Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease, J. Clin. Invest, vol.118, pp.2796-2807, 2008.

M. V. Rao, Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice, J. Neurosci. Off. J. Soc. Neurosci, vol.34, pp.9222-9234, 2014.
DOI : 10.1523/jneurosci.1132-14.2014

URL : http://www.jneurosci.org/content/34/28/9222.full.pdf

R. Scalia, A novel role for calpain in the endothelial dysfunction induced by activation of angiotensin 2 type 1 receptor signaling, Circ. Res, vol.108, pp.1102-1111, 2011.

T. Kamo, H. Akazawa, and I. Komuro, Pleiotropic Effects of Angiotensin 2 Receptor Signaling in Cardiovascular Homeostasis and Aging, Int. Heart. J, vol.56, pp.249-254, 2015.

N. Basso, Protective effect of long-term angiotensin 2 inhibition, Am. J. Physiol. Heart Circ. Physiol, vol.293, pp.1351-1358, 2007.

L. Ferder, F. Inserra, L. Romano, L. Ercole, and V. Pszenny, Effects of angiotensin-converting enzyme inhibition on mitochondrial number in the aging mouse, Am. J. Physiol, vol.265, pp.15-18, 1993.

S. S. Iyer, Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation, Immunity, vol.39, pp.311-323, 2013.

A. R. Young, M. Narita, and . Sasp-reflects-senescence, EMBO Rep, vol.10, pp.228-230, 2009.

A. R. Davalos, J. Coppe, J. Campisi, and P. Desprez, Senescent cells as a source of inflammatory factors for tumor progression, Cancer Metastasis Rev, vol.29, pp.273-283, 2010.

A. Freund, C. K. Patil, and J. Campisi, p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype, EMBO J, vol.30, pp.1536-1548, 2011.

A. Salminen, A. Kauppinen, and K. Kaarniranta, Emerging role of NF-?B signaling in the induction of senescence-associated secretory phenotype (SASP), Cell. Signal, vol.24, pp.835-845, 2012.

A. S. Adler, Motif module map reveals enforcement of aging by continual NF-kappaB activity, Genes Dev, vol.21, pp.3244-3257, 2007.

G. Zhang, Hypothalamic programming of systemic ageing involving IKK-?, NF-?B and GnRH, Nature, vol.497, pp.211-216, 2013.

A. J. Wiemer, M. A. Lokuta, J. C. Surfus, S. A. Wernimont, and A. Huttenlocher, Calpain inhibition impairs TNF-alpha-mediated neutrophil adhesion, arrest and oxidative burst, Mol. Immunol, vol.47, pp.894-902, 2010.

A. M. Hussain, Q. Zhang, and A. G. Murray, Endothelial cell calpain activity facilitates lymphocyte diapedesis, Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg, vol.5, pp.2640-2648, 2005.

J. Perez, Calpains Released by T Lymphocytes Cleave TLR2 To Control IL-17 Expression, J. Immunol. Baltim. Md, pp.168-181, 2016.

R. Hardeland, Melatonin and circadian oscillators in aging-a dynamic approach to the multiply connected players, Interdiscip. Top. Gerontol, vol.40, pp.128-140, 2015.

A. Jenwitheesuk, C. Nopparat, S. Mukda, P. Wongchitrat, and P. Govitrapong, Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways, Int. J. Mol. Sci, vol.15, pp.16848-16884, 2014.

O. Froy, Circadian aspects of energy metabolism and aging, Ageing Res. Rev, vol.12, pp.931-940, 2013.

F. Demarchi, Calpain is required for macroautophagy in mammalian cells, J. Cell Biol, vol.175, pp.595-605, 2006.

F. M. Menzies, Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity, Cell Death Differ, vol.22, pp.433-444, 2015.

O. Lenoir, P. Tharaux, and T. B. Huber, Autophagy in kidney disease and aging: lessons from rodent models, Kidney Int, 2016.