N

N

Optimal control of evolution equations and its
applications

Hawraa Nabolsi

» To cite this version:

Hawraa Nabolsi. Optimal control of evolution equations and its applications. Analysis of PDEs
[math.AP]. Université de Valenciennes et du Hainaut-Cambresis; Université Libanaise, 2018. English.
NNT: 2018VALE0027 . tel-01915425

HAL Id: tel-01915425
https://theses.hal.science/tel-01915425
Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01915425
https://hal.archives-ouvertes.fr

Numéro d’ordre: 18/28

éJ i ?rsit,é§(
e%,ence nes

Université Libanaise etd alnaut-Cambresis

These de doctorat

Pour obtenir le grade de Docteur de I’Université de

VALENCIENNES ET DU HAINAUT-CAMBRESIS

et Université LIBANAISE FACULTE DES SCIENCES
Mathématiques appliquées

présentée et soutenue par

NABOLSI Hawraa

le 17/07/2018, a Valenciennes

Ecole doctorale: Science Pour I'Ingénieur (SPI)

Equipe de recherche, Laboratoire: Laboratoire de Mathématiques et ses Applica-
tions de Valenciennes (LAMAV)

Controle Optimal des Equations d’Evolution
et ses Applications

Membres du jury:

Directeurs: Pr. Luc PAQUET Université de Valenciennes et du Hainaut-Cambrésis
Pr. Ali WEHBE Université libanaise
Rapporteurs: Pr. Eduardo CASAS Université de Cantabria, Santander
Pr. Jean-Pierre RAYMOND Université Paul-Sabatier de Toulouse
Président du jury: Pr. Serge NICAISE Université de Valenciennes et du Hainaut-Cambrésis
Examinateurs: Dr. Julie VALEIN Université de Lorraine
Dr. Amina MORTADA Université libanaise

Dr. Hussein FAKIH Lebanese International University






Résumé

Dans cette these, tout d’abord , nous faisons I’Analyse Mathématique du modele ex-
act du chauffage radiatif d'un corps semi-transparent 2 par une source radiative noire
qui 'entoure. Il s’agit donc d’étudier le couplage d'un systeme d’Equations de Transfert
Radiatif avec condition au bord de réflectivité indépendantes avec une équation de con-
duction de la chaleur non linéaire avec condition limite non linéaire de type Robin. Nous
prouvons l’existence et I'unicité de la solution et nous démontrons des bornes uniformes
sur la solution et les intensités radiatives dans chaque bande de longueurs d’ondes pour

laquelle le corps est semi-transparent, en fonction de bornes sur les données,

Deuxiémement, nous considérons le probleme du controle optimal de la température
absolue a l'intérieur du corps semi-transparent €2 en agissant sur la température absolue
de la source radiative noire qui 'entoure. A cet égard, nous introduisons la fonctionnelle
colit appropriée et I’ensemble des controles admissibles Tg, pour lesquels nous prouvons
I’existence de controles optimaux. En introduisant I'espace des états et I’équation d’état,
une condition nécessaire de premier ordre pour qu'un contrdle Tg : ¢t — Tg(t) soit optimal,
est alors dérivée sous la forme d’une inéquation variationnelle en utilisant le théoréme des

fonctions implicites et le probleme adjoint.

Ensuite, nous considérons le probleme de I'existence et de I'unicité d’une solution faible
des équations de la thermoviscoélasticité dans une formulation mixte de type Hellinger-
Reissner, la nouveauté par rapport au travail de M.E. Rognes et R. Winther (M3AS,
2010) étant ici 'apparition de la viscosité dans certains coefficients de ’équation consti-
tutive, viscosité qui dépend dans ce contexte de la température absolue T'(x,t) et donc

en particulier du temps t.

Enfin, nous considérons dans ce cadre le probleme du controle optimal de la défor-
mation du corps semi-transparent €2, en agissant sur la température absolue de la source
radiative noire qui I’entoure. Nous prouvons l'existence d’un controle optimal et nous

calculons la dérivée Fréchet de la fonctionnelle cotit réduite.



Mots-Clés

Fonction de Planck, équation de transfert radiatif avec condition aux limites de type
réflexif, équation parabolique non-linéaire avec terme intégral de degré 0 et condition
aux limites non-linéaire de type Robin, fonctionnelle cotit, controle de la température a
Iintérieur du corps par la température de la source radiative, fonctionnelle cofit réduite,
existence de controles optimaux, espace des états, continuité des états, équation d’état,
différentiabilité Fréchet, théoreme des fonctions implicites, probleme adjoint, équation
parabolique rétrograde, condition nécessaire d’optimalité du premier ordre, inéquation
variationnelle, thermoviscoélasticité, modele de Maxwell en thermoviscoélaticité, formu-
lation mixte de type Hellinger-Reissner, existence et unicité de la solution, controle du
champ de déplacements.



Abstract

This thesis begins with a rigorous mathematical analysis of the radiative heating of
a semi-transparent body made of glass, by a black radiative source surrounding it. This
requires the study of the coupling between quasi-steady radiative transfer boundary value
problems with nonhomogeneous reflectivity boundary conditions (one for each wavelength
band in the semi-transparent electromagnetic spectrum of the glass) and a nonlinear heat
conduction evolution equation with a nonlinear Robin boundary condition which takes
into account those wavelengths for which the glass behaves like an opaque body. We prove
existence and uniqueness of the solution, and give also uniform bounds on the solution i.e.
on the absolute temperature distribution inside the body and on the radiative intensities.

Now, we consider the temperature T of the black radiative source S surrounding the
semi-transparent body €2 as the control variable. We adjust the absolute temperature
distribution (z,t) — T'(z,t) inside the semi-transparent body near a desired temperature
distribution Tj(-,-) during the time interval of radiative heating |0,t;[ by acting on T.
In this respect, we introduce the appropriate cost functional and the set of admissible
controls T, for which we prove the existence of optimal controls. Introducing the State
Space and the State Equation, a first order necessary condition for a control Ts : t — Ts(t)
to be optimal is then derived in the form of a Variational Inequality by using the Implicit

Function Theorem and the adjoint problem.

We come now to the goal problem which is the deformation of the semi-transparent
body €2 by heating it with a black radiative source surrounding it. We introduce a weak
mixed formulation of this thermoviscoelasticity problem and study the existence and
uniqueness of its solution, the novelty here with respect to the work of M.E. Rognes et
R. Winther (M3AS, 2010) being the apparition of the viscosity in some of the coefficients
of the constitutive equation, viscosity which depends on the absolute temperature 7'(x,t)
and thus in particular on the time t.

Finally, we state in this setting the related optimal control problem of the deformation
of the semi-transparent body (2, by acting on the absolute temperature of the black



radiative source surrounding it. We prove the existence of an optimal control and we
compute the Fréchet derivative of the associated reduced cost functional.

Key words

Planck function, radiative transfer equation with the reflectivity boundary condition,
nonlinear parabolic equations with an integral 0-order term, nonlinear boundary condi-
tion of the Robin type, cost functional, controlling the temperature inside the body by
the temperature of the radiative source, reduced cost functional, existence of optimal
controls, state space, continuity of the states, state equation, Fréchet differentiability, Im-
plicit Function Theorem, adjoint Problem, backward parabolic equation, first order nec-
essary optimality condition, variational inequality, Thermoviscoelasticity, Maxwell model
in thermoviscoelasticity, mixed formulation of the Hellinger-Reissner type, existence and

uniqueness of the solution, control of the field of displacements.
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Introduction en Francais

1.1 Le sujet de ma these

Dans l'article "Chauffage radiatif d’une plaque de verre" publié dans la revue électronique
"Mathematics in Action" (MSIA) en 2012 [50], le Pr. Luc Paquet, M. Raouf El Cheikh,
le Pr. Dominique Lochegnies et le Dr. Norbert Siedow, ont considéré une plaque de
verre horizontale infinie d’épaisseur [ surmontée d’une tole noire plane infinie S, a la
température (absolue) Ts(t) émettant des radiations thermiques dans sa direction et ont
démontré I'existence et 'unicité de la solution du probleme couplé dans la plaque de verre
entre une équation de conduction de la chaleur non linéaire soumise a une condition aux
limites de type Robin non-linéaire, et un systéme de problemes aux limites indépendants
pour 'équation de transfert radiatif résolus explicitement dans ce cas.

A sa suite, I'article "Controéle du Chauffage Radiatif d'une Plaque de Verre' publié dans
la revue Afrika Matematika (AFMA) en Juin 2016 [49], le Pr. Luc Paquet y a étudié le
controle de la température absolue T'(z, t) suivant ’élévation  parcourant l'intervalle [0, /]
et I'instant ¢ parcourant I'intervalle de temps fixé ]0, ¢;[ du chauffage radiatif de la plaque
de verre, en agissant sur la température absolue Tg(t) (notée u(t) dans cet article) de la
source radiative noire S. L’espace des états et ’application régissant I’équation d’état y
ont été soigneusement définis pour que cette application (T',Ts) — e(T,Ts) soit Fréchet
différentiable et que sa dérivée par rapport a T au point (7, 7Ts) soit inversible. Ceci
lui avait permis d’appliquer le théoreme des fonctions implicites pour calculer la dérivée
de la fonctionnelle cofit réduite J(Ts) en un controle Ts € H'(]0,t[), et de trouver la
condition nécessaire du premier ordre pour qu'un contréle soit optimal sous la forme d’une
inéquation variationnelle.

Nous avons étendu le résultat d’existence et d’unicité de la solution de I'article MSTA
(2012) [50], et la condition nécessaire du premier ordre pour quun controle soit optimal
de l'article AFMA (juin 2016) [49], & un nouveau cadre, considérant cette fois pour corps
en verre, un domaine borné 2 de R? avec une frontiere de classe C* (resp. C1!), entouré

11



CHAPTER 1. INTRODUCTION EN FRANCAIS

d’une source radiative noire S a la température absolue T's(¢) a U'instant ¢.

Le but du chauffage radiatif du corps en verre ) par la source radiative S est de
déformer ce dernier le plus pres possible d’une forme requise. Le probléme du controle
optimal de la déformation en agissant sur la température absolue Ts(t) de la source de
chaleur radiative S sera étudié dans le cadre des équations linéaires de la thermoviscoélas-
ticité en ce qui concerne la déformation, la dépendance en la température absolue T'(x,t)
du corps €2 dans I’équation constitutive de Maxwell via la viscosité, elle étant non-linéaire.

1.2 Présentation et discussion des résultats obtenus

dans ma theése

1.2.1 Chapitre 3: Couplage de I’équation de conduction ther-

mique avec I’équation de transfert radiatif

Dans ce chapitre, nous analysons le probleme mathématique exact, en modélisant le
chauffage radiatif du corps semi-transparent () fait de verre, du temps initial 0 jusqu’au
temps final de chauffage ¢;, par une source radiative S: une surface noire S qui ’entoure,
a la température absolue Ts(t) (0 <t < t;). L’application principale de ce probléeme est,
en chauffant le corps semi-transparent €2, de lui permettre de se déformer en raison de
son propre poids et de controler sa déformation (ou son champ de contraintes internes):
voir par ex. les chapitres 4 et 5 de cette these, et nombre de papiers [3], [53], ..., pour
n’en citer que quelques-uns. Nous devons donc analyser le couplage entre les problemes
aux limites de transfert radiatif:

v- Vo l¥(z,t,0) + ke I¥(2,t,0) = K BY(T(2,1)), in QxV,

T4, ,0) = gl - o), 1, 12, 0)) + (1 py ([ - o) BE(Ts(0), (1.1)

on ',
ouI'_ := {(z,v) € I X V; v, -v < 0},et vy(z,v) :== v — 2(v; - V)V, un probléme
pour chaque bande de longueur d’onde [Ag, Apy1| (K = 1,..., M) dans laquelle le verre

se comporte comme un milieu semi-transparent, et le probleme de conduction thermique

nonstationnaire et non linéaire [50], [63]:

12



1.2. PRESENTATION ET DISCUSSION DES RESULTATS OBTENUS DANS MA

THESE
M M
cymg L (2, 1) = kpAT (2, 8) — S 4mr BE(T (2, 6)) + 3 ki / %z, t,v)dp(v),
k=1 k=1
in Q= Qx]0,ty,
or o (1.2)
kG5 (. t) = he(T(@,0) = To) + 7 [ ex[B(T(2,1),) = B(Ts(t), N)JdA
Ao
on X := 00x]0, ],
T(x,0) = To(x), on Q.

T(x,t) désigne la température absolue au point x et a l'instant ¢. Dans les (1.2)(; de
conduction de la chaleur:

Akt1
Iz, t,0) = / I(z,t, 0, \)dA (1.3)
Ak

radiative spectrale au point z € €2, au temps t € [0,t;], dans la direction (orientée) v €
V := S, (la sphére unité dans R?), et de longueur d’onde A [46]. De méme B (T (x,t)) :=

Ak+1
n2 [ B(T(w,0), )X, ot B(T,\) i= —2G—

X A5 (eXT —1)

est la fameuse fonction de Planck (voir [46], [68]), donnant 'intensité spectrale ra-
diative a la longueur d’onde A de tout corps noir a la température absolue T, intensité
radiative qui dans ce cas est indépendante de la direction v. C et Cs sont des constantes
positives dont les valeurs sont par exemple rappelées dans [50] et n, I'indice de réfraction
du matériau semi-transparent (pour le verre silicate sodo-calcique: ny ~ 1.46 [60]). Pour
des raisons relevant des mathématiques, dans [50], les auteurs ont étendu le domaine de
définition de la fonction de Planck a tout nombre réel T en posant B(T, A) := 0, VI < 0.
Dans la condition aux limites (1.2) ), v désigne le champ normal unitaire sortant le long
de la frontiere de €, et v, sa valeur au point z € J€). p, dans la condition aux limites
(1.1) (i) désigne le coefficient de réflectivité: il s’agit d'une fonction continue, décroissante
(au sens large), strictement positive, de l'intervalle [0, 1] dans lui-méme égale a 1 pres
de 0. Pour plus de détails sur cette fonction, voir le chapitre 2 de cette these. Notons
dans la condition aux limites (1.1)¢), que l'expression py(|v, - v|) dépend non seulement
de = mais aussi de v, ce qui n’est pas le cas dans ([19], voir (33) p.258). En outre, notre
probléme ne rentre pas dans les exemples considérés dans [62, p.4].

Mentionnons, que pour que nos conditions aux limites non homogenes dans (1.1) et
(1.2) soient physiquement réalistes, nous devrions supposer que notre domaine ) est
convexe. Cependant, nous étudierons le probleme couplé (1.1) - (1.2) dans un domaine
arbitraire 2 de R? de classe C*, nos conditions aux limites dans (1.1) et (1.2) ayant un
sens avec cette hypothese de régularité sur (2.
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CHAPTER 1. INTRODUCTION EN FRANCAIS

Des détails supplémentaires concernant le probleme (1.1) (resp. (1.2)), seront donné
dans la sous-section 3.2.1 (resp. sous-section 3.3.1) de cette these, en particulier concer-

nant la nomenclature.

De nombreux problémes similaires ont été étudiés dans la littérature, principalement
pour réduire la complexité de calcul du probleme original (1.1) - (1.2), en considérant
A la place des problémes aux limites (1.1) pour les intensités radiatives I*(z,t,v), des
problemes aux limites elliptiques approchés pour les quantités d’intérét dans (1.2), a
savoir les rayonnements incidents [46] p¥(.,.) := / I¥(.,.,v)du(v) (dp indiquant dans cette

v
formule la mesure de surface sur V= S;). En effet, ces quantités multipliées par ky,

sont les sources volumiques de chaleur par unité de temps, apparaissant dans 1’équation
de conduction thermique non linéaire (1.2)¢;). En particulier, les Py approximations
par harmoniques sphériques de v — I¥(x,t,v) ont été considérées par de nombreux
auteurs [46]. Les approximations Py simplifiées avec conditions aux limites appropriées
dérivées des principes variationnels, les méthodes Py de la théorie des réacteurs nucléaires
[70], [4], ont été introduites dans la théorie du transfert radiatif de chaleur dans [40] et
[38], mais ces méthodes approchées ne sont valables que pour des corps optiquement
épais 2. En particulier, la méthode SP; dont l'idée originale est I'approximation de
I*(z,t,v) par une fonction affine en la variable v ([46], p.473) I*(x,t,v) ~ a(z,t) +
b(z,t) - v, avec a(z,t) € R et b(z,t) € R3, a été utilisé dans de nombreux articles [39],
[14], ..., pour n’en citer que quelques-uns. Dans [64], dans 1'étude du refroidissement
thermique d’un disque de verre mince circulaire, les intensités radiatives ont été calculées
par la méthode du tracé en arriere de rayons thermiques jusqu’a un point suffisamment
lointain, que pour avoir une influence négligeable sur 'intensité radiative calculée. Ces
auteurs montrent numériquement, que méme pour le verre mince, le rayonnement interne

M
émis ou absorbé a l'intérieur du verre, représenté par le terme —Z47T/€kB§(T($,t>> +
k=1

k=1
ignoré (une observation similaire a été faite pour les plaques de verre dans [48]). Dans

M
Z/ik/[k(l’, t,v)du(v) dans I'équation de conduction thermique (1.2)(;), ne peut pas étre
14

[56], 'auteur consideére les problémes aux limites de transfert radiatif exact (1.1) couplés
avec le probléme aux limites pour ’équation de conduction thermique instationnaire (1.2)
écrit en coordonnées cylindriques pour simuler le processus de refroidissement d’un tube
de verre de quartz axisymétrique. La résolution numérique par la méthode des ordonnées
discretes, combinée avec le schéma par éléments finis SUPG, des équations de transfert
radiatif tridimensionnel avec réflexion spéculaire a la frontiere, contenant (1.1) comme un
cas particulier, a été étudié dans [35], mais le couplage avec I’équation de conduction de
la chaleur n’est considéré dans cet article. En 1-D, c’est-a-dire pour les plaques infinies,
I'analyse mathématique d’un probleme connexe 1lié a (1.1) - (1.2) a été faite dans [50].
L’estimation de lerreur a priori pour le probléeme semi-discrétisé a été faite dans [48] et
I’analyse mathématique du probleme de controle optimal de la température a 'intérieur
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1.2. PRESENTATION ET DISCUSSION DES RESULTATS OBTENUS DANS MA
THESE

dans la plaque par la température Ts(.) de la source radiative a été faite dans [49].

Cependant, a notre connaissance, I’analyse mathématique du probleme exact (1.1) -
(1.2) en dimension 3 n’a pas encore été faite. D’ou le but du chapitre 2 de cette these
de combler ce vide et de prouver I'existence et 1'unicité de la solution pour le probleme
exact (1.1) - (1.2). Nous donnons aussi des bornes uniformes sur la solution en termes
de bornes sur les données que sont la température ambiante de l’air sec environnant
T, apparaissant dans la condition aux limites (1.2)¢;, la condition initiale Ty(-) pour
la température absolue dans €(1.2) (), et la température absolue Ts(-) en fonction du
temps de la source radiative noire entourant ). En conséquence, nous obtenons également
des bornes sur les intensités radiatives (voir Corollaire 3.4), ce qui pourrait étre utile pour
définir un critere d’arrét, lors de 'utilisation de la méthode du tracé de rayons en arriere
[64] pour résoudre numériquement nos problémes aux limites (1.1) pour 'équation de
transfert radiatif.

Dans la section 2, nous prouvons pour chaque k = 1,..., M, I'existence et 'unicité
de la solution dans I'espace W?(Q x V) [19] (notée H} in [1], Chapitre 2), du probleme
aux limites de transfert radiatif (1.1) avec la condition limite non homogene (1.1) ().
En particulier, nous utilisons les théoremes de trace de M. Cessenat pour les éléments
de l'espace WP(Q x V) [12], [13], [19, pp.252-253] et la théorie des opérateurs dissipatifs.
Parmi les principales étapes, figure dans la sous-section 2.3, la preuve de la dissipativité et
de la fermeture de 'opérateur A = —v - V, défini par (3.8). La preuve de la dissipativité
de A est plutdt subtile et repose sur le fait que le coefficient de réflectivité p,(-) est égal a
1 pres de 0, ce qui implique que py(|vy - v|) =1 si |v, - v| est suffisamment petit, la ainsi-
appelée “propriété de réflectivité totale pour les incidences rasantes”’en Optique. Dans la
sous-section 2.4, nous montrons que l'image de AI — A est égale a LP(Q2 x V), VA > 0,
sans utiliser le résultat abstrait Théoreme 3 in [19, p.254] vu que sa condition (22) semble
difficile & vérifier. L’idée est de considérer un élément g € L (Q2x V') “orthogonal & I'image
de (\I — A) 7, d’ott I'on déduit que (AI — A)g = 0 ot A est un opérateur de définition
similaire a celle de A dont on démontre en se ramenant a A qu’il est aussi disspatif. De
I'inégalité de dissipativité suit que g = 0. Ceci démontre que 'image de (A — A) est
dense dans LP(2 x V') et donc égale en fait a LP(Q x V'), A étant un opérateur fermé.
Mentionnons, que le papier [62], ne donnerait pas dans le contexte L?, la forme explicite
du domaine (3.8) du générateur A, mais seulement le domaine exact d’un prégénérateur
(62, p.9].

Dans la section 3, nous démontrons tout d’abord l'unicité de la solution 7'(.,.) du
probleéme couplé (2.2) - (2.1) dans l'espace de Sobolev W (0,ty) [18]. Ensuite, dans le but
de prouver 'existence de la solution 7'(.,.), supposant que les données sont bornées, on
définit le convexe fermé S, sous-ensemble de L*(0,;; L*(§2)) défini par:

S = {T € L*(0,t;; LP(Q)); V't €]0,t;[: Vo € Q: T, < T(x,t) < Ts(t)},
et aussi un probléme de point fixe en remplacant dans (1.2) T by T, sauf dans le terme
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volumique source de chaleur hp(z,t) = Z“k / IE(x,t,v)du(v). Cela nous permet de

découpler notre probleme (1.2) - (1.1), tout en nous réduisant a un probléme initial
aux limites de type parabolique semi-linéaire. Nous démontrons que pour tout 7' € S,
ce probleme de point fixe admet une solution unique 7 € S, et que sous I’hypothése
Ts € H*(0,tf) et d% > 0 p.p sur |0, %[, que application ® : T" T est continue de S
dans S avec son image relativement compacte dans L*(Q). La preuve que lapplication
® laisse stable S nécessite d’établir des sortes de “principes du maximum ”pour notre
probléme de point fixe (voir la sous-section (3.3.4)). La preuve de la continuité de &
repose sur les bornes uniformes des intensités radiatives établies dans les Propositions
3.11 et 3.10, en conjonction avec l'estimation a priori (7.33) de [71, p.377] pour une
équation parabolique semi-linéaire. En utilisant le théoreme de Schauder, nous concluons
a 'existence dune solution faible du probleme couplé (1.2) - (1.1), obtenant en outre des
bornes uniformes sur la solution 7T'(x,t) et sur les intensités radiatives.

Ensuite, nous avons généralisé le résultat en supprimant la condition % > 0 sur

Ts. La preuve procede en considérant un nouveau sous-ensemble convexe fermé C dans
L2(Q) = L2(0,t; L2(2)) ot Q := Qx]0, ;[ défini par

C:={T e L*(Q);Vte0,t;:VeeQ: T <T(x,t)<T}.
ou les nombres fixes T, T e R?%  satisfont a

T,<T,
T, for a.e. x €4, (1.4)
T, for a.e. t €]0,t;].

T, <
To(x fo
Ts(t

et nous prouvons l'existence d’une solution faible au probléme (1.2) appartenant a C.

NN
ININ A

T
)
)

INIA A

Addendum: le 25 Juin 2018, suite a un e-mail de ResearchGate nous avons eu
vent de travaux du Mathématicien Russe Andrey A. Amosov travaillant a la National
Research University “Moscow Power Engineering Institute ”. En particulier, nous avons
pris connaissance de son travail intitulé: “Unique Solvability of a Nonstationary Problem
of Radiative-Conductive Heat Exchange in a System of Semitransparent Bodies "publié
dans le Russian Journal of Mathematical Physics en 2016 Vol. 23, N°3, pp.309-334. A
noter que notre travail [51] relatif au chapitre 2 de cette these avait deja été soumis en
2016 au Journal “Mathematical Methods in the Applied Sciences ”, plus précisément le
26 Aoit 2016. Cet article de A.A. Amosov est intimement lié au chapitre 2 de notre
these mais fort heureusement les méthodes que nous avons utilisées différent de celles
utilisées par A.A. Amosov. De plus, concernant ’équation de conduction de la chaleur,
A.A. Amosov considere une condition au bord de Neumann homogene (cfr. formule (1.3)
p.311 de cet article), en particulier sans le terme intégral de notre condition au bord
(1.2) 1), terme prenant en compte les longueurs d’onde A > Ay pour lesquelles le verre
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se comporte comme un corps opaque. La démonstration de I'existence de la solution du

probléme couplé dans cet article repose sur la méthode de Galerkin (cfr. Theorem 7.1
p.327). Quant a la démonstration de l'existence de la solution pour nos problémes aux
limites (1.1) relatifs a I’équation de transfert radiatif (ETR) 'auteur renvoit a un de ses
articles précédents de 2013 publié dans le Journal of Mathematical Sciences United States,
Vol. 191, N°2, May 2013, pp.101-149 intitulé¢ “Boundary Value Problem for the Radiation
Transfer Equation with Reflection and Refraction Conditions ”. Sa démonstration procéde
par une méthode de point fixe en se ramenant a la résolution d’'une suite de problemes de
Dirichlet inhomogenes sur I'_ pour 'ETR dont sa limite est la solution du probleme aux
limites avec la condition au bord de réflectivité. Cette méthode semble la mise en oeuvre
dans le cadre de I’Analyse Mathématique de la méthode du tracé de rayons en arriere.
Au contraire notre démonstration repose sur I’établissement de la maximale-dissipativité

de l'opérateur A dont le domaine est défini par la condition de réflectivité homogene.

1.2.2 Chapitre 4: Controle du chauffage radiatif d’un corps

semi-transparent

Au chapitre 3, j’ai travaillé sur I'extension a 3 — d du résultat 1 — d de 'article [49] publié
dans AFMA en juin 2016 par mon superviseur le Pr. Luc Paquet, qui consiste a trouver
la température la plus adéquate Ts(t),t € [0, de la source rayonnante noire S, pendant
le processus de chauffage du corps semi-transparent €2, un ouvert borné de classe C! de
R3, afin d’obtenir la température (z,t) — T'(x,t) du corps semi-transparent € pendant le
temps fixé de chauffage radiatif 0 < ¢ < ¢, aussi proche que possible d’'une distribution
de température désirée donnée (x,t) — Ty(x,t). Afin de prendre également en compte le
cott du controle T, nous considérons donc la fonctionnelle cotit J définie par:

J: L*(Q) x H'(]0,t;]) — R : (T, Ts) H; / (T(x,t) — Ty(x,t))*dz @ dt

] (1.5)
Oy
+ §||Ts = Tslln ot

fonctionnelle que nous voulons minimiser, 7' étant assujettie a Ts(.) par 1’équation de
conduction de la chaleur non-linéaire (1.2), et T(.) assujetti a appartenir a I’ensemble des
controles admissibles U,q que nous définissons maintenant. Tout d’abord nous définissons
notre espace des controles: U := H'(]0,t;[), muni de la norme H'. Nous considérons
comme ensemble des controles admissibles U,q:

Usa = {Ts € H'(J0,4;]); T < Ts(t) < T, Vt €]0,t;[}. (1.6)

where T and T satisfy (1.4).
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Uaa est un sous-ensemble convexe et fermé de espace de Hilbert U := H'(]0,¢[). Nous
avons prouvé dans le chapitre précédent (voir aussi I'article [51]), que pour Ty € U,gq, le
probléme initial aux valeurs frontieres (1.2) posseéde une solution faible bornée unique

T(T5) € (T € L2015 Q) S € L2(0,15: (' (@))). (L.7)

Cela nous permet de définir le cotit fonctionnel réduit:
J: U — R: Tg — J(T(Ts), Ts). (1.8)

Dans la section 3, nous démontrons I'existence d’un contrdle optimal ¢ad de Ts € U,y tel
que J(Ts) := inf J(v) .

vEU q
Ensuite, dans la section 4, nous choisissons 1'espace des états E et I'application contraig-
nante (T, Ts) +— e(T,Ts) de maniére judicieuse pour qu’elle soit Fréchet différentiable
et que sa dérivée par rapport a la température 7" au point (7', Ts) soit inversible. Nous
définissons 'espace des états ' comme 'ensemble de tous les

dT -

T e {T € 17(0,t5 H'(Q): 7 € L0, (H'(2))")} N C(Q)
tels que (c,my9k — k,AT) € L'(Q) et k,%E € L¥(X) au sens des distributions, ot
r €]2.5,2.72] et s* > 4. Maintenant, nous donnons la définition précise de I’application

contraignante e(-, ):

e: ExU— L'(Q) x L (X) x C(Q)
(T, Ts) — e(T,Ts) = (e, ea,e3)(T, Ts)

ei(T,Ts) = mg%T kAT — (T — h(T, Ts),
e>(T, Ts) = khZT + hT +O(T) — O(Ts), (19)

es(T, Ts) = T(-,0).

Les quantités ¢(T'), h(T, Ts), O(T') et O(Ts) sont définies par les formules:

M
PY(T) = —Z47T/£kBk(T), VT € R,
k=l
hr g (7, t) Zﬁk/]TTS ,t,v)dp(v), (1.10)
+o0
o) :=n / exB(T, N\, VT € R.
Ao
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L’équation d’état s’écrit alors e(T,Ts) = (0, h.1T,,Ty). A la section 5, nous appliquons

le théoreme des fonctions implicites afin de calculer la dérivée du cotit fonctionnel réduit
J(Ts) en un controle Ts € H'(]0,t;]) et de donner la condition nécessaire d’optimalité
du premier ordre pour qu’un controle Ts soit optimal par rapport au cotit fonctionnel J,

sous forme d’une inéquation variationnelle que voici:

ty

%mk/{/ [(47?—//%(/%—A)_llngd,u(v)>nv()l(TTS;x,t)} dx}

k=1

TS0 0lt) — To(W)d + [ ([ (T2, (@) G (Ts(0) w(t) — Ts(0)dt

0 0
+0r [ (Ts(t) — Ts.al(t))(v(t) — Ts(t))dt + b, /(Ts(t) — Tsa(t))(6(t) = Ts(t))dt > 0,0 € Uaa,

(1.11)
ou Ny est la solution au sens faible du probleme (4.39) et np est la trace de ny,, sur
X = 00x]0,ts].

Dans le cas 1 — d en espace [49], ¢cad celui d’une plaque de verre, ott un probléme de
controle de ce type a été étudié, 'auteur de cet article utilise entre autres dans ce cas,

une formule intégrale explicite pour hyp,: la formule (6) [49], ce qui n’est pas possible en

3—d.

1.2.3 Chapitre 5: Les équations de la thermoviscoélasticité

Jusqu’a présent, nous avons étudié le probleme du chauffage radiatif d’'un corps en verre
considéré comme un ensemble ouvert borné 2 de R? avec une frontieére de classe C* au
moins. Nous avons également étudié le probleme de contrdle optimal associé.

Apres cela, nous arrivons a 1’étude du probleme but, qui consiste a déformer le volume
de verre () en le chauffant avec une source radiative noire tout autour, et a controler sa
déformation. A titre d’exemple industriel, la technologie de I'affaissement du verre sous
son poids propre, qui consiste a chauffer le verre jusqu’a une température suffisamment
élevée pour lui permettre de s’affaisser, est utilisé pour fabriquer des produits industriels
en verre tels que pare-brises, miroirs ou lentilles.

Nous étudions l'existence et 'unicité de la déformation de €2, résultant du chauffage
radiatif du corps semi-transparent €2 par la source noire S. Dans le cadre de la théorie
de la viscoélasticité, M.E.Rognes et R.Winther ont considéré dans leur publication [59],
pour le modele de Maxwell de la viscoélasticité, une formulation mixte de type Hellinger-
Reissner avec relaxation de la symétrie en introduisant un multiplicateur de Lagrange,
formulation mixte qui présente ’avantage d’éviter les équations intégrodifférentielles com-
pliquées liant le champ des tenseurs des contraintes internes (x,t) — o(x,t) au champ
de tenseurs du taux de déformations. Dans cette formulation mixte, les inconnues sont
le champ de tenseur des contraintes internes (z,t) — o(z,t), le champ des vitesses
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(x,t) —> a(z,t) du champ de déplacements (z,t) — u(z,t) (nous noterons aussi t par
v) et la composante d’assymétrie (z,t) — p(z,t) du gradient de u. La nouveauté, est
qu’ici, nous considérons le probleme de la thermoviscoélasticité au lieu du probléeme de
la viscoélasticité [59], de sorte que nous avons maintenant toute une famille d’opérateurs

Ay(.,t) indexée par le temps t € [0,]:

Aol ) LX) = [LQ(Q)]M

1+v
o e ~ w0,

(1.12)

ou 1(7T'(x,t)) désigne la viscosité au point z € et au temps t € [0,%f], qui dépend
de la température absolue T'(z,t), et ou I3 dénote la matrice identité d’ordre 3. Au
contraire, dans larticle de M.E.Rognes et R.Winther ([59], page 963), on suppose que Ay
est indépendant du temps ¢. Nous supposons que la viscosité 7(.) est une fonction positive
strictement décroissante, définie et C* sur R¥.

Nous dénotons par E le module de Young et par v le coefficient de Poisson (0 < v < 3).
Désignant par £(ug), le champ des tenseurs de déformations linéarisé correspondant au
champ de déplacements élastiques ug, nous avons:

1+v v

7 0~ Etr(a)lg,

e(up) =
ou o désigne le champ des tenseurs de contraintes. Le taux de déformations correspondant

au taux des déplacements visqueux wuy, est donné par:

) —1+ycr— v r(o
i) =y gy

Maintenant, le champ de déplacement total est: u = ug + uy. Cela implique que:

e(i) = e(ip) + (i)

=5 — Zir(o) s + (V)O' n(’if)tr( o)ls.

Ainsi, nous avons 1’équation reliant la dérivée temporelle du champ de déplacements wu,
au champ des contraintes o:

c(i) = * ;”a; - %w(d)g + 2;;)”0 - n<”T)tr(a)I3, (1.13)

appelée “loi de comportement de Maxwell . A cette équation, on joint I’équation d’équilibre:

—div(o) =g — p VT, (1.14)

ou nous avons négligé les forces d’inertie, c¢’est-a-dire que nous considérons le probleme
“quasi-statique ”. = 1E2 a, ou « dénote le coefficient de dilatation linéaire. g indique

un champ de force volumique agissant sur €2, par exemple son poids volumique. Nous
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supposons au moins que g € L*(Q)?, ot @ désigne le “cylindre”Qx]0,¢;[ dans 1'espace-

temps R x R. T étant la solution faible de ’équation de la conduction thermique,
I'équation (1.2), T € L*(]0,¢;[; H'(Q2)), et donc VT € L*(Q)*. A ces deux équations,
la loi constitutive (1.13) de Maxwell et 1’équation d’équilibre (1.14), nous joignons une

condition initiale pour le champ des contraintes o

7(.,0) = C. (1.15)

Enfin, la frontiere 02 du domaine ) est partitionnée en deux sous-ensembles ouverts
disjoints T'p et 'y de 99 tels que I'p UTy = 99Q. Sur I'p, nous imposons que le champ
de vitesse des déplacements @ soit égal a 0, et sur 'y, nous imposons: pas de tractions,
c’est-a-dire que (o.v), = 0 ol v désigne le champ normal unitaire sortant le long de
0f). Nous écrivons maintenant une formulation faible pour ces deux équations et ces
conditions aux limites. Considérant un champ de contraintes test 7 € H(div; Q)? tel que
(T.V)|FN = 0, mis a part cela arbitraire. Nous avons par la formule de Green:

/E(U)Zle‘— T.V, V) /le vd:c—/p T dx, (1.16)

Q

pour tout v € H*(Q)?, ot p(v) := (Vv —(Vv)T). Appliquant la formule de Green (1.16)
a (1), en utilisant la condition aux limites 4, = 0, on obtient de la loi de comportement
de Maxwell (1.13):

[1k0 — str(o)E] Tm+/iﬂa—f(®kk7m

Q 1.17
—|—/ div(7).0 dx + /,O(U) 17 dr =0, o
0 Q

Vr € H(div;Q)? tel que (7.v);py = 0. Pour presque tous les t €]0,1y[, cette équation
exprime sous une forme faible I’équation constitutive de Maxwell (1.13) et la condition
aux limites ur, = 0 pour la vitesse de déplacements %. Notons que, formellement au
moins, si u(.,.) satisfait & I'instant 0, u(.,0);r, = 0, alors nous aurons u(.,t)r, = 0,
V't €]0,t7[. La condition frontiere (O'.V)|FN = 0 est une condition au bord essentielle
de la la formulation mixte et est donc imposée dans la définition de 1’espace fonctionnel
Hr,, (div; Q)3: nous essayons de trouver

o(.,t) € Hr, (div; Q)?,

ou Hr, (div; Q) dénote le sous-ensemble fermé des champs de vecteurs de H(div;€2) dont
les traces normales sur 'y sont nulles. Maintenant a la forme faible de la loi de comporte-
ment de Maxwell et de la condition aux limites @|I'p = 0, naturelle pour la formulation
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mixte, nous devons ajouter une forme faible de I’équation d’équilibre (1.14):

/dw w dx+/ — B VT)w dr =0, Yu € [L*(Q)]. (1.18)

Nous devons par ailleurs exprimer sous une forme faible V't €]0, ¢4[, la symétrie du tenseur
des contraintes o(.,t), de sorte que nous obtenons ’équation:

/div(a).w dx + /(g — [ VT)w dx + /0 :&dr =0, Yw e L*(Q)?,
O Q (1.19)
vE € LA

skew

ou
}3><3

= {ce [L@)] Tie+ " =0}
A ces formes faibles (1.17) (resp. (1.19)), des équations (1.13) (resp. (1.14) et de la
symétrie de X), nous devons joindre la condition initiale (1.15). Supposant que g €
H(0,t5; L*(Q)?), que la température initiale dans €, T, est égale a la température am-
biante T,, que Ts € H*(]0,t¢[) et satisfait a Ts(0) = T}, que la condition initiale ¢ pour
o vérifie ¢ € Hr, (div;Q)3, ¢ = ¢T et div¢ = —(g(.,0) — BVT(.,0)), nous prouvons qu'il
existe un unique triple

3x3

(0,0, p) € H'(0,t5; Hr, (div; Q)*) x L2(0,t; LA(Q)*) x L*(0,t5; [L*(Q)] )

tel que o(.,0) = ¢ et tel que V't €]0, [ les équations (1.17) et (1.19) soient vérifiées,
c’est-a-dire:

skew

[o(0) = satay ))tr( o)) T d:c—i—/ Lvg( 1) — 2o (., )] : 7 da
Q
+/d1v dm—l—/p de—O V7 € Hr, (div;Q)3,

/le )ow dx +/ - VT(.,t)).w dx + /0(.,t) :&dr =0, Yw € L*(Q)?,

1.2.4 Chapitre 6: Controle des déplacements dans le cadre de
la thermoviscoélasticité

Dans ce chapitre, nous étudions le controle de la déformation de €2, résultant du chauffage

radiatif du corps semi-transparent €2 par la source radiative noire S. Tout d’abord, nous
t

introduisons le probleme de contrdle. Nous définissons V¢ €]0,ts[: @(t) := / v(s) ds. Par
0
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le théoreme d’Ascoli ([20], p.143), l'application qui envoie v — @ de L*(0,tp; H*(2)?)
dans T'espace C([0,#]; L*(€2)?) est compacte. Ainsi, si nous avons une suite (v,),~, qui

converge faiblement dans L*(0,t; H'(R2)*), la suite correspondante (,),, convergera
fortement dans C'([0,ts]; L*(2)?) et a fortiori dans L?(0,ts; L*(2)?). Maintenant, nous
définissons le nouvel ensemble de contrdles admissibles:

Uaa = {Ts € H*(0,t;]); T < Ts(t) < T, Vt €]0,t;], Ts(0) = T,.}

et le colit fonctionnel

T [L2Q) < H*(]0,t4]) = R

1 5
(@, Ts) — 5/\6(%15) - dula, O dev@dt+ :
Q

H2(10,ts[) 7

Ts — T4

ot @y(.,.) € [L*(Q)]? désigne le champ désiré donné des déplacements et T2 € H?(]0, ;)
une évolution donnée de la la température absolue de la source radiative noire S de laque-
lle T's ne devrait pas étre “trop loin 7, la signification de ce “trop loin ”étant modulée par
le coefficient strictement positif 8, dans la définition du cotit fonctionnel J, coefficient qui
peut étre choisi tres petit. Comme nous I'avons dit plus haut, T et T dénotent deux nom-
bres réels strictement positifs satisfaisant les conditions (1.4)(;) et (1.4)). Observons que
Uqa est un sous-ensemble convexe fermé de H?(]0,¢;[). Nous prouvons que l'application
de l'ensemble ouvert U,q := {Ts € H2(]0,t;]); 5 < Ts(t) < 2T, V¢ € [0,t], Ts(0) = T}
into L*(0,tp; Hy (Q)*) qui envoie Ty sur @ est continfiment Fréchet différentiable. En
conséquence, le cotit réduit fonctionnel

J: Uy = {Ts € HQ(]O,th;% < Ts(t) < 2T, ¥t € [0,t4],Ts(0) = T,} = R
T o 3 [ 10(Ts)(w,t) - tala, O do s de+ 5| Ts — 74
Q

H2(]0,t¢[)

est également continfiment Fréchet différentiable. En particulier, si T € U,s est un

contrdle optimal, il satisfait a I'inégalité variationnelle:

J'(Ts)(Ts — Ts) > 0, VT € Usg.
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Introduction in English

2.1 The subject of my thesis

In the paper "Control of the Radiative Heating of a Glass Plate " published recently by
Afrika Matematika (AFMA, June 2016)[49], Pr. Luc Paquet studied in it the control of
the temperature T'(x,t) at time ¢ along the flat glass thickness x during the fixed interval
time of heating |0,¢¢[, by acting on the temperature u(t) of the black radiative source S,
placed above the glass plate. A first order necessary condition in the form of a variational
inequality has been derived for a control u : t — u(t) to be an optimal control. The
state space and the constraining mapping have been carefully defined in order for the
constraining mapping (7', u) — e(T,u) to be Fréchet differentiable and its derivative with
respect to the temperature 7" at a point (7, u) to be invertible. This had allowed him to
apply the implicit function theorem in order to compute the derivative of the reduced cost
functional .J(u) at a control u € H'(]0,#;[), and to find the first order necessary condition
for a control to be optimal.

In the paper published in the electronic journal "Mathematics in Action" (MSIA) in
2012 [50], entitled "Radiative Heating of a Glass Plate ", Pr. Luc Paquet, Mr. Raouf El
Cheikh, Pr. Dominique Lochegnies and Dr. Norbert Siedow, have considered an infinite
horizontal glass plate of width [ with an infinite plane black sheet metal S, placed above it
which emits thermal radiations and proved the existence and uniqueness of the solution of
the coupled problem between a nonlinear heat conduction equation subject to a nonlinear
Robin boundary condition, with the radiative transfer equation solved explicitly in this
case.

We have extended the result of existence and uniqueness of the solution from the
paper MSIA (2012)[50], and the first order necessary condition for an optimal control of
the paper AFMA ( June 2016)[49], to a new setting considering the domain 2 to be a
bounded domain with a boundary of class C' (resp. C'!) of R? surrounded by a black
radiative source at absolute temperature Ts(t) = u(t) at time ¢.

The purpose of the radiative heating of a glass body is in fact to deform the body
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as near as possible to a required shape. The problem of the optimal control of the
deformation by acting on the temperature of the radiative heating source will be studied
in the framework of the linear viscoelasticity equations concerning the deformation.

2.2 Presentation and discussion of the results ob-

tained in my thesis

2.2.1 Chapter 3: Coupling the Heat Conduction Equation with
The Radiative Transfer Equation

In this Chapter, we analyze the exact mathematical problem, modeling the radiative
heating of a semi-transparent body 2 made of a glass, from time 0 to the final time of
heating ¢, by a black surface S surrounding it, at absolute temperature Ts(t) (0 < ¢ < ty).
The main application of this problem is, by heating the semi-transparent body €2, to allow
it to deform due to its own weight and to control its deformation (or its stress-field): see
e.g. Chapter 2 and 3, [3], [53], ..., to cite only a few number of papers. We must
thus analyze the coupling between the quasi-steady radiative transfer boundary value
problems:

v- Vo Il¥(z,t,0) + kpI"(2,t,0) = K BY(T(2,1)), in QxV,

I¥(@,t,v) = py(|ve - v (.t vi(@,0)) + (L= py(|va - 0])) By (Ts(2)), (2.1)
onI'_,
where I'_ := {(z,v) € 0O xV; v,-v < 0},and v;(x,v) := v—2(v,-v)V,, one for each wave-

length band [Ag, Agy1] (K = 1,..., M) in which the glass behaves like a semi-transparent
medium and the linear absorption coefficient x; may be considered as constant, with the
nonlinear heat conduction initial boundary value problem [50], [63]:

M M
cpmg%—:tr(m,t) = kAT (z,t) — Z47T/{kB§(T(x,t)) + Z/{k/]k(x,t,v)du(v),
1%

in:Q = x]0, ], i
—kh%f(x,t) = h(T(x,t) —T,) + / ex|B(T(xz,t),\) — B(Ts(t), \)]dA, (2:2)
Ao

on ¥ = 00x]0,tf],
T(x,0) =To(x), on Q.
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T'(x,t) denotes the absolute temperature at point x and time ¢. In the radiative transfer
boundary value problems (2.1) and in equation (2.2):

Akt1
I, t,0) = / (2,0, \)dA (2.3)
Ak

denotes the radiative intensity in the wavelength band [Ag, Ar+1[. In the integral (2.3),
I(z,t,v,\) denotes the spectral radiative intensity at point = € 2, time t € [0,ts],

(oriented) direction v € V := S, the unit sphere in R?, and wavelength A [46]. Similarly
Akt1

Bi(T(x,t)) := n / B(T(z,t), \)d\, where B(T,\) := —251— is the famous Planck

g 3 A5 (eXt 1)

function (see e.g. [46], [68]), giving the spectral radiative intensity at wavelength X\ of any
black body at absolute temperature 1", which in this case is independent of the direction v.
Cy and C; are positive constants whose values are e.g. recalled in [50] and n, denotes the
refractive index of the semi-transparent material (for soda-lime-silicate glass: n, ~ 1.46
[60]). For mathematical commodity, in [50], the authors have extended the domain of
definition of the Planck function to all real number T' by setting B(T,\) := 0, VI < 0.
In the boundary condition (2.2);), v denotes the unit exterior normal field along the
boundary of €2, and v, its value at point x € 0f).

pg in the boundary condition (2.1);;) denotes the reflectivity coeflicient: it is a positive
non-increasing continuous function from the interval [0, 1] into itself equal to 1 near 0.
For more details about this function see Chapter 3. Let us remark in the boundary
condition (2.1)(), that the expression py(|v, - v|) depends not only on z but also on wv,
which is not the case in ([19], see (33) p.258). Also, our problem does not fit in the
examples considered in [62, p.4]. Let us mention, that for our nonhomogeneous boundary
conditions in (2.1) and (2.2) to be physically realistic, we should suppose our domain {2
to be convex. However, in this chapter, we will study the coupled problem (2.1)-(2.2) in
an arbitrary bounded domain 2 of R? of class C'', our boundary conditions in (2.1) and

(2.2) having sense with this regularity hypothesis on €.
Additional details concerning problem (2.1) (resp. (2.2)), will be given in subsection

3.2.1 (resp. subsection 3.3.1), in particular concerning the nomenclature.

Many related approximated problems have been studied in the literature, mainly to
reduce the computational complexity of the original problem (2.1)-(2.2), considering in-
stead of the radiative boundary value problems (2.1) for the radiative intensities I*(z, t, v),

approximated elliptic boundary value problems for the quantities of interest in (2.2), the

incident radiations [46] p*(.,.) = /Ik(., L v)du(v) (dp denoting the area measure on

v
V = 5,). Indeed, these quantities multiplied by ky, are the volumic sources of heat per
unit of time, appearing in the nonlinear heat conduction equation (2.2)¢;). In particu-
lar, Py approximations by spherical harmonics of v — I*(z,¢,v) have been considered
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by many authors [46]. Simplified Py approximations with appropriated boundary con-
ditions derived from variational principles, the S Py methods of nuclear reactor theory
[70], [4], have been introduced in the field of radiative heat transfer in [40], and [38], but
these approximated methods are only valid for optically thick body €2. In particular, the
S Pi-method whose original idea is the approximation of I*(z,¢,v) by an affine function
in the variable v ([46], p.473): I*(z,t,v) ~ a(x,t) + b(z,t) - v, with a(z,t) € R and
b(z,t) € R3, has been used in many papers [39], [14],..., to cite only a few. In [64], in
the study of the thermal cooling of a circular thin glass disk, the radiative intensities have
been computed by tracing thermal rays back to a far away point, which has a negligi-
ble influence on the calculated radiative intensity. These authors show numerically, that
even for thinMglass, internal radiatij\(}n emitted or absorbed inside the glass, represented by
the term —Y 4wk B (T'(2,t)) + ng/]k(x, t,v)du(v) in the heat conduction equation
k=1 k=1

(2.2)(3), can not be ignored (a similar ol;/servation has been made for slabs of glass in [48]).
In [56], the author considers the exact radiative transfer boundary value problems (2.1)
coupled with the heat conduction initial boundary value problem (2.2) written in cylin-
drical coordinates to simulate the cooling process of an axisymmetric quartz glass tube.
The numerical resolution by the discrete ordinates method, combined with the SUPG
finite element scheme, of 3-D radiative transfer equations with specular reflection at the
boundary, containing (2.1) as a particular case, has been studied in [35], but no coupling
with the heat conduction equation is considered in that paper. In 1-D, i.e. for slabs, the
mathematical analysis of a related coupled problem to (2.1)-(2.2) has been made in [50],
a priori error estimates for the semi-discrete problem have been derived in [48] and the
mathematical analysis of the optimal control problem for the temperature inside the slab
by the temperature Ts(.) of the radiative source has been made in [49].

However, to our best knowledge, the mathematical analysis of the 3-D coupled exact
problem (2.1)-(2.2) has not been done yet. Hence the purpose of this chapter is to fill this
gap and to prove existence and uniqueness results for the exact problem (2.1)-(2.2). We
give also uniform bounds on the solution in terms of bounds on the data which are the
constant ambient temperature of the surrounding dry air 7}, appearing in the boundary
condition (2.2)(;, the initial condition To(-) for the absolute temperature in £ (2.2) ),
and the absolute temperature Ts(+) versus time of the black radiative source surrounding
2. As a consequence, we obtain also bounds on the radiative intensities (see Corollary
3.4), which could be useful in defining a stopping criterion, when using the backtracking
method explained in [64] to solve numerically our boundary value problems (2.1).

In section 2, we prove for each £ = 1,..., M, the existence and uniqueness of the
solution in the space WP(Q x V) [19] (denoted H) in [1], Chapter 2), of the radiative
transfer boundary value problem (2.1) with the nonhomogeneous boundary condition
(2.1)()- In particular, we use the trace theorems of M. Cessenat for the elements of
the space WP(Q x V') [12], [13], [19, pp.252-253], and the theory of dissipative operators.
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Among the main steps, is in subsection 2.3, the proof of the dissipativeness and closedness
of the operator A = —v - V, defined by (3.8). The proof of the dissipativeness of A is
rather subtle and relies on the fact that the reflectivity coefficient p,4(-) is equal to 1 near
0, which implies that p,(|v, - v|) = 1 if |v, - v| is sufficiently small, the so-called “property
of total reflectivity for grazing incidences” in Optics. In subsection 2.4, we prove that the
range of A\l — A is equal to LP(Q x V'), VA > 0, without using the abstract result Theorem
3 in [19, p.254] as its condition (22) seems difficult to verify. Let us mention, that the
paper [62], would not give in the L2-context, the explicit form of the domain (3.8) of the

generator A, but only the exact domain of a pregenerator [62, p.9].

In section 3, we firstly prove the uniqueness of the solution T'(.,.) of the coupled
problem (2.2)-(2.1) in the Sobolev space W (0,t¢) [18]. Then, with the goal to prove the
existence of the solution 7'(.,.), supposing the data bounded, we define an appropriated
closed convex subset S of L?(0,t; L*(2)) defined by:

S ={T € L*(0,t5; LP(Q));V't €]0,t[: Vo € Q: T, < T(x,t) < Ts(t)}.

, and also a fixed point problem by replacing in (2.2) T by T, except in the volumic source

ot heat term hr(x,t) ka / I%(x,t,v)du(v). This allows us to decouple our problem

(2.2)-(2.1), reducing us at the same time to a semilinear parabolic initial boundary value
problem. We prove that for all 7" € S, this fixed point problem has a unique solution
T € S, and that under the hypothesis Ty € H'(0, tr) and dTS > 0 a.e on ]0,%s[, the
mapping ® : T +— T is continuous from S into S with its range relatively compact in
L?*(Q). The proof that the mapping ® operates in S requires to establish some kind of
“maximum principles” for our fixed point problem (see subsection (3.3.4)). The proof of
the continuity of ® relies on the uniform bounds on the radiative intensities established in
Propositions 3.11 and 3.10, in conjunction with the a priori estimate (7.33) of [71, p.377]
for semilinear parabolic initial-boundary value problems. Using Schauder’s theorem, we
conclude to the existence of a weak solution to the coupled problem (2.2)-(2.1), obtaining

moreover uniform bounds on the solution, and on the radiative intensities.

We have improved the result by removing the condition @ > 0 on Ts. The proof
proceeds by considering a new closed convex subset C in LQ(Q) = L*(0,t; L*(2)) where
Q = Qx]0,¢4[ by

C:={T e L*(Q);Vte0,t;:VeeQ: T <T(x,t)<T}

where the fixed numbers T, T e R? satisfy

T<T, T<T,<T,
T < Ty(x) <T, for a.e. x €K, (2.4)
T <Ts(t) < T, for a.e. t €]0,t;].
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and we prove the existence of a weak solution to problem (2.2) belonging to C

Addendum: On June 25, 2018, further to an e-mail of ResearchGate, we have learned
about related papers of the Russian Mathematician Andrey A. Amosov working at the Na-
tional Research University “Moscow Power Engineering Institute ”. In particular, we have
heard of his work entitled: “Unique Solvability of a Nonstationary Problem of Radiative-
Conductive Heat Exchange in a System of Semitransparent Bodies "published in the
Russian Journal of Mathematical Physics in 2016 Vol. 23, No. 3, pp.309-334. Let us
mention that our work [51] related to chapter 3 of this thesis was already submitted in
2016 to the Journal “Mathematical Methods in the Applied Sciences ”, more precisely on
August 26, 2016. This article is closely related to chapter 3 of our thesis, but the meth-
ods we have used, are fortunately different from those used by A.A. Amosov. Moreover,
concerning the equation of conduction of heat, A.A. Amosov considers a homogeneous
Neumann boundary condition (see formula (1.3) p.311 of his article), thus in particular
without the integral term of our boundary condition (2.2(74)), a term that takes into ac-
count the wavelengths A > )¢ for which the glass behaves like an opaque body. The proof
of the existence of the solution in this article is based on Galerkin’s method (see Theorem
7.1 p.327). To demonstrate the existence of the solution to our boundary value problems
(2.1) for the radiative transfer equation (RTE) the author refers to one of his previous ar-
ticles of 2013 published in the Journal of Mathematical Sciences United States, Vol. 191,
N2, May 2013, pp.101-149 entitled “Boundary Value Problem for the Radiation Trans-
fer Equation with Reflection and Refraction Conditions ”; his proof proceeds by a fixed
point method, reducing the resolution to a sequence of inhomogeneous Dirichlet problems
on I'_ for the RTE, whose limit is the solution of the boundary value problem for the
RTE with the reflectivity boundary condition. This method seems to be related to the
backward ray tracing method. On the contrary, our proof is based on the establishment
of the maximal-dissipativity of the operator A for the RTE whose domain is defined by
the homogeneous reflectivity boundary condition.

2.2.2 Chapter 4: Control of the Radiative Heating of a Semi-
Transparent Body

In Chapter 4, I have worked on extending to 3 — d the 1 — d result of AFMA (June 2016)
[49] which is to find the most adequate temperature Ts(t),t € [0, tf] of the black radiating
source S, during the heating process of a semi-transparent body  of class C' of R3, in
order to obtain the temperature T'(x,t) of the semi-transparent body {2 at point x during
the fixed time heating 0 < t < t;, as near as possible, to a given desired temperature
distribution (x,t) — Ty(z,t). We take also into account the cost of the control Ts. So,
we consider the cost functional J defined by:
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J: LX(Q) x H'(]0,t4]) — R : (T, Ts)

l\')\H

/ — Ty(z,t))*dz @ dt
Q (2.5)

+ §T||TS - TS,dH?—ﬂGO,thJ

subject to the non linear heat conduction equation (2.2), and Ts(.) to belong to the set
of admissible controls that we now define. Firstly, we define our control space to be
:= H'(]0,ts[) endowed with H'-norm and we define the closed subset of admissible

controls:

Uwa = {Ts € H'(0,4;]); T < Ts(t) < T, Vt €]0,;[}. (2.6)
where T and T satisfy (2.4).

U.q is a closed convex subset of the Hilbert space U. We prove in the Chapter 3 [51],
that for Ts € U, the initial boundary value problem (2.2) possesses a unique bounded

weak solution

T(Ts) € {T € L*(0,t5; H'(Q)), CZ € L*(0,t5; (H'(Q))")}- (2.7)

This allows us to define the reduced cost functional:
J: U — R : Tg — J(T(Ts), Ts). (2.8)

In section 3, we prove the existence of an optimal control that is of a Ty € U,4 such that
J(Ts) := inf J(v) .

vEU,q
Then, in section 4 we choose the state space F and the constraining mapping (T, Ts) +—
e(T, Ts) in order for the constraining mapping to be Fréchet differentiable and its deriva-
tive with respect to the temperature 7" at a point (7', Ts) to be invertible. We define the
state space E as the set of all

T e {T e 0.t H'(Q)): 5 € 0.t (H'(Q)))} N 0(Q)

such that (c,m,%E — k,AT) € L"(Q) and k2L € L* () in the sense of distributions,
where r €]2.5,2.72[ and s* > 4. Now, we define the constraining mapping by:

e: ExU— L'(Q) x L (X) x C(Q)
(T, Ts) — e(T,Ts) = (e1, ea,e3)(T, Ts)
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where

(T, 75) = cymy o — WA — (T) ~ h(T,T5),

T
es(T, Ts) = k:hg +h.T +O(T) — O(Ts), (2.9)
es(T.Ts) =T(-,0) =To("),
and the quantities ¥(7T), h(T,Ts),O(T) and O(Ts) are defined by the formulas:
M
W(T) = = 4mwBH(T), VT € R,
k=1
hr (2, 1) ka/ITTS x,t,v)dp(v), (2.10)
“+o0o
o(T) == / exB(T, \)d\, VT € R.
Ao

Using the constraining mapping, the state equation writes down: e(T',Ts) = (0, h Ty, Tp).
In section 5, we apply the implicit function theorem in order to compute the derivative
of the reduced cost functional .J(Ts) at a control Ts € H'(]0,t[) and so to give the first-
order necessary optimality condition for a control Ts to be optimal with respect to the

cost functional J which is

M=
2
O\:f

{/ KZM—/I%(/% —A)—llngdu(v))nvol(TTS;a:,t)} d;p}

%(Ts(t))(v(t) —Ts(t))dt+/(/nB(TTs;w,t)dS(x))Z?(Ts( ) (v(t) — Ts(t))dt
0 o0
+0, [ (Ts(t) — Tsa(t))(v(t) — Ts(t))dt + 6, /(T’S(t) — Tsq())(0(t) — Ts(t))dt > 0,Yv € Uyg,

(2.11)
where 7y is the solution in the weak sense of the backward parabolic boundary value

problem (4.39) and 7p is the restriction of 1y to X = 0Q x [0, t/].
In a 1 —d case in space, in [49] a control problem of this type is studied, using among
others in that case, an explicit integral formula for hz 1, ([49], formula (6)).

2.2.3 Chapter 5: The Thermoviscoelasticity Equation

Until now, we have studied the problem of the radiative heating of the glass body con-
sidered as an open bounded set 2 in R? with a boundary of class C* at least. We have

also studied the related optimal control problem.
After that, we come to the goal problem which is to deform the volume of glass 2 by
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heating it with a black radiative source all around it. For example, glass sagging, which
consists in heating glass until a temperature at which its viscosity is low enough to allow
it to sag under its own weight due to gravity, is used to process glass industrial products

such as windscreens, mirrors or lenses.

We study the existence and uniqueness of the deformation of €2, resulting from the
radiative heating of the semi-transparent body {2 by the black-source S. In the setting of
the viscoelasticity theory, M. E. Rognes and R. Winther have considered in [59], a weak
Hellinger-Reissner formulation for the Maxwell model of viscoelasticity, which presents the
advantage to avoid the complicated integrodifferential equations linking the tensorfield of
stress (z,t) — o(x,t) to the tensorfield of the rate of deformations. In this formulation,
the unknowns are the stress field (z,t) — o(x,t), the velocity field (z,t) — u(x,t)
of the displacement field (x,t) — u(x,t) (we will also denote @1 by v) and the skew
component (z,t) — p(x,t) of the gradient of u. The novelty, is that here, we consider
the thermoviscoelasticity problem instead of the viscoelasticity problem [59], so that we

have now a whole family of operators Ay(.,t) indexed by the time ¢t € [0,%/]:

Ao( ) L)) = (L2

o v v —tr(o)ls,

(2.12)
T ~ @)

where n(T'(x,t)) denotes the viscosity at point x € {2 and at time ¢ € [0, t], which depends
on the absolute temperature T'(x,t), and I3 denotes the identity matrix of order 3. On the
contrary, in the paper of M.E. Rognes and R. Winther ([59], p. 963), it is supposed that
Ay is independent of the time ¢. We suppose that the viscosity 7(.) is a strictly positive
decreasing function, defined and C* on R%.

We denote by E the Young modulus and by v the Poisson coefficient (0 < v < %)
Denoting by £(ug) the linearized strainfield corresponding to the elastic displacement field

ug, we have:
1
—gya - %tr(a)fg,

where o denotes the stressfield. The rate of deformations corresponding to the rate of the

e(ug) =

visco displacements wuy, is given by:

. _1+V0_ v (o]
i) =y gy

Now, the total displacement field v = ug + uy. This implies that:

e(u) = e(ug) + e(iy)

= 5o — Gtr(6) s + io — istr(o) L.

Thus, we have the equation linking the time derivative of the displacement field u, to the
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stressfield o: L+ L+
v v v v
1) = y — —tr(o)l — t I 2.13
e(u) 7 o T r(o)ls + (T o (T r(o)ls, ( )

often called the Maxwell constitutive law. To that equation, we join the equilibrium

equation:

—div(o) =g — p VT, (2.14)

where we have neglected the inertial forces i.e. we consider the “quasi-static "problem.
g = %a, where a denotes the linear coefficient of dilatation. g denotes a volumic
forcefield acting on €2, for example its volumic weight. We suppose at least that g €
L*(Q)?, where @ denotes the “cylinder” Qx)0,t;[ in the space-time R* x R. T being
the weak solution of the heat conduction equation (2.2), T' € L*(]0,t;[; H'(Q2)) and thus
VT € L*Q)*. To these two equations, the Maxwell constitutive law (2.13) and the

equilibrium equation (2.14), we join an initial condition for the stressfield o:
o(,,0)=¢. (2.15)

Lastly, the boundary 0€) of the domain {2 is partitioned into two disjoint open subsets
I'p and Ty of 9Q such that Tp U Ty = 9. Along I'p we impose the velocity field
of displacements % to be 0, and on I'y we impose no tractions i.e. (U‘V)IFN = 0 where
v denotes the unit normal field along 02 pointing outward of 2 . We now write a
weak formulation for these two equations and boundary conditions. Considering a test
stressfield 7 € H(div; Q) such that (7.7)p, = 0, and we have by Green’s formula:

/g(v) 7 dr = (T.V,0)p — /diV(T).v dx — /p(v) . T dx, (2.16)
Q Q Q

for every v € H*(2)?, where p(v) := (Vv — (Vuv)'). Applying Green’s formula (2.16) to
e(4), and using the boundary condition -, = 0, we obtain from the Maxwell constitutive
law (2.13):

[0 — ttr(@)L) 7 o+ [[526 — $ir(@)E] : 7 da
Q

+/ div(r).0 dx + /Z(U) 7 de =0, (2.17)

V7 € H(div; Q)3 such that (T.V);p, = 0. For almost every ¢ €]0, ¢/, this equation expresses
in a weak form the Maxwell constitutive equation (2.13) and the boundary condition
tr, = 0 for the velocity of displacements u. Let us note, that formally at least, if
u(.,.) satisfies at time 0, u(.,0);r, = 0, then we will have u(.,t)r, = 0, V't €]0,t¢[.
The boundary condition (CT.I/)‘FN = ( is an essential one in the mixed formulation and is
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imposed in the definition of the functional space Hr (div;)3: we try to find
o(.,t) € Hr, (div; Q)?,

where Hr, (div;€2) denotes the closed subset of vectorfields in H(div;€2) whose normal
traces are 0 on I'y. Now to the weak form of the Maxwell constitutive law, we must add
a weak form of the equilibrium equation (2.14):

/div(cr).w dz + /(g — B VT)aw de =0, Yw e [L2(Q)]. (2.18)
Q

We must moreover express in a weak form V't €]0,ty[, the symmetry of the stress tensor
o(.,t), so that we obtain the equation:

/div(a).w dr + /(g _ B VT)w de + /0 L€ de =0, Vw € LX(Q)?,
Q Q (2.19)

ve € [

skew ?

where

2@ = e [2@)] e+ =0},

To these weak forms (2.17) (resp. (2.19)), of the equations (2.13) (resp. (2.14)), we must
join the initial condition (2.15). Supposing that g € H'(0,¢s; L*(Q)?), that the initial
temperature Ty in €2 is equal to the ambient temperature T,, that T belongs to H?(]0, ¢])
and satisfies Ts(0) = T, and that the initial condition ¢ for o verifies ¢ € Hr,, (div; )3,
¢ =¢T and div¢ = —(g(.,0) — BVT(.,0)), we prove that there exists a unique triple

skw

3x3

(0,0, p) € H'(0,t5; Hr, (div; Q)%) x L2(0,t; LA(Q)*) x L*(0, 15 [L*(Q)] )

such that o(.,0) = ¢ and such that V't €]0,¢;[ equations (2.17) and (2.19) are verified i.e.:

skew

[ltizg0(.0) = stgstr(o( )] 7 dx+/ Lvg( 1) — 2o ( )]« 7 da
Q
+/d1v dx—l—/p Td:zt—O V7 € Hr, (div;Q)3,

/le wdx—l—/ BVT wdx—l—/ & dr =0, Yw € L*(Q)3,

Ve € LX)

skew *

2.2.4 Chapter 6: Control of the Displacements in the Setting of

the Thermoviscoelasticity

In this chapter, we study the control of the deformation of €2, resulting from the radiative
heating of the semi-transparent body 2 by the black radiative source S. Firstly, we
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introduce the control problem.
t

We define Vt €0, t¢[: u(t) := /v(s) ds. By Ascoli’s theorem ([20], p.143), the mapping

which sends v +— 4 from LQ(O,t(;c;Hl(Q)?’) into the space C([0,t]; L*(Q)?) is compact.
Thus if we have a sequence (vy),, which converges weakly in L*(0,t;; H'(Q2)?), the
corresponding sequence (iZ,), ., will converge strongly in C([0,¢]; L2(2)*) and a fortiori
in L2(0,t¢; L*(Q2)%). Now, we define the new set of admissible controls:

Usa = {Ts € H*(0,1;]); T < Ts(t) < T, Vt €]0,t;], Ts(0) = T,.}

and the cost functional

T LAQ)P x HX(0,t,]) — R
2
H2(J0,t5])

Ts — T4

1 o,
(@, Ts) s 5/ (e, t) = ia(w, O do @ di+ 5
Q

where y(.,.) € [L*(Q)]® denotes the given desired field of displacements and T¢ €
H?(]0,ts[) a given evolution of the absolute temperature of the black source S to which
Ts should not be “too far”, the meaning of this “too far” being modulated by the strictly
positive coefficient 4, in the definition of the cost functional J, coefficient which is al-
lowed to be chosen very small. As we say above, T and T denote two strictly posi-
tive real numbers satisfying conditions (2.4); and (2.4);. Let us observe that U, is
a closed convex subset of H?(]0,t;[). We prove that the mapping from the open set
Usa == {Ts € H*(]0,t4]); 5 < Ts(t) < 2T, V¢ €]0,t;[, Ts(0) = T,} into L*(0,ts; H}) which
sends Ts on u is continuously Fréchet differentiable. As a consequence the reduced cost

functional

A

g Usa = {Ts € H*(J0,t5]); 5 < Ts(t) < 2T, Vt €]0,¢;[, Ts(0) = T,} — R
To o5 3 [ 1) ,1) — T, O do e e+ 5 |75 - 74
Q

I

H2(]0,t[)

is also continuously Fréchet differentiable. In particular, if Ty € U,y is an optimal control,

it satisfies the variational inequality:

J'(Ts)(Ts — Ts) > 0, VTs € Una.
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3.1 Introduction

We consider the quasi-static problem for the radiative transfer equation (RTE) in a
bounded semi-transparent body €2 of class C! of R? exposed to the radiations of a black
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source S at absolute temperature Tg(t) at time t and subjected to a nonhomogeneous

reflectivity boundary condition, coupled with a nonlinear heat conduction evolution equa-
tion whose heat source is the absorbed thermal radiation and cooling also by emitting
thermal radiations, equation subjected to a nonlinear boundary condition of the Robin
type. For the RTE equation with the nonhomogeneous reflectivity boundary condition,
the problem is posed in the Banach space LP(2 x V) (1 < p < +o0) where V' denotes
the “unit sphere of directions”. Using the theory of dissipative operators and the impor-
tant trace theorems of M. Cessenat (1984, 1985) for the functions of the Sobolev spaces
WP(Q x V), we prove that the problem is well posed and that the solution is in fact
essentially bounded using the arbitrariness of p (1 < p < 4+00). Next, we consider the
coupled problem. Firstly, we prove that the weak solution is at most unique. Then, we
introduce two different closed convex subsets of L?(2x]0,¢;[), where ¢; denotes the final
time of radiative heating of {2 by the black source S and in each case, prove the existence
of a weak solution belonging to it, by defining a fixed point problem and using Schauder’s
fixed point theorem.

3.2 Solvability of the RTE with the nonhomogeneous

specular reflectivity boundary condition

3.2.1 Notations and scope of this section

In the remainder of this chapter,  will denote a bounded domain of class C' of R3,
situated locally on one side of its boundary 0€). Let us recall that V' := Sy denotes the
“unit sphere of directions in R3”. We denote by dx the 3-d Lebesgue measure on € and
by du the area measure on V = S, C R3. Let us fix some k € {1,..., M}. Our purpose
in this section is to prove that the quasi-steady boundary value problem for the radiative
transfer equation (RTE):

vV I*(z,t,v) + kpl¥(2,t,0) = HkBg(T(ZC,t)), a.e. in QYxV (3.1)

with the nonhomogeneous specular reflectivity boundary condition
IF(z,t,0) = py(ve - o) IF (2, t,0) + (1 — py(|vs - v|))B§(TS(t)), a.e. onT'_ | (3.2)

is well posed in appropriate Banach spaces that will be precised later on. As in [19], T’
denotes 02 x V,
L= {(z,v) €2 xV; v, -v >0} (3.3)

and
' ={(z,v) €02 xV; v, -v <0} (3.4)
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In these last definitions, v, denotes the unit exterior normal vector at x € 0€). I'y and
['_ are open subsets of I". In the boundary condition (4.12), v; = v;(z,v) denotes the
“incident vector” at point z on the “interior face” of the boundary 92 admitting v as

reflected vector i.e. (z,v;) € I'y and
v; = vi(x,v) = v —2(vg - V)V, (3.5)

Let us observe that v, - v; = —v, - v and thus |v, - v;| = |, - v|. py(-) denotes the “reflec-
tivity coefficient” at the interface of {2 with the ambient surrounding. This coefficient is
given by Fresnel’s relation (formula (2.95), [46, p.47]) in conjunction with Snell-Descartes’
refraction law (formula (2.71), [46, p.44]). We will only retain that p, is a positive, con-
tinuous, nonincreasing function, defined on the interval [0, 1], taking values < 1 and the

2_
constant value 1 on the subinterval [0, /2 1].
g

Problem (3.1)-(3.2) will be set in the Banach space [19] (denoted H, in [1], Chapter
2):

WPQAxV)={ue LP(QAxV); v-Vyu=divy(uv) € LP(Qx V)}, (3.6)

p being an arbitrary real number in |1,4+oc0[. The full range of p is needed in the proof
of Corollary 3.2 which yields that under certain hypotheses on the data, the solution of
(3.1)-(3.2) is essentially bounded on € x V. In the definition of the space WP(Q2 x V),
v - V,u must be understood in the generalized sense as the unique element of the space
LP(Q x V') verifying:

<v-Vuu,p >= —//u(x, v) v - Vep(z,v) dedp(v), Vo € D(2 x V), (3.7)

QxV

if it exists. An equivalent definition of v - V,u is given in [1, p.38] using less regular test
functions. In this chapter the symbol V, (resp. div,), will always denote the gradient
(resp. the divergence) with respect to the z variable only. The time variable ¢, plays the
role of a parameter in equation (3.1) and its related boundary condition (3.2), and may
be considered as fixed to some positive arbitrary value between 0 and t;.

Firstly, we will consider the unbounded operator A defined in LP(Q2 x V') by:

D(A)={uelP(Qx V), v-Vyue LP(Qx V),
uw(x,v) = pg(|ve - v|)u(z, v;), for a.e. (x,v) € _}, (3.8)
A:D(A) - LP(Ax V) :ur— —v-V,u.

The condition
w(x,v) = py(|ve - v))u(x,v;), for a.e. (x,v) €l (3.9)

with v; = v;(x,v) (3.5) in the definition of D(A), has to be understood in the sense of
traces, knowing by [19, Corollary 1 p.220], that functions in W?(2 x V') have traces in
Lp

e(I's). In subsections 2.3 and 2.4, we will show that the operator A is dissipative and
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closed, with dense domain, and that for all A > 0, there exists (\[ —A)~' € L(LP(QAx V).

Taking A\ = kj, we can now solve the quasi-stationary homogeneous boundary value
problem for the RTE:

(3.10)

v VolF(z,t,0) + kpI" (2, t,0) = ki BY(T(2,1)), for a.e. (x,0) € QX V,
IF(z,t,v) = py(|ve - v|)I*(z, t,v:), for a.e. (z,0) €T .

Using, some change of unknown, we will deduce that the nonhomogeneous linear boundary
value problem (3.1), (3.2) has a unique solution in W?(£2 x V') in the sense that, there
exists one and only one solution I*(-,¢,-) of (3.1) in the sense of distribution theory (3.7)
and of (3.2) in the sense of traces (see Corollary 1 [19, p.220] or the sharper theorems of
traces of M. Cessenat for the elements of the space WP(Q2x V') [12], [13], [19, pp.252-253]).
We will also give uniform bounds on the radiative intensities I*(x,t,v). This will be the
object of subsections 2.5 and 2.6.

Before going to the heart of this section, we shall need some preliminary lemmas and
propositions.

3.2.2 Preliminary results
3.1 Lemma. 1°) V(z,v) € 0Q x V :
(0= 2(vy - 0)1) - Vs = —0 - 1. (3.11)
%) The mapping
T:00xV = dUXV : (2,0) = (2,0 — 2(vy - v)vs) (3.12)

is an involution.
3 ) The measure dS ® dy where dS (resp. du) denotes the area measure on JS) (resp. on
V') is invariant by T.

Proof : The first and the second assertions are trivial. To prove the third assertion,
we use Fubini’s theorem. Let us consider a Borel set E contained in 92 x V. Then one

has:

(as @ dy) (E) = [ w({v € V; (w,v) € EY) dS(a)
o0

_ / u({v € Vi (z,0) € T-Y(E)}) dS(z) = / [ / X105 (7, 0) dp(v)| dS(z)
oN o L
= [[ xrvm) (@) dS(@)dpu(v) = (dS @ dp) (T-1(E)),
2.95°4%

what was to be proved, the equality from the first integral to the second one following
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from the fact that the mapping v — v — 2(v, - v)v, is the symmetry with respect to the
vectorial plane of R? orthogonal to v, and thus leaves du invariant. [l

3.1 Remark. In the following, it is important to well understand the meaning of u €
WP(Q x V). Let us consider u € LP(Q2 x V). This implies that for a.e. v € V, u(-,v) €
LP(QY). Thus we may consider for a.e. v € V', the distributional first order derivatives

%ﬂ;’;}) € D'(Q) of u(,v) (i =1,2,3). u € WP(Q x V) means that in addition to u €

LP(Q X V) the directional derivative in the v-direction in the sense of distributions of
3
sz 8”( ) ¢ LP(Q), for a.e. v €V, and that the mapping V — LP(Q) 1 v — > v;

belongs to L”(V; LP(2)). The space WP(2 x V') is larger than LP(V; WP(Q)). For
example if we take p = 2, and for Q the unit ball B with center at the origin in R3, the

function:
1

V1= Iz = @)ool
belongs to W2(Q x V), but not to L*(V; H'(Q)).

(3.13)

f:OxV =S R: (z,0) —

We will need the following “Green’s formula” (3.14) not only for smooth functions
u, g € C(Q x V) (in which case this formula is well known and immediate to prove),
but in the more general case in which the functions u (resp. g) are only in the space
WP(Q x V) (resp. WP (€2 x V)) and the product of their traces u|r.g|r on I := 9 x V
[12], [13], is only integrable with respect to the measure |v.v(z)|dS(x)du(v) on I'. It is
not possible to deduce Green’s formula (3.14) in that general case from the “smooth case”
by the density of the space C*°(Q x V) in the spaces WP(Q x V) (resp. WP (Q x V)),
using the trace theorems of [12], [13]. Indeed this argument is used in [1, Theorem 2.24],
while the norm of the trace spaces denoted LP(T'y) in [1, p.40] do not allow that. In
(62, p.5], for p = 2, “Green’s formula” (3.14) is stated for u,g € W?(Q x V) such that
their traces wr,, gr, € L*(I'y), wr_, gr_ € L*(I'_) but without giving any proof. We
make hereafter a weaker hypothesis than in Theorem 2.24 of [1]: we do not suppose that
ulp € LP(T;|vv(z)|dS(z)du(v)) (vesp. glr € LF(T;|v.v(z)| dS(z)du(v))); we suppose
only that u|p.g|r € LY(T; [v.v(z)] dS(z)dp(v)):

3.1 Proposition. For all u € WP(Q x V) and g € WP (Q x V) such that the product
ulr.g|r of their traces on T := 00 x V' [12], [13], is integrable with respect to the measure
lv.v(z)| dS(x)du(v) on T i.e. belongs to L' (T'; |v.v(z)| dS(z)dp(v)), we have the following

Green’s formula:

//v Vou(x,v) g(z,v)dedu(v) // u(z,v)g(z,v)v.v(z)dS(x)du(v)

QxV :=00xV (3'14)

—//u(w, v)v - Veg(x,v)dedu(v).

QxV
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Proof : Firstly, let us remark that our hypotheses imply that for almost every v € V'
for the measure du(v), that the functions u(-,v) € LP(Q;dx), v.V,u(-,v) € LP(Q;dx),
g(-,v) € LP(Q;dx), v.V,g(-,v) € L¥(Q;dz) and also that the product of the traces of
u(-,v) and g(-,v) on 0N is integrable for the measure |v.v(x)| dS(x) on every measurable
subset of 0€2. Let us fix such a v € V. Let us denote by F, the orthogonal vectorial
2- dimensional subspace of R3 to v for the ordinary scalar product of R3, and by P,
the orthogonal projection in R?® onto £, thus parallel to v. For x € R3 we denote
P,x € E, by z/, and by x, = (z|v)gs. We will consider (x,,z]) as the new coordinates of
x, coordinates “adapted” to the v-direction. We proceed now like in the classical proof of
the Ostrogradsky Theorem ([66], pp.216-219) (see also page 833 of [12]):

/U.qu(x,v)g(x,v)dmz /d:r;’ / ((?u(:cv,x;,v)g(xv,x;,v)dxv

v
Q {zy ER; (20,2 )EQ} v

/da:Z/ xv,x 0)g(2y, 2}, v)da,,

where the J(igc, ) are the connected components of the bounded open subset {z, €

R; (zy,2)) € Q} of R. It is easily seen that the number of such connected compo-

nents is finite and uniformly upper bounded due to the fact that € is bounded and
due to the existence of a tubular neighborhood of 02 ([24], p.113) which implies that
the distance between two such intervals is uniformly lower bounded by a strictly positive
constant. Thus the J(i% ) are open bounded subintervals of R. For almost z, € F,(2),
ul i ) € WP (T ) = C(J{z, 1)) and 9|Ji W € Wl’pl(J 1) = O

(@0

Let us denote by '~ (2!, v) (resp. =" (z] )) the left extremlty (resp. the right extremity)
of the interval Ji,, . Thus:

(1 0)) for every i.

/U.qu(x,v)g(:c,v)d:c: / > u(@ (2, v), 2, v)g(z (), v), 2, v)
Q Py *

—u(z" (), v), 2}, v)g(z" (2}, v), 2, v)] dz!

Y v ) vl v

/d:vz / w(xy, 2, 85 (x4, 2, v)dx,
Tty
—Z/ (2!, v), 2, v)g(a™ (2], v), 2, v)v,v dS
' Py(Q)
+> / u(z™ (z),v), 2, v)g9(z" (2}, v), 2}, v)v,.0 dS
' Py(Q)

o)

— /dx; / u(xv,x;,v)a—g(xv,x;,v)dxv
Ty

Po(Q)  {zo€R;(z0,2,)€0R}
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:/u(a:, v)g(z,v)vpv dS(x) — /u(x,v)v.vxg(x, v)dz,

owing to dx) = |v,.v| dS(z). Integrating both sides with respect to v on V for the
measure dju(v), we obtain:

//UVuxv) (x,v)dzdu(v) // u(z,v)g(z,v)v.v(z)dS(x)du(v)

QxV I:=00xV

_//u(;p’U)U,ng(:p,v)dxd,u(v),

QxV

by Fubini’s theorem applied to each of these three terms. What was to be proved. 0

3.2 Remark. In the preceding proof, we have said that for almost x,, € P,(2), u(-, x,,v)
WLP(J& v) and g(’ Lys ) (Z

of WHP(J( ) = C(J}, ) (resp Wy (s o) = C(J( ) the existence of limit val-
v) (resp. g( .. v)) at the left extremity '~ (z!,v) (resp. the right extremity

€
@)
€ Wl’p'(J(ix ) for every i which implies by the injection

ues of u(-, x,
T (x! v)) of the interval J(x;,,v)- This essential fact for the existence of the limit values
(thus of the traces) is said p.833 after formula (5) in the paper [12] of M. Cessenat, but

not really proved and rather delicate. We give the proof in the following lemma:

3.2 Lemma. Let u € WP(Q x V). Then for almost every v € V, for almost every
z € Py(Q), u(-, z.,v)| i

) vy

o belongs to W'?(J{,, ) where the J{,, . denote the connected
components of the intersection with Q) of the straight line parallel to v passing through the

point (0, ).

Proof : Let us consider the function (-, x), v) =Rz, — u(zy, 2, v).

) v

i : J!
i, (
@)

By Fubini’s theorem, from u € W?(2 x V) follows ‘that for almost every v € V, the
function u(-,-,v) € LP(Q) and v.V,u(-,-,v) € LP(Q). Also, V0 € E(V), C* function on

the compact manifold V' = Sy, and V¢ € D(S2), by the definition (3.7):

z!,,v)

<u.Vuu,p ® 0 >= —/H(U)/u(x,v) 0.V (z) dedu(v), Vi € D(Q),v0 € E(V).

Thus Vi € D(Q):

/U.qu(x,v)z/}(x) dr = —/u(x,v) 0.V h(x) dz, Y'v e V. (3.15)
0 Q

But £(€2) the Fréchet space of C*°- functions in €2 is separable ([20], (17.1.2) p.227), from
which follows that the subset of functions of £(2) with compact supports contained in
a fixed open relatively compact subset of € is also separable ([6], Prop. II1.22 p.47 or
[7], Prop. 3.25 page 73). Considering an exhaustion of €2 by a sequence (£2,), .y of open
relatively compact subsets of Q such that Q,, C Q,.1, Vn € N, it follows that the space
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D(Q) of C°°- functions with compact supports in € is also separable. Let thus F be a
dense denumerable subset of D(Q2). For every v,, € E, (3.15) is true except possibly for

a set V,, of v € V of u-measure zero. The union UVn being of pu-measure zero, for v € V
n
except a set of measure zero, we have:

/U.qu(x,v)z/}(x) dr = —/u(:c,v) 0.V h(x) dz, Vi € D(Q).

Q Q

Let us fix such a v € V and the system of coordinates (x,, ) in R3  thus in particular
in €. Let us consider “little” open cubes contained in €2, whose sides are parallel to the
axes in our coordinates system (x,,z!). 2 can be written as the union of a denumerable
family F of such cubes (e.g. by considering all cubes with sides parallel to the axes in our
coordinates system (x,,x]) with their center in (2 having rational coordinates and length
of their half-sides equal to the distance of their respective centers to the boundary of 2
divided by v/3 ) . Let @ =]a, 8[xC such an open cube belonging to our denumerable
family of cubes F, C' denoting an open square whose sides have length § — «. By Fubini’s
Theorem, follows that for almost every z/ € C, that the function u(-,z),v) € L*(]a, 5])
and v.V,u(-,z),v) € LP(Ja, B]). To verify that L)U) in the sense of distributions is

TR

equal to v.V,u(-,x),v), it suffices to verify it locally. Thus, by the definition of the

) v

derivative in the sense of distributions, we have to verify that for almost every z! € C
(as the union of a denumerable family of sets of measure zero being still a set of measure

zero) :
B
<v.Vuu(,z,v), ¢ >= /U.Vzu(wv,x;,v)go(xv)dxv

" (3.16)

= —/u(xv,x;,v)g(xv)dxv, Vo € D(]a, B]).

o

Taking in (3.15) for ¢ any function of the form (x,, 2}) — o(z,)@(x)) with ¢ € D(]a, f])
and ¢ € D(C), equality (3.15) becomes:

B
/d:cvgo /v Vot(y, 2, v) (2, )da,

“ 8 (3.17)
= —/d:cvw x) /u Ty, Th, V) (xv)dxv,

which implies that for almost every z!, € C:

B B
d

/U.Vzu(xv, zl v)e(xy)dr, = —/u(mv, Tl v) d90 (xy)dxy, (3.18)
z,
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By the same reasonings than just after formula (3.15), follows that the space D(]a, f])
of C'*°- functions with compact supports in |«, 5[ is also separable. Let thus D a dense
denumerable subset of D(]a, 5]). For every ¢, € D, (3.18) is true except possibly for a

set E, of x), € C of measure zero. The union | JE, being of measure zero, for z) € C
n
except a set of measure zero, for every test function ¢ € D(]a, 5]), (3.16) is true. O

3.3 Remark. The preceding lemma shows us that the space WP(2 x V') can be defined
as the space of those functions u belonging to LP(Q x V) such that Y'v € V', u(-, 2!, v)

is V', € P,(Q) absolutely continuous on the intersection of the straight line parallel

to v passing through the point (0,z)) € R® with Q and such that /[/|8‘%(xv,x;,v)|p
VO

dx,dzl]dp(v) < +oo.

3.2.3 Dissipativeness of the operator A

The aim of this subsection is to prove that the operator A is closed and dissipative. In the
proof of the dissipativeness of A, we will use the property of the “reflectivity coefficient”
pg(+), to be equal to 1 near 0.
3.3 Lemma. Vp €]1,4o00[, YVh € WP(Q x V), v-V, |h|’ =p|h[">h v - V,h.

Proof : 1°) For h € LP(V;CY(Q)) N W?(Q x V), the formula follows from:

0.V, [h]" = 0.V (h?)P/? = B(R?)P12 0.V b
= p(|R[*)P* ' h 0.V ,h = p|hP > h 0.V, h.

In particular, this formula is true for every h € D(2 x V).

2°) Using the density of D(Q2 x V) in WP(Q x V) (it is said in the proof of Theorem 1
in [19], pp.220-221), we now prove the formula for every function h € W?(Q x V). Let
h € WP(Q x V) and (hy)nen be a sequence in D(2 x V') converging to h for the norm of
WP(Q x V). For every h,,, n € N, we have using the preceding point and formula (3.7):

<P |hnlP 7 by 0. gha, 0 >=< 0.V, |ha|” 0 >

= —// B P (2, 0) 0.V g0(z,v) dedu(v), Vo € DQ x V). (3.19)
QxV

Using Theorem IV.9 p. 58 of [6] or equivalently Theorem 4.9 p. 94 of [7], from the strong
convergence in LP(Q x V') of the sequence (h,)nen to h, follows that (|h,|")nen strongly
converges to ||’ in L'(Q2 x V) when n — +o00. Thus Vo € D(Q x V):

_// |hy|? (z,v) v.Vap(z,v) dedp(v) — _// I (2, 0) 0.Vap(z, v) dedu(v),

QxV QxV

when n — +oo. Using still Theorem IV.9 p. 58 of [6] or equivalently Theorem 4.9 p.
94 of [7], it follows that p|h,|"~> h, strongly converges to p|h|P™>h in L¥'(Q x V) (i =
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;1) — 1) when n — +o00, which with v.V h, strongly converges to v.V,h in LP(Q x V),
implies that p |7, |P~> hy 0.V 4h, strongly converges to p |h|" > h v.V,h in L'(Q x V) when
n — +o0o. Thus

< plhal’ 2 by 0.V ghy, >
— //p|hn|p_2 (z,v) hp(z,v) v.V h,(x,0)o(z,v) dedu(v)

QxV

= / / P2 (2, 0) h(z,v) 0.Vh(z, v)o(e, v) drdu(v),

when n — +o00. Passing to the limit when n — +o0 in (3.19), we thus obtain:
<p|hfPPh vV h, o > = —/ AP (x,v) v.Vp(x,v) dedu(v)

QxV

=< 0.V |h|", o>, Yo e DQxV),

which proves that v.V, |h[” = p|h[’"> h v.V,h in the sense of distributions. O

3.4 Lemma. Let us consider an odd C'-function 0, : R — R, increasing (stricly) in the
subinterval [0, 2], such that

Y, ify €10,1/2],
O :R-Riy—>{<y ifyell/22
1, ify > 2.

We may also suppose that 0 < 67 < 1. Let us set Vn € N* : 6, : R - R : y
n-0y (L). Then Yu € WP(Q x V): 0u(u) € WP(Q x V) and v - V(0 (u)) = 6, (w)v - Vou.
Consequently 0,(u) — u in WP(Q x V) as n — +oo.

Proof : 1°) Firstly, let us prove that the sequence 6, (u) — w in LP(Q2 x V) when
n — +o00. From the definition of 6, follows that 0, (u(z,v)) = u(z,v), if [u(z,v)] < 3.
Asu € LP(Q x V), |u(z,v)] < +00 a.e. and thus for almost (z,v) € Q x V| we will
have 0, (u(z,v)) = wu(z,v), if n is sufficiently large. Thus 0,(u) — w a.e. in Q x V
when n — +o00. From the definition of 6,,, we have also that |6,,(u)| < |u| which belongs
to LP(2 x V). Thus by the Lebesgue’s dominated convergence theorem ([54], p. 18),
On(u) = win LP(2 x V) when n — +o0.
2°) Let us prove the formula v.V (0, (u)) = 0, (u)v.V,u. Let us fix some n € N*. We know
that D(Q x V) is dense in WP(2 x V) (see the proof of Theorem 1 in [19], pp.220-221).
Let (ug),ey be a sequence of functions in D(Q2 x V) which tends to w in W?(Q x V). By
the classical rule of derivation of composed functions: v.V, (0, (ux)) = €, (ug)v.Vyug. As
up — win LP(Qx V) and v.V,u, — v.Vuin LP(Q x V), by using Theorem IV.9 p. 58 of
[6] or equivalently Theorem 4.9 p. 94 of [7], there exists a subsequence (uy, ),y such that
ug, — wa.e. on @ x V, v.V,uy, — v.V,u ae on Q x V and a function h € LP(Q2 x V)
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such that |v.V, ug| < h ae. on Q x V. 6 (-) being continuous, we have also that
0 (u,) — 0/, (u) a.e. in @ x V when | — +oo. Thus v.V,(0,,(ug,)) = 6/, (ug,)v.Vu, tends
to 0 (u)v.V,u a.e. in QxV when [ — +oo. Thus by the Lebesgue dominated convergence
theorem in LP, v.V (6, (ug,)) = 0., (ug,)v.Vyug, tends to 0], (u)v.Vyu in LP(2 x V') when
| = 4o0o. As 0,(ur,) € CHQ x V), by the classical divergence theorem applied to
0.V (0, (ur,)) = divy (0, (ug,).v),

< 0.V (0n(ug,)), p >= —//Hn(ukl(x,v)) v.Vep(z,v) dedu(v), Yo € D(Q x V). (3.20)

As uy, — u a.e., 6,(-) being continuous, we have also that 6, (u,) — 0,(u) a.e. on Q x V.
|0, (ug,)| < n which is fixed, thus by Lebesgue dominated convergence Theorem, the right
hand-side in (3.20):

—//Gn(ukl(:c,v)) v.Vep(z,v) dedp(v) — —//Gn(u(x,v)) v.Vep(z,v) dedu(v),

QxV QxV

when | — 4o00. As 0.V, (0,(ug,)) = 0, (w)v.Vyu in LP(2 x V) when | — o0, the left
hand-side in (3.20): < v.V,(0,(uy,)), ¢ >—< 0, (u)v.Vu, p >. Thus passing to the limit
as [ — +oo in (3.20), we obtain:

< 0 (uw)v.Vu,p >= —//Gn(u(az,v)) v.Vo(x,v) dedp(v), Yo € D2 x V).
QxV

Thus, in the sense of distributions: v.V (6, (u)) = 0. (u)v.V u.

3°) Thus it remains to prove that €/, (u)v.V,u — v.V,u in LP(Q x V) when n — +00. As
0<0,<1,10 (uw)v.Veu| < vVl € LP(Q2x V), and 0, (u) — 1 a.e. in Q@ x V when n —
+00, by the Lebesgue dominated convergence Theorem ([54], p. 18), €/, (u)v.V,u — v.V, u
in LP(2 x V) when n — 4o00. Consequently, by the second point, v.V,(0,(u)) = v.V,u
in LP(Q2 x V).

4°) From the first point and the third one, follows that 6, (u) — v in WP(Q x V). O

3.5 Lemma. Let (X, A,m) denotes a measure space. On LP(X, A,m) (1 < p < 4+00),
we consider the semi-inner product (unique in fact [6, p.3], or [7, pp.3-4]) :

[l LP(X) X LP(X) = R (f,9) =< £ WG > 10010 (x0: (3.21)

where Wg € L' (X) (z% =1- %) is defined by Wq := ] if g #0, and Wqg := 0 if

=2
llgll>

g=0. Then [-,-], is a continuous mapping from LP(X) x L*(X) — R.
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Proof : It suffices to prove that the mapping W : L?(X) — L¥(X) : g — Wy is
continuous. Firstly, let us consider a sequence (gn),,~, in LP(X) converging to 0 in LP(X).

' >

ol 2g. "\
HWQMHUMX): ﬂEWFj; dm
x| 19nllp
1 o o (3.22)
- /Ignl(”‘ ¥ dm
lgnll;
= HgnHLP(X)'

Thus Wg, — 0 in LP(X). This proves the continuity of the mapping W : LP(X) —
L¥(X) at point 0 € LP(X). Now, let us consider g € LP(X)\{0} and a sequence (g,),,-,
in LP(X) converging to g in LP(X). By the partial converse to the Lebesgue dominated
convergence theorem ([45], p.48), there exists a subsequence (gy, )., converging to g a.e.
and a function h € LP(X) such that |g,,| < h. This implies that ’|gn,€|p*2 gn,| < WP €
LY (X). Thus by the Lebesgue dominated convergence theorem in L” (X)), |gn. "> gn, —
lg|" g in P (X). Thus Wg,, — Wg in L”(X). By a well known result of elementary
General Topology, the sequence (Wgy), -, itself converges to Wy itself in i (X). This
proves that the mapping W : LP(X) — LY (X) : g — Wy is continuous. O

3.2 Proposition. The operator A defined by (3.8) is dissipative in LP(Q2 x V).

Proof : On LP(2 x V), we consider the semi-inner product [-,-], defined by (3.21)
(with X = QxV and m = dx®du). We have to prove that [Au, u], <0, Vu € D(A)\{0}.
Let us consider some u € D(A)\{0} and let us set u,, := 6,(u). u, belongs to W?(Q x V)
but in general u, ¢ D(A) due to the homogeneous boundary condition in the definition
of D(A). u, being bounded, its traces on I'y belong to L>(I'y; £v.v(z)dS(x)du(v)) and
thus a fortiori to LP(I'y; £v.v(z)dS(x)du(v)) respectively. Consequently, using Lemma
3.3 and applying Green’s formula, Proposition 3.1, to |u, |’ and 1oy (formula v-V  |u, [P =
plun|P2u,v - Vau, , see Lemma 3.3, and u,, bounded show us that we may consider |u,|?

as an element of WP(£2 x V) in order to apply our Green’s formula), we have:

lnlls™ =0+ Vot waly = = [ [0 Vot (@, 0)ln (2, 0) P2z, v)dadp(v)
QxV

= [0 Velunte o)pdrdpo) = = [[ lwn (e OPor@dS @A) g0

QxV oNxXV

= _%//Wn(x, v)[Po.v(z)dS(z)du(v) — %//|un(x, v)|Po.v(x)dS(z)du(v),

48



3.2. SOLVABILITY OF THE RTE WITH THE NONHOMOGENEOUS SPECULAR
REFLECTIVITY BOUNDARY CONDITION

where dS(x) denotes the area measure on 0f2. But:

/ (2, 0)[P0.0(2)dS () dp(v) = / ln (2, 00 (2, 00)) [Po;. v (2)dS (x)dpu(v;),  (3.24)

r- Iy

by Lemma 3.1, where v = v,(z,v;) denotes the reflected vector for which v; is the incident
vector at x. Renaming v the vector v;, we obtain:

lal2 ™ =0 - Vgt ), :—7// [t (2, 0)P = [t (2, 00 (2, 0)) [P )00 () dS () dpa(v).

n2—1

But 1 — py(vy-v)? =0 for 0 < v, -v </ 221,aspg(um v) =1 for 0 <w,-v < /-
([50], p.8). Thus for (z,v) € T'y:

u(z, v (x,v)) = u(z,v) for v, -v <,
Un (2, 0.(2,0)) = up(x,v) for v, -v <

||un||£_2[ v+ Vi, Uy, = —f// [t (2, 0)|P — |ty (2, v (2, 0)) P v.v(z)dS(x)du(v),

which implies

Consequently

where K denotes the set

K :={(z,v) € 02 x Vv, -v>

K being a compact subset of 'y by the trace theorem, Theorem 1 of [19, p.220]: u,|x —
ulg in LP(K;dS(x)du(v)), which implies:

/ ln (2, 0)P.0(2)dS () dpu(v) — / / u(z, ) Po.v(x)dS (x)du(v).

The image of K by the continuous mapping (see Lemma 3.1):

Tlp, : T4 =T (2,0) = (z,v.(z,v))

49



CHAPTER 3. COUPLING THE HEAT CONDUCTION EQUATION WITH THE
RADIATIVE TRANSFER EQUATION

being a compact set in I'_, by the trace theorem, Theorem 1 of [19, p.220]: up|rx) —
ulrky in LP(K;dS(x)dp(v)), which implies:

/ / (2, 00 (2, 0)) [Po.0(2)dS () dpa(v) — / / (i, v, (2, 0)) Po.(2)dS () dp(v).

Thus

lnlly ™ (=0 Vattn, un], — —;4 (lu(z, )P = Ju(z, v, (2, ) [")v.v(2)dS (z)dpu(v),

— —;//‘u(m, V)|P(1 — pg(vy - v)P)v.v(x)dS(x)dp(v) <0,
+ (3.25)

by (3.9). On the other hand, by Lemma 3.4, u,, := 0, (v) — v in WP(£2 x V) implies that
v Vu, = v-Veuin LP(Q x V). Thus, by the continuity of the semi-inner product on
LP(2 x V') (see Lemma 3.5):

lunll}y ™ (=0 - Vattn, wnly = [lullp™ [Au, ul,. (3.26)

From (3.25),(3.26) follows that

luall22 [Au, ul, :_,//mm P(1— py(ve - o)) ()dS () dp(v) < 0.

Thus [Au, u], <0, Vu € D(A) which proves that A is a dissipative operator. O

It is obvious that the operator A has a dense domain in L”(Q2 x V') because D(A) D
D(Q x V) which is dense in LP(£2 x V). Let us show now that the operator A is a closed
operator in LP(Q x V).

3.3 Proposition. A is a closed operator in LP(Q2 x V).

Proof : Let us consider a sequence (u,),>1 in D(A) converging to an element u €
LP(2 x V) such that the sequence (Au,,),>1 converges to an element f € LP(Q2 x V). We
must show that this implies that v € D(A) and that Au = f. Let us set f, = Aup,
Vn € N. By the definition of the operator A, we have that f,, = —v - V,u, in the sense of
distributions i.e.

//unxv v Vep(z,v) dedu(v //fnxv (x,v) dedp(v), Yo € D(Q x V).
QxV QxV

Asv-V,p € L>®(Q x V), Q x V is of finite measure, u,, = u, and f,, — fin LP(Q x V),
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we can pass to the limit in the previous identity and obtain:

// u(z,v) v- Vep(z,v) dedu(v //fxv (x,v) dedu(v), Yo € D(Q x V).
QxVv QxVv

Asue LP(Q2x V), fe LP(Qx V) and —v - V,u = f in the generalized sense, it follows
that u € WP(Q x V) and u,, — u in the space W?(§2 x V). By the continuity of the trace

operators (Corollary 1 of [19, p.220]) from WP(Q2 x V) into L .
P

loc

('), tnlry — ulr; in
(I's). This implies that some subsequence (Unkyr$)k>0 converges a.e. on 'z to ulr. .

In conclusion u satisfies also (3.9), and consequently, v € D(A) and Au = f. O

3.2.4 Surjectivity of A\ — A, VA >0

We want to prove that the range of A — A, R(A — A) is equal to LP(Q2 x V') for all A > 0.
We are reduced to prove that R(A— A) is dense in LP(2 x V). Indeed, using the closedness
and the dissipativeness of A, the result will follow.

3.4 Proposition. Let A > 0 be arbitrary. Let g € LP (Q x V) be “orthogonal” to the
range of A — A i.e.

/ g(x,v) (A= A)u(z,v) dedu(v) =0, Yu € D(A). (3.27)

Then v - Vo9 = g in the generalized sense. Consequently g € WP (Q x V).

Proof : The hypothesis implies in particular that:
< g, ASO +v- Va:(;p >Lp,(QXV)7Lp(QXV): O, \V/QD € D(Q X V),

i.e.

A< g, o> = —//g(x,v)v - Vep(z,v)dzdu(v), Yo € D2 x V).
QxVv

Thus in view of (3.7), this amounts to say that in the generalized sense v - V,g = \g €
LY (2 x V). O
Now, let us define the unbounded operator A in L (Q x V) by:

D(A) = {g € WY (Qx V)i g(z,v) = py(lv - v))g(@,v), for a.e. (z,0) € Ty},
where v, = v (x,v) := v — 2(Vy - V) Vs, (3.28)

A:DA) - LV QAxV):g— v-Vag.

The notation v, = v,.(z,v) in (3.28) must be understood as the reflected vector cor-
responding to the incident vector v at point x on the interior face of 92. We are going
to prove that the operator A is also dissipative but in LP(Q x V), of course. To be
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more precise, the operator A (resp. fl) operating in the Banach space LP(€2 x V') (resp.
LY (2 x V) will also be denoted A, (resp. A,) when necessary.

3.1 Definition. In the following, we will denote by J the mapping
J:QAxV =>QxV:(x,v)— (z,—0).
3.5 Proposition. h € D(Ay) iff hoJ € D(A,) and
Ayh = (Ay(hoJ))oJ. (3.29)

Proof : Firstly h € D(A,) implies h € W?(Q x V) and also ho J € WP (Q x V).
Now, for almost all x € 92 and v € V such that (z,v) € I'_, we have:

(ho J)(z,v) = h(z,—v) = p(Jva - v]) h(z, (—v),)
= p(|lva-v]) (ho J)(z, - (-v),)
= p(|ve - v]) (ho J)(x, = (=0 +2(v - vz) 1a)) (3.30)
=p(lve-v|) (hoJ)(z,v—2(v - vy)Vs)
= p (v - v]) (ho J)(z, vs),

where v; = v — 2(v - v,)v, denotes the incident vector at point x on the interior face of
09 admitting v as reflected vector. Thus hoJ € D(A,/). Reciprocally, if hoJ € D(Ay),
h belongs to WP (Q x V) and ho J(z,v) = p(|ve - v|) (ho J)(x,v;), V' (z,v) € T'_ which
implies that h(z,v) = p (v, - v]) h(z,v,), ¥'(z,v) € Ty, and thus h € D(A,). Now, let us
prove formula (3.29). hoJ: Q2 xV — R : (z,v) — h(x,—v) and thus
. 3 8h
(Ap/(hoJ)) (x,—v) Z —Ug) pe k(m , V)

= (U.Vzh)(l’, v)
= (Ayh)(z,v).

The proof of the proposition is complete. U

3.6 Proposition. The operator A = A, defined by (3.28) is dissipative in LV (Q x V).
Proof : On L¥ (Q x V), we consider the semi-inner product (unique in fact [6], p.3) :
[P (X V)X P (Qx V)= R: (f,h) =< f,Wh> (3.31)

where Wh € LP(Q x V) (1 := 1 — 1) is defined by: Wh =20 56 20 and 0if h = 0.

/—2
151,

We have to prove that [Ah, h] < 0, Vh € D(A). Let us consider some h € D(A)\{0}. By
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Proposition 3.5:
[Ah,h] = [(J o Ay o J)h, h]
=112 [[ b, o) B, o)Ay Th) (. —v)dzdp(o)
QxV
= ||h||§7p// [ Th(z, )" 2 Th(z, v)(Ay Jh)(z, v)dzdu(v)

QxV

= [AyJh, Jh) <0,

by the change of variable (z,v) — (z,—v) in the double integral. Thus [Ah,h] < 0,
Vh € D(A) which proves that A= flp/ is also a dissipative operator like A,/ in the Banach
space LY (Q x V). O

3.4 Remark. It can be proved that flp/ = (A,)* . The proof uses in particular (3.29).

3.7 Proposition. Let A > 0. Let g € L” (Q x V) be “orthogonal” to the range of X\ — A
i.e.

//g(x, v) (A= A)u(x,v) dedp(v) =0, Yu € D(A).

QxVv

Then g € WP (Q x V) and

//g(x,v) u(z,v) vw(x) dS(z)du(v) = 0, (3.32)

V o0

Vu € D(A), such that their traces on I'y, uy € K(I'y;R).

Proof : We know already by Proposition 3.4, that g € Wp'(Q xV)and v-V,g = Ag.
Asuy € K(I'+; R) by hypothesis, it follows by the trace theorem, Theorem 1 of [19, p.220],
that the trace of g.u on I' is integrable with respect to the measure |v.v(z)|dS(x)du(v).
Consequently, applying Green’s formula (3.14), we obtain:

0= //g(ﬁc, v) (A= A)u(z,v) dedu(v) = //g(a:, v) (Au+v - Vyu)(z,v) dedu(v)

QxV QxV

= //u(x, v)(Ag — v - V) (z,v)drdu(v) + //g(x, v)u(z, v)v.v(x)dS(z)du(v)

QxV 00XV

= //g(x,v)u(x,v)v.u(:v)dS(:L')dp(v).

oNxXV

O

3.8 Proposition. Let A > 0, and g € LP (2 x V) satisfy (3.27). Denoting by g= (resp.
uy) the traces of g € WP (Q2 x V) (resp. uw € WP(Q x V)) on I'y (see Theorem 1 of [19,
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p.220]), we have Yu € D(A), such that its traces on I'y, uy € K(I'y;R):

[ i@ 0)g:(@0) = pyllw - vD)g- (@, 002, v)) v(@)dS(@)du() = 0. (3.33)

Proof : From (3.32) and 02 x V =T, UT'_ UT, where
Lo :={(x,v) € 9Q x V;v.v(zr) = 0},

we have Vu € D(A) such that their traces on I'y, uy € K(I'y; R):

[[9:-(@.0) wlw,v) vr(@) aS(z)du(o)-

§ (3.34)
/ / g (z,0) u_(z,0) [v.w(z)] dS(z)du(v) = 0.
But due to u_(z,v) = py(|vy - v])us(z,vi(z,v)) for a.e. (z,v) € I'_, we have:
J[9-@.v) u@,v) lovl@)| dS(@)dp(v)
= [[9-(@.0) pyllus - vl (v, ) Jow(@)] dS(@)dpu(o)
- (3.35)

= [[ 9,0, 0)) pyllue - vl (2,05) viov(z) dS(@)da(wi),

T+

— [[9-@.vnlw,0) pyllus - vus (e, v) v.v() dS(@)dpv),

by making the change of variables (z,v) = (z,v,(x,v;)) and using Lemma 3.1. From
(3.34) and (3.35), we obtain (3.33). O

Now, we want to prove that (3.33) implies g (z,v) = py(|vs - v])g—(2z,v,), for a.e.
(z,v) € I'y. This will result from the following lemma:

3.6 Lemma. Given any uy € K(I'y;R), there exists a function u € D(A) such that
ulp, = uy.

Proof : Let us set:
u_(z,v) = py(|vg - v))us(z,v — 2(vy - v)vy), for ae. (z,v)€_ .

Now, we have to prove that there exists a function u € W?(Q2x V') such that u|r, = uy and
u|r_ = u_ in the sense of traces theory. u, has a compact support in I'y. Consequently,
the infimum of the positive continuous function

Tlp, : Ty = R @ (z,v) — inf{t > 0;2 — tv € 00}
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on the support of u, is a strictly positive real number, which implies that u, € LP(T'y; dfﬁ)
where d€% .= (1|r, ) v, - v dS(x)du(v) (for the given definition of d€%, see [12], [13] or
[19] p.250). The mapping

Iy =T (z,0) — (2,0 —2(v, - 0)y)

is a topological isomorphism from I'y onto I'_. Consequently, the support of u_ is a
compact set contained in I'_. This implies that the infimum of the positive continuous
function

Tlp_ : T2 = RY ¢ (z,v) — inf{t > 0,2 + tv € 00}

on the compact support of u_ is strictly positive. Thus u_ € LP(I'_; dé? ) where d&” :=
(7|0 )P vy - v| dS(z)dp(v) (for the given definition of d€”, see [12], [13] or [19] p.251).
Then by ([12] Theorem of trace 2, p.833, or [19] Theorem 1 p.252), there exists a function
u € WP(Q2 x V) such that u|p, = uy and u|p_ = u_ in the sense of trace theory. O

3.1 Corollary. Let A > 0. Assume g € LP (Q x V) satisfy (3.27). Then g = 0. Conse-
quently R(A — A) = LP(Q x V), VA > 0.

Proof : Proposition 3.4 tells us, that v - V,g = Ag and consequently that g €
WP (Q x V). By (3.33) and Lemma 3.6,

(g+(z,v) — pg(|ve - v])g-(x,v,)) vv(x) =0, for ae. (x,v) €'y,
for the measure dS(z) ® du(v). As v.v(z) >0, V(z,v) € 'y, we have:
g+ (z,v) = py(|vy - v])g—(x,v,), for ae. (z,v) € T4 .

Thus in view of (3.28), g € D(A) and (A — A)g = 0. But, by Proposition 3.6, we know
that A is a dissipative operator in L¥ (Q x V). Thus:

(A= A)g

LP' (QxV) = HgHLp/(QXV) , VA > 0.

This inequality and (A — A)g = 0, implies g = 0. This means that the range of A — A is
dense in LP(Q x V), YA > 0. As the dissipativeness and closedness of A implies that the
range of A — A is closed, we deduce that R(A — A) = LP(2 x V'), VA > 0. O

Summarizing, we have established the following theorem:

3.1 Theorem. A is a dissipative and closed operator such that every A > 0 belongs to
the resolvent set of A. Consequently:

(RYCE: Yl <1, VA> 0.

L(LP(QxV))
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3.5 Remark. It follows from the previous theorem and the density of D(A), using Lumer-
Phillips’ theorem [18, p.343], that A is the generator of a contraction Cy-semigroup (we
will not need that property of A in this chapter).

3.2.5 Solving the radiative transfer boundary value problem

In this subsection, we want to solve the radiative transfer boundary value problem (3.1)
with the nonhomogeneous boundary condition (3.2), not only in LP(2 x V'), but also in
L>(Q x V), and to give bounds on the solution.

3.2 Theorem. Assuming T'(-,t) € L*(R2), the quasi-stationary radiative transfer boundary
value problem (3.1)-(3.2) has a unique solution I*(-,t,-) € WP(Q2 x V). Moreover:

|7t ) = BETs()]| o) < VA | BE(T(-,1)) — BE(Ts(t))

(3.36)

Lr(Q)

Proof : Equivalently, the new unknown uy(x,v) := I*(x,t,v) — BF (Ts(t)) must satisfy
in the weak sense:

v - Vaug(z,v) + kpug(z,0) = k(B (T (2,t)) — BE(Ts(t))), for a.e. (z,0) € QxV,
u(z,v) = pg(|vg - v])ug(z, v;), for a.e. (x,v)el_.

Taking A = &y, in Theorem 3.1: uy = kg (kp — A) (B (T(-, 1)) — BE (Ts(t))) is the solution

and

By(T(-,1)) — B’“(Ts(t))

] o geery < |

Lr(QxV)
= {/Ar | BE(T (1)) — B(Ts(t) iy
Thus I*(-,t,-) satisfies inequality (3.36). O

3.6 Remark. [t follows immediately from the equation
v Vaug(z,v) + krug(x,v) = /fk(B;“(T(:v,t)) - Bg(Tg(t))), for a.e. (x,v) € QxV,

that one has also:

HU : Vx(]k(-7t’ ) - Bg(TS(t))) LP(QXV
(@xV)
< 2{/Amry | BE(T (1)) — BE(Ts(1))

Lr(Q)’
and thus

H[k(" ) = By (Ts(t) HWP(QXV

3.37
< Y47 (1 + 2ky) (3:37)

|B(T (1)) = By(Ts(1))

Lr(Q) "

26



3.2. SOLVABILITY OF THE RTE WITH THE NONHOMOGENEOUS SPECULAR
REFLECTIVITY BOUNDARY CONDITION

3.2 Corollary. Supposing that T(-,t) € L®(Q), the solution I*(-,t,-) of the quasi-
stationary radiative transfer boundary value problem (4.4)-(4.12), belongs to L>®(Q2 x V)

and satisfies the estimate:

1511, ) = BY(Ts(t |BE(T( 1)) — B (Ts(t (3.38)

))HLOO(QXV) < ‘ ))HLOO(Q)'

Consequently, the trace on T := 0 x V of I¥(-,t,-) belongs to
L®(T; Jv.v(z)| dS(x)du(v)) and v -V I(- t,-) € L®(Q x V).

Proof : Let us remark that in this case the solution I*(-,¢,-) is the same for every
p €|1,+00[. By Theorem 1 of [73, p.34], for every n € N* it follows from estimate (3.36):

|min([7%(t, ) = BE(Ts(0))]
= lim_[min(([7*(-.¢,) — BY(Ts(%))
< lim sup |T%(-t,-) = BE(Ts(t))

< limsup | BY(T(-.1)) = By (Ts (1))

p—+00

Lr(QxV)
= | BE(T(- 1) = BE(Ts(t

LP(Q) ))HLOO(Q)'

Letting n goes to infinity, we deduce that (3.38) holds. O

3.2.6 Uniform bounds on the radiative intensities

In this subsection, we want to give uniform bounds on the radiative intensities I*(-,¢,-)
in function of uniform bounds on 7T'(-,¢) and Ts(¢), the quantities appearing as data in
the radiative boundary value problem (3.1)-(3.2).

Firstly, supposing T'(-,t) € L>(Q), and given T € R% such that Ts(t) < T and
T(x,t) <T, for a.e. € Q, we want to prove that I*(z,t,v) < Bg(T). For that purpose,
we will need the following lemmas:

3.7 Lemma. Let us suppose that T(-,t) € L>(Q). Let I*(-,t,-) € WP(Qx V), be the solu-
tion of the quasi-stationary radiative transfer equation (3.1), with the reflectivity boundary
condition (3.2). Then

J[0-9I @, t0) = BETS() (I (. t,0) = BE(Ts(0)+ dadu(v) = 0.

Proof : Firstly, let us remark that this integral has sense by Holder’s inequality
because v.V(I*(-,t,-) — Bi(Ts(t))) € LP(Qx V), (I*(-,t,-) — Bi(Ts(t)))4 € L®(Q2 x V).
We may suppose p > 2, in view of the argument of uniqueness invoked at the beginning
of the proof of Corollary 3.2. Also (I*(-,t,-)— B5(Ts(t)))+ € W (Qx V) as p’ < p. Thus,

o7



CHAPTER 3. COUPLING THE HEAT CONDUCTION EQUATION WITH THE
RADIATIVE TRANSFER EQUATION

by Corollary 3.2 and Green’s formula, Proposition 3.1, we have:

//U.Vx(]k(:p, t,0) — BE(To(t))(I*(x, t,v) — BX(T5(t))) dwdp(v)

= // (I*(z,t,0) — BE(Ts(t))(I*(z, t,0) — Bi(Ts(t)))+ vev dS(x)dp(v)
oIxXV
— [t ) = BETs(0)0.Vul* e, 0) = BETs(0))) dadp(v)

= [[ (1@, 0) = BETs@)) (.1, v) = BETs(0))4 ve-w dS(w)dpu(v)

oOxV

— [[ (1@, 0) = BATs()0.Va(I* (@, t,0) = BA(Ts(1)))

QxVv
1{(1»‘,1))[ (z,t,v)>BE(Ts(t))} dlL’du( )

Thus by using Lemma 3.1 and (4.12):

//v Vo (I5(z, t,0) — BY(Ts(t))) (I*(x, t,v) — BE(Ts())) dadp(v)

QxV
~1 / (I*(2, t,0) — BX(Ts(t)))2 vpv dS(x)dp(v)

oNxXV
/ (I*(x, t,v) — BY(Ts()) v dS(x)dp(v)
/ (I*(x, t,v,) — BE(Ts())2 vevr dS(z)dp(v,)
~1 / / (I5(x,t,v) — BE(Ts(t)))2 vyv dS(a)dp(v)

_%//pg“% )2 (1F (2, tv) — B;“(Ts(t)))?|r Vv dS(z)dp(v) > 0.

What was to be proved. 0

As a variant of the preceding lemma, we have:

3.8 Lemma. Supposing that T(-,t) € L=(Q) and given T € R such that Ts(t) < T ,
we have:

/ / v VoI, t,0) — BY(D) (I (z, t,v) — BY(T)), drdu(v) > 0.
QxV

Proof : Firstly, let us remark that this integral is meaningful by Holder’s inequality,
because I*(-,t,-) € WP(Q2 x V), Vp > 1. By using Proposition 3.1, and the fact that
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I%(-,t,-)r € L=(I') owing to Corollary 3.2, we obtain:

/ / v Va(I¥(x, t,v) — BYT)(I*(x, t,v) — BYT)), dadp(v)

QxV
~1 / / (I*(x,t,0) — BE(T))2 vpv dS(a)dp(v) (3.39)

w4 [[ (M t0) = BYD) viw dS(@)dn(o)

Now for (z,v) € T'_:

I*(x,t,v) — BS(T)
= py(lve - v)I* (2, t,v0) + (1 = py(lva - 1)) By (Ts(t)) — By(T)
= gV - 0))(I* (2, 8, 0:) = Bg(T)) + (1 = pg(|vs - v])) (B (Ts(t)) — By(T)).

Due to our hypothesis (1 — py(|vs - v|))(Bf(Ts(t)) — BE(T)) is non-positive and thus for

(x,v) e'_:
I*(x,t,v) = By(T) < py(lve - v)(I* (2, t,vi) = By(T))

which implies

(14, 1,0) = BET)) < pyllvs - o) (IH a1, 01) — BET))..

and thus also
2 .

(I* (2, t,v) = Bg(T))% < pyl|ve - 0])* (I (2, t,v1) — By(T))%
Thus from (3.39), it follows using Lemma 3.1, that:
J[v- Vull(@.t0) = BTN (@, t,0) = BET)) dedp(v)

> 1//(1 — pol[ve )2 (I* (.t v) — BHT))2 vy dS(x)dp(v) > 0.

3.7 Remark. Lemma 3.7 is in fact a particular case of Lemma 3.8.

3.9 Proposition. Supposing T'(-,t) € L>(S2), and T'(z,t) < Tg(t), V'x € 2, we have that
I¥(x,t,v) < BE(Ts(t)), V'(z,v) € A x V.

Proof : I*(-,t,-) is solution of:

0.V I (2, t,0) + k¥ (2, t,0) = K BY (T(2,1)), V' (z,0) € QxV
142, 1,0) = gl - W) T (b, 05) + (1 = py((v - o)) BE(Ts (), V'(z,0) € T
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Thus

0.V (I*(z,t,v) — B;(Ts(t))) + kg (I*(z, t,v) — Bg(TS(t)))
= ki, (BE(T(x, 1) — BE(T5(1)) , ¥'(x,v) € Qx V.
Multiplying both sides of this last equality by (I*(z,t,v) — Bi(Ts(t)))+, and integrating

with respect to the measure dr ® du(v), we obtain:

/ / V.V (I8, £, v) — BE(Ts(t))(I* (2, 1,0) — BE(Ts(t)))4 dadp(v)

F g / / (I%(x,t,v) — BE(Ts(t)))(I*(x, t,v) — BE(Ts(t))) s+ dwdp(v)
= wx ([ (BET (1)) — BETS() (I, 1,0) — BYT5(0) dadp(v)
QxV

By Lemma 3.7, the first term in the left-hand side of the previous equality is positive and
due to our hypothesis, the right-hand side is negative. Thus

K / / (I*(x, t,v) — BE(Ts (1)) (I* (x,t,0) — BE(Ts(t)))4 dudp(v)

QxV
— / / (I*(x, t,v) — BY(Ts(t)))? dadp(v)
QxV
is negative. Consequently (I*(x,t,v) — Bi(Ts(t)))+ = 0, V'(x,v) € Q@ x V, dzdp(v), from
which the result follows. 0
Similarly, to the previous proposition, we have:

3.10 Proposition. Supposing T(-,t) € L>(2), and given T € R*. such that Ts(t) < T
and T(x,t) < T, for a.e. x € Q, we have that I*(z,t,v) < Bg(T), fora.e. (z,v) € QxV.

Proof : From equation (3.1) follows that:
v - Vac(]k(xa t,?)) - B:;(T) + ’ik(]k(l‘7ta U) - B§<T))
= Kk (Bg(T(x,t)) - BS(T)) , fora.e. (z,0) € Qx V.

Multiplying both sides of this last equality by (I*(z,t,v) — B§(T))+, and integrating with

respect to the measure dr ® du(v), we obtain:

/ / v Vo (I*(2,t,0) — BYT))(I*(x,t,v) — BE(T)), dadp(v)

Fh / / (I*(z,t,v) — BE(T))(I*(z, t,v) — BE(T)), drdp(v)
QxV
= s [[(BE(T (@) = BET)(I*(w,t,0) = BYT)) 1 dudp(v).
QxV

By Lemma 3.8, the first term in the left-hand side of the previous equality is non-negative
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and due to our hypothesis, the right-hand side is non-positive. Thus

K / / (I*(z,,v) — BE(T))(I*(z, t,v) — BE(T)), drdp(v)

L K / / (I*(x,t,v) — BE(T))? dadp(v)

QOxV

is non-positive. Consequently (I*(z,t,v) — BN (T)); =0, for a.e. (z,v) € QxV, drdu(v),
from which the result follows. O

3.8 Remark. Proposition 3.9, is in fact a particular case of Proposition 3.10, by taking
T =Ts(t).

3.11 Proposition. Supposing T'(-,t) € L>(R2), and given T € R% such that T'(x,t) > T,
for a.e. x € Q, and Ts(t) > T, we have also that I*(z,t,v) > Bi(T), for a.e. (x,v) €
QxV.

Proof : From
0.V I* (@, t,0) + k" (2, t,v) = kB (T(,1)), V'(z,0) € QX V,
follows that:

v.V, (Ik(x,t, v) — BS(I)) + Ki, (]k(xﬂf, v) — Bﬁ(z)) =
ki (BE(T(w,1)) — BE(T))

V/(x,v) € © x V. Multiplying both sides of this last equality by (I*(z,t,v) — Bi(T))_,
and integrating with respect to the measure dxr ® du(v), we obtain:

K / / (I*(z,t,0) = BET)) (I*(x,t,0) — BY(T)) dudu(v)

QxV

— lfk// (BS(T(x,t)) — Bg(I)) (]k(:v7t, v) — Bg(l))i dzxdp(v) (3.40)
—//U.vx (I*(a,t,0) — BE(TD)) (I5(z.t,0) — BE(T))  dadp(v).
QxV

Due to our hypothesis, the first term in the right-hand side of the previous equality is
positive. By Green’s formula, Proposition 3.1, we have concerning the second term in the
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right-hand side of the previous equality:

— / / 0.V, (I%(z.t,0) — BETD)) (I(x,t,0) — BET)) dadp(v)

__ / / (1 (z.t,0) - Bk(z)) (I*(z.t,v) = BE(D)) vy dS(2)dp(v)
o0OQxV
—l—//( z,t,v) ) ( z,t,v) Bk(T)) dxdu(v).
QxVv
— —// (I’“ x,t,v) ) (Ik z,t,v) T))il/x.v dS(z)du(v)
oxV
+ (]k x,t,v) ) (Ik x,t,v) B;“(I)) dzxdp(v),
as Vo (I"(~t,) = BE(T)) = —1(pseyemsn Ve (I°(, 1) = BE(TD)). Thus:

- //U.Vm (Ik(x,t, v) — Bg(I)) (Ik(x,t, v) — BS(I))_ dxdpu(v)

QxV

= ;/ (*(x,t,0) = BED)) (I*(x,t,0) = BE(T)) vev dS(x)dp(v)
oNxV

_; / [ (1" t,0) = BUD)) v dS(@)du(v)
+ // I*(x,t,v) — Bk ) Vv dS(z)dp(v)
2// Ik (z,t,v) Bk )7 Vv dS(x)dp(v)

- ;// (/)g(’V:p . U\)Ik(m,t v) + (1 = py(|ve - v]))Bk(TS( ) — Bg(I))Q_ Vv dS(z)dp(v),

(3.41)

by using Lemma 3.1. But

PV - v)I*(x,t,0) + (1 = py(|ve - v])) By (Ts(t)) — By (L)
= py([ve - v (I (2, t,v) = BE(T)) + (1 = py(|ve - v))(Bg (Ts(t)) — By (L))

By our hypotheses: B} (Ts(t)) > B¥(T), which implies that

(1= py(lvw - vD)(By(Ts(t)) — By (1))

is also positive. Thus if

po(|va - v)I* (@, 1, 0) + (1 = py(lve - v])) By (Ts(t)) — By(T)
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is negative, then py(|v, - v|)(I*(x,t,v)—B&(T)) is negative and consequently > (I*(x,t,v)—
Bi(T)). Thus, in this case

(Ik(at,t,v) — Bg(z))_
> (Pg(|Vm ) I*(z, t,0) + (1= py(|ve - v])) By (Ts(t)) — Bf;@))

This implies by (3.41) that:

- / / 0.V, (I*(z,t,0) — BHT)) (I(x,t,v) - BE(T)) dadp(v) > 0.

Going back to (3.40), it follows that

lik// (Ik(x,t, v) — BZ;(I)) (Ik(x,t, v) — Bj(I))i dxdu(v) > 0,
QxVv

implying that ([’“(m,t,v) — BS(I)) =0, V(z,v) € QxV, dedu(v). What was to be

proved. 0

3.3 Coupling with the Heat Conduction Equation

3.3.1 Notations and scope of this section

We consider now the initial boundary value problem (2.2) for the Heat Conduction Equa-
tion in our bounded domain Q of class C! of R?® with the nonlinear nonhomogeneous

Robin boundary condition:

M M
cymg P (x,t) = kAT (2, t) — > Amkp BE(T (2, 1)) + ka/_fé‘i(ac, t,v)du(v),
k=1 k=1 i

in @ :=Qx]0,t],
+oo

2L (2, 1) = h(T(x, 1) — T,) + / e\[B(T(z,1), ) — B(Ts(t), \)]d,
Ao

on X := 00Qx]0,ty],
T(x,0) = To(x), on .

(3.42)

This nonlinear nonhomogeneous Robin boundary condition (3.42) ;) takes into account
the radiative heating at the boundary of €2, for those wavelengths A > \g ~ 5 1076 of the
black radiation emitted by the radiative source S surrounding €2. For these wavelengths
the glass behaves like an opaque body. In these equations (3.42), ¢,, mgy, kp, he, Ty, Ao, €x
are all positive constants. The constants c,, m, and kj, are named respectively the heat
capacity, the mass density and the thermal conductivity of the glass. h. denotes the
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convective heat transfer coefficient and 7, the constant absolute temperature of the dry

air between our semi-transparent solid {2 and the black radiative surface S surrounding it.
ex ~ 0.9 is called the spectral hemispherical emittance [46, pp.21-22]. We suppose that it
is a measurable function of A defined on the interval [)\g, 400, with values in the interval
[0, 1], independent of the temperature. For more explanations about €, see [50]. We write
in this section IX(-,¢,-) instead of simply I*(-,¢,-) to underline the dependence of I*(-,t,-)
solution of the radiative transfer boundary value problem (3.1)-(3.2), with respect to the
distribution of the absolute temperature 7'(+,¢) in §2 at time ¢ (our problem (3.42) is in fact
a coupled problem: the coupled problem (2.2)-(2.1) stated in the introduction). In (3.42),
Ty € L*(Q2) denotes the initial absolute temperature of 2 and Ts(-) the given absolute
temperature of the black radiative source function of the time ¢ only. We suppose that
Ts € L(0,ts). The incident radiations [46] p*(z,t) := /Iéi(x,t,v)d,u(v) at point x € Q
1%

and time t €]0,t;[ (k = 1,..., M), define functions in L?(Q) because it follows from
inequality (3.36) that the solution I%(-,-,-) to (3.1)-(3.2) belongs to L*(0,¢s; L*(Q x V)).
Here, we want to prove existence and uniqueness of the weak solution to (3.42). Firstly,

we must define the meaning of a weak solution 7" € W (0, tf) to the initial boundary value

problem (3.42). To alleviate the notations, similarly to [50, p.9], let us set:

M
W(T) = = dmr, BY(T), VT € R,
T
hr(x,t) = an/léi(x,t,v)du(v), (3.43)
k=1 i
+oo
o) :=n / exB(T, N\, VT € R.
Ao

3.2 Definition. We shall say that T € W(0,t;) := {T € L*(0,ts; H(Q));%F € L*(0,ts; (H'(2))")}
[71, p.146] is a weak solution to (3.42) iff Vo € H'(Q):

Cpyg <%(.,t), 90>(H1(Q))*,H1(9) -
b [ VT (e, Vol + [O(Tw 0)p(a)dr + [ha(e Dplade (3.49)

+ (he(Ta =T (1)) + O(Ts(t)) = O(T(, 1), ©) 120y, m172(r)

where H=Y/2(T) := H1/2(F)>*, and T(-,0) = Ty. This last condition is meaningful due
to W(0,ty) < C([0,t;]; L* () ([71, p.148], [36, p.40]).

Firstly, we are going to prove that (3.42) has at most one weak solution. The proof of
the existence of a weak solution, requiring previously to establish “maximum principles”,

will be given later.
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3.3.2 Uniqueness result

3.12 Proposition. The initial boundary value problem (3.42) has at most one weak
solution.

Proof : Let 171,17, € W(0,ts) be two weak solutions of (3.42) such that 73(-,0) =
T(-,0) = To(.). Thus T'= Ty — T satisfies:

oy (10D s ey = —Fn [ VaT (@, 8)Vaplw)da

+ [ WM, ) = $(Ta(e, O] p(@)da + [ T, (2,8) = by (2,0)] p(w)da
e (T 8) = Ta, ), 0 gviaeyavaqey + (OT2( 1) = O(Ti (1)), 0) yos/aqey vy

Vo € HY(Q).
As T(.,t) € HY(Q) for a.e. t €]0,t;[, we may choose ¢ = T(.,t) for such a ¢ €]0,¢;[, and
obtain:

C”;n"d/Tx t) da:—i—k:h/|v T(z,t))* do =
/ (T (z,t) — ¢(T2(x,t)] Tz, t)de + / o, (2,8) — hay (2, )] T, £)dx

—he <T( ,t) T( t))H 1/2(T),HY/2(T") — <@(T1(., )) @(T2(7 )),T( 7t>>H*1/2(F),H1/2(F)'

As —1 and O are increasing functions on R, the first term and the last one, in the right-
hand side are negative terms. Obviously, the last but one term in the right-hand side is
also negative. Thus our last equation, implies the inequality:

cpmy d
2 dt

/ T(x,t)2da + ky / VLT, 8)|2 da < / e, (2, 8) — oy (2, )] T, )dz. (3.45)

Q

Let us bound the right-hand side of the previous inequality. By equations (3.1) and (3.2),
IF( b, -) =I5 (- t,-) — If, (-, t, ) is solution of:

v Vo I*(z, t,v) + ki l¥(z,t,0) = /@k(Bg(Tl(x,t)) — B;;(Tg(fﬂ,t))),
for a.e. (z,v) € QxV,
Iz, t,v) = py(lvg - v))I*(z, t,v;), for a.e. (x,0) €T .

By Proposition 3.2, for a.e. ¢ €]0,#;[:

7410

< | BET( 1) = BE(T(-, 1)

L2(OxV) L2(QxV)

< VT ||BY(T(. 1) — BYT(.1)

@)’
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But by [50, p.14], Vk = 1,..., M, we have also that:

| BE(TL(-, 1)) = BE(T(-, 1))

L) ST ) = To( ) 2y »

so that, by definition (3.43);), follows that:
1Py (-5 8) = by (3 )| 2y S T2 E) = Ta (s D) o) = ITC5 D)l gy - (3.46)
Using (3.46) in the estimate (3.45), we get:

cpmy d
2 dt

/T:pt d:erkh/WT:vt)l dr S [ TC. 1))

In particular, this implies that there exists a constant C' > 0, such that:

d 2 2
— < .
dtQ/T(a:,t) d:t_C’/T(x,t) dx

Thus by Gronwall’s inequality [25, p.624, (ii)], /T(a;,t)de =0, Vt € [0,¢7].Thus:

Ti(-,t) = Ta(-,t), Vt € [0, t4].

3.3.3 Definition of the fixed point problem

Now, we want to prove the existence of a weak solution to our initial boundary value
problem (3.42). In this purpose, we now define a “fixed point problem”, allowing to de-
couple our problem (3.42), and in turn reducing to a semilinear parabolic initial boundary

value problem. Firstly, we define a closed convex set S of L*(Q):
S = {T € L*(0,t;; L*(Q)); V't €]0,t;[: Vo € Q: T, < T(x,t) < Ts(t)}. (3.47)

We suppose Ts(t) > T,, V't €]0,ts], so that S # 0. Now, our fixed point problem is the
following (for the notations, see (3.43)): given T' € S, find T € S, weak solution of:

Cpmg%f( t) = kAT (2, t) + $(T(2,1)) + he(z, 1),
—kn%y (2, t) = he(T(2,1) = T,) + O(T(z, 1)) — O(Ts(1)), (3.48)
T(x,0) =To(z), Va € Q.
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By T is a weak solution of (3.48), we mean that T € W (0,t;) and satisfies

cpmy <%(., t), S0>(H1(Q))*7H1(Q)
= —hn [ VT (@, )Vop(e)dz + [(T(w,0)p(x)d
& 0 (3.49)
+ [hr(e @)z + e (To = T(, 1), )
Q

+(OTS1) = OT 01 2) oy ooy

H—1/2(F)7H1/2(F)

Vo € H'(Q) as well as T(-,0) = Ty(.). We must show that T exists, is unique and satisfies
V't €]0,t;[: Ve € Q: T, < T(x,t) < Ts(t)

to insure that T still belongs to our closed convex set S. Let us note that, as T € S
by hypothesis, we know by Proposition 3.9 and Proposition 3.11 that V'(z,v) € Q x V:
Bi(T,) < If(x,t,v) < BE(Ts(t)). Let us note that every function T' € S is positive and
essentially bounded. Firstly, more generally, we have the following existence an uniqueness
result for our problem (3.48):

3.13 Proposition. For every T' € L(Q), problem (3.48) possesses one and only one
weak solution in the space W(0,ty).

Proof : We want to apply Lemma 5.3 p.373 of [71] concerning the existence and
uniqueness of the weak solution of a semilinear parabolic problem with a semilinear Robin
boundary condition. Thus, we have to verify that the Assumptions 5.1 and 5.2 from p.266
of [71] hold. The function d(y) := —% and the function b(y) := h.y+©O(y) are increasing
with respect to y. By Corollary 3.7 z17314 (by the inequality in the proof of this corollary
in fact) and (3.13) p.17 of [50], they are also globally Lipschitz continuous with respect
toy. As Ts € L>(]0,ts[) C L*(]0,¢;]), ©(Ts) € L*(X) by Corollary 3.4 p.12 of [50]. Also
by inequality (3.36), hr(-,-) € L*(Q). Thus by Lemma 5.3 p.373 of [71], for any initial
condition Ty € L?(f2), problem (3.48) possesses one and only one weak solution in the

space W (0,tr). O

3.3.4 Maximum principles

To prove that the mapping T+ T operates in the closed convex set, we need to establish

some maximum principles:

3.14 Proposition. Let T € L>*(Q) be given such that T(x,t) > T, for a.e. (x,t) € Q.
T <T,

ThenT(z,t) > T, for a.e. (z,t) € Q, whereT € R* satisfies § T < Ty(z), for a.e. x €,
T <Ts(t), for a.e. t€]O,ty].
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Proof : Let
272, ify <O,
HRoR:ye |V /% 1Y
0, if y > 0.
Thus
N LTz, t) —1)?%, if T(x,t) <T,
0, if T'(z,t) > T.

For every t €]0, ], let us set:

B(t) 1= cymy [ H(T(1) = T) da.
Q

As T € W(0,t;) = C([0,t/]; L*(Q)), ¢ € C(]0,t;]). Using the density of the space
D([0,t4]; C*(Q)) in W(0,t;) endowed with its natural norm (consequently to [18], p.480
and Theorem 1.4.3.1 p.25 of [31] followed by a regularization [54] pp.46-47), and a sequence
of functions of D([0,¢;]; C*(Q)) approaching T in W (0, ), one can prove that V't €]0,¢,[:

dT 5

§10) =~y { % (0.0 = 1)- (3.50)

>H1(Q)*,H1(Q)

in the sense of distributions. From that least formula and T € W(0,¢ 7), follows easily
that 22 € L1(]0,#;[). By formula (3.49):

@'(t) = Cpmg<(£( t) (T(.1) = T)- > HY(Q)*,H(Q)
:_kh/’V )—1T)_ /@D (2, ))(T(w,t) — T)_dx

- / he (e, 1) ( de—h / )) (T(x,t) — T)_ dS()
+/ ot —@UMDMﬂ,)—deﬂ@~

(3.51)

The first and fourth terms in the right-hand side of equation (3.51) are obviously negative.
The last term is also negative because ©(-) is an increasing function and if T'(z,t) < T,
then due to our hypothesis Ts(t) > T, Vt €]0,t¢[, we have Tg(t) > T(x,t), V& € Q.
Thus:

7)< = [ [, ) + v(@ (. 1)] (T(a,t) = T)-da

Q
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But by Proposition 3.11, I*(xz,t,v) > Bg(z), V'(z,v) € Q x V. Thus:

M
)i=3 / I3, t,0)dp(v)
Z47T/<31<:B
On the other hand if T(x,t) > T, then (T(x,t) — T)_ = 0, and if T(x,t) < T, then

—p(T(, 1) 247”%3 f: Ak BY (T

k=1

Thus:
Z47ka§(I) — hp(z, )| (T(z,t) = T)_dz < 0.

M
~/ t) S/

& k=1

In conclusion, ¢ is an absolutely continuous nonnegative function on the interval [0, ],

null for ¢ = 0 due to our hypothesis that To(z) > T, V'z € €, and decreasing. Thus

¢ = 0. In view of its definition, this implies T'(x,t) > T, V'(z,t) € Q. What was to be

proved. 0]

3.15 Proposition. Let us suppose that T € LT(Q). Let us suppose that the initial
condition Ty(+) satisfies Vt €]0,¢¢[: T, < To(z) < Ts(t), V'z € Q, that Ts € H'(]0,t;]),
that % Zp a.e., and that T(x,t) < Ts(t), V(x,t) € Q. Under these hypotheses, we have
also that: T(x,t) < Ts(t), V(x,t) € Q.

Proof : Let

Thus

H(T(x,t) — To(t)) = {é(f(x,t) — Ts(t))?, ?f 7:’(:1:,25) > Ts(t),

For every t €]0, [, let us set:
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As T € W(0,t5) — C([0,t]; L*(R2)), ¢ € C([0,t;]). Using the same arguments that in
the previous proposition to prove formula (3.50), we have V't €]0,¢[:

PO =am (G0 - OO0 -T0)
= e, <C§f<-,t>, (T 1) - Ts<t>>+> (3.52)
HL©Q)", HL(Q)
dT.
CpMllg dtS g[ ))+dl‘,

in the sense of distributions. From that least formula and T € W(0,ty), follows easily
that % € L'(]0,tf[). Also, it is clear from our hypothesis % > 0 a.e., that the second
term in the right-hand side of formula (3.52) is negative a.e.. By formula (3.49):

) - TS(t))+>H1(Q)*,H1(Q)
_ _kh/vj(x,t).vz(f(x, t) = Ts(t))+de
the [ (T — T, ) (T(x,t) — Ts(t)) 4 dS(x) (3.53)

+/ [@(TS(U) - @(T(x,t))} (T(z,t) — Ts(t))4 dS(z)

As

Ky / VT (2, 8). Vo (T, t) — Ts(t))sdz = —kn / V(T t) = Ts(t))s | de,

the first term in the right-hand side of equation (3.53) is negative. Due to our hypotheses,
the second term in the right-hand side of equation (3.53) is obviously negative. The third
term also is negative, as O(-) is an increasing function. Let us examine now the last two
terms in the right-hand side of equation (3.53). By our hypotheses and Proposition 3.9:

t) = Zﬁkfléi(a:,t,v)du(v)

% W/ikBk TS ))
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Thus . .
[, t) + 6T )T, ) = Ts(8)) o

Q

k=1

< %MnkBj(Ts(t)) / (T(x,1) — Ts(t)),do
Q
—Z47T/<ak. / BE(T(x, 1)) (T, t) — Ts(t)) 4 da

= 3o [ [By(Ts(0) = BT 0)] (T(st) = Ts(0) de <0

Q

Thus ¢'(t) < 0. In conclusion, ¢ is an absolutely continuous nonnegative function on
the interval [0,tf], null for £ = 0 due to our hypothesis on 7y(-) and decreasing. Thus
¢ = 0. In view of its definition, this implies T'(z,t) < Ts(t), V'(z,t) € Q. What was to
be proved. O

Alternatively, to the previous proposition, we have also:

3.16 Proposition. Let us suppose that T € L2(Q) and that T(x,t) < T, for a.e. (z,t) €
Q := Qx]0,t7[. Then, we have also that: T(x,t) < T, for a.e. (z,t) € Q := Qx]0,t/],
T,.<T,
where T € R* satisfy { Ty(x) < T, for a.e. x €Q,
Ts(t) < T, for a.e. t €]0,t4].
Proof : Let
272, ify>0
HRoR:iyo v /> 1Y
0, ify <0
Thus
. _ L T(x,t)—T)%, ifT(x,t)>T,
AT t) - T) = | 2T @0 =T i T, > T,
0, if T(x,t) <T

As T € W(0,t;) — C([0,t]; L*(Q)), ¢ € C([0,1f]). Using the same arguments as in the
proof of formula (3.50), we have V't €]0,t,[:

dT

P(t) = cpmy <dt(-,t), (T(,t) = 1)+ (3.54)

>H1(Q)*,H1(Q)
in the sense of distributions. From that least formula and T € W(0,t;), follows easily
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that 22 € L'(]0,t;[). By formula (3.49):

eymy (G (1), (T ) = T)+>H1(Q)*7H1(Q)
=k, / VT (2, 6). V(T (2, t) — ), da

e}

the [ (Ta = T(@, 0)(T(w,t) = T), dS(x) (3.55)

+ [ [0Ts(t) - O(T(w,0)] (T(x,t) ~ T) dS(x)
+ [0, 0)(T(a,1) = T)do+ /hT (o, 8) (P, ) — T

As
ky / VT2, 8).Vo(T(2,) — T)sde = —ky, / Vo(T(x,t) —T), [ dr,

the first term in the right-hand side of equation (3.55) is negative. Due to our hypotheses,
the second and the third terms in the right-hand side of equation (3.55) are obviously
negative. For the third term, we must also use that ©(-) is an increasing function. Let us
examine now the last two terms in the right-hand side of equation (3.55). By Proposition
3.10, V't €]0, t4[:

5.0)i= 3 h /fo to)dp(v)
g: 7kak , Vo e Q.

Thus . . B
[, t) + (T, )T (1) = T) s do

kz_ykag(T) / (T, 8) — Ty dx

Mz IA

47TI€1€/B§(T(ZE, (T (z,t) = T)sdx

=
Il

1

M
=Y dmry, | [BE(T) = BN (2,1))| (T(x,t) = T) da < 0.

k=1
Thus ¢'(t) < 0. In conclusion, ¢ is an absolutely continuous nonnegative function on
the interval [0,tf], null for £ = 0 due to our hypothesis on 7y(-) and decreasing. Thus
¢ = 0. In view of its definition, this implies 7'(z,t) < T, ¥'(z,t) € Q. What was to be
proved. U

{O\

3.3.5 Existence of a fixed point

Under the hypotheses
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Ts € H'(]0,t7])
vt €]0, ¢, T, < To(z) < Ts(t), 'z € O (3.56)

s >0 ae on 0ty

We now know by the Propositions 3.15 and 3.14 with 7" = T, that the mapping ®
which sends T onto T the weak solution of problem (3.48), operates into S. We must
prove that ® : S — S verify the hypotheses of Schauder’s theorem (see e.g. [50, p.21]), to

derive the existence of a fixed point to ®, thus of a weak solution to our coupled problem
(3.42).

3.17 Proposition. Under the hypotheses (3.56), ® is a continuous mapping from S into
S.

Proof : Let us consider thus a sequence (T}, )nen in S converging to T' € S. Let us set
T, = ®(T,,), Vn € N. We must show that the sequence (T},)nen converges to T = ®(T)
for the strong topology of L?(Q) = L*(0,t; L*(Q2)). By estimate (7.33) p.377 of [71] for
semilinear parabolic initial-boundary value problems, we have:

7ol S Wl + 1O(T) + BTl iasy + 1 Tollxgay (3.57)

Let us show that ||Ar, | ;2o is bounded independently of n.

hr, (x,t) = Z/ﬁk/ffwn(x,t,v)du(v)

k=1

and we know by Proposition 3.9 and Proposition 3.11 with T = T,, that V'(z,t,v) €
Qx]0,tf[xV:
BN(T,) < I}, (x,t,v) < Bi(Ts(t)) < BE(Ts(ty)). (3.58)

Thus V'(z,t) € Qx]0,t4[:

M M
ATy "k BE(T,) < ha, (x,t) < 4my ki By (Ts(ty)), (3.59)
k=1 k=1

which implies that ||hg, 12(q) is bounded independently of n. It now follows from esti-

mate (3.57), that [T, is bounded independently of n. Thus, there exists a sub-
W(O,tf)

sequence (T, )ren such that T, — T weakly in L*(0,t;; H*()) and dr‘g:;’“ — ‘Z—f weakly

in L2(0,tz; (H'())"). We must now prove that T = ®(T). Multiplying both sides of
equation (3.49) by an arbitrary function & € L?(]0,t;[) and integrating from 0 to ¢;, we
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obtain V¢ € L2(]0,ts[), Vo € HY(Q):

tf } tf
ey, | <d§2’“(-,t>,so &)t =~k [ [9.T, (2,0). Vaspl)6(2)
0 0 Q

ty ty

+ [ [oF @ 0ozt + [ [, (@ 0p(@eOdd

0 Q 0Q

>H1(Q)*,H1(Q)

ty

_h, / (T8 2) ooy vy S+ D / (T @) 120y g/ €(E)
0 0
ty ty

+ [ (O@s0),0) vy 2y €O = [ (OTarD)8) oy gy DL
0 0

(3.60)
Now, we want to pass to the limit in (3.60) as k — +o0.

. By similar reasonings which have lead us to inequality (4.32), we obtain:

1z, (5 8) = P (s D) 20y S NTa(58) = T 2y

which implies:

ty ty
J bz, (o 8) = )y dt S [ 1T 8) = TC, )3 s
0 0

so that hy, — hy in L?(Q) = L*(0,ts; L*(Q)). Thus V¢ € L2(]0,t,[), Yo € HY(Q):

/ / b, (2, )p(@)&(t)dedt — / / h (e, 1) ()€ (t) davdlt. (3.61)

As T, — T weakly in L?(0,t7; H'(Q)), the traces on Tz T, |p — T|r weakly in L*(0, t;; H'/*(T))
and thus a fortiori in L2(0,¢;; H~Y2(T)). Thus:

ty

/<Tm(.,t),s0>H,l/2( oy (O —>/ D ssaaey vy SOE
0

Now, by Theorem 16.1 pp.99-101 of [42], the continuous injection from H'(Q) —
HY/?T¢(Q) is compact, Ve €]0,1[. Using the compacity Theorem 5.1 p.58 of [41], it

follows that the continuous embedding from the space
W(0,t5) = L*(0,t;; HY*(Q)) (3.62)

is also compact. Thus T, |r — T|r strongly in L*(0,t;; H*(T)) and a fortiori in
L*(0,ty; L*(T)) ~ L*(T'x]0,t¢[). The nonlinear mapping © : R — R being Lipschitz con-
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tinuous ([50], (3.13) p.17), we have also that (T, |r) — O(T|r) strongly in L*(T'x]0, t])
and thus

ty

0/ (O (1)) 0) y 1ynqpy oy EDE
ty

N 0/ (O(T(-,1)). @HM(F)?HW(F) £(t)dt.

Also from ([50], Proposition 3.16) which implies that the nonlinear mapping ¢ : R — R is
also Lipschitz continuous and the compacity of the embedding from W (0,;) into L*(Q),
which results from (3.62), we have also that (7T}, ) — ¥(T) strongly in L*(Q) and thus

//w T (2,0)p dmdt—>//¢ 2)E(t)ddt,

Passing to the limit in (3.60), we obtain:

ly ty

¢ymy / (08 1 e sy EDVE = = 0/ J VT (@, £). V()€ (t)dudt

+ [ [o@ @ npeyddt + [ [hate, po(e)é)duds
o 0y, (3.63)
—he <T(’ ), ()0>H—1/2(1"),H1/2(F) §(t)dt + hC/ (Ta, 90>H*1/2(F),H1/2(F) &(t)dt

0
tr tr

+ [ (O@S0)), @) -sraqey vy €0 = [(OTCD)0) oty vy EDE

0 0

Moreover, as Tnk — T weakly in W (0, ), we have also by
W(0,t5) = C([0,t7]; L*(2))

([36], Theorem 1.32, p.40) that T,,, — T weakly in C([0,]; L*(€)) and thus also T},, (-, 0) —
T(.,0) weakly in L*(Q). As T}, (-,0) = Ty(+), Vk € N, we have also T(-,0) = Ty(-). Thus
T = ®(T). Thus T,, — T strongly in L*(Q) = L*(0,tz; L*(2)). In conclusion, ® is a

continuous mapping from S into S. What was to be proved. U

3.18 Proposition. Under the hypotheses (3.56), the range of ® is a relatively compact
set in L*(Q).

Proof : We have seen in the preceding proof that [|Ar| g is bounded for T' € S.
By estimate (7.33) p.377 of [71] for semilinear parabolic initial-boundary value problems,
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we have:
12Tl o4,y S Nzl 2y + 1O(Ts) + heTall 25y + [ Toll 120y 5

VI € S. Thus the set {®(7);T € S} is bounded in W(0,tf). Using the compacity
Theorem 5.1 p.58 of [41], it follows that the continuous embedding from the space W (0, )
into the space L*(Q) = L?(0,ts; L*(2)) is compact. Thus, our claim follows. O

3.3 Theorem. Under the hypotheses (3.56), the initial boundary value problem for the
heat conduction equation (3.42) has a unique weak solution.

Proof : We have already proved previously that the solution is at most unique. From
Schauder’s fixed point theorem as stated in A.Friedman’s book ([27], p.171) and the two
preceding propositions, it follows that our problem (3.48) possesses a fixed point in 5,
from which follows the existence of a weak solution to our initial boundary value problem
for the heat conduction equation (3.42). O

As an immediate corollary of the fact that the weak solution of problem (3.42) belongs

to S, we have:

3.3 Corollary. Under the hypotheses (3.56), the weak solution of our initial bound-
ary value problem for the heat conduction equation (3.42) satisfies to the bounds: T, <
T((Ii,t) < T5<t), VreQ Vi E]O,tf[.

3.3.6 Improving the Results

The hypotheses of the preceding corollary or of the preceding theorem, are rather restric-
tive on Tg. In particular we have supposed that Ts € H'(]0,¢/[) and that % >0, a.e.
on |0,ts[. But of course, we have the interesting property that T'(x,t) < Ts(t), V't €]0, [
and V'z € Q for the weak solution of the heat conduction equation (3.42). Instead, as an
alternative to the closed convex set S of L?(Q), considered in (3.47), we now choose as
closed convex subset of L?(Q), the closed convex set C:

C:={T € L*(Q);Vt€|0,t; Vo eQ: T <T(x,t) <T}, (3.64)

where the fixed numbers T, T € R? satisfy

I'<T, T<T,<T,
T <Ty(x) <T, for a.e. x €K, (3.65)
T <Ts(t) <T, for a.e. t €]0,t].

Also, we suppose only now that Ts € L*(]0,ts[). By Propositions 3.14 and 3.16, the
mapping which sends 7 from C onto T, the weak solution of problem (3.48) operates into
C. Analogously to Proposition 3.17, we have:

3.19 Proposition. The mapping ® : T — T is a continuous mapping from C into C.
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Proof : The proof is similar to the proof of Proposition 3.17. The only difference in
the proof is that instead of inequalities (3.58) and (3.59), we have now by Propositions
3.11 and 3.10, that V'(z,t,v) € Qx]0,t[xV:

BY(T) < If, (z,t,v) < BH(T). (3.66)
and V'(z,t) € Qx]0,t¢]:
M M B
AT ke BY(T) < b, (z,t) < 4wy ki, BY(T). (3.67)
k=1 k=1

Using inequality (3.57), we deduce that (7},),en is a bounded sequence in W(0,¢) and
the proof pursues as in the proof of Proposition 3.17. O
Now, similarly to Proposition 3.18, we have also:

3.20 Proposition. The range of ® is a relatively compact set in L*(Q).

The proof is similar to the proof of Proposition 3.18. As a consequence, using

Schauder’s fixed point Theorem, we have also the following Theorem:

3.4 Theorem. The initial boundary value problem (3.42) has a unique weak solution,

which moreover belongs to the closed convex subset C of L*(Q).
The proof is similar to the proof of Theorem 3.3

3.4 Corollary. The weak solution T(.,.) to the coupled problem (2.2)-(2.1) satisfies the
bounds T < T(.,.) < T and the radiative intensities I¥ the bounds Bi(T) < Ij(x,t,v)

< BN(T), for a.e. (z,t,v) € Qx]0,ts[xV (Vk=1,...,M).

These latest inequalities result immediately from Propositions 3.10 and 3.11.
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4.1 Introduction

In Chapter 3 we have studied the existence and uniqueness of the solution of the coupling

between radiative transfer equation (RTE) with the Heat Conduction Equation (see below

(4.2), (4.4). Our aim in this chapter is the mathematical analysis of the control problem of

the temperature 7'(-, -) inside our semi-transparent body made of glass €2 by acting on the

temperature of the black radiative source S surrounding it. Many authors have considered

diffusive approximations of the RTE and have made the analysis for the corresponding
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approximate problem [55], [14], [36]. Nevertheless, the mathematical analysis of the exact
optimal control problem remains open. We consider the semi-transparent body €2 as an
open bounded set of class C! of R®. We want to find the most adequate absolute tem-
perature functions (optimal controls) T :]0,t;[— R* : ¢+ Ts(t) of the black radiating
source S surrounding the semi-transparent body €2 , during its radiative heating up to the
fixed final time ¢¢, in order to obtain its distribution of temperature (z,t) — T'(x,t) near,
in the mean square sense, to a given desired temperature distribution (z,t) — Ty(x,t).
We assume that Ty(-,-) belongs to L*(Q) where Q := 2x]0,¢;[, and we take also into
account the cost of the control T into our cost functional J. More precisely, we want to
prove existence of optimal controls and to give first-order necessary optimality conditions
for the following cost functional J defined by:

J: L*(Q) x H'(]0,t4]) — R : (T, Ts)

[\')\H

/ — Ty(z,t))*dz @ dt
Q (4.1)

+ éHTS - TS,dH?—Il(}O,tf[)a
subject to:

the nonlinear heat conduction equation with a non linear Robin boundary condition
on 9 of class C! of R3

cpmy % (z,t) = kp AT (2, 1) 2477/@68 (T'(x,t)) + Z_:/fk/I%TS (x,t,v)dp(v)
e i (4.2)
—kp 9 (2, t) = ho(T(2,t) = T,) + / ex|B(T(x,t),\) — B(Ts(t), \)]dA
T(x,0) = TO(A;:), V' e Q,
and to
Ts € Upa :={Ts € H'(J0,t4]); T < Ts(t) < T, Vt €]0,¢;[}. (4.3)

U.q is the closed convex subset of admissible controls in our space of controls U :=
H'(]0,t[). Here, T and T denote two strictly positive real numbers such that 7' < T,
T<T,<Tand T < To(x) < T,VzeQ In (4.1), 0, is a strictly positive constant
and Tsq € Uyq is a given “pattern” control. In these equations, Tg, ¢, mg, ki, he, Ao, €x are
all strictly positive constants. T, denotes the absolute temperature of the surrounding
medium to  (e.g. air). The constants c,, m, and kj, are named respectively heat capacity,
mass density and thermal conductivity of glass. h. denotes the convective heat transfer
coefficient. In (4.2), V denotes the “sphere of directions” i.e. the unit sphere Sy in R3
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and v € V an arbitrary direction.

Ak41
k 2
BN(T(x, 1)) = n? / B(T(z, 1), \)d\,
Ak
where B(T, \) := —25— is the famous Planck function, the spectral radiative intensity

A5 (eAT —1)
of the emitted thermal radiation of any black body, depending only of its absolute tem-

perature T" and of the wavelength A of the radiation but the same in any direction v € V.
C} and Cy are constants and for their precise values see [50]. n, denotes the refractive
index of the semi-transparent material, glass in occurrence, which is approximately 1.46
[50]. Ky is the (linear) absorption constant coefficient of glass in the wavelength band
Ak Miw1], B = 1,..., M, where the M intervals [Ag, Apy1] form a partition of the region
of the electromagnetic wave spectrum in which glass is semi-transparent. I%TS (x,t,v)
in equation (4.2); (or I*(T,Ts)(z,t,v)) denotes the "spectral radiative intensity in the
wavelength interval [Ay, Ag41]" at point € Q and in direction v € V, at time ¢ €]0,t/].
For fixed ¢ €]0, ¢¢[, the function (z,v) — I} ;. (,t,v) is solution of the radiative transfer
equation (RTE) with the nonhomogeneous reflectivity boundary condition :

{ 0.V I¥(x,t,0) + M (2, t,0) = ke BE (T (1)), V'(z,0) € 2 XV, (4.4)

Ik<x>tvv) = pg(|V$ ) U|)]k<x’tvvi) + (1 - pg(|l/$ ) vl))B§<TS(t>>’ V/(JZ,U) el .

In (4.4), T(-,-) appears in the right-hand side of the equation and Tg(-) our control,
appears in the r.h.s. of the boundary condition. In our parabolic initial boundary value
problem (4.2), Ts(-) our control, appears also in the r.h.s. of the boundary condition,
I} (2, t,v) appears in the r.h.s. of the equation and Ty(-) denotes the initial condition.
To alleviate the notations, we introduce the condensed notations:

M
O(T) == =Y 4nkpBE(T), VT € R,
T
hrrs(z,t) == Zﬁk/fé%s (z,t,v)du(v), (4.5)
k=1
+o0 v
o) :=n / exB(T, \)d\, VT € R,
Ao
Ak+1
where BY(T) = n? / B(T,A\)dX if T > 0 and 0 if T < 0. In the preceding formula,
Ak

€x is a positive constant called the spectral hemispherical emittance ([46], p.63); like
in ([65], p.70), we have supposed that the spectral hemispherical absorptance is equal
to the spectral hemispherical emittance for wavelength A belonging to the glass opaque

region in the electromagnetic wave spectrum [\, +00], and €, independent of the absolute

81



CHAPTER 4. CONTROL OF THE RADIATIVE HEATING OF A
SEMI-TRANSPARENT BODY

temperature. We also suppose that as a function of the wavelength . € L*([\g, +00]).
We have proved in (Chapter , Theorem 3.4), that given Ts € U,y and Ty(-) € L*(Q)
satisfying the conditions T < Ty(z) < T , Yz € Q, that the initial boundary value

problem (4.2) possesses a unique weak solution

=T (Ts) € W(0,t7) :={T € L*(0,t;; H'(Q)) dr € L*(0,tp;; H'(Q)")}.  (4.6)

T
T Y dt

S
Moreover, by that theorem, T, satisfies the inequalities T < Try(x,t) < T , V'(x,t) €
Q2x]0,t¢[. This allows us to define the reduced cost functional:

J: Uy — R:Ts— J(Tr,, Ts). (4.7)
Also by Corollary 3.4 of Chapter 3, we have V1g € U, :
By(T) < It, 1, < By(T). (4.8)

The spectral radiative intensities I%TS7TS are thus uniformly bounded for T's running over
Uad-

Let us now describe briefly the contents of this chapter.

In section 2, we prove that under the hypothesis that the initial condition Ty € C'(2),

that the solution 7'(-,-) of our coupled thermal problem (4.2), T' € C(Q).

In section 3, we prove that the reduced cost functional J(-) is weakly lower semi-
continuous on U,y (defined by formula (4.3)), endowed with the weak topology of U :=
H'(]0,¢¢]), result from which we infer the existence of an optimal control Ts(-) that is of
an admissible control T(-) € U,y such that J(Ts) = vierlljid J(v).

In section 4, we introduce the state space FE and the state equation e(T,Ts) =
(0, hT,,Ty), where e(-,-) denotes the constraining mapping. We prove that the con-
straining mapping

e: ExU— L"(Q) x L¥ (%) x C(Q)

(see Definition 4.4) is continuously Fréchet differentiable on £ x U and we prove that
the linear continuous mapping Dre(T,Ts) is an isomorphism between E and L"(Q) x
L*"(¥) x C(Q). Using the Implicit Function Theorem, we deduce that the mapping
T:C— FE:Tg— T(Ts), where C (see Definition 4.6) denotes some open neighbourhood
of U,g, is continuously Fréchet differentiable and we give the expression of its Fréchet

derivative.

In section 5, we derive from the previous result the expression of the Fréchet derivative
of the reduced cost functional J. To avoid the computation of (Dre(T(Ts),Ts))™}, we
introduce the adjoint system (4.37). Its solution can be obtained by solving the linear
backward nonlocal parabolic problem (4.39). Finally, we derive the first order necessary
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optimality condition (4.46) in the form of a variational inequality for a control Ts(-) to
be an optimal control.

4.2 Continuity of the Solution

Like in Chapter 3, we suppose in this chapter that Q is a bounded domain of class C*
in R®. On the initial condition Tp, we henceforth suppose moreover that Ty € C(Q). In
this short section, we prove that under this additional hypothesis, the solution T, of the

parabolic initial boundary value problem (4.2), belongs to C(Q), V1s € U,g. Let us note

that the hypotheses Ty € C'(€2), is trivially a necessary condition for that property of the
solution to be true.

4.1 Lemma. Tr, € L'(Q) for any 7 > 2.5 (2.5 =2 + 1, where n = 3 is the dimension).

Proof : As by Corollary 3.4 of Chapter 3, T < Try(z,t) < T , ¥V'(x,t) € Q :=
Qx]0,t¢[, Try€ L>(Q) and thus a fortiori to any L™(Q). O

4.1 Proposition. Under the additional hypothesis that the initial condition Ty € C’(Q),
VTs € Uaa, the weak solution of our initial boundary value problem (4.2), Tr, € C’(Q),
where @ 1= Qx]0,t¢][.

Proof : By (4.8) and T < Try(v,t) < T , V' (x,t) € Q := Qx]0,t¢[, the function

R

U(Tr) (@, 1) + 3

fi(x,t)—
CpMig k=1 "My

[ Ty st 0)dia(0)
|4

belongs to L>(Q) and thus to any L"(Q) in particular for any 7 > 2.5. As Tr, is bounded,
its trace on the lateral boundary ¥ := 02x]0, ;[ is essentially bounded. T being also
bounded, it follows from the inequality

2C, < 2, T

B(T,\) = —

4.9
N(ext — 1) Ca X (49)

for the Planck’s function B(-,-) ([50], p.10), that the function

+o00

g:(z,t)— Z;(TTS(x,t) —T,) + uE / ex|B(Try(z,t), ) — B(Ts(t), N)]dA,

defined on the lateral boundary ¥ := 0€x]0, ¢s[, belongs to L>(X) and thus to L*(X) for
any s >4 (4 =n+ 1, where n = 3 is the dimension of ). Then applying Lemma 7.12,

p. 378 of [71], we obtain that Tr, € C(Q). O
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4.1 Remark. From Lemma 7.12, p.378 of [71], we have also the bound:

dTr
1Tl oo+ [T ooy nionyy * 17rslo@

SN (Tre) + Eily o [ iy (5 0)dp(0)ller @
+oo
Hlhe(Trs = To) + 7 | xlB(Try, A) = B(Ts(-), A)JdA
0
<C,

=)+ [ Tollc@)

where the constant C depends only onr, on s, on || Tol|c(q), and on T, by using moreover
(4.3), Corollary 3.4 of Chapter 3, and by inequality (4.9) for Planck’s function.

4.3 Existence of an Optimal Control

In this section, we want to prove the existence of optimal controls i.e. Ty € U,y such that

A

J(Ts) := infyer,, J(v).

In that purpose, we firstly prove some continuity dependence of the weak solutions of
problem (4.2) with respect to the control Ts. More precisely, we prove the following

result:

4.2 Proposition. The mapping Ts — T(Ts) is continuous from U,y endowed with the
weak topology inherited from H'(]0,t¢[) into L*(Q) endowed with the strong topology.

For the proof of this proposition, we need to recall some definitions and results. Let
us recall that the Planck’s function is defined by:

by 2
Ao (ext — 1)

for T'>0and A > 0; if T < 0, we set B(T, A\) = 0 (see [50]). Then, we have the following

result (see Lemma 3.6 in [50]):

4.2 Lemma. Let us fix some A\ > 0. Then the function R — R : T — B(T,\) is

2C1
[

Lipschitzian with constant
It follows that (see Corollary 3.7 in [50]):

4.1 Corollary. Let Ty, Ty € L*(Q2). Then:

CyN ., — N3
; B ETC) = T ()] p2e)-

k k
IS0 = BTl < 2 S ™

Now by changing €2 by @ in the previous corollary, we deduce the following result:
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4.3. EXISTENCE OF AN OPTIMAL CONTROL

4.3 Lemma. The mapping from L*(Q) into L*(Q) which associates T to Bg(T) is Lips-
chitzian and thus a fortiori continuous.

Finally, we have the following trace result:

4.4 Lemma. The mapping from L?(X) into L*(X) which associates T to
+o0o

O(T) :=7 [ exB(T, \)dX\, is Lipschitzian and thus a fortiori continuous.
Ao

Proof :By using Lemma 4.2 we have:

O(Ty(2,1)) — O(Ta(x, 1)) = 7 ifOOeA(B(Tl(:c, £),\) — B(Ta(x, 1), \))dA

—+00
<7 %’Tl(x,t)—fZé(I,tNd)\ﬁ |T1(£L’,t)—T2(.Z',t>|,
Ao

and so [ |O(Ty) — O(T3)|?dS(z) dt < [|Ty — To|*dS(x) dt.

) )
Hence |O(T1) — O(1%)||2(x) S |11 — T3||12(x) and we get the result. O
To finish, we also recall some definitions and results of Chapter 3. Firstly, let us recall
that we have defined in Chapter 3, the unbounded operator A, in LP(2 x V') by:

D(A,) ={ue LP(Qx V); v.V,ue LP(QxV),
u(x,v) = py(|ve - v|)u(z, v — 2(vy - v)1vy), V'(z,v) € T_}, (4.10)
A, D(A,) = LP(Ax V) ur— —v.V,u,

where v.V,u must be understood in the weak sense Chapter 3. We also have defined in
Chapter 3 the unbounded operator flp/ in LP (Q x V) by:

DA))={ge X Qx V);v.V,g€ L¥ (Qx V),
g(z,v) = py(Jve - v])g(x, v — 2(vy - V)1y), V'(z,v) € T4}, (4.11)
Ay D(Ay) = L (Qx V) : g v.V,g,

where v.V,g must be understood in the weak sense. It is proved in Chapter 3, that A,
(resp. A,) is dissipative in LP(Q x V) (vesp. L” (2 x V)). When g/ is the conjugate of p,
flp/ = (A4,)". Alsoif 1 < p; < ps < +o0, A,, C A, and similarly if 1 < p] < ph < +o0,
Ay, C Ay Sup[A)orted by this last fact, we will very often write in the following simply
A, respectively A, the context indicating the value of p, respectively of p'.

We are able to prove our main proposition.
Proof of Proposition 4.2. The proof is divided into three steps.

Step 1. Let (Ts.,,)en be a weakly convergent sequence in U,y and let us call T its weak
limit. Ts belongs to U,4 since a closed convex set is also weakly closed. The injection from
H'(]0,ts[) into C([0, t;]) being compact [6], the sequence (T, )nen also strongly converges
to T in the space C([0,t¢]),|.|.- That convergence with Ts,, € Usq, Vn € N, implies that
T < Ts(t) < T. From Remark 4.1 follows that the sequence (TTS’”)nEN is a bounded
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sequence in the space W(0,ty) (4.8). Consequently, the sequence (Trg , )nen poOssesses a
weakly convergent subsequence (T, ) jen in the space W(0,¢s). Let T be the weak limit
of (Tt )jen in the space W (0,t5). By the compacity result, Theorem 5.1 pp.57-58 in
[41], we ]get that the injection from W (0,¢y) into L?(0,ts; L*(2)) is a compact mapping
and thus the sequence (TTs,nj )jen is also strongly convergent to T in L?(0,ts; L*(£2)).
L*(0,ts; L*(Q)) being isomorphic to L*(Q), (TTs,nj )jen converges also strongly to 7" in
L*(Q), and then by Lemma 4.3, (BS(TTS,”J.>)J‘€N converges strongly to B¥(T) in L*(Q).
This implies by formula (4.5) ;) that ¢(Tr,, ) strongly converges to ¥(T) in L*(Q). Also,
by Lemma 4.2, (B} (Tsn,))jen converges strjongly to By (Ts) in L*(]0, ty]).

Step 2. (Convergence of hr, 7y nj)
] ’
We have that I%TS o, (++t,+) is the solution of the boundary value problem (4.4) for the
mj’ R

radiative transfer equation and so by looking to the proof of Theorem 3.2 in Chapter 3:

Iy (t,) = sl — A) T (By(Tr,,, (1) = By(Tsn, (1)) + By (T, (1))

TTS,nj 7TS,nj

Then, by the dissipativity of the operator A in L*(Q x V) (see Chapter 3 which implies
that ||kg (ke — A)_1||5(L2(va)) < 1, we have:

2
k k
(/ ITTS’”J' T I 12(Q) d,u(v))
\'4
2
< dr /
ty

= 47r/du // IéiT Ty, (z,t,0) — I}.p (. t,0)) dadt
ng’m> ’
1% 0 O

dp(v)
12(Q)

k k
71, T, = 1715

_47T/ / Trg TS, (z,t,v) — ITTS(x t,v))2dxdp(v)dt
0 OxV

= dn / 12y ot = B (ot ) et
0 TS

f f
<327 [ | BY(Trg,, (1)~ BET () 3aqaydt + 1287 [ 1B (T, (1)) — BE(Ts(0)) P
0 0

= 321°|| By (T, (-, )= By (T (-, )12 + 1287 By (Tsn,) — By (Ts) | Z20.)-
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Thus:

M
||hTTs,nj Tsny ™ hT,Ts||L2(Q) = [| 32 ki I(I%Ts,nj Tsm; — ]%»Ts)dlu(v)”L%Q)
|I%T5a"j Tony I%:Ts 2@ dp(v)

el By (Tr,.,) = Bg(D)llz2@)

M
+167 3 kil B (Ts.n;) — By (Ts)|2(0,t)-

So, by Corollary 4.1, we deduce that hy,, 1, converges strongly to hrzy in L3(Q),
where hrpy is defined by formula (4.5) ).

Step 3. (Convergence of T, )
By the continuous embedding Jof the space
2 1 dr 2 1/ 2

{1 € L0, ty; H () — € L7(0,25 (H(2))")} — C([0,2,]: L7(E)),
the subsequence (TTs,nj )jen converges weakly to T also in the space C([0,¢/]; L?(€2)). This
implies that T, (-,0) = T'(-,0) in L*(Q) so that T'(-,0) = Ty.
On the other hand, Try, T in W(0,ty), and we have Ve €0, 1], H'(Q) < H'™(Q2) —
(H'(2))*. Thus applying the Lemma of compacity from ([41], pp.57-58), W(0,t;) —
L*(0,tp; H5(Q)) which implies Try,, 2 T in L*(0,t5; H'=5(Q)). Now, Ve €]0, 1], the
trace operator is continuous from H'7¢(€) — H2 (), so that the traces on ¥ =
90x]0,ts[ of the Tr, , converge strongly to the trace of T in L*(0,ty; L*(09)) = L*(X).
And so by Lemma 4. 4 O(Trg,, ) strongly converges to ©(T) in L*(X), where O(T) is
defined by formula (4.5) ).
We need to prove that 7' = T'(Ts). Now by an equivalence similar to that of Theorem
1.33, p.42 of [36], TTs,n]. satisfies the equivalent weak formulation,

ty dTrg

oy | (=2 (1)) (bt =
0 (H (@), H1 ()

Ly Ly

[ Ihrs, o, (@ 00O  dt = ko f 9. Tr,, (0,0 Vap(@)6(0)do @ dt
0T, (2, 0)p(@)E O @ di+ hef (T, =Ty, (0.0, (t)dt

H 1/2(1’*)’]_]1/2(1")
L {O(Ts, (1)) = OTr, (20):90) oy oy €D,
Vo € HY(Q),V¢ € L(]0,ts[). Using all the previous convergence properties to pass to
the limit in the above equation as j — 400, we obtain that "= T'(Ts). Thus (7" TS,n]-) jEN
strongly converges to Tr, = T'(Ts) in L*(Q).
A standard argument of general topology shows us now that the sequence (17, )nen itself
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strongly converges to Tr, = T(Ts) in L*(Q), what was to be proved.

Now, we prove the aim of this section

4.1 Theorem. There exists Ts € Uuq such that J(Ts) = inf J(v).

V€U q
Proof : Let us set L = é%f J (v). There exists a sequence (1), oy C Uaa such
v ad
that J(Ts,) — L. The sequence (Tsn),,cn is bounded in U,q € H'(]0,t[), because if it

— +00 as
H*(10,t¢])

j — +o00. This would imply that JA(TSM) — 400 in contradiction with J(Ts,) — L. The
sequence (Ts,,), oy being bounded in Usq C H'(]0,%4[), possess a subsequence (T, )

was not, there would exist a subsequence (Ts,nj) o such that HTS’”J'
J

leN
weakly convergent to some element Ts € U,y. By Proposition 4.2 and formula (4.1), the

norm of H'(]0,t;[) being weakly lower semi-continuous ([71], p.47), we have: J(Ts) <
lim inf .J (T, ) and thus J(Ts) = L = g[l]f J(v), what was to be proved. O
v ad

l—+o00

4.4 Continuous Fréchet differentiability dependence

of the state with respect to the control

The aim of this section is to prove that the mapping Ts — T'(Ts) from an open neighbor-
hood of U,y into an appropriate state space E is continuously Fréchet differentiable. We
divide this section into four subsections.

4.4.1 State Space and State Equation

Our purpose now is to define the state space and the state equation. Firstly, we need to
define the meaning of (c,my%- — k;AT) € L"(Q) and k;,%- € L¥" (%) for

T
T e W(0,t5) = {T € L*(0,t;; H'(Q)); o L0ty (H'(€2))")}.

4.1 Definition. Let T € W(0,ts), we say that (c,my2t — k,AT) € L7(Q) in the sense

of distributions iff there exists some function g € L"(Q) such that Y € L*(0,ty; HY())

ty

ty
dT
CpMy / <cl1§("t)’ 90> dt + kh//VxT(I,t) - Vep(x, t)de @ dt
(HY (), HY() 0 Q

0 (4.12)

ty
_ //g(x,t)go(x,t)dm ®dt, Vo € L2(0, t; H'(Q)).
0 Q
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Then we set: c,m, 2L at — kpAT := g. Equation (4.12) is equivalent to V't €]0,t¢[:

oy (T 050) gy oy + [ VT (@1) - Vaip(a)da
Q

0 (4.13)
_ /g(x,t)go(x)dx, Vo € H'(Q).

Q

4.2 Definition. Let T € W(0,t), such that cpmy % — kAT in the sense of distributions
belongs to L"(Q). Let us set g := c,my2" o — kyAT. We say that k:haT € L*(X) in the

sense of distributions iff there exists some function h € L¥ (X) such that:

ty

T
Cpmg/<( t), s0> dt+l~ch//v T(x,t) - Vop(x, t)de @ dt
dt (HL () H ()

0
—//gxt (x,t)dx @ dt = //hq:t (x,t)dS(x)dt,

0 90
Vi € L2(0,t5: H'(Q)).

(4.14)

We set khg—f = h. Equation (4.14) is equivalent to Y't €]0,t¢[:

CpMMyg <(Z( t), S0>(H1(Q))*’H1(Q) + k‘h/vxT(JS, t) - Vep(x)dz
Q

(4.15)
—/g(x,t)go(x)dx = /h(x,t)go(:z:)dS(x), Y € H'(9Q).
0

4.3 Definition. (State Space) Let us fix some real numbers r €]2.5,2.72[ and s* > 4. By
the state space E, we mean the set of allT € W(0,t;)NC(Q) such that (cymy 2t —k, AT) €
L"(Q) and ky2L € L*"(X) in the sense of distributions.

On that real vectorial space, we define the norm:

dr
1Tl = T 22,0 + 1 lzzpm@n) + 1T 10

8T

+ [lep — kn AT || ) + Hkh

T
e T®)

Endowed with that norm, the state space E becomes a Banach space.

Under previous definitions, we have the following result:

4.5 Lemma. Let (T,Ts) € E x U, then (T) and hrrg € L'(Q), Vr > 2.5. Also, ©(T}x)
and O(Ts) € L* (X), Vs* > 4.

Proof : We have that 7' € C(Q) and thus a fortiori 7 € L™(Q), Vr > 2.5. We have
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also B(T,\) < 255 by ([50], p.10). Thus,

)\k+1 20 k+1
Bk(T):/ (TAd)\<—1T/—,<VT
Ak

Consequently, Bg(T) < nf]T, Vk=1,..M. AsT € L"(Q), Vr > 2.5, it follows from these
inequalities that ¢(T") € L"(Q), Vr > 2.5.

Now as T" and T are bounded, we get by Corollary 3.4 of Chapter 3 that the LﬁTS are
bounded and thus belong to L"(Q x V'), Vr > 2.5 and so hrr, € L'(Q), Vr > 2.5.
AsT € C(Q) and Ts € C([0,ty]), it follows from Lemma 4.2 that for each A > 0, the func-

tion B(T,\) € C(Q) and B(Ts,\) € C([0,t]) respectively. Using the bound B(T,\) <
+o00o

%—4 and applying the Lebesgue Continuity Theorem to ©(T) := / exB(T, N)dA, it
Ao

follows that ©(T) € C(Q) and O(Ts) € C([0,,]) respectively. A fortiori (1) € c(%)
and thus belongs to L*" (X) for all s* > 4. Also if we look to ©(Ts), as a function defined
on X which is constant in z, z € T', we may consider ©(Ts) as an element of C(¥). A
fortiori, view in that way, ©(Ts) belongs to L* (X) for all s* > 4. O
This lemma leads to the following definition:

4.4 Definition. By the constraining mapping e(-,-), we mean the mapping:

e: ExU— L'(Q) x L¥(X) x C(Q)
(T, Ts) — G(T, Ts) = (61, €9, €3)(T, Ts)

where
or
el(T, TS) = Cpmgai — khAT — w(T) — hT,T57
or
eo(T, Ts) = kh(a )iz + hdis + O(T)s) — O(Ts),

and the quantities (1), hrry, O(T) and O(Ts) are defined by formulas (4.5).
Then, we have the following result:

4.3 Proposition. Let f € L'(Q),g € L*'(X) and Ty € C(Q). Let Ts € U, then there
exists T belonging to the state space E such that e(T,Ts) = (f,q,To(.)) iff T is the weak
solution if it exists of:

g 22 (0, 1) = BAT (2, 8) + (T (1)) + gy (,1) + £ (0,2,
—kn Gy (2,t) = ho(T(w,t)) + O(T(2,t)) — O(Ts(t)) — gl 1),
T(z,0) =To(x), VxeQ,
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i.e. satisfies:

cpMmy <%(., t), g0>(H1(Q))*’H1(Q) = —kh/VxT(x,t)ngo(x)dx
Q
+ / (T, ))p(@)dz + (O(Ts(t)) = O(T(1)), @) 172y risaqry
+/hTTs z,t)p(x)dr — he (T(-,1), §0>H*1/2(F),H1/2(F)

+/fxt d:c—l—/gxt o(2)dS(x),

Vo € Hl(Q),V’t €10, ty],
and T'(z,0) = Ty(z), Vo € Q.

The proof follows from the definition of the constraining mapping e(.,.), definitions
4.1 and 4.2, by proceeding like in the proof of Proposition 10 of [49], considering test
functions ¢ € L?(0,¢s; H*(Q)) which are tensor products of functions of H'(Q)) with
functions of L?(0,t;), functions which form a dense subspace of L?(0,¢s; H'(2)).

4.2 Corollary. For Ts € Uy, e(T,Ts) = (0,h.T,,Ty) is equivalent to T is the weak
solution of the nonlinear heat conduction equation with the nonlinear Robin boundary
condition, which we know it exists and it is unique by Chapter 3.

Finally, we have the following definition:

4.5 Definition. (State Equation) By the state equation, we will mean in the following,
the equation

e(T,Ts) = (0, h Ty, Tp).

This name is justified by the previous corollary.

4.4.2 Fréchet differentiability of the constraining mapping

This subsection is devoted to prove that the nonlinear constraining mapping e defined
in Definition 4.4 is continuously Fréchet differentiable. More precisely, we will prove the
following theorem:

4.2 Theorem. The nonlinear constraining mapping (see Definition 4.4)
e: ExU— L'(Q) x L¥ (%) x C(Q),
is continuously Fréchet differentiable on E x U.
For this aim, we need to prove several lemmas.
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4.6 Lemma. The mapping which to each T € C(Q) associates BE(T) is a continuously
Fréchet differentiable mapping from C(Q) into LP(Q), Vp € [1, +ool.

Proof : We know that B¥(T) = n2B*(T); so it suffices to prove the corresponding
property for B¥(T'), where B* is defined by:

B C(Q) = LXQ) : T+ BMT) := /HB(T, A)d),

Ak

where B: R xR} — R: (T, \) — B(T, \) with

A5 (eAT —1)
0, AR

— X T >0
B(T,\) =

denotes the Planck function ([50], p.2 and p.5). An elementary computation shows that
([50], p.14):

Cy 2 @

OB 2Cﬁ1£j2i)45jfl7 ifT >0
FOPYER SIS R (4.16)

0, it T <0

(0 if T < 0) so,
dB* ary: 20, M (2026 an
—T:/—T,Ad)\: XT 2 vrer 417
a 7) ) o7 N G ) G et © (4.17)
k Ak
(0 if T < 0) and the inequality
201

sup L (4.18)

u>0 (et —1)2

shows that dd%k is bounded. It follows from (4.17) and (4.18) by the Lebesgue continuity
theorem that the mapping R - R : T — %(T) is continuous. Now, let us investigate if
the directional derivative of B* at point 7' € C(Q) in the direction 6T € C(Q) exists ([2]
p.25-26). Let s € R",

Akt1

BH(T + s6T) — BX(T) | B(T + s6T, \) — B(T, \)
Ak

S

dA.

S

92



4.4. CONTINUOUS FRECHET DIFFERENTIABILITY DEPENDENCE OF THE
STATE WITH RESPECT TO THE CONTROL

By Lagrange theorem on finite increments:

x, 50’ x,
Bk(T(x,t) + 3(5T(.T,t)) _ Bk(T(a:,t)) 1 T(z,t)+s0T( t)dBk

= / ()T
§ S

T(z,t)

— (jg(T(x,t) +r3§T(x,t))dT>5T(x,t).

(4.19)

Let (sn)nen be a sequence of strictly positive real numbers tending to 0. By (4.19), the

continuity and the boundedness of %, we have that:
BT (z,t) 4 $,0T (x,t)) — B*(T(z,t dB*
(w0 + on0T 1) = BUTE0) OB 1))67 ), 0. 1) € Q

Also, by (4.19):
p

(B¥(T(x,t)) + 5,07 (x,t)) — B¥(T(x,1))

is bounded by a constant independent of n,x, and ¢. Thus by the Lebesgue dom-
B¥(T(-;)+5n0T(-,))=B*(T(-,-))

Sn

inated convergence theorem, the sequence ( ) converges to
neN

%(T(~, NOT(-,+) in LP(Q). This proves that B*(-) is directionally derivable at T. As
dB*

o (T'(-,-)) is also a bounded function, the mapping

f an*

CQ) = T(Q) 0T () = (T, )T ()

is a linear continuous mapping. Thus B* : C(Q) — LP(Q) is a Gateaux differentiable at

every T' € C(Q) ([2], p.26) and its Gateaux derivative at point 7" € C(Q) is the linear

continuous mapping

DBNT) - O(Q) = I2(Q) : 0T (- ) = P (T )T ()

Now let us prove that B : C(Q) — LP(Q) is continuously Géateaux differentiable on

C(Q). Let (T),)nen be a sequence in C(Q) converging to T in C(Q). We have that

. . dB" dB*
|DB*(T.) — DB"(T)|l z(c(@):10(0)) < ||d7(Tn('a ) — diT(T(" Nlerq)- (4.20)

Thus it suffices to prove that ddiTk(Tn(-, ) — dd%k(T(-, -)) in LP(Q). As dd%k is a continuous

function and 7,, — T in C(Q) implies that T, (z,t) — T'(z,t),V(z,t) € Q as n — +o0, it
follows that %(Tn(x,t)) — %(T(w,t)),‘v’(x,t) €Q, as n — +0oo. % bejgkg a bounded

function, by the Lebesgue dominated convergence theorem, the sequence <= (Tn (-, ")) —
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d’d%k(T(-, 1)) in LP(Q), and thus by (4.20), DBy (T,) — DB*(T) in L(C(Q), L?(Q)). Thus
B* . C(Q) — LP(Q) is continuously Gateaux differentiable on C(Q). Consequently,
by Lemma 2.8, p.28 [2] (or 5b of exercise 3.4, p.160 of [33]), B¥ : C(Q) — LP(Q) is

continuously Fréchet differentiable on C'(Q). The proof is thus complete. U

4.7 Lemma. The mapping E x U — LP(Q) : (T, Ts) — hrzg defined by (4.5)u), is a
continuously Fréchet differentiable mapping from E x U into LP(Q), ¥p € [1,400].

M
Proof : We have hyry(z,t) := ’fk/ITTS x,t,v)du(v), so it suffices to prove that
k=1

/I%TS(-, -, v)du(v) is Fréchet differentiable from E x U into LP(Q).

V
From the proof of Theorem 3.2 of Chapter 3, we have that:
I (1, ) = wi(ry — A)THBF(T(, 1) = By(Ts(t))) + By (Ts(1)),

where the unbounded operator A has been defined Chapter 3 and its definition recalled
in this chapter (see formula (4.10)). We know that E < C(Q).

We have proved in Lemma 4.6 that the mapping: C(Q) — LP(Q) : T Bi(T) is
continuously Fréchet differentiable.

Let us set By = kp(kr — A)~" € L(LP(Q x V) and let us denote by By its extension as a
linear continuous operator in LP(Qx V') = LP(]0, t¢[; LP(Q2xV')) by setting Vf € LP(QxV):

(Bef)(8) = Bi(f(1)),¥'t €]0,;[. (4.21)
So :
tr
JWBep @)t = / IBL(FW)IPdt < / HOIRa
0
where ||| denotes the norm in LP(Q2 x V). Thus By, is a linear continuous operator from

LP(Q x V) into LP(Q x V') extending By : LP(Q x V) — LP(Q x V).
So I¥ 1, = By B5(T) + B¥(Ts) — ByB¥(Ts), implies that:

(DI )(T,Ts) = B oio DBE(T) € L(C(Q); LP(Q x V), (4.22)

where ¢ : LP(Q)) < LP(Q x V') is the continuous injection which to each function in LP(Q)
associates the function in LP(Q) x V') constant with respect to v € V, and that:

(D15 (T, Ts) = j o DBY(Ts) — By, 0 j o DBE(Ts) € L(C([0,t4]); LP(Q x V), (4.23)

where DB (Ts) : C([0,ts]) — LP(]0,ts]) and j : LP(]0,ts[) < LP(Q x V') which to each
function in LP(]0, ¢;[) associates the function in LP(Q) x V') constant with respect to z €
and v e V.
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Now by Lemma 4.6 and formulas (4.22) and (4.23), we have that the mapping (T, Ts) —
(DrI5 1, )(T, Ts) is continuous from C(Q) x C([0,t5]) — L(C(Q); LP(QxV)), and that the
mapping (T, Ts) — (Drs 157, ) (T, Ts) is continuous from C(Q)x C([0, ts]) — L(C([0,ty]); LP(Qx

V). Thus by Proposition (8.9.1), p.173 [23], the mapping

C(Q) x C([0,45]) = L@ x V)

(T, Ts) — I*(T, Ts) (4.24)

is continuously Fréchet differentiable. To obtain / I}, (-, -, v)du(v) it suffices to integrate
v
I%TS with respect to v. This integration defines a linear continuous mapping from LP((Q) x
V) into LP(Q). Thus, the mapping (7, Ts) — /]%TS(-, -, v)dp(v) being the composition
v
of this integration operator with respect to v with the mapping (4.24), it follows that the
mapping
C(Q) x C([0,t]) — L*(Q)
(T.75) = [ Iz, 0)du(v)
v

is continuously differentiable. Hence, as h(T,Ts) is a linear combination of these map-

pings, it is also a continuously Fréchet differentiable mapping. O

4.8 Lemma. The nonlinear mapping
0:C(%) = LY (%) : v O(v),

where
“+00

O): L 5 R: (2,8) =7 / exB(o(z, 1), \)d),
Ao
is continuously Fréchet differentiable and its derivative at v € C(X) is the linear continu-

ous mapping

DOW) : C(X) = L (%) : 6v — Cfl@(v)év,
v
where ( )2 .

“+oo +oo 02 =2

doe 0B 2CY Exloe ) €2 dA

) = 92 (v, \)dA = / & o eR. 4.2

dv (v) = / o (v ) e, (e% —1)2 X“vv © (4.25)
)\0 >\0

Proof : The proof is similar to the proof of Lemma 4.6. 0

Proof of Theorem 4.2. We start with the first component of e which is e;. According
to the definition of the state space E, the map (T,Ts) — cpmg%—:f — kAT is a linear
continuous mapping from E x U into L"(Q) (r > 2.5). Thus this map is obviously
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continuously Fréchet differentiable.

M

Now the map (T, Ts) — ¢(T) = — > _ 47ka§ (T') is continuously Fréchet differentiable as
k=1

we know, by Lemma 4.6 that the map T — Bg (T") is continuously Fréchet differentiable

from C(Q) into L"(Q). For the mapping (T, Ts) + hr.r,, we know by Lemma 4.7, that
it is continuously Fréchet differentiable from E x U into L"(Q). So, by Definition 4.4,
summing the pieces, we obtain that e; is continuously Fréchet differentiable on £ x U.
We want now to prove that es is continuously Fréchet differentiable on £ x U. We
have that k‘h -+ h.T is a linear and continuous mapping according to the definition of
the state space E, so that it is a continuously Fréchet differentiable on E x U. By the
previous proposition we have that the mapping © : C'(X) — L* (%) is continuously Fréchet
differentiable on C'(X), and by composition to the right with the projection of E x U onto
E, followed by the trace mapping from E into C(X), we obtain using O(T)s = 6(Ts),
that the mapping (7, Ts) = O(T');s, is continuously Fréchet differentiable from £ x U into
L*"(X). That the mapping £ x U — L* (X) : (T,Ts) — O(Ts) is continuously Fréchet
differentiable, follows from U := H*(]0,¢;[) < C([0,¢/]), and the preceding proposition.
Summing the pieces, we obtain that e, is continuously Fréchet differentiable on £ x U.
e3 being linear and continuous is obviously continuously Fréchet differentiable on £ x U.
Hence, by proposition 8.1.5 of [23] , the mapping e is continuously Fréchet differentiable
on £ xU.

4.4.3 Property of the partial derivative of the constraining map-
ping
In this subsection, we prove that the partial derivative at point (7', Tg) with respect to

T of the constraining mapping e is an isomorphism from E into L"(Q) x L*" (%) x C(£).
Firstly, from Theorem 4.2, we have the following result:

4.4 Proposition. The partial derivative at point (T, Ts) with respect to T of the contin-
wously Fréchet differentiable mapping:

e: ExU— L'(Q) x L¥ (%) x C(Q)

is the linear and continuous mapping Dre(T,Ts) : E — L7(Q) x L* (%) x C(Q) with

dBk
Dpey (T, Ts)0T = c,my, GgT kn AT + Z AT Ky dTg (T)oT

~ Yk / [(DrI*)(T, Ts)ST](-, -, v)du(v),

06T do
Dreo(T, Ts)0T = kp(—— £y )iz + he(6T )12 +

=7 D) (0T )is,

DT63( )(5T = 6T( )
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where %(T} = né%(T} and %(T) is given by formula (4.17), %(T) by formula

(4.25), and (D7I*)(T,Ts) by formula (4.22).

Next, we will prove the following main result of this subsection:

4.5 Proposition. The linear continuous mapping Dre(T, Ts) is an isomorphism between
E and L'(Q) x L*(X) x C().

For the proof we need some lemmas.
4.9 Lemma. Let T € W(0,ts). Then T € L"(Q) for some r > 2.72.

Proof : As W(0,t;) — C([0,ts]; L*(2)), we know that T € C([0,ts]; L*(Q2)). A
fortiori T € LP(0,ts; L*(Q2)), V1 < p < 400. We know also that T € L*(0,¢s; L4(2)) for
q € [2,6] as H(Q) — L(Q)) for q € [2,6]. By using these two informations on T, we are
going to deduce by interpolation that 7' € L"(Q) for some r > 2.5. We have by Theorem
p.8 in P. Grivard’s thesis [30], [LP°(Qqr, Ao); LP* (Qar, A1)]e = L*(Qcr, [Ao, A1]p), where
(2 denotes an arbitrary open set in some R" space (the statement in [30] is even more
general), 0 < 0 < 1, % = =04 —, and (Ap, A;) is a couple of interpolation i.e two
Banach spaces with continuous injections in a vectorial Hausdorff space (p.15, [69]). Let
us apply that result of interpolation by taking Qq, =]0,ts[, po = p, Ao = L*(Q), p1 = 2,
Ay = L(Q). Thus we want to interpolate between LP(0,ts; L*(2)) and L?(0,ts; L9(S2)).
We may choose p arbitrary in |1, +oo[ and ¢ arbitrary in [2,6]. Let us choose § = 0.4 so
that % = 0.6 x %—i— 0.4 x % Thus = w which implies s = W
large, we can approach s ~ 5, by lower Values Thus s will be strlctly blgger than 2.5,
if we take p large enough. [Ag, A1)y = L"(§2) where % = 0.6 x 5 +0.4 x E which implies
If we take ¢ = 6, then we will have r > 2.72.

Taking p very

= 1
(TR =

Thus,

T € L*(J0,t¢[; [L*(Q), LY(Q)]o.4)
= L*(]0, t4[; L7(Q)) < L"(J0,4[; L"(Q))
= L"(Q) for some r > 2.5.

O

4.10 Lemma. The linear continuous operator Drlf . = DrI*(T,Ts) from C(Q) into
ext

L™ (QxV) extends by density and continuity to a linear continuous operator [DpI*(T, Ts)]
from L"(Q) into L"(Q x V), V1 <r < 400.

Proof : Let us take an element 67" € C(Q). By formula (4.22), we have V(xz,t,v) €
QxV:
dB*

— (T (,t)0T(.,t)| (z,v).

(DrI*(T,Ts).0T) (2, t,v) = lmmk — A 2
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By [50], % € L*(R) and by Chapter 3, rp(kr — A)™' € L(L"(Q x V)). The result

follows. O

4.3 Corollary. The linear continuous operator Drh(T,Ts) from C(Q) into L"(Q) extends
by density and continuity to a linear continuous operator [Drh(T,Ts)|™ from L"(Q) into
L"(Q), V1 < r < 4oc.

Proof : This follows from the previous lemma and formula (4.5) . U

Now following the definition of Dy, we define, for all ¢ € [0,¢/], the following bilinear
form on H'(Q2) x H'(Q):

a(t; 6T, 67) = {kh V(6T (2) V. (67) () da

CpM
2 Q

dip
- d—T(T(a:, )01 (x)oT(z)dx
¢ (4.26)

~ 3 / / ([DrI*(T, Ts)|“0T) (, £, v)67 (x)dp(v)dx
Qv

k=1

+/ h;@,t)éT(@&@)dS@)},
o0
where RS (z,t) := he + ©2(T(z,1)),V(z,t) € 2.

4.11 Lemma. The function t — a(t,0T,dT) is measurable and there exists a constant M
depending only of ty such that

la(t, 0T, 67)| < M||6T||||o7|, V,oT, 61 € H'(Q).

Proof : As T € F implies T' € C(Q), the mapping

(2,1) = %(T(m, 1))

is also continuous on @ and thus bounded, which implies:
‘ [ ST 0T @)57(w)dz| < 5Tl 2oy 107 1200
Q

< cll0T || g1 (e l|07 || &1 ()

with a constant ¢ independent of ¢. We have %(T(-, ) € C(Q), and ky(kp — A)71 s

a linear and continuous operator with ||rg(kr — A) 7| zz2(xv)) < 1 (see Chapter 3), so
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that by formula (4.22):

’ / [ (DRI (T, T 6T (.1, 0)57 () dp(0)
v
JB* (4.27)
<o | T 10T o lloTllme)
dar o0.d
with a constant ¢; independent of .
Now by formula (4.25), inequality (4.18) and the Lebesgue continuity Theorem, %2 is

continuous on R which implies that the mapping;:
(z,t) — h$(z,t) == h, + 9 (T(z,t)) is continuous on ¥ and thus bounded. Conse-
quently:
[ i 0T @) (@)dS @) | S Wil 10T -7 e
o0

with a constant independent of ¢. Thus for each t € [0,%f],a(¢; -, ) is a bilinear continuous
form on H'(Q) x H'(Q2) with a norm bounded independently of . O

4.12 Lemma. Given ug € L*(Q) and f € L*(0,ts; [H'()]*), the initial boundary value
problem
2u(),0) +alsu(),0) = (F()0), Vo€ H(S),
u(0) = uyg,

possesses a unique solution u € W(0,ty), where (-,-) denotes the scalar product in L*(£2)

and 4 < is in the sense of D'(0,ty)

t

Proof : In view of Lemma 4.11 it is sufficient to verify hypothesis (3.15), p.511 of [18],
i.e. to prove that the bilinear form a(t;-,-) is uniformly coercive on H'(Q) with respect
to L?(2) i.e. that Ja > 0, I\ > 0 such that V't €]0, ¢;]

alt; ) + M2y = o ullf gy Vu € Q).

By inequality (4.27), we have the following bound:

dBk
/ [DpI* (T, Ts)* 67 (x, t,v)07(x)dp(v)de| < ¢ o —2(T(-, ))H ) ||57'||%2(Q).
QxV 00,@
As T+ B(T, \) is an increasing function, —ﬁ and are positive functions, and as h,. is

a positive constant, then h%.(-,-) is a positive functlon. Thus by (4.26) and the preceding
inequality, VoT € H'():

M

/|VI(5T)| (2 )dw—cl(ka

dBk
)|

) > ||5T||%2(Q)'
OO’Q
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Hence, there exists A > 0, > 0 such that Vo7 € H'(2), we have:

a(t,or,07) + )\||5T||Lz > 04H5T||H1(Q

Now we are able to prove the main result of this subsection:
Proof of Proposition 4.5.

Firstly, we must verify that V¢t € [0, /], that the right-hand side of (4.26) defines a bilinear
continuous form.

We want to apply Theorem 1, p.512-513 and Theorem 2, p.513 of [18] for uniqueness and
existence of the solution to the problem: g

Let f € L"(Q) and g € L* (X) be given. We know, by the definition of the state space,
Definition 4.3, that r €]2.5,2.72] and that s* > 4. Let us define fpy by:

or(0:07 s ey = [ Fa )37 (@)da + [ 9o, )07 (2)dS(x).
o) 90
Now, we must verify hypothesis (3.20), p.512 of [18], i.e that
for € L*(0,t5; H'(Q)).
We have:

[ Fon0): 6T iy | = | [ F@ 0 (@)do+ [ gla.nor(@)as(
Q onN

Sﬂ/lf(fc,t)H5T(f6)|dfc +aé l9(x, )] |07 (z)]dS(z)

< 7Oz 1970y + 190 ) o107 o)
< (17Ol + 9 Ollzomy ) 167l

which implies: || fprllai S 1502 + 90 1) 2(a0). Integrating from 0 to ¢y the
square of both sides of the previous inequality, we obtain:

/ 102 (8) e dt<2/ 1FC D20 dt+2/||g 1) o

S ||f||L2(O,tf;L2(Q)) + ||9||L2(0,tf,L2(aQ))

S Hf“%r(@) +lg %S*(E),

which shows us clearly that fp, € L*(0,¢p; H'()%).
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Then by Theorem 1, p.512 and Theorem 2, p.513 of [18] for uniqueness and existence,
V 6Ty € L?*(Q2), there exists one and only one

6T € W(0,t5) == {0T e L*(|0, t;[; H(Q)); d(jtTN) e L2(J0,ts[; H'()*)} (4.28)

such that V 7 € H'(Q), we have:

L OT() 1572200 + al-,5T(),67) = —— (fpu (), 67)

it = o,

in the sense of D'(0,t¢), and 67'(-,0) = §Tp. This is a fortiori true, if the initial condition
6Ty € C(Q). As 67 € W(0,ts), this is equivalent to V't €]0, ¢[:

eomy <d§tT( ) 5T> +kh/v (OT) (x,£)V o (67) () dz —!%(T(x,t))
X 0T (x,t)d7(x)dx — /[DTh(T, )| (2, )0T (x, )7 (x)dx
0
+hc/5T(J},t)5T(ZL‘)dS(£L‘) —I—aé(jl?(T(x,t))(ST(x,t)57‘(m)d$(a¢)
— / Fla, )67 (x)dx + / gz, 1)dr(x)dS(x), Vor € H'(Q).
0 80
By equations (4.13) and (4.15) this is equivalent to:

95T dip

CpMg——— 5 — kp AOT — dT( (+,))0T — [Drh(T, TS)]de =f (4.29)
and
00T doe
kha— + hoT + dT( (+,-)0T = g. (4.30)

From equation (4.29), Lemma 4.9 applied to 6T and Corollary 4.3, we get:

00T

CpMyg 7(%

— knAST € L(Q). (4.31)

On the other hand, h§(z,-) = he + 22(T'(z,-)) is bounded as 22 is bounded. Set

f—f+£<wa+WM@%WWﬂ

we can view 07T as a weak solution of the following initial boundary value problem:

A

Cpmga:s?( t) — kh AT (z,t) = f(x,t), V(x,t) € Q
BB (0, 2) 4+ T (2, 05T (2, 1) = g, 1), V(1) € 8 (132
0T (z,0) = dTp(x), Vo € Q.
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We know that ¢ € L¥ () and that fe L"(Q) as r < 2.72 by the definition of the
state space E and 6T € W(0,t;) — L"(Q) by Lemma 4.9. We know also that Al (-,-) is
continuous on ¥ and thus measurable and bounded on ¥. Using Lemma 7.12 p.378 of [69]
, Theorem 5.1 p.1306 of [11] and the superposition principle, it follows that 67 € C(Q).
Going back to the boundary condition (4.30), we get also k, %L € L* (X). Thus, we

achieve that 67T € E. This allows us now to say that:

[Drh(T, Ts)|*'6T = Drh(T, Ts)dT,
so that by Proposition 4.4, equations (4.29) and (4.30) amounts to say that

DTGI(Ta T5)5T - f7

and Dres(T,Ts).0T = g. Also 6T(-,0) = 6Ty € C(Q2), which is Dyes(T,Ts).0T = 0Tp.
This proves that Dye(T, Ts) is an algebraic isomorphism between E and L"(Q) x L* (X)) x
C(Q)

4.4.4 Proof of the Fréchet differentiability of T'

This subsection is devoted to the proof of the main result of section four i.e. we will
prove that the mapping Ts — T'(Ts) is continuously Fréchet differentiable from an open
neighborhood C' of U, into the state space E. Firstly, we define C' by:

4.6 Definition. By C we denote the open set of the Hilbert space U defined by:

T _
C:{Tse U,E <T5(t) <2T, Vte [O,tf]}

where T and T satisfy the conditions (2.4) in Chapter .

Let us remark that C'is an open neighborhood of the closed convex subset of admissible
controls U,y in the Hilbert space U = H'(]0,¢¢[) due to the continuous injection of
U= H'0,t7]) = C([0,¢7]). All the previous results remain true if we replace U,q by C

which amounts to replace T by

T _ T _

§<2T,§§Ta§2Tand
_ T _

VTy € C(Q) satisfying E < To(x) < 2T, Vo € Q, there exists one and only one weak

solution T'(Ts) € W(0,t;) of the initial boundary value problem (4.2). Moreover T'(T)

satisfy the inequalities

_ _ T _
and T' by 2 T because ? and 2 T" satisfy the hypotheses

N | e[

< To(x) 2T, Vo € Q. In particular VIs € C, and

< T(Ts)(w,1) <2 T, ¥(x,1) € Q,

Sl

T(Ts) € E and e(T(Ts),Ts) = (0, hT,,To). This allows us in particular, to extend the
domain of definition of the reduced cost functional, from U,; to the open neighborhood
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C of Uad:
J:C—=R:Tg— J(T(Ts),Ts). (4.33)

Now we are able to prove our main result:

4.3 Theorem. The mapping T : C — E : Tg — T(Ts) is continuously Fréchet differen-
tiable with Fréchet derivative:

DT(TS) = —(DTG(T(TS), TS))_1 o DTSG(T(TS), TS), (4.34)
V1g € C.

Proof : VIs € C, T(Ts) € E and satisfies:

), Ts) = cymy P88 — |, AT(Tss) — (T(Ts)) — M(T(Ts), Ts) = 0,

), Ts) = kn(ZI8)) o 4 ho(T(Ts))s + O((T(Ts))js) — O(Ts) = h T,

ie. e(T(Ts), Ts) — (0, heTy, Ty) = (0,0,0), where Ty is the given initial data function in
o).

By Proposition 4.5, the linear continuous mapping Dre(T, Ts) is an isomorphism between

E and L"(Q) x L*" (%) x C(Q). In particular (Dpe(T,Ts))™! exists. Thus by the implicit
function theorem ([23], p.270), applied to the function

ExC — E: (T,Ts) ~ e(T,Ts) — (0, hTy, Tp),

VT € C, there exists open neighborhoods Viy C C of T in U, and Vg(T'(Ts)) of T(Ts)

in £/, and a unique continuous mapping
T:Vy(Ts) — E : Ts — T(T5)

such that:

v

(1) T(Ts) =T(Ts),

(ii) VTs € Vi (Ts), there exists exactly one T € Vg(T(Ts)) such that e(T,Ts) =
(0, h Ty, Ty), namely T = T(Ts).
Moreover, the mapping T Vu(Ts) — E is continuously Fréchet differentiable with

derivative:

v %

D(T)(Ts) = —(Dze(T(Ts),Ts)) ™" o Dy e(T(Ts),Ts),
VT € Vu(Ts). As VT € Vu(Ts), T (Ts) =T (fg) by uniqueness, the result follows. O
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4.5 First Order Necessary Optimality Condition

The purpose of this section is to derive a necessary condition in the form of a variational
inequality for an admissible control to be an optimal control. We suppose r €]2.5,2.72]
and s* > 4.

We divide this section into three subsections.

4.5.1 Derivative of the reduced cost functional and the adjoint

system

Let us recall that the reduced cost functional .J, is the mapping:

J:C = R: Ty J(T(Ts), Tg) = ;/(T(TS) T, )dr @ di

Q
Oy 2
+ 5 1 Ts = Tsall o

4.6 Proposition. Let us set Z := L"(Q) x L* (X) x C(Q). Let us denote by T, the
isomorphism from L™ (Q) onto (L"(Q))*, where & + 1 =1 and by i : E — L*(Q),

respectively i, : E — L"(Q). Let Ts € C and §Ts € U. Then, the mapping J:C—>Ris

continuously Fréchet differentiable and:

A

DJ(Ts).6Ts = — (€, Drye(T(Ts), Ts).0Ts) 5. , + 6-(Ts — Tsal0Ts)y, (4.35)

where £ € Z* denotes the solution of the so called “adjoint system”:

[Dre(T(Ts), Ts)]"§" = (iy o L )(T(Ts) — Ta).

In the right-hand side of the adjoint equation, we consider T'(Ts) and T, as elements of
the space L (Q).

Proof : From Theorem 4.3, we deduce that the mapping C' — L*(Q) : Ts + T(Ts) —
T, is also continuously Fréchet differentiable, and thus also, by composition, the map
which to each Ts € C associates (T'(Ts) —T4|T(Ts) —Ty) r2(q) ([23], (8.1.4) p.150). Also by
the same reference, the mapping which to each Ts € C associates (Ts — Ts4|Ts —Ts.q)v is
also continuously Fréchet differentiable. Thus the mapping J:C — Risalso continuously

Fréchet differentiable. Using the previous results, especially formula (4.34), we obtain:

A

DJ(Ts)(STS = — /(T(Ts) — Td) (22 o} (DTG(T(Ts), Ts))fl ¢) DTS€<T(TS)7 Ts)) . 5TS
Q
dr ® dt + 57‘(TS — TS,d‘dTS)U-
(4.36)
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But,

(T(Ts) — Td) (’LQ e} (DTG(T(Ts), TS))_I @) DTS€(T(T5), Ts))5T5 dx & dt

@\

= (T(TS) — Td|i2 9] (DTG(T(T5)7 Ts))_l @) DTSS(T(TS), TS)~5TS)L2(Q)
(Z(T(Ts) = Ta),ir o (Dre(T(Ts), Ts)) ™" © Drye(T(Ts), Ts).0Ts )

L7(Q) x L7 (@)
(([(Dre(Try, Ts)) '] 0i7 0 T )(T(Ts) — Ta), Drge(T(Ts), Ts).6Ts)

AN
Thus, if we set:
f* = ([(DTG(T(Ts), Ts))il]* o Z: o IT/)<T(T5) — Td) € Z*,
equation (4.36) becomes:
DJ(Ts).6Ts = — (¢, Drye(T(Ts), Ts).0Ts) 5., + 6,(Ts — Ts.al0Ts)v,
where £ € Z* is the solution of the “adjoint system”:

(Dre(T(Ts), Ts))*€" = (iy o L )(T(Ts) — Ta) (4.37)

as [(Dre(T(Ts), Ts))~']" = [(Dre(T(Ts), Ts))*] . 0
Let us explicit the Fréchet derivative Dr.e(T, Ts) which appears in the right-hand side
of our previous formula (4.35) for the Fréchet derivative of the reduced cost functional.

4.7 Proposition. Let T € E and Ts,0Ts € U = H'(]0,t¢[). Then,

M k
—> ki [4% — /Kjk(/ik — A) Maxy du(v) %(Ts)éTS

—40(Ty) 6T
0

Dr.e(T, Ts).0Ts = . (4.38)

where the unbounded operator A in L™ (2 X V') has been defined in Chapter 3 and its precise
definition recalled in this chapter (see in section 3, formula (4.10) with p =1)

Proof : It follows from Definition 4.4, that:

DTS€1 (T, TS)5TS = —(DTSh)(T, TS>5TS
DTS€<T, TS>5TS = DTSBQ(T, TS)(STS = —(DTS@)(Ts).aTS
DTS€3(T, Ts)(STS =0

Applying now formula (4.23) of Lemma 4.7, and Lemma 4.8, we obtain formula (4.38). O

Now, our objective is to give a suitable solution of the adjoint system (4.37).
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4.5.2 Solving the adjoint system

4.13 Lemma. Supposing that Ty € L'(Q), the following linear final boundary value
problem with homogeneous boundary condition and final zero condition at the final time
of radiative heating ty: find ny, € W(0,ty) such that:

dBk
Cpmgargvtol (a: t) + khAnvol z, t Z47mk TTS(x t))ﬁ\/ol(l‘ t)

gnk L (Tra,) [ (0= A7 nvolo,t)} (,0)dn(v)

= Ty(z,t) — Try(x,t), V(z,t) €Q, (4.39)

k:han"” (z,t) + h, (a: Onval(z,t) =0, V(z,1) € %,

nve(x,ty) =0,Vo € Q,

where the unbounded operator A in L*(Q x V) has been defined in Chapter 3 and its
precise definition recalled in this chapter (see formula (4.11) with p' = 2), and where
oy, (2,t) := he + 9(Try(2,1)), possesses one and only one solution in the weak sense.

Moreover 1y belongs to C(Q).

Proof : By 7y, is a weak solution of (4.39, we mean that 1y (-,-) € W(0,t5) :={p €

L0, HY(Q)); 22 € L*(0,ty, H'(Q)*)}, that nye(-,t;) = 0 and that Vp € L*(0,tz; H'(2)):

ty ty
dnvo
com, [ < (1), p(-,t>> dt— b [ [ Vivale,t) Vol tide @ dt
0 H(Q)*,HY(Q) 0 O

Mo iRk
S dn / (T (@, )vale, Opla, ) de  di

Q
M k
+ Z Ky / C@(TTS(ﬁ,t)/ [(Fak — A)_lnvol(-, t)} (x,v)dp(v)p(x, t)dx @ dt (4.40)
Q \%

/hTT z, )nyva(x, t)p(z,t)dS(z) @ dt

B /(Td(‘”"” t) — Trg(z,t))p(x, t)de @ dt.
Q

By the same proof as in Proposition 4.5, it follows that nyq(-,-) exists, is unique and
belongs to C(Q). A fortiori ny, € (L™(Q))*. O
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4.14 Lemma. Assume that Ty € L"(Q), and £ = (v, nB, ) the solution of the adjoint
system (4.37), where nyy is the solution in the weak sense of the problem (4.39), ng and
v are deduced from ny by the equations:

B = Uvoz\z, (4'41)
V(dz) = comgnyval-,0)dz,

then £ € Z*.

Proof : By Lemma 4.13, ny, € C(Q). Thus, a fortiori ny, € (L"(Q))*. Also, trivially
ne = Nvals € C(X) C (L¥'(X))*. 7 is a signed measure of totally finite variation on
because

1(9) = ey [ Inva(z, 0)ldz < +oo.
Q

Consequently, v defines a continuous linear form on C'(2) i.e. belongs to (C'(§2))*. Defining
& = (Mva,MB,7Y), it is now obvious that £* € Z*. O

4.8 Proposition. Suppose that T; € L"(Q), then & = (nve,nB,7) is solution of the
adjoint system (4.37), where nyo, N, and v are defined in Lemma (4.14).

Proof : By Lemma 4.14, we know that * = (nve,nB,7) € Z*. To say that £* =
(Mver,MB,7Y) € Z* is solution of the adjoint system (4.37) i.e. of (Dre(T(u),u))* & =
(12 0o Z,/)(T(u) — Ty) amounts to say that VoT € E :

(&, Dre(T'(u), u)-5T>Z*,Z = (T'(u) — Ta, 5T>LT’(Q),LT(Q) ’
i.e., that & = (nv., 1B, ) satisfies VoT € E :

<77V017 DT€1<T<U), u>'5T>L7‘(Q)*,L’”(Q) + <7737 DT€2<T(U)7 u)'(ST)(LS* (ZN*, L™ (%)
+ {7, DT@S(T<U)7u)'5T>(C(Q))*,C(Q) = (T'(u) = Tq, 5T>LT’(Q),LT(Q) :

Equivalently, for £* = (nyvo,nB,7) € Z* to be solution of the adjoint system (4.37), we
must have V0T € E:

90T o dB,
/(Cpmgﬁ - k?hA(ST(J], t))nVOI (ZE, t)dCL’ ® dt + kzz:l 47TR1€Q/ T/I?(TTS (I7 t))(ST((I,’7 t)

M
XNz, t)dr @ dt — / Z K /(DTTS I%TQTS 0T (z, t, )y (x, t)du(v)de @ dt

+ / / (/ghégsf’(x,t) 1, ()T (2, 1)) (x, 1)dS ()t + / 5T (x,0)d(z)
0 90 Q
- / (Try (. 8) — Ta(z, £))6T (., t)dz @ dt.
¢ (4.42)
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Using Definitions 4.1 and 4.2, let us transform the left hand side of (4.42):

90T M dB}
/ (cymy - — BT (2, 1)y, e © dt + 3 dmr / (T (2, )0T (. 1)
Q k=1

Xnyor(, t)de @ dt _/Z“k/ DTTSITT 1 OT)(z,t,v)dp(v)nva (e, t)de @ dt
o k=1

+ / / (khf(x,t) W (2, 00T, 8))s(, £)dS ()t + / ST (x, 0)d (z)
0 90 Q

:cpmg7<d§f( t), v, t)>

0

tr
dt + ky, / / VoT (2, ) Vipya(z, )
HY(Q) 11 (@)

xXdr @ dt — //khadT (x, t)nye(x,t)de @ dt + 2477/%/ T TTS(x t)).0T (z,t)
0 90 k=1

Ny (z,t)dr @ dt — Z//{k/ DTTS Try Ts- OT)(z,t,v).nve(x, t)du(v)de @ dt

+// kha‘ST@ )+ 1, (a, 00T (. £) sz, 1)dS dt+/6T 2, 0)d(z).

(4.43)
As np(x,t) = nve(z,t), V(z,t) € 3, the third term in the right-hand side simplifies with
the first term in the last but one integral. Now by the formula of integration by parts in
W(0,ts), Theorem 3.11, p. 148 of [71], we have:

Cpmg/<d§f( ), vor(- t)> dt =

HY(Q)* H(Q
0 (@), HY(Q) (4.44)

ty

dnve

—cpmg/< Z‘;l(',t),éT(-,t)> dt—/éT(:c,O)dfy(x).
0 HY(Q)*,HY(Q) Q

due to nyu (-, tf) = 0 and the definition of the Radon measure v (see formula 4.41). Also
by Chapter 3:

i

= f (DT[T T5'5T>(x7t7v) nVol('r7t)dx
A

( djg (TTS('v t>>5T(7 t) )]("L‘a U)n\/ol(x’ t)dl‘du(ﬂ)

O (T (0, £)0T (2, 1) (5 — A) ™ - pya (-, )] (, v)dalpa(v) (4.45)

d
d

x
ol V]
—

[(kx —
1%

M=M=
D

=
ol \o)
2

I
X
l.
X X
<
5
SEy

K

(Try (2, ) [(r = A) 7" - v, 0] (2, 0)dp(0)T () e

@)

X

<

e

Il

—
ESIN)
N
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From equations (4.43), (4.44), (4.45) and (4.40), the left hand side of (4.42) is equal to:

ty ty
d
— eym, / < Z‘;Ol(~,t),5T(-,t)> dt + ky / / VoT (z,)Viya(, )
0 HY(Q)* H () 0 Q
M dBk
x dr®@dt + ) 4Ky / — I (T (x,1)).0T (z, )Ny oz, t)dz @ di
P b drT
o~ [ 2By 11
=5 [ i 00T @t) [ 5= A vl Dl )p0) e
F=1o Vv
ty
+ / / W, (.00 (z, s (. 1)dS () dt
0 50

_ / (Try(z,t) — Ta(z,1))6T (2, t)dz ® dt
Q

Thus equality (4.42) is true with 1y, defined by (4.40). The proof is complete. O

4.2 Remark. In the following to underline the dependence on nyy(-,-) with respect to
Tr,, we will write nyo(Try;-,-) instead of nyy(-,-). For the same reason, we will write
also ng(Try; -, ) and p(Try;-).

4.5.3 The variational inequality
We are now able to state our first order necessary optimality condition:

4.4 Theorem. Let T € Uy, be an optimal control i.e, satisfying j(TS) = inf j(y),

vEU.q
which we know to exist.
Then Ts satisfies the following variational inequality: Yv € U,q:
MY
Z“k/{/ {(471’—//1]@(/{]{; —A)_11|vadu(v))77VOl(TTS;:L',t)] dx}
k=19 "q v
Ly
dB¥ do
T T0) (1) = Ts@)dt + [( [ np(Trgsr,)dS() T (Ts(0) (w(t) — Ts(®))at

0 900
+6, / (Ts(t) — Tsa())(w(t) — Ts(t))dt + 6, / (Ts(t) — Tsa(t))((t) — Ts(t))dt > 0.
' ' (4.46)

Proof : By Theorem 1.46, p.66 [36], if Ts is an optimal control, then T satisfies
J(Ts)(v —Ts) > 0, Vv € Upq. So, we need to compute .J'(Ts)(v — Ts), by formula (4.35)
and Proposition 4.8, Vv € H'(]0,t;]) :

J(Ts)(v — Ts) = = (£, Droe(T(Ts), Ts) (v = T5)) g5 + 6:(Ts — Ts.alv — Ts)u,
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where & = (Mvo(Try; -, ), n8(Try; -, )y ¥ (Lrg; dx)); nve(Try; -, -) is the weak solution of the
“adjoint problem” (4.39), n5(Try; -, ) = vo(Irs, -, )|s and y(Try; dx) = cymgnyo(Trg; -, 0)da.
Then, by using formula (4.38) for Drye(Try, Ts).(v — Ts), we have:

A

J/(TS>(V — TS) =

[(47‘(‘ — /I{k(lik — A)_11|vad,u(v)>77vol(TTS;x,t)} dm}
1%

I
M=
<
o\
—
{O\

SOV — Ts0)it + [ ([ no(Trs e, 1dS(0) o (Ts(0)) (1) — Ts(0))d

0 90
ty

+0r [(Ts(t) = Tsa(t))(v(t) = Ts(t))dt + 0, /(Ts(t) = Tsa(t))(0(t) — Ts(t))dt.

and so we get the result.
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The Thermoviscoelasticity Equation

Contents
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5.1.1 Solving the Thermoviscoelasticity Equations for the Maxwell

Model . . . . . . . 112
5.2 Regularity results for the absolute temperature . . . ... .. 115
5.3 Existence and Uniqueness Result . .. ... .......... 131

5.1 Introduction

Firstly, we prove the existence and uniqueness of the solution of the equations of ther-
moviscoelasticity. Then, in the second chapter we will state and study a related control
problem. Let us now introduce the thermoviscoelasticity problem. Let {2 be a bounded
domain of class C'! in R3, representing a semi-transparent body, and let us denote by
T'(z,t) the absolute temperature at point x € € and at time ¢ consequently to the radia-
tive heating of the semi-transparent body €2 by a black-source S at absolute temperature
Ts(t) at time ¢ surrounding €. This problem of the existence and uniqueness of the solu-
tion of the radiative heating problem of the semi-transparent body €2, has been studied in
Chapter 3, and the related control problem of the distribution of temperature in €2 during
the whole time interval of radiative heating [0, ¢;|, has been studied in Chapter 3. Here,
we study the existence and uniqueness, and the control, of the deformation of €2, resulting
from the radiative heating of the semi-transparent body €2 by the black-source S. In
the setting of the viscoelasticity theory, M. E. Rognes and R. Winther have considered in
[59], a weak Hellinger-Reissner formulation for the Maxwell model of viscoelasticity, which
presents the advantage to avoid the complicated integrodifferential equations linking the
tensor field of stress (x,t) — o(z,t) to the tensor field of the rate of deformations. In
this formulation, the unknowns are the stress field (z,t) — o(z,t), the velocity field
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(x,t) — 0(z,t) of the displacement field (z,t) — u(x,t) (we will also denote 1 by v)
and the skew component (x,t) — p(z,t) of the gradient of u. The novelty, is that here,
we consider the thermoviscoelasticity problem instead of the viscoelasticity problem, so
that we have now a whole family of operators Ag(.,t) indexed by the time ¢ € [0, ¢¢]:

Ao( ) L)) = (L2

o Ltv Y —tr(o)ls,

(5.1)
T ~ @)

where n(T'(x,t)) denotes the viscosity at point € Q and at time ¢ € [0, ¢¢], which depends
on the absolute temperature T'(z,t), and I3 denotes the identity matrix of order 3. On
the contrary, in the paper ([59], p. 963), it is supposed that Ay is independent of the time
t. We suppose that the viscosity n(.) is a strictly positive decreasing function, defined
and C! on R%.

5.1.1 Solving the Thermoviscoelasticity Equations for the Maxwell
Model

Firstly, let us explain what is the Maxwell model. Let us denote by E the Young modulus
and by v the Poisson coefficient (0 < v < ). Denoting by (ug) the linearized strain-field
corresponding to the elastic displacement field ug, we have:

1+v v

70~ Etr(a)fg,

e(up) =
where o denotes the stressfield. The rate of deformations corresponding to the rate of the
visco displacements wuy, is given by:

N 1—|—V0__ v o

Now, the total displacement field © = ug + uy. This implies that:

e(u) = e(ug) + e(ty)
=Lre — 2ir(o)ls + %0 — ﬁtr(a)fg.

Thus, we have the equation linking the time derivative of the displacement field u, to the

stressfield o
B 14+v. v 1+v v

() 7 0~ Etr(d)lg + (D) o— (T tr(o)ls, (5.2)

often called the Maxwell constitutive law. Let us remark, that if we introduce the devia-
toric o := o — 3tr(0)I; of the stressfield o, and e := & — 3tr(e)l5 the deviatoric of the
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strainfield ¢, this last equation is equivalent to the two equations

E E
. D D Dy,
07 + —F—=0" = e’ (u
n(T) 1+v ()
and
tr(c) + i15 (0) = ———tre(u)
n(T) 1 —2v ’
which can be solved easily giving us:
t t
—E / e g b / TGemy
tro(xz,t) =tro(z,0)e 0 +t1 s /e ¢ tre(u(z,t"))dt’,
—2v
0

and
t t

—Efdes t —E/W
b P(z,0)e 0 n((m» Lz / b D, t))dt
t = ! *
o”(xz,t) =0"(z,0)e 1+V06 e’ (u(x,

To equation (5.2), we join the equilibrium equation:
—div(o) =g — p VT, (5.3)

where we have neglected the inertial forces: we consider the quasi-static problem. (£ :=
%a, where « denotes the linear coefficient of dilatation. g denotes a volumic forcefield
acting on Q, for example its volumic weight. We suppose at least that g € L*(Q)3, where
@ denotes the “cylinder "Qx]0,¢[ in space-time R* x R. We will suppose more on ¢ in
section 5.3. T being the weak solution of the heat conduction equation 3.42 of Chapter 3,
T € L*(]0,t;[; H'(R2)) and thus also VT € L*(Q)*. To these two equations, the Maxwell
constitutive law (5.2) and the equilibrium equation (5.3), we join an initial condition for

the stressfield o
o(.,0) =¢. (5.4)

Lastly, the boundary 0f2 of the domain (2 is partitioned into two disjoint open subsets I'p
and 'y such that TpUTy = 99. Along I'p we impose the velocity field of displacements
% to be 0, and on I'y we impose no tractions i.e. (a.y)|FN = 0 where v denotes the unit
normal field along 0€) pointing outward of 2 . We now write a weak formulation for these
two equations and boundary conditions. Considering a test stressfield T € H(div;Q)?
such that (7.v) = 0, we have by Green’s formula:

/e(v) T dr = —/diV(T).v dx — /p(v) .7 dx, (5.5)
0 Q 0
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for every v € HE_(Q)3, where p(v) := (Vv — VoT). Applying Green’s formula (5.5) to
e(1), and using the boundary condition 4, = 0, we obtain from the Maxwell constitutive
law (5.2):

/[%0 - ﬁtT(O’)Ig] T dx + /[l%yd — gtr(6)Ls] : 7 dx
)

+/ div(7).0 dz + /Z(U) 7 dr =0, (5.6)

V7 € H(div; Q)3 such that (T.I/)|FN = 0. For almost every ¢ €]0, ¢¢], this equation expresses
in a weak form the Maxwell constitutive equation (5.2) and the boundary condition ur,, =
0 for the velocity of displacements . Let us note, that formally at least, if u(.,.) satisfies
at time 0, u(.,0), = 0, then we will have u(.,t)r, = 0, V't €]0,t¢[. The boundary
condition (o.v) . = 0 is an essential one in the mixed formulation and is imposed in the

definition of the functional space Hr, (div;Q)3: we try to find
o(.,t) € Hr, (div; Q)?,

where Hr, (div;€2) denotes the closed subset of vector-fields in H(div;{2) whose normal
traces are 0 on I'y. Now to the weak form of the Maxwell constitutive law, we must add

a weak form of the equilibrium equation (5.3):

/div(a).w dz + /(g — B VT)aw dz =0, Yw e [L2(Q)]’. (5.7)

We must moreover express in a weak form V't €]0,ty[, the symmetry of the stress tensor

o(.,t), so that we obtain the equation:

/dw wd:c—l—/ — B VT) wd:c—l—/ & dr =0, Yw € L*(Q)3, 58)
5.8

VE € [L?(Q)]M’

skew ?

where
3x3

3x3
)] ={ee [H)] e+ " =0}
To these weak forms (5.6) (resp. (5.8)), of the equations (5.2) (resp. (5.3)), we must join
the initial condition (5.4). Supposing that g € H'(0,¢;; L*(Q)?), that the hypotheses on

the initial temperature 7j in 2 and on the temperature T of the black-source S done in

skew

Proposition 5.3 are verified, and that the initial condition ¢ for o verifies ¢ € Hr,, (div;Q)3,
¢ = (" and div¢ = —(g(.,0) — BVT(.,0)), we prove that there exists a unique triple

3x3

(0,0, p) € H'(0,t7; Hr, (div; Q)*) x L2(0,t; LA(Q)*) x L*(0, ¢4 [L*(Q)] )

skew
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such that o(.,0) = ¢ and such that V't €]0,¢;[ equations (5.6) and (5.8) are verified i.e.:

Jlko (D) = st ))tr( o)) T dx+/ Lvg( 1) — 2o (., )]« 7 da
Q
+/d1v dm—l—/p de—O V7 € Hr, (div;Q)3,

/le )ow dx +/ - VT(.,t)).w dx + /0(.,15) & dr =0, Yw € L*(Q)?,

It follows in fact from these equations that v € L*(0,t; H*(Q2)?).

5.2 Regularity results for the absolute temperature

5.1 Proposition. Let T be the weak solution of the heat conduction equation 3.42 of
Chapter 3 i.e. of:

M

cpmg o Lz, t) = kAT (2, 1) Z47r/£kBk(T( )+ Zﬁk/[éi(x, t,v)du(v),
k=1 k=1 i

V(z,t) € Q == Qx]0,tf],

—kn 2 (2,t) = he(T(x,t) — T,) + 7 / ex[B(T(z,t),A) — B(Ts(t), \)]dA
V'(z,t) € X :: 00 x]0, ],
T(ZL’, 0) = To(x), V' e Q.

Supposing that the initial condition Ty € C(Q) N HY(Q) and that Ts € U,q, we have that
T € H*(Q).

Proof : From equation 3.42(; of Chapter 3, we have:

C”mgaaT( £) = kyAT () — Z47r/~@kBk(T( ))+Z/{k/1§(x,t,v)du(v). (5.9)

We have proved in (Chapter 3, Proposition 4.1), that under the hypotheses that the initial
condition Ty € C(Q) and Ts € U,g, that T = Tr, € C(Q). Ts € H'(]0,t4]) — C([0,/])
implying B¥(Ts) € L>(]0,t¢[) and T = Tr, belonging a fortiori to L>(Q) by Theorem
3.4 of Chapter 2, we have I} Ts( ;) €EL(Q X V) (IE(-, -, ) = I%TSaTS(" -,+)) (Chapter

3). Thus ka/[ - 0)du(v) € L2(Q).
k=1
- BN(T) € LOO(Q) because |BE(T)| < |71 ([50], p.10, Lemma 3.1).
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Thus the “right-hand side” f in equation (5.9):

f= —Z47ka§(T(-, )+ Zlik/]é‘i(-, - v)du(v) (5.10)
k=1 k=1 i

belongs to L(Q).
Let us now look to the boundary condition 3.42 of Chapter 3:

+oo
T
— khgy(w,t) = h(T(z,t) —T,) + W/s,\[B(T(m,t), A) — B(Ts(t), N)]dA. (5.11)
Ao
It is also clear that the right-hand side
g:2x—R,
+oo
(x,t) = he(T(z,t) = Ty) + / ex|B(T(z,t),\) — B(Ts(t), \)]dA,
Ao

in this boundary condition belongs to L>(X) where ¥ := 02x]0,t¢[. Let us prove that
the “right-hand sides” f, g and the initial condition Tg(-) satisfy the hypotheses of the
regularity result in ([43], p.78, with s = —1):

. f € L*(Q) and thus a fortiori to L2(Q). Thus f € H~V>7V4(Q) = (Hl/m/‘*(@))*
(this is only a notation used p.78 in [43]).

. g € L*(X) and thus a fortiori to L*(X). Thus g € H*(X) := L*(X) (this is only a
notation used p.68 in [43]).

Ty € HAEV/AH2(Q) = HY2(Q) := H'/?(Q) (this is only a notation used p.68 in [43]).
Thus by the regularity result at the bottom of p.78 in [43] with s = —1, the solution
T(-,-) of the Heat equation 3.42 of Chapter 3 belongs to the space H®/23/4(Q). Using
now the “First Trace Theorem” p.9 of [43], it follows that the trace of T on X, Tjsx €
HYY2(X). Now:

HYW2(S) := L2(0,t5; HY(09)) N HY2(0,t5; L*(09))
by definition. But:
HYY2(S) € L2(0,t; HY?2(09)) N HY40,t; L2(0Q)) := HY>Y4(S).

Thus a fortiori T}y, € HY*4(X). We want to prove that g € HY/>Y/4(X). Let us prove
that this implies that the mapping

OoT: ¥ —R:(x,t)—»O(T(x,t) = /OosAB(T(x,t), A) dA,
Ao
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where
—+oco

O:RR:zw O(2) :ﬂ/eAB(z,)\) d), (5.12)
Ao

is also in the Sobolev space H'/%1/4(%). O(-) being a lipschitzian function [50], we have:

///|@ o.t) 2+(152)£?;7 ))|2d5($) dS(y) dt

0 9909

<///|T o) e 1/2)><2)| dS(x) dS(y) dt

0 9009
< 400,

which proves that © o T" also belongs to L?(0,t;; HY/2(92)). On the other hand:

7”\|@<T<-,t>>—@(T(-,smwim i dt<77 -+ i2on)

It — 5|2 5/2 ds dt < 400,

00

which proves that © o T also belongs to HY*4(0,¢;; L?(0S2)). Thus © o T € HY21/4(%).
To conclude that g belongs to HY/%1/4(3), it remains to prove that © o Ts € H/4(]0, ;)
for this function does not depend on the variable z. We have:

‘@ TS (TS ’TS S ’
// N " ds dt<// 3/2 ds dt < +oo.
In conclusion g € HY%/4(¥). Using our hypothesis that T, € H'(Q2) and applying now
Theorem 6.2 p.37 of [43] with r = 0, we obtain T' € H>'(Q). O

5.1 Lemma. Let T be the weak solution of the Heat conduction equation 3.42 and let us
suppose that the initial condition Ty € C(Q)NH (). Then %{ € L*(Q) where f has been
defined by formula (5.10) above. Moreover:

(0
ot 2@Q) ot

M
Proof : 1°) Setting ¢ := = 4wk BE(T(-,-)), we have:
k=1

+ ||TSHH1(]0,tf[) :
)

dB"f or

awel) (1) O

M
5 ————(z,t) = =) dwrp—2

k=1

z, ).
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[50], p. 14), - (T( 1)) € L*(Q). By the preceding proposition, we know that T €
(Q) In particular 2 € LZ(Q) Thus 220 € 12(Q).
M

2° %(ka/] (z,t,v)dp(v Z / (x,t,v)du(v). Derivating our boundary value

problem for the radiative 1nten81ty

v (
H21

0.V I (2, t,0) + ke I¥ (2, t,0) = K BY (T(, 1)), V' (z,0) € A xV,
I*(2,t,v) = py(|ve - v)I*(x,t,0:) + (1 = py(lve - v])) By (Ts(t)), V'(x,v) €T

with respect to time, we have:

{ V.V (@, 1 v) + R (2t v) = k2 (T, )T (2, 1), V' (3,0) € QA XV,

o, 0) = pol( - 0DIH ) + (L (s - o) 5 (D) T5(0), ¥(av) € T
(5.13)

As Ts € H'(0,t]), Ts € L(]0,¢;[) and thus the mapping “t — “¢ (Ts(t))Ts(t)"e
L2(]0,t5]). Let us set J*(x,t,v) := I*(x,t,v) — %(Ts@))Ts(t). We have:

{ VTR (@, 1 0) + R (2t 0) = k(B (T, 1)) T () — 228 (To(8)) D5 (1), ¥'(z,0) € Q x V,
JE(z,t,0) = py(|ve - v|)J* (2, t,0;), V(x,0) €T .

By the dissipativity of the operator —v.V, with the reflectivity boundary condition (see
Proposition 3.2 of Chapter 3) in L*(Q2 x V):

k k
4, < VI G T = G
L2(Q
Thus dB’“ Bk
[t e, S ﬂmmmwu+ﬂ@me
L2(Q

Integrating I*(-,t,-) on the sphere of directions V with respect to the area measure dju(v)
on V', we get by the previous inequality:

/jk('vt7v) dﬂ(v) < / ij(',t,v) @ d,u(l})
v 2@ Vv
1/2 1/2
L/HIk £0)]| gy @) = L/V jl”f(a;,t,v)f d dpu(v)
H (’t’ ) L2(QxV) < dcg? H 5 t))) ’Ts(t)’
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M
Setting h := Z/{k/léi(-, -, v)dpu(v), we obtain using the previous inequality:

tf M tf 2
n? _ dh 2 ;
v = 15 CO ey S S| 10 dut)|
0 k=1 |lv L2(Q)

L2(Q)

< / |71

<[

dt+/f\TS(t)]2 dt
0

2
2@ I gop -

T
3°) As f =1 + h, 8—{ 9% 4 %’Z, and thus by the two preceding points: (% € L*(Q) and

dBf .
as —< is bounded ([50], p.14).
— o
|

LQ(Q) ~ H LQ(Q) H SHHI O,th' |:|

5.2 Lemma. Let us suppose that Ty € H*(Q). Then, the following initial boundary value

problem
cpmy % (z,t) = kpAv(z, t)+ (x t), reQ 0<t<ty,
%
—kp 28 (2, t) = hov(z, t) + @’(/v(aj, 7)d7 + To(x))v(z, t) — O'(Ts(t))Ts(t), (5.14)
/ .
x € 01, 0<t<tf,
v(z,0) = - (f(2,0) + knATy(2)), VaeQ, (LC att=0),
where
f(z,0) Z47ka (To(z)) + Z/@k/fk z,v)du(v), Vo €, (5.15)

possesses at least one weak solution. In (5.14), f denotes the function defined by formula
(5.10).

Proof : Let us firstly precise what we mean by a weak solution of the initial boundary
value problem (5.14). By a weak solution, we mean an element v € W(0,%¢;) := {v €
L*(0,t;; HY(Q));0 € L*(0,t5; HY(Q)*)} such that V't €]0,¢[, Vo € HY(Q) :

ey (0(- ), ) sy e :—kh/w (1) - Vol(x dx+/a—f 2, 0)p(x)dz

—hc/v(x,t)gp /@’ / x, 7)dT + To(z))v(z, t)p(x)dS(z)

+@(Ts( )T s(t /90 )dS(z),

(5.16)

o0
o (f(2,0) + kaATy(x)), Vo € Q.

cpm

v(z,0) =
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As f and also 4 € L%(0,t;;L%(Q2)) by the previous lemma, f € C([0,t]; L*(2)), and
thus f(-,0) € L?(Q). Thus the right-hand side in the initial condition of the initial
boundary value problem (5.16) belongs to L%*(€2). To prove the existence of a solution
o (5.16), we apply Faedo’s Galerkin method. Let us consider (w;),;>; an orthonormal
basis in L?(€2), which belong to H(2) and satisfy /ij(:c) - Vwg(z)dx = 0 for j #

Q
k (such a basis may be obtained by considering for example the eigenfunctions of the

operator —A with the homogeneous Neumann boundary condition). Let us consider the

vectorial subspace of dimension m, generated by wy,. .. ,w,,, and let us try to find v, (-, t) =

> (U (-, ) |w;) r2(yw; solution of the following Cauchy problem for the nonlinear system
j=1
of (integro-) differential equations:

ey (B (- 1) ;) 120 —|—kh/vax t) -V, (z)dz

_ if(x tw;(z)dx — he /vm z, t)yw;(x)dS(x)

t

t

_/@ /vm 2, 7)dT + To(2) v (2, t)w; ()dS () (5.17)

—l—@/(Tst TS /w] dS( ) ijl,...,m,

(’Um(‘, O)|wj>L2(Q) = cping (f( ,O) + khATo( )‘w])[p(ﬂ), VJ = 1, S

As is usual to prove existence of a solution to a system of differential equations, we
transform this system of differential equations in a system of nonlinear integral equations:

¢
CpMig (Um (-, 1) |w;) 120y + kh//va x,s) - Vw,(x)dx ds

= (f(-,1)|w,) 2@ — he 0/841),,1 z, s)w;(x)dS(z)ds -

- / o / v, 8)ds + To(x))w; (x)dS (x) + / O(Tp(x))w; (x)dS(x)

0 oN
+H(O(Ts(t)) — @(TS(O)))/wj(x)dS(x) + ke (ATp|w;) g2y, Vi =1,...,m.
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m

As vy, (-, t) = Z(vm(~,t)|wk)L2(Q)wk,

k=1

kh/va(x, s) - Vw;(x)dx

m

=k _(vm(-, s)|wk)L2(Q)/Vwk(x) -Vw;(x)dx

k=1

2
= kp (v (-, Sﬂwj)L?(Q) |wj|H1(Q) :

t

t

In particular: k:h//va(x, s) - Vw;(z)dx ds = ky, |wj|§{1(m /(vm(-, s)|w;)2@)ds. Let us
0 Q 0

set: v (t) == (v (-, t)|w;) 120, Vi = 1,...,m. The above nonlinear system of m integral

equations may be rewritten in the matrix form:

w0 (1) il [ohd (o)
oMy : = —ky :
vlm (t !
0 | Wi |31 () /Ugn)
(f( ’wl L2(Q
+
(f(, |wm L2(Q)
/wk x)wy(x)dS
3 [ols)ds ;
-0 /wk(x)wm(x)dS(x) (5.19)
. o0
J16T(@) — 6(3 v (5)ds welw) + To(a))un (2)dS (@)
o) k=10
+
[10((2)) ~ O3 [vi()ds wale) + To(a) () ()
09 k=1
wy (x)dS(x
aé i) (ATO’w1>L2(Q)
+(© (T5(1)) = © (T5(0)) z + ;
/ W (2)dS () (AT |wnm) 120

Now, to prove that this system of m nonlinear scalar integral equations in the m unknowns
t— ’uﬁ,{) (t),7=1,...,m, possesses one and only one solution, we proceed as in the proof
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of Cauchy’s theorem. Firstly, let us introduce the Banach space £ = C([0,¢;];R™)
endowed with the sup norm. Let us define the mapping 7' : E — E : (o1, ... v{™) s
T®, ... 0™ where T(vW), ... v™) denotes the transposed of the right-hand side of
equation (5.19). Now, we are going to prove that some power of the mapping 7" for the
composition law is a contraction. Inequality (3.6) page 13 of [50] about Planck function,
implies that © : R — R is a Lipschitz function. Thus there exists a positive constant C'
such that:

7@, o) () = TE, o) (@), < ci/ 05 (s) = 09 (s)|ds. (5.20)

[cle|T@, . of) &) = TED, .. 55 (0],

m

< OV [ 0 (5) = Ba(5) e s (5.21)

where v,,(s) = (vV, ..., 00™) (s) and 3,,(s) := (81, ...,50™)) (s). This inequality im-
plies that:
|T@S, ol =T @, 8| < Oty [ — Bl (5.22)

Let us see now what these inequalities imply for 7°% := T o T. By inequality (5.20),
Cauchy-Schwarz inequality in R™ and inequality (5.21), we obtain:

inequality which implies:

7200, o) — 20, oy < OVt
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Iterating, we obtain VI € N* that

[T @D, o) Do |, < ) \/_tf) |

m |Um—UmHE.

l
Now eCVmts = i% and as the general term of a convergent series tends to zero,
=1
(C\lﬁi:ntf)l tends to zero as [ — 400. Thus for [ sufficiently large T7° : E — F is a contrac-
tion and possesses thus one and only one fixed point (oY, ... v™) € E = C([0,t7]; R™).
As T(v ... vi™) is also a fixed point of T, it follows by unicity of the fixed point of
T° that T(vM, ... 00™) = (v . . ) Thus, (v,... v0™) is also a fixed point of
T. If T would possess another fixed point, it would be also a fixed point of 7° which
possesses one and only one fixed point. Thus, T" possesses one and only one fixed point.
Thus, we know now that the Cauchy problem for the system of m nonlinear differential
equations (5.17) possesses one and only one solution on the time interval [0,ts]. Now, we
have to pass to the limit as m — 4o00. In that purpose, we are going to prove that the
sequence (vy,),., is bounded in W(0,¢;) and for that some energy estimates. As v,,(t) is
for a fixed ¢ a linear combination of the functions wj, j=1,...,m, it follows from (5.17)

that:
cwmmmm%mmyg+mm¢w&>

= /8—f z, v (z, t)dr — h /vm x,t)%dS(z /@’ /vm(:v 7)d7 + To(2))vm (2, 1)?dS ()
5 0

"SI0 [ vl 05(0).

o0N

As ©'(+) > 0, it follows from the previous equality, the inequality: Ve > 0:

%?duqda)ﬁﬂm+fﬂwﬂwﬂ&% < (GO D)
+5(©ocu) (t)‘ + (2109 = he) vm (-, )Hi?(aﬂ) :

Putting the last term of the right-hand side of the previous inequality in the left-hand

side, and applying Lemma 2.5 p.35 of [71] (more usually called Poincaré’s inequality), we
obtain: 3C' > 0 such that:

Cﬁwdum<7m;my+cwM«¢mzm%s<%c¢w%c¢»mm>
+4[(©0Ts) ()]

of

of
Fns t)

(8t( , Vo >0,

L2(Q)

B)om ()22 < 0 lom (- )I720) + 5 5
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4C4, Cy > 0 such that:

2

cpm 2 2
3 1o (s ) oy + Ca om0y < Co| G0,

+2©oTsy ()]

Integrating both sides from 0 to ¢, we obtain Vt € [0, ] :

5 om0 20 +cl/ o, )@y s

t
<G [ g+ 2 €T ()] ds+ 252 lom(-, 0)} e
0
ty
af |I? 2
<[]0y + 2 / (©07s) (s)] ds+ g 1¢.0) + BuATh .
0

In particular, this shows that the sequence (v,,), -, is bounded in C([0,#]; L*(Q2)) and
also in L2(0,t;; H'(Q2)). To be able to deduce that the sequence (Um),,>; 1s bounded in
W(0,ts), we still have to prove that the sequence (v,),,~, is bounded in L2_(0, ty [HHQ)]).
Let w € H'(Q) be such that HwHHl(Q) < 1. Let us deC(_)mpose w orthogonally into a part

wy € span(wy, ..., w,) and another part wy belonging to the orthogonal of the finite di-
mensional vector subspace span(wi, ..., wy,) in H'(). This implies that ||| 1, < 1.
Now:

(O (2), w)Hl(Q)*,Hl(Q) = (Om()|w)r2(0)
= (0m(8)[@1) 12(0) + (0m (1) [W2) L2(02)-
400
Butw, = ) (w|w’7klm)H1(Q)W, this series being convergent in H'(Q) and thus
H(Q H (Q

k=m+1
a fortiori in L*(Q) as H'(Q) — L*(Q). This implies that for j € {1,...,m}:

+o0o
- Wy, (wj’wk)LQ(Q)
(w;|W2) r2(0) = (Wli——)mqoan . =0
o) = 2 Ol e O
As ¥y, (t) is a linear combination of wy, ..., wy, it follows that (0, (t)[W2)r2(q) = 0. Thus

(0 (), 0) gy i) = (Om(1)[@1)r2(0). By the first equation of (5.17), the continuity of
the trace operator H'(Q)) — L?*(0Q) and the boundedness of ©(-) ([50], p.14):

g (Om (E), W) 1y« 1 () = CpMg (Om ()| 1W01) £2(0) =
—kh/va (x,t) - Vi (z dx+/%{ (x,t)wq (z)dx — h /vm t)ws (x)dS(x)

Q
t

—/@ ([vm(e, T)dr + To(@) v (. )01 (2)dS () + O (Ts(0)) T () [ @1 (2)dS(x)

0 o0N

(B0 + ol Doy + |50

124



5.2. REGULARITY RESULTS FOR THE ABSOLUTE TEMPERATURE

with some constant independent of m. Replacing w by —w, we obtain:

L2(Q)

WmemmmmdiHm““

for every w € H'(Q) such that [|w| ;1) < 1. Thus:

)l H Dl + 0]

Integrating both sides from 0 to ¢y, we obtain:

/mmnmm N/Ff

Thus the sequence (9y,),,+, is bounded in L?(0, ¢¢; [H'(2)]*). In conclusion, the sequence
(Um) >, is bounded in I7V(O,tf) and in C([0,¢s]; L*(Q)). Thus, there exists a subse-
quence (Umf>i>1 of the sequence (vm)le which converges weakly to some element v
in L?(0,tp; HY(Q)), weakly star in L>®(0,t; L*(Q2)) and such that the sequence of their
derivatives (@ml’)i>1 converges weakly to © in L?(0,tp; H'(Q)*). Let & be an arbitrary

ﬁ+/wm,nmmﬁ+/w )P dt.
L2(Q)

function belonging to the space L2(]0,¢;[).

ty

/Cpmg(@mf(t)‘wj)LQ(Q)g(t)dt — /Cpmg <®(t)7wj>H1(Q)*7H1(Q) &(t)dt
0

0

as | — +o0 as the mapping
L0t HYQ)) R s ey (00, 05) sy oy €0
0
is a continuous linear form on L?(0,t;; H'(Q2)*).
! !
/ (Vo (£)| V) g2 (1) dt — / o (V0 (8) [ Vw;) g2y () dt
0 0

as the sequence (Umf)~ converges weakly to v in L?(0,¢s; H*()) and the mapping

>1

f
L2015 HYQ) = R ¥ s [kn(To(0)]| V) paap (1)t
0
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is a continuous linear form on L?(0,¢;; H'(2)). As the sequence (vm1~> .., converges weakly
to v in L*(0,tp; H'(2)), and the mapping -

L*(0,t5; HY(Q)) — L*(J0,t4[; L*(09)) : w — w(., t) o0

is linear and continuous, it follows that the sequence of the traces of the functions v,,. on
Y 1= 90x]0, ;] converges weakly to vz in L*(3) as [ — +oo. This implies that

—h. / / O (2, O)w; (2)dS (2)E(t)dt — —h, / / v(z, t)(w;(x)dS (z)€(t)dt

000 000

as | — +o00. Let us now prove that:

t

//@ /vml 2, 7)AT + To(2))vm (2, £)w; (2)dS ()& () dt —

0 0Q 0
t

- / / o/ / vz, 7)dT + To(x))v(w, t)w; (2)dS (@) (t)dt
S (5.23)

as [ — 400. We know that the sequence (vm[) 7, converges weakly to v in W(0,%s). By

the compacity lemma p. 57 of [41], Ve €]0, %[, the sequence (vm[> 5, Converges strongly
to v in L*(0,t;; H'=5(R2)) and thus the sequence of the traces on the lateral boundary
¥ = 00x]0,ts] of the vy, converges strongly to vx in LZ(O,tf;H%_s(c?Q)) and thus a
fortiori in L2(0,ts; L*(09)) = L*(X). To prove (5.23), we decompose the modulus of
the difference of both sides of (5.23) into two terms. By Proposition 4.7.5 p.226 and
Proposition 4.6.5 p.217 of [44], (Uml) possesses a subsequence that we still denote by

(Uml')i>1’ such that for almost every x € 99, v, (x,.) converges to v(z,.) in L*(]0,tg[).
- t t
In particular for almost every = € 012, /vm[(x, T)dT converges to /v(:z:, ,T)dr, Yt €]0,t4].

0 0
t

¢
A fortiori /vml.(x, 7)dT converges to /v(m, ,T)dr, for almost every (z,t) € 3. ©'(-) being
0 0

t
bounded, |©/( / O (@, 7)dT + To(x))| < [|0/()]| o - Thus, firstly:
0
t t
/@’ /vml z, 7)dr + To(z /U (x, 7)dT + To(x))|v(z, t)w;(x)E(t)dS (x)dt
by 0 0

[o(z, )] [w; ()] |€(@)] dS(x)dt

d

O/ [ v, 7)dr + To(x)) — @'(/U(x, r)dr + To(x))]

— 0,
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by the continuity of ©'(-) and Lebesgue Dominated Convergence Theorem. Secondly:

t

JO vy, )l + To)) 0y ) = v, 1))y ()€ (1)dS ()l

S [ fome(w.t) = vl D] lwy (@) 1¢(6)] dS )t

— 0,

for the sequence (vm[)bl converges strongly to v in L*(0,t; L*(]0,1[)). Thus (5.23) is
proved. We are now in a position to pass to the limit as [ — oo in the first equation of
(5.17) multiplied by ¢ — £(¢) and integrated from 0 to ¢y, obtaining Vj =1,...,m

ty

cpmg/( (2 O)|w0;) 2 (1) dt+l<:h//va z,t) - Vo, (2)E(t) da dt

_//gmm% (1) dar di = he vty (2)E(1) dS(z) di

[ vmlw, T)dr + To(w)vml, yw; (2)6(0)AS () dt + [O'(Ts(t)Ts(t) [w;(x)dS()e(t) dt,
b)) 0 0 o0
(5.24)

¢ being arbitrary in L*(]0,¢s[), we obtain the first equation of (5.16). As the sequence

(Uml“)i>1 converges weakly to v in L*(0,t;; H'(Q)), and their time derivatives (vm )~>1
weakly to 0 in L?(0,t;; [H'(Q)]*), the sequence (Umz<'7 O))Z>1 converges weakly to v(-,0)
in L?(Q). Passing to the limit in the second equation of (5.17), we obtain v(-,0) =
Cp}ﬂg (f(-,0)+k,ATy) i.e. the second equation of (5.16). We have thus proved the existence
of at least one weak solution to the initial boundary value problem (5.14). O

5.3 Lemma. Supposing that the initial condition Ty(-) for the initial boundary value
problem 3.42 i.e. of

cymy L (x, 1) = ky AT (z, 1) Z4WB’€(T( )+ Yo / IE(z, t,0)dp(v), (z,t) € Qx]0,t],

k=1 i
—khg—:g(:v,t) = h(T(x,t) — To) + O(T(x,t)) — O(Ts(t)), (x,t) € 002x]0,ts],
T(x,0) =To(x), z € Q,
(5.25)
in which © is defined by formula (5.12), belongs to H*(Q), and satisfies the compatibility
condition on 0S) with Ty:

dTy

kha

() + he(To(z) — To) + O(To(x)) = ©(T5(0)), V'z € 99, (5.26)

we have % = v, where v denotes a weak solution of the initial boundary value problem
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(5.14) which consequently is unique.

Proof : Let us consider a weak solution v of the initial boudary value problem (5.14)
which exists by the preceding lemma. Thus v € W(0,¢) := {v € L*(0,t;; HY(Q));0 €
L2(0,t;; HY(Q)*)} and satisfies V't €]0, ([, Yo € HY(Q) :

Cpmg% (v(- 1), 80>H1(Q)*,H1(Q) =
_kh/w 2.t) - Ve(x)de + /%{(m,t}gp(m)dm - hc/v(x,t)go(x)dS(m)
. " (5.27)
- / o/ / oz, 7)dT + To(2))o(e, Dp(x)dS (x) + O (Ts(t))Ts(t) / o(2)dS(x),
v(x,0) = (f(x 0) + knATy(z)), Yo € S ’
where f is defined by formula (5.10) i.e.
f(z,t) Z47ka (T(z,t)) + an/lrfﬁ(x, v)du(v), Yo € Q. (5.28)

t

Let us set T(-,t) := /v(-, 7)dr + To(+). It follows easily from the theory of the Bochner
0

integral, that T so defined belongs to W(0,t;) and that 4= (-, t) = v(-,t), V't €]0,¢;[. In

particular - € L2(0,t;; H*(€)). Integrating both sides of (5.27) from 0 to t, we obtain:

cpmg/cg(x t)p(x)dx — cpmg/v(x, 0)p(z)dr = —kh/(VT(:U, t) — VTy(z)) - V(z)dx

¥ / (f(w,) = f(@,0)plw)dz — he [ (F(z,t) = To(2))p(2)dS ()
o0
/ 6(Ty(w)))p(x)dS(x) + (O(Ts(t)) — O(T5(0))) [ (2)dS ().

Using the initial condition v(x,0) = ﬁ(f(:c,()) + kpyATo(z)), V'z € Q, for the initial
boundary value problem (5.14), we obtain:

cpmg/g( oz da:—k:h/ATo ()da::—k:h/(VT(:v,t)-Vgp(x)da:

+h, / VTo(2)).Ve(z)ds + / Fla, p(@)de — hy [ (T(x,t) — To(x))p(2)dS ()

- / ST (e))p)iS () + (O(TS(1) — O(T5(0) [e@)as@).
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Ty belonging to H?(2) and ¢ belonging to H'(Q), using Green’s formula (Lemma 1.5.3.7,
p. 59 of [31]), we obtain after simplification:

comy [ (@, p(a)de — ko / () p(@)dS (2) = ~kn [ VT (,1) - Vipla)da
+/f v (o) — h /(T( 1) — Ty())p()dS ()

- [©(T(e0) - Otri(a))s (£)dS(0) + (B(u(t) ~ (o)) [ la)dS()
o0

Now, using the compatibility condition on 9 (5.26) to further simplify, we obtain:

cpmg/‘g(x t)p(x)de = —kh/VT x,t) - V(zr)de
+/f:17t dx—h/ (x,t) Yo(x)dS(x)
—/@ (1)) dS( )+6(T5( ))/ (2)dS ().

o0
Considering the difference T — T
oty (D8 s sy =~ [ Vol = T, 0) - Vasp(w)da

Q
~he <T(" t)=T(,1), S0>H*1/2(F),H1/2(F) B <@<T<"t)) — 0T, 1), Q0>H*1/2(F),H1/"’(F) ’

Vo € H'(Q).
Considering ¢ = (T — T)(-,t) which belongs to H'(Q), V't €]0, [, we obtain:

d 77\ 2 !
- — <
t/(T T)*(z,t) de <0, V't €]0,1y],

as ©(+) is an increasing function. The absolutely continuous function

0,t] > R:t e /(T—T)2(x,t) dz

is thus decreasing, positive and being null for ¢t = 0, is null. Thus T(-,t) = T(-,t),
V't €]0,t¢[. Consequently 4 = v. O

5.1 Remark. Let us remark that if the initial condition is equal to the ambient tem-
perature i.e. To(x) = T,, Yx € Q, then the compatibility condition (5.26) is verified if
T5(0) =T,.

5.2 Proposition. Supposing that the initial condition Ty(-) of the initial boundary value
problem 3.42 i.e. of the initial boundary value problem (5.25) belongs to H*(Q) and sat-
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isfies the compatibility condition (5.26), then the weak solution T' of that initial boundary
value problem (5.25) satisfies the reqularity property on its time derivative that % €
L*(0,ts; HY(Q)).

ar
dt

initial boundary value problem (5.14), it follows immediately from v € W(0,ty) := {v €
L0ty HY(Q));0 € L2(0, 2y H'(2)")}, that

Proof : As by the preceding lemma %- = v, where v denotes a weak solution of the

dT
2 € L*(0,ts; H'(2)). (5.29)

O
5.3 Proposition. Under the same hypotheses on the initial condition Ty(-) for the initial
boundary value problem (5.25) than in our previous Proposition 5.2, supposing also that
Ts € H*()0,t¢]) and that
x> f(x,0) 4+ kn(ATo)(x)

— —Z47TI€]¢B§(T0)(Z‘) + kzmk/léio,Ts(O) (q;, U)d,u(v) + kh(ATo)(l‘) (530)

k=1

belongs to C(Q), the solution T of the initial boundary value problem (5.25) satisfies the
reqularity property that dT € C(Q), where Q denotes the cylinder Q := Qx]0, tel.

Proof : We know that % = v is a weak solution of the initial boundary value problem

cymg 2 (z,t) = kpAv(z, t)+ U(z,t), z€Q 0<t<ty,
%

—kn 32 (x,t) = hev(z,t) + @’(/”(% T)dr + To(x))v(z, t) — ©'(Ts(t))Ts(t),

J (5.31)
red, 0<t<ty,
v(z,0) = cpm (f(z,0) + kpyATy(z)), YV'2eQ, (I.C.at t =0).
Let us set a(z,t) = @/(/U($,T)d7 + Th(x)) and b(t) := —O'(Ts(t)). a € L>®(X) and

0
b € L>(]0,ts[). With these notations, the preceding initial boundary value problem can

be rewritten:

cpmy % (z,t) = kpAv(z, t)+ (x t), ref, 0<t<ty,
—kp 28 (x, t)—hv(a: t)+a(:z; t) (z,t) +b()Ts(t), €0, 0<t<ts,
v(x,0) = (f(:c 0) + kpATy(2)), Ve Q, (L.C. at t = 0).

(5.32)
To be able to apply Theorem 1.40 p.49 of [36] to the preceding initial boundary value

problem, we must firstly prove that 88{ € L"(Q), for some r > % +1 = 2.5. In view
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of formula (5.28) for f(-,-), we have to prove that %—:tp =0 € L"(Q) for some r >
2.5. By the regularity result at the bottom of p.78 in [43] with s = —3, the solution
v(+,-) of the initial boundary value problem (5.32) belongs to the space H1 1/2(Q). Now
HYW2(Q) = [H(Q), (@2 — [H'Q). LA(Q)j = HY(Q). As HYA(Q) = L'(Q)

for r < % > 2.5, v e L"(Q) for some r > 2.5. From

of M dBk o ol
i ;;ZMF% e (T(-,-))v+ kz:llikv/at('y L v)dp(v),

using v € L"(Q), and some results of Chapter 3, we deduce that %{ € L"(Q). Applying

now Theorem 1.40 p.49 of [36] to the initial boundary value problem (5.32), we deduce
that v = 2L € C(Q). O

5.2 Remark. 1°) As the initial condition Ty is supposed to belong to H*(Q), by the
Sobolev embedding theorem ([31], p.27): H*(Q) — C%V*(Q) and thus a fortiori Ty €

Ak41
C(9Q). Bi(Ty)(x) = n? / B(To(z), A) d\ where B(To(x), ) = #, Cy and Cy
Ak} A (e oz —1)

are constants and n, denotes the refractive index of the semi-transparent material, glass
in occurrence [50]. It is proved in [50] p.14 that:
201 < 201 TO (13)

B(Ty(x ,)\ = > )
( 0( ) ) /\5(6>\TC(;2(I) B 1) CQ 24

if To(x) is positive (B(To(x), N) = 0, if To(x) is negative). Thus by the Lebesgue continuity
theorem, Bg(To) is continuous on Q. Consequently, condition (5.30), is equivalent to the
continuity on Q of the function

T — Z“k/[To 74(0) (T, V)dp(v) + kp(AT) ().

k=1

X)IfTo(x) = T,, VY € Q, and Ts(0) = T, we have already remarked that the compatibility
condition (5.26) is verified. In that case I}, o o) (,v) = It 5, (x,v) = By(T,) and thus

/ik/ (z,v)dpu(v) = dnkp BE(T,) is a constant function thus trivially continuous on

Q. Consequently, in that case condition (5.30) is also verified.

5.3 Existence and Uniqueness Result

In the following, we will suppose that g € H'(]0,t/[; L?(2)?) and that the hypotheses on
T, and Ts done in Proposition 5.3 are verified. We introduce for every time t € [0,/],
the auxiliary problem: find o.(.,t) € Hr, (diviQ)?, uc(.,t) € LA(Q)?, pe(.,t) € [LA(Q)]5F

skew
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such that:

/[ (14(rut))g€( t) — Tt r(oe(., )] : 7 d:v—i—/dlv e dx+/pe c7 dr =0,

V1 € Hr,( d1V Q)

/dwae wdx—l—/ae §dx—i—/ — B VT(.,t)w dr =0,
v € L@ YE € (@S,

(5.33)

Let us set u(.,t) == "2((1+V and A(.,t) := % Problem (5.33) that has been just

defined is equivalent to: find

ue(.,t) € HE (2)* :={w e H(Q)*;w =0 on I'p}, (5.34)

such that Vv € Hf_(Q)*:

/(2@(., te(ue(., 1)) s e(v) + A(, t) div(ue(., 1)) div(v)) dzx
Q (5.35)
= [ (g, 1) = B VT(. 1) da,

oe(.,t) and pe(.,t) being then defined in terms of u.(.,t) by the formulas:

5 1)+ A1) div(ue (., 1) s,

L (Talot) — (Va) (o) (5:36)

Let us note that div(u.(.,t)) (resp. div(v)) is the same as tre(ue(.,t)) (resp. tre(v)).
The proof of this equivalence is somewhat similar to the proof of Theorem 3.2 p. 327
of [26]. It uses Green’s formula (5.5). By Corollary 3.4 of Chapter 3, T < T'(.,.) < T,
and as the viscosity 7(.) is a positive decreasing function of the temperature: n(T) <
n(T'(.,.)) <n(T). This implies that the positive coefficients A(.,.) and u(.,.) are bounded.
In particular, there exists a constant C' > 0 such that u(.,.) > C > 0.

5.4 Proposition. There exists one and only one u. € L*(0,t5; Hp (Q)?) verifying (5.35)
for almost every t €]0, ;]

Proof : We want to apply Lax-Milgram’s lemma in the space L*(0,ts; Hf (€2)?). Let
us define the bilinear form:
a(.,.) : L*(0,tg; Hp (Q2)%) x L*(0,tg; HE (2)°) = R

(u,v) '—>//(2#(-,-)fs(u(-,-)> e(v() + A ) div(u(, ) div(e(, ) de dt. (5:37)
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Using the fact that the coefficients A(.,.) and p(.,.) are bounded, it is easy to verify that
it is a continuous bilinear form. By Korn’s inequality (Corollary (11.2.22) p.285 of [5]),
there exists a constant C' > 0 such that:

e, )lz2@ypxe = C ||U('7t>HHI£D(Q)3 :
Thus
ty
2 2
aw,v) 2 [ IG5, @ dt = NollEaem, o
0

Thus the bilinear form a(.,.) is also coercive on the space L*(0,tz; Hf (€2)%). Thus by
“Lax-Milgram’s lemma” (Theorem (2.7.7) p.62 of [5]), there exists one and only one
ue. € L*(0,ty; HE (€2)%) such that Vo € L*(0,ty; Hp (©2)?):

alug, v) = //(g(m,t) — B VT(x,8)).0(x,t) dz dt.

Considering functions v € L*(0,ts; Hf (Q2)?) of the particular form v = w ® ¢, where
w € Hi (Q)* and ¢ € L*(0,ts), we obtain:

/ /(2u(1:,t)5(ue(x,t)) ce(w(x)) + AMx, t) div(ue(z, t)) div(w(z))) d:c] ¢(t) dt

Q

ty
I/M@@ﬁ—ﬁvﬂnmwﬂd4<®%
0
V¢ € L*(0,t5). Thus Yw € Hp (Q)?, we have for almost every ¢ €]0,t(:

/(Qp(x,t)s(ue(a:,t)) ce(w(z)) + AMa, t) div(ue(z, t)) div(w(x))) dx

- / (g(z,t) — B VT (z,1))aw(z) d.
Q

As H%D(Q)?’ is separable and the countable union of sets of measure 0 is still a set of

measure 0, our claim follows. O

We want now to prove more, that in fact u, € H'(0,t; H. (€2)%). Let us denote by

Lyt HE(Q)* = [HE ()] 20
Vi / 2u(z, De(2)(@) : () (z) + Ma, )(div 2)(2)(div o) (z) da. (5.38)

By Korn’s inequality and Lax-Milgram’s lemma, Vt € [0,¢f], the continuous linear opera-

tor Ly : Hf (€)% — [H%D(Q)3]* is an isomorphism for pu(.,t) := % is lower bounded
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> 0.

(T)
by 2?1+u)

5.4 Lemma. The mapping L : [0,t;] — L(H} (Q)*; [H%D(Q)‘gr) is derivable at Vt €
10,t¢[ and

Ly: HE(Q)* = [HE (9] ues
v / 2i(x, t)e(u)(z) : e(v)(z) + Az, t)(divu)(z)(divv)(z) dz. (5.39)

Moreover L is continuously derivable on the interval [0,1].

Proof : Being a function of one variable, the derivability amounts to prove that

lim # exists for every ¢ € [0,%f]. We are going to prove that in fact lim % = L,
h—0 . h—0
Vt € [0,tf], where L; is defined by formula (5.39). For h € R\{0}, such that t+h € [0, /],

one has that:

eabe iy ()% — [HY ()] rues

h
v /(2%5@)(@ ce(v)(x) + W(div w)(x)(divo)(z)) de.
But:
eI o) = [ tes) s = it

implying that:

‘N(wvt—F h) — /L(:L’,t)

) —umJﬁs e, s) — iz, )] d.

Thus Ve > 0, 36 > 0, VA €] — 8,8\ {0}

—/L(I',t) <e

‘M($,t + h) — ,u(:z:,t)
h

for 1(.,.) : Q = R: (x,t) W is uniformly continuous on @, T(.,.) and 7°(.,.)

being continuous on @ by Proposition 5.3. The same is also true for A(,.) by the same

. < efor h €]—6,8[\{0}.This

# - LtHz:(H%D(Q)*";{H%D(QP] )

arguments. Consequently: ‘

proves 5.39.
By the uniform continuity of the functions A and /i on @, it follows that the mapping
[0,t7] — L(H}, ()% [H%D(Q)ﬂ ) it Ly is also continuous. O

134



5.3. EXISTENCE AND UNIQUENESS RESULT

By Korn’s inequality and Lax-Milgram’s lemma in the space Hf_(€2)?, the operators
Ly € L(H} () {H%D(Q)i)’r) are invertible. For the mapping [0,t;] — £( [H%D(Q)‘gr s HE (Q)%)
t — L', we have:

5.5 Proposition. The mapping [0, ;] — E({H%D(Q)?’r S HE (Q)?) :t — L' is continu-

ously derivable on the interval [0,ts] and

d .
%L "= L 'oLioL; " (5.40)

Proof : This follows from ([20] (8.3.1) pp. 155-156). O
5.6 Proposition. V't €]0,t¢]:

e (. t) = —L;' o Lyo L (g(,, ) — B VT(,1))

) +L7Y(g(.,t) = B VT(,1)). (5.41)

Proof : This follows from formula u.(.,t) = L; ' (g(.,t) — 8 VT(.,t)) using the pre-
ceding proposition and from (][9], Appendix). O

5.7 Proposition. The mapping [0,t;] — Hp (Q)° - t — uc(.,t) is absolutely continuous.

Proof : The mapping [0,¢f] — E([H%D(Q)?’r s HE (Q)?) : t — L; ' being continuously
derivable on the interval [0,t/] is a fortiori absolutely continuous. As § := ¢ — 3 VT €
HY0,ty; {H%D (9)3} ), the mapping [0,¢¢] — [H%D(Q)ﬂ :t — g(.,t) is also absolutely
continuous (][9], Appendix). Thus Ve > 0, 30 > 0 such that for any finite family of non-
overlapping intervals (]a;, b;[)1<i<, contained in the interval [0, ¢ 7] such that Z ) <9,

=1
we have:

> |3 60 b0) = Ll 00)
< Z HLb_zl £( |:H1 (Q)S:|*;H11‘D(Q)3)
+Z |z -z}

< t;;glg]HLt e, o] o) 219600 =90 ]

1 3
i (9)

*

3, (7]

([H%D(Q)STSH% ()?) HQ(-,%)H[H% (9)3}*

+( sup [|g(.,¢ [Hl - } ZHL 1 L:l

te(0,ty]
Se.

o[t 2] @)

Thus by the formula u,(.,t) = L; ' (g(.,t) — 8 VT'(., 1)), Vt € [0,¢;], the mapping [0, ] —
Hp (Q)% ¢+ ue(.,t) is also absolutely continuous. O
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5.8 Proposition. Supposing g € H'(0,t;; L*(Q)?) (it suffices in fact to suppose that g €
HY0,ty; {H%D (9)3} ), that the initial condition Ty € H?(Y) and satisfies the compatibility
condition (5.26) on 02 with Ts, then u. € H'(0,t5; Hp (Q)%).

Proof : By formula (5.39), the mapping [0, ;] — L(H} (Q)%; [H%D(Q)ﬂ*) St Ly s
continuous on [0, t¢] and thus bounded. The mapping [0, t¢] — L£( {H%D 3} s HE (Q)7)
t + L; ! is continuous on [0,;] and thus also bounded. Thus by formula (5.41):

due (| t)‘

1
HFD(

Slatt) =8 VIOl
+ac.

g~ (5.42)

*

H [Hl (9)3] ’

2
d o "t)‘Hl (9)3
Proposition 5.7, this implies that u, € Hl(O tf,HFD(Q)g) by ([9], Appendix) and the
reflexivity of the Banach space Hf_(€2)°. O

Now, that the auxilary problem has been solved, let us come back to our problem: we
have to find o € H*(0,t; Hr, (div;Q)?) time dependent tensorfield, v € L*(0,t; L*(2)?)
and p € L*(0,ty; [LQ(Q)];)’:;;U) verifying equations (5.6), (5.8) and the initial condition
(5.4) i.e. such that

dt < +o00. Using moreover

/[%"_m r(o)1s] - Td:c+/1+” — 2r(6)L5) : 7 dx

—i—/dlv vdm—i—/p de—O V7 € Hr, (div;Q)3,

3x3

/div(a).w dr + /(g — B VT).w dx + /0 1 dr =0, Yw e L*(Q)3,VE € [L2(Q)] 0,
) )

o(,,0)=¢.

(5.43)
In particular o(.,t), must verify the equilibrium equation: —div(o(.,t)) = g(.,t) —
BYVT(.,t),Vt €[0,ts]. g € H'(0,ts; L*(Q)?) and VT € H'(0,ts; L*(Q)?) also by Proposi-
tion 5.2. Thus, in particular g— 3 VT € C([0,t]; L*(2)*). We suppose that the initial da-
tum ¢ for the stressfield o belongs to Hr,, (div; )3 and verifies — div ¢ = g(.,0)—8VT(.,0).
Let us introduce the new unknown oy(.,t) := o(.,t) — o¢(.,t), Vt € [0,tf]. oo(-,t) must
verify:
divog(.,t) =divo(.,t) —divoe(.,t) =0, Vt € [0, /], (5.44)
and:
UO(-;t>-V\FN = O'(.,t).V|FN - Ue(.,t).V|pN =0, Vt € [O, tf]. (545)
3x3

Similarly to [59], let us introduce the closed subspace of [L?(Q)]

={r e [LX(®)

}BXS ;7 =7", divr =0 and 7.y, = 0}. (5.46)
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In this definition the operator divergence div must be understood in the weak sense (i.e.
in the sense of distributions). From equations (5.44) and (5.45), it is clear that og(.,t)
must belong to Hy. Let us consider the linear continuous operator:

Avs (L@ = (2@

5.47
o — o — Lir(o) I, (5:47)

and let us denote by Py, the orthogonal projection from [L2(Q)]*® onto Hy. By equation
(5.33)(;), we have:

Lty - cTdr = T
[yt = s tr(o )] 7 o =0, ¥ € Hy,

Using the notation (5.1), this latest equation can be rewritten:
(Ao(.,t)oe(.,t), 7) =0, YT € Hy.
By equation (5.6), we must have:
(Ao(.,t)o (1), Ty + (Ao (., 1), 7) =0, VT € H,. (5.48)

From these latest two equations and o(.,t) = o.(.,t) + oo(.,t), this amounts to
impose o¢(.,t) to also verify:

(Ao, 1)00(8), ) + (A0, 8), 7Y = — (A16.(.,1),7), V7 € H. (5.49)

From u, € Hl(O ty; HE (%) follows that o, € H'(0,t5;[L*(Q Q)]**%) and thus ¢. €
L2(0,t5; [L2(2)]”?). This implies also that o, € C([0,#s]; [L2(2)]>*°) and thus 0,(0) has
sense and belongs to [L2(Q)]**®. We have ¢ = ¢(.,0) € Hp,(div;Q)? and div( =
—(g(.,0) — BVT(.,0)) by hypothesis, so that oo(.,0) = ¢ — 0.(.,0) € Hp,(div;Q)3
and divog(.,0) = 0 by the equilibrium equation (5.33);) for o.. o¢(.,0) belonging to
Hr,, (div; Q)?, we have also o¢(.,0).v = 0, on I'y. Thus o¢(.,0) € Hy. Using the or-
thogonal projection operator Py, on Hy, equation (5.49) and its initial condition may be
rewritten:

{ (PH0A1>d'O(.,t) + (PHOAO('7t)) UO(': t) - = (PH0A1> de(" t)’ \V//t 6]07tf[ ’ (550)

oo(.,0) = ¢ —0.(.,0).

We have to prove the existence of a unique oq € H'(0,t;; Hp) satisfying (5.50). Firstly,

we prove:
5.9 Proposition. (Py,A1)|n, is an isomorphism from Hy onto Hy.

Proof : We are going to prove that (Pg,A1)|n, : Ho — Ho verifies the hypotheses of
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Lax-Milgram’s lemma. Firstly Vo, 7 € [LQ(Q)]gxg:

14+v v
(Asolr) | = | (2 = St () ol e
1+v v
< [CF oAz | + 5 1 @)z Ner()zo
1+v v
< E HUH[LQ(Q)]3X3 HTH[L2(Q)]3X3 + 35 |’UH[L2(Q)]3X3 HTH[P(Q)]SXS
1+ 4v

I ||U||[L2(Q)}3X3 ||T||[L2(Q)]3X3 ’
(5.51)

which show us that the mapping (o, 7) — (A10[7)(;2(q#=s is a bilinear continuous form

on [L2(2)]>*®. Let us now prove that this continuous bilinear form is also coercive on

RO

1+v v
(A10]0) o< = ( 7 0~ EtT(O’)_[3|O')[L2(Q)]3><3
1 + 14 2 14 2
Z 5 ol {2y — 5 [t (o) 720
1+v 2 v 2
> —— oz @pes = 3% ol (5:52)

1—-2v 2
-5 HUH[Lz(Q)]M

2
> Clo|lipz@yp=s »

where C' is a strictly positive constant for the Poisson coefficient v satisfies 0 < v < %
For (Pp,A1)|m,, (5.51) implies that Vo, 7 € Hy :

‘(PHOA10-|T)[L2(Q)]3><3 = ‘(AICTlPHOT)[LQ(Q)]3X3

1+4v

< i ||U||[L2(Q)]3X3 ”T||[L2(Q)]3X3’

which show us that the mapping (0, 7) = ((ProA1)|m,0|7) 12(q2<> 18 a bilinear continuous
form on Hy. On the other hand, inequality (5.52) implies that Vo € Hj :

2
(PHOA10-|0-)[L2(Q)]3X3 — (A10-|0-)[L2(Q)}3X3 Z C HO-H[LZ(Q)}SX?’ y

which show us that the bilinear continuous form (o, 7) — ((PryA1)|1,0(T)(12(q)2xe 1s also
coercive on Hy. Thus by Lax-Milgram’s lemma, (Py,A1)|n, is an isomorphism from H
onto Hy. O

The preceding proposition allows us to rewrite our Cauchy problem (5.50) on Hj in
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the normalized form:

G0(-t) + (P A1) 1)~ (Pt Ao, 1)) 00(. t)
= — (P, A1) |11,) ™ (P Av) (-, t), V' €]0, 1] (5.53)
oo(.,0) = — o.(.,0).

Let usset A(t) := — (Puy A1)l ) (Prg Ao(., 1)) and b(t) := — ((Puy A1) m,) " (Pry A1) e (., 1).
This allows us to rewrite our Cauchy problem (5.52) in the form:

{ doo (1) = A(t)oo(t) + b(t), V't €]0, 4], (5.54)

As T € C(Q) and is thus uniformly continuous, it follows from fromula (5.1), that the
mapping [0,%] — LOLAQ])?) : t — Ag(.,t) is continuous, and thus that the mapping
[0,t7] = L(Ho) : t — A(t) is also continuous. From u. € H'(0,t; H (Q2)?) follows that
g. € L*(0,ty; [L2(2)]**%) implying that b € L*(0,ty; Hy). Following ([10], p.128), one
introduces the homogeneous differential equation

dR

“H(E) = A(t) o R(1), (5.55)

where the unknown function ¢ — R(t) takes its values in £(Hy). Denoting by t — R(t, s)
the C*-solution on the interval [0,¢s] of that differential equation which takes the value
Iy, for t = s € [0,ty], we have that R(t,s) € Isom(Hy; Hy), R(t,s) = R(t,s") o R(, s),
Vt,s,s" € [0,tf]. In terms of that family of operators (R(t, S))t,se[[),tf]’
Cauchy problem for the inhomogeneous differential equation (5.54) can be written ([10],
p.132):

the solution of the

oo(t) = R(t,0).(C — 0.(0)) + / R(t,7).b(r) dr, Wt € [0,1,]. (5.56)

It is in fact easily verified that o defined by formula (5.56) belongs to C([0,ts]; Hy), that
its time-derivative verifies equation (5.54);, V't €]0,¢¢[, and belongs to L(0,ts; Hy) due
to that equation and b € L*(0,tf; Hy). Thus o9 € H'(0,t; Hy). If we set o := oo + o,
then by Proposition 5.8, o € H'(0,ts; [L2(Q)]**"). Moreover, ¢ is a symmetric tensorfield
ory = 0, and satisfies —dive = 0 — dive, = g — 8 VI. Thus o verifies equation
(5.8)=(5.43)(is). By equation (5.48), o verifies also:

(Ao(., t)a(.,t), 7) + (Ao (., 1), 7) =0, VT € H,,

i.e.

14+v v l+v. v
/[U(T) o — U(T)tr(a)fg] : 7 dx +![ Z o— Etr(a)lg] 7 dr =0, VT € Hy. (5.57)
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Now to determine the velocity v = 4, we must use equation (5.6)=(5.43)(;). For almost
every t € [0,ts], the mapping

Hr,(div;Q)* = R

14 14

71 + s — T axr
SN /[n(T@t))a(.,t) _ n(T(.’t))tr(a(.,t))]g] rd

Q

1

+ [0t = 2ar(e( )] 7 da,
Q

is a continuous linear form on Hr, (div; )3, whose restriction to the closed subspace H

is null. Let us set X := Hr, (div; Q2)? and let us denote by

VO.={ge€ X*;{g,7) =0, V7 € Hy}. (5.59)

The continuous linear form (5.58) on X belongs to V°. Let us denote by M := [L2(€2)]° x
[L2(Q)]2% . Let us denote by B : X := Hp, (div;Q)® — M*, the lincar continuous

skew*

operator which to each 7 € X associates the continuous linear form on M defined by:

(BT, (v,1)) ppe g = /diVT.U dx + /7’ :n de. (5.60)
Q Q
The adjoint operator B* : M — X* is the continuous linear operator which to each
(v,n) € M := [L*Q)] x [L%Q)]i:i associates the continuous linear form on X :
X—>R:Tb—>/div7'.vdx+/7':77dx. (5.61)
Q 0

5.10 Proposition. Let us consider the bilinear continuous formb : X x M = Hr (div; Q)?x
(IL2()]* x [L2()]2 ) = R defined by:

skew
b(r, (v,n)) = /divr.v dx + /T i1 dx. (5.62)
Q2 Q
Then b(-,-) satisfies the uniform inf-sup condition: 36 > 0 such that Yv € [LQ(Q)]3 and
i € (L],
b(r, (v, 1)) 1
sup > (]l s+ [ 3x3 ). (5.63)
TeX ||THX:HFN(div;Q)3 ﬁ [L2()] (L2 (D] ke

Proof : 1°) Let us fix * and A* two strictly positive real numbers. Let £ € Hp (Q)?
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be the unique solution of the problem:

div(2u*e(§) + A*div(§)d) = v in Q,
E=0on Ip,
(2u*e(&) + A\ div(§)d) - v =0 on I'y.

L@

By Korn’s inequality, ¢ satisfies: ||§||{H }3 S ollzze Setting 71 = 2p7e(€) +

A*div(€)d, we have b(r, (v,n)) = ||v||[2L2(Q)]3 because 7 is skew-symmetric and 77 is sym-
metric. Moreover HUH[LQ(Q)]3 S ||Tl||X:HpN(div;Q)3 S HU||[L2(Q)]3-
2°) Let (m)r=1 € [D(Q)]2X3 be a sequence in [D(Q)]>** converging to 5 in [L2(Q)]2

skew skew skew*
Let ¢ € Hi (2)° be the unique solution of the problem:
div(2u*e(C) + A" div((k)d) = —div(ng) in £,
¢, =0o0nTI'p,
(2u*e(Cx) + A" div(Cx)d) - v = 0 on ['y.
The variational formulation of this problem is:
/(Z,u*s((k) ce(v) + N div(¢g) div(v)) do = /77k : Vo dz, Yo € Hyp (Q)°.
Q Q
From this variational equation follows that ||(g|| [Hl (Q)r S el (2 (gyexs and also
I'p
¢k — Gl [H%D(Q)]S S e — 7il||[L2(Q)]3 : (5.64)

Setting T = 2u*e((x) + A div((r)d + ng, we have div(ryy) = 0, 72, = 0 on I'p and
(2p*e(mox) + A div(me,)d) - v = 0 on I'y. Inequality (5.64) implies that the sequence
(To k1 is a Cauchy sequence in [L2(Q)]”® and as div(mo,) = 0, Vk > 1, it is also a
Cauchy sequence in [H(div; Q)]°>. Thus this sequence converges in [H(div; Q)]°. Let us
denote by 7, its limit in [H(div; Q)]*. 7, satisfies:

diV(Tg) = 07
To — TZT =n- 77T7

To-v=0o0n I'y.

Moreover |72 p2qyxs S [0llp2qe<s if m # 0; if 7 = 0, then it suffices to take 7, = 0.
3°) Let us now set: 7 =713 + To.

b(r, (v, 1)) = b(71, (v,1)) + (72, (v,7))

2 2
= [[ollz2@p + Inllp2@pp=e »
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and
||T||X=HFN(diV;Q)3 < ||7—1||X:HFN(diV;Q)3 + ||7—2||X:HFN(diV;Q)3
S ollire@ye + Il pegayexs -
These two latest inequalities imply the result. [l

5.3 Remark. The proof given in the previous proposition is an adaptation to the 3-d case
of the proof given for the 2-d case in ([8], pp. 9-11).

From Lemma 4.1 p. 54 of [29], follows from the previous proposition that:

5.11 Proposition. The operator B* : M — X* is an isomorphism from M onto V° and
V(v,n) € M :

1
(v, 77)||[L2(Q)]d [L2(2)]373 < B 1B*(v,n)] X*=(Hr , (div;Q)3)* ° (5.65)

Applying the previous proposition to the linear continuous form (5.58), we obtain that
V't €)0, 7], 3(v(t), p(t)) € M := L2(Q)? x [L2(2)]°7> such that

skew
< B*(u(t),p {/ s () = eyt (o )] - 7 de
s / [H6( 1) — $0r(6 )] 7 de), ¥ € By (@i 0,
)

ie.
/leTU dx—i—/T p(t

~{ / [mm))ac,w—mtr(( B)I] : 7 da (5.66)

[P0 (ot D)7 ) € B il

thus verifying equation (5.43)(;) =(5.6). Raising to the square boths sides of inequality
(5.65) for (v,n) = (v(t),p(t)), t being a fixed real number between 0 and t;, and then
integrating both sides with respect to ¢ from 0 to ¢, we obtain that v(.) € L*(0,¢s; L*(Q)?),
p(.) € L2(0,t; [L3(Q)]30,) and that

HUHL2(O,tf;L2 )y T HPHL2 (0,45 [L2 ()23 ) S HUHHI(Ot (L2123 (5.67)
by (5.66). We have thus obtained the following theorem:

5.1 Theorem. Let us suppose that g € H*(0,ts; L*(Q)?), that the hypotheses on Ty and
Ts done in Proposition 5.3 are verified and that the initial condition ( for o wverifies
¢ € Hr,(div;Q)?, ¢ = (" and div( = —(g(.,0) — BVT(.,0)). Then, there exists a unique
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triple

3x3

(0,0, p) € H'(0,t5; Hr, (div; 2)%) x L*(0,t5; L(Q)°) x L*(0, 15 [L*(Q)] )

skew

such that o(.,0) = ¢ and such that V't €]0,t¢[:

[liot0) - WTWN()my7m+/%%@a—ﬁmwﬁmy7m
Q
+/d1v dx—l—/p de—O V7 € Hr, (div;Q)3,

/le wdx+/ BVT wdx+/ & dr =0, Yw € L*(Q)3,

Ve € [L?(Q)Jizei-

(5.68)
Moreover from inequalities (5.42) and (5.67), and equations (5.56) and (5.53), we have:

10l 2022009 + ||P||L2<ovtf;[L2<Q>}§,:jw> ol g o a@p)

S llg = BV ANl 2y -

(5.69)
w0, 2] )

5.1 Corollary. Tuking the first derivatives with respect to x1, xo, x3, in the sense of
distributions, we have also V't €]0,ty[:

Consequently, we have also:

Rl [QTEREER (5.71)

<
HUHH (0,43 HL(Q lg =BV ”Hl(o,tf;[H%D(Q)3:| )

Also V't €]0,ts: v(.,t)|r, =0, where I'p :=T\I'y.

Proof : Considering in equation (5.68)(;, arbitrary test tensor fields 7 € D(div; 2)?,
we have V't €]0,t4[:

< Vo, 1), 7 >= /lw — e tr(o (L)) 7 da
+/H§ﬁw)—%w(()ﬂﬂ7dx+/p 7 du.
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Thus, we have for Vu(.,t) considered in the sense of distributions:

Vol 1) = [0 (1) — srgytr(o (. 1) 1]

F[HE2G () — Ltr(6(., 1) 5] + p(., 1) (5.72)

[n(;J(th)) o( 1) = sataytrlo(, 1) 1s] + [££26(.,t) — £tr(o(., 1)) ]3] being a symmetric ten-
sor belonging to [L2(2)]>and p(.,t) a skew symmetric one, we obtain that Vo(.,t) €
(L2,

LV0(, 1) + Vo, 1)) = [0, 1) — mgogytr(o (. 1) 1]

and

p(.,t) = ;(Vv(.,t) — Vo, t)h). (5.73)

This proves equations (5.70). From equality (5.72), and inequality (5.69), which implies:

N (G PR

1ol i1 0.0 g2y S Nlg = VT, ;[H%Dm)ﬂ )

and

B <3,
e @] ) 1€l 22 (@ypes

1Pl 2012222y S llg = BVT,
follows inequality (5.71). To derive the last property that V't €]0,t¢[: v(.,t)|r, = 0, let
us consider in equation (5.68);, arbitrary symmetric test tensor fields 7 € Hr, (div; Q)?.
We know from equation (5.73), that p(.,t) is skewsymmetric. Using Green’s formula
in H(div; Q) ([28], p.24) and equation (5.72), we obtain: /v(x,t)(r.u)(x) dS(z) =
1)
V1 € Hr, (div;Q)3. This implies that /v(x,t)(’(a:) dS(z) = 0, V¢ € L*(9Q)? which is 0

50
on I'y, and thus that v(.,t)|r, = 0. O
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6.1 Introduction

In this chapter, we study the control of the deformation of €2, resulting from the radiative
heating of the semi-transparent body 2 by the black-source S.
¢

We define Vt €]0,t¢[: u(t) = /v(s) ds. By Corollary 5.1 in the previous Chapter,

0
i € C([0,ts]; H(Q)?), and by more specifically inequality (5.71), we have:

HEHC([O,tf};HI(Q)S) Sllg— 5VT”H1(OM[H%D(Q)3}*) + HCH[LQ(Q)]3X3 . (6.1)

By Ascoli’s theorem ([20], p.143), the mapping which sends v — @ from L*(0,¢; H*(2)?)
into the space C([0,¢]; L*(2)?) is compact. Thus if we have a sequence (v,),~, which
converges weakly in L2(0,¢,; H'(2)3), the corresponding sequence (i,), -, will converge
strongly in C([0,¢]; L*(Q)?) and a fortiori in L*(0,¢s; L*(Q2)?). Now, we define the new
set of admissible controls:

Uaa :={Ts € H*(0,1;]); T < Ts(t) < T, Vt €]0,t;], Ts(0) = T,.} (6.2)
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and the cost functional

T [L2Q)]? x H2(0,4;]) — R : (@, Ts) %/ @, t) — gz, b)) doe © dt
(6.3)

N 2
5o | — T
T2 |4s — éi’

H2(]0,ts[) 7

where w@4(.,.) € [L*(Q)]® denotes the given desired field of displacements and T¢ €
H?%(]0,¢¢]) a given evolution of the absolute temperature of the black source S to which
Ts should not be “too far”, the meaning of this “too far” being modulated by the strictly
positive coefficient 4, in the definition of the cost functional J, coefficient which is allowed
to be chosen very small. As in Chapter 3, T and T denote two strictly positive real
numbers such that T < T, T < T, <T and T < To(x) < T,Y'z € Q. Let us observe that
Uaa is a closed convex subset of H?(]0,¢[) and thus weakly closed ([71], p.47).

6.2 Existence of an Optimal Control

In this section, we want to prove the existence of an optimal control, i.e . There exists
Ts € Uyq such that J(Ts) = inf J(T).
TSEUad

6.1 Proposition. Let T be the weak solution of the heat conduction equation 3.42 i.e. of
the parabolic equation (5.9) with the nonlinear Robin boundary condition (5.11) and the
initial condition T(.,0) = Ty. Supposing that the initial condition Ty € C(Q)NH(Q) and
that Ts € U,q, we have that T € H*'(Q) and moreover that

1Tl 20y < C@& T, | Toll 1 ) (6.4)

where C(T, T, 1T0]| g1.(q)) denotes a constant depending only on T, T and 1ol gy In

Proof : This follows by a meticulous inspection of the proof of Proposition 5.1. [

particular:

C(L, T, | Toll 1 ey)- (6.5)

LQ(Q)

6.1 Condition. To simplify our statements, we henceforth suppose that the initial
condition Ty =1T,.

6.2 Proposition. Let T be the weak solution of the heat conduction equation 3.42 i.e. of
the parabolic equatz’on (5 9) with the nonlinear Robin boundary condition (5.11) and the
initial condition T(.,0) = Ty = T,. We have that T € H*'(Q) and that

ovT
|| <O T+ 1Tl ingonsy (6.6

L2(Q)?
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Also: SoT
IVT|| 12y + | T < O T, T0) + 1 Tsll o, - (6.7)
L2(Q)?
A fortiori
9 g i, ]y < O T T sl (6)

Proof : It follows immediately by the previous proposition that 7" € H*'(Q). By
Lemma 5.3, we know that C(% = v where v is the weak solution of the initial boundary

value problem

cpmgat(x t) = kpAv(z, t)+af(x t), ze€Q 0<t<ty,
t

—kyp 22 (z,t) = hov(z,t) + O'( /U z,7)dr + Ty(x))v(z, t) — O (Ts(t)Ts(t),

/ (6.9)

red), 0 <t <ty,
(f(z,0) + kyATy(2)), Ve e, (I.C. at t = 0).

v(x,0) =

cpMmyg

Let us remark that with our initial condition Tg(.) = T, and Ts(0) = T, that

0(,0) = 1 (F(.,0) + kpATy) = v(.,0) = - £(.,0)

cpmg cpmyg

M
= cpmq 247T/€k3 T.) + an/[§07TS(O)(x,v)du(v)]
k=1 i

M
Z47kak T.) + > _AnkpBE(T,)] = 0, Vz € Q.

o Cpmg
k=1

Multiplying equation (6.9)) by v, then integrating both sides on §2x]0, ;[ and using the
boundary condition (6.9);;, we obtain:

ty ty
s [ [0, oo, O)deds + o [ [ Vol o) dodr
0Q 0Q
ty ty t
- //?f z,t)o(z, t)drdt — //@/ /U(%T)dT+To(x))v(x,t)2d5(x)dt
0 Q 0 90 0

“he / / v(z, £)2dS (x)dt + /f / (i, £)20! (Ts(1))Ts(t)dS () dt

0 9 0 0Q

As ©'(.) > 0, the following inequality follows: Ve > 0, ¥V§ > 0:

cpm 2
-5 HU(-atf)HLz + kp, ||VUHL2 0.t7:L2(Q)3) T he ||U||L2 (0,t5; L2(8Q)) <3 ||U||L2(Q)
1o
T2 HB% L2( ‘TS

+3 ||U||L2(o t:0200) T 26 - 09 ||@/||OOR

L2(os])
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Using Poincaré’s inequality,‘fj—f = v, Lemma 5.1 and inequality (6.5) it follows from the

from which inequality (6.6)

previous inequality that: H% L0 E) S sl oy, s

follows. Inequality (6.7) follows from inequality (6.6) and inequality (6.4). O

6.3 Proposition. The mapping from U,y = {Ts € H?*(|0,¢;]);T < Ts(t) < T, Vt €
10, 4], Ts(0) = T,} into F := H' (0, ty; Hr,, (div; Q)3)x L2(0, ¢ s; H'(Q)3)x L2(0, t 5 [L2(Q)]5 )
which sends Ts onto (o,v,p) € F, the unique triple such that o(.,0) = ¢ and such that
V't €]0,t¢[ the variational system (5.68) is satisfied, is continuous from U,q endowed with
the weak topology into H'(0,ts; Hp (div; 2)?) x L2(0,t5; L2(Q)?) x L2(0,t; [L2 ()20

endowed with the weak topology.

Proof : Let us consider a sequence (Ts,)neny in Uyg converging weakly to Tg in
H?%(]0,¢¢]). This implies that (T, )nen converges strongly to T in C([0,¢f]) and thus
Ts still belongs to U,y Also the weak convergence of the sequence (T, )nen implies
that it is a bounded sequence in H?(]0,t¢[). Let T, (resp. T) be the weak solution of
the Heat conduction equation 3.42 i.e. of the parabolic equation (5.9) with datum Tg,,
(resp. Ts) in the nonlinear Robin boundary condition (5.11) and the initial condition
T.(,0) =Ty = T,, Vn € N (resp. T(.,0) = Ty = T,). By the proof of Proposition
4.2 in Chapter 4, the sequence (T},),en converges strongly to 7' in L?*(Q). By Corollary
3.4 in Chapter 3, we have also that T < T,,(.,.) < T. Let us denote by (0, vn, pn) €
HY(0,t; Hrp, (div; Q)3) x L2(0, 155 L2(Q)3) x L2(0,t5; [L2(Q)]5F ) the unique triple such
that o,(.,0) = ¢ and such that V't €]0,t;] the variational system (5.68) is satisfied. By
Corollary 5.1, we know that v, belongs in fact to L*(0,t;; H'(2)?). By the estimates
(5.69), (5.71):

HUnHL2(o,tf;H1(Q)3) + ||PnHL2(o,tf;[L2(Q)]§,§§w) + Han||H1(O,tf;[L2(Q)]3X3)
Sl — 5VTnHH1(O ot 1€ 2022

SO, T,T,) + I Tsnll 7.0, + HQHHI(O

stk @]

« + «
ﬂff%[H%D(Q)?'} ) Iellze s

< (C'st.

This proves that the sequence ((0,,, Un, pn))nen is bounded in H'(0,¢y; Hr, (div; 2)3) x
L*(0,tp; HY(Q)?) x L*(0,ty; [LQ(Q)]Z:@%U) by remarking also that —div(c,) = g — VT,
and using inequality (6.7). By inequality (6.4) and (6.7), the sequence (7},),en is bounded
in H(0,t;; H'(Q)?). Thus (T},)nen possesses a subsequence (T}, )reny which converges also
weakly to T in H'(0,t7; H'(Q)?). The sequence (0, Un, pn))nen being bounded possesses
a subsequence that after some renaming we may call also ((0y, , Un,, Pn,))ken, Which con-
verges weakly to some element (o,v,p) € H(0,t; Hr, (div;Q)?) x L*(0,t;; H(Q)?) x
L2(0, 155 [L2(0)]2°2 ). Let us prove that (o, v, p) is the unique triple in H'(0, ¢; Hy,, (div; 2)3)x

L2(0, 55 HY(Q)?) x L2(0, t; [L2(Q)] 5 ) such that (., 0) = ¢, and such that V't €]0, ¢[ the

skew

variational system (5.68) is satisfied. The triple (0, , Un,, pn,,) € H'(0,t; Hr (div; Q)%) x
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L2(0, 55 HY(Q)?) x L2(0,t5; [L2(Q))2) satisfies V't €]0,4]:

/[Wank(x,t)) — mtr(ank(x,t))lg] c7(x) dx

)

1840 1) o o015 7(2)

+/(divr)(x).vnk(:pt da:+/pnk (,8) : 7(x) dz = 0, ¥r € Hp, (div; Q)%, 6.10)

/le On, (2, 1)) dw+/ — B8 VT, (.. 1) w(x) de

+/ank(x,t) . §(x) dr = 0, Yw € L2(Q)?,
Q

Ve e (LX)

skew *

This is equivalent to:

//Ll%k Ltr(6, (2. 8) ] : 7(x) i o(t) dt
0Q

//leT x). U, (2, 1) dr ¢(t) dt+//pnk:£t 7(z) dx (t) dt =0,

V7 € Hr,(div; Q) Vso € L2(]0, t4]),

//le o, (x, 1)) w(x) de p(t dt—i—// (x,t) — B VT, (x,t).w(z) dr ¢(t) dt

+//ankxt x) dr ¢(t) dt =0, Yw € L*(Q)3,

VE € (LX), - Vo € L2(10,1]).

skew ?

(6.11)
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Let us show that we can pass to the limit in these two equations. Firstly:

ty
TGO (@) 1 7(2) @(t) — sl o, t) - T(x) (t)| dr dt
0 "
S [ [1onat) 7@) w(t) = olw, ) 7(2) o0 oy do dt
0 Q
ty
1
+ / / oa.1) = 7(2) @(0)] |or- gy — iy | e dt
0 Q
ty
<t | [ onent) - 7(@) o) = o, 0)  7(w) olo)] o de
0 Q
ty
[ [t 0) 7)o |ty — sy | do e
0 Q

The first term in the right-hand side of the last inequality tends to 0 as a fortiori (o, ),cy
converges weakly to o in L?(Q). For the second term, we may use Lebesgue domi-
nated convergence theorem as the function (z,t) — o(x,t) : 7(z) ¢(¢) is in L'(Q) and

L L < —Z_ 50 that:

(T (z)) — 0(T(x,t)) n(T)

1 2
POl = e | € ot 7)),

where the right-hand side in this inequality is an integrable function on (). Thus

/ [lot.t): m(@) ()

1 + v 14+v
//’ T (2.0) O, (x,t) 2 T(x) p(t) — ma(w,t) 7(z) o(t)| dx dt

|o(,1) :

1 . 1
N(Tny, (z,t) (T (x,t))

dz dt tends to 0 as k — +00. In conclusion,

tends to 0 as k — +o00. Secondly:
/ / B2 6, (1, 8) = tr(G (2, 0) 5] £ 7() da (1) dt
= / [0t = §tr(o(e, )] 7(2) do () d,
0 Q

as k — +00, because (0y, ),y converges to ¢ weakly in L*(0,ts; Hr, (div; 2)*) and thus a

fortiori in L2(0,t;; L*(Q2)?), and 7®¢ € [L*(Q)]**®. Thirdly //(div T)(x). vy, (2, ) dz p(t) dt
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tr
tends to //(div 7)(z).v(z,t) dz ¢(t) dt because v, converges weakly to v in L*(0,ts; H'(Q2)%),
00
ty
and thus a fortiori in L*(0,t; L*(Q)?), and divr ® ¢ € L*(Q). Lastly, //pnk(x,t) :
00

ty
7(x) dx o(t) dt tends to //p(x,t) : 7(x) dx @(t) dt as p,, converges weakly to p in
0 Q

L*(0, ty; [LQ(Q)]‘Z,:;), and 7 ® ¢ € [L*(Q)]**3. Thus, we can pass to the limit in the first
equation of the variational system (6.11). The second equation of the variational system
(6.11) tells us that o, is symmetric and that —div(o,, ) = g — SVT,,. o,
weakly to o in H'(0,ts; Hr, (div; Q)?). A fortiori — div(o,, ) converges weakly to — div(o)
in L2(0,ts; L*(2)3). We know also that VT, converges weakly to VT in L*(0,¢s; L*(Q)?).

Thus, we may pass to the limit in the second equation of the variational system (6.11),

L CONnverges

and we obtain:
/ / div(o(z,t)).w(z) de o(t) dt + / / (g(z, 1) — B VT (z,1))w(z) dz () dt
0 Q 0Q

[ [otwt): €@) do o(t) dt =0, Yw € 129,
0Q

Ve € [LAQ) e, Yo € L2(J0, t]).

skew

We have also o(.,0) = (, as the evaluation at time ¢ = 0, is a linear continuous form on
H*(0,tg; Hr, (div;Q)?) and o, converges weakly to o in H'(0,ts; Hr, (div;Q)?). By a
standard argument of General Topology for metric spaces (we can reduce us to a metric
space as in “a separable Hilbert space, every closed ball is a metrizable space for the weak
topology”, [22] (12.15.10) p.75), it follows that the sequence ((0y, Vn, pn))nen itself con-
verges weakly to (o, v, p) in H'(0,t¢; Hr,, (div; Q)*)x L2(0,t; H'(Q2)?)x L*(0, t; [LQ(Q)]S;:;)
O

6.1 Corollary. The mapping from U,y = {Ts € H?*(]0,t;[);T < Ts(t) < T, Vt €

10,t4[, T5(0) = T,} into L*(0,tp; L*(Q)?) which sends Ts(.) onto @ : [0,tf] — R® : ¢ —
¢
/v(s) ds is continuous from U,y endowed with the weak topology into L*(0,ts; L*(2)%)
0
endowed with the strong topology.
Proof : From the previous proposition, we know that the mapping which sends Ts(.)
onto v is continuous from U, endowed with the weak topology into L?(0,¢s; H'(2)?) en-
dowed with the weak topology. The injection from C([0,¢;]; L*(2)?) into L*(0,t; L*(2)?)

is of course continuous. It suffices thus to prove that the mapping which sends v onto U
is a compact mapping from L?(0,t,; H'(Q2)?) into C([0,t;]; L*(€2)*). We must thus prove

151



CHAPTER 6. CONTROL OF THE DISPLACEMENTS IN THE SETTING OF THE
THERMOVISCOELASTICITY

that the set

={a:[0,t;] = R’ t’—>/ ) ds; [[o] 12 (O3 (Q)?) = 1}

is a relatively compact subset of C'([0,]; L*(€2)%). We must thus verify the hypotheses
of Ascoli’s theorem ([20], p.143). Firstly, let us verify that E is equicontinuous at every
point ¢, of the compact metric space [0,¢s]. Let @ € E and ¢t a point in the interval [0,¢].

max(to,t)

< [ 10y ds

H1(Q)3  min(to,t)

t

max(to,t)

1/2 2
<le=tol | [ o)y ds

min(to,t)

ty
1/2 2
<t =tol* | [ 0(5)l3 s ds
0

1/2 1/2
< [t = to / ||U||L2(o,tf;H1(Q)3) < [t —to| 2

[d(t) — @(to)ll grqy =

1/2

1/2

Thus Ve > 0, Vi, tg € [0,t]: |t —to| < €2 implies [|u(t) — (to)|| g1 (> < €. This proves
that E is equicontinuous at every point ¢, of the compact metric space [0,%;]. Secondly,
let us verify that Vtg € [0,t¢]: E(to) := {t(to); W € E} is a relatively compact subset in
L*(2)3. Bounding like in the previous inequality, we have:

to

/v(s) ds

0

<V,

H1(Q)3

[6(t0) ] g1 (05 =

showing us that E(ty) is a bounded subset of H*(2)3. As the injection from H'(2)? into

L?(Q2)3 is compact, E(ty) is a relatively compact subset in L*(€2)3. Thus the hypotheses of

Ascoli’s theorem ([20], p.143) are verified implying that FE is a relatively compact subset

of C([0,t4]; L*(Q)?). The mapping which sends v onto @ from L?(0,t; H'(Q)?) into

C([0,ts]; L*(2)?) is thus a linear compact mapping, from which the result follows. O
Let us introduce the reduced cost functional:

J 1 Usa = {Ts € H*(0,t;]); T < Ts(t) < T, Vt €]0,t;[, Ts(0) = T,} - R

5 2
Ts %/ |6@(Ts) (2, t) — a(x,t)]* de@dt+ % Y| R (6.12)
Q

We are now in a position to prove the existence of an optimal control for the field of
displacements:

6.2 Theorem. There exists Ty € U, such that j(Ts) inf J(TS)

Ts€Uqaa
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Proof : Let us set L := Tigé j(TS). There exists a sequence (T's,)nen C Uqq such
S ad

that J(Ts,) — L. The sequence (Ts,)nen is bounded in U,g € H2(]0,4[), because if it
was not, there would exist a subsequence (Ts, )ren such that [T, || g2 by — oo as

k — 400, implying J(Ts,,) — +0co in contradiction with J(Ts,,) — L. The sequence
(Ts.n)nen being bounded in U,y C H?(]0,t4]), possesses a subsequence (T, Jken weakly
convergent to some element Ty € Upg. Using the fact that the norm mapping being
continuous and convex is weakly lower semicontinuous ([71], p.47), and the preceding
corollary implying that @(Ts,, ) tends to @(Ts) in the L*(Q)3, we obtain that J(T) <

liminf J(Ts,, ), and thus J(Ts) = L = inf J(Ts), what was to be proved. O
k—+o00 ’ Ts€Uaa

6.3 Continuous Fréchet Differentiability of the Re-
duced Cost Functional

The aim of this section is to prove the continuous Fréchet differentiability of the reduced
cost functional, which allows us to write the variational inequality. Let us define Ur, the
closed affine subspace of U := H?(]0,t[):

Ur, .= {Ts € U := H*(]0,t¢[); Ts(0) = T,}. (6.13)
Also, Uy denotes the closed vectorial subspace of U := H?(]0,t[):

Up = {Ts € U := H*(]0,t4[); Ts(0) = 0}. (6.14)

6.3.1 Continuous Fréchet Differentiability

It follows immediately from Theorem 4.3 of Chapter 4, that the mapping from Ur, —
C (Q) : Ts — T (Ts) is continuously Fréchet differentiable (Ur, being in particular an
affine normed space, in the definition of the Fréchet derivative at a point Ty € Ur,,
one considers increments 67 belonging to the associated guiding vector space of Ur, i.e.
increments d7s € U such that §75(0) = 0; see [61] (IIL,3;13) p.197).

6.1 Lemma. The mapping from the open set A :={T € C (Q) ; % < T(x,t) < 2T, V(x,t) €
Q} of C (Q) into C (@), which sends T onto n(T) is continuously Fréchet differentiable.
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Proof : Let T € A and 6T € C (Q), with [|07]|,, sufficiently small so that T + 6T
still belongs to A. Let (z,t) € Q = Q x [0,t] (Q := 2x]0,t;]).

(T (z,1) +t5z;(T$ f))) (T (x,t)) =0/ (T(x,1))0T (x, )
= / T(x,t) + 6T (x,t) — s)n" (s) ds

_ /06T(:Jct (6T (x,t) — )y (T (x,t) +r) dr.

We have:
In(T'(z,t) + 6T (x, 1)) — n(T'(z, 1)) — ' (T(x,1))0T (z,1)]

0T (x,t) 1
— ’/0 (0T (z,t) —r)n (T(x,t)+ 1) dr

0 (x. t) — d
)| /WW)]\ (.t) — 7| dr

< sup
sE[%QT]

< swp |n'(s)| 0T (2, 1)*, V(1) € Q.
SE[%,2T}
Thus
(T +6T) = n(T) = 7 (T)6T | .q < sup_ |n"(s)] 1972,
s€[5,27)
implying that:
In(T +0T) = n(T) = 1/ (T)6T | o g = o (10T [l 0 )

proving that the mapping A — C (Q) : T+ n(T) = noT is Fréchet differentiable at
every T € A and that:

D(T € Av— n(T))(T) : C(Q) — C(Q) : 6T = n/(T)dT, (6.15)

VT € A. 1 being continuous on the compact interval [%, 2T is uniformly continuous,
which implies that the mapping

AcC(Q)—L(C(Q);C(Q)): T n(T)
is continuous. ]

6.2 Corollary. Let C := {Ts € UTQ;% < Ts(t) < 2T, ¥t € [0,t5]}. The mapping from

HY(0, 153 [Hr, (div; Q)2 ) x C into L2(0, t5; [L*(Q)]™*) which sends (o, Ts) onto —4#50

s continuously Fréchet differentiable.

Proof : Let Ts € C be fixed. We have also that % < T(Ts) < 2T. As a result,
the function % is a continuous and bounded function on Q) =]0,t¢[xQ. Thus, the
mapping which sends o € H'(0,t; [Hp, (div; Q)]> ) onto (%gs) o € L2(0,ts; [L2(Q)]))
is linear and continuous. Consequently, its partial dervative with respect to the variable

o at any point in H'(0,ts; [Hr, (div; Q)]

sym

sym) x O, is itself. It is easily seen that this

154
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partial derivative is continuous H'(0,ty; [Hr, (div; Q)]‘;’ym) x C. On the other hand, by
Theorem 4.3 of Chapter 4 and the previous lemma, the mapping from C' into C' (Q),

which sends Ts onto n(7T'(Ts)) is continuously Fréchet differentiable. We have also that
n(2T) < n(T(Ts(t))) < 77(%), Vt € [0,tf]. Let us denote by

= (7€ C(Q)m(2T) < f(r.1) < n(%) ¥(r.1) € Q)

If f € B, we have n(2T) < inf f(z,t) < sup < n(%) and thus f + h € B for

(z,t)eQ (z,t)€Q
heC (Q) with [|h]|, g sufficiently small. Thus B is an open set in C' (Q) For such a h:
1 1 ho_ . IRI12,
Fin ~ 7+ 5 = (e, which implies that || 7y — § + f2 0.0 = |l i = et

Thus the mapping from B into C' (Q) which sends f onto is differentiable at every point
of B and D(})(f).h = —% One has also that, if fi, fo € B

DO = DY) =gz = ) = h(frf}lﬁgﬁf”,

and thus:

<9 (%)
c©(Q)e(Q) — 77( T)*

[pCys) - DY), 1o~ Fillae

which show us that moreover the mapping from B into C (Q) which sends f onto % is

continuously differentiable on B. In conclusion, the mapping from C' into C' (Q), which

sends Tg onto ) is continuously Fréchet differentiable. Consequently, the partial

1
n(T(Ts
dervative of the mapping (o, Ts) — n(%zr” o from HY(0,t; [Hr (div; Q)] x C' into
L*(0,ty; [LQ(Q)]3X ) with respect to the variable Ty exists at any point in H*(0, t;; [Hr (div; Q)]

)X

sym>
sym) X
ym

C, and it is easily seen that this partial derivative is also continuous H*(0, ¢ ; [Hr, (div; Q)]Sym

C'. Using (8.9.1) p.175 of [20], the result follows. O

6.1 Definition. For every & € C (Q), we introduce the bilinear continuous form:

ag(.,.) « L2(0,t; Hp  ()%) x L2(0, 53 Hyp , (2)°) — R

// D (e, 1)) - e(v(e, 1) + g2 divlu(e, 1) div(o(z, 1)) de ® dt.
0o (6.16)

By A¢, we moreover denote the associated linear continuous operator from L*(0,ts; Hp (Q)%)
into L*(0,tp; Hy (Q))* such that:

< Agu, v >L2(Ovtf?H11D(9)3)*:L2(07tf;HllD(Q)3): ag(u, ’U), (617)
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for every u,v € L*(0,t5; HE (Q)%).

6.4 Proposition. For £ € C (Q), § > 0, the linear continuous operator Ag¢ is a linear
isomorphism from L*(0,ts; Hp (Q)?) onto L*(0,ts; Hf (2))*.

Proof : This result from Lax-Milgram’s lemma applied to the bilinear continuous form
ae(.,.), using igf ¢ > 0 and Korn’s inequality to deduce its coercivity, like in Proposition
5.4. OJ
6.5 Proposition. The mapping from C (Q) into L(L?(0,tp; HE(Q)%); L*(0, 53 HE (€2)%)%)
which sends & € C (Q) onto Ag is a linear continuous mapping. Consequently, its Fréchet
derivative at any point & € C (Q) is itself i.e. the linear continuous mapping from C(Q)
into L(L*(0,tg; HE ()%); L2(0,t5; Hp (Q)*)*) which sends 6 € C (Q) onto Ase.

Proof : The trilinear form:

a(,.) : C(Q) x L2085 HE(2)%) x L2(0,ty; HE () = R < (§,u,0) -

tr
ag(u, v) = / / (82 (ua, 1)) : e(v(a, 1)) + 20 div(u(e, 1)) div(o(e, 1)) do © dt,
0Q

(6.18)
is continuous. Consequently, the mapping which sends ¢ € C (Q) onto A is a linear

continuous mapping. The second part of the statement follows immediately. 0

6.3 Corollary. The mapping from the open set A := {T € C(Q),% < T(x,t) <
2T, Y(z,t) € Q} ofC(C_Q) into L(L*(0,ty; Hp (€2)%); L*(0,t5; Hp (2)%)*) which sends
T — Ay is continuously differentiable in the Fréchet sense and for every T € A, its

Fréchet derivative at point T' is the linear continuous mapping:
C(Q) = LILX(0,t; HE, () L0, 45 HE L (%)) : 0T = Ayrysr - (6.19)

Proof : By Lemma 6.1, the mapping from A into C' (Q), which sends T onto n(T) is
continuously Fréchet differentiable and its Fréchet derivative at point 7' € A is the linear

continuous mapping

C(Q) = C(Q) : 0T = n/(T)IT.

It suffices now to apply the previous proposition ant the rule of derivation of composite
mappings ((8.2.1) p.153 of [20]). O

6.4 Corollary. The mapping from the open set A := {T € C(Q),% < T(x,t) <

2T, Y(x,t) € Q} of C(Q) into L(L*(0,ts; HE (2)%)%5 L2(0,t; HE,())) which sends
T — A;(IT) is continuously differentiable in the Fréchet sense and for every T € A, its

Fréchet derivative at point T is the linear continuous mapping:

O (Q) — LILA0. 1y HE (Q)F): L2(0, 1 H} ()7))

0T — —A" L o A AL (6.20)
= n(T) © S/(T)eT © Ly(r)-
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Proof : The mapping n(T) € C (Q) and 7n(7T) is positive on Q. Consequently by
Proposition 6.4, A, 7 is a linear isomorphism from L*(0,¢; Hf. (22)*) onto L*(0,t5; Hf: (€2)%)*.

The result now follows from ([20] (8.3.2) pp. 155-156 or better Theorem 5.4.3 p.73 in

[10]). O

6.6 Proposition. Let £ C C (Q) N L*(0,t;; HY(Q)) denotes the state space defined in
Definition 4.3 of Chapter 4. Then the mapping from E N A (for the definition of A, see
the preceding corollary) into L*(0,tg; H, (Q)?), which sends T onto ue = A, i (9= BVT)
is continuously differentiable on ENA and its Fréchet derivative at the point T € ENA is
the continuous linear mapping from E into L*(0,tz; Hp (Q)°) which sends 6T € E onto

e = — (A © Ayrysr © Ayipy)(g — BYT) — BA, ;) VOT. (6.21)

Proof : The mapping from £ N A into L*(0,ts; H (2)?), which sends T onto u, =
A;(lT) (9—pBVT), may be seen as the composition of the mapping from ENA into the carte-
sian product L(L*(0,tg; HE (Q2)*)*; L*(0,t5; Hp ()°)) x L*(0,t5; HE (€2)%)* which sends
T onto (Ay,r), g—BVT) followed by the bilinear continuous mapping from cartesian prod-
uct L(L2(0,t; Hi (0°) L0, t; HE ()< L0, 3 HE, (Q)°) into L2(0, t; H}, (2))
which sends (B, f) — B(f). By ((8.1.4) p.152 of [20]), the Fréchet derivative of this bi-

linear continuous mapping at the point
(B, f) = (A, 9=BVT) € LIL*(0,t5; Hp (%) L0, 13 Hy ) (2)°) < L*(0, tg; Hp , (Q2)%)*

is the linear continuous mapping which sends (08,0 f) € L(L*(0,tg; HE (2)%)*; L*(0,t5; H (€2)%)) x
L?(0,tg; Hp (Q)*)* onto A;(IT)(Sf +6B(g — SVT). To compute the derivative of the com-
posite function which sends T" onto u, = A;(lT) (9—BVT) at the point T', we must consider
in the preceding formula § f = —gVJdT and 6B = —(A;(lT) o Ay(rysr © A;(lT)), which gives
us the required result. U
To compute the derivative of the composite function which sends Ts € Ur, N {Ts ; % <
Ts(t) < 2T, ¥t € [0,t4]} onto u.(T(Ts)), it suffices to use the preceding proposition and
formula (4.34) of Chapter 4 for DT(Ts):

DT(Ts) = —{[Dre(T(Ts), Ts)|~* © Drye(T(Ts), Ts)}. (6.22)

6.5 Corollary. The derivative of the function from Uy = {Ts € Hz(]O,tf[);% <
Ts(t) < 2T, Vt €]0,t4[,Ts(0) = T,} into L*(0,ts; H (Q)?), which sends Ts onto u, =
A;(IT(TS))(g — BVT(Ts)) is continuously differentiable. Its derivative at the point Ts € Uyg
is the linear continuous mapping from H?(|0,ts]) into L*(0,ts; Hp (€2)%), which sends

0Ts € Uy where Uy := {Ts € U;T5(0) = 0} onto

OUe = _(A;(IT(TS)) o Ay ((rs)ysr © A;(IT(TS)))(Q — BVT(Ts)) - BA;(IT(TS))VéT (6.23)
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taking for 0T in that formula:

0T := DT(Ts).0Ts = —{[Dre(T(Ts), Ts)] ™" o Drse(T(Ts), Ts) }(6Ts). (6.24)

Now, let us consider the mapping which sends Tg € Ung onto o.(.,.) := 2u(., )e(ue(., )+
Ay ) div(ue(., )5 € L*(0,ts; L2(2)%*3) where (., .) := % and A(.,.) :=
We are going to prove that this mapping is also Fréchet differentiable.

6.7 Proposition. The mapping from U,q into L%(0,ts; L*(9)%*3) which sends Ts onto
0. 18 also continuously Fréchet differentiable. Its Fréchet derivative at point Ts is given

by formula (6.25).

Proof : Let us firstly consider the term:

W;(que(l', t) + Vaue(z, t)T)‘

2u e(ue) @ (x,t) —>
The gradient with respect to z, V,, and consequently £(.) defines a continuous linear
mapping from L*(0,t;; Hf (€2)%) into L*(0,t5; L*(€2)**%). By the preceding corollary, and
the theorem on the derivative of composite functions, the mapping Tg +— e(u.)(T(Ts))
is thus continuously differentiable from U, into L*(0,t; L*(Q)**3). On the other hand,
by Theorem 4.3 of Chapter 4 and Lemma 6.1, the mapping from U,y into C' (Q), which
sends T onto n(1'(Ts)) is continuously Fréchet differentiable. The mapping:

C(Q) x L2(0,t; LA(Q)™3) = L2(0,17: L))« (n,€) = n.c

is bilinear and continuous. By ((8.1.4) p.152 of [20]), the Fréchet derivative of this bilinear
continuous mapping at the point (n,¢) € C (Q) x L*(0,ts; L*(2)**3) is the linear continu-
ous mapping which sends (07, de) belonging to C (Q) x L2(0,tp; L*(2)**%) onto n.0e+dn.e
belonging to L*(0,t;; L*(Q)**?). Similar reasonings apply to the term A div(u.(.,.))Is.
Writing an explicit formula for the Fréchet derivative at the point T is somewhat heavy:
it is the linear continuous mapping from Ur, into L*(0,¢;; L*(2)3*?) which sends arbitrary
0Ts € Uy onto

boe = LTED e(5u,) + % div(duel(.,.)) s

! § v ))d
+ P e(u,) + FETEEET div(ue(., )T,
where 07" and du, are defined by the formulas (6.24) and (6.23). O

Now, we are going to prove that the mapping from U,q which sends T onto oo defined

(6.25)

by the Cauchy problem (5.53) for the differential equation (5.53)(;, is also a continuously
Fréchet differentiable function with values in L*(0,t; L*(€2)**?). In that purpose, let us

introduce the new unknown

€0, 1) := oo(, 1) + (Pry A o)~ (PryAr) 0o(., 1), (6.26)
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€ € L*0,ts; Hp). Tt follows from (5.53), that this new dependent variable is the solution
of the Cauchy problem for the differential equation in Hy:

(1) = = ((PryAn) )~ (Pay Aol 1)) €(, 1)
((PHOA )‘H ) (PHOAO( )) ((PHoAl)‘Ho)il (PHoAl) 06('7t)7 (627)
£(,0) = ¢ = 0e(-,0) + (Pry A1) my) ™" (PryAv) 0 (-, 0).
Let us set:
Ce('>t> = ((PH0A1>|H0)_1 (PHOAO('vt)) ((PH0A1>|H0)_1 (PHoAl) 06('7 t)? (628)
and as previously A(t) := — ((PuyA1)|a) " (PuyAo(., 1)) (see equation (5.54)). A(.) €

C([0,ts]; L(Hp)) and ¢. € L*(0,ts; Hy). Let us observe that A(.) and (. depend on T via
t — Ag(.,t). Using these notations, the differential equation (6.27)(;y may be rewritten:

(1) = ADECH) + 1), (6.29)

Integrating both sides from 0 to ¢, we obtain:

) :5(.,0)+/A(s)g(.,s) ds—i—/Ce(.,s) ds. (6.30)

Now, let us introduce the operator A € L(L*(0,t; Hy)):
A L2(0,tf; Hy) — L*(0,t; Ho)
t

£ “0,tf[— Hy: t — /A(s)g(,, s) ds”. (6.31)

6.8 Proposition. Denoting by I the identity operator on L*(0,ts; Hy), the operator I-A
is invertible in L(L*(0,t; Hp)).

Proof : From the definition (6.31) of A, we have V¢ € L?(0,ts; Hy) and Vt € [0,/]:

lAe)e) / 1A iy 1€y d5 < 1Al eqos, e / €)1,

< Ao et / 1€y b5 = 14N eqon €13 010
0

We have of course that H£HL1(O,tf;H0) < i Hé’HLQ(OJf;HO). Now, let us consider A°2 := Ao A.
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We have V¢ € L*(0,ty; Hy) and Vi € [0,t4]:

t
[(A=e®)],. < [ 1Ay | (AOG)],, ds
0
A (6.32)
< |’AHC([07tf]§£(HO))/H(A€>(S)’Hg ds
0
2
S ”AHC([O,tf],E(Ho)) ‘|£||L1(O,tf;Ho) t.
For A°®, we have V¢ € L*(0,ty; Hy) and Vi € [0,t4]:
t t
[, < [1AGeiuy (A2, ds < NAllogouean [ |AZ0E)],, ds
0 0
¢ 2
< A2 Al L
> || ||C’([07tf];[:(Ho)) ||€||L1(O,tf;Ho) /3 ds = || ||C([O7tf];C(HO)) ||§||L1(o,tf;Ho) 9
0
Continuing our recurrence, we obtain for A°":
N " tn_l
| ®)],, < 1A o e 1€ 000 T
tn—l

S ’|A‘|g([0,tf],L(Ho)) HgylLl(O,tf;Ho) (,n _ 1)'
" tnfl
<V ARG o ety 1€ 2040 Ty =37

V¢ € L2(0,t; Hy), Vt € [0,ts] and Vn € N*. This latest inequality implies that:

1
ty 2
/t2n—2 dt
n 0
LQ(O,tf;Ho) S \/E ||A||C([0,tf]§£(H0)) ||§”L2(O,tf;H0) (n _ 1)'

el

t 2

. /
<Vt 1A G oy ety 1N sz it V2n—1 (n—1)!

|Ame

_ (Mllogoseamy )
2n—1 (n—1)!

V¢ € L*(0,t5; Hy).

H£|’L2(O7tf;H0) )

n—1
5 Mlleqoe ey (1 14lcqor sea
< ([0,t¢};£(Hp)) ! : 0 7 Vn € N*. Thus the
L(L2(0t5;Ho)) Van—1 (n=1)!

Thus Hflo"

series:

IT+A+ A+ A"+
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is absolutely convergent in £(L?*(0,t; Hp)). One verifies immediately that:

Z+A+ A+ 4+ A+ NI-A)=T

and that
T-AT+A+A+ A +..)=T
Thus the operator Z — A is invertible in £(L?(0,s; Hy)). O

Consequently, equation (6.30) can be rewritten:
§= (T =70+ [Glss) ds) (6.33)
0

6.9 Proposition. The mapping from the open set A := {T € C (Q) ;% < T(z,t) <
2T, Y(z,t) € Q} of C (Q), which sends T onto A = A(T) € L(L*(0,ts; Hy)) is contin-
uously Fréchet differentiable from the open set A C C (Q) into L(L?(0,ts; Hyp)). Conse-
quently, (I—fl)_l is also continuously Fréchet differentiable from the open set A C C (Q)

into L(L*(0,ts; Hy)).

Proof : By (8.3.2) pp. 155-156 in [20] or better Theorem 5.4.3 p.73 in [10] and the
preceding proposition, it suffices to prove that the mapping which sends T onto A(T) is
continuously Fréchet differentiable from the open set A C C (Q) into L(L*(0,ty; Hyp)).
Let us denote by B the linear continuous operator

B : L*(0,ts; Hy) — L*(0,t; L*(Q)*?) : 0 — (1 + v)o — vtr(o) 13 (6.34)

The mapping from C (Q) into L(L*(0,ts; Ho); L*(0,¢z; L*(2)3*%)) which sends f € C (Q)
onto f.B € L(L*(0,¢s; Ho); L*(0,ts; L*(£2)3*?)) is linear and continuous and thus also the
mapping from C' (Q) into L(L*(0,ts; Hy)) which sends f € C (@) onto — ((Puy A1)|m,) " Pryo
f.B € L(L*(0,ts; Hy)). Consequently this mapping is also continuously Fréchet differen-
tiable from C' (Q) into £(L*(0,ts; Hp)). Now, by Lemma 6.1, the mapping from the
open set A C C (Q) into C (Q) which sends T' € A onto f := m is continuously
Fréchet differentiable from the open set A C C (Q) into C' (Q) It results by com-
position that the mapping which sends 7' € A C C (Q) onto — ((PuyA1)|m,) " Puy ©
————.B € L(L*(0,ts; Hy)) is also continuously Fréchet differentiable from A C C (Q)

(T(.,.))
into £(L*(0,ts; Hp)). Composing now with the linear continuous mapping

LQ(O, tf; Ho) — L2(0, tf; Ho)

t
g “l0,tf[— Hy:t— /g(., s) ds”,
0
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it follows that the mapping which sends 7" onto fl(T) from the open set A C C' (Q) into
L(L*(0,ts; Hy)) is continuously Fréchet differentiable. O

6.10 Proposition. The mapping from the open set A N E, which sends T € ANE
onto (. = ((T) is continuously Fréchet differentiable from the open set ANE C E into
LQ(O, tf; Ho)

Proof : By Proposition 6.7, the mapping T+ o, = 0.(T) is a continuously Fréchet
differentiable mapping from the open set ANE C F into L?(0, t;; L*(2)**3), and thus also
the mapping T +— B ((Pu,A1)|n,)”" Pu,A10.(T), where the linear continuous operator
B € L(L*(0,tg; Hp)); L*(0,¢5; L*(Q)**3)) has been defined by formula (6.34). By the

proof of Corollary 6.2, the mapping which sends T" onto ﬁ is a continuously Fréchet

differentiable mapping from the open set AN E C FE into C(Q). Composing with the

bilinear continuous mapping
C(Q) x L*(0,t5; L*(2)**?) — L*(0,t5; LX(Q)¥) : (f, ) = fa,

which is thus a continuously Fréchet differentiable mapping by ((8.1.4) p.152 of [20]), it
follows that the mapping from the open set AN E C E into L*(0,ts; L?(©)**?), which
sends 7" onto

Ao ) B (PryAD) )™ PrigAroe(T) = s
(14 v) (P, A)li,) ™" PrgAroe(T) — vitr((PuyAv) )~ Py Avoe(T)). I3,

is a continuously Fréchet differentiable mapping from the open set A N E C FE into
L2(0,t; L2(2)**3). Composing still with ((Py,A1)|w,)”" Pay, the result follows by for-
mula (6.28). O

6.6 Corollary. The mapping from the open set AN E, which sends T € AN E onto the
mapping

10,t[= Hot tr [GAT)(s) ds”
0

is continuously Fréchet differentiable from the open set ANE C E into C([0,ts]; Hy) and
thus a fortiori as a mapping with values in L*(0,tg; Hp).

Proof : It suffices to compose the mapping which sends T' € AN E onto ¢, = ((T) €
L*(0,ts; Hy), with the linear continuous mapping

L2(0,t5; Ho) — C([0,¢,]; Ho) : f = “]0,t;[— Ho < t — /f(s) ds”,
0
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6.7 Corollary. The mapping from the open set AN E, which sends T € AN E onto

£ =¢&(T) € L*(0,ts; Ho) is continuously Fréchet differentiable from the open set ANE C E
into L*(0,ts; Hy).

Proof : It suffices to compose the mapping which sends T € AN E onto the couple
(Z — )+ /Ce ) ds) belonging to

L(L*(0,tg; Hy)) x L*(0,t5; Ho)
with the bilinear continuous mapping

L(L*(0,ts; Hy)) x L*(0,t; Hy) — L*(0,t; Hy)
(B,g) — By.

O

6.8 Corollary. The mapping from the open set AN E, which sends T € AN E onto
oo € L*(0,ts; Hy) is continuously Fréchet differentiable from the open set ANE C E
into L*(0,t¢; Hy). As a consequence, the mapping from U,q into L*(0,tp; L*(Q)%?) which
sends Ts onto o = o¢ + 0. is also continuously Fréchet differentiable.

Proof : The first assertion follows from the previous corollary, formula

00('>t) = f(.,t) - ((PHoAl)lHo)il (PHoAl) 05(.,15),

which follows from formula (6.26) and Proposition 6.7. The second assertion follows from

Proposition 6.7. t 0
Now, let us turn to ©. Recalling that (¢ / v(s) ds, Vt € [0,ts] and integrating
both sides of the first equation of (5.70) from 0 to to we obtain:
(T(.0) = ol - ROk O
(1 +v) o [ et as) 1y, (6:35)
0 0

Consequently, we have the following:

6.11 Proposition. The mapping from the open set ANE in E, which sendsT € ANE
onto e() € L*(0,tp; L2(Q)**3) is continuously Fréchet differentiable from the open set
ANE C E into L*0,t5; L2(Q)*%3).  As a consequence, the mapping from U, into
L2(0,ty; HE (%) which sends Ts onto @ € L*(0,ty; HY (Q)?) is also continuously
Fréchet differentiable.
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Proof : The first assertion is a consequence of the previous corollary and equality
(6.35). The second assertion is a consequence of Korn’s inequality ([5], (11.2.23) p.285
and Remark (11.2.27) p.286), which implies that the mapping which sends W € H} _(Q)?
onto &(w) defines an isomorphism from H} () onto a closed subspace of L*(€2)**%. [

6.9 Corollary. The reduced cost functional

J: Ung = {Ts € H*(J0,t5]); £ < Ts(t) < 2T, Vt €]0, ¢, T5(0) = T,} — R
< 2
Tg s 5/ G(Ts) () — dale, ) do @ dt + % |1y — T
Q

H2(]0,t5[)

is also continuously Fréchet differentiable. In particular, if Tg € U, is an optimal control,

it satisfies the variational inequality:

J(Ts)(Ts — Ts) > 0, YTs € Upg.
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