L. Denis, C. Fournier, T. Fournel, C. Ducottet, and D. Jeulin, Direct extraction of the mean particle size from a digital hologram, Applied optics, vol.45, issue.5, pp.944-952, 2006.
URL : https://hal.archives-ouvertes.fr/ujm-00116991

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, Reconstruction of the rose of directions from a digital microhologram of fibres, Journal of microscopy, vol.225, issue.3, pp.283-292, 2007.

F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, Inverse-problem approach for particle digital holography : accurate location based on local optimization, J. Opt. Soc. Am. A, vol.24, issue.4, pp.1164-1171, 2007.

F. Soulez, L. Denis, É. Thiébaut, C. Fournier, and C. Goepfert, Inverse problem approach in particle digital holography : out-offield particle detection made possible, J. Opt. Soc. Am. A, vol.24, issue.12, pp.3708-3716, 2007.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, Numerical suppression of the twin image in in-line holography of a volume of micro-objects, Measurement Science and Technology, vol.19, issue.7, p.74004, 2008.
URL : https://hal.archives-ouvertes.fr/ujm-00270834

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez et al., Digital holography of particles : benefits of the 'inverse problem' approach, Measurement Science and Technology, vol.19, issue.7, p.74005, 2008.
URL : https://hal.archives-ouvertes.fr/ujm-00270818

L. Denis, F. Tupin, J. Darbon, and M. Sigelle, SAR image regularization with fast approximate discrete minimization, IEEE Trans. Image Process, vol.18, issue.7, pp.1588-1600, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00380535

L. Denis, F. Tupin, J. Darbon, and M. Sigelle, Joint regularization of phase and amplitude of InSAR data : Application to 3-D reconstruction, IEEE Trans. Geosci. Remote Sens, vol.47, issue.11, pp.3774-3785, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00404557

L. Denis, D. A. Lorenz, and D. Trede, Greedy solution of illposed problems : error bounds and exact inversion, Inverse Problems, vol.25, issue.11, p.115017, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00430075

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, Inline hologram reconstruction with sparsity constraints, Optics letters, vol.34, issue.22, pp.3475-3477, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00397994

L. Charles-alban-deledalle, F. Denis, and . Tupin, Iterative weighted maximum likelihood denoising with probabilistic patch-based weights, IEEE Trans. Image Process, vol.18, issue.12, pp.2661-2672, 2009.

C. Fournier, L. Denis, and T. Fournel, On the single point resolution of on-axis digital holography, JOSA A, vol.27, issue.8, pp.1856-1862, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00464787

L. Charles-alban-deledalle, F. Denis, and . Tupin, NL-InSAR : Nonlocal interferogram estimation, IEEE Trans. Geosci. Remote Sens, vol.49, issue.4, pp.1441-1452, 2011.

D. Chareyron, J. Marié, C. Fournier, J. Gire, N. Grosjean et al., Testing an in-line digital holography 'inverse method'for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence, New Journal of Physics, vol.14, issue.4, p.43039, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00691843

L. Charles-alban-deledalle, F. Denis, and . Tupin, How to compare noisy patches ? patch similarity beyond gaussian noise, International Journal of Computer Vision, vol.99, issue.1, pp.86-102, 2012.

M. Seifi, C. Fournier, L. Denis, D. Chareyron, and J. Marié, Three-dimensional reconstruction of particle holograms : a fast and accurate multiscale approach, JOSA A, vol.29, issue.9, pp.1808-1817, 2012.
URL : https://hal.archives-ouvertes.fr/ujm-00744235

E. Thiébaut, F. Soulez, and L. Denis, Exploiting spatial sparsity for multiwavelength imaging in optical interferometry, JOSA A, vol.30, issue.2, pp.160-170, 2013.

M. Seifi, L. Denis, and C. Fournier, Fast and accurate 3D object recognition directly from digital holograms, JOSA A, vol.30, issue.11, pp.2216-2224, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00968172

M. Seifi, C. Fournier, N. Grosjean, L. Méès, J. Marié et al., Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and "inverse problems" reconstruction approach, Optics Express, vol.21, issue.23, pp.27964-27980, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00980827

V. Tran, M. Moreaud, E. Thiébaut, L. Denis, and J. Becker, Inverse problem approach for the alignment of electron tomographic series. Oil & Gas Science and Technology-Revue d'IFP Energies nouvelles, vol.69, pp.279-291, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00992251

C. Deledalle, L. Denis, G. Poggi, F. Tupin, and L. Verdoliva, Exploiting Patch Similarity for SAR Image Processing : The nonlocal paradigm, Signal Processing Magazine, vol.31, issue.4, pp.69-78, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-00957334

C. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jager, NL-SAR : a unified Non-Local framework for resolution-preserving (Pol)(In) SAR denoising. Geoscience and Remote Sensing, IEEE Transactions on, vol.53, issue.4, pp.2021-2038, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00844118

L. Denis, E. Thiébaut, F. Soulez, J. Becker, and R. Mourya, Fast approximations of shift-variant blur, International Journal of Computer Vision, pp.1-26, 2015.
URL : https://hal.archives-ouvertes.fr/ujm-00979825

F. Momey, L. Denis, C. Burnier, E. Thiébaut, J. Becker et al., Spline driven : high accuracy projectors for tomographic reconstruction from few projections. Image Processing, IEEE Transactions on, vol.24, issue.12, pp.4715-4725, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00990015

S. Lobry, L. Denis, and F. Tupin, Multi-temporal SAR image decomposition into strong scatterers, background, and speckle, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01431646

C. Fournier, F. Jolivet, L. Denis, N. Verrier, E. Thiebaut et al., Pixel super-resolution in digital holography by regularized reconstruction, Applied optics, vol.56, issue.1, pp.69-77, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01575914

O. Flasseur, C. Fournier, N. Verrier, L. Denis, F. Jolivet et al., Self-calibration for lensless color microscopy, Applied optics, vol.56, issue.13, pp.189-199, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01577888

L. Charles-alban-deledalle, S. Denis, F. Tabti, and . Tupin, MuLoG, or How to apply Gaussian denoisers to multi-channel SAR speckle reduction ?, IEEE Transactions on Image Processing, vol.26, issue.9, pp.4389-4403, 2017.

R. Abergel, L. Denis, S. Ladjal, and F. Tupin, Subpixellic methods for sidelobes suppression and strong targets extraction in single look complex SAR images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.11, issue.3, pp.759-776, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01570857

G. Ferraioli, C. Deledalle, L. Denis, and F. Tupin, Parisar : Patch-Based Estimation and Regularized Inversion for Multibaseline SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing, vol.56, issue.3, pp.1626-1636, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01525973

F. Jolivet, F. Momey, L. Denis, L. Méès, N. Faure et al., Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology, Optics Express, vol.26, issue.7, pp.8923-8940, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01765812

O. Flasseur, L. Denis, É. Thiébaut, and M. Langlois, Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch covariances, Astronomy& Astrophysics, 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01912189

L. Denis, F. Tupin, J. Darbon, and M. Sigelle, Filtrage conjoint de la phase interférométrique et de l'amplitude en imagerie radar par champs de markov et coupes minimales, Traitement du Signal, vol.26, issue.2, pp.127-144, 2009.

L. Sylvain-lobry, W. Denis, F. Zhao, and . Tupin, Décomposition de séries temporelles d'images SAR pour la détection de changement, 2017.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, Twin-image noise reduction by phase retrieval in in-line digital holography, SPIE Optics & Photonics, pp.59140-59140, 2005.
URL : https://hal.archives-ouvertes.fr/ujm-00116996

L. Denis, T. Fournel, C. Fournier, and C. Ducottet, Cleaning digital holograms to investigate 3D particle fields, Proceedings of the 12th International Symposium on Flow Visualization, 2006.
URL : https://hal.archives-ouvertes.fr/ujm-00119204

C. Fournier, C. Goepfert, J. Marié, L. Denis, F. Soulez et al., Digital holography compared to phase doppler anemometry : study of an experimental droplet flow, Proceedings of the 12th International Symposium on Flow Visualization, 2006.
URL : https://hal.archives-ouvertes.fr/ujm-00118967

F. Soulez, L. Denis, E. Thiébaut, and C. Fournier, Inverse problem approach for particle digital holography : accurate location, Proceedings of the international congres on Physics in Signal and Image Processing, pp.152-163, 2007.
URL : https://hal.archives-ouvertes.fr/ujm-00143344

F. Soulez, E. Thiébaut, L. Denis, and C. Fournier, Inverse problem approach for particle digital holography : Field of view extrapolation and accurate location, Digital Holography and Three-Dimensional Imaging, page DWC3, 2007.
URL : https://hal.archives-ouvertes.fr/ujm-00192618

C. Fournier, J. Gire, L. Denis, E. Thiebaut, F. Soulez et al., Inverse problem approach for digital holographic particle tracking : Influence of the experimental parameters and benefits, Workshop on Digital Holographic Reconstruction and Tomography, 2007.

J. Gire, C. Ducottet, L. Denis, E. Thiébaut, and F. Soulez, Signal to noise characterization of an inverse problem-based algorithm for digital inline holography, Proceedings of the International Symposium on Flow Visualization (CDROM), 2008.
URL : https://hal.archives-ouvertes.fr/ujm-00297147

L. Denis, F. Tupin, J. Darbon, M. Sigelle, and C. Tison, SAR amplitude filtering using TV prior and its application to building delineation, Synthetic Aperture Radar (EUSAR), pp.1-4, 2008.
URL : https://hal.archives-ouvertes.fr/ujm-00282704

L. Denis, F. Tupin, J. Darbon, and M. Sigelle, A regularization approach for InSAR and optical data fusion, IEEE IGARSS, vol.2, p.97, 2008.
DOI : 10.1109/igarss.2008.4778936

URL : https://hal.archives-ouvertes.fr/ujm-00282716

L. Denis, F. Tupin, J. Darbon, and M. Sigelle, Joint filtering of SAR interferometric and amplitude data in urban areas by TV minimization, IEEE IGARSS, vol.5, p.471, 2008.
DOI : 10.1109/igarss.2008.4780131

URL : https://hal.archives-ouvertes.fr/ujm-00282722

D. Chareyron, J. L. Marié, M. Lance, J. Gire, C. Fournier et al., Digital holography measurements of lagrangian trajectories and diameters of droplets in an isotropic turbulence, 6th International Symposium on Multiphase Flow, 2009.

D. Chareyron, J. Marié, M. Lance, J. Gire, C. Fournier et al., Lagrangian measurement of droplet in homogeneous isotropic turbulence by digital in-line holography, 11th International Symposium on Gas-Liquid Two-Phase Flows, FEDSM2009. Vail (Colorado), 2009.

C. Fournier, L. Denis, and T. Fournel, Resolution in in-line digital holography, Journal of Physics : Conference Series, vol.206, p.12025, 2010.
DOI : 10.1088/1742-6596/206/1/012025

URL : https://hal.archives-ouvertes.fr/ujm-00985429

J. Aujol, E. Bratsolis, J. Darbon, L. Denis, J. Nicolas et al., A comparative review of SAR images speckle denoising methods based on functional minimization, SIAM Conference on Imaging Science, 2010.
URL : https://hal.archives-ouvertes.fr/ujm-00985397

C. Deledalle, F. Tupin, and L. Denis, A non-local approach for SAR and interferometric SAR denoising, IEEE IGARSS, pp.714-717, 2010.
DOI : 10.1109/igarss.2010.5654217

URL : https://hal.archives-ouvertes.fr/ujm-00985410

C. Deledalle, F. Tupin, and L. Denis, Polarimetric SAR estimation based on non-local means, IEEE IGARSS, pp.2515-2518, 2010.
DOI : 10.1109/igarss.2010.5653936

URL : https://hal.archives-ouvertes.fr/ujm-00985415

C. Deledalle, J. Nicolas, F. Tupin, L. Denis, R. Fallourd et al., Glacier monitoring : Correlation versus texture tracking, IEEE IGARSS, pp.513-516, 2010.
DOI : 10.1109/igarss.2010.5654212

URL : https://hal.archives-ouvertes.fr/hal-00558010

C. Deledalle, F. Tupin, and L. Denis, Poisson NL means : Unsupervised non local means for Poisson noise, IEEE ICIP, pp.801-804, 2010.
DOI : 10.1109/icip.2010.5653394

URL : https://hal.archives-ouvertes.fr/hal-00957982

L. Denis, F. Tupin, and X. Rondeau, Exact discrete minimization for TV+L0 image decomposition models, IEEE ICIP, pp.2525-2528, 2010.
DOI : 10.1109/icip.2010.5649204

URL : https://hal.archives-ouvertes.fr/ujm-00985427

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, Inverse problem approaches for digital hologram reconstruction, SPIE Defense, Security, and Sensing, pp.80430-80430, 2011.
DOI : 10.1117/12.885761

F. Cao, C. Deledalle, J. Nicolas, F. Tupin, L. Denis et al., Influence of speckle filtering of polarimetric SAR data on different classification methods, IEEE IGARSS, pp.1052-1055, 2011.
DOI : 10.1109/igarss.2011.6049376

F. Momey, L. Denis, C. Mennessier, E. Thiébaut, J. Becker et al., A new representation and projection model for tomography, based on separable b-splines, Nuclear Science Symposium and Medical Imaging Conference, pp.2602-2609, 2011.
DOI : 10.1109/nssmic.2011.6152700

URL : https://hal.archives-ouvertes.fr/ujm-00670025

C. Deledalle, F. Tupin, and L. Denis, Patch similarity under non gaussian noise, IEEE ICIP, pp.1845-1848, 2011.
DOI : 10.1109/icip.2011.6115825

URL : https://hal.archives-ouvertes.fr/ujm-00985629

L. Denis, E. Thiébaut, and F. Soulez, Fast model of space-variant blurring and its application to deconvolution in astronomy, IEEE ICIP, pp.2817-2820, 2011.
DOI : 10.1109/icip.2011.6116257

URL : https://hal.archives-ouvertes.fr/hal-00618696

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, Blind deconvolution of 3D data in wide field fluorescence microscopy, IEEE ISBI, pp.1735-1738, 2012.
DOI : 10.1109/isbi.2012.6235915

URL : https://hal.archives-ouvertes.fr/hal-00691249

F. Momey, L. Denis, C. Mennessier, E. Thiébaut, J. Becker et al., A B-spline based and computationally performant projector for iterative reconstruction in tomography-Application to dynamic X-ray gated CT, 2012 Second International Conference on Image Formation in X-Ray Computed Tomography, 2012.
URL : https://hal.archives-ouvertes.fr/ujm-00715785

C. Fournier, L. Denis, M. Seifi, and T. Fournel, Dictionary size reduction for a faster object recognition in digital holography, Information Optics (WIO), 2013 12th Workshop on, pp.1-1, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00863131

B. Sixou, L. Toma, F. Denis, and . Peyrin, Iterative choice of the optimal regularization parameter in TV image deconvolution, Journal of Physics : Conference Series, vol.464, issue.1, p.12005, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00872762

M. Seifi, L. Denis, and C. Fournier, Fast diffraction-pattern matching for object detection and recognition in digital holograms, EUSIPCO, p.1569734797, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00863143

L. Charles-alban-deledalle, F. Denis, and . Tupin, Template matching with noisy patches : A contrast-invariant GLR test, EUSIPCO, p.1569743591, 2013.

A. Toma, B. Sixou, L. Denis, J. Pialat, and F. Peyrin, Higher order total variation super-resolution from a single trabecular bone image, IEEE ISBI, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-01018098

S. Tabti, C. Deledalle, L. Denis, and F. Tupin, Modeling the distribution of patches with shift-invariance : application to SAR image restoration, IEEE International Conference on, pp.96-100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01006733

A. Toma, L. Denis, B. Sixou, J. Pialat, and F. Peyrin, Total variation super-resolution for 3D trabecular bone microstructure segmentation, Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European, pp.2220-2224, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076159

S. Tabti, C. Deledalle, L. Denis, and F. Tupin, Building invariance properties for dictionaries of SAR image patches, IEEE IGARSS, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01001600

S. Lobry, L. Denis, and F. Tupin, Sparse + smooth decomposition models for multi-temporal SAR images, Analysis of Multitemporal Remote Sensing Images (Multi-Temp), pp.1-4, 2015.
URL : https://hal.archives-ouvertes.fr/ujm-01219129

S. Tabti, C. Deledalle, L. Denis, and F. Tupin, Patchbased SAR image classification : The potential of modeling the statistical distribution of patches with Gaussian mixtures, Geoscience and Remote Sensing Symposium (IGARSS), pp.2374-2377, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158555

C. A. Deledalle, L. Denis, G. Ferraioli, and F. Tupin, Combining patchbased estimation and total variation regularization for 3D InSAR reconstruction, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.2485-2488, 2015.
URL : https://hal.archives-ouvertes.fr/ujm-01219134

R. Mourya, L. Denis, J. Becker, and E. Thiébaut, Augmented lagrangian without alternating directions : Practical algorithms for inverse problems in imaging, Image Processing (ICIP), 2015 IEEE International Conference on, pp.1205-1209, 2015.
URL : https://hal.archives-ouvertes.fr/ujm-01122878

R. Mourya, L. Denis, J. Becker, and E. Thiébaut, A blind deblurring and image decomposition approach for astronomical image restoration, Signal Processing Conference (EUSIPCO), pp.1636-1640, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219248

F. Peyrin, A. Toma, B. Sixou, L. Denis, A. Burghardt et al., Semi-blind joint super-resolution/segmentation of 3D trabecular bone images by a TV box approach, Signal Processing Conference (EUSIPCO), pp.2811-2815, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285018

L. Denis, A. Ferrari, D. Mary, L. Mugnier, and E. Thiébaut, Fast and robust detection of a known pattern in an image, Signal Processing Conference (EUSIPCO), 2016.
URL : https://hal.archives-ouvertes.fr/ujm-01376898

L. Sylvain-lobry, F. Denis, and . Tupin, A decomposition model for scatterers change detection in multi-temporal series of SAR images, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016.

S. Lobry, L. Denis, F. Tupin, and R. Fjørtoft, Double MRF for water classification in SAR images by joint detection and reflectivity estimation, IEEE IGARSS, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01623083

C. Rambour, L. Denis, F. Tupin, J. M. Nicolas, H. Oriot et al., Similarity criterion for SAR tomography over dense urban area, IEEE IGARSS, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01623092

O. Flasseur, L. Denis, C. Fournier, and E. Thiébaut, Robust object characterization from lensless microscopy videos, Signal Processing Conference (EUSIPCO), 2017 25th European, pp.1445-1449, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01626086

O. Flasseur and J. Frédéric, Momey Fabien, Loïc Denis, and Fournier Corinne. Improving color lensless microscopy reconstruction by selfcalibration, SPIE Photonics Europe, 2018.

C. Deledalle, L. Denis, F. Tupin, and S. Lobry, Speckle reduction in PolSAR by multi-channel variance stabilization and Gaussian denoising : MuLoG, Synthetic Aperture Radar (EUSAR), 2018 12th European Conference on, pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860234

W. Zhao, C. Deledalle, L. Denis, H. Maître, J. Nicolas et al., RABASAR : A fast ratio based multi-temporal sar despeckling, IEEE IGARSS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791396

L. Charles-alban-deledalle, F. Denis, and . Tupin, MuLoG : A generic variance-stabilization approach for speckle reduction in SAR interferometry and SAR polarimetry, IEEE IGARSS, 2018.

C. Rambour, L. Denis, F. Tupin, H. Oriot, and J. Nicolas, SAR tomography of urban areas : 3D regularized inversion in the scene geometry, IEEE IGARSS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860253

O. Flasseur, L. Denis, E. Thiébaut, and M. Langlois, An unsupervised patch-based approach for exoplanet detection by direct imaging, Image Processing (ICIP), 2018.
URL : https://hal.archives-ouvertes.fr/ujm-01819281

O. Flasseur, L. Denis, E. Thiébaut, and M. Langlois, Exoplanet detection in angular and spectral differential imaging : local learning of background correlations for improved detections, SPIE Astronomical Telescopes + Instrumentation, 2018.

F. Soulez, E. Thiébaut, and L. Denis, Restoration of hyperspectral astronomical data with spectrally varying blur, New Concepts in Imaging : Optical and Statistical Models, vol.59, pp.403-416, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00771955

C. Fournier, L. Denis, M. Seifi, and T. Fournel, Digital hologram processing in on-axis holography, Multi-Dimensional Imaging, pp.51-74, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-01004429

L. Charles-alban-deledalle, G. Denis, V. Ferraioli, G. Pascazio, F. Schirinzi et al., Very-high-resolution and interferometric SAR : Markovian and patch-based non-local mathematical models, Mathematical Models for Remote Sensing Image Processing, pp.137-189, 2018.

C. Fournier, C. Goepfert, and L. Denis, L'holographie numérique pour la mesure 3D en mécanique des fluides. Photoniques, 2005.

F. Soulez, Une approche problèmes inverses pour la reconstruction de données multi-dimensionnelles par méthodes d'optimisation, 2008.

L. Denis, Traitement et analyse quantitative d'hologrammes numériques, 2006.

J. Gire, Holographie numérique de microparticules : apports de l'approche problème inverse et optimisation de l'algorithme de traitement, 2009.

M. Seifi, Approches problèmes inverses pour la reconstruction d'hologrammes numériques, 2013.

E. N. Leith, Synthetic aperture radar, Optical data processing, pp.89-117, 1978.

N. Emmett, J. Leith, and . Upatnieks, Reconstructed wavefronts and communication theory*, JOSA, vol.52, issue.10, pp.1123-1130, 1962.

A. Moreira, P. Prats-iraola, G. Marwan-younis, I. Krieger, . Hajnsek et al., A tutorial on synthetic aperture radar, IEEE Geoscience and Remote Sensing Magazine, vol.1, issue.1, pp.6-43, 2013.

A. Buades, B. Coll, and J. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271141

G. Cresci and . Davies, Accounting for the anisoplanatic point spread function in deep wide-field adaptive optics images, Astronomy and astrophysics : A European journal, vol.438, issue.2, pp.757-768, 2005.

. Joseph-w-goodman, Introduction to Fourier optics, 2005.

M. Liebling, T. Blu, and M. Unser, Fresnelets : new multiresolution wavelet bases for digital holography, IEEE Transactions on, vol.12, issue.1, pp.29-43, 2003.

A. Glenn, B. J. Tyler, and . Thompson, Fraunhofer holography applied to particle size analysis a reassessment, Journal of Modern Optics, vol.23, issue.9, pp.685-700, 1976.

R. Raskar, A. Agrawal, and J. Tumblin, Coded exposure photography : motion deblurring using fluttered shutter, ACM Transactions on Graphics (TOG), vol.25, issue.3, pp.795-804, 2006.

A. Levin, R. Fergus, F. Durand, and W. Freeman, Image and depth from a conventional camera with a coded aperture, ACM Transactions on Graphics (TOG), vol.26, p.70, 2007.

C. Preza and J. Conchello, Depth-variant maximumlikelihood restoration for three-dimensional fluorescence microscopy, JOSA A, vol.21, issue.9, pp.1593-1601, 2004.

P. Trouvé, F. Champagnat, G. L. Besnerais, J. Sabater, T. Avignon et al., Passive depth estimation using chromatic aberration and a depth from defocus approach, Applied optics, vol.52, issue.29, pp.7152-7164, 2013.

R. Flicker and F. Rigaut, Anisoplanatic deconvolution of adaptive optics images, J Opt Soc Am A, vol.22, issue.3, pp.504-513, 2005.

E. Gilad and J. Hardenberg, A fast algorithm for convolution integrals with space and time variant kernels, J. Comp. Phys, vol.216, issue.1, pp.326-336, 2006.

M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling, Efficient filter flow for space-variant multiframe blind deconvolution, IEEE Comp. Vis. Pattern Recogn, pp.607-614, 2010.

J. G. Nagy and D. P. O'leary, Restoring Images Degraded by Spatially Variant Blur, SIAM J. Sci. Comp, vol.19, p.1063, 1998.

M. Sorel and J. Flusser, Space-variant restoration of images degraded by camera motion blur, IEEE Trans. Image Process, vol.17, issue.2, pp.105-116, 2008.

O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, Non-uniform deblurring for shaken images, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp.491-498, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01053877

J. Wei, C. Bouman, and J. P. Allebach, Fast space-varying convolution using matrix source coding with applications to camera stray light reduction. Image Processing, IEEE Transactions on, vol.23, issue.5, pp.1965-1979, 2014.

P. Escande and P. Weiss, Numerical computation of spatially varying blur operators a review of existing approaches with a new one, 2014.

R. Mourya, Contributions to image restoration : from numerical optimization strategies to blind deconvolution and shift-variant deblurring, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01764912

M. Delbracio, P. Musé, A. Almansa, and J. Morel, The non-parametric sub-pixel local point spread function estimation is a well posed problem, International journal of computer vision, vol.96, issue.2, pp.175-194, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00540637

M. Born and E. Wolf, Principles of optics : electromagnetic theory of propagation, interference and diffraction of light, 2013.

J. W. Goodman, Some fundamental properties of speckle, Journal Optical Society of America, vol.66, issue.11, pp.1145-1150, 1976.

H. Xie, L. E. Pierce, and . Ulaby, Statistical properties of logarithmically transformed speckle. Geoscience and Remote Sensing, IEEE Transactions on, vol.40, issue.3, pp.721-727, 2002.

E. Jakeman, A model for non-rayleigh sea echo. Antennas and Propagation, IEEE Transactions on, vol.24, issue.6, pp.806-814, 1976.

J. King and J. , Amplitude distribution of composite terrain radar clutter and the ?-distribution. Antennas and Propagation, IEEE Transactions on, vol.32, issue.10, pp.1049-1062, 1984.

C. J. Oliver, Optimum texture estimators for sar clutter, Journal of Physics D : Applied Physics, vol.26, issue.11, p.1824, 1993.
DOI : 10.1088/0022-3727/26/11/002

W. Szajnowski, Estimators of log-normal distribution parameters, IEEE Transactions on Aerospace and Electronic Systems, vol.5, pp.533-536, 1977.
DOI : 10.1109/taes.1977.308418

G. Moser, J. Zerubia, and S. B. Serpico, Sar amplitude probability density function estimation based on a generalized gaussian model. Image Processing, IEEE Transactions on, vol.15, issue.6, pp.1429-1442, 2006.
DOI : 10.1109/tip.2006.871124

URL : https://hal.archives-ouvertes.fr/inria-00071430

C. Tison, J. Nicolas, and F. Tupin, Accuracy of fisher distributions and log-moment estimation to describe amplitude distributions of high resolution sar images over urban areas, Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings, vol.3, pp.1999-2001, 2003.

C. Tison, J. Nicolas, F. Tupin, and H. Maître, A new statistical model for markovian classification of urban areas in highresolution sar images. Geoscience and Remote Sensing, IEEE Transactions on, vol.42, issue.10, pp.2046-2057, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00556167

L. Bombrun and J. Beaulieu, Fisher distribution for texture modeling of polarimetric sar data. Geoscience and Remote Sensing Letters, vol.5, pp.512-516, 2008.
DOI : 10.1109/lgrs.2008.923262

URL : https://hal.archives-ouvertes.fr/hal-00350055

F. Galland, J. Nicolas, H. Sportouche, M. Roche, F. Tupin et al., Unsupervised synthetic aperture radar image segmentation using fisher distributions. Geoscience and Remote Sensing, IEEE Transactions on, vol.47, issue.8, pp.2966-2972, 2009.
DOI : 10.1109/tgrs.2009.2014364

URL : https://hal.archives-ouvertes.fr/hal-00437471

F. Sébastien-bausson, P. Pascal, J. Forster, P. Ovarlez, and . Larzabal, First-and second-order moments of the normalized sample covariance matrix of spherically invariant random vectors, Signal Processing Letters, vol.14, issue.6, pp.425-428, 2007.

G. Vasile, J. Ovarlez, F. Pascal, and C. Tison, Coherency matrix estimation of heterogeneous clutter in high-resolution polarimetric sar images. Geoscience and Remote Sensing, IEEE Transactions on, vol.48, issue.4, pp.1809-1826, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466647

S. Sotthivirat, . Jeffrey, and . Fessler, Penalized-likelihood image reconstruction for digital holography, JOSA A, vol.21, issue.5, pp.737-750, 2004.
DOI : 10.1364/josaa.21.000737

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/85917/1/Fessler60.pdf

J. Peter, An improved algorithm for reprojecting rays through pixel images, IEEE Transactions on, vol.1, issue.3, pp.192-196, 1982.

S. Bruno-de-man and . Basu, Distance-driven projection and backprojection in three dimensions, Physics in medicine and biology, vol.49, issue.11, p.2463, 2004.

Y. Long, A. Jeffrey, J. Fessler, and . Balter, 3d forward and backprojection for x-ray ct using separable footprints, IEEE Transactions on, vol.29, issue.11, pp.1839-1850, 2010.

J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society. Series B (Methodological), pp.192-236, 1974.

A. John-d-lafferty, F. Mccallum, and . Pereira, Conditional random fields : Probabilistic models for segmenting and labeling sequence data, Proceedings of the Eighteenth International Conference on Machine Learning, pp.282-289, 2001.

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on pure and applied mathematics, vol.42, issue.5, pp.577-685, 1989.
DOI : 10.1002/cpa.3160420503

URL : https://dash.harvard.edu/bitstream/1/3637121/1/Mumford_OptimalApproxPiece.pdf

A. Luminita, T. Vese, and . Chan, A multiphase level set framework for image segmentation using the mumford and shah model. International journal of computer vision, vol.50, pp.271-293, 2002.

C. Louchet and L. Moisan, Posterior expectation of the total variation model : properties and experiments, SIAM Journal on Imaging Sciences, vol.6, issue.4, pp.2640-2684, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00764175

F. Momey, E. Thiébaut, C. Burnier-mennessier, L. Denis, J. Becker et al., Regularized 4D-CT reconstruction from a single dataset with a spatio-temporal prior, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00998291

R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Processing Letters, vol.14, issue.10, pp.707-710, 2007.

J. Emmanuel, . Candes, S. Michael-b-wakin, and . Boyd, Enhancing sparsity by reweighted 1 minimization, vol.14, pp.877-905, 2008.

D. L. Scott-shaobing-chen, M. Donoho, and . Saunders, Atomic decomposition by basis pursuit, SIAM review, vol.43, issue.1, pp.129-159, 2001.

G. Stéphane, Z. Mallat, and . Zhang, Matching pursuits with timefrequency dictionaries, IEEE Transactions on signal processing, vol.41, issue.12, pp.3397-3415, 1993.

Y. Chandra-pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit : Recursive function approximation with applications to wavelet decomposition, Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on, pp.40-44, 1993.

C. Soussen, J. Idier, D. Brie, and J. Duan, From bernoulligaussian deconvolution to sparse signal restoration, IEEE Transactions on Signal Processing, vol.59, issue.10, pp.4572-4584, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00443842

D. Needell and . Tropp, Cosamp : Iterative signal recovery from incomplete and inaccurate samples, Applied and computational harmonic analysis, vol.26, issue.3, pp.301-321, 2009.

G. James, D. Nagy, and . Leary, Restoring images degraded by spatially variant blur, SIAM Journal on Scientific Computing, vol.19, issue.4, pp.1063-1082, 1998.

J. Giovannelli and A. Coulais, Positive deconvolution for superimposed extended source and point sources, Astronomy & Astrophysics, vol.439, issue.1, pp.401-412, 2005.

M. Elad, J. Starck, P. Querre, and D. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (mca), Applied and Computational Harmonic Analysis, vol.19, issue.3, pp.340-358, 2005.

J. Aujol, G. Gilboa, T. Chan, and S. Osher, Structuretexture image decomposition-modeling, algorithms, and parameter selection, International journal of computer vision, vol.67, issue.1, pp.111-136, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00201977

. Bruno-a-olshausen, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol.381, issue.6583, pp.607-609, 1996.

A. Bruno, D. Olshausen, and . Field, Sparse coding of sensory inputs. Current opinion in neurobiology, vol.14, pp.481-487, 2004.

A. Efros, K. Thomas, and . Leung, Texture synthesis by non-parametric sampling, The Proceedings of the Seventh IEEE International Conference on, vol.2, pp.1033-1038, 1999.

A. Buades, B. Coll, and J. Morel, A non-local algorithm for image denoising, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol.2, pp.60-65, 2005.

A. Buades, B. Coll, and J. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271141

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering. Image Processing, IEEE Transactions on, vol.16, issue.8, pp.2080-2095, 2007.

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. Image Processing, IEEE Transactions on, vol.15, issue.12, pp.3736-3745, 2006.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration, IEEE 12th International Conference on, pp.2272-2279, 2009.

D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, Computer Vision (ICCV), 2011 IEEE International Conference on, pp.479-486, 2011.

Z. Xu and J. Sun, Image inpainting by patch propagation using patch sparsity. Image Processing, IEEE Transactions on, vol.19, issue.5, pp.1153-1165, 2010.

D. Glasner, S. Bagon, and M. Irani, Super-resolution from a single image, IEEE 12th International Conference on, pp.349-356, 2009.

J. Yang, J. Wright, T. Huang, and Y. Ma, Image superresolution as sparse representation of raw image patches, Computer Vision and Pattern Recognition, pp.1-8, 2008.

W. Dong, L. Zhang, G. Shi, and X. Wu, Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. Image Processing, IEEE Transactions on, vol.20, issue.7, pp.1838-1857, 2011.

C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, Patchmatch : A randomized correspondence algorithm for structural image editing, ACM Transactions on Graphics-TOG, vol.28, issue.3, p.24, 2009.

C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein, The generalized patchmatch correspondence algorithm, Computer Vision-ECCV 2010, pp.29-43, 2010.

M. Brown, R. Szeliski, and S. Winder, Multi-image matching using multi-scale oriented patches, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol.1, pp.510-517, 2005.

P. Coupé, V. José-v-manjón, J. Fonov, and . Pruessner, Montserrat Robles, and D Louis Collins. Patch-based segmentation using expert priors : Application to hippocampus and ventricle segmentation, NeuroImage, vol.54, issue.2, pp.940-954, 2011.

M. Varma and A. Zisserman, A statistical approach to material classification using image patch exemplars. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.31, issue.11, pp.2032-2047, 2009.

T. Guillemot, A. Almansa, and T. Boubekeur, Non local point set surfaces, 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference on, pp.324-331, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01117141

M. Elad, P. Milanfar, and R. Rubinstein, Analysis versus synthesis in signal priors, Inverse problems, vol.23, issue.3, p.947, 2007.

G. Peyré, S. Bougleux, and L. Cohen, Non-local regularization of inverse problems, European Conference on Computer Vision, pp.57-68, 2008.

C. Sutour, C. Deledalle, and J. Aujol, Adaptive regularization of the nl-means : Application to image and video denoising, IEEE Transactions on image processing, vol.23, issue.8, pp.3506-3521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988752

. Dario-l-ringach, Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex, Journal of neurophysiology, vol.88, issue.1, pp.455-463, 2002.

G. Dario-l-ringach, R. Sapiro, and . Shapley, A subspace reversecorrelation technique for the study of visual neurons, Vision research, vol.37, issue.17, pp.2455-2464, 1997.

P. Réfrégier and F. Goudail, Statistical image processing techniques for noisy images : an application-oriented approach, 2013.

M. Radford and . Neal, Probabilistic inference using markov chain monte carlo methods, 1993.

Z. Stan and . Li, Markov random field modeling in image analysis, 2009.

C. Wang, N. Komodakis, and N. Paragios, Markov random field modeling, inference & learning in computer vision & image understanding : A survey, Computer Vision and Image Understanding, vol.117, issue.11, pp.1610-1627, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858390

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, Global solutions of variational models with convex regularization, SIAM Journal on Imaging Sciences, vol.3, issue.4, pp.1122-1145, 2010.

J. Nocedal and S. Wright, Numerical optimization, 2006.

C. Dong, J. Liu, and . Nocedal, On the limited memory bfgs method for large scale optimization, Mathematical programming, vol.45, pp.503-528, 1989.

A. T. Mário, R. D. Figueiredo, S. Nowak, and . Wright, Gradient projection for sparse reconstruction : Application to compressed sensing and other inverse problems, IEEE Journal of selected topics in signal processing, vol.1, issue.4, pp.586-597, 2007.

L. Patrick, J. Combettes, and . Pesquet, Proximal splitting methods in signal processing, Fixed-point algorithms for inverse problems in science and engineering, pp.185-212, 2011.

N. Parikh, . Stephen, and . Boyd, Proximal algorithms. Foundations and Trends in optimization, vol.1, pp.127-239, 2014.

N. Komodakis and J. Pesquet, Playing with duality : An overview of recent primal ? dual approaches for solving large-scale optimization problems, IEEE Signal Processing Magazine, vol.32, issue.6, pp.31-54, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01010437

. Magnus-r-hestenes, Journal of optimization theory and applications, vol.4, pp.303-320, 1969.

P. Dimitri and . Bertsekas, Constrained optimization and Lagrange multiplier methods, 2014.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, vol.3, pp.1-122, 2011.

J. Pearl, Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference, 1988.

. William-t-freeman, C. Egon, O. Pasztor, and . Carmichael, Learning lowlevel vision, International journal of computer vision, vol.40, issue.1, pp.25-47, 2000.

N. Komodakis, N. Paragios, and G. Tziritas, Mrf energy minimization and beyond via dual decomposition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.33, issue.3, pp.531-552, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00856311

H. Jörg, B. Kappes, F. A. Andres, C. Hamprecht, S. Schnörr et al., A comparative study of modern inference techniques for structured discrete energy minimization problems, International Journal of Computer Vision, vol.115, issue.2, pp.155-184, 2015.

A. Matakos, S. Ramani, and J. Fessler, Accelerated edgepreserving image restoration without boundary artifacts, IEEE transactions on image processing, vol.22, issue.5, pp.2019-2029, 2013.

C. Deledalle, L. Denis, G. Ferraioli, V. Pascazio, G. Schirinzi et al., Very high resolution and interferometric SAR : Markovian and patch-based non-local mathematical models, Mathematical Models for Remote Sensing Image Processing, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01565508

D. M. Greig, B. T. Porteous, and A. H. Seheult, Exact maximum a posteriori estimation for binary images, J. R. Statist. Soc. B, vol.51, issue.2, pp.271-279, 1989.

C. Thomas-h-cormen, R. Leiserson, C. Rivest, and . Stein, Introduction to algorithms, 2001.

Y. Boykov and V. Kolmogorov, An experimental comparison of mincut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.26, issue.9, pp.1124-1137, 2004.

T. Verma and D. Batra, Maxflow revisited : An empirical comparison of maxflow algorithms for dense vision problems, BMVC, pp.1-12, 2012.

V. Kolmogorov, maxflow, a C++ library for maxflow/min-cut computation, 2010.

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph-cuts ?, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, issue.2, 2004.

V. Kolmogorov and C. Rother, Minimizing nonsubmodular functions with graph cuts-a review. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, issue.7, pp.1274-1279, 2007.

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.23, issue.11, pp.1222-1239, 2001.

V. Lempitsky, C. Rother, S. Roth, and A. Blake, Fusion moves for markov random field optimization. IEEE transactions on pattern analysis and machine intelligence, vol.32, pp.1392-1405, 2010.

V. Lempitsky, C. Rother, and A. Blake, Logcut-efficient graph cut optimization for markov random fields, IEEE 11th International Conference on Computer Vision, pp.1-8, 2007.

H. Ishikawa, Exact optimization for markov random fields with convex priors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.25, issue.10, pp.1333-1336, 2003.

J. Darbon and M. Sigelle, Image restoration with discrete constrained total variation part ii : Levelable functions, convex priors and nonconvex cases, Journal of Mathematical Imaging and Vision, vol.26, issue.3, pp.277-291, 2006.

D. Schlesinger and B. Flach, Transforming an arbitrary minsum problem into a binary one, 2006.

D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse problems, vol.19, issue.6, p.165, 2003.

N. Charles-alban-deledalle, J. Papadakis, and . Salmon, On debiasing restoration algorithms : applications to total-variation and nonlocalmeans, International Conference on Scale Space and Variational Methods in Computer Vision, pp.129-141, 2015.

N. Charles-alban-deledalle, J. Papadakis, S. Salmon, and . Vaiter, Clear : Covariant least-square refitting with applications to image restoration, SIAM Journal on Imaging Sciences, vol.10, issue.1, pp.243-284, 2017.

J. Lee, Computer vision, graphics, and image processing, vol.24, pp.255-269, 1983.

J. Polzehl and V. Spokoiny, Propagation-separation approach for local likelihood estimation. Probability Theory and Related Fields, vol.135, pp.335-362, 2006.

M. Aharon, M. Elad, and A. Bruckstein, r mk-svd : An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on signal processing, vol.54, issue.11, pp.4311-4322, 2006.

B. Galerne and Y. Gousseau, The transparent dead leaves model. Advances in Applied Probability, vol.44, pp.1-20, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00505281

G. Yu, G. Sapiro, and S. Mallat, Solving inverse problems with piecewise linear estimators : From gaussian mixture models to structured sparsity, IEEE Transactions on Image Processing, vol.21, issue.5, pp.2481-2499, 2012.

. S-vinjimore-kesavan, . Momey, . Cioni, . David-watine, . Dubrulle et al., High-throughput monitoring of major cell functions by means of lensfree video microscopy, Scientific reports, vol.4, p.5942, 2014.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, Tomographic diffractive microscopy : basics, techniques and perspectives, Journal of Modern Optics, vol.57, issue.9, pp.686-699, 2010.

F. Momey, A. Berdeu, J. Bordy, . Dinten, . Marcel et al., Lensfree diffractive tomography for the imaging of 3d cell cultures, Biomedical optics express, vol.7, issue.3, pp.949-962, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01323080

A. Berdeu, F. Momey, B. Laperrousaz, T. Bordy, X. Gidrol et al., Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy, Applied optics, vol.56, issue.13, pp.3939-3951, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02095509

I. Smith, A. Ferrari, and M. Carbillet, Detection of a moving source in speckle noise. application to exoplanet detection, IEEE Transactions on Signal Processing, vol.57, issue.3, pp.904-915, 2009.

F. Rigaut, Astronomical adaptive optics. Publications of the Astronomical Society of the Pacific, vol.127, p.1197, 2015.

E. Elías-méndez-domínguez, D. Meier, . Small, E. Michael, L. Schaepman et al., A multisquint framework for change detection in high-resolution multitemporal sar images, IEEE Transactions on Geoscience and Remote Sensing, vol.56, issue.6, pp.3611-3623, 2018.

E. Soubies, T. Pham, and M. Unser, Efficient inversion of multiple-scattering model for optical diffraction tomography, Optics Express, vol.25, issue.18, pp.21786-21800, 2017.

F. Soulez, A "learn 2d, apply 3d" method for 3d deconvolution microscopy, IEEE 11th International Symposium on, pp.1075-1078, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00914839

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Wardefarley et al., Generative adversarial nets, Advances in neural information processing systems, pp.2672-2680, 2014.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham et al., Photo-realistic single image super-resolution using a generative adversarial network, CVPR, vol.2, p.4, 2017.

. Jeffrey-a-fessler, Mean and variance of implicitly defined biased estimators(such as penalized maximum likelihood) : applications to tomography, IEEE Transactions on Image Processing, vol.5, issue.3, pp.493-506, 1996.

S. Ahn, . Richard, and . Leahy, Analysis of resolution and noise properties of nonquadratically regularized image reconstruction methods for pet, IEEE transactions on medical imaging, vol.27, issue.3, pp.413-424, 2008.

M. Stephen, M. M. Schmitt, J. Goodsitt, and . Fessler, Fast variance prediction for iteratively reconstructed ct images with locally quadratic regularization, IEEE transactions on medical imaging, vol.36, issue.1, pp.17-26, 2017.

A. Blanc, M. Laurent, J. Mugnier, and . Idier, Marginal estimation of aberrations and image restoration by use of phase diversity, JOSA A, vol.20, issue.6, pp.1035-1045, 2003.

L. Blanco and L. M. Mugnier, Marginal blind deconvolution of adaptive optics retinal images, Optics Express, vol.19, issue.23, pp.23227-23239, 2011.

L. Thibon, F. Soulez, and É. Thiébaut, Fast automatic myopic deconvolution of angiogram sequences, IEEE 11th International Symposium on, pp.1067-1070, 2014.

C. Deledalle, S. Vaiter, J. Fadili, and G. Peyré, Stein unbiased gradient estimator of the risk (sugar) for multiple parameter selection, SIAM Journal on Imaging Sciences, vol.7, issue.4, pp.2448-2487, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987295

R. Ammanouil, A. Ferrari, R. Flamary, C. Ferrari, and D. Mary, Multi-frequency image reconstruction for radio-interferometry with self-tuned regularization parameters, Signal Processing Conference, pp.1435-1439, 2017.

F. Olivier-féron, J. Orieux, and . Giovannelli, Gradient scan gibbs sampler : an efficient algorithm for high-dimensional gaussian distributions, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.2, pp.343-352, 2016.

. Sri-rama-prasanna, . Pavani, J. S. Michael-a-thompson, . Biteen, J. Samuel et al., Threedimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function, Proceedings of the National Academy of Sciences, vol.106, pp.2995-2999, 2009.

F. Diaz, F. Goudail, B. Loiseaux, and J. Huignard, Increase in depth of field taking into account deconvolution by optimization of pupil mask, Optics letters, vol.34, issue.19, pp.2970-2972, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00746985

P. Kevin, J. Thompson, and . Rolland, Will computational imaging change lens design ?, International Society for Optics and Photonics, vol.9293, p.929302, 2014.

J. Lee, Speckle analysis and smoothing of synthetic aperture radar images. Computer graphics and image processing, vol.17, pp.24-32, 1981.

A. A. Darwin-t-kuan, T. C. Sawchuk, P. Strand, and . Chavel, Adaptive noise smoothing filter for images with signal-dependent noise, IEEE transactions on pattern analysis and machine intelligence, pp.165-177, 1985.

Y. Chen, R. Ranftl, and T. Pock, Insights into analysis operator learning : From patch-based sparse models to higher order mrfs, IEEE Transactions on Image Processing, vol.23, issue.3, pp.1060-1072, 2014.

K. H. Michael-t-mccann, M. Jin, and . Unser, Convolutional neural networks for inverse problems in imaging : A review. IEEE Signal Processing Magazine, vol.34, pp.85-95, 2017.

A. Lucas, M. Iliadis, R. Molina, and A. Katsaggelos, Using deep neural networks for inverse problems in imaging : beyond analytical methods, IEEE Signal Processing Magazine, vol.35, issue.1, pp.20-36, 2018.
DOI : 10.1109/msp.2017.2760358

. Kyong-hwan-jin, E. Michael-t-mccann, M. Froustey, and . Unser, Deep convolutional neural network for inverse problems in imaging, IEEE Transactions on Image Processing, vol.26, issue.9, pp.4509-4522, 2017.

K. Zhang, W. Zuo, S. Gu, and L. Zhang, Learning deep cnn denoiser prior for image restoration, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3929-3938, 2017.
DOI : 10.1109/cvpr.2017.300

URL : http://arxiv.org/pdf/1704.03264

J. Chang, C. Li, B. Poczos, A. Kumar, and . Sankaranarayanan, One network to solve them all-solving linear inverse problems using deep projection models, 2017.
DOI : 10.1109/iccv.2017.627

URL : http://arxiv.org/pdf/1703.09912

J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE transactions on medical imaging, vol.37, issue.6, pp.1322-1332, 2018.
DOI : 10.1109/tmi.2018.2799231

URL : http://arxiv.org/pdf/1707.06474

A. Dave, K. Vadathya, and R. Subramanyam, Solving inverse computational imaging problems using deep pixel-level prior, 2018.
DOI : 10.1109/tci.2018.2882698

URL : http://arxiv.org/pdf/1802.09850

K. Zhang, W. Zuo, and L. Zhang, Ffdnet : Toward a fast and flexible solution for cnn based image denoising, IEEE Transactions on Image Processing, 2018.
DOI : 10.1109/tip.2018.2839891

URL : http://arxiv.org/pdf/1710.04026

L. Li, J. Pan, W. Lai, C. Gao, N. Sang et al., Learning a discriminative prior for blind image deblurring, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.6616-6625, 2018.
DOI : 10.1109/cvpr.2018.00692

URL : http://arxiv.org/pdf/1803.03363

N. Boyd, E. Jonas, P. Hazen, B. Babcock, and . Recht, Deeploco : Fast 3d localization microscopy using neural networks, BioRxiv, p.267096, 2018.
DOI : 10.1101/267096

URL : https://www.biorxiv.org/content/biorxiv/early/2018/02/16/267096.full.pdf

C. Cruz, A. Foi, V. Katkovnik, and K. Egiazarian, Nonlocality-reinforced convolutional neural networks for image denoising, 2018.
DOI : 10.1109/lsp.2018.2850222

URL : http://arxiv.org/pdf/1803.02112

S. Lefkimmiatis, Universal denoising networks : A novel cnn architecture for image denoising, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3204-3213, 2018.
DOI : 10.1109/cvpr.2018.00338

URL : http://arxiv.org/pdf/1711.07807

D. Liu, B. Wen, X. Liu, Z. Wang, and T. Huang, Elle nécessite le développement de méthodes de traitement du signal dédiées et d'algorithmes efficaces. Les méthodes de reconstruction sont basées sur trois étapes fondamentales : (a) la modélisation des mesures (depuis la propagation des ondes jusqu'à la collecte par l'instrument et son détecteur) ; (b) la modélisation de la classe des images d'intérêt (propriétés de régularité, distribution statistique des images naturelles) ; (c) un estimateur produisant une reconstruction à la fois en accord avec les mesures, When image denoising meets high-level vision tasks : A deep learning approach, 2017.

, la microscopie holographique (pour la métrologie optique 3D et l'imagerie biomédicale) et l'astronomie (haute résolution angulaire et haut contraste). J'ai développé des méthodes basées sur le cadre des problèmes inverses, conduisant à des algorithmes basés sur des stratégies d'optimisation numérique (optimisation en grande dimension, optimisation non lisse, optimisation discrète par graph-cuts) ainsi que des approches par patches. La reconstruction d'images reste un domaine de recherche très actif et de nombreuses pistes de recherche peuvent être envisagées, soit pour répondre à des enjeux applicatifs importants, soit pour améliorer les méthodes de reconstruction, Cette dernière décennie, j'ai étudié des problèmes de reconstruction d'images dans différents contextes applicatifs : la télédétection (imagerie radar par synthèse d'ouverture)