V. G. Veselago, The electrodynamics of substances with simultaneously negative values of and µ, In: Sov. Phys. Usp, vol.10, p.509, 1968.

J. B. Pendry, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett, vol.76, p.4773, 1996.

E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett, vol.58, p.2059, 1987.

S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett, vol.58, p.2486, 1987.

M. S. Kushwaha, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett, vol.71, p.2022, 1993.

S. Yang, Focusing of sound in a 3D phononic crystal, Phys. Rev. Lett, vol.93, p.24301, 2004.

J. O. Vasseur, Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates, Phys. Rev. B, vol.77, p.85415, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357331

J. O. Vasseur, Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems, J. Phys. Condens. Matter, vol.6, p.8759, 1994.

M. Torres, Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects, Phys. Rev. Lett, vol.82, p.3054, 1999.

A. Khelif, Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal, Phys. Rev. B, vol.65, p.174308, 2002.

A. Khelif, Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials, Phys. Rev. B, vol.68, p.24302, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00102325

J. V. Sánchez-pérez, Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders, Phys. Rev. Lett, vol.80, p.5325, 1998.

A. Khelif, Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal, Phys. Rev. B, vol.68, p.214301, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00087953

M. Kafesaki, M. M. Sigalas, and N. Garcia, Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials, Phys. Rev. Lett, vol.85, p.4044, 2000.

A. Khelif, Guiding and bending of acoustic waves in highly confined phononic crystal waveguides, Appl. Phys. Lett, vol.84, p.4400, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00073930

Y. Pennec, Tunable filtering and demultiplexing in phononic crystals with hollow cylinders, Phys. Rev. E, vol.69, p.46608, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00102343

Y. Pennec, Acoustic channel drop tunneling in a phononic crystal, Appl. Phys. Lett, vol.87, p.261912, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00072921

M. M. Lu, Extraordinary Acoustic Transmission through a 1D Grating with Very Narrow Apertures, Phys. Rev. Lett, vol.99, p.174301, 2007.

L. Feng, Acoustic backward-wave negative refractions in the second band of a sonic crystal, Phys. Rev. Lett, vol.96, p.14301, 2006.

J. Christensen, Collimation of sound assisted by acoustic surface waves, Nat. Phys, p.851, 2007.

X. Zhang and Z. Liu, Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals, Phys. Rev. Lett, vol.101, p.264303, 2008.

D. Torrent and J. Sánchez-dehesa, Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves, Phys. Rev. Lett, vol.108, p.174301, 2012.

S. Y. Yu, Surface phononic graphene, Nat. Mater, vol.15, p.1243, 2016.
DOI : 10.1038/nmat4743

L. Lu, J. D. Joannopoulos, and M. Solja?i?, Topological photonics". In: Nat. Photon, vol.8, p.821, 2014.

M. Xiao, Geometric phase and band inversion in periodic acoustic systems, Nat. Phys, vol.11, p.240, 2015.

Z. Yang, Topological Acoustics, vol.114, p.114301, 2015.

C. He, Acoustic topological insulator and robust one-way sound transport, Nat. Phys, vol.12, p.1124, 2016.
DOI : 10.1038/nphys3867

URL : http://arxiv.org/pdf/1512.03273

A. Khelif and A. Adibi, , p.23, 2015.

T. Still, Simultaneous Occurrence of Structure-Directed and ParticleResonance-Induced Phononic Gaps in Colloidal Films, Phys. Rev. Lett, vol.100, p.194301, 2008.

Z. Liu, Locally Resonant Sonic Materials, Science, vol.289, p.1734, 2000.

M. Oudich, A sonic band gap based on the locally resonant phononic plates with stubs, New J. Phys, vol.12, p.83049, 2010.

M. Oudich, M. B. Assouar, and Z. L. Hou, Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate, In: Appl. Phys. Lett, vol.97, p.193503, 2010.

M. Oudich, Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates, Phys. Rev. B, vol.84, p.165136, 2011.

S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater, vol.1, p.16001, 2016.

G. Ma and P. Sheng, Acoustic metamaterials: From local resonances to broad horizons, In: Sci. Adv, vol.2, p.1501595, 2016.

H. Ge, Breaking the Barriers: Advances in Acoustic Functional Materials, Nat. Sci. Rev, 2017.

P. M. Morse and K. U. Ingard, Theoretical acoustics, 1968.

Z. Liang and J. Li, Extreme acoustic metamaterial by coiling up space, Phys. Rev. Lett, vol.108, p.114301, 2012.

J. Li and C. T. Chan, Double-negative acoustic metamaterial, Phys. Rev. E, vol.70, p.55602, 2004.
DOI : 10.1103/physreve.70.055602

M. Oudich, Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars, J. Appl. Phys, vol.116, p.184504, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01233805

Z. Yang, Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass, Phys. Rev. Lett, vol.101, p.204301, 2008.

S. H. Lee, Acoustic metamaterial with negative density, Phys. Lett. A, vol.373, p.4464, 2009.

N. Sui, A lightweight yet sound-proof honeycomb acoustic metamaterial, In: Appl. Phys. Lett, vol.106, p.171905, 2015.

N. Fang, Ultrasonic metamaterials with negative modulus, Nat. Mater, vol.5, p.452, 2006.

S. H. Lee, Composite Acoustic Medium with Simultaneously Negative Density and Modulus, Phys. Rev. Lett, vol.104, p.54301, 2010.

M. R. Haberman and M. D. Guild, Acoustic metamaterials, Phys. Today, vol.69, p.42, 2016.

Y. Xie, Measurement of a Broadband Negative Index with SpaceCoiling Acoustic Metamaterials, Phys. Rev. Lett, vol.110, p.175501, 2013.

S. Zhang, C. Xia, and N. Fang, Broadband Acoustic Cloak for Ultrasound Waves, Phys. Rev. Lett, vol.106, p.24301, 2011.

B. I. Popa, L. Zigoneanu, and S. A. Cummer, Experimental Acoustic Ground Cloak in Air, Phys. Rev. Lett, vol.106, p.253901, 2011.

L. Zigoneanu, B. I. Popa, and S. A. Cummer, Three-dimensional broadband omnidirectional acoustic ground cloak, Nat. Mater, vol.13, p.352, 2014.
DOI : 10.1038/nmat3901

URL : https://dukespace.lib.duke.edu/dspace/bitstream/10161/8401/1/Zigoneanu%20et%20al._Three-Dimensional%20Broadband%20Omnidirectional%20Acoustic%20Ground%20Cloak.pdf

X. Zhu, P T-Symmetric Acoustics". In: Phys. Rev. X, vol.4, p.31042, 2014.

R. Fleury, D. Sounas, and A. Alù, An invisible acoustic sensor based on parity-time symmetry, Nat. Commun, vol.6, p.5905, 2015.

C. Shi, Accessing the exceptional points of parity-time symmetric acoustics, Nat. Commun, vol.7, p.11110, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02145680

R. Fleury, Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator, Science, vol.343, p.516, 2014.

G. Ma, Acoustic metasurface with hybrid resonances, Nat. Mater, vol.13, p.873, 2014.
DOI : 10.1038/nmat3994

Y. F. Zhu, Ultrathin Acoustic Metasurface-Based Schroeder Diffuser, Phys. Rev. X, vol.7, p.21034, 2017.

A. N. Norris, Acoustic cloaking theory", In: Proc. R. Soc. London A, vol.464, p.2411, 2008.
DOI : 10.1098/rspa.2008.0076

URL : http://arxiv.org/pdf/0805.0080

A. N. Norris, Acoustic metafluids, J. Acoust. Soc. Am, vol.125, p.839, 2009.
DOI : 10.1121/1.3050288

C. N. Layman, Highly Anisotropic Elements for Acoustic Pentamode Applications, Phys. Rev. Lett, vol.111, p.24302, 2013.

Y. Chen, Broadband solid cloak for underwater acoustics, Phys. Rev. B, vol.95, p.180104, 2017.

W. Kan, Acoustic illusion near boundaries of arbitrary curved geometry, In: Sci. Rep, vol.3, p.1427, 2013.

R. Zhu, Bifunctional acoustic metamaterial lens designed with coordinate transformation, Appl. Phys. Lett, vol.110, p.113503, 2017.

B. Liang, An acoustic rectifier, Nat. Mater, vol.9, p.989, 2010.

B. I. Popa and S. A. Cummer, Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun, vol.5, p.3398, 2014.

E. F. Kuester, Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Trans. Antennas Propag, vol.51, p.2641, 2003.

C. L. Holloway, Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles, IEEE Trans. Electromag. Compat, vol.47, p.853, 2005.

C. L. Holloway, An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag, vol.54, p.10, 2012.

N. Yu, Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction, Science, vol.334, pp.333-337, 2011.

J. Li, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun, vol.9, p.1342, 2018.

R. Ghaffarivardavagh, Horn-like space-coiling metamaterials toward simultaneous phase and amplitude modulation, Nat. Commun, vol.9, p.1349, 2018.

Z. Liang and J. Li, Extreme acoustic metamaterial by coiling up space, Phys. Rev. Lett, vol.108, p.114301, 2012.

Y. Li, Acoustic focusing by coiling up space, Appl. Phys. Lett, vol.101, p.233508, 2012.

Y. Li, Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space, Appl. Phys. Lett, vol.103, p.63509, 2013.

Y. Li, Experimental Realization of Full Control of Reflected Waves with Subwavelength Acoustic Metasurfaces, Phys. Rev. Applied, vol.2, p.64002, 2014.

B. Liu, All-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification, In: Sci. Rep, vol.7, p.13852, 2017.

C. Shen, A surface impedance-based three-channel acoustic metasurface retroreflector, Appl. Phys. Lett, vol.112, p.183503, 2018.

Y. Li, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, In: Sci. Rep, vol.3, p.2546, 2013.

W. Wang, Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface, J. Appl. Phys, vol.120, p.195103, 2016.

X. Chen, Implementation of acoustic demultiplexing with membranetype metasurface in low frequency range, Appl. Phys. Lett, vol.110, p.161909, 2017.

J. Zhao, Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection, In: Sci. Rep, vol.3, p.2537, 2013.

Y. F. Zhu, Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface, In: Sci. Rep, vol.5, p.10966, 2015.
DOI : 10.1038/srep10966

URL : https://www.nature.com/articles/srep10966.pdf

Y. Xie, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun, vol.5, p.5553, 2014.
DOI : 10.1038/ncomms6553

URL : http://www.nature.com/articles/ncomms6553.pdf

T. , Three-dimensional labyrinthine acoustic metamaterials, Appl. Phys. Lett, vol.103, p.61907, 2013.

Y. Xie, Tapered labyrinthine acoustic metamaterials for broadband impedance matching, Appl. Phys. Lett, vol.103, p.201906, 2013.

K. Tang, Anomalous refraction of airborne sound through ultrathin metasurfaces, In: Sci. Rep, vol.4, p.6517, 2014.

Y. Ding, A broadband acoustic metamaterial with impedance matching layer of gradient index, Appl. Phys. Lett, vol.110, p.241903, 2017.

Y. Li, Metascreen-Based Acoustic Passive Phased Array, Phys. Rev. Applied, vol.4, p.24003, 2015.

B. T. Hefner and P. L. Marston, An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems, J. Acoust. Soc. Am, vol.106, p.3313, 1999.

K. Melde, Holograms for acoustics, Nature, vol.537, p.518, 2016.

B. Liang, B. Yuan, and J. C. Cheng, Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems, Phys. Rev. Lett, vol.103, p.104301, 2009.

X. F. Li, Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode, Phys. Rev. Lett, vol.106, p.84301, 2011.

N. Boechler, G. Theocharis, and C. Daraio, Bifurcation-based acoustic switching and rectification, Nat. Mater, vol.10, p.665, 2011.

X. Jiang, Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer, In: Sci. Rep, vol.6, 2016.

C. Shen, Asymmetric acoustic transmission through near-zeroindex and gradient-index metasurfaces, Appl. Phys. Lett, vol.108, p.223502, 2016.

G. P. Ward, Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities, Phys. Rev. Lett, vol.115, p.44302, 2015.

J. Christensen, Parity-Time Synthetic Phononic Media, Phys. Rev. Lett, vol.116, p.207601, 2016.

K. Ding, Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization, Phys. Rev. X, vol.6, p.21007, 2016.

Y. Li, Tunable Asymmetric Transmission via Lossy Acoustic Metasurfaces, Phys. Rev. Lett, vol.119, p.35501, 2017.

X. Jiang, Convert Acoustic Resonances to Orbital Angular Momentum, Phys. Rev. Lett, vol.117, p.34301, 2016.

J. L. Thomas and R. Marchiano, Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices, Phys. Rev. Lett, vol.91, p.244302, 2003.

D. Baresch, J. L. Thomas, and R. Marchiano, Observation of a SingleBeam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers, Phys. Rev. Lett, vol.116, p.24301, 2016.
DOI : 10.1103/physrevlett.116.024301

URL : https://hal.archives-ouvertes.fr/hal-01402355

A. Riaud, Anisotropic Swirling Surface Acoustic Waves from Inverse Filtering for On-Chip Generation of Acoustic Vortices, Phys. Rev. Applied, vol.4, p.34004, 2015.
DOI : 10.1103/physrevapplied.4.034004

URL : https://hal.archives-ouvertes.fr/hal-01398054

R. Wunenburger, J. I. Lozano, and E. Brasselet, Acoustic orbital angular momentum transfer to matter by chiral scattering, New J. Phys, vol.17, p.103022, 2015.
DOI : 10.1088/1367-2630/17/10/103022

URL : https://hal.archives-ouvertes.fr/hal-01216450

Y. Hertzberg and G. Navon, Bypassing absorbing objects in focused ultrasound using computer generated holographic technique, Med. Phys, vol.38, p.6407, 2011.
DOI : 10.1118/1.3651464

A. Marzo, Holographic acoustic elements for manipulation of levitated objects, Nat. Commun, vol.6, p.8661, 2015.
DOI : 10.1038/ncomms9661

URL : https://www.nature.com/articles/ncomms9661.pdf

J. P. Arenas and M. J. Crocker, Recent trends in porous sound-absorbing materials, J. Sound Vib, vol.44, p.12, 2010.

D. Y. Maa, Potential of microperforated panel absorber, J. Acoust. Soc. Am, vol.104, p.2861, 1998.
DOI : 10.1121/1.423870

Y. Li and B. M. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett, vol.108, p.63502, 2016.
DOI : 10.1063/1.4941338

J. J. Park, Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials, Phys. Rev. lett, vol.110, p.244302, 2013.
DOI : 10.1103/physrevlett.110.244302

X. Cai, Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett, vol.105, p.121901, 2014.
DOI : 10.1063/1.4895617

S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol, vol.17, p.175, 2006.
DOI : 10.1088/0957-0233/17/12/r01

URL : https://eprints.soton.ac.uk/263645/1/MST_review_paper.pdf

R. D. Schaller and V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion, Phys. Rev. Lett, vol.92, p.186601, 2004.
DOI : 10.1103/physrevlett.92.186601

URL : http://arxiv.org/pdf/cond-mat/0404368

R. R. King, 40% efficient metamorphic GaInP/ GaInAs/ Ge multijunction solar cells, Appl. Phys. Lett, vol.90, p.183516, 2007.
DOI : 10.1063/1.2734507

URL : https://aip.scitation.org/doi/pdf/10.1063/1.2734507

A. Sharma, Review on thermal energy storage with phase change materials and applications, In: Renew. Sustain. Energ. Rev, vol.13, p.318, 2009.

D. Pant, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresource Technol, vol.101, p.1533, 2010.

R. L. Harne and K. W. Wang, A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct, vol.22, p.23001, 2013.

S. Rafique, Piezoelectric Vibration Energy Harvesting: Modeling & Experiments, 2017.
DOI : 10.1007/978-3-319-69442-9

S. B. Horowitz, A MEMS acoustic energy harvester". In: J. Micromech. Microeng, vol.16, p.174, 2006.

B. Li, J. H. You, and Y. J. Kim, Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator, Smart Mater. Struct, vol.22, p.55013, 2013.

F. Liu, Acoustic energy harvesting using an electromechanical Helmholtz resonator, J. Acoust. Soc. Am, vol.123, p.1983, 2008.

S. Noh, H. Lee, and B. Choi, A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers, Int. J. Precis. Eng. and Manuf, vol.14, p.1629, 2013.
DOI : 10.1007/s12541-013-0220-x

U. K. Izhar and . Farid, Three degree of freedom acoustic energy harvester using improved Helmholtz resonator, Int. J. Precis. Eng. Manuf, vol.19, p.143, 2018.
DOI : 10.1007/s12541-018-0017-z

C. H. Sohn and J. H. Park, A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators, Aerosp. Sci. Technol, vol.15, p.606, 2011.
DOI : 10.1016/j.ast.2010.12.004

B. Li, Harvesting low-frequency acoustic energy using quarterwavelength straight-tube acoustic resonator, In: Appl. Acoust, vol.74, p.1271, 2013.
DOI : 10.1016/j.apacoust.2013.04.015

W. C. Wang, Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal, Smart Mater. Struct, vol.19, p.45016, 2010.

L. Y. Wu, L. W. Chen, and C. M. Liu, Acoustic energy harvesting using resonant cavity of a sonic crystal, In: Appl. Phys. Lett, vol.95, p.13506, 2009.
DOI : 10.1063/1.3176019

M. Carrara, Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting, Smart Mater. Struct, vol.22, p.65004, 2013.
DOI : 10.1088/0964-1726/22/6/065004

H. Lv, Vibration energy harvesting using a phononic crystal with point defect states, Appl. Phys. Lett, vol.102, p.34103, 2013.
DOI : 10.1063/1.4788810

S. Tol, F. L. Degertekin, and A. Erturk, Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting, In: Appl. Phys. Lett, vol.111, p.13503, 2017.
DOI : 10.1063/1.4991684

URL : https://aip.scitation.org/doi/10.1063/1.4991684

K. H. Sun, Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity, Smart Mater. Struct, vol.26, p.75011, 2017.
DOI : 10.1088/1361-665x/aa724e

B. Parida, S. Iniyan, and R. Goic, A review of solar photovoltaic technologies, Renew. Sust. Energ. Rev, vol.15, p.1625, 2011.
DOI : 10.1016/j.rser.2010.11.032

T. Burton, Wind energy handbook, 2011.
DOI : 10.1002/9781119992714

A. Cuadras, M. Gasulla, and V. Ferrari, Thermal energy harvesting through pyroelectricity, Sens. Actuators A: Phys, vol.158, p.132, 2010.
DOI : 10.1016/j.sna.2009.12.018

B. J. Hansen, Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy, ACS Nano, vol.4, p.3647, 2010.
DOI : 10.1021/nn100845b

URL : http://www.nanoscience.gatech.edu/zlwang/paper/2010/10_ACSN_02.pdf

F. U. Khan and I. , State of the art in acoustic energy harvesting, J. Micromech. Microeng, vol.25, p.23001, 2015.

B. Li, Harvesting low-frequency acoustic energy using quarterwavelength straight-tube acoustic resonator, In: Appl. Acoust, vol.74, p.1271, 2013.
DOI : 10.1016/j.apacoust.2013.04.015

M. B. Assouar, Broadband plate-type acoustic metamaterial for low-frequency sound attenuation, Appl. Phys. Lett, vol.101, p.173505, 2012.

S. Gonella, A. C. To, and W. K. Liu, Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting, J. Mechan. Phys. Solids, vol.57, p.621, 2009.
DOI : 10.1016/j.jmps.2008.11.002

M. Oudich, X. Zhou, and M. Badreddine-assouar, General analytical approach for sound transmission loss analysis through a thick metamaterial plate, J. Appl. Phys, vol.116, p.193509, 2014.
DOI : 10.1063/1.4901997

URL : https://hal.archives-ouvertes.fr/hal-01293189

S. Qi, Acoustic energy harvesting based on a planar acoustic metamaterial, In: Appl. Phys. Lett, vol.108, p.263501, 2016.
DOI : 10.1063/1.4954987

M. Oudich and Y. Li, Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate, J. Phys. D: Appl. Phys, vol.50, p.315104, 2017.

L. Cremer and M. Heckl, Structure-borne sound: structural vibrations and sound radiation at audio frequencies, 2013.

S. Roundy and P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Mater. Struct, vol.13, pp.1131-1142, 2004.

V. J. Ovejas and A. Cuadras, Multimodal piezoelectric wind energy harvesters, Smart Mater. Struct, vol.20, p.85030, 2011.

B. J. Hansen, Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy, ACS Nano, vol.4, p.3647, 2010.

J. Christensen and F. J. Garcia-de-abajo, Anisotropic metamaterials for full control of acoustic waves, Phys. Rev. Lett, vol.108, p.124301, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00810624

J. Li, Experimental demonstration of an acoustic magnifying hyperlens, Nat. Mater, vol.8, p.931, 2009.

J. Zhu, A holey-structured metamaterial for acoustic deep-subwavelength imaging, Nat. Phys, vol.7, p.52, 2011.

M. H. Lu, Extraordinary acoustic transmission through a 1D grating with very narrow apertures, Phys. Rev. Lett, vol.99, p.174301, 2007.

Z. He, Acoustic transmission enhancement through a periodically structured stiff plate without any opening, Phys. Rev. Lett, vol.105, p.74301, 2010.

J. Mei, Dark acoustic metamaterials as super absorbers for lowfrequency sound, Nat. Commun, vol.3, p.756, 2012.

K. Tang, Anomalous refraction of airborne sound through ultrathin metasurfaces, In: Sci. Rep, vol.4, p.6517, 2014.

W. Wang, Design and demonstration of broadband thin planar diffractive acoustic lenses, Appl. Phys. Lett, vol.105, p.101904, 2014.

Y. Li, S. Qi, and M. B. Assouar, Theory of metascreen-based acoustic passive phased array, New J. Phys, vol.18, p.43024, 2016.

Y. Li and M. B. Assouar, Three-dimensional collimated self-accelerating beam through acoustic metascreen, In: Sci. Rep, vol.5, p.17612, 2015.

C. Shen, Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers, Phys. Rev. X, vol.4, p.41033, 2014.

M. Farhat, Frequency-selective surface acoustic invisibility for three-dimensional immersed objects, Phys. Rev. B, vol.86, p.174303, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759739

H. Esfahlani, Acoustic carpet cloak based on an ultrathin metasurface, Phys. Rev. B, vol.94, p.14302, 2016.

C. Faure, Experiments on metasurface carpet cloaking for audible acoustics, Appl. Phys. Lett, vol.108, p.64103, 2016.

R. Kashyap, T. R. Lenka, and S. Baishya, A model for doubly clamped piezoelectric energy harvesters with segmented electrodes, IEEE Electron Device Lett, vol.36, p.1369, 2015.

A. Erturk and D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Mater. Struct, vol.18, p.25009, 2009.

J. Ajitsaria, Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation, Smart Mater. struct, vol.16, p.447, 2007.

M. Fatemi and J. F. Greenleaf, Ultrasound-stimulated vibro-acoustic spectrography, Science, vol.280, p.82, 1998.

J. De-rosny and M. Fink, Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink, Phys. Rev. Lett, vol.89, p.124301, 2002.

E. Betzig and J. K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, vol.257, pp.189-195, 1992.

J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett, vol.85, p.3966, 2000.

N. Fang, Sub-diffraction-limited optical imaging with a silver superlens, Science, vol.308, pp.534-537, 2005.

X. Zhou, B. Assouar, and M. Oudich, Acoustic superfocusing by solid phononic crystals, Appl. Phys. Lett, vol.105, p.233506, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01293190

Z. Liu, Far-field optical hyperlens magnifying sub-diffractionlimited objects, pp.1686-1686, 2007.

D. Lu and Z. Liu, Hyperlenses and metalenses for far-field super-resolution imaging, Nat. Commun, vol.3, p.1205, 2012.

K. Bertoldi, Flexible mechanical metamaterials, Nat. Rev. Mater, vol.2, p.17066, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02118057

J. H. Oh, Elastic Metamaterial Insulator for Broadband LowFrequency Flexural Vibration Shielding, Phys. Rev. Applied, vol.8, p.54034, 2017.

R. Zhu, Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial, Nat. Commun, vol.5, p.5510, 2014.

M. Moleron, M. Serra-garcia, and C. Daraio, Acoustic Fresnel lenses with extraordinary transmission, Appl. Phys. Lett, vol.105, p.114109, 2014.

Y. Cheng, Ultra-sparse metasurface for high reflection of lowfrequency sound based on artificial Mie resonances, Nat. Mater, vol.14, p.1013, 2015.

Y. Li, Unidirectional acoustic transmission through a prism with near-zero refractive index, Appl. Phys. Lett, vol.103, p.53505, 2013.

R. , A. Jahdali, and Y. Wu, High transmission acoustic focusing by impedancematched acoustic meta-surfaces, Appl. Phys. Lett, vol.108, p.31902, 2016.

S. Qi, Y. Li, and B. Assouar, Acoustic Focusing and Energy Confinement Based on Multilateral Metasurfaces, Phys. Rev. Applied, vol.7, p.54006, 2017.

S. Qi and B. Assouar, Acoustic energy harvesting based on multilateral metasurfaces, Appl. Phys. Lett, vol.111, p.243506, 2017.

B. Xie, Coding acoustic metasurfaces, Adv. Mater, p.29, 2017.

S. Qi and . Assouar, Ultrathin acoustic metasurfaces for reflective wave focusing, J. Appl. Phys, vol.123, p.234501, 2018.

, at Nanjing University, where my research topic was ultrasound cavitation and sonoluminescence. I got my Mater's degree in Jun. 2012, and after that I entered into industries. Three years's later, I quitted my job in China and went to France to pursue my PhD degree. From Oct. 2015 to present, my research directions and interest have involved acoustic metamaterials and metasurfaces for wave manipulations and energy harvesting. The acquired research results during my, Autobiography My name is Shuibao (Steven) Qi, and I was born in Feb. 1986 in Hubei, 2009.

S. Qi and B. Assouar, Ultrathin Acoustic Metasurfaces for Reflective Wave Focusing, J. Appl. Phys, vol.123, p.234501, 2018.

S. Qi and B. Assouar, Acoustic energy harvesting based on multilateral metasurfaces, Appl. Phys. Lett, vol.111, p.243506, 2017.

S. Qi, Y. Li, and B. Assouar, Acoustic Focusing and Energy Confinement Based on Multilateral Metasurfaces, Phys. Rev. Applied, vol.7, p.54006, 2017.

S. Qi, B. Assouar, and W. Chen, Effects of bovine serum albumin on a single cavitation bubble, Ultrason. Sonochem, vol.38, p.473, 2017.

S. Qi, M. Oudich, Y. Li, and B. Assouar, Acoustic energy harvesting based on a planar acoustic metamaterial, Appl. Phys. Lett, vol.108, p.263501, 2016.

S. Oh-joo-hwan, Y. Qi, B. Kim, and . Assouar, Elastic Metamaterial Insulator for Broadband Low-Frequency Flexural Vibration Shielding, Phys. Rev. Applied, vol.5, p.54034, 2017.

L. Yong, S. Qi, and B. Assouar, Theory of metascreenbased acoustic passive phased array, N. J. Phys, vol.18, p.43024, 2016.

S. Qi, Y. Li, and B. Assouar, Acoustic Energy Harvesting with Acoustic Metamaterials and Metasurfaces, PHONONICS 2017: 4th International Conference on Phononic Crystals/Metamaterials, Phonon Transport/Coupling and Topological Phononics, p.171, 2017.

B. Assouar and S. Qi, Acoustic Metasurfaces for Energy Harvesting, Bulletin of the American Physical Society, 2018.

B. Assouar, S. Qi, and Y. Li, Acoustic metamaterials and metasurfaces: a transformative approach for phononic insulators and energy harvesting, 101112B. International Society for Optics and Photonics, p.10111, 2017.

B. Assouar, S. Qi, and Y. Li, Metamaterials and Metasurfaces for Acoustic Energy Harvesting, IUTAM Symposium on Acoustic/elastic Metamaterials, Their Design and Applications, 2018.

B. Assouar, S. Qi, and Y. Li, Acoustic metamaterials and metasurfaces: a transformative approach for phononic insulators and energy harvesting, SPIE Photonics West, 2017.

B. Assouar, S. Qi, Y. Li, and J. Oh, Acoustic Energy Harvesting Based on Metamaterials and Metasurface, META, 2017.

B. Assouar, Y. Li, S. Qi, and J. Oh, Acoustic metamaterials and metasurfaces for sound isolation and acoustic energy harvesting, Chinese-French Workshop on Phononic Crystals and Metamaterials, 2017.

B. Assouar, Y. Li, and S. Qi, Metamaterials for Vibration/Sound Isolation and Energy Harvesting, International Workshop on Elastic Metamaterials, 2016.

, 15 model.param.set('x_f', y_f(i))

, 16 model.param.set('y_f', y_f(j))

, 17 model.sol('sol1 '). runAll

, % Scan of the focusing area

, mphinterp(model

, Data_real=real(Data )

(. Data_imag=imag and . Data,

=. Data_total,

, Amplitude=abs(Data )

, % The magnitude of the sound pressure. 30 31 save('Filename1.dat', 'Amplitude

, 32 save('Filename2.dat','Data_Total

Y. Reshape,

, 36 Fig_Intensity =surface

, Listing B.2-Theoretical 3D

%. Z=,

, ); (k * ( sqrt ((fly-y).^2+ flx .^2+(z-flz ).^2)-flx )/2/pi, vol.1

, 14 % phi(y,z) 15 % 16 % for m=1:24 17 % for n=1:24 18 % if phi(m,n) >=11/12|| phi(m,n) <1/12 19 % phi, p.1

, 20 % elseif phi(m,n) >=1/12&& phi(m,n)<1/4 21 % phi, p.2

, 22 % elseif phi(m,n) >=1/4&& phi(m,n) <5/12 23 % phi, p.3

, 24 % elseif phi(m,n) >=5/12&& phi(m,n) <7/12 25 % phi, p.4

, 26 % elseif phi(m,n) >=7/12&& phi(m,n)<3/4 27 % phi, p.5

, 28 % elseif phi(m,n) >=3/4&& phi