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Résumé

Dans cette thèse, nous étudions les constructions cryptographiques prouvées pour la pro-
tection de la vie privée. Pour cela nous nous sommes intéressés aux preuves et arguments à
divulgation nulle de connaissance et leurs applications. Un exemple de ces constructions est
la signature de groupe. Ce protocole a pour but de permettre à un utilisateur de s’authenti�er
comme appartenant à un groupe, sans révéler son identité. A�n que les utilisateurs res-
tent responsables de leurs agissements, une autorité indépendante est capable de lever
l’anonymat d’un utilisateur en cas de litige. Une telle construction peut ainsi être utilisée,
par exemple, dans les systèmes de transport en commun. Un utilisateur qui rentre dans un
bus prouve ainsi son appartenance aux utilisateurs possédant un abonnement valide, sans
révéler qui il est, et évitant ainsi que la société de transport ne le trace. En revanche, en
cas d’incident sur le réseau, la société peut faire appel à la police pour lever l’anonymat
des usagers présents au moment de l’incident. Nous avons proposé deux constructions de
ces signatures de groupe, prouvées sûres sous des hypothèses simples dans le monde des
couplages et des réseaux euclidiens. Dans la continuité de ces travaux, nous avons aussi
proposé la première construction de chi�rement de groupe (l’équivalent de la signature
de groupe pour le chi�rement) à base de réseaux euclidiens. Finalement, ces travaux nous
ont amenés à la construction d’un schéma de transfert inconscient adaptatif avec contrôle
d’accès à base de réseaux euclidiens. Ces constructions à base de réseaux ont été rendues
possibles par des améliorations successives de l’expressivité du protocole de Stern, qui
reposait initialement sur la di�culté du problème du décodage de syndrome.

iii



Abstract

In this thesis, we study provably secure privacy-preserving cryptographic constructions.
We focus on zero-knowledge proofs and their applications. Group signatures are an example
of such constructions. This primitive allows users to sign messages on behalf of a group
(which they formerly joined), while remaining anonymous inside this group. Additionally,
users remain accountable for their actions as another independent authority, a judge, is
empowered with a secret information to lift the anonymity of any given signature. This
construction has applications in anonymous access control, such as public transportations.
Whenever someone enters a public transportation, he signs a timestamp. Doing this proves
that he belongs to the group of people with a valid subscription. In case of problem, the
transportation company hands the record of suspicious signatures to the police, which
is able to un-anonymize them. We propose two constructions of group signatures for
dynamically growing groups. The �rst is based on pairing-related assumptions and is fairly
practical. The second construction is proven secure under lattice assumptions for the sake
of not putting all eggs in the same basket. Following the same spirit, we also propose two
constructions for privacy-preserving cryptography. The �rst one is a group encryption
scheme, which is the encryption analogue of group signatures. Here, the goal is to hide
the recipient of a ciphertext who belongs to a group, while proving some properties on
the message, like the absence of malwares. The second is an adaptive oblivious transfer
protocol, which allows a user to anonymously query an encrypted database, while keeping
the unrequested messages hidden. These constructions were made possible through a series
of work improving the expressiveness of Stern’s protocol, which was originally based on
the syndrome decoding problem.
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Ã Gram-Schmidt orthogonalization of matrix A
AT ,uT the transpose of a matrix or a vector respectively
In the n dimension identity matrix in Rn×n
U(S) If S is a �nite set, U(S) denotes the uniform distribution over S
Supp(D) If D is a probability distribution, Supp(D) denotes the support of D
Pr[E] Probability that an event E occurs
D ≈s D′ The distribution D is statistically close to the distribution D′

Usual sets

Q the set of rational numbers
R the set of real numbers
Z the set of relative integers
Zq the �eld Z/qZ, with q prime
F2 the �eld Z/2Z
Sd the set of vectors of dimension d in the set S
Sn×m the set of matrices with n rows and m columns in the set S
Sk The set of all permutations over {1, . . . , k}
Protocols

PKE Public Key Encryption
ZK Zero-Knowledge
ZKAoK Zero-Knowledge Argument of Knowledge
NIZK Non-Interactive Zero-Knowledge
QA-NIZK Quasi-Adaptive Non-Interactive Zero-Knowledge
WI Witness Indistinguishable
GS Group Signature
GE Group Encryption
OT Oblivious Transfer

xiii



xiv LIST OF SYMBOLS

Security Notions

AdvE
A Advantage of adversary A for experiment E

EU-CMA Existentially Unforgeable under chosen-message attacks
EU-RMA Existentially Unforgeable under random-message attacks
IND-CPA Indistinguishable under chosen-plaintext attacks (passive adversary)
IND-CCA1 Indistinguishable under non-adaptive active adversary
IND-CCA2 Indistinguishable under adaptive active adversary
Security Models

ROM Random-Oracle Model
UC Universal Composability
Security Assumptions

Lattices

SIS Short Integer Solution (De�nition 3.8)
ISIS Inhomogeneous Short Integer Solution (De�nition 3.8)
LWE Learning-with-Errors (De�nition 3.9)
SIVPγ Shortest Independent Vectors Problem (De�nition 3.7)

Cyclic groups

DLP Discrete Logarithm Problem (De�nition 2.9)
DDH Decisional Di�e-Hellman (De�nition 2.11)
Bilinear groups

SXDH Symmetric eXternal Di�e-Hellman (De�nition 3.2)
SDL Symmetric Discrete Logarithm (De�nition 3.3)
Stern-like protocol

B2
m The set of {0, 1} vector of hamming weight m

B3
m The set of {−1, 0, 1} vectors with m elements in −1, 0 and 1



Résumé substantiel en Français

Les cinquante dernière années, l’utilisation de la cryptographie s’est éloignée de ses origines
militaires et de son usage pour le secret commercial a�n de se démocratiser à un public plus
large. Par exemple, la machine Enigma initialement conçue pour un usage militaire a été
déclinée pour un usage commercial (la machine Enigma A26). Aujourd’hui, environ 60%
du premier million des sites les plus visités dans le monde propose une connexion chi�rée
et authenti�ée (à l’aide du protocole https), tout comme les canaux de communication des
appareils électroniques portatifs (comme la norme WPA, en anglais Wi� Protected Access).
Dans le même temps, la croissance des données échangée en ligne et la sensibilité de ces
informations rendent de plus en plus urgent la protection de ces communications. Pendant
que la loi de Moore2 atteint ses limites, d’autres menaces existent sur nos cryptosystèmes
actuels. Par exemple, l’existence d’un ordinateur quantique possédant su�samment de
mémoire [Sho99] rendrait risqué l’utilisation de la majorité des constructions crypto-
graphiques actuellement déployées, puisqu’elles reposent sur des hypothèses issues de
l’arithmétique modulaire classique dont la structure algébrique peut-être exploitée par un
adversaire quantique. Dans cette situation, il devient alors crucial de construire des schémas
cryptographiques qui résisteraient à une menace quantique.
Pour répondre à ce problème, la cryptographie post-quantique est née au début des années
2000. Les di�érents candidats reposent sur di�érents objets mathématiques, comme les
réseaux euclidiens, les codes, les systèmes polynomiaux multivariés, les isognénies, etc.
Récemment, le NIST (National Institude of Standards and Technology) a organisé une com-
pétition pour évaluer les di�érentes solutions post-quantiques pour le chi�rement et la
signature [NIS17]. Dans cette compétition, 82 protocoles ont été proposés, parmi lesquels
28 reposent sur les réseaux euclidiens, 24 sur les codes correcteurs, 13 sur des systèmes
multi-variés, 4 sur des fonctions de hachages et 13 sur d’autres objets.
Si la cryptographie pratique vise principalement à fournir des schémas de signature et
de chi�rement, comme l’atteste la compétition du NIST, la recherche théorique propose
des solutions à des problèmes plus précis, comme la construction de systèmes de monnaie
électronique3 [CFN88], qui sont l’équivalent numérique de notre monnaie échangée. Les
pièces sont délivrées par une autorité centrale (la banque), et les dépenses restent intraçables.
En cas de comportement malhonnête (comme une double-dépense), l’identité de l’utilisateur

2La loi qui prédit la puissance de calcul des processeurs modernes.
3À ne pas confondre avec les cryptomonnaies. . .
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malicieux est révélée.
Les constructions cryptographiques doivent en plus véri�er des propriétés de sécurités. Par
exemple, un schéma de chi�rement doit être en mesure cacher un message en présence
d’un attaquant passif voire actif (c’est-à-dire un attaquant qui est capable de modi�er
certains messages). Pour garantir ces exigences, les cryptographes fournissent des preuves
de sécurité dans le cadre de modèles de sécurité précis. Une preuve de sécurité nous dit
principalement qu’une construction cryptographique est au moins aussi di�cile qu’un
problème supposé di�cile par la littérature.
Finalement, l’importance de la préservation de la vie privé et la protection des données ont
été des sujets qui ont fait couler beaucoup d’encres, comme en atteste le développement du
règlement général sur la protection des données (RGPD) en 2016, mis en application ce 25
mai. Il est donc intéressant pour les cryptographes de fournir des solutions qui resisteraient,
dans le meilleurs des mondes, à un adversaire quantique. Néanmoins, la construction
de ces protocoles repose de manière décisive sur les « preuves à divulgation nulles de
connaissances ». Ce sont des protocoles interactifs entre un prouveur et un véri�eur où le
prouveur cherche à convaincre le véri�eur d’une a�rmation sans rien divulguer de plus
sur celle-ci que sa valeur de vérité. Dans le contexte de la cryptographie post-quantique, de
tels systèmes de preuves sont limités en terme d’expressivité ou en terme de coût de calcul
(en temps ou en mémoire).

Cryptographie préservant la vie privée

Dans ce contexte, la « préservation de la vie privée » décrit la capacité d’une primitive
cryptographique à fournir certaines fonctionnalités tout en gardant certaines informations
privées. Par exemple, l’accréditation anonyme [Cha85, CL01] est un exemple d’une telles
primitives. De manière informelle, cette primitive permet à un utilisateur de garantir
ses droits d’accès à un véri�eur, sans lui divulguer son identité, ni le motif de ses accès.
Pour réaliser cette primitive, le système est composé d’un (ou plusieurs) fournisseur(s)
d’accréditations ainsi que d’un ensemble d’utilisateurs qui possèdent leurs propres clefs
secrètes ainsi qu’un ensemble d’attributs. Les utilisateurs peuvent obtenir ces accréditations
dynamiquement depuis un fournisseur qui ne connaît d’eux qu’un pseudonyme et qui
signe de manière inconsciente les clefs secrètes des utilisateurs ainsi que leur attributs.
Après avoir obtenu leurs accréditations, les utilisateurs peuvent s’authenti�er sous des
pseudonymes di�érents, et prouver la possession d’une certi�cation de la part du/d’un
fournisseur, sans divulguer ni la signature, ni la clef secrète. Cette primitive permet ainsi à
un utilisateur de s’identi�er vis-à-vis du système (par exemple dans le cadre d’un contrôle
d’accès anonyme) tout en préservant l’anonymat des utilisateurs. De plus, ce système
garantit que les utilisateurs possèdent un droit d’accès su�sant.
L’intérêt pour la cryptographie préservant la vie privée est contemporain de la naissance
de la cryptographie à clef publique [Rab81, Cha82, GM82, Cha85]. Une raison pouvant
expliquer cela serait la similitude entre les motivations de la cryptographie et les exigences
de la protection de la vie privée. De plus, le travail des cryptographes dans ce domaine
ont des conséquences directes en terme de services qui pourraient être développés dans le
monde réel. En e�et, un système d’accréditation anonyme pourrait débloquer le contrôle
d’accès anonyme et limiter ainsi le risque de brèches de sécurité. Alors que, actuellement,
les systèmes mis en places reposent sur des briques de bases plus élémentaires, comme des
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signatures, dont la manipulation peut amener di�érents problèmes de sécurité [VP17].
De manière similaire, les primitives avancées sont construites à partir de briques de bases
simples. La principale di�érence réside en le fait que leur sécurité a été prouvée, ce qui
o�re une con�ance plus forte dans la sécurité de ces constructions. Comme expliqué
précédemment, ces preuves permettent de lier la sécurité des systèmes à des hypothèses
de sécurité. Ainsi, la sécurité repose sur la validité de ces hypothèses, qui peuvent être
étudiées indépendamment des systèmes cryptographiques par les cryptanalystes. Dans ce
cas contraire, cela peut mener à di�érents problèmes, comme dans le cas de applications
multilinéaires, dont plusieurs candidats ont été rendus caduques par [CHL+15]. Cet exemple
montre ainsi l’importance pour la cryptographie de reposer sur des hypothèses simples et
robustes comme nous l’expliqueront dans le chapitre 2.
Les schémas développés dans cette thèse reposent sur des hypothèses de réseaux euclidiens
et des applications bilinéaires sur les groupes cycliques (ou couplages). La cryptographie
à base de réseaux euclidiens est utilisées pour aller d’avant vers la cryptographie post-
quantique, tandis que les applications bilinéaires sont utiles pour la réalisation de schémas
pratiques. Les détails de ces deux structures sont présentés dans le chapitre 3.

Preuves sans divulgation de connaissance

Comme nous l’avons expliqué précédemment, les preuves sans divulgation de connaissance
sont une brique de base pour la cryptographie préservant la vie privée. Elles exigent les
propriétés de complétude, de robustesse et de non divulgation de connaissance. La complé-
tude exprime la correction du protocole dans le cas où tout le monde agit honnêtement.
Dans le cas d’un prouveur malhonnête, la robustesse demande à ce que le véri�eur ne peut
être convaincu qu’avec une probabilité négligeable. Au contraire, si le véri�eur essaye de
tricher, la non divulgation de connaissance assure au prouveur que son secret reste protégé.
Dans le cadre de l’identi�cation, la nature du secret reste simple, et des solutions qui reposent
sur di�érentes hypothèses de sécurité existent déjà [Sch96, Ste96, KTX08, Lyu08]. Pour des
a�rmations plus complexes, comme prouver l’exécution correcte d’un calcul, il existe un
écart entre ce qu’on peut prouver dans le cadre de la cryptographie post-quantique et celle
qui repose sur le l’arithmétique modulaire classique. Dans le cadre des couplages, il existe
des preuves sans divulgation de connaissance non interactives qui permettent de prouver
une large classe d’a�rmation [GOS06, GS08] sans idéaliser le modèle de sécurité. De telles
preuves sont, à ce jour, manquantes dans le cadre de la cryptographie post-quantique.
Pour les réseaux euclidiens, il y a principalement deux familles de preuves : les preuves à la
Schnorr [Sch96, Lyu09] et les preuves à la Stern [Ste96], nommés d’après leurs découvreurs
respectifs. Les preuves à la Schnorr reposent sur des réseaux structurés en exploitant cette
structure pour fournir des preuves compactes au détriment de l’expressivité de ces preuves.
Au contraire, les preuves à la Stern reposent sur la combinatoire de la représentation des
réseaux généraux en tant que matrices et vecteurs. Par nature, ces preuves sont coûteuses
en terme de complexité de communication. En revanche, elles sont su�samment versatiles
pour prouver une large variété d’a�rmations, comme nous l’expliqueront plus en détail
dans cette thèse, et plus particulièrement dans le chapitre 4.3. Les preuves à divulgation
nulle de connaissance sont détaillées dans le chapitre 4.
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Signatures avec protocoles e�caces

Pour rendre possible la cryptographie à base de réseaux euclidiens, une approche possible
est de coupler les preuves sans divulgation de connaissance avec un schéma de signature.
De telles signatures sont dites « avec protocoles e�caces ». Cette primitive étend la fonc-
tionnalité des signatures traditionnelles de deux manière : (i) Elle permet au signataire
de signer oublieusement un message caché et (ii) Les utilisateurs peuvent prouver sans
divulgation la connaissance d’un couple message-signature cachée.
Ces deux propriétés s’avèrent être extrêmement utiles dans la construction de protocoles
préservant l’anonymat tels que l’accréditation anonyme ou la monnaie électronique. La
construction e�ective de ces signatures avec protocoles e�caces est donc un point clef
dans la cryptographie protégeant la vie privée.
Dans cette thèse, nous proposons deux constructions de telles signatures. Une première,
décrite dans le chapitre 6, repose sur les couplages. Il s’agit d’une traduction du schéma
de [LPY15] dans un modèle idéalisé pour obtenir une e�cacité et une sécurité raisonnables
en pratique. La seconde, décrite dans le chapitre 7, adapte une variante de la signature
de Boyen [Boy10, BHJ+15] à la mise en gage de Kawachi-Tanaka-Xagawa [KTX08] pour
proposer un schéma de signature à base de réseaux euclidiens compatible avec les preuves
à la Stern. Ce schéma a aussi été relaxé dans le cadre du transfert inconscient, où, par
endroits, seule la sécurité pour des messages aléatoires est requise. Cela est décrit dans le
chapitre 9.

Couplages et réseaux euclidiens

Les constructions proposées dans cette thèse reposent sur la di�culté supposée d’hypo-
thèses sur les groupes compatibles avec des couplages et les réseaux euclidiens. Ces deux
objets mathématiques ont été étudiés en long et en large depuis leurs introductions res-
pectives au début des années 2000 [SOK00, Reg05]. Depuis lors, ils ont béné�cié d’une
attention considérable de la part des cryptographes, ce qui a mené à la conception de
nombreux protocoles avancés (tels que [Jou00, BBS04, BN06, GS08, LYJP14, LPQ17] pour
les couplages et [GPV08, ABB10, BV11, GSW13, dPLNS17] pour les réseaux).

Cryptographie à base de couplages

Un couplage est une application bilinéaire qui part de deux groupes cycliques sources vers
un groupe cible. La bilinéarité est rendue possible grâce à la structure algébrique forte des
groupes abéliens compatibles avec de telles applications. Il n’est donc pas surprenant de voir
qu’une large gamme de schémas ont été rendus possibles dans le contexte de la cryptogra-
phie à base de couplages. Dans le cadre de la cryptographie pour la protection de la vie privée,
la pierre angulaire a été l’introduction des preuves de Groth-Sahai [GOS06, GS08] qui per-
mettent de prouver de manière non interactive et sans divulgation de connaissance une large
classe d’a�rmations dans le modèle standard (c’est-à-dire sans présupposés). Par exemple,
les preuves de Groth-Sahai ont été utilisées pour la construction de signatures de groupe,
d’accréditations anonymes [Gro07, BCKL08, BCC+09], ou encore d’e-cash [BCKL09].
Cependant, dans cette thèse, nos constructions à base de couplages visent à la praticité.
Ainsi, elles sont instanciées dans le modèle de l’oracle aléatoire, où les preuves à la Schnorr
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sont rendues non interactives par la transformée de Fiat-Shamir lorsque l’a�rmation à
prouver est su�samment simple.
Des travaux récents en cryptanalyse des couplages [KB16, MSS17, BD18] ont mené à des
changements radicaux dans le panorama de la cryptographie à base de couplage. Ces
changements nous a�ectent en ce sens que nos évaluations de paramètres de sécurité sont
désormais à revoir pour atteindre le même niveau de sécurité que celui annoncé.
Néanmoins, la cryptographie à base de couplages o�re un excellent compromis entre ce
qu’on est capable d’y construire et l’e�cacité. Comme exemple, nous pouvons citer les
travaux de Döttling et Garg [DG17a] qui ont clos le problème de fournir un chi�rement
fondé sur l’identité qui repose uniquement sur des hypothèses sur les groupes cycliques. Si
leur construction repose sur des objets mathématiques plus simples, elle n’atteint néanmoins
pas l’e�cacité de celles que proposent la cryptographie à base de couplages [BB04].

Cryptographie reposant sur les réseaux euclidiens

D’un point de vue algébrique, un réseau est un sous-groupe discret d’un certain Rn, ce
qui mène à une structure de simple groupe additif. La principale di�érence avec la cryp-
tographie traditionnelle reposant sur de l’arithmétique modulaire, telle que celle fondée
sur le logarithme discret, est l’existence d’une structure géométrique : celle de réseau.
C’est de cette géométrie que proviennent les problèmes di�ciles sur les réseaux que nous
considérons comme di�ciles, et ce, même avec la puissance d’un calculateur quantique.
Malgré sa structure apparente simple, les réseaux euclidiens ont permis de débloquer des
constructions qui ne sont par réalisables autrement, comme par exemple le chi�rement
totalement homomorphe [Gen09, BV11, GSW13].
La �exibilité de la cryptographie à base de réseaux euclidiens a été rendue possible par la
découverte des portes dérobées [GPV08, CHKP10, MP12] telles que nous l’avons expliqué en
section 3.2.2. De manière informelle, la connaissance d’une base courte (ou porte dérobée)
pour un réseau permet d’échantillonner des vecteurs courts dans ce même réseau. Il s’avère,
par ailleurs, que trouver ces vecteurs courts est considéré comme un problème di�cile en
l’absence de la connaissance d’une base courte. De plus, avoir une base courte pour un
réseau {v ∈ Zm | Az = 0 mod q} décrit par une matrice A ∈ Zn×m permet de générer
une base pour un réseau dépendant de celui-ci, décrit par la matrice [A | B] ∈ Zn×m′q . Cette
propriété est utilisée par exemple dans la signature de Boyen [Boy10], largement employée
dans la cryptographie à base de réseaux. Dans ce schéma, une signature pour un messagem
consiste en un vecteur court dans le réseau orthogonal à la matrice Am = [A | Bm] où la
matrice Bm est calculable publiquement. Ainsi, la connaissance d’une porte dérobée pour
la matrice A rend possible le calcul d’un tel vecteur, et le message est lié à la description de
la matrice Am.
Néanmoins, l’utilisation de portes dérobées pour les réseaux est extrêmement coûteuse
en terme d’e�cacité [Lyu12, LLNW16]. Comme notre but est de fournir les premières
constructions pour les primitives que nous présentons, nous nous sommes concentrés sur
la réalisations de telles constructions sous des hypothèses bien étudiées, au prix de cette
e�cacité.
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Nos résultats

Dans cette thèse sont présentées di�érentes constructions cryptographiques pour la préser-
vation de la vie privée. Ces constructions sont le résultat d’améliorations successives des
preuves à divulgation nulle de connaissance et des preuves de sécurités liées aux construc-
tions sous des hypothèses calculatoires standards. Nous pensons que ces avancées ont un
intérêt indépendant, et que les schémas proposés sont un pas de plus vers la démocratisation
d’une cryptographie qui résisterait à un adversaire quantique. Dans la suite, nous détaillons
quatre constructions qui ont été développées dans cette thèse. Ces résultats sont issues de
ces quatre articles publiés durant ma thèse : [LMPY16, LLM+16a, LLM+16b, LLM+17].

Signatures de groupe dynamique et accréditation anonyme

Dans la partie II nous présentons deux primitives : les signatures de groupes dynamiques
et l’accréditation anonyme. Nous avons déjà décrit le comportement de l’accréditation
anonyme plus haut. Pour les signatures de groupes, il s’agit d’une primitive qui permet à
un utilisateur d’authenti�er un message au nom d’un groupe, tout en restant anonyme au
sein de ce groupe. Les utilisateurs restent responsables de leurs actions : une autorité tierce
(par exemple un juge) disposant d’une information secrète est capable de lever l’anonymat
des utilisateurs qui se comporteraient mal.
En tant que telle, cette primitive peut être utilisée pour fournir une authenti�cation anonyme
qui garantit la responsabilité de ses utilisateurs (ce qui n’est pas le cas avec l’accréditation
anonyme). Par exemple, dans l’internet des objets, comme les voitures intelligentes, il est
important de fournir un canal de communication authenti�é, alors que l’anonymat de
chaque objet est important (puisqu’il possède beaucoup d’information sur son utilisateur).
Dans cette thèse, nous présentons dans le chapitre [?] un schéma de signature de groupe à
base de couplages qui vise l’e�cacité sous des hypothèses raisonnables. Cette construction
est accompagnée d’une implantation en C pour soutenir sa practicité. Le schéma est décrit
dans [LMPY16] conjointement avec Benoît Libert, Thomas Peters et Moti Yung, et a été
présenté à la conférence AsiaCCS’16.
Le chapitre 7 présente le premier schéma de signature de groupe dynamique qui repose sur
la sécurité des réseaux euclidiens. Ces travaux sont décrits dans [LLM+16a] avec Benoît
Libert, San Ling, Khoa Nguyen et Huaxiong Wang, et ont été présentés à Asiacrypt’16.

Chi�rement de groupe

Le chi�rement de groupe est l’analogue de la signature de groupe pour le chi�rement. Dans
ce contexte, un utilisateur désire envoyer un message à un membre d’un groupe, tout en
cachant l’identité du destinataire au sein de ce groupe. De manière similaire, une autorité
peut lever l’anonymat des message à l’aide d’une information secrète [KTY07, LYJP14].
Une application possible du chi�rement de groupe est la construction d’un pare-feu d’entre-
prise, qui permet de garantir qu’un message possède bien un destinataire dans l’entreprise
tout en garantissant des propriétés additionnelles comme l’absence de programme mali-
cieux dans le message. En cas de doute, une autorité est capable de lever l’anonymat d’un
message suspicieux.
Plus formellement, le chi�rement de groupe est une primitive qui permet à un expéditeur
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de générer une preuve publiquement véri�able que : (1) Le cĥi�ré est bien formé et est
destiné à un utilisateur enregistré dans un groupe qui sera capable de déchi�rer le message ;
(2) L’autorité d’ouverture sera capable d’identi�er le destinataire du message si besoin ;
(3) Le message clair véri�e certaines propriétés, comme celle d’être un témoin pour une
relation publique. Dans le modèle de Kiayias, Tsiounis et Yung [KTY07], le secret du message
et l’anonymat sont dé�nis pour un adversaire actif dans toutes les dé�nitions de sécurité.
C’est-à-dire un adversaire capable de demander des requêtes d’ouverture sur n’importe
quel message et l’identité du destinataire de messages.
Cette construction nécessite de pouvoir prouver la connaissance d’une clef publique certi�ée
utilisée pour chi�rer un message. Or, cette clef publique doit rester cachée parmi les
di�érentes clef publiques certi�ées. Dans les réseaux euclidiens, cela revient à produire
une preuve sans divulgation nulle de connaissance pour une relation dite « quadratique ».
Avant ces travaux, les preuves sans divulgation de connaissances que nous connaissons sur
les réseaux euclidiens ne permettent que de prouver des relations où le témoin véri�e une
relation linéaire en les paramètres publiques. Rappelons qu’une relation d’apprentissage
avec erreurs est de la forme A·s+e+md q2e mod q où A est la clef publique du destinataire
du message. Comme le chi�rement de groupe demande à ce que le destinataire reste
anonyme, cette clef publique A doit rester privée. Un moyen d’y arriver est d’avoir des
preuves sans divulgation nulle de connaissance qui supportent les relations où le témoin
est multiplié par une matrice privée.
Cela a été rendu possible en introduisant des techniques nouvelles pour les preuves à la
Stern. Ces techniques, qui reposent sur une approche « diviser-pour-régner », sont décrites
dans le chapitre 8, ainsi que la construction du schéma de chi�rement de groupe prouvé
sûr dans le modèle standard. Ces travaux ont été présentés à Asiacrypt’16 [LLM+16b] et
ont été e�ectués avec Benoît Libert, San Ling, Khoa Nguyen et Huaxiong Wang.

Transfert inconscient adaptatif

Le transfert inconscient est une primitive proposée par Rabin [Rab81] qui a ensuite été
étendue par Even, Goldreich et Lempel [EGL85]. Elle met en relation un serveur et un client
qui veulent s’échanger des messages indexés de 1 àN . Le protocole permet ainsi à un client
d’obtenir le ρ-ième message de la part du serveur sans lui permettre de savoir quoi que ce
soit sur le choix du client. De plus, le client n’obtient que le ρ-ième message et n’apprend
rien sur les autres messages de la base de donnée.
Dans sa version adaptative [NP99], le client souhaite obtenir dynamiquement k messages.
Toujours en gardant secret l’indice des messages qu’il a récupéré, ainsi que le motif d’accès
des requêtes.
D’un point de vue théorique, le transfert inconscient est une brique de base complète pour la
cryptographie. Autrement dit, si elle est possible, n’importe quel calcul multipartite sécurisé
est rendu possible. Dans sa variante adaptative, le transfert inconscient a des applications
pour l’accès préservant la vie privée à des bases de données sensibles (comme les bases de
données médicales ou �nancières) stockées de manière chi�rées sur un serveur distant.
Dans sa forme simple, le transfert inconscient (adaptatif) ne restreint pas l’accès aux données.
Dans plusieurs cas de �gures (comme des bases de génomes), on souhaite mutualiser la
base de données, et il n’est pas souhaitable que n’importe quel utilisateur puisse avoir
accès à toutes les données. Il est alors important de protéger l’accès à ces données sensibles
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conditionnés par les droits d’accès du client. Dans le même temps, la protection de la vie
privée nécessite que seuls les utilisateurs autorisés puissent accéder à la base de donnée,
tout en gardant leurs informations anonymes (en particulier, le certi�cat utilisé pour accéder
aux données doit rester secret pour tout le monde, y compris le serveur).
Cette propriété a été formalisée par [CDN09] par la notion de contrôle d’accès. Dans cette
variante, chaque données est protégée par une police d’accès di�érente. À partir de leurs
attributs, les utilisateurs peuvent obtenir une accréditation de la part d’une autorité tierce,
qui les autorise à récupérer anonymement les données pour lesquelles leurs attributs leurs
en permettent l’accès. Durant la phase de transfert, le client prouve sans divulgation de
connaissance la possession d’un tel certi�cat pour un attribut qui véri�e la police d’accès de
la donnée qu’il souhaite obtenir. La seule information que la base de donnée peut apprendre
est donc qu’un utilisateur a obtenu un élément de la base de données pour lequel il avait
accès.
Le système doit être capable de traiter des polices d’accès complexes, tout en gardant la
complexité en temps et en mémoire raisonnable. Dans cette thèse, nous proposons dans le
chapitre 9 un protocole de preuve sans divulgation de connaissance qui permet de traiter
n’importes quelles polices d’accès pouvant être décrites à l’aide d’un circuit booléen de
profondeur logarithmique (c’est-à-dire la classe de complexité NC1) qui repose sur les
réseaux euclidiens. Dans le cadre du transfert inconscient adaptatif, la plupart des construc-
tions (à base de couplages) ne permettent que de traiter, sous des hypothèses raisonnables,
que des polices d’accès composées de conjonctions [CDN09, CDNZ11, ACDN13]. Sous des
hypothèses plus fortes, les polices d’accès dans NC1 sont néanmoins possibles [ZAW+10].
Cette construction, présentée à Asiacrypt’17 [LLM+17], a été réalisée avec Benoît Libert,
San Ling, Khoa Nguyen et Huaxiong Wang.



Chapter1

Introduction

In the last �fty years, the use of cryptography has shifted from military and commercial
secrets to a broader public. For instance, the Enigma machine had a design for military
purposes, and another one for companies (Enigma A26). As of today, about 60% of the �rst
million most visited websites propose encrypted and authenticated communications (via
https), and so are most of the communications channels used by electronic devices (like
Wi� Protected Access).
At the same time, the growth of exchanged data and the sensitivity of transferred infor-
mation make the urge of protecting these data e�ciently even more critical. While we
are reaching the Moore’s law barrier, other threats exist against nowadays’ cryptosystems.
For instance, the existence of a quantum computer with su�cient memory [Sho99] would
break most of real-world cryptographic designs, which mostly rely on modular arithmetic
assumptions. In this context, it is crucial to design cryptographic schemes that are believed
to be quantum-resistant.
To address this problem, post-quantum cryptography arose in the early 2000s. The di�erent
candidates rely on several mathematical objects, such as lattices, error-correcting codes,
systems of multivariate polynomials, etc. Recently, the National Institute of Standards
and Technology (or NIST ) organized a competition to evaluate di�erent post-quantum
schemes for encryption and signatures [NIS17]. In this competition, 82 protocols have been
proposed out of which: 28 were lattice-based, 24 were code-based, 13 were multi-variate
based, 4 were hash-based and the 13 left were categorized as “other”.
Though, real-world cryptography mainly aims at designing digital signatures and encryp-
tion schemes, as illustrated by the NIST competition. Meanwhile, ongoing research in
cryptology proposes di�erent solutions to address more speci�c problems, such as the
design of electronic-cash systems1 [CFN88], which are the digital analogue of real money.
Coins are delivered by a central authority (the bank) and spendings remain untraceable. In
case of misbehavior (such as double-spending), the identity of the cheater is revealed.
Cryptographic constructions should additionally verify some security requirements. For
instance, an encryption scheme has to hide a message in the presence of an eavesdropper,
or even an active adversary who can alter some messages. To guarantee these requirements,
cryptographers provide security proofs in the sense of precise security models. A security

1Which is not to be confuse with cryptocurrency. . .
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proof mainly states that a given cryptographic scheme is secure if some problems are hard.
At last but not least, the importance of privacy and data protection has been a hot topic in
the last years, as re�ected by the development of the general data protection regulation
law in 2016, which is implemented since may 25th. Hence, it is appealing to have privacy-
preserving cryptographic constructions which would ideally resist the advent of a quantum
computer. Nevertheless, the design of such protocols crucially relies on “zero-knowledge
proofs”. These are 2-party protocols between a prover and a veri�er where the prover
should convince the veri�er of a statement without leaking any piece of information about
this statement. In the context of post-quantum cryptography, such proofs systems are still
limited in power or costly in terms of time, memory and communication consumptions.

1.1 Privacy-Preserving Cryptography

In this context, ‘privacy-preserving’ refers to the ability of a primitive to provide some
functionalities while holding sensitive information private. An example of such primitives
are anonymous credentials [Cha85, CL01]. Informally, this primitive allows users to prove
themselves to some veri�ers without telling their identity, nor the pattern of their authenti-
cations. To realize this, this system involves one (or more) credential issuer(s) and a set of
users who have their own secret keys and pseudonyms that are bound to their secret. Users
can dynamically obtain credentials from an issuer that only knows users’ pseudonyms and
obliviously sign users’ secret key as well as a set of attributes. Later on, users can make
themselves know to veri�ers under a di�erent pseudonym and demonstrate possession of
a certi�cation from the issuer, without revealing neither the signature nor the secret key.
This primitive thus allows a user to authenticate to a system (e.g., in anonymous access
control) while retaining its anonymity. In addition, the system is guaranteed that users
indeed possess a valid credential.
Interests in privacy-based cryptography date back to the beginning of public-key cryptog-
raphy [Rab81, Cha82, GM82, Cha85]. A reason for that could be the similarities between
the motivations of cryptography and the requirements of privacy protection. Additionally,
cryptographers’ work in this �eld may have direct consequences in term of services that
could be developed in the real-world. Indeed, having a practical anonymous credential
scheme will enable its use for access control in a way that limits security �aws. Whereas,
nowadays’ implementations are based on more elementary building blocks, like signatures,
whose manipulations may lead to di�erent security holes [VP17].
Similarly, advanced primitives often involve simpler building blocks in their design. The
di�erence lies in that provable security conveys security guarantees for the construction.
As explained before, these proofs make the security of a set of schemes rely on hardness
assumptions. Thus, the security relies on the validity of those assumptions, which are
independently studied by cryptanalysts. Hence, security is guaranteed by the study of those
assumptions. For example, the security analysis of multilinear maps in [CHL+15] made
obsolete a large amount of candidates at this time. This example re�ects the importance of
relying on well-studied and simple assumptions as we will explain in Chapter 2.
In the context of this thesis, the developed cryptographic schemes rely on lattices and
bilinear maps over cyclic groups. Lattice-based cryptography is used to step towards post-
quantum cryptography, while the latter proves useful in the design of practical schemes.
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The details of these two structures are given in Chapter 3.

1.1.1 Zero-Knowledge Proofs

As explained before, zero-knowledge proofs are a basic building block for privacy-preserving
cryptography. They require completeness, soundness and zero-knowledge properties.
Completeness captures the correctness of the protocol if everyone is honest. In the case
of a dishonest prover, soundness asks the probability that the veri�er is convinced to
be negligible. On the contrary, if the veri�er is cheating, the zero-knowledge property
guarantees that the prover’s secret remains hidden.
In the case of identi�cation schemes, the nature of the secret remains simple and solu-
tions exist under multiple assumptions [Sch96, Ste96, KTX08, Lyu08]. For more complex
statements, such as proving correct computation, a gap appears between post-quantum
schemes and modular arithmetic-based schemes. In the case of pairing-based cryptogra-
phy, there exist non-interactive zero-knowledge proofs which can prove a large variety of
statements [GOS06, GS08] without idealized assumptions. Such proofs are still missing in
the context of post-quantum cryptography so far.
In the lattice world, there are two main families of proof systems: Schnorr-like proofs [Sch96,
Lyu09] and Stern-like proofs [Ste96], named after their respective authors. The �rst family
works on some structured lattices. Exploiting this structure allows for more compact proofs,
while the expressiveness of statements is quite restricted. The second kind of proofs is
combinatorial and works on the representation of lattice elements (as matrix and vectors).
By nature, these proofs are quite expensive in term of communication complexity. However,
they can be used to prove a wide variety of statements as we will explain in more details
along this thesis and especially in Section 4.3. More generally, zero-knowledge proofs are
detailed in Chapter 4.

1.1.2 Signatures with E�cient Protocols

To enable privacy-preserving functionalities, a possible avenue is to couple zero-knowledge
proofs with signature schemes. One of such signatures are signatures with e�cient protocols.
This primitive extends the functionalities of ordinary digital signature schemes in two ways:
(i) It provides a protocol to allow a signer to obliviously sign a hidden message and (ii) Users
are able to prove knowledge of a hidden message-signature pair in a zero-knowledge
fashion.
These two properties turn out to be extremely useful when it comes designing e�cient
anonymity-related protocols such as anonymous credentials or e-cash. The design of
e�ective signatures with e�cient protocols is thus important for privacy-preserving cryp-
tography.
In this thesis, we provide two of these signature schemes. One of them, described in Chap-
ter 6, based on pairings, shifts the [LPY15] signature scheme to an idealized but practically
acceptable model, aiming at e�ciency. The other, described in Chapter 7, adapts a variant
of Boyen’s signature [Boy10, BHJ+15] along with the Kawachi-Tanaka-Xagawa commit-
ment scheme [KTX08] to provide a lattice-based signature schemes that is compatible with
Stern-like proofs. This scheme has also been relaxed in the context of adaptive oblivious
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transfer where, in some places, it is only required to have random-message security instead
of security against chosen-message security as described in Chapter 9.

1.2 Pairings and Lattices

In this thesis, the proposed constructions rely on the assumed hardness of assumptions
over pairing-friendly groups and lattices. These two objects have widely been used in
cryptography since the early 2000s [SOK00, Reg05]. Even since, they attracted much
attention from cryptographers, leading to multiple constructions in advanced cryptography
(as in [Jou00, BBS04, BN06, GS08, LYJP14, LPQ17] for pairings, and [GPV08, ABB10, BV11,
GSW13, dPLNS17] for lattices).

1.2.1 Pairing-Based Cryptography

A pairing is a bilinear map from two cyclic source groups to a target group. This bilinear
property takes advantage of a rich structure to groups that are compatible with such a
map. It is then not surprising to see the variety of schemes that stems from pairing-based
cryptography. In the context of privacy-based cryptography, an important breakthrough
was the introduction of Groth-Sahai proofs [GOS06, GS08] that allow proving in a non-
interactive zero-knowledge fashion a large class of statements in the standard model. For
instance, Groth-Sahai proofs have been used in group signatures and anonymous-credential
schemes [Gro07, BCKL08, BCC+09], or e-cash systems in the standard model [BCKL09].
In this thesis, however, our pairing-based constructions focus on practicality. Thus, they are
instantiated in the random oracle model, where Schnorr’s proof are made non-interactive
through the Fiat-Shamir transform when the statement to prove is simple enough.
A recent line of work in cryptanalysis of bilinear maps [KB16, MSS17, BD18] led to a change
in the panorama of practical pairing-based cryptography. This a�ects us in the sense that
security parameter has to be increased in order to achieve the same security level.
Nevertheless, pairing-based cryptography o�ers a nice tradeo� between its capabilities and
e�ciency. As an example, we can cite the work of Döttling and Garg [DG17b], who closed
the problem of providing an identity-based encryption scheme which only relies on the
Di�e-Hellman assumption (it is construction on cyclic groups that does not need pairings,
as de�ned in De�nition 2.11). While their construction relies on a simpler mathematical
object, it does not reach the e�ciency of pairing-based ones [BB04].

1.2.2 Lattice-Based Cryptography

From an algebraic point of view, a lattice is a discrete subgroup of Rn, which leads to a
simple additive structure. The core di�erence with number-theoretic cryptography, such as
discrete-logarithm-based cryptography, is the existence of the geometrical structure of the
lattice. From this geometry rises some problems that are believed to withstand quantum
computers. Despite this apparently simple structure, some advanced primitives are only
known, as of today, to be possible under lattice assumptions, such as fully-homomorphic
encryption [Gen09, BV11, GSW13].
The versatility of lattice-based cryptography is enabled by the existence of lattice trap-
doors [GPV08, CHKP10, MP12], as we explain in Section 3.2.2. Informally, the knowl-
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edge of a short basis for a lattice allows sampling short vectors, which is believed to
be hard without such a short basis. Furthermore, knowing a short basis for the lattice
{v ∈ Zm | Az = 0 mod q} described by matrix A ∈ Zn×mq makes it possible to generate
a short basis for a related lattice described by [A | B] ∈ Zn×m′q . An application for this
property is Boyen’s signature scheme [Boy10]. In this scheme, a signature for message
m is a short vector in the orthogonal lattice of the matrix Am = [A | Bm], where Bm

is publicly computable. Hence, knowing a trapdoor for A makes the computation of this
short vector possible, and the message is bound to the description of the lattice Am.
Still, the use of lattice trapdoors comes at a price, as it signi�cantly decreases the e�ciency
of cryptographic designs that use them [Lyu12, LLNW16]. Given that we provide the �rst
lattice-based construction for the scheme we present, we focused on designing provably-
secure scheme under well-studied assumptions.

1.3 Our Results

In this thesis, we present several cryptographic constructions that preserve privacy. These
constructions are the result of both improvements we made in the use of zero-knowledge
proofs and the ability to prove the security of our constructions under standard assumptions.
We believe that these advances on zero-knowledge proofs are of independent interest and
that the given schemes are a step towards quantum-secure privacy-preserving cryptography.
In the following, we detail four contributions that are developed in this thesis. These results
are taken from four published articles: [LMPY16, LLM+16a, LLM+16b, LLM+17].

1.3.1 Dynamic Group Signatures and Anonymous Credentials

In Part II, we present two primitives: dynamic group signatures and anonymous credentials.
We already described the behavior of anonymous credential in Section 1.1. As for dynamic
group signatures, they are a primitive that allows a group of users to authenticate messages
on behalf of the group while remaining anonymous inside this group. The users still remain
accountable for their actions, as another authority knows a secret information that gives it
the ability to lift anonymity of misbehaving users.
By itself, this primitive can be used to provide anonymous authentications while providing
accountability (which is not the case with anonymous credentials). For instance, in the
Internet of things, such as smart cars, it is important to provide authenticated communica-
tion channels as well as anonymity. For car communications, if exchanged data may not
be sensitive by themselves, the identity of the driver could be. We can imagine a scenario
where some burglars eavesdrop a speci�c car to know whenever a house is empty.
In this thesis, we present in Chapter 6 pairing-based group signatures that aims at e�ciency
while relying on simple assumptions. The resulting scheme shows competitive signature
size with other schemes that rely on more ad-hoc assumptions, and its practicality is
supported by an implementation. This scheme is presented in [LMPY16], which is joint
work with Benoît Libert, Thomas Peters an Moti Yung presented at AsiaCCS’16.
Chapter 7 presents the �rst dynamic group signature scheme relying on lattice assumptions.
This has been made possible by adapting Stern-like proofs to properly interact with a
signature scheme: a variant of Boyen’s signature [Boy10, BHJ+15]. It results in a signature
with e�cient protocols that is of independent interest. Later, it has been adapted in the
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design dynamic group encryption [LLM+16b] and adaptive oblivious transfer [LLM+17].
This work is described in [LLM+16a], made with Benoît Libert, San Ling, Khoa Nguyen
and Huaxiong Wang and presented at Asiacrypt’16.

1.3.2 Group Encryption

Group encryption schemes [KTY07] are the encryption analogue of group signatures. In
this setting, a user is willing to send a message to a group member, while keeping the
recipient of the message hidden inside the group. In order to keep user accountable for
their actions, an opening authority is further empowered with some secret information
allowing it to un-anonymize ciphertexts.
More formally, a group signature scheme is a primitive allowing the sender to generate
publicly veri�able proofs that: (1) The ciphertext is well-formed and intended to some
registered group member who will be able to decrypt; (2) The opening authority will be
able to identify the receiver if necessary; (3) The plaintext satis�es certain properties,
such as being a witness for some public relation. In the model of Kiayias, Tsiounis and
Yung [KTY07], the message secrecy and anonymity properties are required to withstand
active adversaries, which are granted access to decryption oracles in all security de�nitions.
A natural application is to allow a �rewall to �lter all incoming encrypted emails ex-
cept those intended for some certi�ed organization members and the content of which
is additionally guaranteed to satisfy certain requirements, like the absence of malware.
Furthermore, group encryption schemes are motivated by privacy applications such as
anonymous trusted third parties, key recovery mechanisms or oblivious retriever storage
system. In cloud storage services, group encryption enables privacy-preserving asyn-
chronous transfers of encrypted datasets. Namely, it allows users to archive encrypted
datasets on remote servers while convincing those servers that the data is indeed intended
to some anonymous certi�ed client who has a valid account to the storage provider. In case
of suspicions on the archive’s content, a judge should be able do identify the recipient of
the archive.
To tackle the problem of designing lattice-based group encryption, we needed to handle
“quadratic relations”. Indeed, lattice-based zero-knowledge proof systems were able to
handle only relations where witnesses are multiplied by a public value. Let us recall that,
in Learning-With-Errors schemes, an encryption have the form A · s + e + md q2e mod q,
where A is the recipient public-key. As group encryption requires this public-key A to
be private, a way to achieve this is to have a zero-knowledge proof system which handles
relations where the witness is multiplied with a private matrix.
We address this issue introducing new technique to handle this kind of relations. These
techniques, based on a divide-and-conquer strategy, are described in Chapter 8, as well
as the construction of the group encryption scheme proven fully-secure in the standard
model. This work have been presented at Asiacrypt’16 [LLM+16b] and have been done
with Benoît Libert, San Ling, Khoa Nguyen and Huaxiong Wang.

1.3.3 Adaptive Oblivious Transfer

Oblivious transfer is a primitive coined by Rabin [Rab81] and later extended by Even,
Goldreich and Lempel [EGL85]. It involves a server with a database of messages indexed
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from 1 to N and a receiver with a secret index ρ ∈ {1, . . . , N}. The protocol allows the
receiver to retrieve the ρ-th message from the database without letting it infer anything on
his choice. Furthermore, the receiver only obtains the ρ-th message and learns nothing
about the other messages.
In its adaptive �avor [NP99], oblivious transfer allows the receiver to interact k times
with the server to obtain k messages in such a way that, each request may depend on the
previously retrieved messages.
From a theoretical point of view, oblivious transfer is known to be a complete building
block for cryptography in the sense that, if it can be realized, then any secure multiparty
computation can be. In its adaptive variant, oblivious transfer has applications in privacy-
preserving access to sensitive databases (such as medical records or �nancial data) stored
in an encrypted form on a remote server.
In its basic form, (adaptive) oblivious transfer does not restrict in any way the population
of users who can obtain speci�c records. In many sensitive databases (e.g., DNA samples
or patients’ medical history), however, not all users should be able to access the whole
database. It is thus crucial to protect the access to certain entries conditioned on the receiver
holding suitable credentials delivered by authorities. At the same time, privacy protection
requires that authorized users should be able to query database records while leaking as
little as possible about their interests or activities.
This requirements is handled by endowing oblivious transfer with access control, as stated
by Camenish, Dubovitskaya and Neven [CDN09]. In this variant, each database record is
protected by a di�erent access control policy. Based on their attributes, users can obtain
credentials from pre-determined authorities, which entitle them to anonymously retrieve
database records of which the access policy accepts their certi�ed attributes. During
the transfer phase, the user demonstrates, in a zero-knowledge manner, possession of an
attribute string compatible with the policy of a record in the database, as well as a credential
for this attribute. The only information that the database holder eventually learns is that
some user retrieved some record which he was authorized to obtain.
To achieve this, an important property is the expressiveness of such access policies. In
other words, the system should be able to handle complex attribute policies while keeping
time and memory consumption reasonable2. In this thesis, we propose in Chapter 9 a
zero-knowledge protocol to e�ciently handle any access policy that can be described
with a logarithmic-depth boolean circuit, also known as NC1, based on lattices. In the
context of adaptive oblivious transfer with access control, most of the schemes (based
on pairing assumptions) manage to handle the case of conjunctions under reasonable
assumptions [CDN09, CDNZ11, ACDN13]. Under strong assumptions, however, the case
of NC1 can be taken care of [ZAW+10].
This joint work with Benoît Libert, San Ling, Khoa Nguyen and Huaxiong Wang was
presented at Asiacrypt’17 [LLM+17].

2Here, “reasonable” means (probabilistic) polynomial time.
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Chapter2

Security Proofs in Cryptography

Provable security is a sub�eld of cryptography where constructions are proven secure with
respect to a security model. To illustrate this notion, let us take the example of public-key
encryption schemes. This primitive consists in three algorithms: key generation, encryption
and decryption. These algorithms acts according to their names. Naturally, the question of
“how to de�ne the security of this set of algorithms” arises. To answer this question, we have
to de�ne the power of the adversary, and its goal. In cryptography, many approaches have
been used to de�ne this (random oracle model, universal composability (UC) [Can01]. . . )
which give rise to stronger security guarantees. If one aims at the strongest security for
its construction, there are known impossibility results in strong models. For instance, in
the UC model, it is impossible to realize two-party computation [Yao86] without trusted
setup [CKL06], while it is possible in the plain model [LP07].
In this chapter, we will focus on the computational complexity elements we need to de�ne
properly the security models we will use in this thesis. Then we will de�ne these security
models.

2.1 Security Reductions

Provable security provides constructions for which security is guaranteed by a security
proof, or security reduction. The name “reduction” comes from computational complexity. In
this �eld of computer science, research focuses on de�ning equivalence classes for problems
or hierarchical relations between them, based on the necessary amount of resources to
solve them. In order to de�ne lower bounds for the complexity of some problems, a classical
approach is to provide a construction that goes from an instance of a problem A to an
instance of problem B such that, if a solution of B is found, then so is a solution of A. This
amounts to saying that problem B is at least as hard as problem A up to the complexity of
the transformation. For instance, Cook has shown that satis�ability of Boolean formulas is
at least as hard as every problem in NP [Coo71] up to a polynomial-time transformation.
Let us now de�ne more formally the notions of reduction and computability using the
computational model of Turing machines.

De�nition 2.1 (Turing Machine). A k-tape Turing Machine (TM) is described by a triple
M = (Γ, Q, δ) containing:

11



2. Security Proofs in Cryptography

• A �nite set Γ, called the tape alphabet, which contains symbols that the TM uses
in its tapes. In particular, Γ contains a blank symbol “�”, and “.” that denotes the
beginning of a tape.

• A �nite set Q called the states of the TM. It contains special states qstart, qhalt, called
respectively the initial state and the halt state.

• A function δ : (Q\{qhalt})×Γk−1 → Q×Γk−1×{←, ↓,→}k , called the transition
function, that describes the behavior of the internal state of the machine and the TM
heads.
Namely, δ(q, a1, . . . , ak−1) = (r, b2, . . . , bk,m1, . . . ,mk) means that upon reading
symbols (a1, . . . , ak−1) on tapes 1 to k − 1 (where the �rst tape is the input tape,
and the k-th tape is the output tape) on state q, the TM will move to state r, write
b2, . . . , bk on tapes 2 to k and move its heads as dictated by m1, . . . ,mk.

A TM M is said to compute a function f : Σ? → Γ? if, for any �nite input x ∈ Σ? on tape
T1, blank tapes T2, . . . , Tk with a beginning symbol . and initial state qstart, M halts in a
�nite number of steps with f(x) written on its output tape Tk.
A TM M is said to recognize a language L ⊆ Σ? if, on a �nite input x ∈ Σ? written on its
input tape T1, blank tapes T2, . . . , Tk with a beginning symbol . and initial state qstart, the
machine M eventually ends on the state qhalt with 1 written on its output tape if and only
if x ∈ L.
A TM M is said to run in T (n)-time if, on any input x, it eventually stops within T (|x|)
steps.
A TM M is said to run in S(n)-space if, on any input x, it eventually stops after having
written at most S(|x|) memory cells in its working tapes.

Turing machines are a computational model that proved useful in complexity theory as it is
convenient to evaluate the running time of a Turing machine, which amounts to bounding
the number of steps the machine can take. Similarly, the working tapes works analogously
to the memory of a program, and then counting the number of cells the machine uses is
equivalent to evaluating the amount of memory the program requires.
From these considerations, it is possible to describe the time and space complexity of a
program from the de�nition of Turing machines. In our context, we will work with Turing
machines that run in polynomial-time and space, as polynomials bene�t from good stability
properties (sum, product, composition, . . . ).

De�nition 2.2 (P [Rab60]). The class P describes the set of languages that can be recognized
by a Turing machine running in time T (n) = O(poly(n)).

In theoretical computer science, the class P is often considered as the set of “easy” problems.
These problems are considered easy in the sense that the growth of the cost to solve them
is asymptotically negligible in front of other functions such as exponential. In this context,
it is reasonable to consider the computational power of an adversary as polynomial (or
quasi-polynomial) in time and space. As cryptographic algorithms are not deterministic,
we also have to consider the probabilistic version of the computation model.
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Figure 2.1 – Illustration of a polynomial-time reduction from A to B [AB09, Fig. 2.1].

De�nition 2.3 (Probabilistic Turing machine). A probabilistic Turing machine is a Turing
machine with two di�erent transition functions δ0 and δ1 where, at each step, a random
coin is tossed to pick δ0 or δ1 with probability 1/2 independently of all the previous choices.
The machine only outputs accept and reject depending on the content of the output tape
at the end of the execution. We denote by M(x) the random variable corresponding to the
value M writes on its output tape at the end of its execution.

De�nition 2.4 (PP [Gil77]). The class PP describes the set of languages L ⊆ Σ? that a
Turing machine M recognizes such that the TM M stops in time poly(|x|) on every input
x and {

Pr [M(x) = 1 | x ∈ L] > 1
2

Pr [M(x) = 0 | x /∈ L] ≤ 1
2

.

In the following PPT stands for “probabilistic polynomial time”.

We de�ned complexity classes that corresponds to natural sets of programs that are of
interest to us. In order to work with them, we will de�ne the principle of polynomial time
reduction.

De�nition 2.5 (Polynomial time reduction). A language A ⊆ {0, 1}? is polynomial-time
reducible to a language B ⊆ {0, 1}?, denoted by A �P B, if there is a polynomial-time
computable function f : {0, 1}? → {0, 1}? such that for every x ∈ {0, 1}?, x ∈ A if and
only if f(x) ∈ B.

In other words, a polynomial reduction from A to B is the description of a polynomial time
algorithm (also called “the reduction”), that uses an algorithm for B in a black-box manner
to solve A. This is illustrated in Figure 2.1.
To write down that a TM has black-box access to a TM MO that computes function O, we
sometimes use the oracle terminology.

De�nition 2.6 (Oracle machine). A Turing Machine M is said to have oracle access to a
function O(·) if it has access to the result of O(x) for any input x of its choice in constant
time. We denote the output of M on input x with oracle O by MO(x).
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We can notice that P and PP are both closed under polynomial-time reduction. Namely, if a
problem is easier than another problem in P (resp. PP), then the former problem is also in
P (resp. PP).
Until know, we mainly focus on the running time of the algorithms. In cryptology, it is
also important to consider the success probability of algorithms: an attack is successful if
the probability that it succeeds is noticeable.

De�nition 2.7 (Landau notations). Let f, g be two functions from N to R. Let us de�ne
the so-called Landau notations to asymptotically compare functions.

f is bounded by g: f(x) = O(g(x)) if there exists a constant k > 0 such that |f(n)| ≤
k · |g(n)| eventually.

f is not dominated by g: f(x) = Ω(g(x)) if there exists a constant k > 0 such that
|f(n)| ≥ k · |g(n)| eventually.

f is bounded by g from above and below: f(x) = Θ(g(x)) if f(x) = O(g(x)) and
f(x) = Ω(g(x)).

g dominates f : f(x) = o(g(x)) if for any k > 0, f(n) ≥ k · |g(n)| eventually.

f dominates g: f(x) = ω(g(x)) if for any k > 0, |f(n)| > k · |g(n)| eventually.

De�nition 2.8 (Negligible, noticeable, overwhelming probability). Let f : N→ [0, 1] be
a function. The function f is said to be negligible if f(n) = n−ω(1), and this is written
f(n) = negl(n).
Non-negligible functions are also called noticeable functions.
Finally, if f = 1− negl(n), f is said to be overwhelming.

Now, we have to de�ne two more notions to be able to work on security proofs. Namely,
the security notions and the hardness assumptions. The former are the statements we need
to prove, and the latter are the hypotheses on which we rely.
The details of the hardness assumptions we use are given in Chapter 3. Nevertheless, some
notions are common to these and are evoked here.
The con�dence one can put in a hardness assumption depends on many criteria. First of
all, a weaker assumption is preferred to a stronger one. To illustrate this, let us consider
the two following assumptions:

De�nition 2.9 (Discrete logarithm). The discrete algorithm problem is de�ned as follows.
Let (G, ·) be a cyclic group of order p. Given g, h ∈ G, the goal is to �nd the integer a ∈ Zp
such that: ga = h.
The discrete logarithm assumption is the intractability of this problem for any PPT algorithm
with noticeable probability.

De�nition 2.10 (Indistinguishability). Let D0 and D1 be two probabilistic distributions
and par be public parameters. Let us de�ne the following experiments ExpDist

D,0 and ExpDist
D,1

for any algorithm D:
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ExpDist
D,b (λ)

x←↩ Db

b′ ← D(1λ, par, x)
return b′

The advantage of an adversary D for this game is de�ned as

AdvDist
D (λ) ,

∣∣∣Pr
[
ExpDist

D,1 (λ) = 1
]
− Pr

[
ExpDist

D,0 (λ) = 1
]∣∣∣ .

A PPT algorithm which has a noticeable advantage for the above experiments is called a
distinguisher between D0 and D1.
Two distributions D0 and D1 are computationally indistinguishable if there does not exist
any PPT distinguisher between those two distributions.

De�nition 2.11 (Decisional Di�e-Hellman). Let G be a cyclic group of order p. The
decisional Di�e-Hellman (DDH) distribution is

DDDH , {(g, ga, gb, gab) | g ←↩ U(G), a, b←↩ U(Zp)}.

The DDH assumption states that the distributions DDDH and U(G4) are computationally
indistinguishable given the public parameter G (the description of the group).

The discrete logarithm assumption is implied by the decisional Di�e-Hellman assumption
for instance. This is why it is preferable to work with the discrete logarithm assumption
when it is possible. For instance, there is no security proofs for the El Gamal encryption
scheme from DLP.
Another criterion to evaluate the security of an assumption is to look if the assumption
is “simple to state” or not. This observation is buttressed by the statement of [KL07,
p.25]: “. . . there is a general preference for assumptions that are simpler to state, since such
assumptions are easier to study and to refute.”.
Indeed, it is complicated to evaluate the security of an assumption as q-Strong Di�e-
Hellman assumptions de�ned as follows.

De�nition 2.12 (q-Strong Di�e-Hellman assumption [BB04, BBS04]). In a cyclic group
G, the q-Strong Di�e-Hellman (q-SDH) problem is, given g, ga, ga2

, . . . , ga
q , compute the

element gaq+1 .

The security of this assumption inherently depends on the parameter q of the assumption.
Cheon additionally showed that, for large values of q, this assumption is no more trustwor-
thy [Che06]. These parameterized assumptions are called q-type assumptions. There also
exist other kinds of non-static assumptions, such as interactive assumptions. An example
can be the “1-more-DL” assumption. Given oracle access to n discrete logarithm queries (n
is not known in advance), the 1-more-DL problem is to solve a n+ 1-th discrete logarithm.
These non-interactive assumptions are furthermore non-falsi�able according to the de�ni-
tion of Naor [Nao03]. Non-interactive and constant-size assumptions are sometimes called
“standard”.
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The next important aspect of a security proof is the model in which it takes place. This is
the purpose of the next section.

2.2 Random-Oracle Model and Standard Model

Security proofs should preferably stand in the standard model of computation, where
no idealization is assumed on behalf of the building blocks. In this model, no implicit
assumptions are assumed.
For instance, cryptographic hash functions enjoy several di�erent associated security
notions [KL07]. On of the weakest is the collision resistance, that states that it is intractable
to �nd two strings that map to the same digest. A stronger notion is the second pre-image
resistance, that states that given x ∈ {0, 1}?, it is not possible for a PPT algorithm to
�nd an x̃ ∈ {0, 1}? such that h(x) = h(x̃). Similarly to what we saw in the previous
section about DDH and DLP, we can see that collision resistance implies second pre-image
resistance. Indeed, if there is an attacker against second pre-image, then one can choose a
string x ∈ {0, 1}? and obtains from this attacker another string x̃ 6= x ∈ {0, 1}? such that
h(x) = h(x̃). Hence, a hash function that is collision resistant is also second pre-image
resistant.
The random oracle model [FS86, BR93], or ROM, is an idealized security model where
hash functions are assumed to behave as a truly random function. This implies collision
resistance (if the codomain of the hash function is large enough) and other security notions
related to hash functions. In this model, hash functions are modeled as oracles in the
view of the adversary. These oracles are controlled by the reduction, meaning that the
reduction can program the hash function as it likes as long as the responses look random and
independent. Moreover, the reduction has access to the conversation between the adversary
and the random oracle. It thus eventually knows all inputs for which the adversary chose
to evaluate the function.
We can notice that this computation model is unrealistic [CGH98]. Let us construct a
counter-example. Let Σ be a secure signature scheme, and let Σy be the scheme that returns
Σ(m) as a signature if and only if h(0) 6= y and 0 as a signature otherwise. In the ROM
h behaves as a random function. Hence, the probability that h(0) = y is negligible with
respect to the security parameter for any �xed y. On the other hand, it appears that when h
is instantiated with a real-world hash function, then Σh(0) is the null function, and therefore
completely insecure as a signature scheme. �

In this context, one may wonder why is theROM still used in cryptographic proofs [LMPY16,
LLM+16a]. One reason is that some constructions are not known to exist yet from the
standard model. For instance, non-interactive zero-knowledge (NIZK) proofs for all NP
languages is not known to follow solely from lattice assumptions [Ste96, Lyu08]. NIZK
proofs form an elementary building block for privacy-based cryptography. In the lattice
setting, we do not have much better options that using random oracles [LLM+16a]. An-
other reason to use the ROM in cryptography, is because it enables much more e�cient
constructions and we have no example of a failure in the random oracle methodology for
a natural cryptographic construction [BR93]. The example we built earlier is arti�cial,
and in practice there is no known attacks against the ROM for a natural scheme used in
real-life applications. Thus, for practical purposes, constructions in the ROM are usually
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ExpIND-CPA
A,b (λ)

(pk, sk)← E .keygen(1λ)
(m0,m1)← A(pk, 1λ)
ct← E .enc(mb)
b′ ← A(pk, 1λ, ct)
return b′

(a) IND-CPA game for PKE

ExpEU−CMA
A (λ)

(vk, sk)← Σ.keygen(1λ)
st← ∅;Ssign = ∅
while A(query, vk, st,O sign( sk,· )) do;
(m?, σ?)← A(forge, vk, st)
return (vk,Ssign,m

?, σ?)

(b) EU-CMA game for signatures

Figure 2.2 – Some security games examples.

more e�cient. For instance, the scheme we present in Chapter 6 adapts the construction
of dynamic group signature in the standard model from Libert, Peters and Yung [LPY15]
to the ROM. Doing this transform reduces the signature size from 32 elements in G, 14
elements in Ĝ and one scalar in the standard model [LPY15, App. J] down to 7 elements in
G and 3 scalars in the ROM.
We now have de�ned the context we are working on and the base tools that allows security
proofs. The following section explains how to de�ne the security of a cryptographic
primitive.

2.3 Security Games and Simulation-Based Security

In order to de�ne security properties, a common manner is to de�ne security games (or
experiments) [GM82, Sho06].
Two examples of security game are given in Figure 2.2: to formalize the notions of indis-
tinguishability under chosen-plaintext attacks (IND-CPA) for public-key encryption (PKE)
schemes and existential unforgeability under chosen message attacks (EU-CMA) for signature
schemes.
IND-CPA security is modeled by an indistinguishability game, meaning that the goal for
the adversary A against this game is to distinguish between two messages from di�erent
distributions. To model this, for any adversary A, we de�ne a notion of advantage for the
IND-CPA game as

AdvIND-CPA
A (λ) ,

∣∣∣Pr
[
ExpIND-CPA

A,1 (λ) = 1
]
− Pr

[
ExpIND-CPA

A,0 (λ) = 1
]∣∣∣ .

We say that a PKE scheme is IND-CPA if, for any PPT A, the advantage of A in the
IND-CPA game is negligible with respect to λ.
This de�nition of advantages models that the adversary is unable to distinguish whether
the ciphertext ct comes from the experiment ExpIND-CPA

A,0 or the experiment ExpIND-CPA
A,1 .

As a consequence, the adversary cannot get a single bit of information about the ciphertext.
This kind of de�nition is also useful to model anonymity. For instance in Section 5.3.4, the
de�nition of anonymity for group signatures is de�ned in a similar fashion (De�nition 5.5).
To handle indistinguishability between distributions, it is useful to quantify the distance
between two distributions. In this context, we de�ne the statistical distance as follows.
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De�nition 2.13 (Statistical Distance). Let P and Q be two distributions. The statistical
distance ∆(P,Q) between P and Q is de�ned as

∆(P,Q) , 1
2

∑
x∈Supp(P )∪Supp(Q)

|P (x)−Q(x)|.

Two distributions are statistically close if their statistical distance is negligible with respect
to the security parameter. It is worth noticing that if two distributions are statistically close,
then the advantage of an adversary in distinguishing between them is negligible.
Notation. P ≈s Q means that P is statistically close to Q.
Another interesting metric, that will be used in the security proof of is the Rényi Divergence:

De�nition 2.14 (Rényi divergence). For any two discrete distributions P and Q such that
Supp(P ) ⊆ Supp(Q), and a ∈]1,+∞[, we de�ne the Rényi divergence of order a by:

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

We de�ne the Rényi divergences of orders 1 and +∞ as:

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log P (x)
Q(x)

 and R∞(P ||Q) = max
x∈Supp(P )

P (x)
Q(x) .

The divergence R1 is the (exponential) of the Kullback-Leibler divergence.

Bai, Langlois, Lepoint, Stehlé and Steinfeld [BLL+15] observed that the Rényi Divergence
has a property similar to the triangular inequality with respect to multiplication, and can be
useful in the context of unforgeability game as we will explain it in the following paragraph.
Prest further presented multiple uses of the Rényi Divergence in [Pre17].
We notice that security de�nitions for signature scheme are not indistinguishability-based
experiments, but search experiments (i.e., the adversary has to output a string rather
than distinguishing between two experiments by outputting a single bit). The goal of the
adversary is not to distinguish between two distributions, but to forge a new signature
from what it learns via signature queries.
Those signature queries are handled by an oracle O sign( sk,· ), which on input m returns
the signature σ = Σ.sign(sk,m) and adds σ to Ssign. The initialization of these sets and
the oracle’s behavior may be omitted in the rest of this thesis for the sake of readability.
For EU-CMA, the advantage of an adversary A is de�ned as

AdvEU-CMA
A (λ) , Pr

[
Σ.verif(vk,m?, σ?) = > ∧ σ? /∈ Ssign

]
.

A signature scheme is considered unforgeable under chosen message attacks if, for any
PPT adversary A, the advantage of A is negligible with respect to λ.
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Real world

Â C

E real

≈

Ideal world

Â′ C′

E ideal

F

Figure 2.3 – Simulation-based cryptography.

This means that, within reasonable expected time1, no adversary can create a new valid
signature without the signing key (sk). This kind of de�nitions are often used in the case
of authentication primitives. In our example of group signatures in Part II, the security
against misidenti�cation attacks (or traceability) experiment follows the same structure.
This security notion illustrates that no collusion between malicious users and the group
authority can create valid signatures that open on an honest user, or do not open to a valid
registered user.
The security de�nition of IND-CPA is de�ned via an indistinguishability experiment. The
�rst security de�nition for PKE was nevertheless a simulation-based de�nition [GM82].
In this context, instead of distinguishing between two messages, the goal is to distinguish
between two di�erent environments. In the following, we will use the Real world/Ideal world
paradigm [Can01] to describe those di�erent environments. Namely, for PKE, it means that,
for any PPT adversary Â – in the Real world – that, interacts with a challenger C, there
exists a PPT simulator Â′ – in the Ideal world – that interacts with the same challenger C′
with the di�erence that the functionality F is replaced by a trusted third party in the Ideal
word.
In other words, it means that the information that Â obtains from its interaction with the
challenger C does not allow A to lean any more information than it does via black-box
access to the functionality.
In the context of PKE, the functionality is the access to the public key pk as described in
Line 2 of ExpIND-CPA

A,b (λ). Therefore, the existence of a simulator Â that does not use pk
shows that A does not learn anything from pk.
For PKE, the simulation-based de�nition for chosen-plaintext security is equivalent to
the indistinguishability security [Gol04, Se. 5.2.3], even if the two security de�nitions are
conceptually di�erent. As indistinguishability-based model are often easier to work with,
they are more commonly used to prove security of PKE schemes. For other primitives, such
as Oblivious Transfer (OT) described in Chapter 9, the simulation-based de�nitions are
strictly stronger than indistinguishability de�nitions [NP99]. Therefore, it is preferable to
have security proofs of the strongest possible de�nitions in theoretical cryptography.
Even though, the question of which security model is the strongest remains a complex one,
as it depends on many parameters: the answer mainly depends on the manner the scheme

1Reasonable time may have multiple de�nitions, in the context of theoretical cryptography, we assume
that quasi-polynomial time is the upper bound of reasonable.
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will be used as well as the adversarial model. For example, we know from the work of
Canetti and Fischlin [CF01] that it is impossible to construct a UC-secure bit commitment
scheme2 in the plain model, while the design of such a primitive is possible assuming a
trusted setup. In the trusted setup model or common reference string (CRS) model, all the
participants are assumed to have access to a common string crs ∈ {0, 1}? that is drawn
from some speci�c distribution Dcrs.

2The de�nition of a commitment scheme is given in De�nition 4.5. To put it short, it is the digital equivalent
of a safe.
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Chapter3

Underlying Structures

In the previous chapter, we saw that cryptography has to rely on computational hardness
assumptions. Besides information-theoretic cryptography, most hardness assumptions are
built on top of suitable algebraic structures. For instance the discrete logarithm assumption
(De�nition 2.9) is based on a cyclic group structure.
The existence of such structures proves useful when it comes to designing protocols. For
this purpose, constructions take advantage of the mathematical properties of the structure
to enable the functionality. An example is the multiplicative homomorphism of the ElGamal
cryptosystem which is made possible by underlying cyclic group structure.
In this chapter, we describe the di�erent structures on which the cryptographic primitives
we design in this thesis are based on, namely bilinear groups and lattices, as well as related
hardness assumptions.

3.1 Pairing-Based Cryptography

Pairing-based cryptography was introduced by Sakai, Ohgishi and Kasahara [SOK00] to gen-
eralize Di�e-Hellman key exchange to three users in one round. Since then, many construc-
tions have been proposed for cryptographic constructions, such as identity-based encryp-
tion [BF01, Wat05] or group signatures [BBS04]. Multiple constructions and parameter sets
coexist for pairings. Real-world implementation are based on elliptic curves [BN06, KSS08],
but recent advances in cryptanalysis requires to reassess the security level of pairing-based
cryptography [KB16, MSS17, BD18].
In the following, we adopt black-box de�nitions of cryptographic pairings as bilinear maps,
and on the assumed hardness of classical constant-size assumptions over pairing-friendly
groups, namely SXDH and SDL. The notations 1G, 1

Ĝ
and 1GT denote the identity elements

in G, Ĝ and GT respectively.

De�nition 3.1 (Pairings [BSS05]). A pairing is a map e : G× Ĝ→ GT over cyclic groups
of order p that veri�es the following properties for any g ∈ G, ĝ ∈ Ĝ:

(i) bilinearity: for any a, b ∈ Zp, we have e(ga, ĝb) = e(gb, ĝa) = e(g, ĝ)ab.

(ii) non-degeneracy: e(g, ĝ) = 1GT ⇐⇒ g = 1G or ĝ = 1Ĝ.
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(iii) the map is computable in polynomial time in the size of the input.

For cryptographic purposes, pairings are usually de�ned over elliptic curves, hence GT is a
multiplicative subgroup of the multiplicative group of a �nite �eld.
The most standard assumptions over pairings are derived from the equivalent of the Di�e-
Hellman assumptions from cyclic groups, described in De�nition 2.11. This hypothesis is
used to de�ned the SXDH assumption [Sco02] as follows.

De�nition 3.2 (SXDH [BGdMM05, As. 1]). The Symmetric eXternal Di�e-Hellman (SXDH)
assumption holds if the DDH assumption holds both in G and Ĝ.

The advantages of the best PPT adversary against DDH in group G and Ĝ are written
AdvDDH

G and AdvDDH
Ĝ

respectively. Both of those quantities are assumed negligible under
the SXDH assumption.
In Chapter 6, the security of our group signature scheme relies on the SXDH assumption,
which is a well-studied assumption. Moreover, this assumption is static, meaning that the
size of the assumption is independent of the number of queries made py the adversary or
any feature (e.g., the maximal number of users) of the system, and is non-interactive, in the
sense that it does not involve any oracle.
This gives us stronger con�dence in the security of schemes proven under this kind of
assumptions. For instance, Cheon gave an attack against the q-Strong Di�e-Hellmann
problem for large values of q [Che06] (which usually represents the number of adversarial
queries).
In Chapter 6, we also rely on the following assumption, which generalizes the Discrete
Logarithm problem to asymmetric groups.

De�nition 3.3 (SDL). In bilinear groups
(
G, Ĝ,GT

)
of prime order p, the Symmetric

Discrete Logarithm (SDL) problem consists in, given
(
g, ĝ, ga, ĝa

)
∈
(
G × Ĝ

)2 where
a←↩ Zp, computing a ∈ Zp.

Like SXDH, this assumption is also static (i.e., constant-size) and non-interactive.

3.2 Lattice-Based Cryptography

During the last decade, lattice-based cryptography has emerged as a promising candidate for
post-quantum cryptography. For example, on the �rst round of the NIST post-quantum com-
petition, there are 28 out of 82 submissions stem from lattice-based cryptography [NIS17].
Lattice-based cryptography takes advantage of a simple mathematical structure in order
to realize advanced functionalities, beyond encryption and signature schemes. For in-
stance, fully homomorphic encryption [Gen09, GSW13] is only known to be possible in
the lattice-based world for now.
In the context of provable security, lattice assumptions bene�t from a worst-case-to-average-
case reduction [Reg05, GPV08, MP12, AFG14]. Concurrently, worst-case lattice problems
have been extensively analyzed in the last decade [ADSD15, ADRSD15, HK17], both classi-
cally and quantumly.
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Figure 3.1 – A lattice Λ with two di�erent basis.

This gives us a good con�dence in lattice assumptions (given the caveats of Chapter 2)
such as Learning-with-Errors (LWE) and Short Integer Solutions (SIS) which are de�ned
in Section 3.2.1. The rest of this section will describe some useful tools that rely on lattice
trapdoors.

3.2.1 Lattices and Hard Lattice Problems

A (full-rank) lattice Λ is de�ned as the set of all integer linear combinations of some linearly
independent basis vectors (bi)1≤i≤n of Rn. The integer n denotes the dimension of the
lattice. A lattice basis is not unique, as illustrated in Figure 3.1 with a dimension 2 lattice.
In the following, we work with q-ary lattices, for some prime number q, de�ned as follows.

De�nition 3.4 (q-ary lattices). Let two integers m ≥ n ≥ 1, a prime q ≥ 2, a matrix
A ∈ Zn×mq and a vector u ∈ Znq , de�ne

Λq(A) , {e ∈ Zm | ∃ s ∈ Znq s.t. AT · s = e mod q} as well as
Λ⊥q (A) , {e ∈ Zm | A · e = 0n mod q}, and
Λu
q (A) , {e ∈ Zm | A · e = u mod q}.

For any lattice point t ∈ Λu
q (A), it holds that Λu

q (A) = Λ⊥q (A) + t, meaning that Λu
q (A)

is a shift of Λ⊥q (A).

De�nition 3.5 (Gaussian distribution over a lattice). For a lattice Λ, a vector c ∈ Rn and a
real σ > 0, de�ne the distribution function ρσ,c(x) , exp(−π‖x− c‖2/σ2). The discrete
Gaussian distribution of support Λ, parameter σ and center c is de�ned as DΛ,σ,c(y) =
ρσ,c(y)/ρσ,c(Λ) for any y ∈ Λ, where ρσ,c(Λ) ,

∑
x∈Λ ρσ,c(x). We denote by DΛ,σ(y)

the distribution centered in c = 0.

Lemma 3.1 ([Ban93, Le. 1.5]). For any lattice Λ ⊆ Rn and positive real number σ > 0, we
have Prb←↩DΛ,σ [‖b‖ ≤ σ

√
n] ≥ 1− 2−Ω(n).

In order to work with lattices in cryptography, hard lattice problems have to be de-
�ned [Ajt96]. In the following we state the Shortest Independent Vectors Problem (SIVPγ).
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This problem reduces to the Learning-with-Errors (LWE) problems and the Short Integer
Solution (SIS) problem as explained later in Lemma 3.2 and 3.3. These links are important
as those are “worst-case-to-average-case” reductions.
By itself, the SIVPγ assumption is not very handy in order to construct new cryptographic
designs. On the other hand, the LWE and SIS assumptions – which are “average-case”
assumptions – are more suitable to design cryptographic schemes.
In order to de�ne the SIVPγ problem and assumption, let us �rst de�ne the successive
minima of a lattice, a generalization of the minimum of a lattice (i.e., the length of a shortest
non-zero vector in a lattice).

De�nition 3.6 (Successive minima). For a lattice Λ of dimension n, let us de�ne for
each i ∈ {1, . . . , n} the i-th successive minimum as

λi(Λ) = inf
{
r | dim (span (Λ ∩ B (0, r))) ≥ i

}
,

where B(c, r) denotes the ball of radius r centered in c.

This leads us to the SIVPγ problem, which is to �nd a set of su�ciently short linearly
independent vectors given a lattice basis.

De�nition 3.7 (SIVPγ). For a dimension-n lattice described by a basis B ∈ Rn×m, and a
parameter γ > 0, the shortest independent vectors problem is to �nd n linearly independent
vectors v1, . . . , vn such that ‖v1‖ ≤ ‖v2‖ ≤ . . . ≤ ‖vn‖ and ‖vn‖ ≤ γ · λn(B).

As explained before, the hardness of this assumption for worst-case lattices implies the
hardness of the following two assumptions in their average-case setting, which are illus-
trated in Figure 3.2. In particular, it means that no polynomial-time algorithm can solve
those problems with non-negligible probability and non-negligible advantage given that
SIVPγ is hard.

De�nition 3.8 (The SIS and ISIS problem). Let m, q, β be functions of n ∈ N and ‖ · ‖
be a norm (e.g., Euclidean norm ‖ · ‖2 or in�nite norm ‖ · ‖∞). The Short Integer Solution
problem SISn,m,q,β is, given A←↩ U(Zn×mq ), �nd x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.
The Inhomogeneous Short Integer Solution ISISn,m,q,β problem is, given A←↩ U(Zn×mq ) and
u ∈ Znq , �nd x ∈ Λu

q (A) with 0 < ‖x‖ ≤ β.

Evidence of the hardness of the SIS and ISIS assumptions is given by the following Lemma,
which reduced these problems from SIVPγ .

Lemma 3.2 ([GPV08, Se. 9]). If q ≥
√
nβ and m,β ≤ poly(n), then SISn,m,q,β and

ISISn,m,q,β problems are both at least as hard as standard worst-case lattice problem SIVPγ
with γ = Õ(β

√
n).

De�nition 3.9 (The LWE problem). Let n,m ≥ 1, q ≥ 2, and let χ be a probability
distribution on Z. For a �xed s ∈ Znq , let As,χ be the distribution obtained by sampling
a←↩ U(Znq ) and e←↩ χ, and outputting (a,aT ·s+e) ∈ Znq ×Zq . The Learning-with-Errors
problem LWEn,q,χ asks to distinguishm samples chosen according toAs,χ (for s←↩ U(Znq ))
and m samples chosen according to U(Znq × Zq).
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LWEn,q,χ problem:

Given m ≥ 1, A←↩ U(Zn×mq ),
e←↩ χm

A , AT
s + e


∈ Zn×mq × Zmq , �nd s ∈ Znq .

SISn,m,q,β problem:

Given

A ∈ Zn×mq , �nd x ∈ Zm

such that

A x = 0n , and

0 < ‖x‖ ≤ β.

Figure 3.2 – Illustration of the LWE and SIS problems.

The worst-case-to-average-case reduction for LWE is stated by the following Lemma.

Lemma 3.3 ([Reg05, Pei09, BLP+13]). If q is a prime power, B ≥
√
nω(logn), γ =

Õ(nq/B), then there exists an e�cient sampleable B-bounded distribution χ (i.e., χ outputs
samples with norm at most B with overwhelming probability) such that LWEn,q,χ is as least
as hard as SIVPγ .

3.2.2 Lattice Trapdoors

In this section, we recall the speci�cations of di�erent algorithms that use “lattice trapdoors”.
A trapdoor for a lattice Λ is a short basis of this lattice. The knowledge of such a basis
allows sampling elements in DΛ,σ within some restrictions given in Lemma 3.5. The
existence of this sampler allows sampling short vectors which is believed to be infeasible
without knowing such a short basis. Indeed, Lemma 3.5 shows that it is possible to sample
a (statistically close to) uniform matrix A ∈ Zn×mq along with a short basis for Λ⊥q (A).
Thus, a vector sampled from DΛ⊥q (A),σ , which is short with overwhelming probabilities
according to Lemma 3.1, is a solution to SISn,m,q,σ√n.
Gentry et al. [GPV08] showed that Gaussian distributions with lattice support can be
sampled e�ciently given a su�ciently short basis of the lattice.
Recall. Given a matrix A, Ã denotes the Gram-Schmidt orthogonalization of A.

Lemma3.4 ([BLP+13, Le. 2.3]). There exists aPPT (probabilistic polynomial-time) algorithm
GPVSample that inputs a basis B of a lattice Λ ⊆ Zn and a rational σ ≥ ‖B̃‖ · Ω(

√
logn),

and outputs vectors b ∈ Λ with distribution DΛ,σ .

The following Lemma states that it is possible to e�ciently compute a statistically uniform A
along with a short basis of its orthogonal lattice Λ⊥q (A).

Lemma 3.5 ([AP09, Th. 3.2]). There exists a PPT algorithm TrapGen that takes as inputs
1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Zn×mq

and a basis TA of Λ⊥q (A) such that A is within statistical distance 2−Ω(n) to U(Zn×mq ),
and ‖T̃A‖ ≤ O(

√
n log q).

Lemma 3.5 is often combined with the sampler from Lemma 3.5. Micciancio and Peik-
ert [MP12] proposed a more e�cient approach for this combined task, which is to be be

25
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preferred in practice but, for the sake of simplicity, schemes are presented using TrapGen
and GPVSample in this thesis.
We also make use of an algorithm that extends a trapdoor for A ∈ Zn×mq to a trapdoor of
any B ∈ Zn×m′q for which a m-subset of its columns is A. For the sake of simplicity we
will consider the case where A is the left n×m submatrix of B.

Lemma 3.6 ([CHKP10, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes as inputs
a matrix B ∈ Zn×m′q whose �rstm columns span Znq , and a basis TA of Λ⊥q (A) where A is
the left n×m submatrix of B, and outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

In some of our security proofs, analogously to [Boy10, BHJ+15], we also use a technique due
to Agrawal, Boneh and Boyen [ABB10] that implements an all-but-one trapdoor mechanism
(akin to the one of Boneh and Boyen [BB04]) in the lattice setting.

Lemma 3.7 ([ABB10, Th. 19]). There exists a PPT algorithm SampleRight that takes as
inputs matrices A,C ∈ Zn×mq , a low-norm matrix R ∈ Zm×m, a short basis TC ∈ Zm×m

of Λ⊥q (C), a vector u ∈ Znq and a rational σ such that σ ≥ ‖T̃C‖ · Ω(
√

logn), and outputs
a short vector b ∈ Z2m such that

[
A A ·R + C

]
· b = u mod q and with distribution

statistically close to DL,σ where L denotes the shifted lattice Λu
q

([
A A ·R + C

])
.
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Chapter4

Zero-Knowledge Arguments

A Zero-Knowledge proof [GMR85] (or ZK proofs) is an interactive proof between a prover
and a veri�er at the end of which the veri�er should be convinced of the truth of a statement
(within some probability, called soundness error), while the prover is guaranteed that the
veri�er learns nothing more that the authenticity of the statement.
One of the early applications of ZK proofs in cryptography was the design of identi�cation
systems [FS86]. The goal is for a user A to prove the knowledge of a secret (such as a
password) to userB without revealing any piece of information about the secret, otherwise
user B would be able to impersonate A. Since then, the use of zero-knowledge proofs is
now widespread in privacy-preserving protocols like anonymous credentials [Cha85, CL01],
revocable group signatures [NFHF09], e-cash [CHL05b], oblivious transfer [CDN09] . . .
If these primitives �ourish in the context of number-theory-based cryptography (such as
RSA groups or pairing groups), they are still elusive in the lattice world.
In this section, we �rst present the general principles and basic tools to handle ZK proofs.
Then we will describe two families of ZK proofs that may prove useful in the context of
pairing-based and lattice-based cryptography. Namely, Schnorr-like proofs and Stern-like
proofs.

4.1 De�nitions

4.1.1 Zero-Knowledge proofs and arguments

De�nition 4.1 (Zero-knowledge proofs and arguments). Let R = {(x,w) ∈ L ×R} be a
binary relation. A zero-knowledge proof for a relation R is an interactive protocol between
a prover P (x,w) and a veri�er V (x) where V outputs a bit b at the end of the interaction.
This is written as 〈P (x,w), V (x)〉 = b. The aforementioned protocol should also verify
the following properties.

Completeness. For any (x,w) ∈ R, Pr[〈P (x,w), V (x)〉 = 1] ≥ 1− negl(|λ|).

Soundness. For all x ∈ L, for any w̄ ∈ R such that (x, w̄) /∈ R, and for any cheating
prover P ?(x, w̄), Pr[〈P ?(x, w̄), V (x)〉 = 1] ≤ s < 1− negl(|x|) , where s is called
the soundness error. We want s to be as small as possible, ideally negligible.
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4. Zero-Knowledge Arguments

Zero-Knowledge. Let trans(·, ·) be the transcript of the interaction during the proof.
There exists a PPT simulator S such that for all (possibly cheating) PPT veri�er V ?,
the distributions {trans(P (x,w), V ?(x))}(x,w)∈R and {SV ?(x)}(x,w)∈R are compu-
tationally indistinguishable.

If, in the soundness de�nition, the adversary P ? is restricted to be a PPT algorithm, then
the proof system is called an argument system.
We can notice that the soundness error can be reduced to be negligible by repeating the
proof.
If the two ensembles in the de�nition of zero-knowledge are the same, then the proof is
perfect zero-knowledge.

De�nition 4.2 (Proof of knowledge [GMR85, BG92]). Let κ be a function from {0, 1}? to
[0, 1]. A complete interactive proof system (P, V ) is said to be a proof of knowledge for the
relation R with knowledge error κ if it veri�es the knowledge soundness property.

Knowledge soundness. There exists a PPT algorithm E , called the knowledge extractor.
This algorithm takes as input x and rewindable black-box access to the prover, and
targets to compute a w such that (x,w) ∈ R. For any prover P̂ , let ε(x) be the
probability that V accepts on input x. There exists a constant c such that, whenever
ε(x) > κ(x), M will output a correct w with expected time at most |x|c

ε(x)−κ(x) , where
access to P̂ counts as one step.

This extractor represents the fact that an e�ective prover actually knows the secret (while
a zero-knowledge proof only attests the existence of a witness w). In the following, ZKAoK
denotes Zero-Knowledge Argument of Knowledge.
Another useful property that a proof system can have in the context of privacy-preserving
cryptography is witness indistinguishability (WI). This property states that if a proof system
has multiple witnesses, it is impossible to tell apart which one has been used during the
proof.

De�nition 4.3 (Witness indistinguishable proofs [FS90]). Let (P, V ) be a complete inter-
active proof system for relation R. It is said to be witness indistinguishable if, for every
PPT algorithm V̂ and every two sequences {wx}(x,wx)∈R, {w′x}(x,w′x)∈R, the following
ensembles are computationally indistinguishable:

{trans(P (x,wx), V̂ (x)}x and {trans(P (x,w′x), V̂ (x)}x.

The WI property is implied by the zero-knowledge property. Whereas the latter, witness
indistinguishability is preserved through parallel repetitions of the protocol [FS90].

4.1.2 Σ-protocols

A way to construct zero-knowledge proofs – that will be described with more details in Sec-
tion 4.2 – is a blackbox transformation from a Σ-protocol and a commitment scheme [Dam00,
GMY03]. The resulting proof remains secure against malicious veri�ers.
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4.1. De�nitions

P (x,w) V (x)
(cmt, stP )← P1(x,w)

cmt−−−−−−−−−−−→
(chall, stV )← V1(x, cmt)

chall←−−−−−−−−−−−
response← P2(x,w, chall, stP )

response−−−−−−−−−−−→
return b = V2(x, chall, response, stV )

Figure 4.1 – Abstract description of a Σ-protocol.

De�nition 4.4 (Σ-protocol [Cra96]). Let R = {(x,w)} be a binary relation. A Σ-protocol
is a 3-move interactive protocol between P and V that follows Figure 4.1 and veri�es the
following properties.

Completeness. For any (x,w) ∈ R, P (x,w) and V (x) that follows the protocol, the
veri�er always accepts.

2-Special soundness. For any x and any pair of accepting transcripts on input x of the
form (cmt, chall, response) and (cmt, chall′, response′), there exists a PPT algorithm
extract that inputs the two aforementioned transcripts and outputs an element w
such that (x,w) ∈ R.

Honest-Veri�er Zero-Knowledge. There exists a PPT simulator S, such that the two
probability distributions {trans(P (x,w), V (x))} and {S(x)} with honest P and V
are statistically indistinguishable.

An example of Σ-protocol will be given in Section 4.2, and its transformation into a Zero-
Knowledge proof using a commitment scheme as well.

4.1.3 Commitment schemes

Commitment schemes [Blu81] are the digital analogue of a safe. The goal is to commit a
message M into a commitment string com that veri�es the hiding and binding properties.
The former is, that once a message is committed, it is impossible to know what is inside,
while the latter states that, it is impossible to alter a commitment string to modify the
underlying message.

De�nition 4.5 (Commitment schemes). A commitment scheme is given by a triple of
algorithms (Setup,Commit,Verify) that act as follows:

Setup(1λ): This algorithm outputs the commitment scheme’s common public parame-
ters par.

Commit(par,M): From a message M and parameters par, this algorithms outputs a
commitment com and an opening open. The randomness ρ used in the commitment
is sometimes made explicit.

Verify(par, com, open,M): Using parameters par a message M , its commitment com and
its opening open, this algorithms returns bit b.
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4. Zero-Knowledge Arguments

Exphiding
A,b (λ)

par← Setup(1λ)
(m0,m1, st)← A(par, 1λ)
(com, open)← Commit(mb)
b′ ← A(pk, 1λ, com; st)
return b′

(a) Hiding experiments

Expbinding
A (λ)

par← Setup(1λ)
(com, open,m0,m1)← A(par)
if Verify(par, com, open,m0) = 1
∧ Verify(par, com, open,m1) = 1

then return 1
else return 0

(b) Binding experiment

Figure 4.2 – Security experiments for commitment schemes.

These algorithms should verify correctness, hiding and binding properties, where Exphiding
A,b

and Expbinding
A are described in Figure 4.2.

Correctness. For any public parameters par← Setup(1λ), message M , commitment and
opening (com, open)← Commit(par,M), it holds that Open(par, open,M) = 1.

Hiding. For any PPT adversary A against the hiding experiment, we have that

Advhiding
A (λ) =

∣∣∣Pr
[
Exphiding

A,1 (λ) = 1
]
− Pr

[
Exphiding

A,0 (λ) = 1
]∣∣∣ ≤ negl(λ) ,

over the randomness of Commit.

Binding. For any PPT adversary A against the binding experiment,

Pr
[
Expbinding

A (λ) = 1
]
≤ negl(λ) .

Commitment schemes are thus used to force the veri�er of the Σ-protocol to behave
honestly: it commits its challenge at the outset of the interaction, and opens it at the
challenge phase, so that it cannot change its challenge with respect to the commitment of
the prover.
An example of commitment scheme that will prove useful in Section 4.3 is the Kawachi,
Tanaka, Xagawa SIS-based commitment scheme [KTX08].
This construction relies on the following hash function:

De�nition 4.6 (SIS-based hash function). Let n, `, q ∈ Z be parameters such that the
SISn,`,q,√` assumption holds. Let A ∈ Zn×`q , and let fA : {0, 1}` → Znq be the function
that maps its input string x into a binary vector x ∈ Znq and outputs Ax mod q ∈ Znq .
One can notice that fA is indeed a collision-resistant one-way function under the SIS
assumption, as �nding two inputs x 6= x̃ such that A ·x = A · x̃ mod q leads to a non-zero
vector x′ = x− x̃ ∈ Z such that ‖x′‖2 ≤

√
`.

It is thus possible to apply the Merkle-Damgård construction [Mer79, Mer89, Dam89] on
fA to obtain a collision resistant hash function hA : {0, 1}? → Znq that is secure under
the SISn,`,q,√` assumption.
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4.1. De�nitions

It is then possible to use this hash function hA to construct the following string commitment
scheme.

De�nition 4.7 (SIS-based commitment scheme). Given parameters n,m, q ∈ Z, let us
de�ne the following commitment scheme due to [KTX08].

Setup(1λ): Pick two random matrices AM ,Aρ ∈ U(Zn×mq ) and de�ne the public param-
eters as the matrix A = [AM | Aρ].

Commit(A,M ; ρ): To commit to a string M ∈ {0, 1}? under randomness ρ ∈ {0, 1}m,
�rst parse A ∈ Zn×2m

q as [AM | Aρ] as in the Setup algorithm, then compute
com = hAM (M) + fAρ(ρ) ∈ Znq , where hAM and fAρ are the hash function and
the one-way collision resistant function described in De�nition 4.6. The opening
corresponds to the randomness ρ used in the computation.

Verify(A, com, open,M): First parse A as in the Setup algorithm. Then accept if and
only if open ∈ {0, 1}m and com = hAM (M) + fAρ(ρ).

Lemma4.1 ([KTX08, Le. 3.4]). Ifm > 2n log q, the above commitment scheme is statistically
hiding and binding under the SISn,m,q,√m assumption in the trusted setup model.

4.1.4 Non-Interactive Proofs

Another useful primitives are the non-interactive version of zero-knowledge proofs.

De�nition 4.8 (Non Interactive Zero Knowledge). A non-interactive zero-knowledge proof
(or NIZK proof) for a relation R = {(x,w) ∈ L×W} is a pair of PPT algorithms (P, V )
such that P takes as inputs x ∈ L and w ∈ W and outputs a proof π, and V takes as inputs
x and π and outputs a bit b. These algorithms should verify the following properties.

Completeness. For any (x,w) ∈ R, Pr[V (x, P (x,w)) = 1] ≥ 1− negl(|x|).

Soundness. For all x ∈ L, for any w̄ ∈ W such that (x, w̄) /∈ R, and for any cheating
prover P ?(x, w̄), Pr[V (x, P ?(x)) = 1] < negl(|x|) .

Zero-Knowledge. There exists a PPT simulator S such that the probability ensembles
{(x, P (x,w))}(x,w)∈R and {S(x)}(x,w)∈R are computationally indistinguishable.

In the random oracle model [BR93, PS96], it is possible to transform a ZK proof into an
NIZK proof [FS86]. This techniques is called the Fiat-Shamir transform.

De�nition 4.9 (Fiat-Shamir Transform [FS86]). Let (P, V ) be a three-move ZK proof
system for relation R = {(x,w)} as in Figure 4.1 andH be a cryptographic hash function.
Let P̂ be the following non-interactive prover that takes as inputs x and w:

1. First run P1(x,w) to get a random commitment cmt and a state information stP ;

2. Generate the challenge as chall← H(x, cmt);

3. Run response← P2(x,w, chall, stP );
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4. Zero-Knowledge Arguments

4. Return the proof π = (cmt, response).

And let V̂ be the following non-interactive veri�er that takes as inputs x and π:

1. Parse π as (cmt, response);

2. Generate the challenge chall = H(x, cmt);

3. Return V2(x, chall, response, ∅).

Then (P̂ , V̂ ) forms a non-interactive zero-knowledge proof in the ROM.

For the sake of completeness, we also mention NIZK in the standard model, such as Groth-
Sahai proofs [GOS06, GS08] for bilinear groups, but these will not be used in the context of
this thesis.
In the trusted setup model (also known as common reference string model) described in
Section 2.3, there is also another type of NIZK proofs that is useful for us, for instance in
Chapter 6. Quasi-adaptive NIZK (QA-NIZK) [JR13] are NIZK where the common reference
string crs may depend on the language for which proofs have to be generated (that is, the
distribution Dcrs is a function of the language we want to prove). A formal de�nition can
be found in [JR13, KW15, LPJY15], where completeness, soundness and zero-knowledge
properties are adapted to take into account the crs.

De�nition 4.10 (Quasi-Adaptive Non-Interactive Zero-Knowledge Argument). A Quasi-
Adaptive Non-Interactive Zero-Knowledge Argument argument (or QA-NIZK) over a collec-
tion of relations R = {Rρ} parametrized by a string ρ consists in four PPT algorithms
(Gen0,Gen1, P, V ).
The algorithms Gen0 and Gen1 both generate the crs. Gen0 inputs 1λ and outputs Γ the
�xed part of the crs from which ρ is sampled according to a distribution DΓ, while Gen1
inputs Γ and ρ to output a language-dependent part ψ (or directly the crs = (Γ, ψ, ρ)). The
prover P and the veri�er V act as in De�nition 4.8 with the di�erence that, they also take
as input the common reference string crs.
We consider proof systems where the prover and the veri�er both take a label τ as additional
input. Formally, a tuple (Gen0,Gen1, P, V ) of PPT algorithms is a QA-NIZK proof system
forR if, there exists a PPT simulator (S1, S2) such that for any PPT adversaries A1,A2
and A3, the following properties hold:

Quasi-Adaptive Completeness.

Pr

 V (crs, x, π, τ) = 1
if Rρ(x,w) = 1

∣∣∣∣∣∣∣
Γ← Gen0(1λ); ρ← DΓ;

crs← Gen1(Γ, ρ); (x,w, τ)← A1(crs, ρ)
π ← P (crs, x, w);

 = 1.

Quasi-Adaptive Soundness.

Pr
[

(∀w : (x,w) /∈ Rρ)
∧V (crs, x, π, τ) = 1

∣∣∣∣∣ Γ← Gen0(1λ); ρ← DΓ;
crs← Gen1(Γ, ρ); (x, π, τ)← A2(crs)

]
≤ negl(λ) .
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4.2. Schnorr Proofs

Common input: A prime-order group G of order p with a generator g.

Schnorr’s Protocol for DLOG

P (h, a) V (h)
r ←↩ Z?p
ρ = gr ∈ G

ρ

c←↩ Zp

c

d← c · a+ r mod p

d

if gd = hc · ρ then
return 1

else
return 0

Figure 4.3 – The Schnorr Σ-protocol for discrete logarithm.

Quasi-Adaptive Zero-Knowledge.

Pr[AP (ψ,·)
3 (Γ, ψ, ρ) = 1 | Γ← Gen0(1λ); ρ← DΓ; crs← Gen1(Γ, ρ)]

≈s Pr
[
AS(ψ,τsim,·)

3 (Γ, ψ, ρ) = 1
∣∣∣∣∣ Γ← Gen0(1λ); ρ← DΓ;

(ψ, τsim)← S1(Γ, ρ)

]

Where

• P (ψ, ·) emulates the actual prover. It inputs (x,w, τ) and outputs a proof π if
(x,w) ∈ Rρ. Otherwise, it outputs ⊥.

• S(ψ, τsim, ·) is an oracle that takes as input (x,w, τ) and outputs a simulated
proof S2(ψ, τsim, x, τ) if (x,w) ∈ Rρ and ⊥ otherwise.

4.2 Schnorr Proofs

Schnorr’s methodology [Sch96] to construct proofs is based on the Σ-protocol technique to
design zero-knowledge proofs. It has been introduced in order to prove the knowledge of a
discrete logarithm (which can bee seen at the relation Rdlog = {(h, a) ∈ G×Zp | h = ga}
with G = 〈g〉 be a cyclic group of prime order p > 2) and is described in Figure 4.3.
An interpretation of this methodology is the following: given a commitment scheme
(Setup,Commit,Verify), where the randomness r used in Commit is made explicit, the �rst
move of the prover P consists in binding the randomness used in the commitment scheme r
using the transmitted value ρ = gr , then the veri�er asks the prover to commit to a challenge

33



4. Zero-Knowledge Arguments

Common input: A public element a ∈ R where R = Zp[x]/〈xn + 1〉.

Schnorr’s Protocol for Ring-SIS

P (t = a · s1 + s2, (s1, s2)) V (t)
y1,y2 ←↩ Dy ∈ R
w = a · y1 + y2 ∈ R

w

c←↩ Dc ∈ R (small)

c

z1 ← s1c + y1 ∈ R
z2 ← s2c + y2 ∈ R
[if z1, z2 /∈ G2 then

z1, z2 ← ⊥,⊥]

z1, z2

if z1 ∈ G ∧ z2 ∈ G∧
a · z1 + z2 = tc + w then
return 1

else
return 0

Figure 4.4 – The Schnorr Σ-protocol for Ring-SIS.

message c using the randomness carried by ρ, and the prover sends the opening for this
commitment open. Finally, the veri�er accepts if and only if Verify(par, com, open, c) = 1.
In the protocol described in Figure 4.3, the underlying commitment is the Pedersen commit-
ment scheme [Ped91]: a commitment of a message m ∈ Zp is gm · hr ∈ G and the opening
is the randomness r used to commit.
For e�ciency reasons, Schnorr’s protocol is used along with Fiat-Shamir heuristic in the
pairing-based group signature described in Chapter 6.
This methodology has also been adapted to the ideal lattice-setting by Lyubashevsky [Lyu08,
Lyu09] along with a technique called rejection sampling in order to construct ZK proofs from
ideal lattice assumptions and is described in Figure 4.4. In this description Dy and Dc are
the distributions from which y1,y2 and c have to be sampled respectively, and G describes
the set of good responses z1, z2 in order not to leak informations about s1, s2. The part
between brackets is called the rejection phase, and ensure that the transmitted z1, z2 will
not leak any information about s1, s2 to V. This part induced a noticeable error-rate where
the prover aborts the proof. As the protocol is proven witness indistinguishable [Lyu09],
one can run the protocol multiple times in parallel and hope that one of them will not
abort [FS90].
One can notice that this is not a Σ-protocol in the strict sense as the knowledge extractor
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outputs witnesses that can be up to Õ(n) larger than the actual witness in in�nity norm.
This behavior is sometimes called “imperfect soundness” or “soundness slack”.
However, this method su�ers from limited expressiveness: the relations that can be proved
with this proof system are essentially restricted to be knowledge of a Ring-SIS secret,
which is not su�cient to prove, for instance, the knowledge of a signature on a committed
message. Moreover, the gap in the extraction makes it hard, although, to prove that an
underlying message under an encryption is binary [dPLNS17].

4.3 Stern-like Proofs

Stern’s protocol has originally been introduced in the context of code-base cryptogra-
phy [Ste96]. Initially, it was designed for Syndrome Decoding Problem (SDP): given a
matrix M ∈ Fn×m2 and a syndrome v ∈ Fn2 , the goal is to �nd a binary vector w ∈ Fm2
with �xed hamming weight w such that M ·w = v mod 2.
This problem bears similarities with the ISIS problem de�ned in De�nition 3.8 where the
constraint on the norm of x is replaced by a constraint on Hamming weight, and operations
are in F2 instead of Zq .
After the �rst work of Kawachi, Tanaka and Xagawa [KTX08] that extended Stern’s proofs to
statements modq, the results of Ling, Nguyen, Stehlé and Wang [LNSW13] enable the use
of Stern’s protocol to prove general SIS or LWE statements (meaning proving knowledge of
a solution to these problems). These advances in the expressiveness of Stern-like protocols
has been used to further improve them and therefore enable privacy-based primitives for
which no constructions previously existed in the post-quantum world, such as dynamic
group signatures [LLM+16a], group encryption [LLM+16b], electronic cash [LLNW17],
etc.
Unlike Schnorr-like proofs that we described in the previous section, Stern-like proofs
are mainly combinatorial and rely on the fact that every permutation on a binary vector
w ∈ {0, 1}m leaves its Hamming weight w invariant. As a consequence, for π ∈ Sm,
w satis�es these conditions if and only if π(x) also does. Therefore, the randomness
of π is used to verify these two constraints (being binary and having �xed Hamming
weight) in a zero-knowledge fashion. We can notice that this can be extended to vectors
w ∈ {−1, 0, 1}m having �xed numbers of −1 and 1. This property allowed [LNSW13] to
propose the generalization of this protocol to any ISISn,m,q,β statements. In Section 4.3.2,
we describes these permutations while abstracting the set of ZK-provable statements as the
set VALID that satis�es conditions (4.3).
It is worth noticing that this argument on knowledge does not strictly follow the de�nition
of a Σ-protocol in De�nition 4.4. The challenge space is ternary as described in Section 4.3.2,
hence the protocol veri�es 3-special soundness. Thus, standard theorems on Σ-protocols
have to be adapted in this setting.
In this Section, we describe in a high-level manner the behavior of Stern-like protocols
before detailing it.
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• B2
m: the set of vectors in {0, 1}2m with Hamming weight m.

• B3
m: the set of vectors in {−1, 0, 1}3m which has exactly m coordinates equal to j for

each j ∈ {−1, 0, 1}.

Figure 4.5 – Notations for Stern-like protocols.

4.3.1 The Decomposition-Extension Framework

The original Stern protocol was designed to prove knowledge of a SDP preimage. That is,
to prove the knowledge of a vector w ∈ {0, 1}m that veri�es

M ·w = v mod 2. (4.1)

A �rst improvement by [KTX08] was to extend this protocol using a statistically hiding
SIS-based commitment scheme as described in 4.6 to prove in (statistical) zero-knowledge
that

M ·w = v mod q. (4.2)

The details of this proof is given in Section 4.3.2, but it can be summarized in the following
Lemma.

Lemma 4.2 ([KTX08, Se. 4]). There exists a statistical ZKAoK with perfect completeness
and soundness error 2/3 to prove the knowledge of a secret vector w ∈ {0, 1}m that veri�es
relation (4.2) for public input (M,v) ∈ Zn×mq × Znq .

Ling, Nguyen, Stehlé and Wang [LNSW13] noticed that the ZKAoK of Lemma 4.2 works in
a straightforward manner to prove knowledge of a vector in {−1, 0, 1}m.
To prove the knowledge of an ISIS preimage, i.e. the knowledge of a bounded vector
w ∈ [−B,B]m that satis�es relation (4.2), the goal is to rewrite w as w̄ = K ·w mod q
with a public transformation matrix K such that w̄ ∈ {−1, 0, 1}m′ and of known numbers
of elements equal to j for each j ∈ {−1, 0, 1}. This reduces to use Lemma 4.2 to prove the
knowledge of w̄ ∈ {−1, 0, 1}m′ for public input (M ·K,v).
To construct such a transfer matrix K, [LNSW13] showed that decomposing a vector
x ∈ [−B,B]m as a vector x̃ ∈ {−1, 0, 1}m·δB and extending the resulting vector into
x̄ ∈ B3

mδB
leads to a new statement that can be proven using the variant of Stern’s

protocol described in [KTX08]. The resulting matrix K =
[
Km,B | 0m×2mδB

]
∈ Zm×3mδB ,

where Km,B is the {−1, 0, 1}-decomposition matrix Km,B = Im ⊗ [B1 | · · · | BδB ] with
Bj =

⌊
B+2j−1

2j
⌋
, for all j ∈ {1, . . . , j}, can be computed from public parameters.

In Chapter 8, we extend Stern-like protocols to handle statements where the matrix M
of (4.2) is kept hidden. For this purpose, we de�ne the decomposition-extension method in
more detail in Section 8.3.

4.3.2 Abstraction of Stern’s Protocol

Let K , D, q be positive integers with D ≥ K and q ≥ 2, and let VALID be a subset of
ZD . Suppose that S is a �nite set such that every element φ ∈ S can be associated with a
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1. Commitment: Prover samples rw ← U(ZDq ), φ← U(S) and randomnesses ρ1, ρ2, ρ3 for
COM. Then, he sends CMT =

(
C1, C2, C3

)
to the veri�er, where

C1 = COM(φ,M · rw mod q; ρ1), C2 = COM(Γφ(rw); ρ2),
C3 = COM(Γφ(w + rw mod q); ρ3).

2. Challenge: The veri�er sends a challenge Ch←↩ U({1, 2, 3}) to the prover.

3. Response: Depending on Ch, the prover sends RSP computed as follows:

• Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).

• Ch = 2: Let φ2 = φ, w2 = w + rw mod q, and RSP = (φ2,w2, ρ1, ρ3).

• Ch = 3: Let φ3 = φ, w3 = rw , and RSP = (φ3,w3, ρ1, ρ2).

Veri�cation: Receiving RSP, the veri�er proceeds as follows:

• Ch = 1: Check that

tw ∈ VALID,
C2 = COM(tr; ρ2), C3 = COM(tw + tr mod q; ρ3).

• Ch = 2: Check that

C1 = COM(φ2,M ·w2 − v mod q; ρ1), C3 = COM(Γφ2(w2); ρ3).

• Ch = 3: Check that

C1 = COM(φ3,M ·w3; ρ1), C2 = COM(Γφ3(w3); ρ2).

In each case, the veri�er outputs 1 if and only if all the conditions hold.

Figure 4.6 – Stern-like ZKAoK for the relation Rabstract.

permutation Γφ ∈ SD satisfying the following conditions:{
w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,
If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.

(4.3)

We aim to construct a statistical Zero-Knowledge Argument of Knowledge (ZKAoK) for
the following abstract relation:

Rabstract =
{(

(M,v),w
)
∈ ZK×Dq × ZKq × VALID : M ·w = v mod q.

}
Note that, Stern’s original protocol corresponds to the special case when the set VALID =
{w ∈ {0, 1}D : wt(w) = k}, where wt(·) denotes the Hamming weight and k < D is a
given integer, S = SD is the set of all permutations of D elements and Γφ(w) = φ(w).
The conditions in (4.3) play a crucial role to prove in zero-knowledge that w ∈ VALID. To
this end, the prover samples a random φ←↩ U(S) and lets the veri�er check that Γφ(w) ∈
VALID without learning any additional information about w due to the randomness of φ.
Furthermore, to prove in a zero-knowledge manner that the linear equation is satis�ed, the
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prover samples a masking vector rw ←↩ U(ZDq ), and convinces the veri�er instead that
M · (w + rw) = M · rw + v mod q.
The interaction between prover P and veri�er V is described in Figure 4.6. The protocol
uses a statistically hiding and computationally binding string commitment scheme COM
(e.g., the SIS-based scheme from [KTX08] described in De�nition 4.7).

Theorem 4.3. The protocol in Figure 4.6 is a statistical ZKAoK with perfect completeness,
soundness error 2/3, and communication cost O(D · log q). Namely:

• There exists a polynomial-time simulator that, on input (M,v), outputs an accepted
transcript statistically close to that produced by the real prover.

• There exists a polynomial-time knowledge extractor that, on input a commitment CMT
and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values of the challenge
Ch, outputs w′ ∈ VALID such that M ·w′ = v mod q.

The proof of the theorem relies on standard simulation and extraction techniques for
Stern-like protocols [KTX08, LNSW13, LLM+16a].

Proof. Note that, by construction, the protocol is perfectly complete: if an honest prover
follows the protocol, then he always gets accepted by the veri�er. It is also easy to see that
the communication cost is bounded by Õ(D · log q).
We will now prove that the protocol is a statistical zero-knowledge argument of knowledge
for the relation Rabstract and is given below.

Zero-Knowledge Property. We construct a PPT simulator SIM interacting with a
(possibly dishonest) veri�er V̂ such that, given only the public input, SIM outputs with
probability negligibly close to 2/3 a simulated transcript that is statistically close to the
one produced by the honest prover in the real interaction.
The simulator �rst chooses a random Ch ∈ {1, 2, 3}. This is a prediction of the challenge
value that V̂ will not choose.

Case Ch = 1 : Using basic linear algebra over Zq , SIM computes a vector w′ ∈ ZDq such
that M·w′ = v mod q.Next, it samples r←↩ U(ZDq ), π ←↩ U(S), and randomnesses
ρ1, ρ2, ρ3 for COM.
Then, it sends the commitment CMT =

(
C ′1, C

′
2, C

′
3
)

to V̂ , where

C ′1 = COM(π,M · r; ρ1), C ′2 = COM(Γπ(r); ρ2),
C ′3 = COM(Γπ(w′ + r); ρ3).

Receiving a challenge Ch from V̂ , the simulator responds as follows:

• If Ch = 1: Output ⊥ and abort.
• If Ch = 2: Send RSP =

(
π,w′ + r, ρ1, ρ3

)
.

• If Ch = 3: Send RSP =
(
π, r, ρ1, ρ2

)
.
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Case Ch = 2: SIM samples w′ ←↩ U(VALID), r ←↩ U(ZDq ), π ←↩ U(S), and random-
nesses ρ1, ρ2, ρ3 for COM.
Then, it sends the commitment CMT =

(
C ′1, C

′
2, C

′
3
)

to V̂ , where

C ′1 = COM(π,M · r; ρ1), C ′2 = COM(Γπ(r); ρ2),
C ′3 = COM(Γπ(w′ + r); ρ3)

as previously.
Receiving a challenge Ch from V̂ , the simulator responds as follows:

• If Ch = 1: Send RSP =
(
Γπ(w′),Γπ(r), ρ2, ρ3

)
.

• If Ch = 2: Output ⊥ and abort.
• If Ch = 3: Send RSP =

(
π, r, ρ1, ρ2

)
.

Case Ch = 3: SIM samples w′ ←↩ U(VALID), r ←↩ U(ZDq ), π ←↩ U(S), and random-
nesses ρ1, ρ2, ρ3 for COM.
Then, it sends the commitment CMT =

(
C ′1, C

′
2, C

′
3
)

to V̂ , where

C ′2 = COM(Γπ(r); ρ2), C ′3 = COM(Γπ(w′ + r); ρ3)

as in the previous two cases, while

C ′1 = COM(π,M · (w′ + r)− v; ρ1),

Receiving a challenge Ch from V̂ , it responds as follows:

• If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
• If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
• If Ch = 3: Output ⊥ and abort.

We observe that, in all the above cases, since COM is statistically hiding, the distribution
of the commitment CMT and the distribution of the challenge Ch from V̂ are statistically
close to those in the real interaction. Hence, the probability that the simulator outputs ⊥
is negligibly close to 1/3. Moreover, one can check that whenever the simulator does not
halt, it provides an accepted transcript, the distribution of which is statistically close to
that of the prover in the real interaction. In other words, we have designed a simulator that
can successfully emulate the honest prover with probability negligibly far from 2/3.

Argument of Knowledge. Let us assume that

RSP1 = (tx, tr, ρ(1)
2 , ρ

(1)
3 ), RSP2 = (φ2,y, ρ(2)

1 , ρ
(2)
3 ),

and RSP3 = (φ3,w3, ρ
(3)
1 , ρ

(3)
2 )

are 3 valid responses to the same commitment CMT = (C1, C2, C3), with respect to all 3
possible values of the challenge. The validity of these responses implies that:

tx ∈ VALID;

C1 = COM(φ2,M ·w2 − v; ρ(2)
1 ) = COM(φ3,M ·w3; ρ(3)

1 );

C2 = COM(tr; ρ(1)
2 ) = COM(Γφ3(w3); ρ(3)

2 );

C3 = COM(tx + tr; ρ(1)
3 ) = COM(Γφ2(w2); ρ(2)

3 ).
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Since COM is computationally binding, we can deduce that:

tx ∈ VALID;
φ2 = φ3;
tr = Γφ3(w3);
tx + tr = Γφ2(w2);
M ·w2 − v = M ·w3 mod q.

Let w′ = w2 −w3, then we have Γφ2(w′) = tx ∈ VALID which implies that w′ ∈ VALID.
Furthermore, we have M ·w′ = M · (w2 −w3) = v mod q.
This concludes the proof.
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Chapter5

Dynamic Group Signatures

In this part, we will present two constructions of dynamic group signatures. The construc-
tion that will be explained in Chapter 6 is an adaptation of the Libert, Peters and Yung
short group signature in the standard model from classical pairing assumptions [LPY15]
to the random oracle model, which allows us to gain in e�ciency while keeping the as-
sumptions simple. This gives us a constant-size group signature scheme that is shown to
be competitive with other constructions based on less standard assumptions such as the
q-SDH assumption. An implementation is available and detailed in Chapter 6.
The second construction, described in Chapter 7, is a lattice-based dynamic group signa-
ture based on the scheme of Ling, Nguyen and Wang [LNW15] for static groups. This
construction was improved to match the requirements for dynamic groups, which closes an
open-problem [GKV10]. This construction has been the �rst fully secure group signature
scheme from lattices.
Before describing those schemes, this chapter recalls the de�nition of dynamic group
signatures and their related security de�nitions.

5.1 Background

Dynamic group signatures are a primitive that allows a user to authenticate a message on
behalf of a set of users it belongs to (the group). This can be publicly veri�ed while the user
remains anonymous inside his group. On the other hand, the user remains accountable
for the signatures he generates as there exists an authority, the opening authority, that can
lift the anonymity of a given signature using his own secret key. In the dynamic setting,
a group signature scheme has a second authority: the group manager, that allows a user
to join the group after an interaction with him. These interactions are summarized in
Figure 5.1.
The concept of group signatures was introduced by Chaum and van Heyst in 1991 [CvH91].
Nevertheless, the work of Ateniese, Camenisch, Joye and Tsudik in 2001 [ACJT00] were
the �rst to provide scalable and secure group signatures. In 2003, Bellare, Micciancio and
Warinschi [BMW03] proposed formal security de�nitions for static group signatures, where
the group is de�ned once-and-for-all at the setup phase. This model was extended to dynamic
groups by Bellare, Shi and Zhang (BSZ) and Kiayias and Yung (KY) in 2005 [BSZ05, KY06].
These two security models are slightly di�erent, and we choose in this thesis to build our
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proofs in the [KY06] model as described in Section 5.2.
The [BMW03] model summarizes the security of a group signatures in two notions:
anonymity and traceability. The former notions models the fact that, without the opening
authority’s secret, even if everyone colludes, no one can identify the author of a signature;
the latter sums up the fact that, even if everyone is corrupted (even the opening authority),
it is infeasible to forge a valid signature that does not open to a valid user.
In the dynamic setting, the group signing-keys issuing phase is replaced by an interactive
join protocol where a user who wants to join the group interacts with the group manager.
In this context, the two notions of the BMW model are retained, and a third one is added:
the “non-frameability” property. This notion expresses the infeasibility to frame a group
of honest users (which can be reduced to a singleton) in order to provide a signature that
opens to one of them, even if the group manager and the opening authority are colluding.
One possible application of this primitive is anonymous access control for public transporta-
tion systems. In order to commute, a person should prove possession of a valid subscription
to the transportation service. Thus, at registration to the service, the commuter joins the
group of “users with a valid subscription”. When he uses the transportation service, he is
asked to sign the timestamp of his entry in the name of the group. In case of misbehavior,
another entity – let say the police – is able to lift the anonymity of the signatures logged by
the reading machine. Then, the public transportation company is unable to learn anything
from the signatures, except the validity of the subscription of a user. On the other hand,
the police does not have access to the logs except if the public transportation company
hands them to them.
Other applications of group signatures can be found as authentication of low-range com-
munications for intelligent cars or anonymous access control of a building. As we can
see, most applications necessitate the use of dynamically growing groups in order to be
meaningful.
Bootle, Cerulli, Chaidos, Ghada� and Groth [BCC+16] raised the problem of revocation
and proposed a model that handles the issues that arose from the introduction of revocation
called “fully-dynamic” group signatures. As the main di�culty is to allow users to dynam-
ically enroll in the group – revocation has been known to be implemented in a modular
manner [LLNW14] – this approach is not considered here, even if it is of interest [LNWX17].

5.2 Formal De�nition and Correctness

This section recalls the syntax and the security de�nitions of dynamic group signatures
based on the model of Kiayias and Yung [KY06].
In the setting of dynamic groups, the syntax of group signatures includes an interactive
protocol which allows users to register as new members of the group at any time. The
syntax and the security model are those de�ned by Kiayias and Yung [KY06]. Like the
very similar BSZ model [BSZ05], the Kiayias-Yung (KY) model assumes an interactive join
protocol whereby a prospective user becomes a group member by interacting with the
group manager. This protocol provides the user with a membership certi�cate, certi, and a
membership secret, seci.
We denote by Ngs ∈ poly(λ) the maximal number of group members that the system will
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Figure 5.1 – Relations between the protagonists in a dynamic group signature scheme.

be able to handle.

De�nition 5.1 (Dynamic Group Signature). A dynamic group signature scheme consists
of the algorithms or protocols (Setup, Join,Sign,Verify,Open) described as follows.

Setup(1λ, 1Ngs): given a security parameter λ and a maximal number of group members
Ngs ∈ N, this algorithm is run by a trusted party to generate a group public key Y ,
the group manager’s private key SGM and the opening authority’s private key SOA.
Each key is given to the appropriate authority while Y is made public. The algorithm
also initializes a public state st comprising a set data structure stusers = ∅ and a string
data structure sttrans = ε.
In the following, all algorithms have access to the public parameters Y .

Join
Juser,JGM

: is an interactive protocol between the group manager GM and a user Ui where
the latter becomes a group member. The protocol involves two interactive Turing
machines Juser and JGM that both take the group public keyY as input. The execution
〈Juser(λ,Y), JGM(λ, st,Y,SGM)〉, ends with user Ui obtaining a membership secret
seci, that no one else knows, and a membership certi�cate certi. If the protocol is
successful, the group manager updates the public state st by updating the following
state informations stusers := stusers ∪ {i} as well as sttrans := sttrans||(i, transcripti).

Sign(certi, seci,M ): given a membership certi�cate certi, a membership secret seci and a
message M , this probabilistic algorithm outputs a signature σ.

Verify(σ,M ): given a signatureσ, a messageM and a group public keyY , this deterministic
algorithm returns either 0 or 1.
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Open(SOA,M, σ): takes as input a message M , a valid signature σ w.r.t. Y , the opening
authority’s private key SOA and the public state st. It outputs i ∈ stusers ∪ {⊥},
which is the identity of a group member or a symbol indicating an opening failure.

Each membership certi�cate contains a unique tag that identi�es the user.

The correctness requirement basically captures that, if all parties honestly run the protocols,
all algorithms are correct with respect to their speci�cation described as above.
The Kiayias-Yung model [KY06] considers three security notions: the security against
misidenti�cation attacks requires that, even if the adversary can introduce users under its
control in the group, it cannot produce a signature that traces outside the set of dishonest
users. The notion of security against framing attacks implies that honest users can never
be accused of having signed messages that they did not sign, even if the whole system
conspired against them. And �nally the anonymity property is also formalized by granting
the adversary access to a signature opening oracle as in the models of [BSZ05].

Correctness forDynamicGroup Signatures. Following the Kiayias-Yung terminology
[KY06], we say that a public state st is valid if it can be reached from st = (∅, ε) by a Turing
machine having oracle access to JGM. Also, a state st′ is said to extend another state st if it
is within reach from st.
Moreover, as in [KY06], when we write certi �Y seci, it means that there exists coin
tosses $ for JGM and Juser such that, for some valid public state st′, the execution of the
interactive protocol 〈Juser(λ,Y), JGM(λ, st′,Y,SGM)〉$ provides Juser with (i, seci, certi).

De�nition 5.2 (Correctness). A dynamic group signature scheme is correct if the following
conditions are all satis�ed:

(1) In a valid state st, |stusers| = |sttrans| always holds and two distinct entries of sttrans
always contain certi�cates with distinct tag.

(2) If 〈Juser(λ,Y), JGM(λ, st,Y,SGM)〉 is run by two honest parties following the protocol
and 〈i, certi, seci〉 is obtained by Juser, then we have certi �Y seci.

(3) For each (i, certi, seci) such that certi �Y seci, satisfying condition 2, we have
Verify

(
Sign(Y, certi, seci,M),M,Y

)
= 1.

(4) For any outcome (i, certi, seci) of 〈Juser(., .), JGM(., st, ., .)〉 for some valid state infor-
mation st, if σ = Sign(Y, certi, seci,M), then Open(M,σ,SOA,Y, st′) = i.

5.3 Associated Security Notions

5.3.1 Oracles for Security Experiments

We formalize security properties via experiments where the adversary interacts with a
stateful interface I that maintains the following variables:

• stateI : is a data structure representing the state of the interface as the adversary
invokes the various oracles available in the attack games. It is initialized as stateI =
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(st,Y,SGM,SOA)← Setup(1λ, 1Ngs). It includes the (initially empty) set stusers of
group members and a dynamically growing database sttrans storing the transcripts
of previously executed join protocols.

• n = |stusers| < Ngs denotes the current cardinality of the group.

• Sigs: is a database of signatures created by the signing oracle. Each entry consists of
a triple (i,M, σ) indicating that message M was signed by user i.

• Ua: is the set of users that were introduced by the adversary in the system in an
execution of the join protocol.

• U b: is the set of honest users that the adversary, acting as a dishonest group manager,
introduced in the system. For these users, the adversary obtains the transcript of the
join protocol but not the user’s membership secret.

In attack games, adversaries are granted access to the following oracles:

• Qpub, QkeyGM and QkeyOA: when these oracles are invoked, the interface looks up
stateI and returns the group public keyY , the GM’s private key SGM and the opening
authority’s private key SOA respectively.

• Qa-join: allows the adversary to introduce users under its control in the group. On
behalf of the GM, the interface runs JGM in interaction with the Juser-executing
adversary who plays the role of the prospective user in the join protocol. If this
protocol successfully ends, the interface increments n, updates st by inserting the
new user n in both sets stusers and Ua. It also sets sttrans := sttrans||(n, transcriptn).

• Qb-join: allows the adversary, acting as a corrupted group manager, to introduce
new honest group members of its choice. The interface triggers an execution of
〈Juser, JGM〉 and runs Juser in interaction with the adversary who runs JGM. If the
protocol successfully completes, the interface increments n, adds user n to stusers and
U b and sets sttrans := sttrans||(n, transcriptn). It stores the membership certi�cate
certn and the membership secret secn in a private part of stateI .

• Qsig: given a message M , an index i, the interface checks whether the private area of
stateI contains a certi�cate certi and a membership secret seci. If no such elements
(certi, seci) exist or if i 6∈ U b, the interface returns ⊥. Otherwise, it outputs a
signature σ on behalf of user i and also sets Sigs← Sigs||(i,M, σ).

• Qopen: when this oracle is invoked on input of a valid pair (M,σ), the interface
runs algorithm Open using the current state st. When S is a set of pairs of the form
(M,σ), Q¬Sopen denotes a restricted oracle that only applies the opening algorithm to
pairs (M,σ) which are not in S.

• Qread and Qwrite: are used by the adversary to read and write the content of stateI .
At each invocation, Qread outputs the whole stateI but the public/private keys and
the private part of stateI where membership secrets are stored after Qb-join-queries.
By usingQwrite, the adversary can modify stateI at will as long as it does not remove
or alter elements of stusers, sttrans or invalidate the public state st: for example, the
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adversary is allowed to create dummy users as long as it does not re-use already
existing certi�cate tags.

Based on the above syntax, the security properties are formalized as follows.

5.3.2 Security Against Misidenti�cation Attacks

Experiment Expmis-id
A (λ)

stateI = (st,Y,SGM,SOA)← Setup(1λ, 1Ngs)
(M?, σ?)← A(Qpub, Qa-join, Qread, QkeyOA)
if Verify(σ?,M?,Y) = 0 then

return 0
i = Open(M?, σ?,SOA,Y, st′)
if i 6∈ Ua then

return 1
else

return 0

Figure 5.2 – Experiment for security against misidenti�cation attacks.

In a misidenti�cation attack, the adversary can corrupt the opening authority using the
QkeyOA oracle and introduce malicious users in the group via Qa-join-queries. It aims at
producing a valid signature σ? that does not open to any adversarially-controlled user.

De�nition 5.3. A dynamic group signature scheme is secure against misidenti�cation
attacks if, for any PPT adversary A involved in Experiment Expmis-id

A (λ) described in
Figure 5.2, we have:

AdvAmis-id(λ) , Pr
[

Expmis-id
A (λ) = 1

]
≤ negl(λ) .
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5.3.3 Non-Frameability

Experiment Expfra
A (λ)

stateI = (st,Y,SGM,SOA)← Setup(1λ, 1Ngs)
(M?, σ?)← A(Qpub, QkeyGM, QkeyOA, Qb-join, Qsig, Qread, Qwrite)
if Verify(σ?,M?,Y) = 0 then

return 0
if i = Open(M?, σ?,SOA,Y, st′) 6∈ U b then

return 0

if
∧

j∈Ub s.t. j=i

(j,M?, ∗) 6∈ Sigs then

return 1
else

return 0

Figure 5.3 – Experiment for security against framing attacks.

Framing attacks consider the situation where the entire system is colluding against some
honest user. The adversary can corrupt the group manager as well as the opening authority
(via oracles QkeyGM and QkeyOA, respectively). It can also introduce honest group members
(viaQb-join-queries), observe the system while these users sign messages and create dummy
users using Qwrite. The adversary eventually aims at framing an honest group member.

De�nition 5.4. A dynamic group signature scheme is secure against framing attacks if,
for any PPT adversary A involved in the experiment Expfra

A (λ) described Figure 5.3), it
holds that

AdvAfra(λ) = Pr
[
Expfra

A (λ) = 1
]
≤ negl(λ) .

5.3.4 Full Anonymity

Experiment Expanon
A,d (λ)

stateI = (st,Y,SGM,SOA)← Setup(1λ, 1Ngs)(
aux,M?, (sec?0, cert?0), (sec?1, cert?1)

)
← A(play; Qpub, QkeyGM, Qopen, Qread, Qwrite)

if ¬((cert?0 �Y sec?0) ∧ (cert?1 �Y sec?1) ∧ (cert?0 6= cert?1)) then
return ⊥

σ? ← Sign(Y, cert?d, sec?d,M?)
d′ ← A(guess; σ?, aux,Qpub, QkeyGM, Q

¬{(M?,σ?)}
open , Qread, Qwrite)

return d′;

Figure 5.4 – Security experiments for (full-)anonymity game.

The notion of anonymity is formalized by means of a game involving a two-stage adversary.
The �rst stage is called play stage and allows the adversary A to modify stateI via Qwrite-
queries and open arbitrary signatures by probing Qopen. When the play stage ends, A
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chooses a message M? as well as two pairs (sec?0, cert?0) and (sec?1, cert?1), consisting of a
valid membership certi�cate and a corresponding membership secret. Then, the challenger
�ips a coin d ← {0, 1} and computes a challenge signature σ? using (sec?d, cert?d). The
adversary is given σ? with the task of eventually guessing the bit d ∈ {0, 1}. Before doing
so, it is allowed further oracle queries throughout the second stage, called guess stage, but
is restricted not to query Qopen for (M?, σ?).

De�nition 5.5. A dynamic group signature scheme is fully anonymous if, for any PPT
adversary A in the experiment Expanon

A,d (λ) described in Figure 5.4, the following distance
is negligible:

AdvAanon (λ) ,
∣∣∣Pr

[
Expanon

A,1 (λ) = 1
]
− Pr

[
Expanon

A,0 (λ) = 1
]∣∣∣
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Chapter6

Pairing-Based Dynamic Group

Signatures

In this chapter, we aim at lifting the signature with e�cient protocols from [LPY15] to the
random oracle model [BR93] in order to get an e�cient construction. In the Camenish and
Lysyanskaya terminology, signatures with e�cient protocols [CL04a] are digital signatures
which come with two companion protocols: a protocol whereby a signer can obliviously
sign a committed message known only to the user and a zero-knowledge proof to e�ciently
attest possession of a hidden message-signature pair.
This building block proved useful in the design of many e�cient anonymity-related proto-
cols such as anonymous credentials [Cha85, CL01], which are similar to group signatures
except that anonymity is irrevocable (meaning that there is no opening authority). In
other words, an anonymous credential scheme involves one (or more) credential issuer(s)
and a set of users who have a long term secret key which can be seen as their digital
identity, and pseudonyms that can be seen as commitments to their secret key. Users can
dynamically obtain credentials from an issuer that only knows users’ pseudonyms and
obliviously sign users’ secret keys as well as a set of attributes. Later on, users can make
themselves known to veri�ers under a di�erent pseudonym and demonstrate possession of
the issuer’s certi�cate on their secret key without revealing neither the signature nor the
key. In this context, signature with e�cient protocols can typically be used as follows: the
user obtains the issuer’s signature on a committed message via an interactive protocol, and
uses a protocol for proving that two commitments open to the same value (which allows
proving that the same secret underlies two distinct pseudonyms) and �nally a protocol for
proving possession of a secret message-signature pair.
As explained in Chapter 2, the quality of a scheme depends on both its e�ciency and the
reliability of the assumptions it relies on. Before the works described in this chapter, most
signature schemes rely on groups of hidden order [CL04a] or non-standard assumptions in
groups with bilinear maps [CL04b, BBS04, Oka06]. To illustrate this multi-criteria quality
evaluation, we can see that Camenisch and Lysyanskaya proposed a signature scheme that is
secure in pairing-friendly groups but relies on the interactive LRSW assumption [LRSW99];
but this signature scheme requires O(n) group elements to encode an `-block message.
Pointcheval and Sanders [PS18] improved this signature to go down toO(1) group elements
for an `-block message, but which is only proven secure in the generic group model (a
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6. Pairing-Based Dynamic Group Signatures

model where group accesses are handled by an oracle that performs the group operations).
We note that besides the scheme presented in this section, we are only aware of two
schemes based on �xed-size assumptions: (1) A variant of the Camenisch and Lysyanskaya
scheme [CL04b] due to Gerbush, Lewko, O’Neill and Waters [GLOW12] in composite order
groups. Due to this assumption, the groups that are used are inherently bigger and lead
to less e�cient representations than in prime-order groups: for equivalent security levels,
Freeman [Fre10] estimates that computing a pairing over a group N = pq is at least 50
times slower than the same pairing in the prime order group setting. (2) A construction by
Yuen, Chow, Zhang and Yu [YCZY14] under the decision linear assumption [BBS04] that
unfortunately does not support “randomizable signature”, which is an important property
in privacy-enhancing cryptography. An application of this property is, in the context of
group signatures, the re-randomization of credentials accross distinct privacy-preserving
authentication.
In this chapter, we describe a new signature scheme with e�cient protocols and re-
randomizable signatures under a simple and well-studied assumption. Namely, the security
of our scheme relies on the SXDH assumption in groups of prime order with a bilinear map.
From an e�ciency point of view, the signature for an `-block message consists of only 4
groups elements.
This signature length is made possible by using e�cient QA-NIZK arguments – as pre-
sented in Section 4.1.4 and formally de�ned in [JR13] – to prove the belonging to some
linear subspace spanned by the rows of a matrix. For this purpose, it was shown that for
this speci�c task, the size of the argument may be independent of the dimension of the
considered subspace [JR14, LPJY14, KW15]. The signature scheme described in this chapter
(Section 6.2) crucially takes advantage of this observation as `-block messages are certi�ed
using a QA-NIZK argument for a subspace of dimension O(`). This construction natively
supports e�cient protocols to enhance privacy as described in Section 6.3. Hence, our
signature scheme enables the design of an e�cient anonymous credentials system based
on the sole SXDH assumption.
As another showcase for this signature, we also design another primitive. Namely, a
dynamic group signature scheme, as described in Chapter 5, which is practical and relies on
simple assumptions (namely, SXDH and SDL). This construction is competitive both in term
of signature size and computation time with the best solutions based on non-interactive
assumptions [BBS04, DP06] (in these cases, the Strong Di�e-Hellman assumption [BB04]).
Concretely, at the 128-bits security, each signature �ts within 320 bytes while providing
the strongest sense of anonymity (meaning the de�nition in Section 5.3.4).

Our Contribution. In this chapter, we propose a new signature scheme with e�cient
protocols and re-randomizable signatures under simple, well-studied assumptions. The
security of our scheme is proved in the standard model under the Symmetric eXternal
Di�e-Hellman (SXDH) assumption, which is a well-established, constant-size assumption
(i.e., described using a constant number of elements, regardless of the number of adversarial
queries) in groups with a bilinear map. Remarkably, we can sign `-block messages using
only 4 group elements under the SXDH assumption.
Our signature length is made possible by the use of e�cient Quasi-Adaptive Non-Interactive
Zero-Knowledge (QA-NIZK) arguments for linear subspaces (described in De�nition 4.10).
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It was shown [LPJY14, JR14, KW15] that, for the task of arguing that a vector of group
elements belongs to some linear subspace, the size of arguments may be independent
of the dimensions of the considered subspace. Our signature scheme crucially exploits
this observation as `-block messages are signed by generating a QA-NIZK argument for a
subspace of dimension O(`).
Our signature natively supports e�cient privacy-enhancing protocols. We describe a two-
party protocol allowing a user to obtain a signature on a committed multi-block message as
well as a honest-veri�er zero-knowledge protocol for e�ciently demonstrating knowledge
of a signature on a committed message revealing neither the message nor the signature.
Hence, our scheme readily enables the design of an e�cient anonymous credentials system
based on the sole SXDH assumption.
As another application of our signature scheme, we describe a truly practical group signature
(for dynamic groups) based on simple assumptions in the random oracle model. Our scheme
is competitive with the best solutions [BBS04, DP06] based on non-interactive assumptions
(which are those relying on the Strong Di�e-Hellman assumption [BB04]) in terms of
computational cost and signature length. Concretely, at the 128-bit security level, each
signature �ts within 320 bytes while providing anonymity in the strongest sense (i.e., against
adversaries equipped with a signature opening oracle). To the best of our knowledge, the
new scheme thus features the shortest group signatures based on standard assumptions.
It seems that our signature scheme has many other potential applications. For example,
combining it with the ideas of [CHL05a] and a pseudo-random function based on standard
assumptions (e.g., [NR97]) readily gives a compact e-cash system based on simple hardness
assumptions.

The rest of the chapter is organized as follows. We will �rst recall the useful building blocks
that are used to design and prove our signature scheme that supports e�cient protocols
in the [CL02a] fashion. Then we describe this scheme and we next give the construction
and the proof for the group signature scheme for dynamically growing groups. Finally, we
show the experimental results we obtain for this group signature scheme.

6.1 Building blocks

We use bilinear maps e : G × Ĝ → GT over groups of prime order p and we rely on
the assumed security of the SDL and SXDH problems de�ned in Section 3.1. All these
de�nitions are recalled below.

De�nition 3.1 (Pairings [BSS05]). A pairing is a map e : G× Ĝ→ GT over cyclic groups
of order p that veri�es the following properties for any g ∈ G, ĝ ∈ Ĝ:

(i) bilinearity: for any a, b ∈ Zp, we have e(ga, ĝb) = e(gb, ĝa) = e(g, ĝ)ab.

(ii) non-degeneracy: e(g, ĝ) = 1GT ⇐⇒ g = 1G or ĝ = 1Ĝ.

(iii) the map is computable in polynomial time in the size of the input.

De�nition 3.2 (SXDH [BGdMM05, As. 1]). The Symmetric eXternal Di�e-Hellman (SXDH)
assumption holds if the DDH assumption holds both in G and Ĝ.
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6. Pairing-Based Dynamic Group Signatures

De�nition 3.3 (SDL). In bilinear groups
(
G, Ĝ,GT

)
of prime order p, the Symmetric

Discrete Logarithm (SDL) problem consists in, given
(
g, ĝ, ga, ĝa

)
∈
(
G × Ĝ

)2 where
a←↩ Zp, computing a ∈ Zp.

6.1.1 Quasi-Adaptive NIZK Arguments for Linear Subspaces

Quasi-Adaptive NIZK (QA-NIZK) proofs [JR13] are NIZK proofs where the common ref-
erence string (CRS) may depend on the language for which proofs have to be generated.
Formal de�nitions are given in [JR13, LPJY14, KW15].
This section recalls the QA-NIZK argument of [KW15] for proving membership in the row
space of a matrix. In the description below, we assume that all algorithms take as input
the description of common public parameters cp consisting of asymmetric bilinear groups
(G, Ĝ,GT , p) of prime order p > 2λ, where λ is the security parameter. In this setting the
problem is to convince that v is a linear combination of the rows of a given M ∈ Gt×n.
Kiltz and Wee [KW15] suggested the following construction which simpli�es [LPJY14]
and remains secure under SXDH. We stress that cp is independent of the matrix M =
( ~M1 · · · ~Mt)T .

Keygen(cp,M): Given public parameters cp = (G, Ĝ,GT , p) and the matrix M =
(Mi,j) ∈ Gt×n.

First, choose ĝz ←↩ U(Ĝ). Pick tk = (χ1, . . . , χn)←↩ U(Znp ) and compute ĝj = ĝz
χj ,

for all j = 1 to n.
Then, for i = 1 to t, compute zi =

∏n
j=1M

−χj
i,j and output

crs =
(
{zi}ti=1, ĝz, {ĝj}nj=1

)
∈ Gt × Ĝn+1.

Prove(crs,v, {ωi}ti=1): To prove that v = ~Mω1
1 · · · ~M

ωt
t , for some witness ω1, . . . , ωt ∈

Zp, where ~Mi denotes the i-th row of M, parse crs as above and return π =
∏t
i=1 z

ωi
i .

Sim(tk,v): In order to simulate a proof for a vector v ∈ Gn using tk = {χi}ni=1, output
π =

∏n
j=1 v

−χj
j .

Verify(crs,v, π): Given π ∈ G, v = (v1, . . . , vn) and crs parsed as above, return 1 if and
only if (v1, . . . , vn) 6= (1G, . . . , 1G) and π satis�es 1GT = e(π, ĝz) ·

∏n
j=1 e(vj , ĝj).

The proof of the soundness of this QA-NIZK argument system requires the matrix M to be
witness-samplable. This means that the reduction has to know the discrete logarithms of
the group elements of M. This requirement is compatible with our security proofs.

6.2 A Randomizable Signature on Multi-Block Messages

In [LPY15], Libert et al. described an F-unforgeable signature1 based on the SXDH assump-
tion. We show that their scheme implies an e�cient ordinary digital signature which

1In F-unforgeability, the adversary only has to output a forgery for a message M without outputting
the message, but the image F (M) for an injective function F that is not necessarily e�ciently invertible
instead [BCKL08]. In [LPY15], the function F is M 7→ ĝM .
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makes it possible to e�ciently sign multi-block messages in Z`p while keeping the scheme
compatible with e�cient protocols. In order to keep the signature length independent of
the number of blocks, we exploit the property that the underlying QA-NIZK argument
[KW15] has constant size, regardless of the dimensions of the considered linear subspace.
Moreover, we show that their scheme remains unforgeable under the SXDH assumption.

Keygen(λ, `) : Choose bilinear groups cp = (G, Ĝ,GT , p) of prime order p > 2λ with
g ←↩ U(G), ĝ ←↩ U(Ĝ).

1. Choose ω, a←↩ U(Zp), and set h = ga, Ω = hω .

2. Choose ~v = (v1, . . . , v`, w)←↩ U(G`+1).

3. De�ne a matrix M = (Mj,i)j,i ∈ G(`+2)×(2`+4)

M =

 g 1
`+1 1

`+1 h

~vT gI`+1 hI`+1 1T
`+1

 , (6.1)

where 1
`+1 = (1G, . . . , 1G) ∈ G`+1.

4. Run Keygen(cp,M) of the QA-NIZK argument of Section 6.1.1 to get the common
reference string crs =

(
{zi}`+2

i=1 , ĝz, {ĝj}
2`+4
j=1

)
.

The private key is sk := ω and the public key is

pk =
(
cp, g, h, ĝ, ~v, Ω = hω, crs

)
.

Sign(sk, ~m = (m1, . . . ,m`)) : given the private key sk = ω and a message ~m ∈ Z`p,
choose s←↩ U(Zp) to compute

σ1 = gω · (vm1
1 · · · vm`` · w)s, σ2 = gs, σ3 = hs.

Then, run Prove of the QA-NIZK argument to prove that the following vector of
G2`+4

(σ1, σ
m1
2 , . . . , σm`2 , σ2, σ

m1
3 , . . . , σm`3 , σ3,Ω) (6.2)

is in the row space of M. This QA-NIZK proof π ∈ G consists of π = zω1 ·
(zm1

2 · · · zm``+1 · z`+2)s.
Return the signature σ =

(
σ1, σ2, σ3, π

)
∈ G4.

Verify(pk, σ, ~m) : parse σ as above and ~m as a tuple (m1, . . . ,m`) in Z`p and return 1 if
and only if

e(Ω, ĝ2`+4)−1 = e(π, ĝz) · e(σ1, ĝ1) (6.3)
· e(σ2, ĝ

m1
2 · · · ĝm``+1 · ĝ`+2) · e(σ3, ĝ

m1
`+3 · · · ĝ

m`
2`+2 · ĝ2`+3).
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The signature on ` scalars thus only consists of 4 elements in G while the veri�cation
equation only involves a computation of 5 pairings2.

Theorem 6.1. The above signature scheme is existentially unforgeable under chosen-message
attacks (eu-cma) if the SXDH assumption holds in (G, Ĝ,GT ).

Proof. We will proceed as in [LPY15] to prove that the scheme of section 6.2 is secure under
chosen-message attacks. Namely we will consider a sequence of hybrid games involving
two kinds of signatures.

Type A signatures: These are real signatures:

σ1 = gω · (vm1
1 · · · vm`` · w)s, σ2 = gs,

π = zω1 · (z
m1
2 · · · zm``+1 · z`+2)s, σ3 = hs.

(6.4)

Since (σ1, σ
m1
2 , . . . , σm`2 , σ2, σ

m1
3 , . . . , σm`3 , σ3,Ω) is in the row space of M, the QA-

NIZK proof π has the same distribution as if it were computed as

π = σ−χ1
1 ·

(
`+1∏
i=2

σ
−χimi−1
2

)
· σ−χ`+2

2 · 2`+2∏
i=`+3

σ
−χimi−`−2
3

 · σ−χ2`+3
3 · Ω−χ2`+4 .

(6.5)

We also de�ne Type A′ signatures as a generalization of Type A signatures where only
condition (6.4) are imposed and no restriction is given on π beyond the fact that it should
be a valid homomorphic signature on vector (6.2).

Type B signatures: These use a random value ω′ ∈R Zp instead of the secret key ω. We
pick random ω′, s, s1 ←↩ U(Zp) and compute:

(σ1, σ2, σ3) = (gω′ · (vm1
1 · · · vm`` · w)s, gs, hs+s1),

The QA-NIZK proof π is computed as in (6.5) by using tk = {χi}2`+4
i=1 . Note that

Type B signatures can be generated without using ω ∈ Zp.

We consider a sequence of games. In Game i, Si denotes the event that A produces a valid
signature σ? on M? such that (M?, σ?) was not queried before, and by Ei the event that
A produces a Type A′ signature.

Game 0: This is the real game. The challenger B produces a key pair (sk, pk) and sends pk
toA. ThenAmakes Q signature queries: A sends messages Mi to B, and B answers
by sending σi = Sign(sk,Mi) toA. FinallyA sends a pair (M?, σ?) /∈ {(Mi, σi)}Qi=1
and wins if Verify(pk, σ?,M?) = 1.

2Actually only 4 pairing computations are necessary, as e(Ω, ĝ2`+4) is independent of the inputs π and
~m, and can hence be precomputed.
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Game 1: We change the way B answers signing queries. The QA-NIZK proofs π are then
computed as simulated QA-NIZK proofs using tk as in (6.5). These QA-NIZK proofs
are thus simulated proofs for true statements, and then their distribution remains
unchanged. We have Pr[S1] = Pr[S1 ∧ E1] + Pr[S1 ∧ ¬E1]. Lemma 6.2 states that
the event S1 ∧ ¬E1 happens with all but negligible probability: Pr[S1 ∧ ¬E1] ≤
AdvDDH

Ĝ
(λ)− 1/p. Thus our task is now to upper-bound the probability Pr[S1 ∧E1].

Game 2.k (0 ≤ k ≤ Q): In Game 2.k, the challenger returns a Type B signature for the
�rst k queries. At the last Q− k signature queries, the challenger answers a type A
signature. Lemma 6.3 ensures that∣∣∣Pr

[
S2.k ∧ E2.k

]
− Pr

[
S2.(k−1) ∧ E2.(k−1)

]∣∣∣
is smaller than AdvDDH

G (λ) + 1/p.

In Game 2.Q, we know that if SXDH holds, A can only output a type A′ forgery even if
it only obtains type B signatures during the game. Nevertheless, lemma 6.4 shows that a
type A′ forgery in Game 2.Q contradicts the DDH assumptions in G. Therefore we have
Pr[S2.Q ∧ E2.Q] ≤ AdvDDH

G (λ). Putting the above altogether, the probability Pr[S0] is
upper-bounded by

AdvDDH
Ĝ

(λ) + 1
p

+Q

(
AdvDDH

G (λ) + 1
p

)
+ AdvDDH

G (λ)

< (Q+ 2) ·
(

AdvSXDH
G,Ĝ

(λ) + 1
p

)
.

Lemma 6.2. In Game 1, if the DDH assumption holds in Ĝ, A can only output a type A′

forgery.

Proof. LetA be an attacker that does not output a type A′ forgery. We will build an attacker
B against the soundness of the Quasi-Adaptive NIZK (QA-NIZK) scheme, which security is
implied from the double-pairing problem that reduces from DDH as explained in [LPJY13].
Let us de�ne the vector σ ∈ G2`+4 as

σ , (σ?1, σ
?m1
2 , . . . , σ?m`2 , σ?2, σ

?m1
3 , . . . , σ?m`3 , σ?3,Ω) ∈ G2`+4.

If (M?, σ?) is not a type A′ forgery, σ is then not in the row space of M.
Our reduction B receives as input cp = (G, Ĝ,GT , p), a matrix M as in (6.1) and a common
reference string crs (depending on the matrix) for an instance of the QA-NIZK scheme
allowing to prove that vectors of dimension 2`+4 are in the row space of M. The generation
of the matrix M �xes g, h and ~v = (v1, . . . , v`, w) ∈ G`+1. After that, B picks ω ←↩ U(Zp)
and ĝ ←↩ U(Ĝ), and set Ω = hω . Then, the reduction B sends to A cp and the veri�cation
key:

pk =
(
g, h, ĝ, ~v, ω, crs

)
.
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Since B knows the secret key ω ∈ Zp, it can answer all signing queries by honestly running
the Sign algorithm, in particular, it does not need to know tk to do this.
WhenA halts, it outputs (M?, σ?) where σ? is not a Type A′ forgery, so that σ is not in the
row space of M. Therefore, outputting π? constitutes a valid proof against the soundness
property of the scheme, and thus implies an algorithm against DDH as in [KW15] since
the matrix can be witness-samplable.

Lemma 6.3. If DDH holds inG, for each k ∈ {1, . . . , Q},A produces a type A′ forgery with
negligibly di�erent probabilities in Game 2.k and Game 2.(k − 1).

Proof. Let us assume there exists an index k ∈ {1, . . . , Q} and an adversaryA that outputs
a Type A′ forgery with smaller probability in Game 2.k than in Game 2.(k − 1). We build
a DDH distinguisher B.

Algorithm B takes in (ga, gb, η) ∈ G3, where η = ga(b+c), and decides if c = 0 or c ∈R Zp.
To do this, B sets h = ga. It picks ω, av1 , bv1 , . . . , av` , bv` , aw, bw ←↩ U(Zp) and sets
Ω = hω as well as:

∀i ∈ {1, . . . , `} : vi = gavi · hbvi , w = gaw · hbw .

The reduction B also chooses tk = {χi}2`+4
i=1 and computes crs = ({zj}2`+4

j=1 , ĝz, {ĝi}
2`+4
i=1 )

as in steps 3-4 of Keygen. It then outputs pk = (g, h, ĝ, ~v, ω, crs).

Then, queries are answered depending on their index j:
Case j < k: B computes a Type B signature, σ = (σ1, σ2, σ3, π), using tk = {χi}2`+4

i=1
with the QA-NIZK simulator to computes π.
Case j > k: The lastQ−k− 1 signing queries are computed as Type A signatures, which
B is able to generate using the secret key ω ∈ Zp he knows and crs or tk = {χi}2`+4

i=1 to
produces valid proofs.
Case j = k: In the k-th signing query (m1, . . . ,m`), B embeds the DDH instance in
the signature and simulates either Game 2.k or Game 2.(k − 1) depending on whether
η = gab or η = ga(b+c) for some c ∈R Zp. Namely, B computes σ2 = gb, σ3 = η, and

σ1 = gωσ
aw+

∑`

i=1 avimi
2 σ

bw+
∑`

i=1 bvimi
3 . Then B simulates QA-NIZK proofs π as recalled

in (6.5), and sends σ = (σ1, σ2, σ3, π) to A.

If η = gab, the k-th signature σ is a Type A signature with s = b. If η = ga(b+c) for some
c ∈R Zp, we have:

σ1 = gωgac·(bw+
∑`

i=1 bvimi)(vm1
1 · · · vm`` w)b

= gω
′(vm1

1 · · · vm`` w)b

σ2 = gb, σ3 = hb+c

Where ω′ = ω + ac · (bw +
∑`
i=1 bvimi). Since the term bw +

∑`
i=1 bvimi is uniform and

independent of A’s view, σ is distributed as a Type B signature if η = ga(b+c).
When A terminates, it outputs a couple (m?

1 · · ·m?
` , σ

?) that has not been queried during
the signing queries. Now the reduction B has to determine whether σ? is a Type A′ forgery
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or not. To this end, it tests if the equality:

σ?1 = gωσ
?aw+

∑`

i=1 avim
?
i

2 σ
?bw+

∑`

i=1 bvim
?
i

3 (6.6)

is satis�ed. If it is, B outputs 1 to indicate that η = gab. Otherwise it outputs 0 and rather
bets that η ∈R G.
To see why this test allows recognizing Type A′ forgeries, we remark that σ? is of the form:

σ?2 = gs, σ?3 = hs+s1 , σ?1 = gω+s0(vm
?
1

1 · · · vm
?
`

` w)s,

and the goal of B is to decide whether (s0, s1) = (0, 0) or not. We notice that s0 =
a · s1 · (bw +

∑`
i=1 bvi ·m?

i ) if the forgery ful�lls relation (6.6) and we show this to only
happen with probability 1/p for any s1 6= 0 meaning that Type B forgery passes the test
with the same probability.
From the entire game, and assuming a forgery which passes the test, we have the following
linear system:


I`+1 a · I`+1

0T`+1 ac · (m1| · · · |m`|1)

0T`+1 as1 · (m?
1| · · · |m?

` |1)

 ·



av1
...
av`
aw
bv1

...
bv`
bw


=



logg(v1)
...

logg(v`)
logg(w)
ω′ − ω
s0



where, 0`+1 denotes the zero vector of length `+1 andm1, . . . ,m` is the message involved
in the k-th signing query. Note that the (l + 2)-th equation is meaningless when c = 0
since then ω′ = ω. However, even if c 6= 0 the information that A can infer about
(av1 , . . . , av` , aw, bv1 , . . . , bv` , bw) ∈ Z2`+2

p during the game amounts to the �rst ` + 2
equations of the system which is of full rank. It means that this vector is unpredictable
since all the solutions of this linear system live in a sub-space of dimension at least one
(actually ` = (2`+ 2)− (`+ 2)). Finally, as long as s1 6= 0, the right value s0 can only be
guessed with probability 1/p since the last row of the matrix is independent of the others
as soon as (m1, . . . ,m`) 6= (m?

1, . . . ,m
?
` ) 6= 0.

To conclude the proof, since B is able the tell apart the type of the forgery, ifA’s probability
to output a forgery of some Type in Game k− 1 (i.e., c = 0) was signi�cantly di�erent than
in Game k (i.e., c 6= 0) then B would be able to solve the DDH problem with non-negligible
advantage.

Lemma 6.4. In Game 2.Q, a PPT adversary outputting a type A′ forgery would contradict
the DDH assumption in G: Pr[S2.Q ∧ E2.Q] ≤ AdvDDH

G (λ).

Proof. We will build an algorithm B for solving the Computational Di�e Hellman prob-
lem (CDH) which is at least as hard as the DDH problem. The reduction B takes as
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input a tuple (g, h,Ω = hω) and computes gω . To generate pk, B picks ĝ ←↩ U(Ĝ),
av1 , . . . , av` , aw ←↩ U(Zp) and computes v1 = gav1 , . . . , v` = gav` , and w = gaw . Then B
generates tk = {χi}2`+4

i=1 , crs = ({zj}`+2
j=1, ĝz, {ĝi}

2`+4
i=1 ) as in step 3-4 of the key generation

algorithm, then sends the public key pk =
(
g, h, ĝ,v,Ω = hω, crs

)
to A.

B also retains tk = {χi}2`+4
i=1 to handle signing queries. We recall that during the game,

signing queries are answered by returning a Type B signature so that, using tk, B can
answer all queries without knowing the ω = logh(Ω) which is part of the CDH challenge.
The results of Lemma 6.3 implies that even if A only obtains Type B signatures, it will
necessarily output a Type A′ forgery σ? = (σ?1, σ?2, σ?3, π?) unless the DDH assumption
does not hold in G. This event thus allows B to compute

gω = σ?1 · σ?2
−aw−

∑`

i=1 avim
?
i ,

which contradicts the DDH assumption in G.

6.3 Companion Protocols

In this section, we give Σ-protocols (Section 4.1.2) for issuing a signature on a committed
multi-block message and for proving knowledge of a valid message-signature pair.

6.3.1 Proof of Knowledge of a Signature on a Committed Message

We give Σ-protocols for proving the knowledge of a signature-message pair (σ, ~m) satisfy-
ing the veri�cation equation (6.3) of the scheme of Section 6.2

e(Ω, ĝ2`+4)−1 = e(σ1, ĝ1) · e(σ2, ĝ
m1
2 · · · ĝm``+1 · ĝ`+2) (6.7)

· e(σ3, ĝ
m1
`+3 · · · ĝ

m`
2`+2 · ĝ2`+3) · e(π, ĝz),

where σ = (σ1, σ2, σ3, π) and ~m = (m1, . . . ,m`). We note that, as shown in the proof
of Theorem 6.1, a candidate signature (σ1, σ2, σ3, π) may satisfy the veri�cation equation
although logg(σ2) 6= logh(σ3). In applications to anonymous credentials, a malicious
credential issuer could take advantage of this fact in attempts to break the anonymity of
the scheme (e.g., by linking two authentications involving the same credential). For this
reason, we consider a protocol for proving possession of a possibly maliciously generated
signature.
We thus consider the case of arbitrary valid signatures that may have been maliciously
computed by a signer who, e.g., aims at tracing provers across di�erent authentications. In
this setting, we can still obtain a perfect SHVZK Σ-protocol to hedge against such attacks.
A �rst attempt to e�ciently build such a protocol is to “linearize” the veri�cation equation
(6.7) by making sure that two witnesses are never paired together. However, we will still
have to deal with (parallelizable) intermediate Σ-protocols for quadratic scalar relations.
Even though a quadratic pairing-product equation e(x1, â)·e(x2, ŷ) – for variables x1, x2, ŷ
and constant â – can be linearized by partially randomizing the variables so as to get the
equation e(x1 · xr2, â) · e(x2, ŷ · â−r) (which allows ŷ′ = ŷ · â−r to appear in the clear),
proving knowledge of a valid signature still requires proving a statement about some
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representation of ŷ which now appears in committed form. Somehow, going through the
randomizing factor â−r involves a quadratic relation between some known exponents to
get special-soundness. To ease the entire proof we rather directly commit to the variables
in G and Ĝ using their available generator g and ĝ which are not among the constants of
the veri�cation equation of the signature. We additionally need an extra generator f of G
whose discrete logarithm is unknown.

Commit Given (σ, ~m), conduct the following steps.

1. Commit to d1 := ĝm1
2 · · · ĝm``+1 · ĝ`+2 ∈ Ĝ and d2 := ĝm1

`+3 · · · ĝ
m`
2`+2 · ĝ2`+3 ∈ Ĝ. To

this end, choose r1, r2 ←↩ U(Zp) and compute D̂1 = d1 · ĝr1 and D̂2 = d2 · ĝr2 .

2. In order to prove knowledge of an opening of commitments D̂1, D̂2 ∈ Ĝ to the same
message ~m = (m1, . . . ,m`) ∈ Z`p, choose s1, s2, u1, . . . , u` ←↩ U(Zp) and compute
Ê1 = ĝu1

2 · · · ĝ
u`
`+1 · ĝs1 and Ê2 = ĝu1

`+3 · · · ĝ
u`
2`+2 · ĝs2 .

3. Using the randomness r1, r2 ∈ Zp from step 1, de�ne σ0 = σr12 · σ
r2
3 and commit to

(π, σ0, σ1, σ2, σ3) ∈ G5. For this purpose, choose tz, t0, t1, t2, t3 ←↩ U(Zp) at random
and setCz = π·gtz ,Ci = σi·gti , for i ∈ {0, . . . , 3}, and D̂0 = ĝtzz ·ĝ

t1
1 ·D̂

t2
1 ·D̂

t3
2 ·ĝ−t0 .

4. In order to prove (partial) knowledge of an opening to (Cz, C0, C1, C2, C3, D̂0),
compute Ê0 = ĝvzz · ĝ

v1
1 · D̂

v2
1 · D̂

v3
2 · ĝ−v0 for random vz, v0, v1, v2, v3 ←↩ U(Zp).

5. Prove that C0 is well-formed relatively to the committed values in C1, C2 and the
coins r1, r2 ∈ Zp used in D̂1, D̂2. To this end, prove knowledge of the representation
C0 = Cr12 · C

r2
3 · gt4 , where t4 = t0 − r1 · t2 − r2 · t3. To do this, compute

F0 = Cs12 · C
s2
3 · gv4 , for v4 ←↩ U(Zp) and where s1, s2 ∈ Zp are the random coins

used in Ê1, Ê2.

6. To prove that t4 = t0 − r1 · t2 − r2 · t3, (re-)commit to t0, t2, t3, t4 ∈ Zp by picking
x2, x3, x4 ←↩ U(Zp) and computing

Ti = gti · fxi ∀i ∈ {0, 2, 3, 4},

where x0 = x2 · r1 + x3 · r2 + x4. Ensure that committed variables coincide with
those of previous steps by computing

{Vi = gvi · fyi}i∈{0,2,3,4},

where y0, y2, y3, y4 ←↩ U(Zp). To prove the equality T0 = T r12 · T
r2
3 · T4, re-use

s1, s2 ∈ Zp from steps 2 and 5 to compute S0 = T s12 · T
s2
3 .

Finally, keep Cz ∈ G and all the random coins in aux,

and output
com =

(
{Ci}3i=0, F0, {(Ti, Vi)}i=0,2,3,4,

S0, {(D̂i, Êi)}2i=0

)
∈ G14 × Ĝ6

(6.8)
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Challenge Given com as per (6.8), pick ρ ←↩ U(Zp) uniformly at random and return
chall = ρ.

Response On inputs com, aux and chall = ρ, compute:

1. m̄i = ρ ·mi + ui, for i = 1 to `, r̄1 = ρ · r1 + s1, and r̄2 = ρ · r2 + s2;

2. wz = ρ · tz + vz and wi = ρ · ti + vi, for i = 0 to 3;

3. w4 = ρ · t4 + v4, where t4 := t0 − t1 · r1 − t2 · r2;

4. zi = ρ · xi + yi for each i ∈ {0, 2, 3, 4}.

Output resp ∈ G× Z`+12
p as(

Cz, {m̄i}`i=1, r̄1, r̄2, wz, {wi}4i=0, {zi}i=0,2,3,4
)
.

Verify Given (com; chall; resp) return 0 if it does not parse correctly or if the following
relations do not hold:

1. (D̂1/ĝ`+2) ρ · Ê1 = ĝ m̄1
2 · · · ĝ m̄``+1 · gr̄1 and (D̂2/ĝ2`+3) ρ · Ê2 = ĝ m̄1

`+3 · · · ĝ
m̄`
2`+2 · gr̄2 ;

2. D̂ ρ
0 · Ê0 = ĝwzz · ĝ

w1
1 · D̂

w2
1 · D̂

w3
2 · ĝ−w0 and C ρ

0 · F0 = C r̄1
2 · C

r̄2
3 · gw4 .

3. T ρi · Vi = gwifzi for each i ∈ {0, 2, 3, 4} and

(T0/T4)ρ · S0 = T r̄12 · T
r̄2
3 . (6.9)

Then, return 1 if and only if

e(C0, ĝ) · e(g, D̂0) · e(Ω, ĝ2`+4)−1 (6.10)
= e(C1, ĝ1) · e(C2, D̂1) · e(C3, D̂2) · e(Cz, ĝz).

It is worth noticing that no pairing evaluation is required until the �nal step of Verify,
which is almost as e�cient as the veri�cation of underlying signatures. Moreover, the
prover’s �rst message com is of constant-size and the communication complexity of the
protocol exceeds the length of the witness by a constant additive overhead.

Theorem 6.5. The above interactive scheme is a secure Σ-protocol for the language Lsig
induced by the relation Rsig(pk, (~σ, ~m)) = 1 if and only if Verify′(pk, ~σ, ~m) = 1, where
(KeyGen,Sign,Verify′) is the signature of Section 6.2.

Proof. Correctness. Expanding an honestly generated D̂0 = ĝtzz · ĝ
t1
1 · D̂

t2
1 · D̂

t3
2 · ĝ−t0 in

equation (6.10) and regrouping the pairing factors gives

e(C0 · g−t0 , ĝ) · e(Ω, ĝ2`+4)−1

= e(C1 · g−t1 , ĝ1) · e(C2 · g−t2 , D̂1)
· e(C3 · g−t3 , D̂2) · e(Cz · g−tz , ĝz).
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Now, expanding the commitments to group elements in G reduces this equation to

e(σr12 · σ
r2
3 , ĝ) · e(Ω, ĝ2`+4)−1

= e(σ1, ĝ1) · e(σ2, D̂1) · e(σ3, D̂2) · e(π, ĝz)

which holds true for valid witnesses when D̂1 = d1 · ĝr1 and D̂2 = d2 · ĝr2 . Remaining
veri�cations of items 1,2,3 follow from the correctness of the built-in Σ-protocols.

Special-Soundness. We assume two accepting transcripts (com, ρ, resp), (com, ρ′, resp′)
with ρ 6= ρ′. The special soundness of the sub-protocols involving D̂1, D̂2 (with Ê1, Ê2)
– consisting of steps 1 and 2 of Commit and step 1 of Verify– ensures the extraction of
m1, . . . ,m`, r1, r2 satisfying D̂1 = d1 · ĝr1 , where d1 = ĝm1

2 · · · ĝm``+1 · ĝ`+2, and D̂2 = d2 ·
ĝr2 , where d2 = ĝm1

`+3 · · · ĝ
m`
2`+2 ·ĝ2`+3. From step 2 of Verify, a similar argument on D̂0 (with

Ê0) implies the extractability of (tz, t0, t1, t2, t3, t4) such that D̂0 = ĝtzz ·ĝ
t1
1 ·D̂

t2
1 ·D̂

t3
2 ·ĝ−t0 .

Moreover, together with previously extracted (r1, r2), step 2 of Verify also guarantees that
t4 satis�es C0 = Cr12 · C

r2
3 · gt4 .

We now state that quantities {σi = Ci · g−ti}i∈{1,2,3} and π = Cz · g−tz satisfy (6.3),
so that, together with ~m = (m1, . . . ,m`), they form a valid witness for Rsig . Namely,
(σ, ~m) = ((σ1, σ2, σ3, π), (m1, . . . ,m`)) is a valid message-signature pair.
To see this, de�ne σ0 = C0 · g−t0 . Since equation (6.10) holds by hypothesis, if we expand
all commitments using extracted values, we �nd

e(σ0, ĝ) · e(Ω, ĝ2`+4)−1

= e(σ1, ĝ1) · e(σ2, d1 · ĝr1) · e(σ3, d2 · ĝr2) · e(π, ĝz).

We are thus left with showing that σ0 = σr12 · σ
r2
3 or, equivalently, e(σ0, ĝ) = e(σ2, ĝ

r1) ·
e(σ3, ĝ

r2). Remember that, from step 2 of Verify, we know that extracted (r1, r2, t4) ∈ Z3
p

form a representation of C0 w.r.t. the base (C0, C2, g): i.e., C0 = Cr12 · C
r2
3 · gt4 , which,

from the de�nition of σ0, σ2, σ3, yields σ0 · gt0 = σr12 · σ
r2
3 · gt2·r1+t3·r2+t4 . Hence, we are

done if we can show that t0 = t2r1 + t3r2 + t4. But this exactly what step 3 of Verify and
the special soundness of the sub-protocol involving (T0, T2, T3, T4) tells us. First, we have
a representation of these Ti’s w.r.t. the basis (g, f) ∈ G2 which guarantees that we are
working on the already extracted (t0, t2, t3, t4) involved in the expressions of D̂0 and C0.
Second, the veri�cation equation (6.9) ensures that T0 = T r12 · T

r2
3 · T4 and the �nal result

follows by replacing them by their representation.

Perfect SHVZK. To show this property we must build a simulator that, on input of a
challenge chall = ρ ∈R Zp, emulates a valid transcript without any witness. First, we need
to compute a random tuple Cz, {Ci}3i=0, {D̂}2i=0 constrained to satisfy the veri�cation
equation (6.10).
From the identity e(Ω, ĝ2`+4)−1 = e(Ω−1, ĝ2`+4) we �rst pick a0, a1, a2, az ← Zp, D̂1 ←
Ĝ and we have e(Ω, ĝ2`+4)−1 = e(Ω−1, ĝ2`+4 · ĝa0 ĝa1

1 D̂a2
1 ĝ

az
z ) · e(Ωa0 , ĝ) · e(Ωa1 , ĝ1) ·

e(Ωa2 , D̂1) ·e(Ωaz , ĝz), so that we can setC0 = Ω−a0 ,C1 = Ωa1 ,C2 = Ωa2 andCz = Ωaz .
Let B̂ := ĝ2`+4 · ĝa0 ĝa1

1 D̂a2
1 ĝ

az
z . Now, we can introduce the constant g ∈ G in the equation

by picking ag ← Zp since e(Ω−1, B̂) = e(Ω−1 · gag , B̂) · e(g, B̂−ag). Then, we �nally set
D̂0 = B̂ag , D̂2 = B̂a3 and C3 = (Ω−1 · gag)1/a3 for a random a3 ← Zp.
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To complete the simulated transcript, we run a parallel execution of the simulators of all
Σ-protocols used as subroutines.
More explicitly, �rst pick ρ←↩ U(Zp) and

m̄1, . . . , m̄`, r̄1, r̄2, wz, w0, . . . , w4, z0, z2, z3, z4 ←↩ U(Zp).

Also, choose T0, T2, T3, T4 ←↩ U(G) and do the following:

1. Compute
Ê1 = (D̂1/ĝ`+2)−ρ · ĝ m̄1

2 · · · ĝ m̄``+1 · g
r̄1

and, similarly,
Ê2 = (D̂2/ĝ2`+3)−ρ · ĝ m̄1

`+3 · · · ĝ
m̄`
2`+2 · g

r̄2 ;

2. Compute
F0 = C −ρ0 · C r̄1

2 · C
r̄2
3 · g

w4

as well as
Ê0 = D̂ ρ

0 · ĝ
wz
z · ĝ

w1
1 · D̂

w2
1 · D̂

w3
2 · ĝ

−w0 ;

3. Compute
Vi = T−ρi · gvifzi ,

for each i ∈ {0, 2, 3, 4}, and

S0 = (T0/T4)−ρ · T r̄12 · T
r̄2
3 .

This concludes the proof.

6.3.2 Signing a Committed Message

At a high level, the protocol involves a committer who wants to get a signature on m =
(m1, . . . ,m`) and �rst computes a commitment of the form cv = vm1

1 · · · vm`` · ur , where u
is the extra public parameter (with unknown discrete log). The signer gives back elements
of the form τ1 = gωcsv , τ2 = gs, τ3 = hs which is almost the desired signature. To get the
component σ1 of the right form relatively to τ2, τ3 the committer has to remove the factor
urs from τ1. Then, the signer also sends τ0 = us to enable removing τ r0 . In the protocol
some randomizing steps are included as well as other additional components allowing
the committer to extract π, the QA-NIZK part of the signature. In the security proof of
the protocol we thus have to show that the additional value τ0 = us does not a�ect the
unforgeability of the signature.

The protocol. At the beginning of a new run of the protocol, the committer has a vector
m = (m1, . . . ,m`), the public-key of the signature scheme and the extra generator u ∈ G
(which can be a hashed point), the signer also has the secret key of the signature scheme
but not m. To get a signature on m, the committer picks r ←↩ U(Zp) and computes a
perfectly hiding commitment cv = vm1

1 · · · vm`` · ur ∈ G. Besides, it also computes the
elements cz = zm1

2 · · · zm``+1 · utz . The signer receives these commitments and they both
engage in an interactive proof of knowledge of an equal representation of cv relatively to
the basis (v1, . . . , v`;u) and cz relatively to the basis (z2, . . . , z`+1;u), where the signer
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plays the role of the veri�er. Depending on the success of the proof the signer computes
what we can call a “pre-signature” consisting of the following group elements

τ1 = gω · (cv · w)s, τ3 = hs, π0 = zω1 · csz · zs`+2,

τ2 = gs, τ0 = us,

for a random s←↩ U(Zp). In the �nal step, the user received the pre-signature, then picks
s′ ←↩ U(Zp) and computes (σ1, σ2, σ3, π) ∈ G4 as follows

σ1 = τ1 · τ−r0 · (vm1
1 · · · vm`` · w)s′ , σ2 = τ2 · gs

′
,

π = π0 · τ−tz0 · (zm1
2 · · · zm``+1 · z`+2)s′ , σ3 = τ3 · hs

′
.

Finally the user checks the validity of the signature. Depending on the validity, the user
outputs the signature or a failure symbol ⊥.
We notice that the number of transmitted group elements is constant and no pairing is
needed before the signature veri�cation phase. In comparison, the construction of [CL02a]
requires groups of larger hidden order and their protocol for signing committed message
blocks requires a linear number of range proofs.

Security. We brie�y sketch the proof of the above protocol in front of malicious entities
since classical arguments can be applied. Assuming that the committer uses secure ZKPK
and does not output ⊥, a malicious signer which receives perfectly hiding commitments
cv, cz cannot tell apart an honest proof from a simulated proof. Consequently the signer
learns nothing from m during the execution of the protocol. In the other case, we have
to show that a corrupted committer remains unable to produce valid signature on a new
vector m?. First, since the generation of u is not under the controlled of the committer
but of the random oracle, u can be made independent of rest of pk. Then, we only need to
show that the signature remains unforgeable when τ0 is given in the signature. Since m
and s can be extracted from the proof of knowledge the reduction can output a signature
on m. Moreover it is easy to see from the security proof (in Section 6.1.1) of the signature
how this additional element can be simulated. Actually the only place in the reduction
where τ0 could not be computed directly as us for a known s is when the challenger B
has to embed an SXDH challenge in a simulated signature. Given (g, h, gb, hb+c), B can
compute u = gauhbu from random au, bu ← Zp and program the random oracle to output
this element u as the speci�cation of the public-key would do. Then to simulate τ0 B simply
has to compute τ0 = (gb)au(hb+c)bv = ubhc·bv which is ub or random. The rest of the
reduction remains unchanged since the value au, bu are completely independent of those
already described in the sketch of proof in Section 6.1.1.

Remark. Since a malicious signer may know the simulation trapdoor tk = {χi}2`+4
i=1 of the

underlying QA-NIZK argument, he could produce valid signature so that logg σ2 6= logh σ3.
Then, if the committer later needs to proof knowledge of the received signature it then has
to use the sigma protocol of Section 6.2 where both σ2 and σ3 only appear in committed
form.

6.4 The Dynamic Group Signatures Scheme

We adapt the protocol of section 6.2 to build a dynamic group signature [BSZ05, KY06]. At
a high level, each group member obtains a membership certi�cate consisting of a signature
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(σ1, σ2, σ3, π) on a message ID ∈ Zp which is only known to the group member. During
the joining protocol, each group member thus obtains a signature on a committed message
ID ∈ Zp. Here, we use a deterministic commitment to ID, which su�ces to ensure security
against framing attacks and allows for a better e�ciency. When signing a message, each
group member veri�ably encrypts the components (σ1, π) of his membership certi�cate
that depend on ID (and not σ2, σ3 which can be assumed to be honestly computed here,
unlike in the previous section). For the sake of e�ciency, we use a randomness re-using
[BBKS07] variant of the Cramer-Shoup encryption scheme [CS98] whereby σ1 and π are
both encrypted using the same encryption exponent θ ∈ Zp. For public veri�ability
purposes, the validity of Cramer-Shoup ciphertexts is demonstrated using Σ-protocols and
the Fiat-Shamir heuristic [FS86] (somewhat in the fashion of [SG98]) rather than designated
veri�er NIZK proofs [CS98].
In the join protocol, the user proves knowledge of his membership secret ID ∈ Zp in
a zero-knowledge manner, which restricts the group manager to sequentially interact
with prospective users. However, this limitation can be removed using an extractable
commitment as in [DP06].

Keygen(λ,N): given λ ∈ N, and the maximum number of usersN ∈ poly(n) (λ), choose
asymmetric bilinear groups cp = (G, Ĝ,GT , p) of order p > 2λ.

1. Generate a key pair (pks, sks) for the scheme of section 6.2 for a one-block message
(i.e., ` = 1). The secret key is sks = ω, while the public key is

pks =
(
cp, g, h, ĝ, ~v = (v, w), Ω = hω, crs

)
,

where crs =
(
{zj}3j=1, ĝz, {ĝi}6i=1

)
.

2. Pick xz, yz, xσ, yσ, xID, yID ←↩ U(Zp) and set

Xz = gxzhyz , Xσ = gxσhyσ , XID = gxIDhyID .

3. Choose a hash function H : {0, 1}∗ × G10 × GT → Zp that will be modeled as a
random oracle.

4. De�ne Y =
{
pks, Xz, Xσ, XID

}
to be the group public key. The group manager’s

private key is SGM = ω = sks whereas the opening authority’s private key consists
of SOA =

(
xz, yz, xσ, yσ, xID, yID

)
.

Join
(GM,Ui)

: The group manager GM, and the prospective user Ui run the following inter-
active protocol:

1. Ui chooses ID←↩ U(Zp) and sends the following to GM: (VID, ZID, Ĝ2,ID, Ĝ4,ID) =
(vID, zID

2 , ĝ
ID
2 , ĝ

ID
4 )

2. GM checks that VID does not appear in any transcript of St and abort if it does.
Otherwise (i.e., if VID is fresh), GM veri�es that: for k = 2, 4,

e(VID, ĝk)
?= e(v, Ĝk,ID), e(ZID, ĝk)

?= e(z2, Ĝk,ID).

If all tests pass, samples a fresh index i ∈ Zp and sends it to Ui, otherwise abort.
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3. Ui runs an interactive zero-knowledge proof of knowledge of ID = logv(VID) in
interaction with GM. For instance, the 4-round protocol of Cramer et al. [CDM00]
can be used for this purpose. Let πK(ID) denote the interaction transcript.

4. GM uses VID = vID to sign ID using the scheme of section 6.2: i.e., GM picks
s ←↩ U(Zp), and uses SGM = ω to compute σ1 = gω · (VID · w)s = gω · (vID · w)s
and

σ2 = gs, σ3 = hs.

Then GM uses ZID to generate the QA-NIZK proof π ∈ G as

π = zω1 · (ZID · z3)s = zω1 · (zID
2 · z3)s

and �nally sends certi = (i, VID, σ1, σ2, σ3, π)

5. Finally GM and Ui respectively store

transcripti=
((
ZID, Ĝ2,ID, Ĝ4,ID

)
, πK(ID), certi

)
(6.11)

and (certi, seci) =
(
(i, VID, σ1, σ2, σ3, π), ID

)
.

Sign(Y, seci, certi,M): Given a message M ∈ {0, 1}∗ and a secret seci = ID, the user Ui
does the following:

1. Re-randomize the certi�cate certi. Namely, choose r ←↩ U(Zp) and compute σ̃2 =
σ2 · gr , σ̃3 = σ3 · hr , σ̃1 = σ1 · (vID · w)r , π̃ = π · (zID

2 · z3)r .

2. Encrypt elements π̃, σ̃1 and vID from the membership certi�cate. Speci�cally, choose
θ ←↩ U(Zp) and compute the Cramer-Shoup ciphertextCCS = (C1, C2, Cz, Cσ, CID),
where C1 = gθ , C2 = hθ ,

Cz = π̃ ·Xθ
z , Cσ = σ̃1 ·Xθ

σ, CID = vID ·Xθ
ID.

3. Then, prove knowledge of (ID, θ) ∈ Z2
p such that

C1 = gθ, C2 = hθ, CID = vID ·Xθ
ID,

(
e(Cz, ĝz) · e(Cσ, ĝ1) · e(σ̃2, ĝ3) · e(σ̃3, ĝ5) · e(Ω, ĝ6)

)
=
(
e(Xz, ĝz) · e(Xσ, ĝ1)

)θ · (e(σ̃2, ĝ2) · e(σ̃3, ĝ4)
)−ID

.

Namely, sample random rID, rθ ←↩ U(Zp), compute

R1 = grθ , R2 = hrθ , R3 = vrID ·Xrθ
ID ,

R4 =
(
e(Xz, ĝz) · e(Xσ, ĝ1)

)rθ · (e(σ̃2, ĝ2) · e(σ̃3, ĝ4)
)−rID

and then de�ne c as c = H(M,CCS, σ̃2, σ̃3, R1, R2, R3, R4). Finally compute the
two responses sθ = rθ + c · θ, sID = rID + c · ID both in Zp.
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4. Return the signature Σ which consists of

Σ = (CCS, σ̃2, σ̃3, c, sID, sθ) ∈ G7 × Z3
p (6.12)

Verify(Y,M,Σ): Parse the signature Σ as in (6.12) and CCS as (C1, C2, Cz, Cσ, CID).
Then, output 1 if the the zero-knowledge proof veri�es. Namely,

1. Compute the group elements R1, R2, R3 ∈ G as:

R1 = gsθ · C−c1 , R2 = hsθ · C−c2 ,

R3 = vsID ·Xsθ
ID · C

−c
ID ;

(6.13)

and the element R4 ∈ GT as

(
e(Xz, ĝz) · e(Xσ, ĝ1)

)sθ · (e(σ̃2, ĝ2) · e(σ̃3, ĝ4)
)−sID

·
(
e(Cz, ĝz) · e(Cσ, ĝ1) · e(σ̃2, ĝ3) · e(σ̃3, ĝ5) · e(Ω, ĝ6)

)−c
.

(6.14)

2. Return 1 if c = H(M,CCS, σ̃2, σ̃3, R1, R2, R3, R4) and 0 otherwise.

Open(Y,SOA,M,Σ): Given a message-signature pair (M,Σ) and the OA’s private key
SOA =

(
xz, yz, xσ, yσ, xID, yID

)
:

1. Decrypt CCS = (C1, C2, Cz, Cσ, CID) by computing

σ1 = Cσ · C−xσ1 · C−yσ2 , π = Cz · C−xz1 · C−yz2 ,

VID = CID · C−xID
1 C−yID

2 .

2. Search VID in the database of joining transcripts (6.11) and check that it corresponds
to a valid signature

(
σ̃1, σ̃2, σ̃3, π̃

)
for the committed value VID. If so, return the

corresponding i, otherwise return ⊥.

It is possible to spare one group element in the signature by eliminating the encryption CID
of vID which is only used to open signatures in constant time. Then, the opening algorithm
has to check for each transcript if (σ̃1, σ̃2, σ̃3, π̃) corresponds to the identi�er ID embedded
in (σ1, Ĝ2,ID, Ĝ4,ID) by testing the relation

1 ?= e(π̃, ĝz) · e(σ̃1, ĝ1) · e(σ̃2, Ĝ2,ID · ĝ3) · e(σ̃3, Ĝ4,ID · ĝ5) · e(Ω, ĝ6).

This results in a modi�ed opening algorithm which takes O(N) in the worst-case. In
applications where signature openings are infrequent, this is acceptable.

68



6.4. The Dynamic Group Signatures Scheme

6.4.1 Security

The security of the above dynamic group signature scheme, namely full anonymity, security
against misidenti�cations and security against framing attacks that are de�ned in Section 5.3
are expressed in Theorem 6.6, Theorem 6.9 and Theorem 6.10 respectively. The security
relies on the SXDH assumption for anonymity and misidenti�cation, and on the SDL
assumption for non-frameability.

Theorem 6.6. If SXDH holds in (G, Ĝ,GT ), the scheme is CCA-anonymous in the random
oracle model.

Proof. We use a sequence of games where, for each i, Wi is the event that the adversary A
wins in Game i.
At the �rst transition, we need to rely on the security of the computational soundness of
the QA-NIZK argument of Section 6.1.1 which relies on the SXDH assumption, since σ̃2
and σ̃3 appear un-encrypted in each group signature.

Game 0: This is the real CCA-anonymity game.
In the challenge phase, the adversary outputs two valid membership certi�cates
and membership secrets (cert?0, sec?0), (cert?1, sec?1) and obtains a challenge signature
which the challenger computes using (cert?d, sec?d), where d←↩ U({0, 1}). We de�ne
W0 to be the event that the adversary outputs d′ = d.

Game 1: This game is as Game 0, except that the challenger B aborts in the event, which
we call F1, that A chooses membership certi�cates cert?0, cert?1 for which one of the
underlying signatures

(
σ?1, σ

?
2, σ

?
3, π

?
)

correctly veri�es but logg(σ?2) 6= logh(σ?3).
This implies that the vector (σ?1, σ?ID

2 , σ?2, σ
?ID
3 , σ?3,Ω) is outside the row space of

the matrix M (6.1), so that F1 would contradict the soundness of the QA-NIZK
proof of [KW15] (via the same arguments as in Theorem 9 of [LPY15] since the
matrix can be witness-samplable here) and thus the DDH assumption in Ĝ. We have
[Pr[W1]− P [W0]| ≤ AdvDDH

Ĝ
(λ).

Game 2: We change the way to generate the challenge signature Σ?. Instead of faithfully
running the Schnorr-like protocol, we use the HVZK-simulator to produce the proofs
sθ, sID without knowing the witnesses θ, ID. Namely, we pick c, sθ, sID ←↩ U(Zp)
at random and set R1 = gsθ ·C−c1 , R2 = hsθ ·C−c2 , R3 = vsID ·Xsθ

ID ·C
−c
ID as well as

R4 ∈ GT as in (6.14). Then, we program the random oracle and assign the output c
to the hash value H(M,CCS, σ̃2, σ̃3, R1, R2, R3, R4). In the unlikely event that this
value was previously de�ned (which only happens with probability at most 1/p3),
the challenger aborts. Thus |Pr[W2]− Pr[W1]| ≤ 1/p3

Game 3: We modify again the generation of the challenge signature Σ?. Namely, the
challenger computes Cz, Cσ, CID using SOA as follows

Cz = π̃ · Cxz1 · C
yz
2 ,

Cσ = σ̃ · Cxσ1 · C
yσ
2 , CID = vID · CxID

1 · CyID
2 .

The distribution of (Cz, Cσ, CID) remains the same and we have Pr[W3] = Pr[W2].
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Game 4: Here, we modify the distribution of the challenge signature and replace C2 = hθ

by C2 = hθ+θ
′ , for a randomly chosen θ′ ←↩ U(Zp). We prove in Lemma 6.7 that

|Pr[W4]− Pr[W3]| ≤ AdvDDH
G (λ).

Game 5: We introduce one more change. Instead of sampling h ∈R Zp, the challenger
chooses a random α←↩ U(Zp) at the beginning of the game, sets h = gα and retains
the information α = logg(h) (note that we are done with the DDH assumption and
we can henceforth use α = logg(h)). At each signature opening query, the challenger
returns ⊥ on any signature Σ = (C1, C2, Cz, Cσ, CID, σ̃2, σ̃3, c, sID, sθ) such that
C2 6= Cα1 . Game 5 remains the same as Game 4. until the event E5 that A queries
the opening of a signature that properly veri�es although C2 6= Cα1 . Lemma 6.8
states that Pr[E5] ≤ qO · qH/p, where qO is the number of opening queries and qH
is the number of random oracle queries.

In Game 5, Σ? perfectly hides (π̃, σ̃1, v
ID). Indeed,

C1 = gθ, C2 = hθ+θ
′
, Cz = (z̃ · hθ′·yz) ·Xθ

z ,

Cσ = (σ̃1 · hθ
′·yσ) ·Xθ

σ, CID = (vID · hθ′·yID) ·Xθ
ID

and (yσ, yz, yID) ∈ Z3
p are completely independent of A’s view. The only way for A to

infer information about (yσ, yz, yID) is to make opening queries on signatures such that
C2 6= Cα1 . However, all such signatures are declared invalid in Game 5. It comes that
Pr[W5] = 1/2.

Finally, A’s advantage
∣∣Pr[W0]− 1/2

∣∣ is bounded by

AdvDDH
G (λ) + AdvDDH

Ĝ
(λ) + qO · qH

p
+ 1
p3 ,

which concludes the proof.

Lemma 6.7. In Game 4, the adversary A wins the anonymity game with negligibly di�erent
probabilities than in Game 3 if the DDH assumption holds in G.

Proof. Let us assume that an adversary A wins with noticeably di�erent probabilities in
Game 4 and Game 3. We then construct a DDH distinguisher B from A.
Our reduction B takes as input a DDH instance (ga, gb, η), where η = ga(b+c) and has to
decide with non-negligible probability ε whether c = 0 or c ∈R Zp. To achieve this, B sets
h = ga and computes the challenge signature as C1 = gb and C2 = η. The rest of the game
continues like in Game 3 (which is also the same as in Game 2). If A wins and correctly
guesses d′ = d ∈ {0, 1}, B outputs 1, meaning that C2 = hb = gab. Otherwise, B returns
0 meaning that (ga, gb, η) ∈R G3.
It is easy to see thatB’s advantage as a DDH distinguisher is ε if |Pr[W4]−Pr[W3]| = ε.

Lemma 6.8. In Game 5, we have Pr[E5] ≤ qO · qH/p.

Proof. This proof uses idea similar to the security proof of the Katz-Wang [KW03] signa-
ture scheme. In Game 5, event E5 happens if logg(C1) 6= logh(C2) and the veri�cation
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equations (6.13) and (6.14) holds. In particular, we haveR1 = gsθ ·C−c1 andR2 = hsθ ·C−c2 ,
which can be interpreted as a linear system with unknowns (c, sθ) ∈ Z2

p{
logg(R1) = sθ − logg(C1) · c modp,
logh(R2) = sθ − logh(C2) · c modp.

(6.15)

We can assume w.l.o.g. that each opening query is preceded by the corresponding random
oracle query (otherwise, the reduction can simply make the hash query for itself). The
input of each hash query contains a pair (R1, R2) determining the non-homogeneous terms
of the linear system (6.15). Since logg(C1) 6= logh(C2), the system is full-rank, so that for
each (R1, R2), there is exactly one pair (c, sθ) ∈ Z2

p that satis�es (6.15). The probability
that, in response to a random oracle query, the reduction returns the value of c which is
uniquely determined by (6.15) is at most 1/p. For all hash queries, the probability that one
of them be answered with the uniquely determined c ∈ Zq is at most qH/p. A union bound
over all opening queries implies that the probability that the event E4 happens is smaller
than Pr[E4] ≤ qO · qH/p.

The proof of security against misidenti�cation attacks requires the reduction to rewind
a the proof of knowledge of ID at each execution of the join protocol with the adversary
attempting to escape traceability. For this reason, we need to assume that users join the
system sequentially, rather than concurrently. However, this problem can be solved as in
[DP06] by having the user send an extractable commitment to ID and non-interactively
prove (via the Fiat-Shamir heuristic) that he did so correctly. This allows the reduction to
extract ID without rewinding the user at each execution of Join. Then, the proof of security
against framing attacks must be modi�ed by having the reduction simulate the proof of
knowledge of ID (by programming a random oracle) and rely on the hiding property of the
extractable commitment.

Theorem 6.9. In the ROM, the scheme is secure against misidenti�cation attacks under the
SXDH assumption in (G, Ĝ).

Proof. The proof uses the forking technique [PS00] which consists in implicitly rewinding
the zero-knowledge proof by running the adversary twice and changing the outputs of
the random oracle after the hash query that involves the forgery message. The Forking
Lemma [PS00] – more precisely, its generalization given by Bellare and Neven [BN06] –
ensures that, after two runs of the adversary, the reduction can extract witnesses of which
knowledge is demonstrated by the signature of knowledge.
Let us assume an attacker A against the misidenti�cation game that wins with non-
negligible probability ε. We build an adversary B against the chosen-message security of
the signature scheme of section 6.2.

Keygen. At the key generation, B invokes its own challenger for the chosen-message
security game to obtain the public key pks for the signature scheme. pks is embedded in
the group public key Y . Except for SGM, all keys are generated as in the normal Keygen
algorithm.

Join. To answer joining queries without knowing sks, B uses the knowledge extractor of
the proof of knowledge of ID = logv(VID) to extract the identity to be signed. Namely,
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on a Join query, the reduction B rewinds the adversary A in order to extract the witness
ID = logv(VID) of which A demonstrates knowledge at step 3 of the join protocol. Hav-
ing extracted ID ∈ Zp, B invokes its own signing oracle on the message ID to obtain
(σ1, σ2, σ3, z, r). Then, B returns certi = (i, VID, σ1, σ2, σ3, z, r) as in a normal execution
of the join protocol.

At some point, the attacker A produces a valid forgery

(M?,Σ? = (C?1 , C?2 , C?z , C?σ, C?ID, σ̃?2, σ̃?3, c?, s?ID, s?θ))

for which the opening algorithm does not reveal a properly registered identity. With all
but negligible probability, A must have queried the random oracle value

H(M?, C?CS, σ̃
?
2, σ̃

?
3, R

?
1, R

?
2, R

?
3, R

?
4)

which would have been unpredictable otherwise.
Thus, B replays the adversary A with the same input and random tape as in the �rst run.
In the second run, the random oracle is also the same until the hash query

H(M?, C?CS, σ̃
?
2, σ̃

?
3, R

?
1, R

?
2, R

?
3, R

?
4).

At this point, the forking occurs and B outputs fresh random oracle values. By the Forking
Lemma of [BN06], B obtains two suitably related forgeries with non-negligible probability
ε · (ε/qH − 1/p). Namely, B will obtain two matching transcripts (C?CS, σ̃

?
2, σ̃

?
3, c

?, s?ID, s
?
θ),

(C?CS, σ̃
?
2, σ̃

?
3, c
†, s†ID, s

†
θ) of the Σ-protocol for the commitment message

com = (C?CS, σ̃
?
2, σ̃

?
3, R

?
1, R

?
2, R

?
3, R

?
4).

From the responses s?ID and s†ID (that necessarily involve the same identi�er ID? which is
uniquely determined by C?CS = (C?1 , C?2 , C?z , C?σ, C?ID)), B runs the knowledge extractor of
to obtain ID? ∈ Zp. Namely, given (c?, c′?, s?θ, s′?θ , s?ID, s′?ID) ∈ Z6

p with

c? 6= c†, s?θ 6= s†θ s?ID 6= s†ID

which veri�es the relation (6.13) , (6.14) for the same commitment (R?1, R?2, R?3, R?4) ∈ G4,
one can compute the secrets ID? = s†ID−s

?
ID

c?−c† mod p and θ? = s†
θ
−s?θ

c?−c† mod p.

Finally B uses SOA to extract σ̃?1, r̃?, z̃? and outputs
(
ID?, σ? = (σ̃?1, σ̃?2, σ̃?3, r̃?, z̃?)

)
as a

forgery for the signature scheme of Section 6.2.

Theorem 6.10. In the ROM, the scheme is secure against framing attacks under the SDL
assumption.

Proof. Let us assume that a PPT adversary A can create, with advantage ε, a forgery
(M?, σ?) that opens to some honest user i ∈ U b who did not sign M?. We give a reduction
B that uses A to break SDL.
Algorithm B takes as input an SDL instance (g, ĝ, ga, ĝa) and uses its interaction with
the adversary A to compute a ∈ Zp. To generate the group public key Y , B runs all the
steps of the real setup algorithm Keygen except step 1. At step 1, B de�nes the generators
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g, ĝ in pks to be those of its input and computes h = gαh , v = gαv , w = gαw , ĝz = ĝαz

for randomly chosen scalars αh, αv, αw, αz ←↩ U(Zp). In order to compute {zj}3j=1 of
crs contained in pks, B chooses tk = {χj}6j=1 of step 4 of the key generation algorithm
of the signature scheme of Section 6.2 with ` = 1. (Note that when ` = 1, n = 6 and
that {zj}3j=1 are QA-NIZK argument for the vectors (g, 1, 1, 1, 1, h), (v, g, 1, h, 1, 1) and
(w, 1, g, 1, h, 1). Moreover {ĝi = ĝχiz }6i=1 are the verifying key.) As a result of this setup
phase, B knows SGM = sks = ω, SOA =

(
xz, yz, xσ, yσ, xID, yID

)
and even tk. The

adversary A is run on input of the group public key Y := (pks, (Xz, Xσ, XID), H), which
has the same distribution as in the real attack game.

Should A decide to corrupt the group manager or the opening authority during the game,
B is able to reveal SGM = sks and SOA when requested. In addition, B must be able to
answer the following queries.

- Qb-join-queries: At any timeA can act as a corrupted group manager and introduce a
new honest user i in the group by invoking the Qb-join oracle. Then, B runs Juser on
behalf of the honest user in an execution of Join. At step 1 of Join, B picks a random
δi ←↩ U(Zp) and uses tk to compute the tuple (Vi, Zi, Ĝ2,i, Ĝ4,i), for an unknown
seci = IDi = a · δi ∈ Zp, that JGM expects at step 1 of the join protocol. Namely, B
computes the vector ~vi = (Vi, Gi, 1, Hi, 1, 1) = (v, g, 1, h, 1, 1)IDi as

Vi = (ga)αv ·δi , Gi = (ga)δi , Hi = (ga)αh·δi ,

and then computes Zi as a simulated QA-NIZK proof for ~vi ∈ G6 using tk. A
straightforward calculation shows that Zi = zIDi

2 since the QA-NIZK argument
of Section 6.1.1 has a deterministic proving algorithm, so that (Vi, Zi, Ĝ2,i, Ĝ4,i)
successfully passes the test of step 2. As for the last two components, for each
j ∈ {2, 4}, B computes

Ĝj,i := (ĝa)δi(αzχj+αrγj) = (ĝχjz ĝγjr )IDi = ĝIDi
j ,

At step 3 of Join, B simulates the interactive proof of knowledge of IDi = logv(Vi)
using the simulator. In the rest of the protocol, B proceeds like the actual run and
obtains certi = (i, Vi, σ1, σ2, σ3, π). Finally, B stores (certi, Zi, δi, Ĝ2,i, Ĝ4,i).

- Qsig-queries: When A requests user i ∈ U b to sign a message M , B is able to use
the membership certi�cate certi = (i, Vi, σ1, σ2, σ3, π) to compute the ciphertext
CCS at steps 1-2 of the signing algorithm. While B does not know the witness
IDi = a·δi ∈ Zp to generate a proof at step 3, B is able to simulate the non-interactive
proof (c, sID, sθ), for a randomly chosen challenge c ←↩ U(Zp) by programming
the random oracle. More precisely, B re-randomizes the certi�cate certi by picking
r ←↩ U(Zp) and computing

σ̃1 = σ1 · (Vi · w)r σ̃2 = σ2 · gr,
π̃ = π · (Zi · z3)r, σ̃3 = σ3 · hr.

Then B encrypts π̃, σ̃1 and Vi as in the real signing algorithm to get the encryp-
tion CCS = (C1, C2, Cz, Cσ, CID). Then, B chooses c, sID, sθ ∈ Zp and computes
R1, R2, R3, R4 as in (6.13) and (6.14) of Verify. Finally, B programs H to return c
on inputs (M,CCS, σ̃2, σ̃3, R1, R2, R3, R4). In the event that H is already de�ned at
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that point, B aborts. The probability to fail at one signing query is ≤ qs/p3, where
qs is the number of signing queries.

When A halts, it presumably frames some honest user i? ∈ U b by outputting a signature

Σ? = (C?1 , C?2 , C?z , C?σ, C?ID, σ̃?2, σ̃?3, c?, s?ID, s?θ),

for some message M?, that opens to i? ∈ U b although user i? did not sign M?. With
high probability,Amust have queried the hash value H(M?, C?CS, σ̃

?
2, σ̃

?
3, R

?
1, R

?
2, R

?
3, R

?
4),

which would be unpredictable otherwise. Hence, B can run A a second time with the same
input and random tape.
At the moment when A queries H(M?, C?CS, σ̃

?
2, σ̃

?
3, R

?
1, R

?
2, R

?
3, R

?
4) in the second run,

B starts responding with di�erent random oracle values which depart from those of the
initial run. The Forking Lemma of [BN06] ensures that, with non-negligible probability the
second run will result in a forgery

Σ† = (C?1 , C?2 , C?z , C?σ, C?ID, σ̃
†
2, σ̃
†
3, c
†, s†ID, s

†
θ)

on the same message M?, with distinct challenges c† 6= c?. From the two responses
(s?ID, s?θ), (s†ID, s

†
θ), B can extract witnesses (θ?, ID?) satisfying C?ID = vID?Xθ?

ID and which
identi�es V ?

i = vID? . At this stage, B can compute and output the sought-after SDL solution
a := ID?/δi in Zp.
This observation tells us that, if A has advantage ε as a framing adversary making qH ran-
dom oracle queries, then B implies an algorithm solving the SDL problem with probability
ε(ε/qH − 1/p).

We stress that the proofs can be easily adapted to the case where the opening algorithm
has linear complexity in the number of users.

6.4.2 Comparison with Existing Schemes

Name Signature length Assumptions Group Type Anonymity
G Zp bits

Ours 7 3 2560 bits SXDH + SDL Dynamic CCA
Boneh-Boyen-Shacham 3 6 2304 bits q-SDH + DLIN Static CPA
Delerablée-Pointcheval 4 5 2304 bits q-SDH + XDH Dynamic CCA

Bichsel et al. 3 2 1280 bits LRSW + SDL Dynamic CCA-
Pointcheval-Sanders 2 2 1024 bits LRSW-like Dynamic CCA-

Table 6.1 – Comparison between di�erent group signature schemes

Table 6.1 compares our scheme with previous practical group signatures based on pairing-
related assumptions. Since we focus on practical schemes, we only consider those in the
random oracle model. To make the comparison possible, we use 256-bit group orders, so
that elements of G and Zp are encoded using 256 bits each.
The scheme of Boneh, Boyen and Shacham [BBS04] is the �rst scheme providing short
signatures: each signature is comprised of 3 group elements and 6 elements of Zp. However,
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Algorithm/Protocol Our scheme Standard deviation

Keygen 9.70 ms 2.18 ms
Join 23.16 ms 0.11 ms
Sign 15.70 ms 0.04 ms
Verify 26.91 ms 0.04 ms

Table 6.2 – Experimental results for the Pairing-Base group signature scheme

this scheme is designed for static groups only and relies on the Strong Di�e-Hellmann
assumption, which is a non-standard q-type assumption, and its anonymity is only proved
in the CPA sense.
Delerablée and Pointcheval [DP06] presented a scheme designed for a dynamically growing
group and which is also fully (i.e., CCA) anonymous. The security of their scheme is based
on the eXternal Di�e-Hellman assumption (XDH), which we also use here, and the q-SDH
assumption. In [DP06], each signature consists of 4 group elements and 5 scalars in Zp,
which leads to the same signature size as previously. They also proposed a variant to get
rid of the XDH assumption at the cost of 2 more group elements and one more scalar, but
they still rely on the q-SDH assumption.
Bichsel et al. [BCN+10] proposed a very short group signature for dynamic groups, where
each signature consists of 3 group elements and 2 elements in Zp. The downsides are
their use the LRSW assumption [LRSW99], which is a very ad-hoc interactive assumption,
and their security notion is not fully-anonymous, but is an hybrid security with sel�ess-
anonymity, which is marked “CCA-” in Table 6.1. Another caveat is that, unlike the two
previous systems, the opening complexity of their scheme is linear in the number of group
members.
In 2015, Pointcheval and Sanders [PS16] gave another instantiation of [BCN+10] based on
a variant of the LRSW assumption in the asymmetric setting (meaning using only Type III
pairings), which provides even shorter signatures than [BCN+10] with the same downsides.
Their scheme provides signatures composed of only 2 group elements in G and 2 scalars
in Zp.
Our main contribution compared to these schemes is to provide size-comparable signatures
– we recall that our scheme is composed of 7 group elements and 3 scalars in Zp – while
relying on standard, constant-size assumptions. Moreover, we can notice that we can save
one element in G at the expense of a linear-time opening algorithm in the number Ngs of
group users (like [BCN+10]).

6.4.3 Experimental Results

An implementation of the aforementioned group signature scheme has been made in C

using the Relic toolkit for pairing-based cryptography [AG] and is available at the following
URL: https://gforge.inria.fr/projects/sigmasig-c/.
The relic toolkit provides an implementation for pairing computations, hash functions
(SHA-256 in this case) and benchmarking macros. The benchmarking was made on a single-
core of an Intel® Core™ i5-7500 CPU @ 3.40GHz (Kaby Lake architecture) with 6MB of cache.
To implement pairings, the relic library implements the Barreto-Naehrig [BN06] curve over
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a 256 bits curve. As explained previously, since recent advances in pairing-friendly elliptic
curve cryptanalysis, there is no more curve that shows the best timing results in every
aspect. Figures are available in Table 6.2.
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Chapter7

La�ice-Based Dynamic Group

Signatures

In this chapter, we present the �rst dynamic group signature scheme based on lattice
assumptions. This construction relies on a signature scheme with e�cient protocols as
in Chapter 6, which is used in a similar manner. As a consequence, it is possible to design
lattice-based anonymous credentials from this building block. The group signature scheme
relies on the Gentry, Peikert and Vaikuntanathan identity-based encryption [GPV08] with
the Canetti, Halevi and Katz [CHK04] transform to obtain a CCA2-secure public key
encryption scheme which will be used to provide full-anonymity.
The group signature is proven secure in the ROM under the SIS and LWE assumptions,
which are �xed-size and well-studied assumptions. As of the security parameter λ and
groups of up to Ngs members, the scheme features public key size Õ(λ2) · logNgs, user’s
secret key size Õ(λ) and signature size Õ(λ) · logNgs. Our scheme thus achieves a level of
e�ciency comparable to recent proposals based on standard (i.e. non-ideal) lattices [LLLS13,
NZZ15, LNW15, LLNW16] in the static setting as depicted in Table 7.1. In particular, the
cost of moving to dynamic group is reasonable: while using the scheme from [LNW15] as
a building block, our construction lengthens the signature size only by a (small) constant
factor.
The signature scheme with e�cient protocols is built upon the SIS-based signature of Böhl
et al. [BHJ+15], which is itself a variant of Boyen’s signature [Boy10]. The latter scheme in-
volves a public key containing matrices A,A0, . . . ,A` ∈ Zn×mq and signs an `-bit message
m ∈ {0, 1}` by computing a short vector v ∈ Z2m such that [A | A0 +

∑`
j=1 m[j]Aj ]·v =

0n mod q. The variant proposed by Böhl et al. only uses a constant number of matrices
A,A0,A1 ∈ Zn×mq where each signature is assigned with a single-use tag τ and the public
key involves an extra matrix D ∈ Zn×mq and a vector u ∈ Znq . A message m is then signed
by �rst applying a chameleon hash function h = H(m, s) ∈ {0, 1}m and signing h by
computing a short v ∈ Z2m such that [A | A0 + τA1] · v = u + D · h mod q.
Our scheme extends [BHJ+15] so that an N -block message (m1, . . . ,mN ) ∈ ({0, 1}L)N ,
for some L ∈ N, is signed by outputting a tag τ ∈ {0, 1}` and a short v ∈ Z2m such that
[A | A0 +

∑`
j=1 τ [j]Aj ] · v = u + D · H(m1, . . . ,mN , s) mod q, where the chameleon

hash function computes cM = D0 · s +
∑N
k=1 Dk · mk mod q, for some short vector s,

before re-encoding cM so as to enable multiplication by D.
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Scheme [LLLS13] [NZZ15] [LNW15] [LLNW16] Ours
Group PK Õ(λ2) · logNgs Õ(λ2) Õ(λ2) · logNgs Õ(λ2) Õ(λ2) · logNgs

User’s SK Õ(λ2) Õ(λ2) Õ(λ) Õ(λ) · logNgs Õ(λ)
Signature Õ(λ) · logNgs Õ(λ+ log2 Ngs) Õ(λ) · logNgs Õ(λ) · logNgs Õ(λ) · logNgs

Table 7.1 – E�ciency comparison among recent lattice-based group signatures for static
groups and our dynamic scheme. The evaluation is done with respect to 2 governing
parameters: security parameter λ and the maximum expected group size Ngs. We do not
include the earlier schemes [GKV10, CNR12] that have signature size Õ(λ2) ·Ngs.

In order to obtain a signature scheme that possesses e�cient protocols akin to Camenish
and Lysyanskaya [CL02b], our idea is to have the tag τ ∈ {0, 1}` play the same role
as the prime exponent in Strong-RSA-based schemes [CL02a]. To adapt this idea in the
context of signatures with e�cient protocols, we have to overcome several di�culties.
The �rst one is to map cM back in the domain of the chameleon hash function while
preserving the compatibility with ZK proofs. To solve this issue, we extend a technique
used in [LLNW16] in order to build a “zero-knowledge-friendly” chameleon hash function.
This function hashes the message by outputting the coordinate-wise binary decomposition
w of D0 ·s+

∑N
k=1 Dk ·mk . Using the “power-of-two” matrix H = I⊗ [1 | 2 | · · · | 2dlog qe],

we can prove that w = H(m1, . . . ,mN , s) by demonstrating the knowledge of short vectors
(m1, . . . ,mN , s,w) that veri�es H · w = D0 · s +

∑N
k=1 Dk · mk mod q which can be

proven using the ZKAoK of Section 4.3.
The second problem is to prove knowledge of (τ,v, s) and (m1, . . . ,mN ) satisfying [A |
A0 +

∑`
j=1 τ [j] ·Aj ] ·v = u + D ·CMHash(m1, . . . ,mN , s), without revealing any of the

witnesses. To this end, we provide a framework for proving all the involved statement (and
many other relations that naturally arise in lattice-based cryptography) as special cases.
We reduce the statements to asserting that a short integer vector x satis�es an equation of
the form P · x = v mod q, for some public matrix P and vector v, and belongs to a set
VALID of short vectors with a particular structure. While the small-norm property of x is
provable using standard techniques (e.g., [Lyu08]), we argue its membership of VALID by
leveraging the properties of Stern-like protocols [Ste96, KTX08, LNSW13]. In particular,
we rely on the fact that their underlying permutations interact well with combinatorial
statements pertaining to x, especially x being a bitstring with a speci�c pattern. We believe
our framework to be of independent interest as it provides a blueprint for proving many
other intricate relations in a modular manner.
When we extend the scheme with a protocol for signing committed messages, we need the
signer to re-randomize the user’s commitment before signing the hidden messages. This is
indeed necessary to provide the reduction with a backdoor allowing to correctly answer
the i†-th query by “programming” the randomness of the commitment. Since we work with
integers vectors, a straightforward simulation incurs a non-negligible statistical distance
between the simulated distributions of re-randomization coins and the real one (which
both have a discrete Gaussian distribution). Camenisch and Lysyanskaya [CL02b] address
a similar problem by choosing the signer’s randomness to be exponentially larger than that
of the user’s commitment so as to statistically “drown” the aforementioned discrepancy.
Here, the same idea would require to work with an exponentially large modulus q. Instead,
we adopt a more e�cient solution, inspired by Bai et al. [BLL+15], which is to apply
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an analysis based on the Rényi divergence rather than the statistical distance. In short,
the Rényi divergence’s properties tell us that, if some event E occurs with noticeable
probability in some probability space P , so does it in a di�erent probability space Q for
which the second order divergenceR2(P ||Q) is su�ciently small. In our setting, R2(P ||Q)
is precisely polynomially bounded since the two probability spaces only diverge in one
signing query.
Our dynamic group signature scheme avoids these di�culties because the group manager
only signs known messages: instead of signing the user’s secret key as in anonymous
credentials, it creates a membership certi�cate by signing the user’s public key. Our zero-
knowledge arguments accommodate the requirements of the scheme in the following way.
In the joining protocol that dynamically introduces new group members, the user i chooses
a membership secret consisting of a short discrete Gaussian vector zi. This user generates
a public syndrome vi = F · zi mod q, for some public matrix F, which constitutes his
public key. In order to certify vi, the group manager computes the coordinate-wise binary
expansion bin(vi) of vi. The vector bin(vi) is then signed using our signature scheme.
Using the resulting signature (τ,v, s) as a membership certi�cate, the group member is
able to sign a message by proving that: (i) He holds a valid signature (τ,v, s) on some
secret binary message bin(vi); (ii) The latter vector bin(vi) is the binary expansion of some
syndrome vi of which he knows a GPV pre-image zi. We remark that condition (ii) can
be proved by providing evidence that we have vi = H · bin(vi) = F · zi mod q, for some
short integer vector zi and some binary bin(vi), where H is the “powers-of-2” matrix.
Our abstraction of Stern-like protocols [Ste96, KTX08, LNSW13] allows us to e�ciently
argue such statements. The fact that the underlying chameleon hash function smoothly
interacts with Stern-like zero-knowledge arguments is the property that maintains the
user’s capability of e�ciently proving knowledge of the underlying secret key.
Given the state ofNIZK proofs in the lattice setting, it seems hard to provide group signature
schemes in the standard model.
In the forthcoming sections, we �rst provide the description of our signature with e�cient
protocols; then a description of our dynamic group signature will be given and �nally,
we will explain how to use the Stern abstraction of Section 4.3 to provide the required
zero-knowledge arguments.

7.1 A Lattice-Based Signature with E�cient Protocols

Our scheme can be seen as a variant of the Böhl et al. signature [BHJ+15], where each
signature is a triple (τ,v, s), made of a tag τ ∈ {0, 1}` and integer vectors (v, s) satisfying
[A | A0+

∑`
j=1 τ [j]·Aj ]·v = u+D·h mod q, where matrices A,A0, . . . ,A`,D ∈ Zn×mq

are public random matrices and h ∈ {0, 1}m is a chameleon hash of the message which is
computed using randomness s. A di�erence is that, while [BHJ+15] uses a short single-use
tag τ ∈ Zq , we need the tag to be an `-bit string τ ∈ {0, 1}` which will assume the same
role as the prime exponent of Camenisch-Lysyanskaya signatures [CL02a] in the security
proof.
We show that a suitable chameleon hash function makes the scheme compatible with
Stern-like zero-knowledge arguments [LNSW13, LNW15] for arguing possession of a valid
message-signature pair. Section 4.3 shows how to translate such a statement into asserting
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that a short witness vector x with a particular structure satis�es a relation of the form
P · x = v mod q, for some public matrix P and vector v. The underlying chameleon hash
can be seen as a composition of the chameleon hash of [CHKP10, Se. 4.1] with a technique
used in [PSTY13, LLNW16]: on input of a message (m1, . . . ,mN ), it outputs the binary
decomposition of D0 · s +

∑N
k=1 Dk ·mk, for some discrete Gaussian vector s.

7.1.1 Description

We assume that messages are vectors of N blocks Msg = (m1, . . . ,mN ), where each block
is a 2m-bit string mk = mk[1] . . .mk[2m] ∈ {0, 1}2m for k ∈ {1, . . . , N}.
For each vector v ∈ ZLq , we denote by bin(v) ∈ {0, 1}Ldlog qe the vector obtained by
replacing each coordinate of v by its binary representation.

Keygen(1λ, 1N ): Given a security parameter λ > 0 and the number of blocks N =
poly(λ), choose the following parameters: n = O(λ); a prime modulus q = Õ(N ·
n4); dimension m = 2ndlog qe; an integer ` = Θ(λ); and Gaussian parameters
σ = Ω(

√
n log q logn), σ0 = 2

√
2(N + 1)σm3/2, and σ1 =

√
σ2

0 + σ2. De�ne the
message space as ({0, 1}2m)N .

1. Run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short basis TA of Λ⊥q (A).
This basis allows computing short vectors in Λ⊥q (A) with a Gaussian parameter
σ. Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).

2. Choose random matrices D←↩ U(Zn×mq ), D0,D1, . . . ,DN ←↩ U(Z2n×2m
q ) as

well as a random vector u←↩ U(Znq ).

The private key consists of SK := TA ∈ Zm×m and the public key is

PK :=
(
A, {Aj}`j=0, {Dk}Nk=0, D, u

)
.

Sign

(
SK,Msg

)
: To sign an N -block message Msg = (m1, . . . ,mN ) ∈

(
{0, 1}2m

)N ,

1. Choose a random string τ ←↩ U({0, 1}`). Then, using SK := TA, compute
with ExtBasis a short delegated basis Tτ ∈ Z2m×2m for the matrix

Aτ = [A | A0 +
∑̀
j=1

τ [j]Aj ] ∈ Zn×2m
q . (7.1)

2. Sample a vector s ←↩ DZ2m,σ1 . Compute cM ∈ Z2n
q as a chameleon hash of

(m1, . . . ,mN ): i.e., compute cM = D0 · s +
∑N
k=1 Dk · mk ∈ Z2n

q , which is
used to de�ne uM = u + D · bin(cM ) ∈ Znq . Then, using the delegated basis
Tτ ∈ Z2m×2m, sample a short vector v ∈ Z2m in DΛuM

q (Aτ ),σ .

Output the signature sig = (τ,v, s) ∈ {0, 1}` × Z2m × Z2m.
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Verify

(
PK,Msg, sig

)
: Given PK , a message Msg = (m1, . . . ,mN ) ∈ ({0, 1}2m)N and

a purported signature sig = (τ,v, s) ∈ {0, 1}` × Z2m × Z2m, return 1 if

Aτ · v = u + D · bin(D0 · s +
N∑
k=1

Dk ·mk) mod q. (7.2)

and ‖v‖ < σ
√

2m, ‖s‖ < σ1
√

2m.

When the scheme is used for obliviously signing committed messages, the security proof
follows Bai et al. [BLL+15] in that it applies an argument based on the Rényi divergence in
one signing query. This argument requires to sample s from a Gaussian distribution whose
standard deviation σ1 is polynomially larger than σ.
We note that, instead of being included in the public key, the matrices {Dk}Nk=0 can be
part of common public parameters shared by many signers. Indeed, only the matrices
(A, {Ai}`i=0) should be speci�c to the user who holds the secret key SK = TA. In Section
7.1.3, we use a variant where {Dk}Nk=0 belong to public parameters.

7.1.2 Security Analysis

The security analysis in Theorem 7.1 requires that q > `.

Theorem 7.1. The signature scheme is secure under chosen-message attacks under the SIS
assumption.

Proof. To prove the result, we will distinguish three kinds of attacks:

Type I attacks are attacks where, in the adversary’s forgery sig? = (τ?,v?, s?), τ? did
not appear in any output of the signing oracle.

Type II attacks are such that, in the adversary’s forgery sig? = (τ?,v?, s?), τ? is recycled
from an output sig(i?) = (τ (i?),v(i?), s(i?)) of the signing oracle, for some index i? ∈
{1, . . . , Q}. However, if Msg? = (m?

1, . . . ,m
?
N ) and Msg(i?) = (m(i?)

1 , . . . ,m
(i?)
N )

denote the forgery message and the i?-th signing query, respectively, we have D0 ·
s? +

∑N
k=1 Dk ·m?

k 6= D0 · s(i?) +
∑N
k=1 Dk ·m

(i?)
k .

Type III attacks are those where the adversary’s forgery sig? = (τ?,v?, s?) recycles τ?
from an output sig(i?) = (τ (i?),v(i?), s(i?)) of the signing oracle (i.e., τ (i?) = τ? for
some index i? ∈ {1, . . . , Q}) and we have the collision

D0 · s? +
N∑
k=1

Dk ·m?
k = D0 · s(i?) +

N∑
k=1

Dk ·m
(i?)
k . (7.3)

Type III attacks imply a collision for the chameleon hash function of Kawachi et al. [KTX08]:
if (7.3) holds, a short vector of Λ⊥q ([D0 | D1 | . . . | DN ]) is obtained as

(
s?T − s(i?)T | m?

1
T −m

(i?)
1

T
| . . . | m?

N
T −m

(i?)
N

T )T
,

so that a collision breaks the SIS assumption.
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The security against Type I attacks is proved by Lemma 7.2 which applies the same technique
as in [Boy10, MP12]. In particular, the pre�x guessing technique of [HW09] allows keeping
the modulus smaller than the number Q of adversarial queries as in [MP12]. In order to
deal with Type II attacks, we can leverage the technique of [BHJ+15]. In Lemma 7.3, we
prove that Type II attack would also contradict SIS.

Lemma 7.2. The scheme is secure against Type I attacks if the SISn,m,q,β′ assumption holds
for β′ = m3/2σ2(`+ 3) +m1/2σ1

Proof. Let A be a PPT adversary that can mount a Type I attack with non-negligible
success probability ε. We construct a PPT algorithm B that usesA to break the SISn,m,q,β′
assumption. It takes as input Ā ∈ Zn×mq and computes v ∈ Λ⊥q (Ā) with 0 < ‖v‖ ≤ β′.

Algorithm B �rst chooses the `-bit strings τ (1), . . . , τ (Q) ←↩ U({0, 1}`) to be used in
signing queries. As in [HW09], it guesses the shortest pre�x such that the string τ?
contained in A’s forgery di�ers from all pre�xes of τ (1), . . . , τ (Q). To this end, B chooses
i† ←↩ U({1, . . . , Q}) and t† ←↩ U({1, . . . , `}) so that, with probability 1/(Q·`), the longest
common pre�x between τ? and one of the

{
τ (i)

}Q
i=1

is the string τ?[1] . . . τ?[t† − 1] =
τ (i†)[1] . . . τ (i†)[t† − 1] ∈ {0, 1}t†−1 comprised of the �rst (t† − 1)-th bits of τ? ∈ {0, 1}`.
We de�ne τ † ∈ {0, 1}t† as the t†-bit string τ † = τ?[1] . . . τ?[t†]. By construction, with
probability 1/(Q · `), we have τ † 6∈

{
τ

(1)
|t† , . . . , τ

(Q)
|t†
}

, where τ (i)
|t† denotes the t†-th pre�x

of τ (i) for each i ∈ {1, . . . , Q}.
Then, B runs TrapGen(1n, 1m, q) to obtain C ∈ Zn×mq and a basis TC of Λ⊥q (C) with
‖T̃C‖ ≤ O(

√
n log q). Then, it picks ` + 1 matrices Q0, . . . ,Q` ∈ Zm×m, where each

matrix Qi has its columns sampled independently from DZm,σ . The reduction B de�nes
the matrices {Aj}`j=0 as

A0 = Ā ·Q0 + (
∑t†
j=1 τ

?[j]) ·C
Aj = Ā ·Qj + (−1)τ?[j] ·C, for j ∈ [1, t†]
Aj = Ā ·Qj , for j ∈ [t† + 1, `]

It also sets A = Ā. We note that we have

Aτ (i) =
[

Ā A0 +
∑`
j=1 τ

(i)[j]Aj

]
=

[
Ā Ā · (Q0 +

∑`
j=1 τ

(i)[j]Qj) + (
∑t†
j=1 τ

?[j] + (−1)τ?[j]τ (i)[j]) ·C
]

=
[

Ā Ā · (Q0 +
∑`
j=1 τ

(i)[j]Qj) + hτ (i) ·C
]

where hτ (i) ∈ [1, t†] ⊂ [1, `] stands for the Hamming distance between τ (i)
|t† and τ?|t† . Note

that, with probability 1/(Q · `) and since q > `, we have hτ (i) 6= 0 mod q whenever
τ

(i)
|t† 6= τ?|t† .

Next, B chooses the matrices Dk ←↩ U(Z2n×2m
q ) uniformly at random for each k ∈ [0, N ].

Then, it picks a random short matrix R ∈ Zm×m which has its columns independently
sampled from DZm,σ and computes

D = Ā ·R.
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Finally, B samples a short vector eu ←↩ DZm,σ1 and computes the vector u ∈ Znq as
u = Ā · eu ∈ Znq . The public key

PK :=
(
A, {Aj}`j=0, {Dk}Nk=0, D, u

)
is given to A.

At the i-th signing query Msg(i) = (m(i)
1 , . . . ,m

(i)
N ) ∈ ({0, 1}2m)N , B can use the trapdoor

TC ∈ Zm×m to generate a signature. To do this, B �rst samples s(i) ←↩ DZ2m,σ1 and
computes a vector uM ∈ Zmq as

uM = u + D · {0, 1}
( N∑
k=1

Dk ·m
(i)
k + D0 · s(i)) mod q.

Using TC ∈ Zm×m, B can then sample a short vector v(i) ∈ Z2m in DuM
Λ⊥(A

τ(i) ),σ such

that
(
τ (i),v(i), s(i)) satis�es the veri�cation equation (7.2).

When A halts, it outputs a valid signature sig? =
(
τ (i†),v?, s?

)
on a message Msg? =

(m?
1, . . . ,m

?
N ) with ‖v?‖ ≤ σ

√
2m and ‖s?‖ ≤ σ1

√
2m. At this point, B aborts and

declares failure if it was unfortunate in its choice of i† ∈ {1, . . . , Q} and t† ∈ {1, . . . , `}.
Otherwise, with probability 1/(Q · `), B correctly guessed i† ∈ {1, . . . , Q} and t† ∈
{1, . . . , `}, in which case it can solve the given SIS instance as follows.
If we parse v? ∈ Z2m as (v?1T | v?2T )T with v?1,v?2 ∈ Zm, we have the equality

[
Ā Ā · (Q0 +

∑`
j=1 τ

?[j]Qj)
]
·
[

v?1
v?2

]

= u + D · {0, 1}
(
D0 · s? +

N∑
k=1

Dk ·m?
k

)
mod q

= Ā ·
(
eu + R · {0, 1}

(
D0 · s? +

N∑
k=1

Dk ·m?
k

))
mod q,

which implies that the vector

w = v?1 + (Q0 +
∑̀
j=1

τ?[j]Qj) · v?2 − eu −R · {0, 1}
(
D0 · s? +

N∑
k=1

Dk ·m?
k

)
∈ Zm

is in Λ⊥q (Ā). Moreover, with overwhelming probability, this vector is non-zero since, inA’s
view, the distribution of eu ∈ Zm isDΛu

q (Ā),σ1
, which ensures that eu is statistically hidden

by the syndrome u = Ā · eu. Finally, the norm of w is smaller than β′ = m3/2σ2(`+ 3) +
m1/2σ1 which yields a valid solution of the given SISn,m,q,β′ instance with overwhelming
probability.

Lemma 7.3. The scheme is secure against Type II attacks if the SISn,m,q,β′′ assumption holds
for β′′ =

√
2(`+ 2)σ2m3/2 +m1/2.

Proof. We prove the result using a sequence of games. For each i, we denote by Wi the
event that the adversary wins by outputting a Type II forgery in Game i.
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Game 0: This is the real game where, at the i-th signing query Msg(i) = (m(i)
1 , . . . ,m

(i)
N ),

the adversary obtains a signature sig(i) = (τ (i),v(i), s(i)) for each i ∈ {1, . . . , Q}
from the signing oracle. At the end of the game, the adversary outputs a forgery
sig? = (τ?,v?, s?) on a message Msg? = (m?

1, . . . ,m
?
N ). By hypothesis, the ad-

versary’s advantage is ε = Pr[W0]. We assume without loss of generality that the
random `-bit strings τ (1), . . . , τ (Q) are chosen at the very beginning of the game.
Since (Msg?, sig?) is a Type II forgery, there exists an index i? ∈ {1, . . . , Q} such
that τ? = τ (i?).

Game 1: This game is identical to Game 0 with the di�erence that the reduction aborts the
experiment in the unlikely event that, in the adversary’s forgery sig? = (τ?,v?, s?),
τ? coincides with more than one of the random `-bit strings τ (1), . . . , τ (Q) used by
the challenger. If we call F1 the latter event, we have Pr[F1] < Q2/2` since we are
guaranteed to have ¬F1 as long as no two τ (i), τ (i′) collide. Given that Game 1 is
identical to Game 0 until F1 occurs, we have |Pr[W1]−Pr[W0]| ≤ Pr[F1] < Q2/2`.

Game 2: This game is like Game 1 with the following di�erence. At the outset of the game,
the challenger B chooses a random index i† ←↩ ({1, . . . , Q}) as a guess that A’s
forgery will recycle the `-bit string τ (i†) ∈ {0, 1}` of the i†-th signing query. When
A outputs its Type II forgery sig? = (τ?,v?, s?), the challenger aborts in the event
that τ (i†) 6= τ? (i.e., i† 6= i?). Since the choice of i† in {1, . . . , Q} is independent of
A’s view, we have Pr[W2] = Pr[W1]/Q.

Game 3: In this game, we modify the key generation phase and the way to answer signing
queries. First, the challenger B randomly picks h0, h1, . . . , h` ∈ Zq subject to the
constraints

h0 +
∑̀
j=1

τ (i†)[j] · hj = 0 mod q

h0 +
∑̀
j=1

τ (i)[j] · hj 6= 0 mod q i ∈ {1, . . . , Q} \ {i†}

It runs (C,TC) ← TrapGen(1n, 1m, q), (D0,TD0) ← TrapGen(12n, 12m, q) so as
to obtain statistically random matrices C ∈ Zn×mq , D0 ∈ Z2n×2m

q with trapdoors
TC ∈ Zm×m, TD0 ∈ Z2m×2m consisting of short bases of Λ⊥q (C) and Λ⊥q (D0),
respectively. Then, B chooses a uniformly random D←↩ (Zn×mq ) and re-randomizes
it using short matrices S,S0,S1, . . . ,S` ←↩ Zm×m, which are obtained by sampling
their columns from the distribution DZm,σ . Namely, from D ∈ Zn×mq , B de�nes

A = D · S
A0 = D · S0 + h0 ·C (7.4)
Aj = D · Sj + hj ·C ∀j ∈ {1, . . . , `}

In addition, B picks random matrices D1, . . . ,DN ←↩ (Z2n×2m
q ) and a random vector

cM ←↩ (Z2n
q ). It samples short vectors v1,v2 ←↩ DZm,σ and computes u ∈ Znq as
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u = A
τ (i†) ·

[
v1
v2

]
−D · bin(cM ) mod q, where

A
τ (i†) =

[
A A0 +

∑`
j=1 τ

(i†)[j] ·Aj

]
=

[
D · S D · (S0 +

∑`
j=1 τ

(i†)[j] · Sj)
]
.

The adversary’s signing queries are then answered as follows.

• At the i-th signing query (m(i)
1 , . . . ,m

(i)
N ), whenever i 6= i†, we have

Aτ (i) =
[

A A0 +
∑`
j=1 τ

(i)[j] ·Aj

]
=

[
A D · (S0 +

∑`
j=1 τ

(i)[j] · Sj) + hτ (i) ·C
]
∈ Zn×2m

q ,

with hτ (i) = h0+
∑`
j=1 τ

(i)[j]·hj 6= 0. This implies thatB can use the trapdoor
TC ∈ Zm×m to generate a signature. To this end, B �rst samples a discrete
Gaussian vector ~s(i) ←↩ DZ2m,σ1 and computes uM ∈ Znq as

uM = u + D · bin(
N∑
k=1

Dk ·m
(i)
k + D0 · s(i)) mod q.

Then, using TC ∈ Zm×m, it samples a short vector v(i) ∈ Z2m in DuM
Λ⊥(A

τ(i) ),σ

such that (τ (i),v(i), s(i)) satis�es (7.2).

• At the i†-th signing query (m(i†)
1 , . . . ,m

(i†)
N ), we have

A
τ (i†) =

[
A A0 +

∑`
j=1 τ

(i†)[j] ·Aj

]
=

[
D · S D · (S0 +

∑`
j=1 τ

(i†)[j] · Sj)
]
∈ Zn×2m

q (7.5)

due to the constraint h0 +
∑`
j=1 τ

(i†)[j] · hj = 0 mod q. To answer the query,
B uses the trapdoor TD0 ∈ Z2m×2m of Λ⊥q (D0) to sample a short vector
s(i†) ∈ D

Λ
c′
M
q (D0),σ1

, where c′M = cM −
∑N
k=1 Dk ·m

(i†)
k ∈ Z2n

q . The obtained

vector s(i†) ∈ Z2m thus veri�es

D0 · s(i†) = cM −
N∑
k=1

Dk ·m
(i†)
k mod q, (7.6)

and A receives sig(i†) = (τ (i†),v(i†), s(i†)), where v(i†) = (vT1 | vT2 )T . By
construction, the returned signature sig(i†) satis�es

A
τ (i†) ·

[
v1
v2

]
= u + D · {0, 1}

(
D0 · s(i†) +

N∑
k=1

Dk ·m
(i†)
k

)
mod q,

and the distribution of (τ (i†),v(i†), s(i†)) is statistically the same as in Game 2.
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We conclude that Pr[W2] is negligibly far apart from Pr[W3] since, by the Leftover Hash
Lemma (see [ABB10, Le. 13]), the public key PK in Game 3 is statistically close to its
distribution in Game 2.

In Game 3, we claim that the challenger B can use A to solve the SIS problem by �nding a
short vector of Λ⊥q (D) with probability Pr[W3]. Indeed, with probability Pr[W3], the adver-
sary outputs a valid signature sig? = (τ (i†),v?, s?) on a message Msg? = (m?

1, . . . ,m
?
N )

with ‖v?‖ ≤ σ
√

2m and ‖s?‖ ≤ σ1
√

2m. If we parse v? ∈ Z2m as (v?1T | v?2T )T with
v?1,v?2 ∈ Zm, we have the equality

A
τ (i†) ·

[
v?1
v?2

]
= u + D · bin(D0 · s? +

N∑
k=1

Dk ·m?
k) mod q. (7.7)

Due to the way u ∈ Znq was de�ned at the outset of the game, B also knows short vectors
v(i†) = (vT1 | vT2 )T ∈ Z2m such that

A
τ (i†) ·

[
v1
v2

]
= u + D · bin(cM ) mod q. (7.8)

Relation (7.6) implies that cM 6= D0 · s? +
∑N
k=1 Dk ·m?

k mod q by hypothesis. It follows
that bin(cM )−bin(D0 ·s?+

∑N
k=1 Dk ·m?

k) is a non-zero vector in {−1, 0, 1}m. Subtracting
(7.8) from (7.7), we get

A
τ (i†) ·

[
v?1 − v1
v?2 − v1

]
= D ·

(
bin(cM )− bin(D0 · s? +

N∑
k=1

Dk ·m?
k)
)

mod q,

which implies

[
D · S D · (S0 +

∑`
j=1 τ

(i†)[j] · Sj)
]
·
[

v?1 − v1
v?2 − v2

]

= D ·
(
bin(cM )− bin(D0 · s? +

N∑
k=1

Dk ·m?
k)
)

mod q. (7.9)

The above implies that the vector

w = S · (v?1 − v1) + (S0 +
∑̀
j=1

τ (i†)[j] · Sj) · (v?2 − v2)

+{0, 1}
(
D0 · s? +

N∑
k=1

Dk ·m?
k

)
− bin(cM )

is a short integer vector of Λ⊥q (D). Indeed, its norm can be bounded as ‖w‖ ≤ β′′ =√
2(` + 2)σ2m3/2 + m1/2. We argue that it is non-zero with overwhelming probability.

We already observed that bin(D0 · s? +
∑N
k=1 Dk ·m?

k)− bin(cM ) is a non-zero vector of
{−1, 0, 1}m, which rules out the event that (v?1,v?2) = (v1,v2). Hence, we can only have
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w = 0m when the equality

S · (v?1 − v1) + (S0 +
∑̀
j=1

τ (i†)[j] · Sj) · (v?2 − v2)

= bin(cM )− {0, 1}
(
D0 · s? +

N∑
k=1

Dk ·m?
k

)
(7.10)

holds over Z. However, as long as either v?1 6= v1 or v?2 6= v2, the left-hand-side member
of (7.10) is information theoretically unpredictable since the columns of matrices S and
{Sj}`j=0 are statistically hidden in the view of A. Indeed, conditionally on the public key,
each column of S and {Sj}`j=0 has at least n bits of min-entropy, as shown by, e.g., [MP12,
Le. 2.7].

7.1.3 Protocols for Signing a Committed Value and Proving Possession

of a Signature

We �rst show a two-party protocol whereby a user can interact with the signer in order to
obtain a signature on a committed message.
In order to prove that the scheme still guarantees unforgeability for obliviously signed
messages, we will assume that each message block mk ∈ {0, 1}2m is obtained by en-
coding the actual message Mk = Mk[1] . . .Mk[m] ∈ {0, 1}m as mk = Encode(Mk) =
(M̄k[1],Mk[1], . . . , M̄k[m],Mk[m]). Namely, each 0 (respectively each 1) is encoded as
a pair (1, 0) (resp. (0, 1)). The reason for this encoding is that the proof of Theorem 7.4
requires that at least one block m?

k of the forgery message is 1 while the same bit is 0 at
some speci�c signing query. We will show (see Section 7.3) that the correctness of this
encoding can be e�ciently proved using Stern-like [Ste96] protocols.
To sign committed messages, a �rst idea is exploit the fact that our signature of Section 7.1.1
blends well with the SIS-based commitment scheme suggested by Kawachi et al. [KTX08]. In
the latter scheme, the commitment key consists of matrices (D0,D1) ∈ Z2n×2m

q ×Z2n×2m
q ,

so that message m ∈ {0, 1}2m can be committed to by sampling a Gaussian vector s ←↩
DZ2m,σ and computing C = D0 · s + D1 · m ∈ Z2n

q . This scheme extends to commit to
multiple messages (m1, . . . ,mN ) at once by computing C = D0 · s+

∑N
k=1 Dk ·mk ∈ Z2n

q

using a longer commitment key (D0,D1, . . . ,DN ) ∈ (Z2n×2m
q )N+1. It is easy to see that

the resulting commitment remains statistically hiding and computationally binding under
the SIS assumption.
In order to make our construction usable in the de�nitional framework of Camenisch et al.
[CKL+15], we assume common public parameters (i.e., a common reference string) and
encrypt all witnesses of which knowledge is being proved under a public key included in
the common reference string. The resulting ciphertexts thus serve as statistically binding
commitments to the witnesses. To enable this, the common public parameters comprise
public keys G0 ∈ Zn×`q , G1 ∈ Zn×2m

q for multi-bit variants of the dual Regev cryptosystem
[GPV08] and all parties are denied access to the underlying private keys. The �exibility of
Stern-like protocols allows us to prove that the content of a perfectly hiding commitment
cm is consistent with encrypted values.
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Global-Setup: Let B =
√
nω(logn) and let χ be a B-bounded distribution. Let p =

σ · ω(
√
m) upper-bound entries of vectors sampled from the distribution DZ2m,σ .

Generate two public keys for the dual Regev encryption scheme in its multi-bit
variant. These keys consists of a public random matrix B←↩ (Zn×mq ) and random
matrices G0 = B · E0 ∈ Zn×`q , G1 = B · E1 ∈ Zn×2m

q , where E0 ∈ Zm×`
and E1 ∈ Zm×2m are short Gaussian matrices with columns sampled from DZm,σ .
These matrices will be used to encrypt integer vectors of dimension ` and 2m,
respectively. Finally, generate public parameters CK := {Dk}Nk=0 consisting of
uniformly random matrices Dk ←↩ (Z2n×2m

q ) for a statistically hiding commitment
to vectors in ({0, 1}2m)N . Return public parameters consisting of

par := {B ∈ Zn×mq ,G0 ∈ Zn×`q ,G1 ∈ Zn×2m
q , CK}.

Issue↔ Obtain : The signer S, who holds a key pair PK := {A, {Aj}`j=0, D, u},
SK := TA, interacts with the user U who has a message (m1, . . . ,mN ), in the
following interactive protocol.

1. U samples s′ ←↩ DZ2m,σ and computes cm = D0 · s′ +
∑N
k=1 Dk · mk ∈ Z2n

q

which is sent to S as a commitment to (m1, . . . ,mN ). In addition, U encrypts
{mk}Nk=1 and s′ under the dual-Regev public key (B,G1) by computing for all
k ∈ {1, . . . , N}:

ck = (ck,1, ck,2)
=
(
BT · sk + ek,1, GT

1 · sk + ek,2 + mk · bq/2c
)
∈ Zmq × Z2m

q (7.11)

for randomly chosen sk ←↩ χn, ek,1 ←↩ χm, ek,2 ←↩ χ2m, and

cs′ = (cs′,1, cs′,2)
=
(
BT · s0 + e0,1, GT

1 · s0 + e0,2 + s′ · bq/pc
)
∈ Zmq × Z2m

q (7.12)

where s0 ←↩ χn, e0,1 ←↩ χm, e0,2 ←↩ χ2m. The ciphertexts {ck}Nk=1 and cs′
are sent to S along with cm.
Then, U generates an interactive zero-knowledge argument to convince S that
cm is a commitment to (m1, . . . ,mN ) with the randomness s′ such that {mk}Nk=1
and s′ were honestly encrypted to {ck}Ni=1 and cs′ , as in (7.11) and (7.12). For
convenience, this argument system will be described in Section 7.3.1, where
we demonstrate that, together with other zero-knowledge protocols used in
this work, it can be derived from a Stern-like [Ste96] protocol constructed in
Section 7.3.

2. If the argument of step 1 properly veri�es, S samples s′′ ←↩ DZ2m,σ0 and
computes a vector um = u + D · {0, 1}

(
cm + D0 · s′′

)
∈ Znq . Next, S randomly

picks τ ←↩ {0, 1}` and uses TA to compute a delegated basis Tτ ∈ Z2m×2m for
the matrix Aτ ∈ Zn×2m

q of (7.1). Using Tτ ∈ Z2m×2m, S samples a short vector
v ∈ Z2m in DuM

Λ⊥(Aτ ),σ . It returns the vector (τ,v, s′′) ∈ {0, 1}` × Z2m × Z2m

to U .
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3. U computes s = s′ + s′′ over Z and veri�es that

Aτ · v = u + D · {0, 1}
(
D0 · s +

N∑
k=1

Dk ·mk

)
mod q.

If so, it outputs (τ,v, s). Otherwise, it outputs ⊥.

Note that, if both parties faithfully run the protocol, the user obtains a valid signature
(τ,v, s) for which the distribution of s is DZ2m,σ1 , where σ1 =

√
σ2 + σ2

0 .
The following protocol allows proving possession of a message-signature pair.

Prove: On input of a signature (τ,v = (vT1 | vT2 )T , s) ∈ {0, 1}` × Z2m × Z2m on the
message (m1, . . . ,mN ), the user does the following.

1. Using (B,G0) and (B,G1) generate perfectly binding commitments to τ ∈
{0, 1}`, {mk}Nk=1, v1,v2 ∈ Zm and s ∈ Z2m. Namely, compute

cτ = (cτ,1, cτ,2)
=
(
BT · sτ + eτ,1, GT

0 · sτ + eτ,2 + τ · bq/2c
)
∈ Zmq × Z`q,

ck = (ck,1, ck,2)
=
(
BT · sk + ek,1, GT

1 · sk + ek,2 + mk · bq/2c
)
∈ Zmq × Z2m

q

∀k ∈ {1, . . . , N}

where sτ , sk ←↩ χn, eτ,1, ek,1 ←↩ χm, eτ,2 ←↩ χ`, ek,2 ←↩ χ2m, as well as

cv = (cv,1, cv,2)
=
(
BT · sv + ev,1, GT

1 · sv + ev,2 + v · bq/pc
)
∈ Zmq × Z2m

q

cs = (cs,1, cs,2)
=
(
BT · s0 + e0,1, GT

1 · s0 + e0,2 + s · bq/pc
)
∈ Zmq × Z2m

q ,

where sv, s0 ←↩ χn, ev,1, e0,1 ←↩ χm, ev,2, e0,2 ←↩ χ2m.
2. Prove in zero-knowledge that cτ , cs, cv, {ck}Nk=1 encrypt a valid message-

signature pair. In Section 7.3.2, we show that this involved zero-knowledge
protocol can be derived from the statistical zero-knowledge argument of knowl-
edge for a simpler, but more general relation that we explicitly present in
Section 7.3. The proof system can be made statistically ZK for a malicious
veri�er using standard techniques (assuming a common reference string, we
can use [Dam00]). In the random oracle model, it can be made non-interactive
using the Fiat-Shamir heuristic [FS86].

We require that the adversary be unable to prove possession of a signature of a message
(m1, . . . ,mN ) for which it did not legally obtain a credential by interacting with the issuer.
Note that the messages that are blindly signed by the issuer are uniquely de�ned since, at
each signing query, the adversary is required to supply perfectly binding commitments
{ck}Nk=1 to (m1, . . . ,mN ).
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In instantiations using non-interactive proofs, we assume that these can be bound to a
veri�er-chosen nonce to prevent replay attacks, as suggested in [CKL+15].
The security proof (in Theorem 7.4) makes crucial use of the Rényi divergence using ar-
guments in the spirit of Bai et al. [BLL+15]. The reduction has to guess upfront the index
i? ∈ {1, . . . , Q} of the speci�c signing query for which the adversary will re-use τ (i?). For
this query, the reduction will have to make sure that the simulation trapdoor of Agrawal
et al. [ABB10] (used by the SampleRight algorithm of Lemma 3.7) vanishes: otherwise,
the adversary’s forgery would not be usable for solving SIS. This means that, as in the
proof of [BHJ+15], the reduction must answer exactly one signing query in a di�erent
way, without using the trapdoor. While Böhl et al. solve this problem by exploiting the
fact that they only need to prove security against non-adaptive forgers, we directly use a
built-in chameleon hash function mechanism which is implicitly realized by the matrix
D0 and the vector s. Namely, in the signing query for which the Agrawal et al. trap-
door [ABB10] cancels, we assign a special value to the vector s ∈ Z2m, which depends on
the adaptively-chosen signed message (Msg(i?)

1 , . . . ,Msg(i?)
N ) and some Gaussian matrices

{Rk}Nk=1 hidden behind {Dk}Nk=1.
One issue is that this results in a di�erent distribution for the vector s ∈ Zm. However,
we can still view s as a vector sampled from a Gaussian distribution centered away from
02m. Since this speci�c situation occurs only once during the simulation, we can apply a
result proved in [LSS14] which upper-bounds the Rényi divergence between two Gaussian
distributions with identical standard deviations but di�erent centers. By choosing the
standard deviation σ1 of s ∈ Z2m to be polynomially larger than that of the columns of
matrices {Rk}Nk=1, we can keep the Rényi divergence between the two distributions of
s (i.e., the one of the simulation and the one of the real game) su�ciently small to apply
the probability preservation property (which still gives a polynomial reduction since the
argument must only be applied on one signing query). Namely, the latter implies that, if the
Rényi divergence R2(sreal||ssim) is polynomial, the probability that the simulated vector
ssim ∈ Z2m passes the veri�cation test will only be polynomially smaller than in the real
game and so will be the adversary’s probability of success.
Another option would have been to keep the statistical distance between sreal and ssim

negligible using the smudging technique of [AJLA+12]. However, this would have implied
to use an exponentially large modulus q since σ1 should have been exponentially larger
than the standard deviations of the columns of {Rk}Nk=1.

Theorem 7.4. Under the SISn,2m,q,β̂ assumption, where β̂ = Nσ(2m)3/2 + 4σ1m
3/2, the

above protocols are secure protocols for obtaining a signature on a committed message and
proving possession of a valid message-signature pair.

In the following proof, we make use of the Rényi divergence in a similar way to [BLL+15]:
instead of the classical statistical distance we sometimes use the Rényi divergence, which
is a measurement of the distance between two distributions. Its use in security proofs for
lattice-based systems was �rst considered by Bai et al. [BLL+15] and further improved by
Prest [Pre17]. We �rst recall its de�nition.

De�nition 2.14 (Rényi divergence). For any two discrete distributions P and Q such that
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Supp(P ) ⊆ Supp(Q), and a ∈]1,+∞[, we de�ne the Rényi divergence of order a by:

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

We de�ne the Rényi divergences of orders 1 and +∞ as:

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log P (x)
Q(x)

 and R∞(P ||Q) = max
x∈Supp(P )

P (x)
Q(x) .

The divergence R1 is the (exponential) of the Kullback-Leibler divergence.

We will focus on the following properties of the Rényi divergence, the proofs can be found
in [LSS14].

Lemma 7.5 ([BLL+15, Le. 2.7]). Let a ∈ [1,+∞]. Let P and Q denote distributions with
Supp(P ) ⊆ Supp(Q). Then the following properties hold:

Log. Positivity: Ra(P ||Q) ≥ Ra(P ||P ) = 1

Data Processing Inequality: Ra(P f ||Qf ) ≤ Ra(P ||Q) for any function f , where P f

denotes the distribution of f(y) induced by sampling y ←↩ P (resp. y ←↩ Q)

Multiplicativity: Assume P and Q are two distributions of a pair of random variables
(Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal distribution of Yi under
P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote the conditional distribution of
Y2 given that Y1 = y1. Then we have:

• Ra(P ||Q) = Pa(P1||Q1) ·Ra(P2||Q2) if YB and Y2 are independent;

• Ra(P ||Q) ≤ R∞(P1||Q1) ·maxy1∈XRa
(
P2|1(·|y1)||Q2|1(·|y1)

)
.

Probability Preservation: Let A ⊆ Supp(Q) be an arbitrary event. If a ∈]1,+∞[, then
Q(A) ≥ P (A)

a
a−1 /Ra(P ||Q). Further we have:

Q(A) ≥ P (A)/R∞(P ||Q)

Weak Triangle Inequality: Let P1, P2, P3 be three distributions with

Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3).

Then we have:

Ra(P1||P3) ≤

Ra(P1||P2) ·R∞(P2||P3),

R∞(P1||P2)
a
a−1 ·Ra(P2||P3) if a ∈]1,+∞[.

In our proofs, we mainly use the probability preservation to bound the probabilities during
hybrid games where the two distributions are not close in terms of statistical distance.
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Proof. The proof is very similar to the proof of Theorem 7.1 and we will only explain the
changes.
Let us assume that an adversary A can prove possession of a signature on a message
(m?

1, . . . ,m
?
N ) which has not been blindly signed by the issuer, we outline an algorithm

B that solves a SISn,2m,q,β instance Ā, where Ā = [Ā1 | Ā2] ∈ Zn×2m
q with matrices

Ā1, Ā2 ←↩ U(Zn×mq ).
At the outset of the game,B generates the common parameters par by choosing B ∈R Zn×mq

and de�ning G0 = B ·E0 ∈ Zn×`q , G1 = B ·E1 ∈ Zn×2m
q . The short Gaussian matrices

E0 ∈ Zm×` and E1 ∈ Zm×2m are retained for later use. Also, B �ips a coin coin ∈ {0, 1, 2}
as a guess for the kind of attack that A will mount. If coin = 0, B expects a Type I forgery,
where A’s forgery involves a new τ? ∈ {0, 1}` that was never used by the signing oracle.
If coin = 1, B expects A to recycle a tag τ? involved in some signing query in its forgery.
Namely, if coin = 1, B expects an attack which is either a Type II forgery or a Type III
forgery. If coin = 2, B rather bets that A will break the soundness of the interactive
argument systems used in the signature issuing protocol or the Prove protocol. Depending
on the value of coin ∈ {0, 1, 2}, B generates the issuer’s public key PK and simulatesA’s
view in di�erent ways.

• If coin = 0, B undertakes to �nd a short non-zero vector of Λ⊥q (Ā1), which in
turn yields a short non-zero vector of Λ⊥q (Ā). To this end, it de�nes A = Ā1 and
generates PK by computing {Aj}`j=0 as re-randomizations of A ∈ Zn×mq as in the
proof of Lemma 7.2. This implies that B can always answer signing queries using the
trapdoor TC ∈ Zm×m of the matrix C without even knowing the messages hidden
in the commitments cm and {ck}Nk=1, cs′ . When the adversary generates a proof
of possession of its own at the end of the game, B uses the matrices E0 ∈ Zm×`
and E1 ∈ Zm×2m as an extraction trapdoor to extract a plain message-signature
pair

(
(m?

1, . . . ,m
?
N ), (τ?,v?, s?)

)
from the ciphertexts {c?k}Nk=1 (c?v1 , cv?2), c?τ , c?s

produced by A as part of its forgery. If the extracted τ? is not a new tag, then B
aborts. Otherwise, it can solve the given SIS instance exactly as in the proof of
Lemma 7.2.

• If coin = 1, the proof proceeds as in the proof of Lemma 7.3 with one di�erence in
Game 3. This di�erence is that Game 3 is no longer statistically indistinguishable
from Game 2: instead, we rely on an argument based on the Rényi divergence. In
Game 3, B generates PK exactly as in the proof of Lemma 7.3. This implies that B
takes a guess i† ← U({1, . . . , Q}) with the hope that A will choose to recycle the
tag τ (i†) of the i†-th signing query (i.e., τ? = τ (i†)). As in the proof of Lemma 7.3, B
de�nes D = Ā1 ∈ Zn×mq and A = Ā1 · S for a small-norm matrix S ∈ Zm×m with
Gaussian entries. It also “programs” the matrices {Aj}`j=0 in such a way that the
trapdoor precisely vanishes at the i†-th signing query: in other words, the sum

A0 +
∑̀
j=1

τ (i)[j]Aj = Ā1 · (S0 +
∑̀
j=1

τ (i)[j] · Sj) + (h0 +
∑̀
j=1

τ (i)[j] · hj) ·C

does not depend on the matrix C ∈ Zn×mq (of which a trapdoor TC ∈ Zm×m is
known to B) when τ (i) = τ (i†), but it does for all other tags τ (i) 6= τ (i†). In the
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setup phase, B also sets up a random matrix D0 ∈ U(Z2n×2m
q ) which it obtains by

choosing A′ ←↩ (Zn×2m
q ) to de�ne

D0 =
[

Ā
A′

]
∈ Z2n×2m

q . (7.13)

Then, it computes cM = D0 · s0 ∈ Z2n
q for a short Gaussian vector s0 ←↩ DZ2m,σ0 ,

which will be used in the i†-th query. Next, it samples short vectors v1,v2 ←↩ DZm,σ
to de�ne

u = A
τ (i†) ·

[
v1
v2

]
−D · bin(cM ) ∈ Znq .

In addition, B picks extra small-norm matrices R1, . . . ,RN ∈ Z2m×2m whose
columns are sampled from DZm,σ , which are used to de�ne randomizations of D0 by
computing Dk = D0 ·Rk for each k ∈ {1, . . . , N}. The adversary is given public
parameters par := {B,G0,G1, CK}, where CK = {Dk}Nk=0, and the public key
PK :=

(
A, {Aj}`j=0,D,u

)
.

Using TC, B can perfectly emulate the signing oracle at all queries, except the i†-th
query where the vector s′′(i

†) chosen by B is sampled from a distribution that departs
from DZ2m,σ0 . At the i†-th query, B uses the extraction trapdoor E1 ∈ Zm×2m to obtain
s′(i
†) ∈ Z2m and {mk}Nk=1 – which form a valid opening of cm unless the soundness of the

proof system is broken (note that the latter case is addressed by the situation coin = 3) –
from the ciphertexts c(i†)

s′ and {ck}Nk=1 sent by A at step 1 of the signing protocol. Then, B
computes the vector s′′(i

†) as

s′′(i
†) = s0 −

N∑
k=1

Rk ·m
(i†)
k − s′(i

†) ∈ Z2m, (7.14)

which satis�es cM =
∑N
k=1 Dk · m

(i†)
k + D0 · (s′(i

†) + s′′(i
†)) and allows returning

(τ (i†),v(i†), s′′(i
†)) such that (τ (i†),v(i†), s′(i

†) + s′′(i
†)) satis�es the veri�cation equation

of the signature scheme. Moreover, we argue that, with noticeable probability, the integer
vector s(i†) = s′(i

†) + s′′(i
†) will be accepted by the veri�cation algorithm since the Rényi

divergence between the simulated distribution of s′′(i
†) and its distribution in the real

game will be su�ciently small. Indeed, its distribution is now that of a Gaussian vector
DZ2m,σ0,z† centered in

z† = −
N∑
k=1

Rk ·m
(i†)
k − s′(i

†) ∈ Z2m,

whose norm is at most ‖z†‖2 ≤ Nσ(2m)3/2 + σ(2m)1/2. By choosing the standard
deviation σ0 to be at least σ0 > Nσ(2m)3/2 + σ(2m)1/2, the Rényi divergence between
the simulated distribution of s′′(i

†) (in Game 3) and its real distribution (which is the one
of Game 2) can be kept constant: we have

R2(s′′(i
†),2||s′′(i

†),3) ≤ exp
(
2π · ‖z

†‖22
σ2

0

)
≤ exp(2π). (7.15)
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This ensures that, with noticeable probability, (τ (i†),v(i†), s(i†)) will pass the veri�cation
test and lead A to eventually output a valid forgery. So, the success probability of A in
Game 3 remains noticeable as (7.15) implies Pr[W3] ≥ Pr[W2]2/ exp(2π).
When W3 occurs in Game 3, B uses the matrices (E0,E1) to extract a plain message-
signature pair

(
(m?

1, . . . ,m
?
N ), (τ?,v?, s?)

)
from the extractable commitments {c?k}Nk=1

(c?v1 , c
?
v2), c?τ , c?s generated by A. At this point, two cases can be distinguished. First, if

cM 6=
∑N
k=1 Dk ·m?

k+D0 ·s? mod q, then algorithmB can �nd a short vector of Λ⊥q (Ā1) =
Λ⊥q (D) exactly as in the proof of Lemma 7.3. In the event that cM =

∑N
k=1 Dk ·m?

k+D0 ·s?,
B can use the fact that the collision cM =

∑N
k=1 Dk ·m

(i†)
k + D0 · s(i†) allows computing

w = s? − s(i†) +
N∑
k=1

Rk ·
(
m?
k −m

(i†)
k

)
∈ Z2m,

which belongs to Λ⊥q (D0) and has norm ‖w‖2 ≤ Nσ(2m)3/2 + 4σ1m
3/2. Moreover, it

is non-zero with overwhelming probability. Indeed, there exists at least one k ∈ [1, N ]
such that m(i†)

k 6= m?
k. Let us assume w.l.o.g. that they di�er in their �rst two bits where

m
(i†)
k contains a 0 and m?

k contains a 1 (recall that each bit b is encoded as (b̄, b) in both
messages). This implies that s′′(i

†) (as computed in (7.14)) does not depend on the �rst
column of Rk but w does. Hence, given that the columns of Rk have at least n bits of
min-entropy conditionally on Dk = D0 ·Rk, the vector w ∈ Z2m is unpredictable to the
adversary.
Due to the de�nition of D0 ∈ Z2n×2m

q in (7.13), we �nally note that w ∈ Z2m is also a
short non-zero vector of Λ⊥q (Ā).

• If coin = 2, B faithfully generates par and PK , but it retains the extraction trapdoor
(E0,E1) associated with the dual Regev public keys (G0,G1). Note thatA can break
the soundness of the proof system by either: (i) Generating ciphertexts {ck}Nk=1 and
cs′ that do not encrypt an opening of cm in the signature issuing protocol; (ii)
Generating ciphertexts {ck}Nk=1, cτ , cv1 , cv2 and cs that do not encrypt a valid
signature in the Prove protocol. In either case, the reduction B is able to detect the
event by decrypting dual Regev ciphertext using (E0,E1) and create a breach in the
soundness of the argument system.

It it easy to see that, since coin ∈ {0, 1, 2} is chosen independently ofA’s view, it turns out
to be correct with probability 1/3. As a consequence, if A’s advantage is non-negligible, so
is B’s.

Theorem 7.6. The scheme provides anonymity under the LWEn,q,χ assumption.

Proof. The proof is rather straightforward and consists of a sequence of three games.

Game 0: This is the real game. Namely, the adversary is given common public parameters
par and comes up with a public key PK of its own. The adversary can run oblivious
signing protocols with honest users. At each query, the adversary chooses a user index
i and triggers an execution of the signing protocol with the challenger emulating the
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honest users. At some point, the adversary chooses some user index i? for which the
execution of the signing protocol ended successfully. At this point, the challenger B
runs the real Prove protocol on behalf of user i. At the end of the game, the adversary
outputs a bit b′ ∈ {0, 1}. We de�ne W0 to be the event that b′ = 1.

Game 1: This game is like Game 0 with the di�erence that, at each execution of the Prove
protocol, the challenger runs the zero-knowledge simulator of the interactive proof
system. The latter simulator uses either a trapdoor hidden in the common reference
string (if Damgård’s technique [Dam00] is used) or proceeds by programming the
random oracle which allows implementing the Fiat-Shamir heuristic. In either case,
the statistical zero-knowledge property ensures that the adversary cannot distinguish
Game 1 from Game 0 and |Pr[W1]− Pr[W0]| ∈ negl(λ).

Game 3: This game is like Game 1 except that, at each execution of the Prove protocol,
the ciphertexts {ck}Nk=1, cs, cτ , and cv1 , cv2 encrypt random messages instead of
the actual witnesses. The semantic security of the dual Regev cryptosystem ensures
that, under the LWEn,q,χ assumption, the adversary is unable to see the di�erence.
Hence, we have |Pr[W2]− Pr[W1]| ≤ AdvLWE

B (λ).

In Game 2, we can notice that the adversary is interacting with a simulator that emulates
the user in the Prove protocol without using any message-signature pair. We thus conclude
that, under the LWEn,q,χ assumption, A’s view cannot distinguish a real proof of signature
possession from a simulated proof produced without any witness.

7.2 A Dynamic Lattice-Based Group Signature

In this section, the signature scheme of Section 7.1 is used to design a group signature
for dynamic groups using the syntax and the security model of Kiayias and Yung [KY06],
which is recalled in Section 5.2.
In the notations hereunder, for any positive integers n, and q ≥ 2, we de�ne the “powers-
of-2” matrix Hn×ndlog qe ∈ Zn×ndlog qe

q to be:

Hn×ndlog qe = In ⊗ [1 | 2 | 4 | . . . | 2dlog qe−1].

Also, for each vector v ∈ Zn
q , we de�ne bin(v) ∈ {0, 1}ndlog qe to be the vector obtained by

replacing each entry of v by its binary expansion. Hence, we have v = Hn×ndlog qe · bin(v)
for any v ∈ Zn

q .
In our scheme, each group membership certi�cate is a signature generated by the group
manager on the user’s public key. Since the group manager only needs to sign known
(rather than committed) messages, we can use a simpli�ed version of the signature, where
the chameleon hash function does not need to choose the discrete Gaussian vector s with a
larger standard deviation than other vectors.
A key component of the scheme is the two-message joining protocol whereby the group
manager admits new group members by signing their public key. The �rst message is sent by
the new user Ui who samples a membership secret consisting of a short vector zi ←↩ DZ4m,σ

(where m = 2ndlog qe), which is used to compute a syndrome vi = F · zi ∈ Z4n
q for some
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public matrix F ∈ Z4n×4m
q . This syndrome vi ∈ Z4n

q must be signed by Ui using his long
term secret key usk[i] (as in [KY06, BSZ05], we assume that each user has a long-term key
upk[i] for a digital signature, which is registered in some PKI) and will uniquely identify Ui.
In order to generate a membership certi�cate for vi ∈ Z4n

q , the group manager GM signs
its binary expansion bin(vi) ∈ {0, 1}4ndlog qe using the scheme of Section 7.1.
Equipped with his membership certi�cate (τ,d, s) ∈ {0, 1}` ×Z2m ×Z2m, the new group
member Ui can sign a message using a Stern-like protocol for demonstrating his knowledge
of a valid certi�cate for which he also knows the secret key associated with the certi�ed
public key vi ∈ Z4n

q . This boils down to providing evidence that the membership certi�cate
is a valid signature on some binary message bin(vi) ∈ {0, 1}4ndlog qe for which he also
knows a short zi ∈ Z4m such that vi = H4n×2m · bin(vi) = F · zi ∈ Z4n

q .
Interestingly, the process does not require any proof of knowledge of the membership secret
zi during the joining phase, which is round-optimal. Analogously to the Kiayias-Yung
technique [KY05] and constructions based on structure-preserving signatures [AFG+10],
the joining protocol thus remains secure in environments where many users want to
register at the same time in concurrent sessions.
We remark that a similar Stern-like protocol could also be directly used to prove knowledge
of a Boyen signature [Boy10] on a binary expansion of the user’s syndrome vi ∈ Z4n

q

while preserving the user’s ability to prove knowledge of a short zi ∈ Z4m such that
F·zi = vi mod q. However, this would require considerably longer private keys containing
4n · log q matrices {Aj}`j=0 of dimension n×m each (i.e., we would need ` = Θ(n · log q)).
In contrast, by using the signature scheme of Section 7.1, we only need the group public key
Y to contain ` = logNgs matrices in Zn×mq . Since the number of users Ngs is polynomial,
we have logNgs � n, which results in a much more e�cient scheme.

7.2.1 Description of the Scheme

Setup(1λ, 1Ngs): Given a security parameter λ > 0 and the maximal expected num-
ber of group members Ngs = 2` ∈ poly(λ), choose lattice parameter n = O(λ);
prime modulus q = Õ(`n3); dimension m = 2ndlog qe; Gaussian parameter
σ = Ω(

√
n log q logn); in�nity norm bounds β = σω(logm) and B =

√
nω(logn).

Let χ be a B-bounded distribution. Choose a hash function H : {0, 1}∗ → {1, 2, 3}t
for some t = ω(logn), which will be modeled as a random oracle in the security
analysis. Then, do the following.

1. Generate a key pair for the signature of Section 7.1.1 for signing single-block
messages. Namely, run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short
basis TA of Λ⊥q (A), which allows computing short vectors in Λ⊥q (A) with
Gaussian parameter σ. Next, choose matrices A0,A1, . . . ,A`,D←↩ (Zn×mq ),
D0,D1 ←↩ (Z2n×2m

q ) and a vector u←↩ (Znq ).

2. Choose an additional random matrix F←↩ (Z4n×4m
q ) uniformly. Looking ahead,

this matrix will be used to ensure security against framing attacks.

3. Generate a master key pair for the Gentry-Peikert-Vaikuntanathan IBE scheme
in its multi-bit variant. This key pair consists of a statistically uniform matrix
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B ∈ Zn×mq and a short basis TB ∈ Zm×m of Λ⊥q (B). This basis will allow us to
compute GPV private keys with a Gaussian parameter σGPV ≥ ‖T̃B‖ ·

√
logm.

4. Choose a one-time signature scheme ΠOTS = (G,S,V) and a hash function
H0 : {0, 1}∗ → Zn×2m

q , that will be modeled as random oracles.

The group public key is de�ned as

Y :=
(
A, {Aj}`j=0, B, D, D0, D1, F, u, ΠOTS, H, H0

)
.

The opening authority’s private key is SOA := TB and the private key of the group
manager consists of SGM := TA. The algorithm outputs

(
Y,SGM,SOA

)
.

Join
(GM,Ui)

: the group manager GM and the prospective user Ui run the following inter-
active protocol: 〈Juser(λ,Y), JGM(λ, St,Y,SGM)〉

1. Ui samples a discrete Gaussian vector zi ← DZ4m,σ and computes vi = F ·zi ∈
Z4n
q . He sends the vector vi ∈ Z4n

q , whose binary representation bin(vi)
consists of 4ndlog qe = 2m bits, together with an ordinary digital signature
sigi = Signusk[i](vi) to GM.

2. JGM veri�es that vi was not previously used by a registered user and that sigi
is a valid signature on vi w.r.t. upk[i]. It aborts if this is not the case. Otherwise,
GM chooses a fresh `-bit identi�er idi = idi[1] . . . idi[`] ∈ {0, 1}` and uses
SGM = TA to certify Ui as a new group member. To this end, GM de�nes the
matrix

Aidi =
[

A A0 +
∑`
j=1 idi[j]Aj

]
∈ Zn×2m

q . (7.16)

Then, GM runs T′idi ← ExtBasis(Aidi ,TA) to obtain a short delegated basis
T′idi of Λ⊥q (Aidi) ∈ Z2m×2m. Finally, GM samples a short vector si ←↩ DZ2m,σ

and uses the obtained delegated basis T′idi to compute a short vector di =[
di,1
di,2

]
∈ Z2m such that

Aidi · di =
[

A A0 +
∑`
j=1 idi[j]Aj

]
· di

= u + D · {0, 1}
(
D0 · bin(vi) + D1 · si

)
mod q. (7.17)

The triple (idi,di, si) is sent to Ui. Then, Juser veri�es that the received
(idi,di, si) satis�es (7.17) and that ‖di‖∞ ≤ β, ‖si‖∞ ≤ β. If these condi-
tions are not satis�ed, Juser aborts. Otherwise, Juser de�nes the membership
certi�cate as certi = (idi,di, si). The membership secret seci is de�ned to
be seci = zi ∈ Z4m. JGM stores transcripti = (vi, certi, i, upk[i], sigi) in the
database Sttrans of joining transcripts.

Sign(Y, certi, seci,M): To signM ∈ {0, 1}∗ using certi = (idi,di, si), where di = [dTi,1 |
dTi,2]T ∈ Z2m and si ∈ Z2m, as well as the membership secret seci = zi ∈ Z4m, the
group member Ui generates a one-time signature key pair (VK,SK) ← G(n) and
conducts the following steps.
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1. Compute G0 = H0(VK) ∈ Zn×2m
q and use it as an IBE public key to encrypt

bin(vi) ∈ {0, 1}2m, where vi = F · zi ∈ Z4n
q is the syndrome of seci = zi ∈

Z4m for the matrix F. Namely, compute cvi ∈ Zmq × Z2m
q as

cvi = (c1, c2) =
(
BT · e0 + x1, GT

0 · e0 + x2 + bin(vi) · bq/2c
)

(7.18)

for randomly chosen e0 ←↩ χn, x1 ←↩ χm,x2 ←↩ χ2m. Notice that, as in the
construction of [LNW15], the columns of G0 can be interpreted as public keys
for the multi-bit version of the dual Regev encryption scheme.

2. Run the protocol in Section 7.3.3 to prove the knowledge of idi ∈ {0, 1}`, vectors
si ∈ Z2m,di,1,di,2 ∈ Zm, zi ∈ Z4m with in�nity norm bound β; e0 ∈ Zn,
x1 ∈ Zm,x2 ∈ Z2m with in�nity norm boundB and bin(vi) ∈ {0, 1}2m,wi ∈
{0, 1}m, that satisfy (7.18) as well as

A · di,1 + A0 · di,2 +
∑̀
j=1

(idi[j] · di,2) ·Aj −D ·wi = u ∈ Znq (7.19)

and

{
H2n×m ·wi = D0 · bin(vi) + D1 · si ∈ Z2n

q

F · zi = H4n×2m · bin(vi) ∈ Z4n
q .

(7.20)

The protocol is repeated t = ω(logn) times in parallel to achieve negligible
soundness error, and then made non-interactive using the Fiat-Shamir heuris-
tic [FS86] as a triple πK = ({CommK,j}tj=1,ChallK , {RespK,j}tj=1), where
ChallK = H(M, vk, cvi , {CommK,j}tj=1) ∈ {1, 2, 3}t

3. Compute a one-time signature sig = S(SK, (cvi , πK)).

Output the signature that consists of

Σ =
(
VK, cvi , πK , sig

)
. (7.21)

Verify(Y,M,Σ): Parse the signature Σ as in (7.21). Then, return 1 if and only if: (i)
V(VK, (cvi , csi , cid, πK), sig) = 1; (ii) The proof πK properly veri�es.

Open(Y,SOA,M,Σ): Parse SOA as TB ∈ Zm×m and Σ as in (7.21).

1. Compute G0 = H0(VK) ∈ Zn×2m
q . Then, using TB to compute a small-norm

matrix E0,VK ∈ Zm×2m such that B ·E0,VK = G0 mod q.
2. Using E0,VK, decrypt cvi to obtain a string bin(v) ∈ {0, 1}2m (i.e., by comput-

ing b(c2 −ET
0,VK · c1)/(q/2)e).

3. Determine whether the bin(v) ∈ {0, 1}2m obtained at step 2 corresponds to
a vector v = H4n×2m · bin(v) mod q that appears in a record transcripti =
(v, certi, i, upk[i], sigi) of the database Sttrans for some i. If so, output the
corresponding i (and, optionally, upk[i]). Otherwise, output ⊥.
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We remark that the scheme readily extends to provide a mechanism whereby the opening
authority can e�ciently prove that signatures were correctly opened at each opening
operation. The di�erence between the dynamic group signature models suggested by
Kiayias and Yung [KY06] and Bellare et al. [BSZ05] is that, in the latter, the opening
authority (OA) must be able to convince a judge that the Open algorithm was run correctly.
Here, such a mechanism can be realized using the techniques of public-key encryption
with non-interactive opening [DHKT08]. Namely, since bin(vi) is encrypted using an
IBE scheme for the identity vk, the OA can simply reveal the decryption matrix E0,VK,
that satis�es B · E0,vk = G0 mod q (which corresponds to the veri�cation of a GPV
signature) and allows the veri�er to perform step 2 of the opening algorithm himself. The
resulting construction is easily seen to satisfy the notion of opening soundness of Sakai et
al. [SSE+12].

7.2.2 E�ciency and Correctness

Efficiency. The given dynamic group signature scheme can be implemented in polynomial
time. The group public key has total bit-size O(`nm log q) = Õ(λ2) · logNgs. The secret
signing key of each user consists of a small constant number of low-norm vectors, and has
bit-size Õ(λ).
The size of each group signature is largely dominated by that of the non-interactive ar-
gument πK , which is obtained from the Stern-like protocol of Section 7.3.3. Each round
of the protocol has communication cost Õ(m · log q) · logNgs. Thus, the bit-size of πK is
t · Õ(m · log q) · logNgs = Õ(λ) · logNgs. This is also the asymptotic bound on the size of
the group signature.

Correctness. The correctness of algorithm Verify(Y,M,Σ) follows from the facts that
every certi�ed group member is able to compute valid witness vectors satisfying equa-
tions (7.18), (7.19) and (7.20), and that the underlying argument system is perfectly complete.
Moreover, the scheme parameters are chosen so that the GPV IBE [GPV08] is correct, which
implies that algorithm Open(Y,SOA,M,Σ) is also correct.

7.2.3 Security Analysis

Due to the fact that the number of public matrices {Aj}`j=0 is only logarithmic inNgs = 2`
instead of being linear in the security parameter λ, the proof of security against misiden-
ti�cation attacks (as de�ned in Section 5.3) cannot rely on the security of our signature
scheme in a modular manner. The reason is that, at each run of the Join protocol, the
group manager maintains a state and, instead of choosing the `-bit identi�er id uniformly
in {0, 1}`, it chooses an identi�er that has not been used yet. Since ` � λ (given that
Ngs = 2` is polynomial in λ), we thus have to prove security from scratch. However,
the strategy of the reduction is exactly the same as in the security proof of the signature
scheme.

Theorem 7.7. The scheme is secure against misidenti�cation attacks under the SISn,2m,q,β′
assumption, for β′=O(`σ2m3/2).

Proof. We prove that any adversary A with non-negligible success probability ε implies an
algorithm B solving the SIS problem in the random oracle model.
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Let A be such a PPT adversary. We then build a PPT reduction B that uses the adver-
sary A to solve SISn,2m,q,β′ : speci�cally, B takes as input Ā =

[
Ā1|Ā2

]
∈ Zn×2m

q , where
Ā1, Ā2 ∈ Zn×mq , and �nds w ∈ Λ⊥q (Ā) with 0 < ‖w‖ ≤ β′.

Initialization. Algorithm B �rst chooses a random coin ←↩ U({0, 1, 2}) as a guess for
the kind of misidenti�cation attack that A will mount. Also, B chooses a random `-bit
string id† ←↩ ({0, 1}`). In addition, B samples i? ←↩ ([1, Qa]).
Looking ahead, coin = 0 corresponds to the case where, after repeated executions of A,
the knowledge extractor of the proof system reveals witnesses containing a new identi�er
id? ∈ {0, 1}` that does not belong to any user in Ua. In this case, B will be able to exploit
A’s forgery when id? = id†. The case coin = 1 corresponds to B’s expectation that
the knowledge extractor will obtain the identi�er id? = id† of a group member in Ua
(i.e., a group member that was legitimately introduced at the i?-th Qa-join-query, for some
i? ∈ {1, . . . , Qa}, where the identi�er id† is used by Qa-join), but bin(v?) ∈ {0, 1}2m
(which is encrypted in in c?vi as part of the forgery Σ?) and the extracted s? ∈ Z2m are
such that {0, 1}

(
D0 · bin(v?) + D1 · s?

)
∈ {0, 1}m does not match the string {0, 1}

(
D0 ·

bin(vi?) + D1 · si?
)
∈ {0, 1}2m for which user i? obtained a membership certi�cate at

the i?-th Qa-join-query. When coin = 1, the choice of i? corresponds to a guess that
the knowledge extractor will reveal an `-bit identi�er that coincides with the identi�er
id† assigned to the user introduced at the i?-th Qa-join-query. The last case coin = 2
corresponds to B’s expectation that decrypting c?vi (which is part of Σ?) and running the
knowledge extractor on A will uncover vectors bin(v?) ∈ {0, 1}2m, w? ∈ {0, 1}m and
s? ∈ Z2m such that w? = bin(D0 · bin(v?) + D1 · s?) and

{0, 1}
(
D0 · bin(v?) + D1 · s?

)
= {0, 1}

(
D0 · bin(vi?) + D1 · si?

)
(7.22)

but (bin(v?), s?) 6= (bin(vi?), si?), where vi? ∈ Z4n
q and si? ∈ Z2m are the vectors

involved in the i?-th Qa-join-query.
Depending on coin ∈ {0, 1, 2}, the group public keyY is generated using di�erent methods.

• If coin = 0, algorithm B �rst randomly chooses id† ←↩ ({0, 1}`) as a guess for the
`-bit string that will be revealed by the knowledge extractor of the proof system after
repeated executions of the adversary A. Then, it runs TrapGen(1n, 1m, q) to obtain C ∈
Zn×mq and a basis TC of Λ⊥q (C) with ‖T̃C‖ ≤ O(

√
n log q). Then, it chooses ` + 2

matrices Q0, . . . ,Q`,QD ∈ Zm×m, each matrix having its columns sampled independently
from DZm,σ . Then, B de�nes the matrices {Ai}`i=0 as


A0 = Ā1 ·Q0 + (

∑`
i=1 id†[i]) ·C

Aj = Ā1 ·Qi + (−1)id†[j] ·C, for j ∈ [1, `].
D = Ā1 ·QD

It also de�nes A = Ā1. Next, it samples a vector eu ←↩ Dm
Z,σ and computes a syndrome

u = Ā1 · eu ∈ Znq . It picks D0,D1 ←↩ (Z2n×2m
q ) at random and also faithfully generates

the GPV master key pair (B,TB) as in Step 3 of the real setup algorithm. The group public
key Y =

(
A, {Aj}`j=0,B,D,D0,D1,F,u,OT S, H,H0

)
is �nally given to A.
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Note that, for each id 6= id†, we have

Aid =
[

Ā1 A0 +
∑`
i=1 id[i]Ai

]
=

[
Ā1 Ā1 · (Q0 +

∑`
i=1 id[i]Qi) + (

∑`
i=1 id†[i] + (−1)id†[i]id[i]) ·C

]
=

[
Ā1 Ā1 + hid ·C

]
(7.23)

where hid ∈ [1, `] denotes the Hamming distance between the identi�ers id and id†. Since
q > `, we have hidj 6= 0 mod q whenever idj 6= id†, so that algorithm B is able to com-
pute (see [ABB10, Se. 4.2], using the basis TC of Λ⊥q (C) and the re�ned GPVSample of
Lemma 3.5) a basis Tid of Λ⊥q (Aid) with ‖T̃id‖ ≤ Ω(

√
n log q logn). In contrast, algo-

rithm B lacks a trapdoor for Aid† as the latter only depends on A and {Qk}`k=0. Observe
that, since the columns of the matrices {Qk}`k=0 are sampled from DZm,σ , the matri-
ces A0, . . . ,A` are within statistical distance 2−Ω(m) of U(Zn×mq ).

• If coin = 1, algorithm B sets upY by de�ning D = Ā. Initially, B choosesQa−1 distinct
strings id1, . . . , idi?−1, idi?+1, . . . , idQa ∈ {0, 1}` such that, for each i ∈ [1, Qa]\{i?}, idi
will be embedded in the membership certi�cate returned in the i-th Qa-join-query. Let also
id† = idi? be the `-bit identi�er that will be used in the i?-th query. The reduction B picks
random h0, h1, . . . , h` ∈ Zq under the constraints

hid† = h0 +
∑̀
j=1

id†[j] · hj = 0 mod q

hidi = h0 +
∑̀
j=1

idi[j] · hj 6= 0 mod q i ∈ {1, . . . , Qa} \ {i†}

Next, B runs (C,TC) ← TrapGen(1n, 1m, q), (D1,TD1) ← TrapGen(12n, 12m, q) so as
to obtain statistically random matrices C ∈ Zn×mq , D1 ∈ Z2n×2m

q together with trapdoors
TC ∈ Zm×m, TD1 ∈ Z2m×2m consisting of short bases of Λ⊥q (C) and Λ⊥q (D1), respec-
tively. Then, B picks a random D0 ←↩ (Z2n×2m

q ) and re-randomizes D = Ā1 ∈ Zn×mq

using Gaussian matrices S,S0,S1, . . . ,S` ←↩ Zm×m whose columns are sampled from the
distribution DZm,σ . Namely, from D = Ā1, B de�nes

A = Ā1 · S
A0 = Ā1 · S0 + h0 ·C (7.24)
Aj = Ā1 · Sj + hj ·C ∀j ∈ {1, . . . , `}.

As part of the generation of Y , the vector u ∈ Znq is obtained by picking short discrete
Gaussian vectors di?,1,di?,2 ←↩ DZm,σ and computing

u = [A | A0 +
∑̀
j=1

id†[j]Aj ] ·
[
di?,1
di?,2

]
−D · bin(cM ), (7.25)

where cM ←↩ (Z2n
q ) is a randomly chosen vector. Observe that, since A is statistically

uniform over Zn×mq and di?,1 ←↩ DZm,σ , the distribution of u is statistically close toU(Znq ).
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• If coin = 2, B picks Ā′ ←↩ (Zn×2m
q ) and a random matrix Q←↩ Z2m×2m whose columns

are sampled from DZ2m,σ . These are used to de�ne

D0 =
[

Ā
Ā′

]
∈ Z2n×2m

q ,

and D1 = D0 ·Q mod q, which is statistically close to U(Z2n×2m
q ). All other components

of Y are obtained by faithfully running the setup algorithm.

For each value of coin ∈ {0, 1, 2}, the group public key

Y =
(
A, {Aj}`j=0,B,D,D0,D1,F,u,OT S, H,H0

)
has a distribution which is statistically close to that of the real scheme and Y is given to A.

Queries. The reductionB starts interacting with the adversaryA and the way it handlesA’s
queries to the Qa-join oracle depends on the value of coin ∈ {0, 1, 2}.

• If coin = 0, answers Qa-join-queries as follows. When A triggers an execution of the
joining protocol, it chooses a syndrome vi ∈ Znq . To answer the query, B chooses a fresh
`-bit identi�er idi ∈ {0, 1}` such that idi 6= id†. If A also provides a correct signature sigi
such that Verifyupk[i](vi, sigi) = 1, B samples si ←↩ DZ2m,σ and uses the trapdoor TC to
compute a short vector di = [dTi,1 | dTi,2]T ∈ Z2m such that

Aidi ·
[
di,1
di,2

]
= u + D · {0, 1}

(
D0 · bin(vi) + D1 · si

)
, (7.26)

where Aidi ∈ Zn×2m
q is the matrix in (7.23). Note that B is able to compute such a vector

using the SampleRight algorithm of [ABB10] (since the Hamming distance hidi between
idi and id? is non-zero). The membership certi�cate certi = (idi,di, si) is then returned to
A.

• If coin = 1, algorithm B responds each Qa-join-query depending on the index i ∈
{1, . . . , Qa} of the query. Speci�cally, we distinguish two cases.

- If i 6= i?, B proceeds as in the previous case. Namely, it recalls the `-bit identi�er
idi ∈ {0, 1}` (for which idi 6= id†) that was chosen in the setup phase and samples
a short vector si ←↩ DZ2m,σ . If A also provides a correct signature sigi such that
Verifyupk[i](vi, sigi) = 1, generates a membership certi�cate certi for A as in the
case coin = 0. Note that

Aidi =
[

Ā · S Ā · (S0 +
∑`
j=1 idi[j]Sj) + hidiC

]
=

[
Ā · S Ā + hidi ·C

]
(7.27)

Since hidi 6= 0, B can use the trapdoor TC ∈ Zm×m of Λ⊥q (C) to compute a short
vector di = [dTi,1 | dTi,2]T ∈ Z2m such that

Aidi ·
[
di,1
di,2

]
= u + D · {0, 1}

(
D0 · (bin(vi) + D1 · si

)
,

where vi ∈ Z4n
q is the syndrome chosen by A at step 1 of the joining protocol.
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- If i = i?, B undertakes to generate a membership certi�cate certi? for the `-bit
identi�er id† ∈ {0, 1}` that was chosen at the outset of the game. To this end, B has
to compute certi? without using the trapdoor TC since the matrix Aid† does no longer
depend on C in (7.27 ). This can be done by recalling the vector di?,1,di?,2 ∈ Zm
and cM ∈ Z2n

q that were used to de�ne u ∈ Znq in (7.25) and using TD1 . If A
provides a correct signature sigi? such that Verifyupk[i?](vi? , sigi?) = 1, B uses the
trapdoor TD1 of Λ⊥q (D1) to sample a short vector si? ∈ Z2m of DΛci?

q (D1),σ , where
ci? = cM −D0 · bin(vi?) mod q, satisfying

D1 · si? = cM −D0 · bin(vi?) mod q,

before returning certi? = (id†,di? = [dTi?,1 | dTi?,2]T , si?) to A. From the de�nition
of u ∈ Znq (7.25), it is easy to see that certi? = (id†,di? , si?) forms a valid membership
certi�cate for any membership secret zi? ∈ Z4m corresponding to the syndrome
vi? = F · zi? mod q.

Regardless of the value of coin, queries to the random oracle H are handled by returning
a uniformly chosen value in {1, 2, 3}t. For each κ ≤ QH , we let rκ denote the answer
to the κ-th H-query. Of course, if the adversary makes a given query more than once,
then B consistently returns the previously de�ned value. Queries to the random oracle H0
are answered in the usual way, by returning a uniformly random value in the appropriate
range.

Forgery. WhenA halts, it outputs a signature Σ? =
(
VK?, c?vi , π

?
K , sig

?
)

on some message
M?. At this point, B uses the trapdoor TB to decrypt c?vi and obtain an m-bit string
bin(v?) ∈ {0, 1}m.
If we parse the proof π?K as ({Comm?

K,j}tj=1,Chall?K , {Resp?K,j}tj=1), the adversaryAmust
have invoked the random oracleH on the input (M?,VK?, c?vi , {Comm?

K,j}tj=1) with high
probability. Otherwise, the probability that Chall?K = H(M?,VK?, c?vi , {Comm?

K,j}tj=1)
is negligible (at most 3−t).
It comes that, with probability at least ε′ := ε − 3−t, (M?,VK?, c?vi , {Comm?

K,j}tj=1)
coincides with the κ?-th random oracle query for some κ? ≤ QH .
At this stage, the reduction B runs the adversaryA up to 32 ·QH/(ε− 3−t) times with the
same random tape and input as in the initial run. All queries are answered as previously
with one di�erence in the treatment of random oracle queries. Namely, the �rst κ? − 1
random oracle queries – which are identical to those of the �rst execution since A is run
with the same random tape as before – receive the same answers Chall1, . . . ,Challκ?−1
as in the �rst run. This implies that the κ?-th query will involve exactly the same tuple
(M?,VK?, c?vi , {Comm?

K,j}tj=1) as in the �rst run. However, from the κ?-th query onwards,
A obtains fresh random oracle values Chall′κ? , . . . ,Chall′QH at each new execution. The
Improved Forking Lemma of Brickell et al. [BPVY00] guarantees that, with probability at
least 1/2, B can obtain a 3-fork involving the same tuple (M?,VK?, c?vi , {Comm?

K,j}tj=1)
with pairwise distinct answers Chall(1)

κ? ,Chall(2)
κ? ,Chall(3)

κ? ∈ {1, 2, 3}t. With probability
1 − (7/9)t it can be shown that there exists an index j ∈ {1, . . . , t} for which the j-th
bits of Chall(1)

κ? ,Chall(2)
κ? ,Chall(3)

κ? are (Chall(1)
κ?,j ,Chall(2)

κ?,j ,Chall(3)
κ?,j) = (1, 2, 3). From the

corresponding responses (Resp?K,j
(1),Resp?K,j

(2),Resp?K,j
(3)),B is able to extract witnesses
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(d?1,d?2) ∈ Zm × Zm, id? ∈ {0, 1}` and w? ∈ {0, 1}m from the proof of knowledge π?K
such that

Aid? ·
[
d?1
d?2

]
= u + D ·w?

w? = {0, 1}
(
D0 · (bin(v?) + D1 · s?

)
,

At this point, B aborts and declares failure in the following situations:

- coin = 0 but id? ∈ {0, 1}` is recycled from some output of the Qa-join oracle.

- coin = 0 and id? 6= id†.

- coin = 1 but id? ∈ {0, 1}` never appeared in a membership certi�cate returned by
the Qa-join oracle.

- coin = 1 and id? ∈ {0, 1}` belongs to some user in Ua, but this user is not the one
introduced at the i?-th Qa-join-query (i.e., i? 6= i† and id? 6= id†).

- coin = 1 and the knowledge extractor revealed vectors bin(v?) ∈ {0, 1}2m and
s? ∈ Z2m satisfying the collision (7.22), where bin(vi?) and si? are the vectors
involved in the i?-th Qa-join query.

- coin = 2 and the knowledge extraction yields vectors bin(v?) ∈ {0, 1}2m and
s? ∈ Z2m such that the collision (7.22) does not occur.

We call fail the event that one of the above situations occurs. Given that the choices of
coin←↩ ({0, 1, 2}) and i? ←↩ ([1, Qa]) are completely independent of A’s view, the choice
of coin is correct with probability 1/3. If coin = 0, B’s choice of id† ←↩ ({0, 1}`) is
correct with probability 1/(Ngs−Qa) ≥ 1/Ngs and, when coin = 1, B’s correctly guesses
i? ∈ [1, Qa] with probability 1/Qa. We �nd

Pr[¬fail] ≥ 1
3 ·max(Ngs, Qa)

= 1
3 ·Ngs

.

Assuming that fail does not occur, B can solve the problem instance as follows.

• If coin = 0, we have id? = id† and B knows a short vector eu ∈ Zm such that
u = Ā1 · eu mod q. Hence, it can obtain a short integer vector

h = d?1 +
(
Q0 +

∑̀
i=1

id†[i]Qi
)
· d?2 −QD · bin(v?)− eu ∈ Zm

such that Ā1 ·h = 0m mod q. Moreover, we have h 6= 0m w.h.p. since the syndrome
u ∈ Znq statistically hides eu ∈ Zm in Λu

q (Ā1). Finally, the norm of h is at most
‖h‖2 ≤ (` + 1)σ2m3/2 + σm1/2(m + 2). This implies that (hT | 0m)T is a short
non-zero vector of Λ⊥q (Ā) and solves the initial SIS instance.
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• If coin = 1, the extracted witnesses (d?1,d?2, s?, id?) and the decrypted bin(v?)
satisfy id? = id†,

w? = bin(D0 · bin(v?) + D1 · s?) 6= bin(D0 · bin(vi?) + D1 · si?) = wi?

(since ¬fail implies that the collision (7.22) did not occur if coin = 1) and

[
A A0 A1 . . . A` −D

]
·



d?1
d?2

id†[1]d?2
...

id†[`]d?2
w?


= u mod q. (7.28)

Since B already knew short vectors (di?,1,di?,2,wi?) ∈ Zm × Zm × Zm such that

[
A A0 A1 . . . A` −D

]
·



d?i?,1
d?i?,2

id†[1]d?i?,2
...

id†[`]d?i?,2
wi?


= u mod q, (7.29)

by subtracting (7.29) from (7.28), we �nd that

h = S · (d?1 − di?,1) + (S0 +
∑̀
j=1

id†[j]Sj) · (d?2 − di?,2) + (w? −wi?) (7.30)

is a small-norm vector h ∈ Zm satisfying Ā1 · h = 0 mod q. We claim that h 6= 0
with high probability. Indeed, we know that w? 6= wi? if ¬fail occurs. This implies
that the last term of (7.30) is non-zero, which rules out that (d?1,d?2) = (di?,1,di?,2).
Since the columns of S and {Sj}`j=0 have a lot of entropy conditionally on Y , this
implies that we can only have h = 0m with negligible probability. Furthermore, the
norm of h can be bounded by ‖h‖2 ≤ 4σ2m3/2(`+ 2) + 2m1/2, so that (hT | 0m)T
solves the original SIS instance.

• If coin = 2, B is done as well since the collision (7.22) directly provides a vector

h = bin(v?)− bin(v?i ) + Q · (s? − s?i ) ∈ Z2m

of Λ⊥q (D0) (which is also in the lattice Λ⊥q (Ā) by construction) and has norm ‖h‖2 ≤
2(σ2(2m)3/2 + (2m)1/2). Moreover, h ∈ Z2m is non-zero with overwhelming
probability given that bin(v?) 6= bin(v?i ) and the large amount of entropy retained
by the columns Q ∈ Z2m×2m given D1 = D0 ·Q.

Theorem 7.8. The scheme is secure against framing attacks under the SIS4n,4m,q,β′′ assump-
tion, where β′′ = 4σ

√
m.
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Proof. Let us assume that a PPT adversary A can create a forgery (M?,Σ?) that opens
to some honest user i ∈ U b who did not sign M?. In the random oracle model, we give
a reduction B that uses A to solve an instance of the SIS4n,4m,q,β′′ problem: B takes as
input Ā ∈ Z4n×4m

q and �nds a non-zero short vector w ∈ Λ⊥q (Ā).
AlgorithmB generates the group public keyY by faithfully running the real setup algorithm
with the sole di�erence that, at step 2 of Setup, B de�nes F = Ā ∈ Z4n×4m

q . However, the
distribution of Y is as in the real scheme. As a result of having generated Y itself, B knows
SGM = TA and SOA = TB. The adversary B is run on input of the group public key

Y :=
(
A, {Aj}`j=0, B, D, D0, D1, F = Ā, u, ΠOTS, H, H0)

)
.

If A chooses to corrupt the group manager or the opening authority during the game, B is
able to reveal SGM = TA and SOA = TB. Then, B starts interacting with A as follows.

- QkeyGM-queries: If A decides to corrupt the group manager, B hands the secret key
SGM = TA to A.

- Qb-join-queries: At any timeA can act as a corrupted group manager and introduce a
new honest user i in the group by invoking the Qb-join oracle. At each Qb-join-query,
B faithfully runs Juser on behalf of the honest user in an execution of Join protocol.

- Qpub-queries: These can be answered as in the real game, by having the simulator
return Y .

- Qsig-queries: When the adversary A requests user i ∈ U b to sign a message M , B
�rst generates a one-time key pair (VK,SK)← G(n) to compute G0 = H0(VK) ∈
Zn×2m
q . Next, B recalls the vector zi ∈ Z4m that was chosen to de�ne the syndrome

vi = F · zi at step 1 of the Join protocol as well as the identi�er idi ∈ {0, 1}`
and the short vectors (di,1,di,2, si) that were supplied by A in an earlier Qb-join-
query. It faithfully computes a signature by IBE-encrypting bin(vi) ∈ {0, 1}2m and
using (di,1,di,2, si, zi, si, idi) to compute a witness indistinguishable proof πK =
({CommK,j}tj=1,ChallK , {RespK,j}tj=1). Finally, B computes a one-time signature
sig = S(SK, (cvi , πK)) and returns the signature Σ =

(
VK, cvi , πK , sig

)
to A.

When A halts, it outputs a signature Σ? =
(
VK?, c?v, π?K , sig?

)
for some message M?,

which opens to i? ∈ U b although user i? did not sign the message M? at any time.
Since (M?,Σ?) supposedly frames user i?, the opening of Σ? must reveal the m-bit string
bin(vi?) ∈ {0, 1}m. We note that the reduction B has recollection of a short vector
zi? ∈ Z4m (of norm ‖zi?‖ < 2σ

√
m) such that vi? = F · zi? mod q which it chose when

running Juser on behalf of user i? when this user was introduced in the group. Hence,
B would be able to solve its given SIS instance if it had another short vector z′ ∈ Z4m

satisfying vi? = F · z′ mod q. To compute such a vector, B proceeds by replaying the
adversaryA su�ciently many times and applying the Improved Forking Lemma of Brickell
et al. [BPVY00].
If we parse π?K as ({Comm?

K,j}tj=1,Chall?K , {Resp?K,j}tj=1), with high probability, A must
have queried H on the input (M?,VK?, c?v, {Comm?

K,j}tj=1). Otherwise, we would only
have Chall?K = H(M?,VK?, c?v, {Comm?

K,j}tj=1) with negligible probability 3−t. It comes
that, with probability at least ε′ := ε− 3−t, the tuple (M?,VK?, c?v, {Comm?

K,j}tj=1) was
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the input of the κ?-th random oracle query for some index κ? ≤ QH .
At this point, the reduction B runs the adversary A up to 32 ·QH/(ε− 3−t) times with
the same random tape and input as in the �rst run. All queries are answered as previously
with one di�erence in the way to handle H-queries. Namely, the �rst κ? − 1 H-queries
– which are the same as in the �rst execution since A is run with the same random tape
– obtain the same answers Chall1, . . . ,Challκ?−1 as in the original run. This implies that
the κ?-th query will also involve exactly the same tuple (M?,VK?, c?v, {Comm?

K,j}tj=1)
as in the original run. From the κ?-th query forward, however, the adversary A obtains
fresh random oracle outputs Chall′κ? , . . . ,Chall′QH at each new execution. The Improved
Forking Lemma of [BPVY00] ensures that, with probability > 1/2, B obtains a 3-fork
involving the tuple (M?,VK?, c?v, {Comm?

K,j}tj=1) of the initial run and with pairwise
distinct answers Chall(1)

κ? ,Chall(2)
κ? ,Chall(3)

κ? ∈ {1, 2, 3}t. Since the forgeries of the 3-fork
all correspond to the tuple (M?,VK?, c?v, {Comm?

K,j}tj=1), they open to the same m-bit
string bin(vi?) ∈ {0, 1}m and which is uniquely determined by c?v. In turn, this implies
that the three forgeries all reveal the same bin(vi?) at the second step of Open. With
probability 1− (7/9)t it can be shown that there exists j ∈ {1, . . . , t} such that the j-th
bits of Chall(1)

κ? ,Chall(2)
κ? ,Chall(3)

κ? are (Chall(1)
κ?,j ,Chall(2)

κ?,j ,Chall(3)
κ?,j) = (1, 2, 3). From the

corresponding responses (Resp?K,j
(1),Resp?K,j

(2),Resp?K,j
(3)), B is able to extract a short

vector z′ ∈ Z4m such that vi? = F · z′ mod q.
Due to the statistical witness indistinguishability of the Stern-like proof of knowledge
which is used to generate signature, with overwhelming probability, we have z′ 6= zi? .
Indeed, from the adversary’s view, the distribution of zi? is DΛvi?

q (F),σ , which means that
it has at least n bits of min-entropy. Hence, the di�erence h = z′ − zi? ∈ Z4m is a suitably
short non-zero vector of Λ⊥q (Ā).

Theorem 7.9. In the random oracle model, the scheme provides CCA-anonymity if the
LWEn,q,χ assumption holds and if ΠOTS is a strongly unforgeable one-time signature.

Proof. We proceed as in [LNW15] and prove the result via a sequence of games which
are computationally indistinguishable. The �rst game consists of the real anonymity
experiment which is parameterized by a bit d ∈ {0, 1} that determines the challenger’s
choice in the challenge phase. The last game is the same regardless of whether d = 0 or
d = 1. It follows that, under the stated assumptions, no PPT adversary can distinguish
Expanon−0

A from Expanon−1
A with noticeable advantage.

Game
(d)

0: This is the real anonymity experiment Expanon−d
A (λ) as described in Def-

inition 5.5. More precisely, the challenger starts by running the Setup(1λ, 1Ngs)
algorithm to obtain (Y,SGM = TA ∈ Zm×m,SOA = TB ∈ Zm×m) along with
state information St. The challenger next hands the public parameters Y and the
group manager key SGM to the adversary A. On the following adversary signa-
ture opening queries on signatures Σ = (vk, cvd , πK , sig), the challenger uses the
opening authority key TA ∈ Zm×m he possesses to decrypt the GPV encryption
of the signer identity cvd ∈ Zmq × Z2m

q . At some point, the adversary A requests a
challenge by outputting a target message M? ∈ {0, 1}∗ and two user key pairs(

sec?i = z?i ∈ Z4m, cert?i ∈ (id?i ,d?i , s?i ) ∈ {0, 1}` × Z2m × Z2m)
i∈{0,1}
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which must be valid and distinct (otherwise, the challenger aborts the experiment).
This challenge query is answered by having the challenger return a signature of the
target message under the identity idd: namely, this challenge signature is computed
as Σ? = (vk?, c?vd , π

?
K , sig

?) ← Sign(Y, cert?d, sec?d,M?) for the given parameter
d of the Game. Finally, A outputs a bit d′ ∈ {0, 1} which is also the experiment’s
output.

Game
(d)

1: In this experiment, we slightly change Game(d) 0 as follows. At the outset of
the game, the challenger generates the one-time signature key pair (vk?, sk?) that
will be used in the challenge phase. During the game, if the adversaryA requests the
opening of a valid signature Σ = (vk, cvi , πK , sig) where vk = vk?, the challenger
returns a random bit and aborts. However, this event F1 would contradict the strong
unforgeability of the one-time signature ΠOTS. Indeed, before the challenge phase
vk? is independent of A’s view and the probability that vk? shows up in A’s queries
is negligible. After seeing the challenge signature Σ?, if A comes up with a valid
signature Σ = (vk, cvi , πK , sig) such that vk = vk?, then sig is a forged one-time
signature, which defeats the strong unforgeability of ΠOTS. Therefore the probability
Pr[F1] that the challenger aborts in this experiment is negligible. From here on, we
thus assume that A’s opening queries for valid signatures do not include vk?.

Game
(d)

2: In this game, we program the random oracle H0 in the following way: at the
beginning of the game, we choose a uniformly random matrix G?

0 ←↩ (Zn×2m
q ) and

set H0(vk?) = G?
0. From the adversary’s view, the distribution of G?

0 is statistically
close to the one in the real attack game, as in [GPV08]. As for other queries, for each
freshH0-queries on vk, the challenger samples small-norm matrices E0,vk ←↩ D2m

Zm,σ
and programs the oracle such that H0(vk) = B ·E0,vk mod q. The chosen matrices
E0,vk are retained for later use. Note that the values of H0(vk) are statistically close
to the uniform. For any query involving a previously queried vk, the challenger
consistently returns the previously stored images. The adversary’s view remains the
same as in Game(d) 1, analogously to the security proof of the GPV IBE [GPV08].

Game
(d)

3: Here, we will change the behavior of the opening algorithm. Namely, at each
fresh oracle query, we still store the matrices E0,vk ∈ Zm×2m

q and, at the beginning of
the game, the challenger samples an uniformly random B? ∈ Zn×mq that is later used
in place of B to answerH0-queries. To answer the adversary’s queries of the opening
of a signature Σ = (vk, cvi , πK , sig), the challenger recalls the small-norm matrices
E0,vk which were de�ned when A �rst queried H0(vk). These matrices are used
as “decryption matrices” to open Σ for the corresponding G0 = H0(vk) ∈ Zn×2m

q .
For similar reasons as in the security proof of [GPV08], the distribution of G0 is
statistically close to the uniform, which implies that Game(d) 2 and Game(d) 3 are
statistically indistinguishable.

Game
(d)

4: Instead of faithfully generating the NIZKPoK πK of Section 7.3.3, the chal-
lenger simulates the proof without using the witness (note that this is possible
since the HVZK property of the underlying proof system is preserved under parallel
repetitions). This is done by running the simulator for the underlying interactive
protocol for each j ∈ {1, . . . , t}, and then programming the random oracle H ac-
cordingly. The challenge signature Σ? = (vk?, c?vd , π

?
K , sig

?) is statistically close to
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the challenge signature of the previous game, because the proof system is statistically
zero-knowledge as stated in Lemma 4.2. Consequently, Game(d) 3 and Game(d) 4 are
indistinguishable.

Game
(d)

5: In this game, we modify the generation of the challenge ciphertext c?vd . In-
stead of using the real encryption algorithm of the GPV IBE to compute c?vd as the
encryption of v?d = F ·zd ∈ Z4n

q , we return truly random ciphertexts. In other words,
we let

c?vd =
(

r1
r2 + bin(v?d)bq/2c

)
,

where r1 ←↩ (Zmq ), r2 ←↩ (Z2m
q ) are uniformly random. The hardness of the

decisional LWEn,q,χ problem implies that c?vd in extsfGame 4 and extsfGame 5 are
computationally indistinguishable. If A can distinguish between these two games, it
can furthermore distinguish(

BT

G?
0
T

)
e0 +

(
x1
x2

)
from

(
r1
r2

)
,

which would break the decisional LWEn,q,χ assumption.

Therefore, Game(d) 4 and Game(d) 5 are computationally indistinguishable.

Game 6: We �nally make a conceptual modi�cation on the previous game. Namely we
sample uniformly random r′1 ←↩ (Zmq ), r′2 ←↩ (Z2m

q ) and assign

c?vd =
(

r′1
r′2

)
.

Clearly, the distribution of c?vi has not changed since Game(d) 5. Since Game 6 does no
longer depend on the challenger’s bit d ∈ {0, 1}, the result follows.

7.3 Subprotocols for Stern-like Argument

7.3.1 Proving the Consistency of Commitments

The argument system used in our protocol for signing a committed value in Section 7.1.3
can be summarized as follows.

Common Input: Matrices {Dk ∈ Z2n×2m
q }Nk=0; B ∈ Zn×mq ; G1 ∈ Zn×2m

q ;

vectors cm ∈ Z2n
q ; {ck,1 ∈ Zmq }Nk=1; {ck,2 ∈ Z2m

q }Nk=1; cs′,1 ∈ Zmq ; cs′,2 ∈ Z2m
q .

Prover’s Input: m = (mT
1 ‖ . . . ‖mT

N )T ∈ CorEnc(mN);
{sk ∈ [−B,B]n, ek,1 ∈ [−B,B]m; ek,2 ∈ [−B,B]2m}Nk=1; s0 ∈ [−B,B]n;
e0,1 ∈ [−B,B]m; e0,2 ∈ [−B,B]2m; s′ ∈ [−(p− 1), (p− 1)]2m

Prover’s Goal: Convince the veri�er in ZK that:
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
cm = D0 · s′ +

∑N
k=1 Dk ·mk mod q;

cs′,1 = BT · s0 + e0,1 mod q; cs′,2 = GT
1 · s0 + e0,2 + bq/pc · s′ mod q;

∀k ∈ [N ] : ck,1 = BT · sk + ek,1; ck,2 = GT
1 · sk + ek,2 + bq/2c ·mk.

(7.31)

We will show that the above argument system can be obtained from the one in Section 4.3.2.
We proceed in two steps.

Step 1: Transforming the equations in (7.31) into a uni�ed one of the form P · x = v mod q,
where ‖x‖∞ = 1 and x ∈ VALID - a “specially-designed” set.

To do so, we �rst form the following vectors and matrices:

x1 =
(
sT0 ‖e

T
0,1‖e

T
0,2‖s

T
1 ‖e

T
1,1‖e

T
1,2‖ . . . ‖s

T
N‖e

T
N,1‖e

T
N,2

)T
∈ [−B,B](n+3m)(N+1);

v =
(
cTm‖cTs′,1‖c

T
s′,2‖c

T
1,1‖c

T
1,2‖ . . . ‖c

T
N,1‖c

T
N,2

)T
∈ Z2n+3m(N+1)

q ;

P1 =
(

BT

GT
1

I3m

)
; Q2 =

(
0

b q2 cI2m

)
; Qp =

(
0

b q
p
cI2m

)

M1 =


0

P1
P1

. . .
P1

 ; M2 =


D1| . . . |DN

0
Q2

. . .
Q2

 ; M3 =


D0

Qp

0

 .

We then observe that (7.31) can be rewritten as:

M1 · x1 + M2 ·m + M3 · s′ = v ∈ ZDq , (7.32)

where D = 2n + 3m(N + 1). Now we employ the techniques from Section 4.3.2 to
convert (7.32) into the form P · x = v mod q. Speci�cally, if we let:

DecExt(n+3m)(N+1),B(x1)→ x̂1 ∈ B3
(n+3m)(N+1)δB ;

M′
1 = M1 · K̂(n+3m)(N+1),B ∈ ZD×3(n+3m)(N+1)δB

q ;

DecExt2m,p−1(s′)→ ŝ ∈ B3
2mδp−1

; M′
3 = M3 · K̂2m,p−1 ∈ ZD×6mδp−1

q ,

L = 3(n + 3m)(N + 1)δB + 2mN + 6mδp−1, and P =
[
M′

1|M2|M′
3
]
∈ ZD×Lq , and

x =
(
x̂T1 ‖mT ‖ŝT

)T , then we will obtain the desired equation:

P · x = v mod q.

Having performed the above uni�cation, we now de�ne VALID as the set of all vec-
tors t ∈ {−1, 0, 1}L of the form t =

(
tT1 ‖tT2 ‖tT3

)T, where t1 ∈ B3
(n+3m)(N+1)δB , t2 ∈

CorEnc(mN), and t3 ∈ B3
2mδp−1

. Note that x ∈ VALID.

Step 2: Specifying the set S and permutations of L elements {Tπ : π ∈ S} for which the
conditions in (4.3) hold.

• De�ne S := S3(n+3m)(N+1)δB × {0, 1}
mN × S6mδp−1 .
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• For π = (π1,b, π3) ∈ S , and for vector w =
(
wT

1 ‖wT
2 ‖wT

3
)T ∈ ZLq , where w1 ∈

Z3(n+3m)(N+1)δB
q , w2 ∈ Z2mN

q , w3 ∈ Z6mδp−1
q , we de�ne:

Tπ =
(
π1(w1)T ‖Eb(w2)T ‖π3(w3)T

)T
.

By inspection, it can be seen that the properties in (4.3) are satis�ed, as desired. As a result,
we can obtain the required argument system by running the protocol in Section 4.3.2 with
common input (P,v) and prover’s input x.

7.3.2 Proving the Possession of a Signature on a Committed Value

We now describe how to derive the protocol for proving the possession of a signature on a
committed value, that is used in Section 7.1.3.

Common Input: Matrices A, {Aj}`j=0,D ∈ Zn×mq ; {Dk ∈ Z2n×2m
q }Nk=0;B ∈ Zn×mq ;

G1 ∈ Zn×2m
q ; G0 ∈ Zn×`q ;

vectors {ck,1}Nk=1, cτ,1, cv,1, cs,1 ∈ Zmq ; {ck,2}Nk=1, cv,2, cs,2 ∈ Z2m
q ; cτ,2 ∈ Z`q;

u ∈ Znq .

Prover’s Input: v =
(

v1
v2

)
, where v1,v2 ∈ [−β, β]m and β = σ · ω(logm) - the

in�nity norm bound of signatures; τ ∈ {0, 1}`; s ∈ [−(p− 1), (p− 1)]2m;

m = (mT
1 ‖ . . . ‖mT

N )T ∈ CorEnc(mN); {sk}Nk=1, sv, s0, sτ ∈ [−B,B]n;

{ek,1}Nk=1, ev,1, e0,1, eτ,1 ∈ [−B,B]m; {ek,2}Nk=1, e0,2, ev,2 ∈ [−B,B]2m;

eτ,2 ∈ [−B,B]`.

Prover’s Goal: Convince the veri�er in ZK that:

A ·v1 + A0 ·v2 +
∑̀
i=1

Ai ·τ [i]v2 −D ·bin(D0 ·s +
N∑
k=1

Di ·mk) = u mod q, (7.33)

and that (modulo q)

∀k ∈ [N ] : ck,1 = BT · sk + ek,1; ck,2 = GT
1 · sk + ek,2 + bq/2c ·mk;

cv,1 = BT · sv + ev,1;
cv,2 = GT

1 · sv + ev,2 + b qpc · v

= GT
1 · sv + ev,2 +

(
b qpcIm

0

)
· v1 +

(
0

b qpcIm

)
· v2;

cs,1 = BT · s0 + e0,1; cs,2 = GT
1 · s0 + e0,2 + bq/pc · s;

cτ,1 = BT · sτ + eτ,1; cτ,2 = GT
0 · sτ + eτ,2 + bq/2c · τ.

(7.34)

We proceed in two steps.

Step 1: Transforming the equations in (7.33) and (7.34) into a uni�ed one of the form P · x =
c mod q, where ‖x‖∞ = 1 and x ∈ VALID - a “specially-designed” set.
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Note that, if we let y = bin(D0 ·s +
∑N
k=1 Di ·mk) ∈ {0, 1}m, then we have H2n×m · y =

D0 ·s +
∑N
k=1 Di ·mk mod q, and (7.33) can be equivalently written as:(

A
0

)
·v1 +

(
A0
0

)
·v2 +

∑̀
i=1

(
Ai

0

)
·τ [i]v2 +

(
0

D0

)
· s +

(
−D

−H2n×m

)
· y

+
(

0
D1| . . . |DN

)
·m =

(
u

02n

)
mod q.

Next, we use linear algebra to combine this equation and (7.34) into (modulo q):

F ·v1 +F0 ·v2 +
∑̀
i=1

Fi ·τ [i]v2 + M1 ·τ+M2 ·y + M3 ·m+M4 ·s+M5 ·e=c, (7.35)

where, for dimensions D = `+ 3n+ 7m+ 3mN and L0 = D + nN ,

• Matrices F,F0,F1, . . . ,F` ∈ ZD×mq , M1 ∈ ZD×`q , M2 ∈ ZD×mq , M3 ∈ ZD×2mN
q ,

M4 ∈ ZD×2m
q , M5 ∈ ZD×L0

q and vector c ∈ ZDq are built from the public input.

• Vector e =
(
sT1 ‖ . . . ‖sTN ‖sTv ‖sT0 ‖sTτ ‖eT1,1‖ . . . ‖eTN,1‖eTv,1‖eT0,1‖eTτ,1‖

‖eT1,2‖ . . . ‖eTN,2‖eT0,2‖eTv,2‖eTτ,2
)T ∈ [−B,B]L0 .

Now we further transform (7.35) using the techniques from Section 4.3.2. Speci�cally, we
form the following:

DecExtm,β(v1)→ v̂1 ∈ B3
mδβ

; DecExtm,β(v2)→ v̂2 ∈ B3
mδβ

;

F′ =
[
F · K̂m,β|F0 · K̂m,β|F1 · K̂m,β| . . . |F` · K̂m,β|0D×3mδβ`

]
∈ ZD×3mδβ(2`+2)

q ;
Ext2`(τ)→ τ̂ = (τ [1], . . . , τ [`], . . . , τ [2`])T ∈ B2

` ; M′
1 = [M1|0D×`] ∈ ZD×2`

q ;
Ext2m(y)→ ŷ ∈ B2

m; M′
2 = [M2|0D×m] ∈ ZD×2m

q ;

DecExt2m,p−1(s)→ ŝ ∈ B3
2mδp−1

; M′
4 = M4 · K̂2m,p−1 ∈ ZD×6mδp−1

q ;
DecExtL0,B(e)→ ê ∈ B3

L0δB
; M′

5 = M5 · K̂L0,B ∈ ZD×3L0δB
q .

Now, let L = 3mδβ(2`+ 2) + 2`+ 2m+ 2mN + 6mδp−1 + 3L0δB , and construct matrix
P =

[
F′ |M′

1 |M′
2 |M3 |M′

4 |M′
5
]
∈ ZD×Lq and vector

x =
(
v̂T1 ‖ v̂T2 ‖ τ [1]v̂T2 ‖ . . . ‖ τ [`]v̂T2 ‖ . . . ‖ τ [2`]v̂T2 ‖ τ̂T ‖ ŷT ‖mT ‖ ŝT ‖ êT

)T
,

then we will obtain the equation P · x = c mod q.
Before going on, we de�ne VALID as the set of w ∈ {−1, 0, 1}L of the form:

w =
(
wT

1 ‖wT
2 ‖g1wT

2 ‖ . . . ‖g2`wT
2 ‖gT ‖wT

3 ‖wT
4 ‖wT

5 ‖wT
6
)T

for some w1,w2 ∈ B3
mδβ

, g = (g1, . . . , g2`) ∈ B2`, w3 ∈ B2
m, w4 ∈ CorEnc(mN),

w5 ∈ B3
2mδp−1

, and w6 ∈ B3
L0δB

. It can be checked that the constructed vector x belongs
to this tailored set VALID.

Step 2: Specifying the set S and permutations of L elements {Tπ : π ∈ S} for which the
conditions in (4.3) hold.
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• De�ne S = S3mδβ × S3mδβ × S2` × S2m × {0, 1}mN × S6mδp−1 × S3L0δB .

• For π = (φ, ψ, γ, ρ,b, η, ξ) ∈ S and z =
(
z1

0‖z2
0‖z1‖ . . . ‖z2`‖g‖t1‖t2‖t3‖t4

)
∈

ZLq , where z1
0, z2

0, z1, . . . , z2` ∈ Z3mδβ
q , g ∈ Z2`

q , t1 ∈ Z2m
q , t2 ∈ Z2mN

q , t3 ∈
Z6mδp−1
q , and t4 ∈ Z3L0δB

q , we de�ne:

Tπ(z) =
(
φ(z1

0)T ‖ψ(z2
0)T ‖ψ(zγ(1))T ‖ . . . ‖ψ(zγ(2`))T ‖γ(g)T ‖

‖ρ(t1)T ‖Eb(t2)T ‖η(t3)T ‖ξ(t4)T
)T

as the permutation that transforms z as follows:

1. It rearranges the order of the 2` blocks z1, . . . , z2` according to γ.
2. It then permutes block z1

0 according to φ, blocks z2
0, {zi}2`i=1 according to ψ,

block g according to γ, block t1 according to ρ, block t2 according to Eb, block
t3 according to η, and block t4 according to ξ.

It can be check that (4.3) holds. Therefore, we can obtain a statistical ZKAoK for the given
relation by running the protocol in Section 4.3.2.

7.3.3 The Underlying ZKAoK for the Group Signature Scheme

The argument system upon which our group signature scheme is built can be summarized
as follows.

Common Input: Matrices A, {Aj}`j=0,B ∈ Zn×mq , D0,D1 ∈ Z2n×2m
q , F ∈ Z4n×4m

q ,
H2n×m ∈ Z2n×m

q , H4n×2m ∈ Z4n×2m
q , G0 ∈ Zn×2m

q ; vectors u ∈ Znq , c1 ∈ Zmq ,
c2∈Z2m

q .

Prover’s Input: z ∈ [−β, β]4m, y ∈ {0, 1}2m, w ∈ {0, 1}m, d1,d2 ∈ [−β, β]m, s ∈
[−β, β]2m, id = (id[1], . . . , id[`])T ∈ {0, 1}`,
e0 ∈ [−B,B]n, e1 ∈ [−B,B]m, e2 ∈ [−B,B]2m.

Prover’s Goal: Convince the veri�er in ZK that
F · z = H4n×2m · y mod q; H2n×m ·w = D0 · y + D1 · s mod q;
A · d1 + A0 · d2 +

∑`
j=1 Aj · (id[j] · d2)−D ·w = u mod q;

c1 = BT · e0 + e1 mod q; c2 = GT
0 · e0 + e2 + bq/2c · y mod q.

Using the same strategy as in Sections 7.3.1 and 7.3.2, we can derive a statistical ZKAoK for
the above relation from the protocol in Section 4.3.2. As the transformations are similar to
those in Section 7.3.2, we only sketch main points.
In the �rst step, we combine the given equations to an equation of the form:

M ·

 d1
s
z

+ M0 · d2 +
∑̀
j=1

Mj(id[j]d2) + M′ ·
(

w
y

)
+ M′′ ·

 e0
e1
e2

 = v mod q,
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where matrices M,M0, . . . ,M`,M′,M′′ and vector v are built from the input.
We then apply the techniques of Section 4.3.2 for x0 = (dT1 ‖sT ‖zT )T ∈ [−β, β]7m,
d2 ∈ [−β, β]m; x1 = (wT ‖yT )T ∈ {0, 1}3m; and x2 = (eT0 ‖eT1 ‖eT2 )T ∈ [−B,B]n+3m.
This allows us to obtain a uni�ed equation P · x = v mod q, and to de�ne the sets VALID,
S , and permutations {Tπ : π ∈ S} so that the conditions in (4.3) hold, in a similar manner
as in Section 7.3.2.
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Chapter8

La�ice-Based Group Encryption

Kiayias, Tsiounis and Yung [KTY07] presented group encryption (GE) as the encryption
analogue of group signatures [CvH91], which allow users to anonymously sign messages
on behalf of an entire group they belong to. While group signatures aim at hiding the source
of some message within a crowd administered by some group manager, group encryption
rather seeks to hide its destination within a group of legitimate receivers. In both cases,
a veri�er should be convinced that the anonymous signer/receiver indeed belongs to a
purported population. In order to keep users accountable for their actions, an opening
authority (OA) is further empowered with some information allowing it to un-anonymize
signatures/ciphertexts.
Kiayias, Tsiounis and Yung [KTY07] formalized GE schemes as a primitive allowing the
sender to generate publicly veri�able guarantees that: (1) The ciphertext is well-formed
and intended for some registered group member who will be able to decrypt; (2) the
opening authority will be able identify the receiver if necessary; (3) The plaintext satis�es
certain properties such as being a witness for some public relation or the private key that
underlies a given public key. In the model of Kiayias et al. [KTY07], the message secrecy
and anonymity properties are required to withstand active adversaries, which are granted
access to decryption oracles in all security experiments.
As a natural application, group encryption allows a �rewall to �lter all incoming encrypted
emails except those intended for some certi�ed organization member and the content
of which is additionally guaranteed to satisfy certain requirements, like the absence of
malware.
GE schemes are also motivated by natural privacy applications such as anonymous trusted
third parties, key recovery mechanisms or oblivious retriever storage systems. In optimistic
protocols, GE allows veri�ably encrypting messages to anonymous trusted third parties
which mostly remain o�-line and only come into play to sort out con�icts. In order to
protect privacy-sensitive information such as users’ citizenship, group encryption makes it
possible to hide the identity of users’ preferred trusted third parties within a set of properly
certi�ed trustees.
In cloud storage services, GE enables privacy-preserving asynchronous transfers of en-
crypted datasets. Namely, it allows users to archive encrypted datasets on remote servers
while convincing those servers that the data is indeed intended for some anonymous cer-
ti�ed client who paid a subscription to the storage provider. Moreover, a judge should
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be able to identify the archive’s recipient in case a misbehaving server is found guilty of
hosting suspicious transaction records or any other illegal content.
As pointed out by Kiayias et al. [KTY07], group encryption also implies a form of hierarchical
group signatures [TW05], where signatures can only be opened by a set of eligible trustees
operating in a very speci�c manner determiner by the signer.
The design of numerous privacy-preserving cryptographic protocols crucially relies on
zero-knowledge proofs [GMR85] to prove properties about encrypted or committed values
so as to enforce honest behavior on behalf of participants or protect the privacy of users.
In the lattice settings, e�cient zero-knowledge proofs are non-trivial to construct due to
the limited amount of algebraic structure. While natural methods of proving knowledge of
secret keys [MV03, Lyu08, KTX08, LNSW13] are available, they are only known to work for
speci�c languages. When it comes to proving circuit satis�ability, the best known methods
are designed for the LPN setting [JKPT12] or take advantage of the extra structure available
in the ring LWE setting [XXW13, BKLP15]. Hence, these methods are not known to readily
carry over to standard (i.e., non-ideal) lattices. In the standard model, the problem is even
trickier as we do not have a lattice-based counterpart of Groth-Sahai proofs [GS08] and
e�cient non-interactive proof systems are only available for speci�c problems [PV08].
The di�culty of designing e�cient zero-knowledge proofs for lattice-related languages
makes it highly non-trivial to adapt privacy-preserving cryptographic primitives in the lat-
tice setting. In spite of these technical hurdles, a recent body of work successfully designed
anonymity-enabling mechanisms like ring signatures [KTX08, AMBB+13], blind signatures
[Rü10], group signatures [GKV10, LLLS13, LLNW14, BCK+14, NZZ15, LNW15, LLNW16]
or, more recently, signature schemes with companion zero-knowledge protocols [LLM+16a].
A common feature of all these works is that the zero-knowledge layer of the proposed
protocols only deals with linear equations, where witnesses are only multiplied by public
values.
In this chapter, motivated by the design of advanced privacy-preserving protocols in the
lattice setting, we construct zero-knowledge arguments for non-linear statements among
witnesses consisting of vectors and matrices. For suitable parameters q, n,m ∈ Z, we
consider zero-knowledge argument systems whereby a prover can demonstrate knowledge
of secret matrices X ∈ Zm×nq and vectors s ∈ Znq , e ∈ Zm such that: (i) e ∈ Zm has
small norm; (ii) A public vector b ∈ Znq equals b = X · s + e mod q; (iii) The underlying
pair (X, s) satis�es additional algebraic relations: for instance, it should be possible to
prove possession of a signature on some representation of the matrix X. In particular,
our zero-knowledge argument makes it possible to prove that a given ciphertext is a well-
formed LWE-based encryption with respect to some hidden, but certi�ed public key. This
protocol comes in handy in the design of group encryption schemes [KTY07], where such
languages naturally arise. Using these advances, we thus construct, in this chapter, the �rst
construction of group encryption under lattice assumptions.

Relatedwork. Kiayias, Tsiounis and Yung (KTY) [KTY07] formalized the notion of group
encryption and provided a modular design using zero-knowledge proofs, digital signatures,
anonymous CCA-secure public-key encryption and commitment schemes. They also gave
an e�cient instantiation using Paillier’s cryptosystem [Pai99] and Camenisch-Lysyanskaya
signatures [CL02b].
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Cathalo, Libert and Yung [CLY09] designed a non-interactive system in the standard model
under non-interactive pairing-related assumptions. El Aimani and Joye [EAJ13] suggested
various e�ciency improvements with both interactive and non-interactive proofs.
Libert et al. [LYJP14] empowered the GE primitive with a re�ned traceability mechanism
akin to that of traceable signatures [KTY04]. Namely, by releasing a user-speci�c trap-
door, the opening authority can allow anyone to publicly trace ciphertexts encrypted for
this speci�c group member without a�ecting the privacy of other users. Back in 2010,
Izabachène, Pointcheval and Vergnaud [IPV10] considered the problem of eliminating
subliminal channels in a di�erent form of traceable group encryption.
As a matter of fact, all existing realizations of group encryption or similar primitives rely
on traditional number theoretic assumptions like the hardness of factoring or computing
discrete logarithms. In particular, all of them are vulnerable to quantum attacks. For
the sake of not putting all one’s eggs in the same basket, it is highly desirable to have
instantiations based on alternative, quantum-resistant foundations.

In the next sections, we �rst present the de�nitions of a group encryption schemes and the
required building block. Then, we describe the zero-knowledge protocol we use to handle
these quadratic relations before �nally describing our scheme.

8.1 Syntax and De�nitions of Group Encryption

We use the syntax and the security model of Kiayias, Tsiounis and Yung [KTY07]. The group
encryption (GE) primitive involves a sender, a veri�er, a group manager (GM) that manages
the group of receivers and an opening authority (OA) which is capable of identifying
ciphertexts’ recipients.
In the syntax of [KTY07], a GE scheme is speci�ed by the description of a relation R
as well as a tuple GE =

(
SETUP, JOIN, 〈Gr, R, sampleR〉,ENC,DEC,OPEN, 〈P,V〉

)
of

algorithms or protocols. In details, SETUP is a set of initialization procedures that all take
(implicitly or explicitly) a security parameter 1λ as input. We call them SETUPinit(1λ),
SETUPGM(par) and SETUPOA(par). The �rst one of these procedures generates a set of
public parameters par (like the KTY construction [KTY07], we rely on a common reference
string even when using interaction between provers and veri�ers). The latter two proce-
dures are used to produce key pairs (pkGM, skGM), (pkOA, skOA) for the GM and the OA.
In the following, par is incorporated in the inputs of all algorithms although we sometimes
omit to explicitly write it.
JOIN = (Juser, JGM) is an interactive protocol between the GM and the prospective user.
After the execution of JOIN, the GM stores the public key pk and its certi�cate certpk in
a public directory database. As in [KY05], we will restrict this protocol to have minimal
interaction and consist of only two messages: the �rst one is the user’s public key pk sent
by Juser to JGM and the latter’s response is a certi�cate certpk for pk that makes the user’s
group membership e�ective. We do not require the user to prove knowledge of his private
key sk or anything else about it. In our construction, valid keys will be publicly recognizable
and users will not have to prove their validity. By avoiding proofs of knowledge of private
keys, the security proof never has to rewind the adversary to extract those private keys,
which allows supporting concurrent joins as advocated by Kiayias and Yung [KY05]. If
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applications demand it, it is possible to add proofs of knowledge of private keys in a modular
way but our security proofs do not require rewinding the adversary in executions of JOIN.
Algorithm sampleR allows sampling pairs (x,w) ∈ R (made of a public value x and a
witness w) using keys (pkR, skR) produced by Gr(1λ) which samples public/secret param-
eters for the relation R. Depending on the relation, skR may be the empty string (as in the
scheme [KTY07] and ours which both involve publicly samplable relations). The testing
procedureR(x,w) uses pkR to return 1 whenever (x,w) ∈ R. To encrypt a witnessw such
that (x,w) ∈ R for some public x, the sender fetches the pair (pk, certpk) from database
and runs the randomized encryption algorithm. The latter takes as input w, a label L, the
receiver’s pair (pk, certpk) as well as public keys pkGM and pkOA. Its output is a ciphertext
Ψ ← ENC(pkGM, pkOA, pk, certpk, w, L). On input of the same elements, the certi�cate
certpk, the ciphertext Ψ and the random coins coinsΨ that were used to produce Ψ, the
non-interactive algorithm PP generates a proof πΨ that there exists a certi�ed receiver
whose public key was registered in database and who is able to decrypt Ψ and obtain a
witness w such that (x,w) ∈ R. The veri�cation algorithm V takes as input Ψ, pkGM,
pkOA, πΨ and the description ofR and outputs 0 or 1. Given Ψ, L and the receiver’s private
key sk, the output of DEC is either a witness w such that (x,w) ∈ R or a rejection symbol
⊥. Finally, OPEN takes as input a ciphertext/label pair (Ψ, L) and the OA’s secret key skOA
and returns a receiver’s public key pk.
The model of [KTY07] considers four properties termed correctness, message security,
anonymity and soundness. In the security de�nitions, stateful oracles capture the adver-
sary’s interaction with the system. In the soundness game, the KTY model requires that
pk belongs to the language of valid public keys. Here, we are implicitly assuming that the
space of valid public keys is dense (all matrices are valid keys, as is the case in our scheme).
In the upcoming de�nitions, we sometimes use the notation

〈outputA|outputB〉 ← 〈A(inputA), B(inputB)〉(common-input)

to denote the execution of a protocol between A and B obtaining their own outputs from
their respective inputs.

Correctness. The correctness property requires that the following experiment returns 1
with overwhelming probability.

Experiment Expcorrectness(λ)

param← SETUPinit(1λ); (pkR, skR)← Gr(λ); (x,w)← sampleR(pkR, skR);
(pkGM, skGM)← SETUPGM(param); (pkOA, skOA)← SETUPOA(param);
〈pk, sk, certpk|pk, certpk〉 ← 〈Juser, JGM(skGM)〉(pkGM);
Ψ← ENC(pkGM, pkOA, pk, certpk, w, L);
πΨ ← P(pkGM, pkOA, pk, cert, w, L,Ψ, coinsΨ);
if
(
(w 6= DEC(sk,Ψ, L)) ∨ (pk 6= OPEN(skOA,Ψ, L))
∨ (V(Ψ, L, πΨ, pkGM, pkOA) = 0)

)
then

return 0
else

return 1;
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Message Secrecy. The message secrecy property is de�ned by an experiment where the
adversary has access to oracles that may be stateful (and maintain a state across queries) or
stateless:

- DEC(sk): is a stateless oracle for the user decryption function DEC. When this oracle
is restricted not to decrypt a ciphertext-label pair (Ψ, L), we denote it by DEC¬〈Ψ,L〉.

- CHb
ror(λ, pk, w, L): is a real-or-random challenge oracle which is called once. It

returns (Ψ, coinsΨ) such that Ψ ← ENC(pkGM, pkOA, pk, certpk, w, L) if b = 1
whereas, if b = 0, Ψ ← ENC(pkGM, pkOA, pk, certpk, w

′, L) encrypts a random
plaintext of length O(λ) uniformly sampled in the plaintext space. In both cases,
coinsΨ denote the random coins used to generate Ψ.

- PROVEbPP,PP′(pkGM, pkOA, pk, certpk, pkR, x, w,Ψ, L, coinsΨ): is a stateful oracle
that can be invoked a polynomial number times. If b = 1, it replies by running
the real prover PP on the inputs to create an actual proof πΨ. If b = 0, the oracle
runs a simulator PP′ that uses the same inputs as PP except witness w, coinsΨ and
generates a simulated proof.

These oracles are used in an experiment where the adversary controls the GM, the OA
and all members except the honest receiver. The adversary A embodies the dishonest GM
that certi�es the honest receiver in an execution of JOIN. It is granted access to an oracle
DEC which decrypts on behalf of that receiver. In the challenge phase, it transmits a state
information aux to itself and invokes the challenge oracle for a label and a pair (x,w) ∈ R
of its choice. After the challenge phase, it can also query the PROVE oracle many times
and �nally attempts to guess the challenger’s bit b.
As pointed out in [KTY07, CLY09], designing an e�cient simulator PP′ (for executing
PROVEbPP,PP′(.) when b = 0) is part of the security proof.

De�nition 8.1. A GE scheme satis�es message security if, for any PPT adversary A, the
experiment below returns 1 with probability at most 1/2 + negl(λ).

Experiment Expsec
A (λ)

par← SETUPinit(1λ); (aux, pkGM, pkOA)← A(par);
〈pk, sk, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM);
(aux, x, w, L, pkR)← ADEC(sk,.)(aux);
if (x,w) 6∈ R then

return 0;
b←↩ {0, 1}; (Ψ, coinsΨ)← CHbror(λ, pk, w, L);

b′ ← APROVEb
PP,PP′ (pkGM,pkOA,pk,certpk,pkR,x,w,Ψ,L,coinsΨ),DEC¬〈Ψ,L〉(sk,.)(aux,Ψ);

if b = b′ then
return 1

else
return 0;
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Anonymity. In the experiment modeling the anonymity property, the adversary controls
the entire system except the opening authority and two well-behaved users. The challenger
thus introduces two honest users’ public keys pk0, pk1 in database and thus obtains certi�-
cate for both pk0, pk1 from the adversarially-controlled GM. For a pair (x,w) ∈ R of its
choice, the adversary obtains an encryption of w under pkb for some b ∈ {0, 1} chosen by
the challenger. The adversary is provided with decryption oracles w.r.t. both keys pk0, pk1.
In addition, it has the following oracles at disposal:

- CHb
anon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that is only queried once

by the adversary. It returns a pair (Ψ, coinsΨ) consisting of a ciphertext Ψ ←
ENC(pkGM, pkOA, pkb, certpkb , w, L) and the coin tosses coinsΨ that were used to
generate Ψ.

- USER(pkGM): is a stateful oracle that obtains certi�cates from the adversary by
simulating two executions of Juser to introduce two honest users in the group. It
uses a string keys where the outputs (pk0, sk0, certpk0), (pk1, sk1, certpk1) of honest
users are written as long as the adversarially-supplied certi�cates {certpkd}

1
d=0 are

valid w.r.t. pkGM (i.e., invalid certi�cates are ignored by the oracle and no entry is
introduced in keys for them).

- OPEN(skOA, .): is a stateless oracle that simulates the opening algorithm and, on
input of a GE ciphertext, returns the receiver’s public key.

The reason why the USER oracle is needed is that both honest users’ public keys pk0, pk1
must have been properly certi�ed by the adversarially-controlled GM before the challenge
phase because the adversary subsequently obtains proofs generated using (pkb, certpkb).

De�nition 8.2. A GE scheme satis�es anonymity if, for any PPT adversary A, the experi-
ment below returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment Expanon
A (λ)

par← SETUPinit(1λ); (pkOA, skOA)← SETUPOA(par);
(aux, pkGM)← A(par, pkOA); aux ← AUSER(pkGM),OPEN(skOA,.)(aux);
if keys 6= (pk0, sk0, certpk0 , pk1, sk1, certpk1)(aux) then
return 0;
(aux, x, w, L, pkR)← AOPEN(skOA,.),DEC(sk0,.),DEC(sk1,.)(aux);
if (x,w) 6∈ R then

return 0;
b←↩ {0, 1}; (Ψ, coinsΨ)← CHbanon(pkGM, pkOA, pk0, pk1, w, L);
b′ ← AP(pkGM,pkOA,pkb,certpkb

,x,w,Ψ,L,coinsΨ,

OPEN¬〈Ψ,L〉(skOA,.),DEC¬〈Ψ,L〉(sk0,.),DEC¬〈Ψ,L〉(sk1,.))(aux,Ψ);
if b = b′ then

return 1
else

return 0;

122



8.2. Building Blocks

Soundness. Here, the adversary creates the group of receivers by interacting with the
honest GM. Its goal is to produce a ciphertext Ψ and a convincing proof that Ψ is valid w.r.t.
a relation R of its choice but either: (1) The opening of Ψ reveals a receiver’s public key pk
that does not belong to any group member; (2) The output pk of OPEN is not a valid public
key (i.e., pk 6∈ PK, where PK is the language of valid public keys); (3) The ciphertext C is
not in the space Cx,L,pkR,pkGM,pkOA,pk of valid ciphertexts. This notion is formalized by a
game where the adversary is given access to a user registration oracle REG(skGM, .) that
simulates JGM. This oracle maintains a list database where registered public keys and their
certi�cates are stored.

De�nition 8.3. A GE scheme is sound if, for any PPT adversary A, the experiment below
returns 1 with negligible probability.

Experiment Expsoundness
A (λ)

par← SETUPinit(1λ); (pkOA, skOA)← SETUPOA(par);
(pkGM, skGM)← SETUPGM(par);
(pkR, x,Ψ, πΨ, L, aux)← AREG(skGM,.)(par, pkGM, pkOA, skOA);
if V(Ψ, L, πΨ, pkGM, pkOA) = 0 then

return 0;
pk← OPEN(skOA,Ψ, L);
if
(
(pk 6∈ database) ∨ (pk 6∈ PK) ∨ (Ψ 6∈ Cx,L,pkR,pkGM,pkOA,pk)

)
then

return 1
else

return 0;

The model of Kiayias et al. [KTY07] requires that pk belongs to the language of valid public
keys, so that the adversary is considered to defeat the soundness property when (Ψ, L)
opens to a key outside the language (i.e., pk 6∈ PK). In our scheme, we will assume that the
space of valid public keys is dense in that all matrices of a given dimension are valid public
keys, which have an underlying private key. We nevertheless use the same de�nition as
[KTY07] in order to emphasize that we are not relaxing the model in any way.

8.2 Building Blocks

8.2.1 The Agrawal-Boneh-Boyen IBE Scheme

8.2.1.1 Identity-Based Encryption.

An IBE scheme is a tuple of e�cient algorithms (Setup,ExtractPP,EncryptPP, DecryptPP)
such that

Setup(1λ): On security parameter λ, this algorithm outputs public parameters PP and a
master secret key msk.

ExtractPP(msk, ID): Takes as input a master secret keymsk and an identity ID and outputs
a secret key skID.

EncryptPP(ID,M): Given an identity ID and a message M , it outputs a ciphertext C .

123



8. Lattice-Based Group Encryption

Experiment ExpROR
A (λ)

ID? ← A(id, λ); (PP,msk)← Setup(1λ);

M ← AExtractPP(msk,·)
Ch (PP);

b←↩ U({0, 1});
if b = 1 then
C? ← EncryptPP(M, ID?)

else
C? ←↩ U(C);

b′ ← AExtractPP(msk,·)(guess, C?);
if b = b′ then

return 1
else

return 0

Figure 8.1 – Security experiment for the pseudo-random-ciphertext property for an IBE

DecryptPP(skID, C): Given a secret key skID and a ciphertext C , outputs either a decryp-
tion error symbol ⊥, or a message M .

Correctness requires that, for any pair (PP,msk)← Setup(1λ), any ID and any message
M , we have DecryptPP

(
ExtractPP(msk, ID),EncryptPP(ID,M)

)
= M. Our proofs rely on

the semantic security of the scheme against selective adversaries (IND-sID-CPA) but also on
the stronger property of ciphertext pseudo-randomness. Informally, this notions demands
that the adversary be unable to distinguish an encryption of a message of its choice from a
random element of the ciphertext space C. Notice that this property implies IND-sID-CPA
security.

De�nition 8.4. An IBE scheme has pseudo-random-ciphertexts if no PPT adversary A
with access to private key extraction oracle ExtractPP(msk, ·) has non-negligible advantage
AdvROR

A λ = |Pr
[
ExptROR

A = 1
]
− 1

2 | in the game described in Figure 8.1

8.2.1.2 The ABB System.

Agrawal, Boneh and Boyen described [ABB10] a compact IBE scheme in the standard model
which allows encrypting multi-bit messages.

Setup(1λ): Given a security parameter λ, choose parameters q, n, σ, α and de�ne k =
blog qc, m̄ = nk, m = 2m̄ and choose a noise distribution χ for LWE.

1. Compute (Ā,TĀ)← TrapGen(1n, 1m, q).
2. De�ne G = In ⊗ [1|2| . . . |2k−1] ∈ Zn×m̄q . Sample matrices B ←↩ U(Zn×m̄q ),

U←↩ U(Zn×mq ).
3. Let FRD : Znq → Zn×nq be the full-rank di�erence mapping from [ABB10].

Output PP =
(
Ā,B,U

)
and msk = TĀ.
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ExtractPP(msk, ID): Given msk = TĀ and an identity ID ∈ Znq , do as follows:

1. De�ne the matrix BID = B + FRD(ID) ·G ∈ Zn×m̄q .

2. Let BA,ID = [A | BID] ∈ Zn×(m+m̄)
q , use TA to compute a delegated basis TID

for the lattice Λ⊥(BA,ID).
3. Use TID to sample a small-norm matrix EID ∈ Z(m+m̄)×m satisfying the equal-

ity BA,ID ·EID = U mod q.
4. Output skID = EID ∈ Z(m+m̄)×m.

EncryptPP(ID,m): Given an identity ID and a message m ∈ {0, 1}m,

1. Compute the matrix BID = B + FRD(ID) · G ∈ Zn×m̄q . Sample vectors
s←↩ U(Znq ),x,y←↩ χm, R ←↩ Dm×m̄

Z,σ and compute z = RT · y ∈ Zm.
2. Compute 

c(1) = ĀT · s + y mod q,
c(2) = BT

ID · s + z mod q,

c(3) = UT · s + x + m ·
⌊
q

2

⌋
.

(8.1)

3. Output c =
(
c(1), c(2), c(3)) ∈ Zmq × Zm̄q × Zmq .

DecryptPP(skID, c): Given skID = EID and c =
(
c(1), c(2), c(3)) ∈ Zmq × Zm̄q × Zmq ,

compute and output m′ =
⌊(

c(3) −EID ·
[
c(1)

c(2)

])
·
⌊
q

2

⌋−1
⌉
∈ {0, 1}m.

Theorem 8.1 ([ABB10, Th. 23]). The ABB IBE scheme has pseudo-random ciphertexts if the
LWEn,q,χ assumption holds.

8.3 Warm-up: Decompositions, Extensions, Permutations

This section introduces the notations and techniques that will be used throughout the
chapter. It details Stern-like protocols that have been introduced in Section 4.3. The
techniques that will be employed for handling quadratic relations (double-bit extension
ext(·, ·), expansion expand⊗(·, ·) of matrix-vector product and the associated permuting
mechanisms) are novel contributions.

8.3.1 Decompositions

For anyB ∈ Z+, de�ne the number δB := blog2Bc+1 = dlog2(B+1)e and the sequence
B1, . . . , BδB , whereBj = bB+2j−1

2j c, ∀j ∈ [1, δB]. As observed in [LNSW13], the sequence
satis�es

∑δB
j=1Bj = B and any integer v ∈ [0, B] can be decomposed into a binary vector

idecB(v) = (v(1), . . . , v(δB))T ∈ {0, 1}δB such that
∑δB
j=1Bj · v(j) = v. We describe this

decomposition procedure in a deterministic manner:

1. v′ := v
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2. For j = 1 to δB do:

(i) If v′ ≥ Bj then v(j) := 1, else v(j) := 0;
(ii) v′ := v′ −Bj · v(j).

3. Output idecB(v) = (v(1), . . . , v(δB))T .

Next, for any positive integers m, B, we de�ne the decomposition matrix:

Hm,B :=


B1 . . . BδB

B1 . . . BδB
. . .

B1 . . . BδB

 ∈ Zm×mδB , (8.2)

and the following injective functions:

(i) vdecm,B : [0, B]m → {0, 1}mδB that maps vector v = (v1, . . . , vm)T to vector(
idecB(v1)T ‖ . . . ‖idecB(vm)T

)T . Note that Hm,B · vdecm,B(v) = v.

(ii) vdec′m,B : [−B,B]m → {−1, 0, 1}mδB that maps vector w = (w1, . . . , wm)T to
vector

(
σ(w1)·idecB(w1)T ‖ . . . ‖σ(wm)·idecB(wm)T

)T , where for each i = 1, . . . ,m:
σ(wi) = 0 if wi = 0; σ(wi) = −1 if wi < 0; σ(wi) = 1 if wi > 0. Note that
Hm,B · vdec′m,B(w) = w.

We also de�ne the following matrix decomposition procedure. For positive integers n,m, q,
de�ne the injective function mdecn,m,q : Zm×nq → {0, 1}mnδq−1 that maps matrix X =
[x1| . . . |xn] ∈ Zm×nq , where x1, . . . ,xn ∈ Zmq , to vector

mdecn,m,q(X) =
(
vdecm,q−1(x1)T ‖ . . . ‖ vdecm,q−1(xn)T

)T
= (x1,1, . . . , x1,mk, x2,1, . . . , x2,mk, . . . , xn,1, . . . , xn,mk)T

∈ {0, 1}nmδq−1 ,

where, for each (i, j) ∈ [n]×[mδq−1], xi,j ∈ {0, 1} denotes the j-th bit of the decomposition
of the i-th column of X.
Looking ahead, when proving knowledge of witnesses (X, s) ∈ Zm×nq × Znq satisfying
b = X · s + e mod q, we will have to consider terms of the form xi,j · si,t, where s =
(s1, . . . , sn)T ∈ Znq and (si,1, . . . , si,δq−1)T = idecq−1(si) for each i ∈ [n].

8.3.2 Extensions and Permutations

We now introduce the extensions and permutations which will be essential for proving
quadratic relations.

• For each c ∈ {0, 1}, denote by c the bit 1− c ∈ {0, 1}.

• For c1, c2 ∈ {0, 1}, de�ne the vector

ext(c1, c2) = (c1 · c2, c1 · c2, c1 · c2, c1 · c2)T ∈ {0, 1}4.
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• For b1, b2 ∈ {0, 1}, de�ne the permutation Tb1,b2 that transforms vector v =
(v0,0, v0,1, v1,0, v1,1)T ∈ Z4

q to vector (vb1,b2 , vb1,b2 , vb1,b2 , vb1,b2)T .
Note that, for all c1, c2, b1, b2 ∈ {0, 1}, we have the following:

z = ext(c1, c2) ⇐⇒ Tb1,b2(z) = ext(c1 ⊕ b1, c2 ⊕ b2), (8.3)

where ⊕ denotes the bit-wise addition modulo 2.
Now, for positive integers n,m, k, and for vectors

x = (x1,1, . . . , x1,mk, x2,1, . . . , x2,mk, . . . , xn,1, xn,mk)T ∈ {0, 1}nmk

and s0 = (s1,1, . . . , s1,k, s2,1, . . . , s2,k, . . . , sn,1, . . . , sn,k)T ∈ {0, 1}nk, we de�ne the vec-
tor expand⊗(x, s0) ∈ {0, 1}4nmk2 as

expand⊗(x, s0) =
(
extT (x1,1, s1,1)‖extT (x1,1, s1,2)‖ . . . ‖extT (x1,1, s1,k)‖
‖extT (x1,2, s1,1)‖extT (x1,2, s1,2)‖ . . . ‖extT (x1,2, s1,k)‖ . . .
‖extT (x1,mk, s1,1)‖extT (x1,mk, s1,2)‖ . . . ‖extT (x1,mk, s1,k)‖
‖extT (x2,1, s2,1)‖extT (x2,1, s2,2)‖ . . . ‖extT (x2,1, s2,k)‖ . . .
‖extT (x2,mk, s2,1)‖extT (x2,mk, s2,2)‖ . . . ‖extT (x2,mk, s2,k)‖ . . .
‖extT (xn,1, sn,1)‖extT (xn,1, sn,2)‖ . . . ‖extT (xn,1, sn,k)‖ . . .

‖extT (xn,mk, sn,1)‖extT (xn,mk, sn,2)‖ . . . ‖extT (xn,mk, sn,k)
)T
.

That is, expand⊗(x, s0) is obtained by applying ext to all pairs of the form (xi,j , si,t) for
(i, j, t) ∈ [n]× [mk]× [k].
Now, for b = (b1,1, . . . , b1,mk, b2,1, . . . , b2,mk, . . . , bn,1, bn,mk)T ∈ {0, 1}nmk and d =
(d1,1, . . . , d1,k, d2,1, . . . , d2,k, . . . , dn,1, . . . , dn,k)T ∈ {0, 1}nk, we de�ne the permutation
Pb,d that transforms vector

v =
(
(vT1,1,1‖ . . . ‖vT1,1,k)‖(vT1,2,1‖ . . . ‖vT1,2,k)‖ . . . ‖(vT1,mk,1‖ . . . ‖vT1,mk,k)‖
(vT2,1,1‖ . . . ‖vT2,1,k)‖(vT2,2,1‖ . . . ‖vT2,2,k)‖ . . . ‖(vT2,mk,1‖ . . . ‖vT2,mk,k)‖

(vTn,1,1‖ . . . ‖vTn,1,k)‖(vTn,2,1‖ . . . ‖vTn,2,k)‖ . . . ‖(vTn,mk,1‖ . . . ‖vTn,mk,k)
)T∈Z4nmk2

,

consisting of nmk2 blocks of length 4, to the vector Pb,d(v) of the form(
(wT

1,1,1‖ . . . ‖wT
1,1,k)‖(wT

1,2,1‖ . . . ‖wT
1,2,k)‖ . . . ‖(wT

1,mk,1‖ . . . ‖wT
1,mk,k)‖

(wT
2,1,1‖ . . . ‖wT

2,1,k)‖(wT
2,2,1‖ . . . ‖wT

2,2,k)‖ . . . ‖(wT
2,mk,1‖ . . . ‖wT

2,mk,k)‖

(wT
n,1,1‖ . . . ‖wT

n,1,k)‖(wT
n,2,1‖ . . . ‖wT

n,2,k)‖ . . . ‖(wT
n,mk,1‖ . . . ‖wT

n,mk,k)
)T
,

where for each (i, j, t) ∈ [n]× [mk]× [k]: wi,j,t = Tbi,j ,di,t(vi,j,t).

Observe that, for all b ∈ {0, 1}nmk,d ∈ {0, 1}nk, we have:

z = expand⊗(x, s0) ⇐⇒ Pb,d(z) = expand⊗(x⊕ b, s0 ⊕ d). (8.4)
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Next, we recall the notations, extensions and permutations used in previous Stern-like
protocols [LNSW13, LNW15, ELL+15, LLM+16a] for proving linear relations.
For any positive integer t, denote by St the symmetric group of all permutations of t
elements, by B2t the set of all vectors in {0, 1}2t having Hamming weight t, and by
B3t the set of all vectors in {−1, 0, 1}3t having exactly t coordinates equal to j, for each
j ∈ {−1, 0, 1}. Note that for anyφ ∈ S2t andψ ∈ S3t, we have the following equivalences:

x ∈ B2t ⇐⇒ φ(x) ∈ B2t and y ∈ B3t ⇐⇒ ψ(y) ∈ B3t. (8.5)

The following extending procedures are de�ned for any positive integers t.

• ExtendTwot : {0, 1}t → B2t. On input vector x with Hamming weight w, it outputs

x′ = (xT ‖1t−w‖0w)T .

• ExtendThreet : {−1, 0, 1}t → B3t. On input vector y containing nj coordinates
equal to j for j ∈ {−1, 0, 1}, this procedure outputs the vector

y′ = (yT ‖1t−n1‖0t−n0‖(−1)t−n−1).

We also use the following encoding and permutation to achieve �ne-grained control over
coordinates of binary witness-vectors.

• For any positive integer t, de�ne the function encodet that encodes vector x =
(x1, . . . , xt)T ∈ {0, 1}t to vector encodet(x) = (x̄1, x1, . . . , x̄t, xt)T ∈ {0, 1}2t.

• For any positive integer t and any vector c = (c1, . . . , ct)T ∈ {0, 1}t, de�ne the
permutation F (t)

c that transforms vector v = (v(0)
1 , v

(1)
1 , . . . , v

(0)
t , v

(1)
t )T ∈ Z2t into

vector F (t)
c (v) = (v(c1)

1 , v
(c̄1)
1 , . . . , v

(ct)
t , v

(c̄t)
t )T .

Note that the following equivalence holds for all t, c:

y = encodet(x) ⇐⇒ F
(t)
c (y) = encodet(x⊕ c). (8.6)

To close this warm-up section, we remark that the equivalences observed in (8.4), (8.5)
and (8.6) will play crucial roles in our zero-knowledge layer.

8.4 The Supporting Zero-Knowledge Layer

In this section, we �rst demonstrate how to prove in zero-knowledge that a given vector b
is a correct LWE evaluation, i.e., b = X · s + e mod q, where the hidden matrix X and
vector s may satisfy additional conditions.
This sub-protocol, which we believe will have other applications, is one of the major
challenges in our road towards the design of lattice-based group encryption. We then
plug this building block into the big picture as described in Section 4.3, and construct the
supporting zero-knowledge argument of knowledge (ZKAoK) for our group encryption
scheme (Section 8.5).
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8.4.1 Proving the LWE Relation With Hidden Matrices

Let n,m, q, β be positive integers where β � q, and let k = δq−1 = dlog2 qe. We identify
Zq as the set {0, 1, . . . , q − 1}. We consider a zero-knowledge argument system allowing
prover P to convince veri�er V on input b ∈ Zmq that P knows secret matrix X ∈ Zm×nq ,
and vectors s ∈ Znq , e ∈ [−β, β]m such that:

b = X · s + e mod q. (8.7)

Moreover, the argument system should be readily extended to proving that X and s satisfy
additional conditions, such as:

• The bits representing X are certi�ed by an authority, and the prover also knows that
secret signature-certi�cate.

• The (secret) hash of X is correctly encrypted to a given ciphertext.

• The LWE secret s is involved in other linear equations.

Let q1, . . . , qk ∈ Zq be the sequence of integers obtained by decomposing q − 1 using
the technique recalled in Section 8.3.1, and de�ne the row vector g = (q1, . . . , qk). Let
X = [x1| . . . |xn] ∈ Zm×nq and s = (s1, . . . , sn)T . For each index i ∈ [n], let us consider
vdecm,q−1(xi) = (xi,1, . . . , xi,mk)T ∈ {0, 1}mk. Let

vdecn,q−1(s) = (s1,1, . . . , s1,k, s2,1, . . . , s2,k, . . . , sn,1, . . . sn,k)T ∈ {0, 1}nk

and observe that si = g · idecq−1(si) = g · (si,1, . . . , si,k)T for each i ∈ [n]. We have:

X · s =
n∑
i=1

xi · si =
n∑
i=1

Hm,q−1 · vdecm,q−1(xi) · si

= Hm,q−1 ·
( n∑
i=1

(xi,1 · si, . . . , xi,mk · si)T
)

mod q.

Observe that, for each i ∈ [n] and each j ∈ [mk], we have

xi,j · si = xi,j · g · (si,1, . . . , si,k)T

= (q1, . . . , qk) · (xi,j · si,1, . . . , xi,j · si,k)T .

We now extend vector (q1, q2, . . . , qk) to g′= (0, 0, 0, q1, 0, 0, 0, q2, . . . , 0, 0, 0, qk) ∈ Z4k
q .

For all (i, j) ∈ [n]× [mk], we have:

xi,j · si = g′ · (extT (xi,j , si,1)‖ . . . ‖extT (xi,j , si,k))T .

Let us de�ne the matrices

Q0 := Imk ⊗ g′ =


g′

g′
. . .

g′

 ∈ Zmk×4mk2
q , (8.8)
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and Q̂ = [
n times︷ ︸︸ ︷

Q0| . . . |Q0] ∈ Zmk×4nmk2
q . For each i ∈ [n], de�ne

yi =
(
extT (xi,1, si,1)‖ . . . ‖extT (xi,1, si,k))T ‖extT (xi,2, si,1)‖ . . . ‖extT (xi,2, si,k)

‖ . . . ‖extT (xi,mk, si,1‖ . . . ‖extT (xi,mk, si,k)
)T ∈ {0, 1}4mk2

.

Then, for all i ∈ [n], we have: (xi,1 · si, . . . , xi,mk · si)T = Q0 · yi. Now, we note that
(yT1 ‖ . . . ‖yTn )T = expand⊗

(
mdecn,m,q(X), vdecn,q−1(s)

)
,

and
n∑
i=1

(xi,1 · si, . . . , xi,mk · si)T

=
n∑
i=1

Q0 · yi = Q̂ · expand⊗
(
mdecn,m,q(X), vdecn,q−1(s)

)
. (8.9)

Letting Q = Hm,q−1 · Q̂ ∈ Zm×4nmk2
q and left-multiplying (8.9) by Hm,q−1, we obtain the

equation:
X · s = Q · expand⊗

(
mdecn,m,q(X), vdecn,q−1(s)

)
mod q.

This means that the task of proving knowledge of (X, s, e) ∈ Zm×nq × Znq × [−β, β]m

such that b = X · s + e mod q boils down to proving knowledge of z ∈ {0, 1}4nmk2 ,
x ∈ {0, 1}nmk, s0 ∈ {0, 1}nk and a short e ∈ Zm such that

b = Q · z + Im · e mod q and z = expand⊗(x, s0).

As the knowledge of small-norm vector e can easily be proven with Stern-like protocol
(e.g., [LNSW13]), the challenging part is to prove in zero-knowledge the constraint “z =
expand⊗(x, s0)”. To this end, we will use the following permuting technique inspired
by the equivalence of equation (8.4). We sample uniformly random dx ∈ {0, 1}nmk and
ds ∈ {0, 1}nk, send x′ = x⊕ dx and s′ = s0 ⊕ ds to the veri�er, and let the latter check
that Pdx,ds(z) = expand⊗(x′, s′). This will be su�cient to convince the veri�er that the
original vector z satis�es the required constraint. The crucial point is that no additional
information about x and s0 is leaked, since these binary vectors are perfectly hidden under
the “one-time pad” dx and ds, respectively.
In the framework of Stern’s protocol, the idea of using “one-time-pad” permutations further
allows us to prove that x and s0 satisfy additional conditions, i.e., they appear in other
equations. This is done by �rst setting up an equivalence similar to (8.4) in the places
where these objects appear, and then, using the same “one-time pad” for each of them in
all appearances. We will explain in detail how this technique can be realized in the next
subsection.

8.5 Our Lattice-Based Group Encryption Scheme

To build a GE scheme using our zero-knowledge argument system, we need to choose a
speci�c key-private CCA2-secure encryption scheme. The �rst idea is to use the CCA2-
secure public-key cryptosystem which is implied by the Agrawal-Boneh-Boyen identity-
based encryption (IBE) scheme [ABB10] (which is recalled in Section 8.2.1) via the Canetti-
Halevi-Katz (CHK) transformation [CHK04]. The ABB scheme is a natural choice since it
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has pseudo-random ciphertexts (which implies the key-privacy [BBDP01] when the CHK
paradigm is applied) and provides one of the most e�cient CCA2 cryptosystem based on
the hardness of LWE in the standard model. One di�culty is that the Kiayias-Tsiounis-Yung
model [KTY07] requires that certi�ed public keys be valid public keys (i.e., which have a
matching secret key). When new group members join the system and request a certi�cate
for their public key BU ∈ Zn×m̄q , a direct use of the ABB/CHK technique would incur of
proof of existence of a GPV trapdoor [GPV08] corresponding to BU (i.e., a small-norm
matrix TBU ∈ Zm̄×m̄ s.t. B · TBU = 0n mod q). While the techniques of Peikert and
Vaikuntanathan [PV08] would provide a solution to this problem (as they allow proving
that TBU ∈ Zm̄×m̄ has full-rank), we found it simpler to rely on the trapdoor mechanism
of Micciancio and Peikert [MP12].
If we assume public parameters containing a random matrix Ā ∈ Zn×mq , each user’s
public key can consist of a matrix BU = Ā · TU ∈ Zn×m̄q , where TU ∈ Zm×m̄ is a
small-norm matrix whose calms are sampled from a discrete Gaussian distribution. Note
that, if Ā ∈ Zn×mq is uniformly distributed, then [GPV08, Lemma 5.1] ensures that, with
overwhelming probability, any matrix BU ∈ Zn×m̄q has an underlying small-norm matrix
satisfying BU = Ā ·TU mod q. This simpli�es the joining procedure by eliminating the
need for proofs of public key validity.
In the encryption algorithm, the sender computes a dual Regev encryption [GPV08] of
the witness w ∈ {0, 1}m using a matrix [Ā | BU + FRD(vk) · G] ∈ Zn×(m+m̄)

q such
that: (i) vk ∈ Znq is the veri�cation key of a one-time signature; (ii) FRD : Znq → Zn×nq

is the full-rank di�erence1 function of [ABB10]; (iii) G = In ⊗ [1|2| . . . |2k−1] ∈ Zn×m̄q is
the gadget matrix of [MP12]. Given that G has a publicly known trapdoor allowing to
sample short vectors in Λ⊥q (G), the user can use his private key TU ∈ Zm×m̄ to decrypt
by running the SampleRight algorithm of Lemma 3.7.
Having encrypted the witness w ∈ {0, 1}m by running the ABB encryption algorithm,
the sender proceeds by encrypting a hash value of BU ∈ Zn×m̄q under the public key
BOA = Ā · TOA ∈ Zn×m̄q of the opening authority. The latter hash value is obtained
as a bit-wise decomposition of F · mdecn,m,q(BT

U) ∈ Z2n
q , where F ∈ Z2n×nm̄dlog qe

q is a
random public matrix and mdecn,m,q(BT

U) ∈ {0, 1}nm̄dlog qe denotes an entry-wise binary
decomposition of the matrix BU ∈ Zn×m̄q .
By combining our new argument for quadratic relations and the extensions of Stern’s
protocol suggested in [LNW15, LLM+16a], we are able to prove that some component
of the ciphertext is of the form c = BT

U · s + e ∈ Zm̄q , for some s ∈ Znq and a small-
norm e ∈ Zm̄ while also arguing possession of a signature on the binary decomposition
mdecn,m,q(BT

U) ∈ {0, 1}nm̄dlog qe of BT
U . For this purpose, we use a variant of a signature

scheme due to Böhl et al.’s signature [BHJ+15] which was described in Chapter 7 (and of
which a description is given in Section 7.1). At the same time, the prover P can also argue
that a hash value of mdecn,m,q(BT

U) is properly encrypted under the OA’s public key using
the ABB encryption scheme.

1This means that, for any two distinct one-time veri�cation keys vk, vk′ ∈ Znq , the di�erence FRD(vk)−
FRD(vk′) ∈ Zn×nq is invertible over Zq .
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8.5.1 Description of the Scheme

Our GE scheme allows encrypting witnesses for the ISIS relation (as in De�nition 3.8)
RISIS(n,m, q, 1), which consists of pairs ((AR,uR),w) ∈ (Zn×mq ×Znq )×{0, 1}m satisfy-
ing uR = AR ·w mod q. This relation is in the same spirit as the one of Kiayias, Tsiounis
and Yung [KTY07], who consider the veri�able encryption of discrete logarithms. While
the construction of [KTY07] allow veri�ably encrypting discrete-logarithm-type secret
keys under the public key of some anonymous trusted third party, our construction makes
it possible to encrypt GPV-type secret keys [GPV08].

SETUPinit(1λ): This algorithm performs the following:

1. Choose integers n = O(λ), prime q = Õ(n4), and let k = dlog2 qe, m̄ = nk
and m = 2m̄ = 2nk. Choose a B-bounded distribution χ over Z for some
B =

√
nω(logn).

2. Choose a Gaussian parameter σ = Ω(
√
n log q logn). Let β = σω(logn) be

the upper bound of samples from DZ,σ .
3. Select integers ` = `(λ) which determines the maximum expected group size

2`, and κ = ω(log λ) (the number of protocol repetitions).
4. Select a strongly unforgeable one-time signature OT S = (Gen, Sig,Ver). We

assume that the veri�cation keys live in Znq .
5. Select public parameters COMpar for a statistically-hiding commitment scheme

like [KTX08]. This commitment will serve as a building block for the zero-
knowledge argument system used in 〈P,V〉.

6. Let FRD : Znq → Zn×nq be the full-rank di�erence mapping from [ABB10].
7. Pick a random matrix F← Z2n×nm̄k

q , which will be used to hash users’ public
keys from Zn×m̄q to Znq .

8. Let G ∈ Zn×m̄q be the gadget matrix G = In ⊗
[
1 2 . . . 2k−1

]
of [MP12].

Pick matrices Ā,U←↩ U(Zn×mq ) and V←↩ U(Zn×mq ). Looking ahead, U will
be used to encrypt for the receiver while V will be used to encrypt the user’s
public key under the OA’s public key. As for Ā, it will be used in two instances
of the ABB encryption scheme [ABB10].

Output

par =
{
λ, n, q, k,m,B, χ, σ, β, `, κ,OT S,COMpar,FRD, Ā,G,F,U,V

}
.

〈Gr, sampleR〉: Algorithm Gr(1λ, 1n, 1m) proceeds by sampling a random matrix AR ←↩
U(Zn×mq ) and outputting (pkR, skR) = (AR, ε). On input of a public key pkR =
AR ∈ Zn×mq for the relation RISIS, algorithm sampleR picks w←↩ U({0, 1}m) and
outputs a pair ((AR,uR),w), where uR = AR ·w ∈ Znq .

SETUPGM(par): The GM generates (skGM, pkGM) ← Keygen(1λ, q, n,m, `, σ) as a key
pair for the SIS-based signature scheme of [LLM+16a] (as recalled in Section 7.1).
This key pair consists of skGM := TA and

pkGM :=
(
A,A0, . . . ,A` ∈ Zn×mq , D0,D1 ∈ Zn×mq ,D ∈ Zn×m̄q ,u ∈ Znq

)
. (8.10)
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SETUPOA(par): The OA samples a small-norm matrix TOA ← Dm̄
Zm,σ in Zm×m̄ to obtain

a statistically uniform BOA = Ā · TOA ∈ Zn×m̄q . The OA’s key pair consists of
(skOA, pkOA) = (TOA,BOA).

JOIN: The prospective user U and the GM interact in the following protocol.

1. U �rst samples TU ← Dm̄
Zm,σ in Zm×m̄ to compute a statistically uniform

matrix BU = Ā · TU ∈ Zn×m̄q . The prospective user de�nes his key pair as
(pkU, skU) = (BU,TU) and sends pkU = BU to the GM.

2. Upon receiving a public key pkU = BU ∈ Zn×m̄q from the user, the GM certi�es
pkU via the following steps:

a. Compute hU = F · mdecn,m̄,q(BT
U) ∈ Z2n

q as a hash value of the public
key pkU = BU ∈ Zn×m̄q .

b. Use the trapdoor skGM = TA to generate a signature

certU =
(
τ,d, r

)
∈ {0, 1}` × [−β, β]2m × [−β, β]m, (8.11)

satisfying

[
A |

∑̀
j=1

τ [j]Aj
]
· d

= u + D · vdecn,q−1(D0 · r + D1 · vdecn,q−1(hU)) mod q, (8.12)

where τ = τ [1] . . . τ [`] ∈ {0, 1}`, as in the scheme of Section 7.1.

U veri�es that certU is tuple of the form (8.11) satisfying (8.12) and returns ⊥
if it is not the case. The GM stores (pkU, certU) in the user database database
and returns the certi�cate certU to the new user U.

ENC(pkGM, pkOA, pkU, certU,w, L): To encrypt a witness w ∈ {0, 1}m for ((AR,uR),w)
in relation RISIS(n,m, q, 1) (i.e., AR ·w = uR mod q), parse pkGM as in (8.10), pkOA
as BOA ∈ Zn×m̄q , pkU as BU ∈ Zn×m̄q and certU as in (8.11).

1. Generate a one-time key-pair (sk, vk)← Gen(1λ), where vk ∈ Znq .
2. Compute a full-rank-di�erence hash Hvk = FRD(vk) ∈ Zn×nq of the one-time

veri�cation key vk ∈ Znq .
3. Encrypt the witness w ∈ {0, 1}m under U’s public key BU ∈ Zn×m̄q using the

tag vk by taking the following steps:

a. Sample srec ← U(Znq ), Rrec ← Dm×m̄
Z,σ and xrec,yrec ← χm. Compute

zrec = RT
rec · yrec ∈ Zm̄.

b. Compute
c(1)

rec = ĀT · srec + yrec mod q
c(2)

rec = (BU + Hvk ·G)T · srec + zrec mod q;
c(3)

rec = UT · srec + xrec + w ·
⌊
q
2

⌋
,

(8.13)
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and let crec =
(
c(1)

rec, c(2)
rec, c(3)

rec
)
∈ Zmq × Zm̄q × Zmq , which forms an ABB

ciphertext [ABB10] for the tag vk ∈ Znq .

4. Encrypt the decomposition vdecn,q−1(hU) ∈ {0, 1}m of the hashed pkU under
the OA’s public key BOA ∈ Zn×m̄q w.r.t. the tag vk ∈ Znq . Namely, conduct the
following steps:

a. Sample soa ← U(Znq ), Roa ← Dm×m̄
Z,σ , xoa ← χm,yoa ← χm. Set zoa =

RT
oa · yoa ∈ Zm̄.

b. Compute
c(1)

oa = ĀT · soa + yoa mod q;
c(2)

oa = (BOA + Hvk ·G)T · soa + zoa mod q;
c(3)

oa = VT · soa + xoa + vdecn,q−1(hU) ·
⌊
q
2

⌋
,

(8.14)

and let coa =
(
c(1)

oa , c(2)
oa , c(3)

oa
)
∈ Zmq × Zm̄q × Zmq .

5. Compute a one-time signature Σ = Sig(sk, (crec, coa, L)).

Output the ciphertext

Ψ = (vk, crec, coa,Σ). (8.15)

and the state information coinsΨ =
(
srec,Rrec,xrec,yrec, soa,Roa,xoa,yoa

)
.

DEC(skU,Ψ, L) : The decryption algorithm proceeds as follows:

1. If Ver
(
vk,Σ, (crec, coa, L)

)
= 0, return ⊥. Otherwise, parse the secret key

skU as TU ∈ Zm×m̄ and the ciphertext Ψ as in (8.15). De�ne the matrix
Bvk = BU + FRD(vk) ·G ∈ Zn×m̄q .

2. Decrypt crec using a decryption key for the tag vk ∈ Zn. Namely,

a. De�ne BU,vk = [Ā|Bvk] = [Ā|Ā·TU+FRD(vk)·G] ∈ Zn×(m+m̄)
q . Using

TU and the publicly known trapdoor TG of G, compute a small-norm
matrix Evk ∈ Z(m+m̄)×m such that BU,vk · Evk = U mod q by running
the SampleRight algorithm of Lemma 3.7.

b. Compute

w =
⌊(

c(3)
rec −ET

vk ·
[
c(1)

rec

c(2)
rec

])
/

⌊
q

2

⌋⌉
∈ Zm

and return the obtained w ∈ {0, 1}m.

OPEN(skOA,Ψ, L) : The opening algorithm proceeds as follows:

1. If Ver
(
vk,Σ, (crec, coa), L

)
= 0, then return ⊥. Otherwise, parse skOA as

TOA ∈ Zm×m̄ and the ciphertext Ψ as in (8.15).
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2. Decrypt coa using a decryption key for the tag vk ∈ Znq in the same way as in
the decryption algorithm. That is, do the following:

a. De�ne the matrix BOA,vk = [Ā|BOA + FRD(vk) ·G] ∈ Zn×(m+m̄)
q . Use

TOA to compute a small-norm EOA,vk ∈ Z(m+m̄)×m satisfying BOA,vk ·
EOA,vk = V mod q.

b. Compute

h =
⌊(

c(3)
oa −ET

OA,vk ·
[
c(1)

oa

c(2)
oa

])
/

⌊
q

2

⌋⌉
∈ {0, 1}m

and h′U = H2n,q−1 · h ∈ Z2n
q .

3. Look up database to �nd a public key pkU = BU ∈ Zn×m̄q that hashes to h′U ∈
Z2n
q (i.e., such that h′U = F ·mdecn,m̄,q(BT

U)). If more than one such key exists,
return⊥. If only one key pkU = BU ∈ Zn×m̄q satis�es h′U = F·mdecn,m̄,q(BT

U),
return that key pkU. In any other situation, return ⊥.

〈P,V〉: The common input consists of par and pkGM as speci�ed above, and (AR,uR) in
Zn×mq × Znq , pkOA = BOA ∈ Zn×m̄q , and a ciphertext Ψ as in (8.15). Both parties
compute BOA,vk = [Ā|BOA + FRD(vk) ·G] as speci�ed above. The prover’s secret
input consists of a witness w ∈ {0, 1}m, pkU = BU, certU = (τ,d, r) ∈ {0, 1}` ×
Z2m×Zm, and the random coins coinsΨ =

(
srec,Rrec,xrec,yrec, soa,Roa,xoa,yoa

)
used to generate Ψ.

The prover’s goal is to convince the veri�er in zero-knowledge that his secret input
satis�es the following:

1. AR ·w = uR mod q.
2. hM = F ·mdecn,m,q(M) mod q.
3. Conditions (8.11) and (8.12) hold.
4. Vectors xrec,yrec,xoa,yoa have in�nity norms bounded by B, and vectors

zrec, zoa have in�nity norms bounded by βmB.
5. Equations in (8.13) and (8.14) hold.

To this end P conducts the following steps.

1. Decompose the matrix BU ∈ Zn×m̄q into bU = mdecn,m̄,q(BT
U) ∈ {0, 1}nm̄k

and the vectors srec, soa ∈ Znq into s0,rec = vdecn,q−1(srec) ∈ {0, 1}nk and
s0,oa = vdecn,q−1(soa) ∈ {0, 1}nk. Combine the �rst two binary vectors into
zΨ = expand⊗(bU, s0,rec) ∈ {0, 1}4nm̄k

2 . De�ne

Q = Hm̄,q−1 · [
n times︷ ︸︸ ︷

Q0| . . . |Q0] ∈ Zm̄×4nm̄k2
q ,

where Q0 = Im̄k ⊗ g′ ∈ Zm̄k×4m̄k2
q is the matrix de�ned as in (8.8).

135



8. Lattice-Based Group Encryption

2. Generate a zero-knowledge argument of knowledge of

τ ∈ {0, 1}`, d = [dT1 |dT2 ]T ∈ [−β, β]2m, r ∈ [−β, β]m
tU ∈ {0, 1}m, wU ∈ {0, 1}m̄
bU ∈ {0, 1}nm̄k, s0,rec ∈ {0, 1}nk, zΨ = expand⊗(bU, s0,rec)
xrec, yrec ∈ [−B,B]m, zrec ∈ [−βmB, βmB]m̄, w ∈ {0, 1}m,
s0,oa ∈ {0, 1}nk, xoa, yoa ∈ [−B,B]m, zoa ∈ [−βmB, βmB]m̄

such that the following system of 10 equations holds:

u = [A|A0|A1| . . . |A`] ·



d1

d2

τ [1] · d2
...

τ [`] · d2


+ (−D) ·wU mod q,

0 = Hn,q−1 ·wU + (−D0) · r + (−D1) · tU mod q,

0 = H2n,q−1 · tU + (−F) · bU mod q,

c(1)
rec = (ĀT ·Hn,q−1) · s0,rec + Im · yrec mod q,

c(2)
rec = Q · zΨ + (GT ·HT

vk ·Hn,q−1) · s0,rec + Im̄ · zrec mod q,

c(3)
rec = (UT ·Hn,q−1) · s0,rec + Im · xrec + (b q2c · Im) ·w mod q,

uR = AR ·w mod q,

c(1)
oa = (ĀT ·Hn,q−1) · s0,oa + Im · yoa mod q,

c(2)
oa = [(BOA + Hvk ·G)T ·Hn,q−1] · s0,oa + Im̄ · zoa mod q,

c(3)
oa = (VT ·Hn,q−1) · s0,oa + Im · xoa + (b q2c · Im) · tU mod q.

(8.16)

Let w1 = bU, w2 = s0,rec, w3 = zΨ = expand⊗(bU, s0,rec), w4 = wU, w5 = tU,
w6 = s0,oa, w7 = w, w8 = xrec, w9 = yrec, w10 = zrec, w11 = r, w12 = xoa, w13 = yoa,
w14 = zoa and

w15 =
(
dT1 ‖dT2 ‖ τ [1] · dT2 ‖ . . . ‖ τ [`] · dT2

)T
.

Then system (8.16) can be rewritten as:

v1 = M1,1 ·w1 + M1,2 ·w2 + . . .+ M1,15 ·w15 mod q,
v2 = M2,1 ·w1 + M2,2 ·w2 + . . .+ M2,15 ·w15 mod q,

...
v10 = M10,1 ·w1 + M10,2 ·w2 + . . .+ M10,15 ·w15 mod q,

(8.17)

where {Mi,j}(i,j)∈[10]×[15], {vi}i∈[10] are public matrices and vectors (which are possibly
zero).
The argument system is obtained by invoking the protocol from Section 4.3. The protocol
is repeated κ times to make the soundness error negligibly small.
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8.5.2 E�ciency and Correctness

E�ciency. It can be seen that the given group encryption scheme can be implemented
in polynomial time. We now will evaluate the bit-sizes of keys and ciphertext, as well as
the communication cost of the protocol 〈P,V〉.

• The public key of GM, as in (8.10), has bit-size O(`n2 log2 q) = Õ(`λ2).

• The public keys of OA and each user both have bit-size nm̄dlog2 qe = Õ(λ2).

• The secret key of each party in the scheme is a trapdoor of bit-size Õ(λ2). The user’s
certi�cate certU has bit-size Õ(λ).

• The ciphertext Ψ consists of vk ∈ Znq , two ABB ciphertexts of total size 2(2m +
m̄)dlog2 qe and a one-time signature Σ. Thus, its bit-size is Õ(λ) +

∣∣Σ∣∣.
• The communication cost of the protocol 〈P,V〉 is largely dominated by the bit-

size of the witness zΨ = expand⊗(bU, s0,rec) ∈ {0, 1}4nm̄k
2 . The total cost is

κ · O(n2 log4 q) = Õ(λ2) bits.

Correctness. The given group encryption scheme is correct with overwhelming prob-
ability. We �rst remark that the scheme parameters are set up so that the two instances
of the ABB identity-based encryption [ABB10] are correct. Indeed, during the decryption
procedure of DEC(skU,Ψ, L), we have:

c(3)
rec −ET

vk ·
[
c(1)

rec

c(2)
rec

]
= xrec −ET

vk ·
[
yrec
zrec

]
+ w ·

⌊
q

2

⌋
.

Note that ‖xrec‖∞ and ‖yrec‖∞ are bounded by B, and ‖zrec‖∞ = ‖RT
rec · yrec‖∞ ≤

βmB = Õ(n2). Furthermore, the entries of the discrete Gaussian matrix ET
vk are bounded

by Õ(
√
n). Hence, the error term xrec − ET

vk ·
[
yrec
zrec

]
is bounded by Õ(n3.5) which is

much smaller than q/4 = Õ(n4). As a result, the decryption algorithm returns w with
overwhelming probability. The correctness of algorithm OPEN(skOA,Ψ, L) also follows
from a similar argument.
Finally, we note that if a certi�ed group user honestly follows all the prescribed algorithms,
then he should be able to compute valid witness-vectors to be used in the protocol 〈P,V〉,
and he should be accepted by the veri�er, thanks to the perfect completeness of the argument
system in Section 4.3.

8.5.3 Security

Our scheme is proven secure under the SIS and LWE assumptions using classical reduction
techniques. The security results are explicited in the following theorems.

8.5.3.1 Anonymity

Theorem 8.2. The scheme provides anonymity if the LWE assumption holds and if OT S is
a strongly unforgeable one-time signature.
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Proof. We consider a sequence of games where the �rst game is the real experiment of
de�nition 8.2 while, in the �nal game, the adversary A is essentially an adversary against
the anonymity of the Agrawal-Boneh-Boyen IBE scheme [ABB10]. In Game i, we call Wi

the event that the challenger outputs 1.

Game 1: The challenger B generates public parameters par, which include matrices
Ā,U,V ∈ Zn×mq and F ∈ Z2n×nm̄k

q . The opening authority’s public key pkOA = BOA ∈
Zn×m̄q is given toAwho generates a group manager’s public key pkGM of its own. By invok-
ing the USER oracle,A registers two distinct receivers’ public keys pkU,0 = BU,0 ∈ Zn×m̄q ,
pkU,1 = BU,1 ∈ Zn×m̄q chosen by the challenger. It also makes a number of opening queries
and decryption queries, which the challenger handles using skOA = TOA and skU,0 = TU,0,
skU,1 = TU,1, respectively. After a while, the adversary outputs ((AR,uR),w, L) such
that uR = AR · w mod q, with AR ∈ Zn×mp , uR ∈ Znq and w ∈ {0, 1}m. In return, A
obtains, as a challenge, a group encryption Ψ? = (vk?, c?rec, c?oa,Σ?). of the witness w
under pkU,b = BU,b, for some random bit b← U({0, 1}) of the challenger’s choice. Then,
the adversary obtains proofs π?Ψ? for Ψ? and makes further opening and decryption queries
under the natural restrictions of De�nition 8.2. When the adversary A halts, it outputs a
bit b′ ∈ {0, 1} and the challenger outputs 1 if and only if b′ = b.

Game 2: This game is like Game 1 except the challenger aborts in the event that the
adversary A queries the opening of a ciphertext Ψ = (vk, crec, coa,Σ) such that vk = vk?
and σ is valid (we assume w.l.o.g. that vk? is generated ahead of time). If this event occurs,
the adversary A is necessarily able to break the strong unforgeability of OT S (note that,
if the query occurs before the challenge phase, it means that A has forged a signature
without seeing a signature at all). There thus exist a one-time signature forger B such that
|Pr[W2]−Pr[W1]| ≤ Advots

B (λ), which means that Game 2 is identical to Game 1 so long
as OT S is a strongly unforgeable one-time signature.

Game 3: In this game, we modify the generation of proofs π?Ψ? : instead of generating proofs
using the real witnesses, we appeal to the zero-knowledge simulator of the argument system
of Section 4.3.2 at each invocation ofP after the challenge phase. Note that, since we assume
public parameters generated by a trusted party, the statistical ZK simulator is allowed to use
a trapdoor embedded in par to generate simulated proofs (using, e.g., Damgård’s technique
[Dam00]). The statistical zero-knowledge property of the argument system ensures thatA’s
view remains statistically close to that of Game 2: we have |Pr[W3]−Pr[W2]| ≤ negl(λ).

Game 4: We now modify the generation of the challenge ciphertext Ψ?. In this game, the
challenger computes the ciphertext c?oa as an ABB encryption under the identity vk? of
a random m-bit string instead of a decomposition vdecn,q−1(hU,b) ∈ {0, 1}m of hU,b =
F ·mdecn,m̄,q(BT

U,b) ∈ Z2n
q . Since the random encryption coins s?oa,R?

oa,x?oa,y?oa are no
longer used to generate proofs πΨ? , we can show that any noticeable change in A’s output
distribution implies a selective adversary against the ABB IBE, as established by Lemma
8.3, which would contradict the LWE assumption. The result of Agrawal et al. [ABB10,
Theorem 23] (recalled in Theorem 8.1) indeed implies |Pr[W4]−Pr[W3]| ≤ AdvLWE(λ).

In Game 4, we can show that, if the adversaryA has noticeable advantage in the anonymity
game, we can break the anonymity of the ABB IBE system, as shown in the proof of Lemma
8.4. From the result of [ABB10, Theorem 23], we deduce that |Pr[W4]−1/2| ≤ AdvLWE(λ),
which implies the announced result.
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Lemma 8.3. Any PPT adversary such thatPr[W4] is noticeably di�erent fromPr[W3] implies
a selective adversary against the ABB IBE scheme.

Proof. Let A be a PPT adversary for which |Pr[W4]− Pr[W3]| = ε is non-negligible. We
use A to build a selective adversary against the ABB IBE system.
At the outset of the game, the reduction B generates a one-time signature key pair (vk?, sk?)
and declares vk? as the target identity to its challenger for the selective security game, and
obtains in return the IBE public parameters

PP =
(
Ā,B,V

)
∈ Zn×mq × Zn×m̄q × Zn×mq .

Next, the reduction runs the appropriate steps of the actual SETUPinit algorithm to obtain
COMpar, F ∈ Z2n×nm̄k

q and U ∈ Zn×mq . Namely, B samples F ←↩ U(Z2m×nm̄k
q ) and

U←↩ U(Zn×mq ) like in the SETUPinit algorithm and sends

par =
{
λ, n, q, k,m,B, χ, σ, β, `, κ,OT S,COMpar,FRD, Ā,G,F,U,V

}
along with pkOA = B ∈ Zn×m̄q to the adversary A.
In return, the adversary A chooses pkGM, which allows it to enroll two users for whom B
faithfully generates (pkU,i, skU,i)i∈{0,1}. Knowing both private keys {skU,i = TU,i}i∈{0,1},
B is able to perfectly simulate the DEC(·) oracle.

Open Queries. To answer opening queries for ciphertexts Ψ = (vk, crec, cOA,Σ) and
labels L, B �rst checks that Ver(vk,Σ, (crec, cOA, L)) = 1. If this test fails, B returns ⊥.
Otherwise, B queries its IBE challenger to obtain a IBE private key TOA,vk ∈ Z(m+m̄)×m

for identity vk 6= vk?. The IBE challenger’s response allows B to decrypt cOA and �gure
out the identity of the receiver by looking up database. The result of the opening operation
is then returned to A.

After a number of queries, A decides to move to the challenge phase and sends a challenge
query

(
(AR,uR),w?, L?

)
such that uR = AR · w? mod q. The reduction handles this

query by requesting a challenge ciphertext for the IBE security game with the messages
m0 = vdecn,q−1(hU,b), for some random bit b ←↩ U({0, 1}) and m1 ←↩ U({0, 1}m). In
return, B obtains a challenge ciphertext c?OA under identity vk?, which is embedded in
A’s challenge ciphertext. Namely, Ψ? = (vk?, c?rec, c?OA,Σ?) is obtained by computing
c?rec as an ABB encryption of the witness w? using the matrix BU,b ∈ Zn×m̄q as in (8.13)
and Σ? = Sign(sk?, (c?rec, c?OA, L

?)). All queries to the proving oracle P are replied by
returning a simulated ZK argument as in Game 3.
When A halts, it outputs a bit b′ ∈ {0, 1}. If b = b′, B returns the bit 0 as a guess that
the selective security challenger encrypted m0 = vdecn,q−1(hU,b). Otherwise, B outputs 1
meaning that the IBE challenger chose to encrypt m1, which was chosen independently of
the value of b ∈ {0, 1}. If we call Random (resp. Real) the event that the IBE challenger
chooses to encrypt m1 (resp. m0), we can assess the advantage of the reduction B as

AdvsID-CPA
B (λ) =

∣∣Pr[b = b′ | Random]− Pr[b = b′ | Real]
∣∣

= |Pr[W4]− Pr[W3]|
= ε,

which proves the result.
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Lemma 8.4. In Game 4, the adversary’s advantage is negligible assuming that the ABB IBE
has pseudo-random ciphertexts.

Proof. Let us assume the existence of a PPT adversaryAwith non negligible advantage ε in
Game 4. FromA, we construct a selective adversary B that can distinguish ABB ciphertexts
from random elements of the ciphertext space with non-negligible advantage in the game
described in De�nition 8.4.
First, B generates (sk?, vk?) via the key generation algorithm of the one-time-signature
OTS and hands vk? to its pseudo-randomness challenger. In return, B receives

PP =
(
Ā,B,U

)
∈ Zn×mq × Zn×m̄q × Zn×mq

from its real-or-random (ROR) challenger.
Our reduction uses PP to compute public parameters for our GE scheme. To this end,
it samples F ←↩ U(Z2n×nm̄k

q ), V ←↩ U(Zn×mq ) as in the real SETUPinit algorithm. The
reduction B also computes BOA = Ā ·TOA mod q, where the small-norm matrix TOA is
sampled from Dm×m̄

Z,σ , and sends A the parameters

param =
{
λ, n, q, k,m, σ, β, `, κ,OT S,COMpar,FRD, Ā,G,F,U,V

}
,

where Ā is taken from PP, along with pkOA = BOA. The rest of the keys are generated as
in Game 4.
The reduction B then tosses a coin b ←↩ U({0, 1}). When the adversary A triggers
an execution of the join protocol, B generates the public keys (pki)i∈{0,1} by de�ning
pkU,b = B using the matrix B ∈ Zn×m̄q supplied by the ROR challenger as part of PP and
generates (pkU,1−b, sk1−b) = (BU,1−b = Ā ·T1−b,T1−b) for a secret key T1−b ←↩ Dm̄

Zm,σ
of its own. The two public keys (pkU,i)i∈{0,1} are then certi�ed by the adversarially-
controlled GM. Notice that in the adversary’s view, both public keys pkU,b and pkU,1−b are
identically distributed.
To answer decryption queries (Ψ = (vk, crec, cOA,Σ), L), for any query pertaining to
pkU,b, the reduction invokes its ROR challenger to obtain an IBE private key for the identity
vk 6= vk? and uses the result to decrypt crec. For any decryption query involving pkU,1−b,
the reduction can faithfully run the actual decryption algorithm using its trapdoor T1−b.
Open queries are answered using TOA as in the real Open algorithm.
When the adversary A decides to do so, it queries a challenge for a triple ((AR,uR),w, L)
of its choice subject to the constraint uR = AR ·w. At this point, B queries a challenge to
its own challenger for the message w and obtains a ciphertext c, which is embedded in
Ψ? = (vk?, c, c?OA,Σ?) while c?OA and Σ? are generated as in Game 3 (in particular, c?OA
encrypts a random string instead of a hash value of pkU,b). After the challenge phase, all
queries to the proving oracle P are replied by returning a simulated ZK argument as in
Game 3.
When A ends, it outputs a bit b′ ∈ {0, 1}. If b′ = b, the reduction outputs Real. Otherwise,
it outputs Random. Indeed, if the ROR challenger is playing the real game, we are exactly
in Game 4: we have Pr[b′ = b|Real] = Pr[W4]. Otherwise, the challenge ciphertext Ψ?

is completely independent of b ∈ {0, 1} so that we can only have b′ = b with probability
Pr[b′ = b|Random] = 1/2. It follows that AdvROR

B (λ) ≥ |Pr[W4]− 1/2|.
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8.5.3.2 Message Secrecy

Theorem 8.5. The scheme provides message secrecy assuming that the LWE assumption
holds and that OT S is a strongly unforgeable one-time signature.

Proof. We proceed via a sequence of games. The �rst one corresponds to the experiment of
De�nition 8.1 when the challenger’s bit b is 1 and the adversary obtains an actual encryption
of the witness w ∈ {0, 1}m and real proofs at each invocation of the PROVE(.) oracle. In
the last game, the adversary A is given an encryption of some random plaintext whereas
PROVE(.) returns simulated zero-knowledge arguments which are generated a simulator
P ′ that does not use any witness. In Game i, Wi stands for the event that the adversary A
outputs the bit b′ = 1.

Game 1: This is the real game, where the challenger feeds A with public parameters par
containing Ā,U,V ∈ Zn×mq and F ∈ Z2n×nm̄k

q . The adversary produces public keys
pkOA = BOA ∈ Zn×m̄q and pkGM = (A, {Ai}`i=0,D0,D1,D,u) on behalf of the opening
authority and the group manager which are both under its control. The challenger and A
run an execution of the JOIN protocol which allowsA to register and certify the public key
pkU = BU ∈ Zn×m̄q of some honest receiver chosen by the challenger. Then, the adversary
A makes a polynomial number of decryption queries which the challenger faithfully
handles using the private key skU = TU ∈ Zm×m̄ for which BU ·TU = 0n×m̄. At some
point, the adversary A outputs a triple ((AR,uR),w, L) such that uR = AR ·w mod q,
with AR ∈ Zn×mp , uR ∈ Znq and w ∈ {0, 1}m. At this point, the challenger generates a
challenge ciphertext Ψ? = (vk?, c?rec, c?oa,Σ?) consisting of a group encryption of the real
witness w under pkU = BU. Then, the adversary obtains a polynomial number of proofs
π?Ψ? related to the challenge ciphertext Ψ? and is granted further access to the decryption
oracle under the obvious restrictions. When A halts, it outputs a bit b′ ∈ {0, 1}.

Game 2: In this game, we modify the DEC(.) oracle and have the challenger reject any
ciphertext of the form Ψ = (vk, crec, coa,Σ) such that vk = vk? (note that vk? can be
generated at the outset of the game w.l.o.g.). Clearly Game 2 is identical to Game 1 until the
event that the challenger rejects a ciphertext that would not have been rejected in Game 1.
This can only occur ifA is able to break the strong unforgeability of the one-time signature
OT S . As in the proof of Theorem 8.2, we have |Pr[W2]− Pr[W1]| ≤ Advots(λ), which
is negligible if OT S is strongly unforgeable.

Game 3: We now modify the generation of proofs π?Ψ? . Instead of generating them
using the witnesses used in the generation of Ψ?, we rely on the zero-knowledge sim-
ulator of the argument system of Section 4.3.2 at each invocation of PROVEbP,P ′ after
the challenge phase (note that, since we assume trusted public parameters, the simula-
tor can use techniques [Dam00] to achieve statistically perfect simulation without in-
creasing the number of rounds). The statistical ZK property of the argument system
ensures that this change will remain unnoticed, even in the view of an all powerful ad-
versary: we have |Pr[W3] − Pr[W2]| ∈ negl(λ). From now onwards, the random coins
coins?Ψ =

(
s?rec,R?

rec,x?rec,y?rec, s?oa,R?
oa,x?oa,y?oa

)
are no longer used by the PROVE ora-

cle.

Game 4: In the generation of Ψ?, we set c?rec as an encryption of a random element
of Zmp . Since the random encryption coins s?rec,R?

rec,x?rec,y?rec are not used in Game 3,
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Lemma 8.6 gives a simple reduction showing that any signi�cant change in A’s behavior
would imply a selective adversary against the ABB identity-based encryption scheme. The
result of [ABB10] tells us that, under the LWE assumption, Game 4 is computationally
indistinguishable from Game 3 in the adversary’s view: we have |Pr[W4] − Pr[W3]| ≤
AdvLWE(λ).

Game 5: We bring a last modi�cation to the DEC(.) oracle and now refrain from applying
the rejection rule of Game 2. If OT S is strongly unforgeable, the distance |Pr[W5] −
Pr[W4]| ≤ Advots(λ) must be negligible.

In the last game, the oracle PROVE(.) does not need to know any witness. It thus mirrors
the experiment of De�nition 8.1 where the challenger’s bit is b = 0. Putting everything
altogether, we get |Pr[W5]− Pr[W1]| ∈ negl(λ), which yields the claimed result.

Lemma 8.6. Any PPT adversary that can distinguish Game 4 from Game 3 implies a selective
adversary against the ABB IBE scheme.

Proof. Let us assume a PPT adversary A such that ε =
∣∣Pr[W4]− Pr[W3]

∣∣ is noticeable.
We useA to construct a PPT adversary B that breaks the IND-sID-CPA security of the ABB
scheme, which would contradict the LWE assumption, as established in [ABB10, Th. 23].
At the very beginning of the IND-sID-CPA game, the reduction B generates a one-time
signature key pair (sk?, vk?) and hands vk? to its selective security challenger as the target
identity under which the challenge ciphertext will later be computed. In response, B
receives the public parameters

PP = (Ā,B,U) ∈ Zn×mq × Zn×m̄q × Zn×mq

from its IBE challenger.
The reduction then runs the missing steps of the actual Setupinit algorithm: namely, B
samples F ←↩ U(Z2m×nm̄k

q ),V ←↩ U(Zn×mq ) and generates COMpar before sending the
common public parameters

par =
{
λ, n, q, k,m,B, χ, σ, β, `, κ,OT S,COMpar,FRD, Ā,G,F,U,V

}
to the adversary A.
At this point, the adversary A chooses the public keys pkOA = BOA ∈ Zn×m̄q and pkGM =
(A, {Ai}`i=0,D0,D1,D,u) on behalf of the opening authority and the group manager. It
also starts an execution of the joining protocol in which the reduction B de�nes pkU =
B ∈ Zn×m̄q as the honest receiver’s public key, where B ∈ Zn×m̄q is taken from the public
parameters PP supplied by its IBE challenger. Note that pk = B ∈ Zn×m̄q is distributed as
a real key in A’s view. This public key is certi�ed by A which controls the GM.
In the next stage, A makes a number of decryption queries for ciphertexts of the form
Ψ = (vk, crec, cOA,Σ). To answer these, the reduction invokes its IBE challenger so as to
obtain an IBE private key Evk ∈ Z(m+m̄)×m for the identity vk 6= vk?. The resulting Evk
is used it to IBE-decrypt crec and return the corresponding witness w to A .
At some point, the adversary A queries a challenge ciphertext by outputting a triple
((AR,uR),w, L) such that w ∈ {0, 1}m satis�es uR = AR ·w mod q. Then, the reduction
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B requests a challenge ciphertext c?rec to its IBE challenger by sending it the messages
m1 = w ∈ {0, 1}m and m0 ←↩ U({0, 1}m). The resulting ciphertext c?rec is embedded
in Ψ? = (vk?, c?rec, c?OA,Σ?) by faithfully computing c?OA and Σ? as in the actual Enc
algorithm.
After the challenge phase,A keeps sending decryption queries for ciphertexts Ψ? containing
one-time veri�cation keys vk 6= vk? and these decryption queries are answered as before.
In addition,A is granted access to the stateful oracle PROVEbP,P ′ . Recall that, from Game 3
onwards, all these queries are answered by returning simulated zero-knowledge arguments.
Eventually A outputs a bit b′ ∈ {0, 1} which is also returned by B to its own challenger.
If the IBE challenger provides a challenge c?rec that encrypts a random message (i.e., by
encrypting m0), then we are exactly in the setting of Game 4. In the even that c?rec rather
encrypts m1 = w ∈ {0, 1}m, A’s view is exactly the same as in Game 3. If we denote by
Random (resp. Real) the event that the IBE challenger chooses to encrypt m0 (resp. m1),
the advantage of the reduction B as an IND-sID-CPA adversary is

AdvsID-CPA
B (λ) =

∣∣Pr[b′ = 1|Real]− Pr[b′ = 1|Random]
∣∣ = |Pr[W3]− Pr[W4]|

= ε,

which concludes our proof.

8.5.3.3 Soundness

Theorem 8.7. The scheme provides soundness under the SIS assumption.

Proof. To prove the result, we observe that, in order to break the soundness property, the
adversary must come up with a relation pkR = (AR,uR) ∈ Zn×mq × Znq , a ciphertext
Ψ? = (vk?, c?rec, c?oa,Σ?), a label L and produce a convincing proof πΨ? such that either

1. c?oa does not decrypt to a string h ∈ {0, 1}m such that hU = H2n,q−1 · h ∈ Z2n
q

coincides with hU = F ·mdecn,m,q(BT
U) for some pkU = BU ∈ Zn×m̄q appearing in

database.

2. c?oa opens to a certi�ed public key pkU = BU ∈ Zn×m̄q , which belongs to database
(and for which a certi�cate was issued), but BU is outside the language PK of valid
public keys. This case is immediately ruled out by the density of the public key space.
Namely, all matrices BU ∈ Zn×m̄q are potentially valid public keys as there always
exist a small-norm matrix TU ∈ Zm×m̄ such that BU = Ā ·TU mod q.

3. c?oa opens to a certi�ed key pkU = BU for which Ψ? = (vk?, c?rec, c?oa,Σ?) is not a
valid encryption of w ∈ {0, 1}m such that uR = AR ·w mod q.

4. The opening algorithm fails to uniquely identify the receiver. This occurs if c?oa
decrypts to a string h ∈ {0, 1}m such that h′U = H2n,q−1 · h ∈ Z2n

q corresponds to
at least two distinct public keys BU,0,BU,1 ∈ Zn×m̄q which satisfy

h′U = F ·mdecn,m̄,q(BT
U,0) mod q = F ·mdecn,m̄,q(BT

U,1) mod q.
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Since mdecn,m̄,q(.) : Zm̄×nq → {0, 1}nm̄k is an injective function, the above equal-
ity necessarily implies a collision for the SIS-based hash function built upon F ∈
Z2n×nm̄k
q : namely,

mdecn,m̄,q(BT
U,0)−mdecn,m̄,q(BT

U,1) ∈ {−1, 0, 1}nm̄k

is a short non-zero vector of Λ⊥q (F).

Having shown that cases b and d cannot occur if the SIS assumption holds, we only need
to consider cases a and c. The computational soundness of the argument system ensures
that, by replaying the soundness adversary a su�cient number of times, the knowledge
extractor will be able to extract either: (i) A breach in the computational soundness of the
argument system and thus the binding property of the commitment scheme COM (which
relies on the SIS assumption with the commitment scheme of [KTX08]). Note that this
situation covers case (c.) above. (ii) A set of witnesses

τ ∈ {0, 1}`, d = [dT1 |dT2 ]T ∈ [−β, β]2m, r ∈ [−β, β]m
tU ∈ {0, 1}m, wU ∈ {0, 1}m̄
bU ∈ {0, 1}nm̄k, s0,rec ∈ {0, 1}nk, zΨ ∈ {0, 1}4nm̄k

2

xrec, yrec ∈ [−B,B]m, zrec ∈ [−βmB, βmB]m̄, w ∈ {0, 1}m,
soa ∈ {0, 1}nk, xoa, yoa ∈ [−B,B]m, zoa ∈ [−βmB, βmB]m̄

satisfying relations (8.16). Given that witnesses τ ∈ {0, 1}`, d ∈ [−β, β]2m, r ∈ [−β, β]m
and tU ∈ {0, 1}m satisfy (8.16), it comes that (τ,d, r) form a valid signature for the
message tU ∈ {0, 1}m. At this point, case a implies that no matrix BU ∈ Zn×m̄q of
database decomposes to a string hU ∈ {0, 1}nm̄k such that tU = vdecn,q−1(F ·hU mod q)
was signed by the reduction during an execution of JOIN. This implies that the pair(
tU, (τ,d, r)

)
forms a forgery for the SIS-based signature scheme of Section 7.1. The

reduction is straightforward and omitted.
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Chapter9

La�ice-Based Oblivious Transfer

with Access Control

Oblivious transfer (OT) is a central cryptographic primitive coined by Rabin [Rab81] and
extended by Even et al. [EGL85]. It involves a sender S with a database of messages
M1, . . . ,MN and a receiver R with an index ρ ∈ {1, . . . , N}. The protocol allows R
to retrieve the ρ-th entry Mρ from S without letting S infer anything on R’s choice ρ.
Moreover, R only obtains Mρ learns nothing about {Mi}i 6=ρ.
In its adaptive �avor [NP99], OT allows the receiver to interact k times with S to retrieve
Mρ1 , . . . ,Mρk in such a way that, for each index i ∈ {2, . . . , k}, the i-th index ρi may
depend on the messages Mρ1 , . . . ,Mρi−1 previously obtained by R.
OT is known to be a complete building block for cryptography (as for example, [GMW87])
in that, if it can be realized, then any secure multiparty computation can be. In its adaptive
variant, OT is motivated by applications in privacy-preserving access to sensitive databases
(e.g., medical records or �nancial data) stored in encrypted form on remote servers, oblivious
searches or location-based services.
As far as e�ciency goes, adaptive OT protocols should be designed in such a way that,
after an inevitable initialization phase with linear communication complexity in N and
the security parameter λ, the complexity of each transfer is at most poly-logarithmic in N .
At the same time, this asymptotic e�ciency should not come at the expense of sacri�cing
ideal security properties. The most e�cient adaptive OT protocols that satisfy the latter
criterion stem from the work of Camenisch, Neven and shelat [CNs07] and its follow-ups
[GH07, GH08, GH11].
In its basic form, (adaptive) OT does not restrict in any way the population of users who
can obtain speci�c records. In many sensitive databases (e.g., DNA databases or patients’
medical history), however, not all users should be able to download all records: it is vital
access to certain entries be conditioned on the receiver holding suitable credentials delivered
by authorities. At the same time, privacy protection mandates that authorized users be
able to query database records while leaking as little as possible about their interests or
activities. In medical datasets, for example, the speci�c entries retrieved by a given doctor
could reveal which disease his patients are su�ering from. In �nancial or patent datasets,
the access pattern of a company could betray its investment strategy or the invention it is
developing. In order to combine user-privacy and �ne-grained database security, it is thus
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desirable to enrich adaptive OT protocols with re�ned access control mechanisms in many
of their natural use cases.
This motivated Camenisch, Dubovitskaya and Neven [CDN09] to introduce a variant named
oblivious transfer with access control (OT-AC), where each database record is protected by
a di�erent access control policy P : {0, 1}∗ → {0, 1}. Based on their attributes, users
can obtain credentials generated by pre-determined authorities, which entitle them to
anonymously retrieve database records of which the access policy accepts their certi�ed
attributes: in other words, the user can only download the records for which he has a
valid credential Credx for an attribute string x ∈ {0, 1}∗ such that P (x) = 1. During the
transfer phase, the user demonstrates possession of a pair (Credx, x) and simultaneously
convinces the sender that he is querying some record Mρ associated with a policy P such
that P (x) = 1. The only information that the database holder eventually learns is that
some user retrieved some record which he was authorized to obtain.
Camenisch et al. formalized the OT-AC primitive and provided a construction in groups
with a bilinear map [CDN09]. While e�cient, their solution “only” supports access policies
consisting of conjunctions: each policy P is speci�ed by a list of attributes that a given
user should obtain a credential for in order to complete the transfer. Several subsequent
works [ZAW+10, CDNZ11, CDEN12] considered more expressive access policies while
even hiding the access policies in some cases [CDNZ11, CDEN12]. Unfortunately, all of
them rely on non-standard assumptions (known as “q-type assumptions” as described
in Chapter 2) in groups with a bilinear maps. For the sake of not putting all one’s eggs in
the same basket, a primitive as powerful as OT-AC ought to have alternative realizations
based on �rmer foundations.
In this chapter, we propose a solution based on lattice assumptions where access policies
consist of any branching program of width 5, which is known [Bar86] to su�ce for the
realization of any access policy in NC1. As a result of independent interest, we provide
protocols for proving the correct evaluation of a committed branching program. More
precisely, we give zero-knowledge arguments for demonstrating possession of a secret
input x ∈ {0, 1}κ and a secret (and possibly certi�ed) branching program BP such that
BP(x) = 1.

Related Work. Oblivious transfer with adaptive queries dates back to the work of Naor
and Pinkas [NP99], which requires O(logN) interaction rounds per transfer. Naor and
Pinkas [NP05] also gave generic constructions of (adaptive) k-out-of-N OT from private in-
formation retrieval (PIR) [CGKS95]. The constructions of [NP99, NP05], however, are only
secure in the half-simulation model, where simulation-based security is only considered for
one of the two parties (receiver security being formalized in terms of a game-based de�ni-
tion). Moreover, the constructions of Adaptive OT from PIR [NP05] requires a complexity
O(N1/2) at each transfer where Adaptive OT allows for O(logN) cost. Before 2007, many
OT protocols (e.g., [NP01, AIR01, TK05]) were analyzed in terms of half-simulation.
While several e�cient fully simulatable protocols appeared the last 15 years (e.g., [DN03,
Lin08, PVW08] and references therein), full simulatability remained elusive in the adaptive
k-out-of-N setting [NP99] until the work [CNs07] of Camenisch, Neven and shelat, who
introduced the “assisted decryption” paradigm. The latter consists in having the sender
obliviously decrypt a re-randomized version of one of the original ciphertexts contained
in the database. This technique served as a blueprint for many subsequent protocols
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[GH07, GH08, GH11, JL09], including those with access control [CDN09, CDNZ11, CDEN12,
ACDN13] and those presented in this chapter. In the adaptive k-out-of-N setting (which
we denote as OT Nk×1), the di�culty is to achieve full simulatability without having to
transmit a O(N) bits at each transfer. To our knowledge, except the oblivious-PRF-based
approach of Jarecki and Liu [JL09], all known fully simulatable OT Nk×1 protocols rely on
bilinear maps1. A recent work of Döttling et al. [DFKS16] uses non-black-box techniques
to realize LWE-based 2-round oblivious PRF (OPRF) protocols [FIPR05]. However, while
fully simulatable OPRFs imply [JL09] fully simulatable adaptive OT, the OPRF construction
of [DFKS16] does not satisfy the standard notion of full simulation-based security against
malicious adversaries (which is impossible to achieve in two rounds). It also relies on the
full power of homomorphic encryption, which we do not require.
A number of works introduced various forms of access control in OT. Priced OT [AIR01]
assigns variable prices to all database records. In conditional OT [DCOR99], access to a
record is made contingent on the user’s secret satisfying some predicate. Restricted OT
[Her11] explicitly protects each record with an independent access policy. Still, none of
these OT �avors aims at protecting the anonymity of users. The model of Coull, Green
and Hohenberger [CGH09] does consider user anonymity via stateful credentials. For the
applications of OT-AC, it would nevertheless require re-issuing user credentials at each
transfer.
While e�cient, the initial OT-AC protocol of Camenisch et al. [CDN09] relies on non-
standard assumptions in groups with a bilinear map and only realizes access policies made
of conjunctions. Abe et al. [ACDN13] gave a di�erent protocol which they proved secure
under more standard assumptions in the universal composability framework [Can01].
Their policies, however, remain limited to conjunctions. It was mentioned in [CDN09,
ACDN13] that disjunctions and DNF formulas can be handled by duplicating database
entries. Unfortunately, this approach rapidly becomes prohibitively expensive in the
case of (t, n)-threshold policies with t ≈ n/2. Moreover, securing the protocol against
malicious senders requires them to prove that all duplicates encrypt the same message. More
expressive policies were considered by Zhang et al. [ZAW+10] who gave a construction
based on attribute-based encryption [SW05] that extends to access policies expressed by
any Boolean formulas (and thus NC1 circuits). Camenisch, Dubovitskaya, Neven and
Zaverucha [CDNZ11] generalized the OT-AC functionality so as to hide the access policies.
In [CDEN12], Camenisch et al. gave a more e�cient construction with hidden policies
based on the attribute-based encryption scheme of [NYO08]. At the expense of a proof in
the generic group model, [CDEN12] improves upon the expressiveness of [CDNZ11] in
that its policies extend into CNF formulas. While the solutions of [CDNZ11, CDEN12] both
hide the access policies to users (and the successful termination of transfers to the database),
their policies can only live in a proper subset of NC1. As of now, threshold policies can only
be e�ciently handled by the ABE-based construction of Zhang et al. [ZAW+10], which
requires ad hoc assumptions in groups with a bilinear map.

In the forthcoming sections, we �rst present the adaptive oblivious transfer scheme and its
access control �avour, then we present the needed building blocks, in particular a simpler

1Several pairing-free candidates were suggested in [KPN10, KPN11] but, as pointed out in [GH11], they
cannot achieve full simulatability in the sense of [CNs07]. In particular, the sender can detect if the receiver
fetches the same record in two distinct transfers.
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version of the signature scheme presented in Section 7.1. We next present our constructions
and the zero-knowledge protocol to guarantee the correct execution of a branching program.
Finally, we close this chapter with the description of a shift of our scheme from the standard
model to the random oracle model to reduce the communication complexity cost, and a
comparison table between the di�erent existing solutions.

9.1 Adaptive Oblivious Transfer

In the syntax of [CNs07], an adaptive k-out-of-N OT scheme OTNk is a tuple of stateful
PPT algorithms (SI,RI, ST,RT). The sender S = (SI,ST) consists of two interactive
algorithms SI and ST and the receiver has a similar representation as algorithms RI and
RT. In the initialization phase, the sender and the receiver run interactive algorithms SI
and RI, respectively, where SI takes as input messages M1, . . . ,MN while RI has no input.
This phase ends with the two algorithms SI and RI outputting their state information S0
and R0 respectively.
During the i-th transfer, 1 ≤ i ≤ k, both parties run an interactive protocol via the RT and
ST algorithms. The sender starts runs ST(Si−1) to obtain its updated state information
Si while the receiver runs RT(Ri−1, ρi) on input of its previous state Ri−1 and the index
ρi ∈ {1, . . . , N} of the message it wishes to retrieve. At the end, RT outputs an updated
state Ri and a message M ′ρi .
Correctness mandates that, for all M1, . . . ,MN , for all ρ1, . . . , ρk ∈ [N ] and all coin tosses
$ of the (honestly run) algorithms, we have M ′ρi = Mρi for all i.
We consider protocols that are secure (against static corruptions) in the sense of simulation-
based de�nitions. The security properties against a cheating sender and a cheating receiver
are formalized via the “real-world/ideal-world” paradigm. The security de�nitions of
[CNs07] are recalled in the following Section.

9.1.1 Security De�nitions for Adaptive k-out-of-N Oblivious Transfer

Security is de�ned via the “real-world/ideal-world” paradigm which was �rst introduced in
the Universal Composability (UC) framework [Can01]. Like [CNs07, CDN09], however, we
do not incorporate all the formalities of the UC framework. We de�ne two experiments: the
Real experiment, where the two parties run the actual protocol, and the Ideal experiment
wherein a trusted third party assumes the role of the functionality.
The model of [CNs07] formalizes two security notions called sender security and receiver
security. The former considers the security of honest senders against cheating senders
whereas the latter considers the security of honest receivers interacting with malicious
senders.
For an adaptive OT protocol OTNk comprised of algorithms (SI, ST,RI,RT), we denote
de�ne the honest sender S as the algorithm that runs SI(M1, . . . ,MN ) during the initial-
ization phase, runs ST at each transfer and eventually returns Sk = ε as its �nal output.
Similarly, the honest receiver R is the algorithm that runs RI in the initialization phase,
runs RT(Ri−1, ρi) during the i-th transfer and eventually returns Rk = (M ′ρ1 , . . . ,M

′
ρk

)
as its �nal output.
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Real Experiment. Here, a sender Ŝ and a receiver R̂ which proceed as follows for
experiment Real Ŝ,R̂(N, k,M1, . . . ,MN , ρ1, . . . , ρk).
The sender Ŝ is given messagesM1, . . . ,MN and interacts with R̂ which does not have any
input in the initialization phase. At end of the latter, Ŝ and R̂ output their initial statesS0 and
R0 respectively. Then, Ŝ and R̂ start k sequential interactions: for i ∈ [k], in the i-th transfer,
the sender Ŝ and the receiver R̂ run Si ← Ŝ(Si−1) and (Ri,M ′ρi) ← R̂(Ri−1, ρi), where
ρi ∈ [N ] is a message index and (Si, Ri) denote updated states for Ŝ and R̂, respectively.
Note thatM ′ρi may be di�erent fromMρi if one of the participant deviates from the protocol.
At the end of the k-th interaction, Ŝ and R̂ output strings Sk and Rk respectively. The
output of Real Ŝ,R̂ is the pair (Sk, Rk).

The honest sender S is the algorithm that runs S(M1, . . . ,MN ) as in the initialization
phase, runs ST in all subsequent interactions and always outputs Sk = ε. The honest
receiver R is the algorithm that runs RI in the initialization phase, runs RT(Ri−1, ρi) at the
i-th transfer and returns the list of received messages Rk = (M ′ρ1 , . . . ,M

′
ρk

) as its �nal
output.

Ideal Experiment. We de�ne the experiment Ideal Ŝ′,R̂′(N, k,M1, . . . ,MN , ρ1, . . . , ρk)
as follows.
The (possibly malicious) algorithm Ŝ′(M1, . . . ,MN ) generates messages M ′1, . . . ,M ′N
which are given to the trusted party T. In each of the k transfers, T obtains a bit bi from
the sender Ŝ′ and an index ρ′i from the (possibly malicious) receiver R̂′(ρi). If bi = 1, and
ρ′i ∈ [N ], then T reveals M ′ρi to the receiver R̂′. Otherwise, R̂′ receives ⊥ from T. At
the end of the k-th transfer, Ŝ′ and R̂′ output a string Sk and Rk and the output of the
experiment is the pair (Sk, Rk).
The ideal sender S′(M1, . . . ,MN ) is de�ned the be the sender that sends (M1, . . . ,MN )
which sends the messages (M1, . . . ,MN ) to T in the initialization phase, sends bi = 1 in
each transfer and outputs the �nal state Sk = ε. The honest ideal receiver R′ is de�ned to
be the algorithm that sends T the real selection index ρi at each transfer and eventually
outputs the list of all received messages Rk = (M ′ρ1 , . . . ,M

′
ρk

) as its �nal state.

The bit bi sent by Ŝ′ at each transfer models its capability of making the transfer fail. By
forcing Ŝ′ to choose bi without seeing ρi, the de�nition prevents the cheating sender Ŝ′
from deciding to cause a failure of the transfer for speci�c values of ρi.

De�nition 9.1 (Sender Security). An OTNk protocol is sender-secure if, for any PPT real-
world cheating receiver R̂, there exists a PPT ideal-world receiver R̂′ such that, for any
polynomial Nm(λ), any N ∈ [Nm(λ)], any k ∈ [N ], any messages M1, . . . ,MN , and any
indices ρ1, . . . , ρk ∈ [N ], no PPT distinguisher can separate the two following distributions
with noticeable advantage:

RealS,R̂(N, k,M1, . . . ,MN , ρ1, . . . , ρk)

and
IdealS′,R̂′(N, k,M1, . . . ,MN , ρ1, . . . , ρk).
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De�nition 9.2 (Receiver Security). An OTNk protocol is receiver-secure if, for any PPT
real-world cheating sender Ŝ, there exists a PPT ideal-world sender Ŝ′ such that, for any
polynomial Nm(λ), any N ∈ [Nm(λ)], any k ∈ [N ], any messages M1, . . . ,MN , and any
indices ρ1, . . . , ρk ∈ [N ], no PPT distinguisher can tell apart the two following distributions
with non-negligible advantage:

RealŜ,R(N, k,M1, . . . ,MN , ρ1, . . . , ρk)

and
IdealŜ′,R′(N, k,M1, . . . ,MN , ρ1, . . . , ρk).

9.1.2 Adaptive Oblivious Transfer with Access Control

Camenisch et al. [CDN09] de�ne oblivious transfer with access control (OT-AC) as a tuple
of PPT algorithms/protocols (ISetup, Issue,DBSetup,Transfer) such that:

ISetup: takes as inputs public parameters p specifying a set P of access policies and
generates a key pair (PKI , SKI) for the issuer.

Issue: is an interactive protocol between the issuer I and a stateful user U under common
input (p, x), where x is an attribute string. The issuer I takes as inputs its key pair
(PKI , SKI) and a user pseudonym PU. The user takes as inputs its state information
stU. The user U outputs either an error symbol ⊥ or a credential CredU, and an
updated state st′U.

DBSetup: is an algorithm that takes as input the issuer’s public key PKI , a database
DB = (Mi,APi)Ni=1 containing records Mi whose access is restricted by an access
policy APi and outputs a database public key PKDB, an encryption of the records
(ERi)Ni=1 and a database secret key SKDB.

Transfer: is a protocol between the database DB and a user U with common inputs
(PKI , PKDB). DB inputs SKDB and U inputs (ρ, stU, ERρ,APρ), where ρ ∈ [N ]
is a record index to which U is requesting access. The interaction ends with U
outputting ⊥ or a string Mρ′ and an updated state st′U.

We assume private communication links, so that communications between a user and
the issuer are authenticated, and those between a user and the database are anonymized:
otherwise, anonymizing the Transfer protocol is impossible.
The security de�nitions formalize two properties called user anonymity and database
security. The former captures that the database should be unable to tell which honest user is
making a query and neither can tell which records are being accessed. This should remain
true even if the database colludes with corrupted users and the issuer. As for database
security, the intuition is that a cheating user cannot access a record for which it does not
have the required credentials, even when colluding with other dishonest users. In case the
issuer is colluding with these cheating users, they cannot obtain more records from the
database than they retrieve.
Similarly to the OT Nk×1 case, security is de�ned by requiring that any PPT real-world
adversary A and any environment E , there exists a PPT adversary A′ which controls the
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same parties and such that no environment E can tell if it is running in the real world
interacting with the real A or in the ideal-world interacting with A′. The distribution
of outputs of the environment in the di�erent settings is denoted by RealE,A(λ) and
IdealE,A′(λ) for real-world adversary A and ideal-world adversary A′, respectively.

De�nition 9.3. An AC-OT protocol is said to securely implement the functionality if for
any real-world adversary A and any real world environment E , there exists an ideal-world
simulator A′ controlling the same parties in the ideal-world as A does in the real-world,
such that

|RealE,A(λ)− IdealE,A(λ)| ≤ negl(n) (λ).

Real World. We describe the way that real-world algorithms interact when all partici-
pants (i.e., the real-world users U1, . . . ,UU , the database DB and the issuer I) are honest.
The issuer starts by generating a key pair (PKI , SKI) ← ISetup(p), and sends PKI to
all users {Ui}Ui=1 and the database DB.
When E sends a message

(
initdb,DB = (Mi,APi)Ni=1

)
to the database DB, the latter

encrypts the database DB by running DBSetup and sends the encrypted records to all
users.
When E sends a message (issue, x) to user Ui, this user starts an Issue protocol with the
issuer on common input x, at the end of which it returns 1 to the environment if the
protocol succeeded or 0 otherwise.
When E sends a message (transfer, ρ) to user Ui, this user �rst checks if its credentials
CredU are su�cient to access the record Mρ. If it is the case, it engages in a Transfer
protocol with the database DB, at the end of which it receives either the message Mρ, or
an error symbol ⊥. If it failed at any steps, the user returns 0 to E , or 1 if it succeeded.
Notice that in this setting, neither the database nor the issuer return any outputs to the
environment.

Ideal World. In the ideal world, participants only communicate via the trusted party T
which implements the functionality of the protocol. We describe how T proceeds when re-
ceiving inputs from the ideal-world users {U′i}Ui=1, issuer I′ and database DB′. T maintains
an initially empty set Ci for each user U′i and sets DB← ⊥. It handles the queries of the
di�erent parties as follows:

• When receiving a message (initdb,DB = (Mi,APi)Ni=1) from DB′, T sets DB =
(Mi,APi)Ni=1.

• When receiving (issue, x) from U′i, T sends (issue,U′i, x) to I′ which replies with a
bit b. If b = 1, then T adds x to Ci. In any cases, T sends b to U′i.

• When receiving (transfer, ρ) from U′i, the trusted party T acts as follows. If U′i
previously sent a message of the form (transfer, .), T de�nes fU′,DB = 1. Otherwise,
it sets fU′,DB = 0. If DB 6= ⊥, it sends (transfer, fU′,DB) to DB′, who sends a bit b.
If b = 1 and if sti contains a vector x such that APi(x) = 1, then it sends the record
to U′i. In any other cases, it sends ⊥ to U′i.
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In other words, the ideal-world users, database and issuer relay inputs and outputs between
the environment E and the trusted party T.
Note that, like [CDN09], the ideal functionality allows the database to learn whether a
given user interacts with the database for the �rst time or not. The reason is that, like the
protocol of [CDN09], our basic OT-AC scheme requires the database to provide a particular
interactive zero-knowledge proof at the very �rst time each user queries the database. In
protocols where the database generates such an interactive proof, it is inevitable for U to
reveal his state bit fDB to DB. In constructions where the zero-knowledge proof is made
non-interactive and made publicly available at the same time as the database itself, this can
be avoided and we can prevent DB from learning the state bit fDB . In this case, T does not
send fU′,DB to DB′ in the ideal-world experiment.

The ideal world thus implies the following security properties.

User Anonymity. The database cannot tell which user a given query comes from and
neither can it tell which record is being accessed. It only learns whether the user
previously queried the database or not. Otherwise, two transfers involving the same
users are unlinkable.

Database Security. A single cheating user cannot access a record for which he does
not have a certi�ed authorized attribute string. Colluding users cannot pool their
credentials to gain access to a record which none of them can individually access.
Moreover, if the issuer colludes with some users, the protocol still provides the
equivalent of sender security in the OT Nk×1 functionality.

9.2 Building Blocks

We will use two distinct signature schemes because one of them only needs to be secure
in the sense of a weaker security notion and can be more e�cient. This weaker notion is
su�cient to sign the database entries and allows a better e�ciency in the scheme of Section
9.3. In particular, by making it stateful (which also su�ces since all database entries are
signed at once), we can reduce the public key size to logN matrices if N is the number of
database entries. The second scheme must be stateful and secure in the standard EUF-CMA
sense since the issuer uses it to certify users’ attributes. The signature scheme of Section 7.1
is only used in the OT-AC protocol of Section 9.3 while the scheme of Section 9.2.1 is used
in the adaptive OT protocol of Section 9.4 as well.
We �rst use the signature scheme described in Section 7.1 which extends the the Böhl et al.
signature [BHJ+15] in order to sign messages comprised of multiple blocks while keeping
the scheme compatible with zero-knowledge proofs.

9.2.1 A Simpler Variant with Bounded-Message Security and Security

Against Non-Adaptive Chosen-Message Attacks

We consider a stateful variant of the scheme in Section 7.1 where a bound Q ∈ poly(n) on
the number of signed messages is �xed at key generation time. In the context of OT Nk×1,
this is su�cient and leads to e�ciency improvements. In the modi�ed scheme hereunder,
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the string τ ∈ {0, 1}` is an `-bit counter maintained by the signer to keep track of the
number of previously signed messages.
This simpli�ed variant resembles the SIS-based signature scheme of Böhl et al. [BHJ+15].
In this version, the message space is {0, 1}ndlog qe so that vectors of Znq can be signed by
�rst decomposing them using vdecn,q−1(.).

Keygen(1λ, 1Q): Given λ > 0 and the maximal numberQ ∈ poly(λ) of signatures, choose
n = O(λ), a prime q = Õ(Q · n4), m = 2ndlog qe, an integer ` = dlogQe and
Gaussian parameters σ = Ω(

√
n log q logn). The message space is {0, 1}md , for

some md ∈ poly(λ) with md ≥ m.

1. Run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short basis TA of Λ⊥q (A),
which allows sampling short vectors in Λ⊥q (A) with a Gaussian parameter σ.
Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).

2. Choose D←↩ U(Zn×mdq ) as well as a random vector u←↩ U(Znq ).

The counter τ is initialized to τ = 0. The private key consists of SK := TA and the
public key is PK :=

(
A, {Aj}`j=0, D, u

)
.

Sign

(
SK, τ,m

)
: To sign a message m ∈ {0, 1}md ,

1. Increment the counter by setting τ := τ + 1 and interpret it as a string τ ∈
{0, 1}`. Then, using SK := TA, compute a short delegated basis Tτ ∈
Z2m×2m for the matrix Aτ = [A | A0 +

∑`
j=1 τ [j]Aj ] ∈ Zn×2m

q .

2. Compute the vector uM = u + D ·m ∈ Znq . Then, using the delegated basis
Tτ ∈ Z2m×2m, sample a short vector v ∈ Z2m in DΛuM

q (Aτ ),σ .

Output the signature sig = (τ,v) ∈ {0, 1}` × Z2m.

Verify

(
PK,m, sig

)
: Given PK , m ∈ {0, 1}md and a signature sig = (τ,v) ∈ {0, 1}` ×

Z2m, return 1 if ‖v‖ < σ
√

2m and Aτ · v = u + D ·m mod q.

For our purposes, the scheme only needs to satisfy a notion of bounded-message security
under non-adaptive chosen-message attack. In this relaxed model, the adversary only
obtains a bounded number of signatures for messages that are chosen non-adaptively (i.e.,
all at once and before seeing the public key) by the adversary. This security notion is
su�cient for signing the N database entries. Note that the queries are non-adaptive but
the adversary can adaptively choose its forgery message.

Theorem 9.1. The scheme is bounded message secure under non-adaptive chosen-message
attacks if the SIS assumption holds.

Proof. We show that the scheme presented in Section 9.2.1 is secure against non-adaptive
chosen-message attacks (na-CMA) under the SIS assumption. The shape of the proof is
similar to the security proof of the signature scheme of Section 7.1. Namely, to prove the
security, we distinguish two kinds of attacks:
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Type I attacks, where in the adversary’s forgery sig? = (τ?,v?), τ? did not appear in
any outputs of the signing oracle.

Type II attacks, where in the adversary’s forgery sig? = (τ?,v?), τ? has been recycled
from an output sig(i?) =

(
τ (i?),v(i?)) of the signing oracle for some query i? ∈

{1, . . . , Q}.

Lemma 9.2 states that the signature scheme is secure against Type I forgery using the same
technique as is [ABB10, Boy10, MP12]. Lemma 9.3 claims that the signature scheme resists
Type II attacks, with a proof that is very similar to the one of Lemma 9.2. Both security
proofs assume the computational hardness of the SIS problem.

Lemma 9.2. The signature scheme of Section 9.2.1 is secure against Type I attacks if the
SISn,m,q,β′ assumption holds, with β′ = σ2m3/2(`+ 2) + σm1/2.

Proof. Let A be a PPT adversary against the na-CMA security of our scheme that mounts
Type I attacks with non negligible success probability ε. We construct a PPT algorithm
B using A to break the SISn,m,q,β′ assumption. Our reduction B takes as input a target
matrix Ā ∈ Zn×mq and computes v ∈ Λ⊥q (Ā) satisfying 0 < ‖v‖ ≤ β′.

At �rst, B calls A to obtain the messages to be queried: m(1), . . . ,m(Q). For the sake of
readability, let us de�ne τ (i) = i, viewed as a bit-string, to be the tag corresponding to the
i-th signature in our scheme.

Setup. As in [HW09], the reduction guesses the shortest pre�x such that the string τ?
embedded in A’s forgery di�ers from all pre�xes to {τ (1), . . . , τ (Q)}. To achieve this, B
chooses at random i† ←↩ U({1, . . . , Q}) and t† ←↩ U({1, . . . , `}). Then, with probability
1/(Q · `), the longest common pre�x between τ? and one of the tags {τ (i)}Qi=1 is the string
τ?[1] · · · τ?[t† − 1] ∈ {0, 1}t†−1: the �rst (t† − 1)-th bits of τ?. Let us de�ne τ † = τ?|t† ,
where s|i denotes the i-th pre�x for a string s. By construction τ † /∈ {τ (1)

|t† , . . . , τ
(Q)
|t† } with

probability 1/(Q · `).
Next, the reduction B runs TrapGen(1n, 1m, q) to obtain matrices C ∈ Zn×mq and a short
basis TC ∈ Zm×m of Λ⊥q (C), which will be useful to answer the following opening oracle
queries. The reduction B continues by picking `+ 1 matrices Q0, . . . ,Q` ∈ Zm×m where
each matrix Qi has its column independently sampled from DZm,σ , and Bde�nes the
matrices A = Ā and {Aj}`j=0 as follows


A0 = Ā ·Q0 +

(∑t†
j=1 τ

?[j]
)
·C

Aj = Ā ·Qj + (−1)τ?[j] ·C for j ∈ [1, t†]
Aj = Ā ·Qj for j ∈ [t† + 1, `]

.
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We can notice that

Aτ (i) =
[
A
∣∣∣A0 +

∑̀
j=1

τ (i)[j]Aj

]

=
[
Ā
∣∣∣ Ā · (Q0 +

∑̀
j=1

τ (i)[j] ·Qj
)

+
( t†∑
j=1

τ?[j] + (−1)τ?[j] · τ (i)[j]
)
·C
]

=
[
Ā
∣∣∣ Ā · (Q0 +

∑̀
j=1

τ (i)[j] ·Qj
)

+ hτ (i) ·C
]
,

where hτ (i) denotes the hamming distance between τ (i)
|t† and τ †. With probability 1/(Q · `),

and as ` > q, it holds that hτ (i) 6= 0 mod q whenever τ (i)
|t† 6= τ?|t† .

The reduction then picks a random short matrix R ←↩ Zm×md which has its md columns
independently sampled from DZm,σ , and Bcomputes

D = Ā ·R ∈ Zn×mdq .

To �nish, B samples a short vector eu ∈ DZm,σ and computes the vector u = Ā · eu. The
following public key is �nally given to A:

PK := (A, {Aj}`j=0,D,u).

Signing queries. To handle signature queries, the reduction B uses the trapdoor TC ∈
Zm×m to generate a signature. To this end, B starts by computing the vector uM =
u + D · m(i). Then B can use TC with the algorithm SampleRight from Lemma 3.7 to
compute a short vector v(i) inDuM

Λ⊥(A
τ(i) ),σ , distributed like a valid signature and satisfying

the veri�cation equation (7.2).

Output. At some point, the attacker A halts and outputs a valid signature sig? = (τ?,v?)
for a message m? /∈ {m(1), . . . ,m(Q)}. Since the signature is valid, it satis�es ‖v?‖ ≤
σ
√

2m.
Parsing v? as [v?1 | v?2] with v?1,v?2 ∈ Zm and injecting it in (7.2) give:

[
Ā
∣∣∣ Ā · (Q0 +

∑̀
j=1

τ?[j] ·Qj
)]
·
[
v?1
v?2

]
= u + D ·m? mod q

= Ā ·
(
eu + R ·m?) mod q

Thus, the vector

v′ = v?1 +
(
Q0 +

∑̀
j=1

τ?[j] ·Qj
)
· v?2 − eu −R ·m?

is in Λ⊥(Ā), and v′ is non-zero with overwhelming probabilities, since in A’s view, the
distribution of eu is DΛu

q (A),σ , which guarantees that eu is statistically hidden by the
syndrome u = Ā · eu. Finally, the norm of v′ is upper bounded by β′ = σ2m3/2(`+ 2) +
2σm1/2.
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Lemma 9.3. The signature scheme of Section 9.2.1 is secure against Type II attacks if
SISn,m,q,β′′ holds, with β′′ =

√
2(`+ 2)σm3/2 +m1/2.

Proof. We will prove this result using techniques analogous to the previous proof. We show
that given an adversary A that comes out with a Type II signature in the na-CMA game
with non negligible probability ε, we can construct a PPT B that breaks the SIS assumption
with advantage ε/Q using A.

Firstly, the reduction B is given a matrix A ∈ Zn×mdq as input and has to output an integer
vector v ∈ Zmd in Λ⊥q (A) such that 0 < ‖v‖ ≤ β′′. Next, B receives from A the messages
m(1), . . . ,m(Q) for which A will further ask signature queries.

To compute the public key, at the outset of the game, the reduction B starts by sampling
i† ←↩ U({1, . . . , Q}) corresponding to the guess that A’s forgery will recycle τ (i†). This is
independent of A’s view, and the guess will be correct with probability 1/Q. Using this
guess to compute PK , the reduction B picks h0, . . . , h` ∈ Zq subject to the constraints{

h0 +
∑`
j=1 τ

(i†)[j] · hj = 0 mod q

h0 +
∑`
j=1 τ

(i)[j] · hj 6= 0 mod q ∀i ∈ {1, . . . , Q}\{i†}
(9.1)

Bthen runs (C,TC) ← TrapGen(1n, 1m, q). The resulting matrix C ∈ Zn×mq is statisti-
cally random, and the trapdoor TC ∈ Zm×m is a short basis of Λ⊥q (C). NextBre-randomize
A using short matrices S,S0,S1, . . . ,S` ∈ Zmd×m which are obtained by sampling their
columns from the distribution DZmd ,σ . The challenger B then uses these matrices to de�ne:

A = A · S
A0 = A · S0 + h0 ·C
Aj = A · Sj + hj ·C j ∈ {1, . . . , `}

and sets D = A ∈ Zn×mdq . Observe that matrices A, {Aj}`j=0 are all statistically uniform
over Zn×mq . Then, B samples short vectors v†1,v

†
2 ←↩ DZm,σ and computes u ∈ Znq as

u = A
τ (i†) ·

[
v†1
v†2

]
−A ·m(i†) mod q. (9.2)

Finally, B sends to A the public key

PK :=
(
A, {Aj}`j=0,D,u

)
which is distributed as the PK of the real scheme.

To answer signing queries, the challenger B do as follows.

• If the query is not the i†-th, we have:

Aτ (i) =
[
A
∣∣∣A0 +

∑̀
j=0

τ (i)[j] ·Aj

]

=
[
A · S

∣∣∣A · (S0 +
∑̀
j=0

τ (i)[j] · Sj) + hτ (i) ·C
]
,
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with hτ (i) = h0 +
∑
τ (i)[j] · hj 6= 0 due to the �rst constraint of (9.1). Thus, using

the same technique as in the previous proof from [MP12], the challenger B can use
the trapdoor TC along with SampleRight algorithm to sample a short vector in
ΛuM
q (Aτ (i)) satisfying (7.2).

• At the i†-th query, thanks to the second constraint of (9.1), we have:

A
τ (i†) =

[
A
∣∣∣A0 +

∑̀
j=0

τ (i†)[j] ·Aj

]

=
[
A · S

∣∣∣A · (S0 +
∑̀
j=0

τ (i†)[j] · Sj)
]
.

To answer this speci�c query, the challenger B returns sig(i†) = (τ (i†),v(i†)) where
v(i†) = (v†T1 | v†T2 )T verifying (9.2), which furthermore implies that sig(i†) veri-
�es (7.2).

Thus we claim that B can solve the SIS problem using the Type II forgery provided by A.
At the end of the game, the adversary outputs a valid signature sig? = (τ (i?),v?) on a
message m? with ‖v?‖ ≤ σ

√
2m. In the event that τ (i?) 6= τ i

† , the reduction aborts. The
latter event happens with probability 1 − 1/Q. If we parse v? as (v?,T1 | v?T2 )T ∈ Z2m,
with v?1,v?2 ∈ Zm, it holds that:

A
τ (i†) ·

[
v?1
v?2

]
= u + A ·m? mod q. (9.3)

According to the way u was de�ned at the beginning of the game, we also have a vector
v† = (v†T1 | v

†T
2 )T such that

A
τ (i†) ·

[
v†1
v†2

]
= u + A ·m† mod q. (9.4)

As sig? is a valid forgery for the dn-CMA game, it follows that m† 6= m?. And we get by
subtracting (9.3) and (9.4)

A
τ (i†) ·

[
v?1 − v†1
v?2 − v†2

]
= A ·

(
m? −m†

)
mod q,

[
A · S

∣∣∣A · (S0 +
∑̀
j=0

τ (i†)[j] · Sj)
]
·
[
v?1 − v†1
v?2 − v†2

]
= A ·

(
m? −m†

)
mod q.

Leading us to the fact that

v′ = S · (v?1 − v†2) +

S0 +
∑̀
j=1

τ (i†)[j] · Sj

 · (v?2 − v†2)

︸ ︷︷ ︸
(a)

+m† −m?︸ ︷︷ ︸
−(b)

(9.5)

is an integer vector of Λ⊥q (A), with norm bounded by ‖v′‖ ≤
√

2(`+2)σm3/2+m1/2 = β′′.
Furthermore, if v′ was zero, it implies that (a) = (b) in Equation (9.5). And as sig? 6= sig†,
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we have that either v?1 6= v†1 or v?2 6= v†2. As a consequence, (a) is information theoretically
unpredictable for A since the columns of S,S0, . . .S` are statistically hidden from A, as
shown in [MP12] for instance: conditionally on the public key, each column of S and
{Sj}`j=0 has at least n bits of min-entropy.

9.3 A Fully Simulatable Adaptive OT Protocol

Our basic OT Nk×1 protocol builds on the “assisted decryption” technique [CNs07]. The
databases holder encrypts all entries using a multi-bit variant [PVW08] of Regev’s cryp-
tosystem [Reg05] and proves the well-formedness of its public key and all ciphertexts.
In addition, all ciphertexts are signed using a signature scheme. At each transfer, the
receiver statistically re-randomizes a blinded version of the desired ciphertext, where the
blinding is done via the additive homomorphism of Regev. Then, the receiver provides a
witness indistinguishable (WI) argument that the modi�ed ciphertext (which is submitted
for oblivious decryption) is a transformation of one of the original ciphertexts by arguing
knowledge of a signature on this hidden ciphertext. In response, the sender obliviously
decrypts the modi�ed ciphertext and argues in zero-knowledge that the response is correct.
Adapting the technique of [CNs07] to the lattice setting requires the following building
blocks: (i) A signature scheme allowing to sign ciphertexts while remaining compatible
with ZK proofs; (ii) A ZK protocol allowing to prove knowledge of a signature on some
hidden ciphertext which belongs to a public set and was transformed into a given cipher-
text; (iii) A protocol for proving the correct decryption of a ciphertext; (iv) A method of
statistically re-randomizing an LWE-encrypted ciphertext in a way that enables oblivious
decryption. The �rst three ingredients can be obtained from Chapter 7. Since component (i)
only needs to be secure against random-message attacks as long as the adversary obtains at
most N signatures, we use the simpli�ed SIS-based signature scheme of Section 9.2.1. The
statistical re-randomization of Regev ciphertexts is handled via the noise �ooding technique
[AJLA+12], which consists in drowning the initial noise with a sub-exponentially larger
noise. While recent results [DS16, BdPMW16] provide potentially more e�cient alterna-
tives, we chose the �ooding technique for simplicity because it does not require the use of
FHE (and also because the known multi-bit version [HAO15] of the GSW FHE [GSW13]
incurs an ad hoc circular security assumption).

9.3.1 Description

Our scheme works with security parameter λ, modulus q, lattice dimensions n = O(λ)
and m = 2ndlog qe. Let Bχ = Õ(

√
n), and let χ be a Bχ-bounded distribution. We also

de�ne an integer B as a randomization parameter such that B = nω(1) · (m+ 1)Bχ and
B+ (m+ 1)Bχ ≤ q/5 (to ensure decryption correctness). Our basicOT Nk×1 protocol goes
as follows.

Initialization

(
SI(1λ,DB),RI(1λ)

)
: In this protocol, the sender SI has a database DB =

(M1, . . . ,MN ) of N messages, where Mi ∈ {0, 1}t for each i ∈ [N ], for some
t ∈ poly(λ). It interacts with the receiver RI as follows.

1. Generate a key pair for the signature scheme of Section 9.2.1 in order to sign
Q = N messages of lengthmd = (n+t) ·dlog qe each. This key pair consists of
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SKsig = TA ∈ Zm×m and PKsig :=
(
A, {Aj}`j=0,D,u

)
, where ` = logN

and A,A0, . . . ,A` ∈ U(Zn×mq ), D ∈ U(Zn×mdq ). The counter is initialized to
τ = 0.

2. Choose S←↩ χn×t that will serve as a secret key for an LWE-based encryption
scheme. Then, sample F←↩ U(Zn×mq ), E←↩ χm×t and compute

P = [p1| . . . |pt] = FT · S + E ∈ Zm×tq , (9.6)

so that (F,P) ∈ Zn×mq ×Zm×tq forms a public key for a t-bit variant of Regev’s
encryption scheme [Reg05].

3. Sample vectors a1, . . . ,aN ←↩ U(Znq ) and x1, . . . ,xN ←↩ χt to compute

(ai,bi) =
(
ai, ST · ai + xi +Mi · bq/2c

)
∈ Znq × Ztq ∀i ∈ [N ]. (9.7)

4. For each i ∈ [N ], generate a signature (τi,vi) ← Sign(SKsig, τ,mi) on the
decomposition mi = vdecn+t,q−1(aTi |bTi )T ∈ {0, 1}md .

5. SI sends R0 =
(
PKsig, (F,P), {(ai,bi), (τi,vi)}Ni=1

)
to RI and interactively

proves knowledge of small-norm S ∈ Zn×t, E ∈ Zm×t, short vectors {xi}Ni=1
and t-bit messages {Mi}Ni=1, for which (9.6) and (9.7) hold. To this end, SI plays
the role of the prover in the ZK argument system described in Section 9.5.2. If
the argument of knowledge does not verify or if there exists i ∈ [N ] such that
(τi,vi) is an invalid signature on the message mi = vdecn+t,q−1(aTi |bTi )T w.r.t.
PKsig , then RI aborts.

6. Finally SI de�nes S0 =
(
(S,E), (F,P), PKsig

)
, which it keeps to itself.

Transfer

(
ST(Si−1),RT(Ri−1, ρi)

)
: At the i-th transfer, the receiver RT has state Ri−1

and an index ρi ∈ [1, N ]. It interacts as follows with the sender ST that has state
Si−1 in order to obtain Mρi from DB.

1. RT samples vectors e ←↩ U({−1, 0, 1}m), µ ←↩ U({0, 1}t) and a random
ν ←↩ U([−B,B]t) to compute

(c0, c1) =
(
aρi + F · e, bρi + PT · e + µ · bq/2c+ ν

)
∈ Znq × Ztq, (9.8)

which is a re-randomization of (aρi ,bρi + µ · bq/2c). The ciphertext (c0, c1)
is sent to ST. In addition, RT provides an interactive WI argument that (c0, c1)
is indeed a transformation of (aρi ,bρi) for some ρi ∈ [N ], and RT knows a
signature on m = vdecn+1,q−1(aTρi |b

T
ρi)

T ∈ {0, 1}md . To this end, RT runs the
prover in the ZK argument system in Section 9.5.4.

2. If the argument of step 1 veri�es, ST uses S to decrypt (c0, c1) ∈ Znq × Ztq
and obtain M ′ = b(c1 − ST · c0)/(q/2)e ∈ {0, 1}t, which is sent back to RT.
In addition, ST provides a zero-knowledge argument of knowledge of vector
y = c1 − ST · c0 −M ′ · bq/2c ∈ Zt of norm ‖y‖∞ ≤ q/5 and small-norm
matrices E ∈ Zm×t, S ∈ Zn×t satisfying (modulo q)

P = FT · S + E cT0 · S + yT = cT1 −M ′
T · bq/2c. (9.9)

To this end, ST runs the prover in the ZK argument system in Section 9.5.3.
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3. If the ZK argument produced by ST does not properly verify at step 2, RT halts
and outputs ⊥. Otherwise, RT recalls the random string µ ∈ {0, 1}t that was
chosen at step 1 and computes Mρi = M ′ ⊕ µ. The transfer ends with ST and
RT outputting Si = Si−1 and Ri = Ri−1, respectively.

In the initialization phase, the sender has to repeat step 5 with each receiver to prove that
{(ai,bi)}Ni=1 are well-formed. Using the Fiat-Shamir heuristic [FS86], we can decrease this
initialization cost fromO(N ·U) toO(N) (regardless of the number of users U ) by making
the proof non-interactive. This modi�cation also reduces each transfer to 5 communication
rounds since, even in the transfer phase, the sender’s ZK arguments can be non-interactive
and the receiver’s arguments only need to be WI, which is preserved when the basic ZK
protocol (which has a ternary challenge space) is repeated ω(logn) times in parallel. To
keep the security proof simple, we derive the matrix F ∈ Zn×mq from a second random
oracle. Knowing a short basis of Λ⊥q (F), the simulator can extract the columns of S from
the public key P ∈ Zn×mq . Details are given in Appendix 9.6.

9.3.2 Security

The security of the above OT Nk×1 protocol against static corruptions is stated by the
following theorems.

Theorem 9.4. The OT Nk×1 protocol provides receiver security under the SIS assumption.

Proof. We prove that any real-world cheating sender Ŝ implies an ideal-world cheating
sender Ŝ′ such that, under the SIS assumption, the two distributions RealŜ,R and IdealŜ′,R′
with common inputs (N, k,M1, . . . ,MN , ρ1, . . . , ρk) are indistinguishable to any PPT
distinguisher D.
To this end, we consider a sequence of hybrid experiments with binary outputs. In each
experiment Expi, a distinguisher D takes as input the states (Sk, Rk) produced by Ŝ and R′
at the end of the experiment and outputs a bit. We de�ne Wi as the event that the output of
experiment Expi is 1. The �rst experiment outputs whatever the distinguisher D outputs
and corresponds to the real interaction between the cheating sender Ŝ and the receiver R.

Exp0: This experiment involves a real execution of Ŝ in interaction with a honest receiver
R which queries the index ρi ∈ [N ] at the i-th transfer for each i ∈ [k]. The output
of Exp0 is exactly the output of the distinguisher D on input of X = (Sk, Rk) ←
RealS,R̂, so that we have

Pr[W0] = Pr[D(X) = 1 | X ← RealŜ,R].

Exp1: This experiment is like Exp0 except that, at step 5 of the initialization phase, the
knowledge extractor of the argument system is used to extract the witnesses sj ∈ χn,
ej ∈ χm, x̄j ∈ χN , M̄j ∈ {0, 1}N , for each j ∈ [t], from the sender’s argument. In
the event that the knowledge extractor fails to extract valid witnesses, the experi-
ment aborts and outputs ⊥. We know that the zero-knowledge argument system is
computationally sound as long as the underlying commitment is computationally
binding. If the perfectly hiding commitment of [KTX08] is used, the binding property
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is in turn implied by the SIS assumption. Under the SIS assumption, it follows that
Exp1 returns 1 with about the same probability as Exp0. Speci�cally, there exists a
SIS solver B such that |Pr[W1]− Pr[W0]| ≤ AdvSIS

B (λ).

Exp2: This experiment is identical to Exp1 except that the receiver R′ makes use of the
matrix S ∈ χn×t, which underlies P ∈ Zm×tq in (9.6) and was extracted at step 5 of
the initialization phase. Namely, at step 2 of each transfer, R′ uses S to determine if
the ZK argument sent by Ŝ is really an argument for a true statement or if Ŝ somehow
managed to break the soundness of the argument system. Namely, upon receiving
the response M ′ ∈ {0, 1}t of Ŝ at step 2, R′ uses the previously extracted S ∈ χn×t
to determine whether there exists a vector y ∈ Zt of norm ‖y‖∞ ≤ q/5 such that

cT0 · S + yT = cT1 −M ′
T · bq/2c. (9.10)

If no such vector y exists, R′ infers that Ŝ broke the soundness of the argument
system. In this case, Ŝ can be rewound so as to break the binding property of the
statistically hiding commitment scheme used by the ZK argument system, which in
turn contradicts the SIS assumption. We thus have |Pr[W2]−Pr[W1]| ≤ AdvSIS

B (λ)
for some e�cient algorithm B which is given rewinding access to Ŝ.

Exp3: This experiment is like Exp2 with the di�erence that, at each transfer, the receiver R′
chooses the index ρi = 1 and thus always requests the �rst message of the encrypted
database. In more details, at each transfer, R′ samples vectors e←↩ U({−1, 0, 1}m),
µ←↩ U({0, 1}t) and ν ←↩ U([−B,B]t) to compute and send

(c0, c1) =
(
a1 + F · e, b1 + PT · e + µ · bq/2c+ ν

)
∈ Znq × Ztq,

which is a re-randomization of (a1,b1 + µ · bq/2c). Moreover, R′T uses the wit-
ness ρi = 1 to faithfully generate an interactive WI argument that (c0, c1) is a re-
randomization of (aρi ,bρi). It thus generates a WI argument of knowledge of vectors
m = vdecn+t,q−1(a1|b1) ∈ {0, 1}md , e ∈ {−1, 0, 1}t, µ ∈ {0, 1}t, ν ∈ [−B,B]t,
τ ∈ {0, 1}` and (vT1 |vT2 )T ∈ Z2m satisfying relations (9.22). By the statistically
WI of the interactive argument system, this modi�cation has no noticeable impact
on the output distribution of a cheating sender Ŝ. Indeed, since we chose B as a
randomization parameter such that (m+ 1)αq/B is negligible, the result of [DS16,
Section 4.1] implies that always re-randomizing (a1,b1 + µ · bq/2c) leaves the view
of Ŝ statistically unchanged. We have |Pr[W2]− Pr[W1]| ≤ negl(λ).

In Exp3, we can de�ne the ideal-world cheating sender Ŝ′ which emulates the honest receiver
R′ interacting with Ŝ. At the initialization phase, Ŝ′ appeals to the knowledge extractor
of the argument system so as to extract the small-norm matrices S = [s1| . . . |st] ∈ χn×t
and E = [e1| . . . |et] ∈ χm×t satisfying (9.6). Armed with the decryption key E ∈ χm×t
of the cryptosystem, Ŝ′ can decrypt {(ai,bi)}Ni=1 and obtain the messages M1, . . . ,MN ∈
{0, 1}N that were encrypted in (9.7) by Ŝ. It then submits M1, . . . ,MN ∈ {0, 1}N to
the trusted party T. As in Exp2, during each transfer phase, Ŝ′ computes (c0, c1) as a
re-randomization of (a1,b1) ∈ Znq × Ztq and faithfully generates the receiver’s argument
of knowledge using the witness ρi = 1 at step 1. At step 2 of each transfer, Ŝ′ plays the role
of the veri�er on behalf of R′ in the interactive zero-knowledge argument generated by Ŝ.
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If Ŝ′ detects that Ŝ creates a verifying argument for a false statement (which Ŝ′ can detect
using the extracted matrix S ∈ Zn×t, by applying the test (9.10)), it aborts the interaction
as in Exp3. If the ZK argument involves a true statement, Ŝ′ sends 1 to the trusted party T
so as to authorize the transfer in the ideal world. Otherwise, Ŝ′ sends 0 to T. At the end of
the k-th transfer phase, Ŝ′ outputs whatever Ŝ outputs as its �nal state Sk.
In Exp3, it is easy to see that

Pr[W3] = Pr[D(X) = 1 | X ← IdealŜ′,R′ ].

When putting the above altogether, we �nd that there exists a PPT SIS solver B such that

|Pr[D(X) = 1 | X ← RealŜ,R]

− Pr[D(X) = 1 | X ← IdealŜ′,R′ ]| ≤ 2 ·AdvSIS
B (λ) + negl(λ),

which proves the result.

Theorem 9.5. TheOT Nk×1 protocol provides sender security under the SIS and LWE assump-
tions.

Proof. Given a real malicious receiver R̂, we construct a cheating receiver R̂′ in the ideal
world such that, under the SIS and LWE assumption, no PPT distinguisher D can tell
apart the distributions RealS,R̂ and IdealS′,R̂′ under common inputs: N , k, M1, . . . ,MN ,
ρ1, . . . , ρk.
To do this, we proceed again via a sequence of hybrid experiments with binary outputs.
For each i, we consider the probability that a distinguisher D outputs 1 on input of the
states (Sk, Rk) that constitute the outcome of experiment Expi. We also de�ne Wi to be
the event that experiment Expi outputs 1.

Exp0: This experiment corresponds to a real execution of R̂ in interaction with a honest
sender S(M1, . . . ,MN ). The output of the experiment is identical to that of the
distinguisher D on input of X = (Sk, Rk)← RealS,R̂. We have

Pr[W0] = Pr[D(X) = 1 | X ← RealS,R̂].

Exp1: This experiment departs from Exp0 in that, when the dishonest receiver R̂T sends the
ciphertext (c0, c1) ∈ Znq × Ztq at step 1 of each transfer, the knowledge extractor of
the argument system is used to extract the witnesses m ∈ {0, 1}md , e ∈ {−1, 0, 1}t,
µ ∈ {0, 1}t, ν ∈ [−B,B]t, τ ∈ {0, 1}` and v = (vT1 |vT2 )T ∈ Z2m which satisfy
(9.22). If the knowledge extractor fails to produce valid witnesses at some transfer, the
experiment aborts and outputs⊥. Recall that the zero-knowledge argument system is
computationally sound if the underlying commitment is binding, which is equivalent
to the SIS assumption if the perfectly hiding commitment of [KTX08] is used. Under
the SIS assumption, experiment Exp1 returns 1 with about the same probability as
Exp0. There thus exists a SIS solver B such that |Pr[W1]−Pr[W0]| ≤ k ·AdvSIS

B (λ),
where k is the number of transfers.
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Exp2: This experiment is identical to Exp1 except that, at step 1 of each transfer, the
experiment aborts if the extracted witnesses m ∈ {0, 1}md , e ∈ {−1, 0, 1}t, µ ∈
{0, 1}t, ν ∈ [−B,B]t, τ ∈ {0, 1}` and v = (vT1 |vT2 )T ∈ Z2m are such that the
product [

am

bm

]
=
[

Hn,q−1
Ht,q−1

]
·m ∈ Zn+t

q

does not match any ciphertext {(ai,bi)}Ni=1 appearing in R0 (namely, we have
(am,bm) 6= (ai,bi) for each i ∈ [N ]). We claim that such an event implies a breach
in the bounded message security of the signature scheme:

Lemma 9.6. Under the SIS assumption, experiments Exp2 and Exp1 are computation-
ally indistinguishable: there exists a PPT algorithm B such that |Pr[W2]− Pr[W1]| ≤
N ·AdvSIS

B (λ).

Exp3: This experiment is like Exp2 except that, at step 5 of the initialization phase, the zero-
knowledge argument of knowledge of sj ∈ χn, ej ∈ χm, x̄j ∈ χN , M̄j ∈ {0, 1}N
such that

[
FT Im

AT
DB IN bq/2c · IN

]
·


sj
ej
x̄j
M̄j

 =
[

pj
b̄j

]
∀j ∈ [t]

is replaced by a simulated interactive argument and so is the ZK argument of knowl-
edge of {(sj , ej ,y[j])}tj=1 satisfying (9.20) at step 2 of each transfer protocol. From
this experiment on, we notice that the small-norm matrices S = [s1| . . . |st] ∈ Zn×t,
E = [e1| . . . |et] ∈ χm×t satisfying (9.6) are no longer used by the sender S. Yet,
the statistical ZK property of the zero-knowledge argument system ensures that
|Pr[W3]− Pr[W2]| ≤ negl(λ).

Exp4: This experiment is like Exp3 with the di�erence that, at step 2 of the initializa-
tion phase, each column pi of the Regev’s encryption public key matrix P =
[p1 | . . . | pt] = FT · S + E ∈ Zm×tq is traded for a uniformly random vector
pi ← U(Zmq ). At the same time, each bi = ST ·ai+xi+Mib q2c ∈ Ztq is replaced by
a truly uniform random vector in Ztq . Therefore, P is a uniformly distributed matrix
in Zm×tq , and the (bi)Ni=1 are distributed as uniform vectors in (Ztq)N . Now, at step 5
of the initialization phase and step 2 of each transfer, the sender’s zero-knowledge
arguments are simulated arguments for false statements. However, a straightforward
reduction shows that, under the LWE assumption over t · (m+N) samples, these
changes should remain unnoticed to the malicious receiver R̂ and have no impact on
the distinguisher’s output: we have |Pr[W4]− Pr[W3]| ≤ AdvLWE

B (λ).

The ideal-world receiver R̂′ is de�ned as follows. It assumes the role of the sender S′ in
interaction with the real-world receiver R̂ in Exp4. This implies that, in the initialization
phase, the matrices (F,P) are chosen as uniformly random matrices (F,P)← U(Zn×mq ×
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Zm×tq ) and while, at step 3, (ai,bi)← U(Znq × Ztq) is chosen at random for each i ∈ [N ].
The randomly generated pairs {(ai,bi)}Ni=1 are faithfully signed using SKsig = TA at
step 4. In step 5 of the initialization phase, R̂′ appeals to the simulator of the ZK argument.
At the i-th transfer, when R̂ sends (c0, c1) and argues knowledge of (m, e, µ, ν, τ,v1,v2)
at step 1, R̂′ uses the knowledge extractor of the argument system to extract the witnesses
(m, e, µ, ν, τ,v1,v2) ∈ {0, 1}md×{−1, 0, 1}t×{0, 1}t×[−B,B]t×{0, 1}` and determine
the index ρi ∈ [N ] such that[

aρi
bρi

]
=
[

Hn,q−1
Ht,q−1

]
·m ∈ Zn+t

q .

Note that, by Lemma 9.6, such an index must exist unless R̂ can forge a signature. Having
determined the index ρi ∈ [N ] of the queried database entry, R̂′ sends ρi to the trusted
party T which returns the message Mρi ∈ {0, 1}t. The latter is used together with the
extracted witness µ ∈ {0, 1}t to de�ne the response M ′ = Mρi ⊕ µ ∈ {0, 1}t that R̂′
generates on behalf of the sender Ŝ′ at step 2 of the transfer. In addition, the ideal-world
dishonest receiver R̂′ appeals to the simulator of the zero-knowledge argument system to
simulate an argument of knowledge of {(sj , ej ,y[j])}tj=1 for the statement (9.20).

It is easy to see that, when R̂ interacts with the simulator R̂′ that emulates the real-world
sender S′, its view is identical to that of Exp4: we have

Pr[W4] = Pr[D(X) = 1 | X ← IdealS′,R̂′ ].

When combining the above, we conclude that there exist PPT algorithms B and B′ such
that

|Pr[D(X) = 1 | X ← RealS,R̂]

− Pr[D(X) = 1 | X ← IdealS′,R̂′ ]| ≤ 2 ·AdvSIS
B (λ) + AdvLWE

B′ (λ) + negl(λ).

This proves the sender security under the SIS and LWE assumptions.

9.4 OT with Access Control for Branching Programs

In this section, we extend our protocol of Section 9.3 into a protocol where database entries
can be protected by access control policies consisting of branching programs. In a nutshell,
the construction goes as follows.
When the database is set up, the sender signs (a binary representation of) each database
entry (ai,bi) together with a hash value hBP,i ∈ Znq of the corresponding branching
program. For each possessed attribute x ∈ {0, 1}κ, the user U obtains a credential CredU,x
from the issuer.
If U has a credential CredU,x for an attribute x satisfying the ρ-th branching program, U
can re-randomize (aρ,bρ) into (c0, c1), which is given to the sender, while proving that:
(i) He knows a signature (τ,v) on some message (aρ,bρ,hBP,ρ) such that (c0, c1) is a
re-randomization of (aρ,bρ); (ii) The corresponding hBP,ρ is the hash value of (the binary
representation of) a branching program BPρ that accepts an attribute x ∈ {0, 1}κ for
which he has a valid credential CredU,x (i.e., BPρ(x) = 1).
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While statement (i) can be proved as in Section 9.3, handling (ii) requires a method of
proving the possession of a (committed) branching program BP and a (committed) input
x ∈ {0, 1}κ such that BP(x) = 1 while demonstrating possession of a credential for x.
Recall that a branching program BP of lengthL, input space {0, 1}κ and width 5 is speci�ed
by L tuples of the form (var(θ), πθ,0, πθ,1) where

- var : [L]→ [0, κ− 1] is a function that associates the θ-th tuple with the coordinate
xvar(θ) ∈ {0, 1} of the input x = (x0, . . . , xκ−1)T .

- πθ,0, πθ,1 : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} are permutations that determine the θ-th
step of the evaluation.

On input x = (x0, . . . , xκ−1)T , BP computes its output as follows. For each bit b ∈ {0, 1},
let b̄ denote the bit 1− b. Let ηθ denote the state of computation at step θ. The initial state
is η0 = 0 and, for θ ∈ [1, L], the state ηθ is computed as

ηθ = πθ,xvar(θ)(ηθ−1) = πθ,0(ηθ−1) · x̄var(θ) + πθ,1(ηθ−1) · xvar(θ).

Finally, the output of evaluation is BP(x) = 1 if ηL = 0, otherwise BP(x) = 0.
We now let δκ = dlog2 κe and note that each integer in [0, κ− 1] can be determined by δκ
bits. In particular, for each θ ∈ [L], let dθ,1, . . . , dθ,δκ be the bits representing var(θ). Then,
we consider the following representation of BP:

zBP =
(
d1,1, . . . , d1,δκ , . . . , dL,1, . . . , dL,δκ , π1,0(0), . . . , π1,0(4), π1,1(0), . . . ,

π1,1(4), . . . , πL,0(0), . . . , πL,0(4), πL,1(0), . . . , πL,1(4)
)T ∈ [0, 4]ζ , (9.11)

where ζ = L(δκ + 10).

9.4.1 The OT-AC Protocol

We assume public parameters p consisting of a modulus q, integers n, m such that m =
2ndlog qe, a public matrix Ā ∈ Zn×mq , the maximal length L ∈ poly(n) of branching
programs and their desired input length κ ∈ poly(n).

ISetup

(
p
)
: Given public parameters p = {q, n,m, Ā, L, κ}, �rst generate a key pair

(PKI , SKI) ← Keygen(p, 1) for the signature scheme in Section 7.1 in order to
sign single-block messages (i.e., Nb = 1) of length mI = n · dlog qe + κ. Letting
`I = O(n), this key pair contains SKI = TAI ∈ Zm×m and

PKI :=
(
AI , {AI,j}`Ij=0, DI , {DI,0,DI,1}, uI

)
.

Issue

(
I(p, SKI , PKI , PU,x)↔ U(p,x, stU)

)
: On common input x ∈ {0, 1}κ, the issuer

I and the user U interact in the following way:

1. If stU = ∅, U creates a pseudonym PU = Ā · eU ∈ Znq , for a randomly chosen
eU ←↩ U({0, 1}m), which is sent to I. It sets stU = (eU, PU, 0, ∅, ∅). Otherwise,
U parses its state stU as (eU, PU, fDB, CU,CredU).
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2. The issuer I de�nes the message mU,x = (vdecn,q−1(PU)T |xT )T ∈ {0, 1}mI .
Then, it runs the signing algorithm of Section 7.1 to obtain and return certU,x =(
τU,vU, rU

)
← Sign(SKI ,mU,x) ∈ {0, 1}`I × Z2m × Zm, which binds U’s

pseudonym PU to the attribute string x ∈ {0, 1}κ.
3. U checks that certU,x satis�es (7.2) and that ‖vU‖ ≤ σ

√
2m, rU ≤ σ

√
m. If

so, U sets CU := CU ∪ {x}, CredU := CredU ∪ {certU,x} and updates its state
stU = (eU, PU, fDB, CU,CredU). If certU,x does not properly verify, U aborts
the interaction and leaves stU unchanged.

DBSetup

(
PKI ,DB = {(Mi,BPi)}Ni=1

)
: The sender has DB = {(Mi,BPi)}Ni=1 which is

a database of N pairs made of a message Mi ∈ {0, 1}t and a policy realized by a
length-L branching program BPi = {vari(θ), πi,θ,0, πi,θ,1}Lθ=1.

1. Choose a random matrix AHBP ←↩ U
(
Zn×ζq

)
which will be used to hash the

description of branching programs.
2. Generate a key pair for the signature scheme of Section 9.2.1 in order to sign
Q = N messages of length md = (2n + t) · dlog qe each. This key pair
consists of SKsig = TA ∈ Zm×m and PKsig :=

(
A, {Aj}`j=0,D,u

)
, where

` = dlogNe and A,A0, . . . ,A` ∈ U(Zn×mq ), D ∈ U(Zn×mdq ) with m =
2ndlog qe, md = (2n+ t)dlog qe. The counter is initialized to τ = 0.

3. Sample S←↩ χn×t which will serve as a secret key for an LWE-based encryption
scheme. Then, sample F←↩ U(Zn×mq ), E←↩ χm×t to compute

P = [p1| . . . |pt] = FT · S + E ∈ Zm×tq (9.12)

so that (F,P) forms a public key for a t-bit variant of Regev’s system.
4. Sample vectors a1, . . . ,aN ←↩ U(Znq ) and x1, . . . ,xN ←↩ χt to compute

(ai,bi) =
(
ai, aTi · S + xi +Mi · bq/2c

)
∈ Znq × Ztq ∀i ∈ [N ] (9.13)

5. For each i = 1 to N , (ai,bi) is bound to BPi as follows.

a. Let zBP,i ∈ [0, 4]ζ be the binary representation of the branching program.
Compute its digest hBP,i = AHBP · zBP,i ∈ Znq .

b. Using SKsig , generate a signature (τi,vi) ← Sign(SKsig, τ,mi) on the
message mi = vdec2n+t,q−1(ai|bi|hBP,i) ∈ {0, 1}md obtained by decom-
posing (aTi |bTi |hTBP,i)T ∈ Z2n+t

q .

6. The database’s public key is de�ned as PKDB =
(
PKsig, (F,P), AHBP

)
while the encrypted database is {ERi =

(
ai,bi, (τi,vi)

)
,BPi}Ni=1. The sender

DB outputs
(
PKDB, {ERi,BPi}Ni=1

)
and keeps SKDB =

(
SKsig,S

)
.

Transfer

(
DB(SKDB, PKDB, PKI),U(ρ, stU, PKI , PKDB, ERρ,BPρ)

)
: From an index

ρ ∈ [N ], a record ERρ =
(
aρ,bρ, (τρ,vρ)

)
and a policy BPρ, the user U parses stU

as (eU, PU, fDB, CU,CredU). IfCU does not contain any x ∈ {0, 1}κ s.t. BPρ(x) = 1
and CredU contains the corresponding certU,x, U outputs ⊥. Otherwise, he selects
such a pair (x, certU,x) and interacts with DB:
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1. If fDB = 0, U interacts with DB for the �rst time and requires DB to prove
knowledge of small-norm S ∈ Zn×t, E ∈ Zm×t, {xi}Ni=1 and t-bit messages
{Mi}Ni=1 satisfying (9.12)-(9.13). To do this, DB uses the ZK argument in Sec-
tion 9.5.2. If there exists i ∈ [N ] such that (τi,vi) is an invalid signature on
vdec2n+t,q−1(aTi |bTi |hTBP,i)T or if the ZK argument does not verify, U aborts.
Otherwise, U updates stU and sets fDB = 1.

2. U re-randomizes the pair (aρ,bρ) contained in ERρ. It samples vectors e←↩
U({−1, 0, 1}m), µ←↩ U({0, 1}t) and ν ←↩ U([−B,B]t) to compute

(c0, c1) =
(
aρ + F · e, bρ + PT · e + µ · bq/2c+ ν

)
∈ Znq × Ztq, (9.14)

which is sent to DB as a re-randomization of (aρ,bρ + µ · bq/2c). Then, U
provides an interactive WI argument that (c0, c1) is a re-randomization of
some (aρ,bρ) associated with a policy BPρ for which U has a credential certU,x
for some x ∈ {0, 1}κ such that BPρ(x) = 1. In addition, U demonstrates
possession of: (i) a preimage zBP,ρ ∈ [0, 4]ζ of hBP,ρ = AHBP · zBP,ρ ∈ Znq ;
(ii) a credential CredU,x for the corresponding x ∈ {0, 1}κ and the private
key eU ∈ {0, 1}m for the pseudonym PU to which x is bound; (iii) the coins
leading to the randomization of some (aρ,bρ). Then entire step is conducted
by arguing knowledge of

eU ∈ {0, 1}m,mU,x ∈ {0, 1}mI , x ∈ {0, 1}κ, m̂U,x ∈ {0, 1}m/2
τU ∈ {0, 1}`I , vU = (vTU,1|vTU,2)T ∈ [−β, β]2m, rU ∈ [−β, β]m

// signature on mU,x = (vdecn,q−1(PU)T |xT )T

zBP,ρ ∈ [0, 4]ζ // representation of BPρ
m ∈ {0, 1}md , τ ∈ {0, 1}`, v = (vT1 |vT2 )T ∈ Z2m

// signature on m = vdec2n+t,q−1(aTi |b
T
i |h

T
BP,ρ)T

e ∈ {−1, 0, 1}t, µ ∈ {0, 1}t, ν ∈ [−B,B]t,
// coins allowing the re-randomization of (aρ,bρ)

satisfying the relations (modulo q)

H2n+t,q−1 ·m +

 F
PT It · bq/2c It

−AHBP

 ·


e
µ

ν

zBP,ρ

 =

c0

c1

0n


// (recall that (aTρ |bTρ |hTBP,ρ)T = H2n+t,q−1 · m)

A · v1 + A0 · v2 +
∑`

j=1 Aj · (τ [j] · v2)−D ·m = u

AI · vU,1 + AI,0 · vU,2 +
∑`I

j=1 AI,j · (τU[j] · vU,2)−DI · m̂U,x = uI
DI,0 · rU + DI,1 ·mU,x −Hn,q−1 · m̂U,x = 0[

Hn,q−1 0
0 Iκ

]
·mU,x +

[
−Ā
0

]
· eU +

[
0
−Iκ

]
· x = 0

(9.15)

and such that zBP,ρ ∈ [0, 4]ζ encodes BPρ such that BPρ(x) = 1. This is done
by running the argument system described in Section 9.5.5.

3. If the ZK argument of step 2 veri�es, DB decrypts (c0, c1) ∈ Znq ×Ztq to obtain
M ′ = b(c1 − ST · c0)/(q/2)e ∈ {0, 1}t, which is returned to U. Then, DB
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argues knowledge of y = c1−ST ·c0−M ′ · bq/2c ∈ Zt of norm ‖y‖∞ ≤ q/5
and small-norm E ∈ Zm×t, S ∈ Zn×t satisfying (modulo q)

P = FT · S + E , cT0 · S + yT = cT1 −M ′
T · bq/2c.

To this end, DB uses the ZK argument system of Section 9.5.3.
4. If the ZK argument produced by DB does not verify, U outputs ⊥. Otherwise,

U recalls the string µ ∈ {0, 1}t and outputs Mρi = M ′ ⊕ µ.

Like our construction of Section 9.3, the above protocol requires the DB to repeat a ZK
proof of communication complexity Ω(N) with each user U during the initialization
phase. By applying the Fiat-Shamir heuristic as in Appendix 9.6, the cost of the initial-
ization phase can be made independent of the number of users: the sender can publicize(
PKDB, {ERi,BPi}Ni=1

)
along with a with a universally veri�able non-interactive proof

of well-formedness.
The security of the above protocol against static corruptions is proved in [LLM+17], under
the SIS and LWE assumptions and is similar to the previous proofs.

9.5 Zero-Knowledge Subprotocols for Stern Protocol

9.5.1 Our Strategy and Basic Techniques, In a Nutshell

Before going into the details of our protocols, we �rst summarize our governing strategy
and the techniques that will be used in the next subsections.
In each protocol, we prove knowledge of (possibly one-dimensional) integer vectors {wi}i
that have various constraints (e.g., smallness, special arrangements of coordinates, or
correlation with one another) and satisfy a system{∑

i

Mi,j ·wi = vj
}
j
, (9.16)

where {Mi,j}i,j , {vj}j are public matrices (which are possibly zero or identity matrices)
and vectors. Our strategy consists in transforming this entire system into one equivalent
equation M ·w = v, where matrix M and vector v are public, while the constraints of the
secret vector w capture those of witnesses {wi}i and they are provable in zero-knowledge
via random permutations. For this purpose, the Stern-like protocol from Section 4.3 comes
in handy.
A typical transformation step is of the form wi → w̄i, where there exists public matrix Pi,j

such that Pi,j · w̄i = wi. This subsumes the decomposition and extension mechanisms
which �rst appeared in [LNSW13].

• Decomposition: Used when wi has in�nity norm bound larger than 1 and we want
to work more conveniently with w̄i whose norm bound is exactly 1. In this case,
Pi,j is a decomposition matrix.

• Extension: Used when we insert “dummy” coordinates to wi to obtain w̄i whose
coordinates are somewhat balanced. In this case, Pi,j is a {0, 1}-matrix with zero-
columns corresponding to positions of insertions.
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9.5. Zero-Knowledge Subprotocols for Stern Protocol

Such a step transforms the term Mi,j ·wi into Mi,j · w̄i, where Mi,j = Mi,j · Pi,j is a
public matrix. Also, using the commutativity property of addition, we often group together
secret vectors having the same constraints.
After a number of transformations, we will reach a system equivalent to (9.16):

M′
1,1 ·w′1 + M′

1,2 ·w′2 + · · ·+ M′
1,k ·w′k = v1,

...
M′

t,1 ·w′1 + M′
t,2 ·w′2 + · · ·+ M′

t,k ·w′k = vt,
(9.17)

where integers t, k and matrices M′
i,j are public. De�ning

M =


M′

1,1 M′
1,2 · · · M′

1,k
...

... . . . ...
M′

t,1 M′
t,2 · · · M′

t,k

 ; w =


w′1

...
w′k

 ; v =


v1
...

vt

 ,
we obtain the uni�ed equation M ·w = v mod q. At this stage, we will use a properly
de�ned composition of random permutations to prove the constraints of w. We remark
that the crucial aspect of the above process is in fact the manipulation of witness vectors,
while the transformations of public matrices/vectors just follow accordingly. To ease the
presentation of the next subsections, we will thus only focus on the secret vectors.
In the process, we will employ various extending and permuting techniques which require
introducing some notations. The most frequently used ones are given in Table 9.1. Some
of these techniques appeared (in slightly di�erent forms) in previous works [LNSW13,
LNW15, LLNW16, LLM+16a, LLM+16b]. The last three parts of the table summarizes
newly-introduced techniques that will enable the treatment of secret-and-correlated objects
involved in the evaluation of hidden branching programs.
In particular, the intriguing technique of the last row will be used for proving knowledge
of secret integer z of the form z = x · y for some (x, y) ∈ [0, 4]× {0, 1} satisfying other
relations. The following example illustrates how it works.

Example. Let (x, y) = (2, 1) and (c, b) = (4, 1). Then we have:

ext5×2(2, 1) =
(
0, 1, 0, 0, 0, 4, 0, 3, 0, 2

)T
T5×2[4, 1]

(
ext5×2(2, 1)

)
=

(
0, 0, 4, 0, 3, 0, 2, 0, 1, 0

)T
Note that: T5×2[4, 1]

(
ext5×2(2, 1)

)
= ext5×2(1, 0) = ext5×2(2 + 4 mod 5, 1⊕ 1).

9.5.2 Protocol 1

Let n,m, q,N, t, Bχ be the parameters de�ned in Section 9.3. The protocol allows the
prover to prove knowledge of LWE secrets and the well-formedness of ciphertexts. It is
summarized as follows.

Common input: F ∈ Zn×mq , P ∈ Zm×tq ; {ai ∈ Znq , bi ∈ Ztq}Ni=1.
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9. Lattice-Based Oblivious Transfer with Access Control

Notation Meaning/Property/Usage/Technique

B2
m • The set of vectors in {0, 1}2m with Hamming weight m.

• ∀φ ∈ S2m,x′ ∈ Z2m : x′ ∈ B2
m ⇔ φ(x′) ∈ B2

m.
• To prove x ∈ {0, 1}m: Extend x to x′ ∈ B2

m, then permute x′.

B3
m • The set of vectors in {−1, 0, 1}3m that have exactly m coordinates equal to j, for every

j ∈ {−1, 0, 1}.
• ∀φ ∈ S3m,x′ ∈ Z3m : x′ ∈ B3

m ⇔ φ(x′) ∈ B3
m.

• To prove x ∈ {−1, 0, 1}m: Extend x to x′ ∈ B3
m, then permute x′.

ext2(·)
and
T2[·](·)

• For c ∈ {0, 1} : ext2(c) = (c̄, c)T ∈ {0, 1}2.
• For b ∈ {0, 1} and x = (x0, x1)T ∈ Z2: T2[b](x) = (xb, xb̄)T .
• Property: x = ext2(c)⇔ T2[b](x) = ext2(c⊕ b).
• To prove c ∈ {0, 1} simultaneously satis�es many relations: Extend it to x = ext2(c),

then permute and use the same b at all appearances.

expand(·,·)
and
Texp[·,·](·)

• For c ∈ {0, 1} and x ∈ Zm: expand(c,x) = (c̄ · xT | c · xT )T ∈ Z2m.

• For b ∈ {0, 1}, φ ∈ Sm, v =
(

v0
v1

)
∈ Z2m: Texp[b, φ](v) =

(
φ(vb)
φ(vb̄)

)
.

• Property: v = expand(c,x)⇔ Texp[b, φ](v) = expand(c⊕ b, φ(x)).

[·]5 For k ∈ Z: [k]5 denotes the integer t ∈ {0, 1, 2, 3, 4}, s.t. t = k mod 5.

ext5(·)
and
T5[·](·)

• For x ∈ [0, 4] : ext5(x) = ([x+ 4]5, [x+ 3]5, [x+ 2]5, [x+ 1]5, x)T ∈ [0, 4]5.
• For c ∈ [0, 4] and v = (v0, v1, v2, v3, v4)T ∈ Z5:

T5[c](v) =
(
v[−c]5 , v[−c+1]5 , v[−c+2]5 , v[−c+3]5 , v[−c+4]5

)T
.

• Property: v = ext5(x)⇔ T5[c](v) = ext5(x+ c mod 5).
• To prove x ∈ [0, 4] simultaneously satis�es many relations: Extend it to v = ext5(x),

then permute and use the same c at all appearances.

unitx • ∀x ∈ [0, 4]: unitx is the 5-dim unit vector (v0, . . . , v4)T with vx = 1.
• For c ∈ [0, 4],v ∈ Z5: v = unitx ⇔ T5[c](v) = unitx+c mod 5.
→ Allow proving v = unitx for some x ∈ [0, 4] satisfying other relations.

ext5×2(·,·)
and
T5×2[·,·](·)

• For x ∈ [0, 4] and y ∈ {0, 1}:
ext5×2(x, y) = ([x+ 4]5 · ȳ, [x+ 4]5 ·y, [x+ 3]5 · ȳ, [x+ 3]5 ·y, [x+ 2]5 · ȳ,

[x+ 2]5 ·y, [x+ 1]5 · ȳ, [x+ 1]5 ·y, x · ȳ, x ·y)T ∈ [0, 4]10

• For (c, b) ∈ [0, 4]× {0, 1} and v = (v0,0, v0,1, . . . , v4,0, v4,1)T ∈ Z10:
T5×2[c, b](v) =

(
v[−c]5,b, v[−c]5,b

, v[−c+1]5,b, v[−c+1]5,b
, v[−c+2]5,b,

v[−c+2]5,b
, v[−c+3]5,b, v[−c+3]5,b

, v[−c+4]5,b, v[−c+4]5,b

)T
.

• Property: v = ext5×2(x, y)⇔ T5×2[c, b](v) = ext5×2(x+ c mod 5, y ⊕ b).
→ Allow proving z = x · y for some (x, y) ∈ [0, 4]× {0, 1} satisfying other relations:
Extend z to v = ext5×2(x, y), then permute and use the same c, b at all appearances of
x, y, respectively.

Table 9.1 – Basic notations and extending/permuting techniques used in our protocols.
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Prover’s goal is to prove knowledge of S ∈ [−Bχ, Bχ]n×t, E ∈ [−Bχ, Bχ]m×t, {xi ∈
[−Bχ, Bχ]t,Mi ∈ {0, 1}t}Ni=1 such that the following equations hold:

{
FT · S + E = P mod q
∀i ∈ [N ] : ST · ai + xi + bq/2c ·Mi = bi mod q.

(9.18)

For each j ∈ [t], let pj , sj , ej be the j-th column of matrices P,S,E, respectively. For each
(i, j) ∈ [N ] × [t], let bi[j],xi[j],Mi[j] denote the j-th coordinate of vectors bi,xi,Mi,
respectively. Then, observe that (9.18) can be rewritten as:

{
∀j ∈ [t] : FT · sj + Im · ej = pj mod q
∀(i, j) ∈ [N ]× [t] : aTi · sj + 1 · xi[j] + bq/2c ·Mi[j] = bi[j] mod q.

(9.19)

Then, we form the following vectors:

w1 =
(
sT1 | . . . | sTt | eT1 | . . . | eTt | (x1[1], . . . ,xN [t])

)T ∈ [−Bχ, Bχ](n+m+N)t;
w2 = (M1[1], . . . ,MN [t])T ∈ {0, 1}Nt.

Next, we run vdec′(n+m+N)t,Bχ to decompose w1 into w̄1 and then extend w̄1 to w∗1 ∈
B3

(n+m+N)tδBχ
. We also extend w2 into w∗2 ∈ B2

Nt and we then form w = ((w∗1)T |
(w∗2)T )T ∈ {−1, 0, 1}D , where D = 3(n+m+N)tδBχ + 2Nt.
Observe that relations (9.19) can be transformed into one equivalent equation of the form
M ·w = v mod q, where M and v are built from the common input.
Having performed the above uni�cation, we now de�ne VALID as the set of all vectors
t = (tT1 | tT2 )T ∈ {−1, 0, 1}D, where t1 ∈ B3

(n+m+N)tδBχ
and t2 ∈ B2

Nt. Clearly, our
vector w belongs to the set VALID.
Next, we specify the set S and permutations of D elements {Γφ : φ ∈ S}, for which the
conditions in (4.3) hold.

• S := S3(n+m+N)tδBχ × S2Nt.

• For φ = (φ1, φ2) ∈ S and for t = (tT1 | tT2 )T ∈ ZD, where t1 ∈ Z3(n+m+N)tδBχ

and t2 ∈ Z2Nt, we de�ne Γφ(t) = (φ1(t1)T | φ2(t2)T )T .

By inspection, it can be seen that the desired properties in (4.3) are satis�ed. As a result, we
can obtain the required ZKAoK by running the protocol from Section 4.3.2 with common
input (M,v) and prover’s input w. The protocol has communication cost O(D log q) =
Õ(λ) · O(Nt) bits.
While this protocol has linear complexity in N , it is only used in the initialization phase,
where Ω(N) bits inevitably have to be transmitted anyway.
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9.5.3 Protocol 2

Let n,m, q,N, t, B be system parameters. The protocol allows the prover to prove knowl-
edge of LWE secrets and the correctness of decryption.

Common input: F ∈ Zn×mq , P ∈ Zm×tq ; c0 ∈ Znq , c1 ∈ Ztq , M ′ ∈ {0, 1}t.

Prover’s goal is to prove knowledge of S ∈ [−Bχ, Bχ]n×t, E ∈ [−Bχ, Bχ]m×t and
y ∈ [−q/5, q/5]t such that the following equations hold:

FT · S + E = P mod q; cT0 · S + yT = cT1 −M ′T · bq/2c mod q. (9.20)

For each j ∈ [t], let pj , sj , ej be the j-th column of matrices P,S,E, respectively; and let
y[j], c1[j],M ′[j] be the j-th entry of vectors y, c1,M

′, respectively. Then, observe that
(9.20) can be re-written as:

∀j ∈ [t] :
{

FT · sj + Im · ej = pj mod q
cT0 · sj + 1 · y[j] = c1[j]−M ′[j] · bq/2c mod q.

(9.21)

Next, we form vector w1 = (sT1 | . . . | sTt | eT1 | . . . | eTt )T ∈ [−Bχ, Bχ](n+m)t, then
decompose it to w̄1 ∈ {−1, 0, 1}(n+m)tδBχ , and extend w̄1 to w∗1 ∈ B3

(n+m)tδBχ
.

At the same time, we decompose vector y = (y[1], . . . ,y[t])T ∈ [−q/5, q/5]t to ȳ ∈
{−1, 0, 1}tδq/5 , and then extend ȳ to y∗ ∈ B3

tδq/5
.

De�ning the ternary vector w = ((w∗1)T | (y∗)T )T ∈ {−1, 0, 1}D of dimension D =
3(n + m)tδBχ + 3tδq/5, we �nally obtain the equation M · w = v mod q, for public
matrix M and public vector v. Using similar arguments as in Section 9.5.2, we can obtain
the desired zero-knowledge argument system. The protocol has communication cost
O(D log q) = Õ(λ) · O(t) bits.

9.5.4 Protocol 3

Let n,m,md, q, t, `, B be the parameters de�ned in Section 9.3. The protocol allows the
prover to argue that a given ciphertext is a correct randomization of some hidden ciphertext
and that he knows a valid signature on that ciphertext. Let β be the in�nity norm bound of
these valid signatures.

Common input: It consists of matrices F ∈ Zn×mq , P ∈ Zm×tq , A, A0, A1, . . . ,A` ∈
Zn×mq , D ∈ Zn×mdq and vectors c0 ∈ Znq , c1 ∈ Ztq, u ∈ Znq .

Prover’s goal is to prove knowledge of m ∈ {0, 1}md , µ ∈ {0, 1}t, e ∈ {−1, 0, 1}t,
ν ∈ [−B,B]t, τ = (τ [1], . . . , τ [`])T ∈ {0, 1}`, v1,v2 ∈ [−β, β]m such that the
following equations hold:


A · v1 + A0 · v2 +

∑`
j=1 Aj · (τ [j] · v2)−D ·m = u mod q;

Hn+t,q−1·m +
(

F
PT

)
·e +

(
0n×t

b q2c·It

)
·µ+

(
0n×t

It

)
·ν =

(
c0

c1

)
mod q.

(9.22)
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For this purpose, we perform the following transformations on the witnesses.

Decompositions. Decompose vectors v1,v2, ν to vectors v̄1 ∈ {−1, 0, 1}mδβ , v̄2 ∈
{−1, 0, 1}mδβ , ν̄ ∈ {−1, 0, 1}tδB , respectively.

Extensions/Combinations.

• Let w1 = (mT | µT )T ∈ {0, 1}md+t and extend it into w∗1 ∈ B2
md+t.

• Let w2 = (v̄T1 | ν̄T | eT )T ∈ {−1, 0, 1}mδβ+tδB+t and extend it into the vector
w∗2 ∈ B3

mδβ+tδB+t.

• Extend v̄2 into s0 ∈ B3
mδβ

. Then, for each j ∈ [`], de�ne sj = expand(τ [j], s0). (We
refer to Table 9.1 for details about expand(·, ·).)

Now, we form vector w =
(
w∗1T | w∗2T | sT0 | sT1 | . . . | sT`

)T ∈ {−1, 0, 1}D, where
D = (2`+ 2)3mδβ + 3tδB + 3t+ 2(md + t). At this point, we observe that the equations
in (9.22) can be equivalently transformed into M ·w = v mod q, where the matrix M and
the vector v are built from the public input.

Having performed the above transformations, we now de�ne VALID as the set of all
vectors t = (tT1 | tT2 | tT3,0 | tT3,1 | . . . | tT3,`)T ∈ {−1, 0, 1}D for which there exists
τ = (τ [1], . . . , τ [`])T ∈ {0, 1}` such that:

t1 ∈ B2
md+t; t2 ∈ B3

mδβ+tδB+t; t3,0 ∈ B3
mδβ

; ∀j ∈ [`] : t3,j = expand(τ [j], t3,0).

It can be seen that w belongs to this tailored set. Now, let us specify the set S and
permutations of D elements {Γφ : φ ∈ S} satisfying the conditions in (4.3).

• S := S2(md+t) × S3(mδβ+tδB+t) × S3mδβ × {0, 1}`.

• For φ =
(
φ1, φ2, φ3, (b[1], . . . , b[`])T

)
∈ S , we de�ne the permutation Γφ that

transforms vector t = (tT1 | tT2 | tT3,0 | tT3,1 | . . . | tT3,`)T ∈ ZD as follows:

Γφ(t) =
(
φ1(t1)T | φ2(t2)T | φ3(t3,0)T |

Texp[b[1], φ3](t3,1)T | . . . | Texp[b[`], φ3](t3,`)T
)T
.

By inspection, it can be seen that the properties in (4.3) are indeed satis�ed. As a result, we
can obtain the required argument of knowledge by running the protocol from Section 4.3.2
with common input (M,v) and prover’s input w. The protocol has communication cost
O(D log q) = Õ(λ) · O(logN + t) bits.

9.5.5 Protocol 4: A Treatment of Hidden Branching Programs

We now present the proof system run by the user in the OT-AC system of Section 9.4. It
allows arguing knowledge of an input x = (x0, . . . , xκ−1)T ∈ {0, 1}κ satisfying a hidden
branching program BP = {(var(θ), πθ,0, πθ,1)}Lθ=1 of length for L ∈ poly(λ). The prover
should additionally demonstrate that: (i) He has a valid credential for x; (ii) The hashed
encoding of BP is associated with some hidden ciphertext of the database (and he knows
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a signature guaranteeing this link); (iii) A given ciphertext is a re-randomization of that
hidden ciphertext.
Recall that, at each step θ ∈ [L] of the evaluation of BP(x), we have to look up the value
xvar(θ) in x = (x0, . . . , xκ−1)T to compute the θ-th state ηθ as per

ηθ = πθ,xvar(θ)(ηθ−1) = πθ,0(ηθ−1) · x̄var(θ) + πθ,1(ηθ−1) · xvar(θ). (9.23)

To prove that each step is done correctly, it is necessary to provide evidence that the
corresponding search is honestly carried out without revealing xvar(θ), var(θ) nor {πθ,b}1b=0.
To this end, a �rst idea is to perform a simple left-to-right search on (x0, . . . , xκ−1): namely,
(9.23) is expressed in terms of a matrix-vector relation where ηθ is encoded as a unit vector of
dimension 5; {πθ,b}1b=0 are represented as permutation matrices; and xvar(θ) = Mvar(θ) · x
is computed using a matrix Mvar(θ) ∈ {0, 1}κ×κ containing exactly one 1 per row. While
this approach can be handled using proofs for matrix-vector relations using the techniques
of [LLM+16b], the expected complexity is O(κ) for each step, so that the total complexity
becomes O(Lκ). Fortunately, a better complexity can be achieved.
If we instead perform a dichotomic search on x = (x0, . . . , xκ−1)T , we can reduce the
complexity of each step toO(log κ). To this end, we need to prove a statement “I performed
a correct dichotomic search on my secret array x”.
In order to solve this problem, we will employ two existing lattice-based tools.

(i) A variant of the SIS-based computationally binding and statistically hiding commit-
ment scheme from [KTX08], which allows to commit to one-bit messages;

(ii) The SIS-based Merkle hash tree proposed in [LLNW16].

Let Ā←↩ U(Zn×mq ) and acom ←↩ U(Znq ). For each i ∈ [0, κ−1], we let the receiver commit
to xi ∈ {0, 1} as comi = acom · xi + Ā · rcom,i, with rcom,i ←↩ U({0, 1}m), and reveal
com1, . . . , comκ−1 to the sender. We build a Merkle tree of depth δκ = dlog κe on top
of the leaves com0, . . . , comκ−1 using the SIS-based hash function hĀ : {0, 1}ndlog qe ×
{0, 1}ndlog qe → {0, 1}ndlog qe of [LLNW16]. Our use of Merkle trees is reminiscent of
[LLNW16] in that the content of the leaves is public. The Merkle tree will actually serve as
a “bridge” ensuring that: (i) The same string x is used in all steps while enabling dichotomic
searches; (ii) At each step, the prover indeed uses some coordinate of x (without revealing
which one), the choice of which is dictated by a path in the tree determined by var(θ).
Since {comi}κ−1

i=0 are public, both parties can deterministically compute the root utree of
the Merkle tree. For each θ ∈ [L], we consider the binary representation dθ,1, . . . , dθ,δκ of
var(θ), which is part of the encoding of BP de�ned in (9.11). We then prove knowledge of
a bit yθ satisfying the statement “From the root utree ∈ {0, 1}ndlog qe of the tree, the path
determined by the bits dθ,1, . . . , dθ,δκ leads to the leaf associated with the commitment
opened to yθ.” If the Merkle tree and the commitment scheme are both secure, it should
hold that yθ = xvar(θ). Said otherwise, we can provably perform a “dichotomic search”
for xvar(θ) = yθ. Moreover, the techniques from [LLNW16] can be adapted to do this in
zero-knowledge manner, i.e., without revealing the path nor the reached leaf.
Now, our task can be divided into 3 steps: (i) Proving that the searches on Merkle tree yield
y1, . . . , yL; (ii) Proving that the branching program evaluates to BP(x) = 1 if y1, . . . , yL
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are used in the evaluation; (iii) Proving all the other relations mentioned above, as well as
the consistency of {comi}κ−1

i=0 and the fact that they open to a certi�ed x ∈ {0, 1}κ.
Thanks to dichotomic searches, the communication cost drops to O(Lδκ + κ). These steps
can be treated as explained below.

9.5.5.1 The Merkle Tree Step.

At each step θ ∈ [L], the prover demonstrates knowledge of a path consisting of δκ
nodes gθ,1, . . . ,gθ,δκ ∈ {0, 1}ndlog qe determined by dθ,1, . . . , dθ,δκ , as well as their sibling
nodes tθ,1, . . . , tθ,δκ ∈ {0, 1}ndlog qe. Also, the prover argues knowledge of an opening
(yθ, rθ) ∈ {0, 1} × {0, 1}m for the commitment of which gθ,δκ is a binary decomposition.
As shown in Section 4.3, it su�ces to prove the following relations (mod q):

∀θ ∈ [L]



Ā · expand(dθ,1,gθ,1) + Ā · expand(d̄θ,1, tθ,1) = Hn,q−1·utree,

Ā · expand(dθ,2,gθ,2) + Ā · expand(d̄θ,2, tθ,2)
−Hn,q−1 · gθ,1 = 0,

...

Ā · expand(dθ,δκ ,gθ,δκ) + Ā · expand(d̄θ,κ, tθ,κ)
−Hn,q−1 · gθ,δκ−1 = 0,

acom · yθ + Ā · rθ −Hn,q−1 · gθ,δκ = 0,

(9.24)

where expand(·, ·) is de�ned in Table 9.1.

Extending.

• For each (θ, i) ∈ [L] × [δκ]: Extend gθ,i, tθ,i ∈ {0, 1}m/2 to g̃θ,i, t̃θ,i ∈ B2
m/2,

respectively. Then, let ĝθ,i = expand(dθ,i, g̃θ,i) and t̂θ,i = expand(d̄θ,i, t̃θ,i).

• For each θ ∈ [L], extend the bit yθ into the vector yθ = ext2(yθ) ∈ {0, 1}2.

• Let r̃ = (rT1 | . . . | rTL)T ∈ {0, 1}mL, then extend it into the vector r̂ ∈ B2
mL.

Combining. Next, we let Dtree = 5mLδκ + 2L+ 2mL and de�ne

wtree =
(
g̃T1,1 | ĝT1,1 | t̂T1,1 | . . . | g̃T1,δκ | ĝ

T
1,δκ | t̂

T
1,δκ | . . . | g̃

T
L,1 | ĝTL,1 | t̂TL,1

| . . . | g̃TL,δκ | ĝ
T
L,δκ | t̂

T
L,δκ | y

T
1 | . . . | yTL | r̂T

)T ∈ {0, 1}Dtree . (9.25)

Then, observe that, the above L(δκ + 1) equations can be combined into one:

Mtree ·wtree = vtree mod q, (9.26)

where matrix Mtree and vector vtree are built from the public input.
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9.5.5.2 The Branching Program Step.

The last three parts of Table 9.1 describe the vector transformations that will be used to
handle the secret vectors appearing in the evaluation of BP. The following equations
emulate the evaluation process. In particular, for each θ ∈ [2, L], we introduce an extra
vector eθ = (cθ,0, . . . , cθ,4) ∈ {0, 1}5 to enable the extraction of the values πθ,0(ηθ−1), and
πθ,1(ηθ−1).

π1,0(0) · ȳ1 + π1,1(0) · y1 − η1 = 0, // computing η1 with η0 = 0

e2 −
∑4
i=0 uniti · c2,i = (0, 0, 0, 0, 0)T , // we will also prove e2 = unitη1

f2,0 −
∑4
i=0 π2,0(i) · c2,i = 0, // meaning: f2,0 = π2,0(η1)

f2,1 −
∑4
i=0 π2,1(i) · c2,i = 0, // meaning: f2,1 = π2,1(η1)

f2,0 · ȳ2 + f2,1 · y2 − η2 = 0, // computing η2

...
eL −

∑4
i=0 uniti · cL,i = (0, 0, 0, 0, 0)T , // we will also prove eL = unitηL−1

fL,0 −
∑4
i=0 πL,0(i) · cL,i = 0, // meaning: fL,0 = πL,0(ηL−1)

fL,1 −
∑4
i=0 πL,1(i) · cL,i = 0, // meaning: fL,1 = πL,1(ηL−1)

fL,0 · ȳL + fL,1 · yL = 0. // �nal state ηL = 0

(9.27)

Extending.

• For each θ ∈ [L− 1], extend ηθ ∈ [0, 4] to 5-dimensional vector sθ = ext5(ηθ).

• For each (θ, j) ∈ [2, L]× {0, 1}, extend fθ,j ∈ [0, 4] to fθ,j = ext5(fθ,j).

• For each (θ, i) ∈ [2, L]× [0, 4], extend cθ,i ∈ {0, 1} to cθ,i = ext2(cθ,i).

• Extend the products π1,0(0) · ȳ1 and π1,1(0) · y1 into 10-dimensional vectors h1,0 =
ext5×2(π1,0(0), ȳ1) and h1,1 = ext5×2(π1,1(0), y1), respectively.

• For each θ ∈ [2, L], extend the products fθ,0 · ȳθ and fθ,1 · yθ into 10-dimensional
vectors hθ,0 = ext5×2(fθ,0, ȳθ) and hθ,1 = ext5×2(fθ,1, yθ).

• For (θ, i) ∈ [2, L] × [0, 4], extend the products πθ,0(i) · cθ,i and πθ,1(i) · cθ,i into
zθ,0,i = ext5×2(πθ,0(i), cθ,i) and zθ,1,i = ext5×2(πθ,1(i), cθ,i), respectively.

Combining. Let DBP = 150L− 130, and form wBP ∈ [0, 4]DBP of the form:(
sT1 | . . . | sTL−1 | eT2 | . . . | eTL | cT2,0 | . . . | cTL,4 | zT2,0,0 | . . . | zTL,1,4 |

fT2,0 | . . . | fTL,1 | hT1,0 | hT1,1 | hT2,0 | hT2,1 | . . . | hTL,0 | hTL,1
)T
. (9.28)

Then, observe that the vector wBP of (9.28) satis�es one equation of the form:

MBP ·wBP = vBP, (9.29)
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where matrix MBP and vector vBP are obtained from the common input. Note that we
work with integers in [0, 4], which are much smaller than q. As a result,

MBP ·wBP = vBP mod q. (9.30)

Conversely, if we can prove that (9.30) holds for a well-formed vector wBP, then that vector
should also satisfy (9.29).

9.5.5.3 The Third Step.

In the third layer, we have to prove knowledge of:

d1,1, . . . , dL,δκ ∈ {0, 1}, π1,0(0), . . . , πL,1(4) ∈ [0, 4], m ∈ {0, 1}md ,

x = (x0, . . . , xκ−1)T ∈ {0, 1}κ, mU,x ∈ {0, 1}
m
2 +κ, m̂U,x ∈ {0, 1}

m
2 ,

eU ∈ {0, 1}m, rcom,0, . . . , rcom,κ−1 ∈ {0, 1}m, µ ∈ {0, 1}t, τ ∈ {0, 1}`,

τU ∈ {0, 1}`I ,v1,v2,vU,1,vU,2,rU ∈ [−β, β]m,e∈ {−1, 0, 1}t,ν ∈ [−B,B]t,

(9.31)

which satisfy the equations of (9.15) for zBP,ρ = (d1,1, . . . , dL,δκ , π1,0(0), . . . , πL,1(4))T
and, ∀i ∈ [0, κ− 1], the bit xi is committed in comi with randomness rcom,i: acom

. . .
acom

 · x +


Ā

. . .
Ā

 ·
 rcom,0

...
rcom,κ−1

 =

 com0
...

comκ−1

 mod q.

Decomposing. We use vdec′m,β(·) to decompose v1,v2,vU,1,vU,2, rU ∈ [−β, β]m into
v̄1, v̄2, v̄U,1, v̄U,2, r̄U ∈ {−1, 0, 1}mδβ , respectively. Similarly, we decompose vector ν ∈
[−B,B]t into vector ν̄ = vdec′t,B(ν) ∈ {−1, 0, 1}tδB .

Extending and Combining. Next, we perform the following steps:

• For each (θ, i) ∈ [L]× [δκ], extend dθ,i to dθ,i = ext2(dθ,i).

• For each (θ, j, i) ∈ [L]× {0, 1} × [0, 4], extend πθ,j(i) to Πθ,j,i = ext5(πθ,j(i)).

• Let w3,1 =
(
xT |rTcom,0| . . . |rTcom,κ−1|mT

U,x|m̂T
U,x|mT | eTU|µT

)T ∈ {0, 1}D3,1 , where
D3,1 = κ(m+ 2) + 2m+md + t. Then extend w3,1 to w3,1 ∈ B2

D3,1
.

• De�ne the vector w3,2 = (v̄T1 |v̄TU,1|r̄TU|ν̄T |eT )T ∈ {−1, 0, 1}D3,2 of dimension
D3,2 = 3mδβ + t(δB + 1) and extend it into w3,2 ∈ B3

D3,2
.

• Extend v̄2 to s0 ∈ B3
mδβ

. Then for j ∈ [`], form vector sj = expand
(
τ [j], s0

)
.

• Extend v̄U,2 to sU,0 ∈ B3
mδβ

. Then for j ∈ [`I ], form sU,j = expand
(
τU[j], sU,0

)
.

Given the above transformations, let D3 = 2L(δκ + 25) + 2D3,1 + 3D3,2 + 3mδβ(2` +
1) + 3mδβ(2`I + 1) and construct vector w3 ∈ [−1, 4]D3 of the form:(

dT1,1 | . . . | dTL,δκ | Π
T
1,0,0 | . . . | ΠT

L,1,4 | wT
3,1 | wT

3,2 |

sT0 | sT1 | . . . | sT` | sTU,0 | sTU,1 | . . . | sTU,`I |
)T
. (9.32)
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Observe that the given �ve equations can be combined into one of the form:

M3 ·w3 = v3 mod q, (9.33)

where matrix M3 and vector v3 can be built from the public input.

9.5.5.4 Putting Pieces Altogether.

At the �nal stage of the process, we connect the three aforementioned steps. Indeed, all the
equations involved in our process are captured by (9.26), (9.30), and (9.33) - which in turn
can be combined into:

M ·w = v mod q, (9.34)

where w = (wT
tree | wT

BP | wT
3 )T ∈ [−1, 4]D , for

D = Dtree +DBP +D3 = Õ(λ) · (L · log κ+ κ) + Õ(λ) · (logN + λ) + Õ(1) · t.

The components of w all have constraints listed in Table 9.1. By construction, these blocks
either belong to the special sets B2

m, B3
m or they have the special forms expand(·, ·), ext2(·),

ext5(·), ext5×2(·, ·), which are invariant under the permutations de�ned in Table 9.1. As a
result, we can specify suitable sets VALID, S and permutations ofD elements {Γφ : φ ∈ S},
for which the conditions of (4.3) are satis�ed.The description of the elements VALID, S
and Γφ is detailed as follows.
Let VALID be the set of all vectors in [−1, 4]D having the form (wT

tree‖wT
BP‖wT

3 )T , where
wtree,wBP,w3 have the form (9.25), (9.28), and (9.32), respectively, and the following
conditions hold:

• For each (θ, i) ∈ [L]× [δκ]: There exists dθ,i ∈ {0, 1} and g̃θ,i, t̃θ,i ∈ B2
m/2 such that

dθ,i = ext2(dθ,i) and

ĝθ,i = expand(dθ,i, g̃θ,i); t̂θ,i = expand(d̄θ,i, t̃θ,i).

• There exist y1 ∈ {0, 1} and π1,0(0), π1,1(0) ∈ [0, 4] such that{
y1 = ext2(y1); h1,0 = ext5×2(π1,0(0), ȳ1); h1,1 = ext5×2(π1,1(0), y1);
Π1,0,0 = ext5(π1,0(0)); Π1,1,0 = ext5(π1,1(0)).

• For all (j, i) ∈ {0, 1} × [1, 4]: Π1,j,i = ext5(π1,j(i)), for some π1,j(i) ∈ [0, 4]. (Note
that these π1,j(i) do not participate in the evaluation of the BP.)

• For θ ∈ [2, L]: There exist yθ ∈ {0, 1}, fθ,0, fθ,1 ∈ [0, 4] such that yθ = ext2(yθ)
and {

fθ,0 = ext5(fθ,0); fθ,1 = ext5(fθ,1);
hθ,0 = ext5×2(fθ,0, ȳθ); hθ,1 = ext5×2(fθ,1, yθ).

• For (θ, j, i) ∈ [2, L] × {0, 1} × [0, 4]: there exist πθ,j(i) ∈ [0, 4], cθ,i ∈ {0, 1} such
that

Πθ,j,i = ext5(πθ,j(i)); cθ,i = ext2(cθ,i); zθ,j,i = ext5×2(πθ,j(i), cθ,i).
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• There exist η1, . . . , ηL−1 ∈ [0, 4] such that the following hold.

1. For all θ = 1, . . . , L− 1: sθ = ext5(ηθ).

2. For all θ = 2, . . . , L: eθ = unitηθ−1 .

• r̂ ∈ B2
mL; w3,1 ∈ B2

D3,1
; w3,2 ∈ B3

D3,2
;

• s0 ∈ B3
mδβ

, and there exists τ = (τ [1], . . . , τ [`])T ∈ {0, 1}` such that for all j ∈ [`]:
sj = expand

(
τ [j], s0

)
.

• sU,0 ∈ B3
mδβ

, and there exists τU = (τU[1], . . . , τU[`I ])T ∈ {0, 1}`I such that for all
j ∈ [`I ]: sU,j = expand

(
τU[j], sU,0

)
.

By construction, we have w ∈ VALID. Let us now specify the set S and permutations of
D elements {Γφ : φ ∈ S}, for which the conditions in (4.3) hold. Again, we refer to the
notations and techniques from Table 9.1, which we will apply here. Let

S = {0, 1}Lδκ × {0, 1}L × [0, 4]10L × [0, 4]L−1 × {0, 1}5(L−1) × [0, 4]2(L−1) ×(
(Sm)2Lδκ × S2mL

)
×(S2D3,1 × S3D3,2×(S3mδβ × {0, 1}

`)×(S3mδβ × {0, 1}
`I )).

For each φ = (bd,by,bp,bc,bf ,Σtree,Σ3) ∈ S , where:
bd = (bd,1,1, . . . , bd,L,δκ)T , by = (by,1, . . . , by,L)T ,
bη = (bη,1, . . . , bη,L−1)T , bc = (bc,2,0, . . . , bc,L,4)T , bf = (bf,2,0, . . . , bf,L,1)T ,
bp = (bπ,1,0,0, . . . , bπ,L,1,4)T , Σtree = (σg,1,1, . . . , σg,θ,δκ , σt,1,1, . . . , σt,θ,δκ , σr),
Σ3 = (σ3,1, σ3,2, σ3,3,1, bτ [1] . . . bτ [`], σ3,3,2, bτ,U[1] . . . bτ,U[`I ]),

let Γφ be the permutation that, when applying to vector s of the form (wT
tree‖wT

BP‖wT
3 )T ∈

ZD , where wtree,wBP,w3 have the form (9.25), (9.28), and (9.32), respectively, transforms
the block-vectors as follows:

• For each (θ, i) ∈ [L]× [δκ]: g̃θ,i 7→ σg,θ,i(g̃θ,i) and

ĝθ,i 7→ Texp[bd,θ,i, σg,θ,i](ĝθ,i); t̂θ,i 7→ Texp[bd,θ,i, σt,θ,i](t̂θ,i).

• For each θ ∈ [L]: yθ 7→ T2[by,θ](yθ); r̂ 7→ σr(r̂).

• For each θ = 1, . . . , L− 1: sθ 7→ T5[bη,θ](sθ).

• For each θ = 2, . . . , L: eθ 7→ T5[bη,θ−1](eθ).

• For each (θ, i) ∈ [2, L]× [0, 4]: cθ,i 7→ T2[bc,θ,i](cθ,i).

• For each (θ, j, i) ∈ [2, L]× {0, 1} × [0, 4]: zθ,j,i 7→ T5×2[bπ,θ,j,i, bc,θ,i](zθ,j,i).

• For each (θ, j) ∈ [2, L]× {0, 1}: fθ,j 7→ T5[bf,θ,j ](fθ,j).

• h1,0 7→ T5×2[bπ,1,0,0, by,1](h1,0); h1,1 7→ T5×2[bπ,1,1,0, by,1](h1,1).
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• For each (θ, j) ∈ [2, L]× {0, 1}: hθ,j 7→ T5×2[bf,θ,j , by,θ](hθ,j).

• For each (θ, i) ∈ [L]× [δκ]: dθ,i 7→ T2[bd,θ,i](dθ,i).

• For each (θ, j, i) ∈ [L]× {0, 1} × [0, 4]: Πθ,j,i 7→ T5[bπ,θ,j,i](Πθ,j,i).

• For each i ∈ [1, 2]: w3,i 7→ σ3,i(w3,i).

• s0 7→ σ3,3,1(s0). For each j ∈ [`]: sj 7→ Texp[bτ [j], σ3,3,1](sj).

• sU,0 7→ σ3,3,2(sU,0). For each j ∈ [`I ]: sU,j 7→ Texp[bτ,U[j], σ3,3,2](sU,j).

Based on the equivalences observed in Table 9.1, it can be checked that the conditions
of (4.3) hold, namely:{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,
If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.

Our desired argument system then works as follows. At the beginning of the interaction,
the prover computes commitments com0, . . . , comκ−1 ∈ Znq and send them once to the
veri�er. Both parties construct matrix M and vector v based on the public input as well as
com0, . . . , comκ−1, while the prover prepares vector w, as described. Finally, they run the
protocol of Section 4.3.2, which has communication cost O(D log q) = O(L · log κ+ κ).

9.6 Reducing the Communication Complexity in the

Random Oracle Model

One limitation of our basic adaptive OT protocol is that it requires the sender to repeat the
zero-knowledge proofs of the initialization phase for each user. In total, the communication
cost of the initialization phase thus amounts to Ω(λNU), which is even more expensive
than the O(λ(N + U)) complexities of [CNs07, GH07, CDN09, JL09]. As pointed out
by Green and Hohenberger [GH11], decreasing the cost of the initialization phase to
be independent of the number of users is highly desirable: ideally, one would certainly
prefer a non-interactive initialization phase where the Sender can publicize a O(λN)-size
commitment to the database, which can subsequently be used by arbitrarily many receivers.
In the random oracle model, we show that our protocols can both be modi�ed to obtain
this optimized communication complexity. This can be achieve by the simple expedient of
making the sender’s zero-knowledge proofs non-interactive via the Fiat-Shamir heuristic.
By removing interaction from all the sender’s proof (i.e., even those of the transfer phase),
we also minimize the number of communication rounds since we only need the veri�er’s
arguments to be witness indistinguishable and we can thus safely repeat them in parallel.
Relying on the random oracle model thus allows the sender to publicize the entire database
and proofs on a public repository so as to avoid repeating these proofs for each receiver.

9.6.1 Description

The description hereunder relies on the same parameters as in sections 9.3 and 9.4. Namely,
we use m = 2ndlog qe, a modulus q for which the noise distribution χ is αq-bounded, for
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some 0 < α < 1, and also de�ne an integer B as a randomization parameter such that
(m+ 1)αq/B is negligible and choosing α such that (m+ 1)α ≤ 1/5 ensures decryption
correctness.
We assume two random oracles HF : {0, 1}∗ → Zn×mq and HFS : {0, 1}∗ → {1, 2, 3}ς , for
some ς ∈ ω(logn). The former will be used to derive the sender’s public matrix F ∈ Zn×mq

while the latter will provide the veri�er’s challenges when we apply the Fiat-Shamir
heuristic.

Initialization

(
SI(1λ,DB),RI(1λ)

)
: In this protocol, the sender SI has a database DB =

(M1, . . . ,MN ) of N messages, where Mi ∈ {0, 1}t for each i ∈ [N ], for some
t ∈ poly(λ). It interacts with the receiver RI as follows.

1. Generate a key pair for the signature scheme of Section 9.2.1 in order to sign
Q = N messages of length md = (n+ t) · dlog qe each. This key pair consists
of SKsig = TA ∈ Zm×m and

PKsig :=
(
A, {Aj}`j=0,D,u

)
,

where ` = logN and A,A0, . . . ,A` ∈ U(Zn×mq ), D ∈ U(Zn×mdq ) with
m = 2ndlog qe, md = (n+ t)dlog qe. The counter is initialized to τ = 0.

2. Choose a matrix S ←↩ χn×t that will serve as a secret key for an LWE-based
encryption scheme. Then, de�ne the matrix F = HF (ε) ∈ Zn×mq and sample a
matrix E←↩ χm×t to compute

P = [p1 | . . . | pt] = FT · S + E ∈ Zm×tq (9.35)

so that (F,P) ∈ Zn×mq ×Zm×tq forms a public key for a t-bit variant of Regev’s
encryption scheme [Reg05] (or, equivalently, a set of m encryptions of the
all-zeroes t-bit string).

3. Sample vectors a1, . . . ,aN ←↩ U(Znq ) and x1, . . . ,xN ←↩ χt to compute

(ai,bi) =
(
ai, ST · ai + xi +Mi · bq/2c

)
∈ Znq × Ztq ∀i ∈ [N ] (9.36)

4. For each i = 1 to N , generate a signature (τi,vi) ← Sign(SKsig, τ,mi) on
the message mi = vdecn+t,q−1(ai|bi) ∈ {0, 1}md obtained by decomposing
(aTi |bTi )T ∈ Zn+t

q .
5. SI sends RI the initialization data

R0 =
(
PKsig, (F,P), {(ai,bi), (τi,vi)}Ni=1, πK

)
, (9.37)

which includes a NIZK argument of knowledge πK of small-norm matrices
S ∈ Zn×t and E ∈ χm×t and t-bit messages {Mi}Ni=1 that are consistent with
(9.35)-(9.36). The argument πK is built by taking the following steps:

a. De�ne ADB = [a1| . . . |aN ] ∈ Zn×Nq , BDB = [b1| . . . |bN ] ∈ Zt×Nq , M =
[M1| . . . |MN ] ∈ {0, 1}t×N , X = [x1| . . . |xN ] ∈ χt×N and parse S and E
as S = [s1| . . . |st] ∈ χn×t, E = [e1| . . . |et] ∈ χm×t.
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b. For each j ∈ [t], de�ne M̄j ∈ {0, 1}N to be the j-th column of MT =
[M̄1| . . . |M̄t]. Likewise, let b̄j ∈ ZNq (resp. x̄j ∈ χN ) be the j-th column
of BT

DB = [b̄1| . . . |b̄t] ∈ ZN×tq (resp. XT = [x̄1| . . . |x̄t]) and generate a
signature of knowledge of sj ∈ χn, ej ∈ χm, x̄j ∈ χN , M̄j ∈ {0, 1}N , for
j ∈ [t], such that

[
FT Im
AT

DB IN bq/2c · IN

]
·


sj
ej
x̄j
M̄j

 =
[
pj
b̄j

]
(9.38)

Let the NIZK proof be πK = ({CommK,j}ςj=1,ChallK , {RespK,j}ςj=1),
where ChallK = HFS

(
(F,P,ADB,BDB), {CommK,j}ςj=1

)
∈ {1, 2, 3}ς .

c. If the proof of knowledge πK does not verify or if there exists i ∈ [N ] such
that (τi,vi) is an invalid signature on vdecn+t,q−1

(
(aTi |bTi )T

)T , then RI
aborts.

6. Finally SI de�nes S0 =
(
(S,E), (F,P), PKsig

)
, which it keeps to itself.

Transfer

(
ST(Si−1),RT(Ri−1, ρi)

)
: At the i-th transfer, the receiver RT has state Ri−1

and an index ρi ∈ [1, N ]. It interacts as follows with the sender ST that has state
Si−1 in order to obtain Mρi from DB.

1. RT samples vectors e ←↩ U({−1, 0, 1}m), µ ←↩ U({0, 1}t) and a random
ν ←↩ U([−B,B]t) to compute

(c0, c1) =
(
aρi + F · e, bρi + PT · e + µ · bq/2c+ ν

)
∈ Znq × Ztq, (9.39)

which is a re-randomization of (aρi ,bρi + µ · bq/2c). The resulting ciphertext
(c0, c1) is sent to ST. In addition, RT provides an interactive WI argument that
(c0, c1) is indeed a re-randomization of (aρi ,bρi) for some index ρi ∈ [N ]. To
this end, RT argues knowledge of short vectors m = vdecn+1,q−1(ai|bi) ∈
{0, 1}md , e ∈ {−1, 0, 1}t, µ ∈ {0, 1}t, ν ∈ [−B,B]t, τ ∈ {0, 1}` and v =
(vT1 |vT2 )T ∈ Z2m such that

[
Hn,q−1 F

Ht,q−1 PT It · bq/2c It

]
·


m

e
µ

ν

 =
[
c0
c1

]
(9.40)

and

[
A A0 · · · A`

]
·



v1
v2

τ [1] · v2
...

τ [`] · v2


= u + D ·m mod q (9.41)

182



9.6. Reducing the Communication Complexity in the Random Oracle Model

2. If the WI argument of step 1 veri�es, ST uses S ∈ χn×t to decrypt (c0, c1) ∈
Znq × Ztq and obtain

M ′ = b(c1 − ST · c0)/(q/2)e ∈ {0, 1}t,

which is sent back to RT. In addition, ST provides a NIZK argument πT of
knowledge of y = c1 − ST · c0 −M ′ · bq/2c ∈ Zt of norm ‖y‖∞ ≤ q/5 and
E = [e1| . . . |et] ∈ χm×t satisfying (modulo q)

P = FT · S + E , cT0 · S + yT = cT1 −M ′
T · bq/2c. (9.42)

Given y = (y[1], . . . ,y[t])T ∈ Zt and S = [s1| . . . |st], this amounts to proving,
for each j ∈ [t], knowledge of sj ∈ χn, y[j] ∈ Z such that |y[j]| < q/4 and
ej ∈ χm, such that[

FT Im
cT0 1

]
·

 sj
ej

y[j]

 =
(

pj
c1[j]−M ′[j] · bq/2c

)
∀j ∈ [t], (9.43)

where c1 = (c1[1], . . . , c1[t])T and M ′ = (M ′[1], . . . ,M ′[t])T . Let the NIZK
argument be πT = ({CommT,j}ςj=1,ChallT , {RespT,j}ςj=1), where ChallT =
HFS

(
(F,P, c0, c1), {CommT,j}ςj=1

)
∈ {1, 2, 3}ς .

3. If th argument πT produced by ST does not properly verify, RT halts and outputs
⊥. Otherwise, RT recalls the random string µ ∈ {0, 1}t that was chosen at step
1 and computes Mρi = M ′ ⊕ µ. The transfer ends with ST and RT outputting
Si = Si−1 and Ri = Ri−1, respectively.

9.6.2 Security

For simplicity, our proofs are given in the single-receiver setting but they readily carry
over to the multi-receiver setting, as de�ned in [GH11, Appendix B].

Theorem 9.7. The aboveOT Nk×1 protocol provides receiver security under the SIS assumption
in the random oracle model.

Proof. We show how to map any real-world cheating sender Ŝ to an ideal-world cheating
sender Ŝ′ such that, under the SIS assumption, the distributions RealŜ,R and IdealŜ′,R′
under common input (N, k,M1, . . . ,MN , ρ1, . . . , ρk) are computationally indistinguish-
able.
We consider a sequence of hybrid experiments with binary outputs. In each experiment
Expi, a distinguisher D inputs the states (Sk, Rk) produced by Ŝ and R′ at the end of Expi
and outputs a bit. We de�ne Wi to be the event that the output of Expi is 1. The �rst
experiment outputs whatever the distinguisher D outputs and corresponds to the real
interaction between the cheating sender Ŝ and the receiver R.

Exp0: This experiment involves a real execution of Ŝ in interaction with a honest receiver
R which queries the index ρi ∈ [N ] at the i-th transfer for each i ∈ [k]. The output
of Exp0 is exactly the output of the distinguisher D on input of X = (Sk, Rk) ←
RealS,R̂, so that we have

Pr[W0] = Pr[D(X) = 1 | X ← RealŜ,R].
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Exp1: This experiment is like Exp0 except that R′ programs the random oracle HF :
{0, 1}∗ → Zn×mq in the following way. It runs the trapdoor generation algorithm
(F,TF) ← TrapGen(1n, 1m, q) of [AP09] so as to obtain a statistically uniform
matrix F ∈ Zn×mq and a small-norm TF ∈ Zm×m basis of Λ⊥q (F). It then programs
the random oracle so as to have HF (ε) = F ∈ Zn×mq . Clearly, this change leaves the
adversary’s view statistically unchanged: we have |Pr[W1]− Pr[W0]| ∈ negl(λ).

Exp2: is as Exp1 but, at step 5 of the initialization phase, R′ uses the short basis TF ∈ Zm×m
of Λ⊥q (F) (which satis�es F·TF = 0n mod q) to extract witnesses sj ∈ χn, ej ∈ χm
from the columns pj = FT · sj + ej ∈ Zm of the matrix P = [p1 | . . . | pt] ∈ Zm×tq

for each j ∈ [t]. Note that this can be done by inverting the LWE function (see, e.g.,
[GKV10, Section 2.3]). At this point, R′ aborts the interaction in the event that one
of the following conditions holds:

E.1: The LWE-inversion algorithm fails to compute small-norm vectors sj ∈ χn,
ej ∈ χm such that pj = FT · sj + ej ∈ Zmq for some j ∈ [t].

E.2: The columns of S = [s1 | . . . | st] ∈ χn×t are successfully extracted but there
exists i ∈ [N ] such that one of the coordinates of bi − ST · ai mod q is neither
close to 0 nor bq/2c (i.e., the inequalities |bi − ST · ai mod q| > αq and
|(bi − ST · ai mod q)− bq/2c| > αq are both satis�ed).

In either of the above situations, R′ infers that Ŝ managed to create a convincing
argument for a false statement and aborts the interaction. In such a situation, how-
ever, R′ can be turned into an algorithm that breaks the binding property of the
commitment scheme used in the ZK argument (which contradicts the SIS assumption
if the statistically hiding commitment of [KTX08] is used) by replaying the adversary
with the same random tape but a di�erent random oracle HFS. According to the
General Forking Lemma of [BPVY00], replaying Ŝ up to 32 · QH/(ε − 3−t) times
(where QH is the number of queries to HFS is su�cient to extract a breach in the
binding property of the commitment). Otherwise (i.e., if R′ does not fail), the ma-
trix S ∈ χn×t allows R′ to decode the messages M1, . . . ,MN ∈ {0, 1}t from the
encrypted database {(ai,bi)}Ni=1. Under the SIS assumption, it follows that Exp1
returns 1 with about the same probability as Exp0. In the random oracle model, the
SIS assumption thus implies that |Pr[W2]− Pr[W1]| ∈ negl(λ).

Exp3: is identical to Exp2 except that the receiver R′ makes use of the matrix S ∈ χn×t,
which was extracted at step 5 of the initialization phase. At step 2 of each transfer, R′
uses S to determine if the NIZK argument πT really proves a true statement or if Ŝ
managed to break its soundness. Namely, upon receiving Ŝ’s response M ′ ∈ {0, 1}t
at step 2, R′ uses the previously extracted S ∈ χn×t to determine if there exists
y ∈ Zt of norm ‖y‖∞ ≤ q/5 such that

cT0 · S + yT = cT1 −M ′
T · bq/2c. (9.44)

If such vector y turns out not to exist, R′ deduces R′ that Ŝ was able to fake a
convincing argument for a false statement and aborts the interaction. However,
R′ can then be turned into a PPT adversary against the binding property of the
commitment scheme used in the ZK argument (and thus the SIS assumption if the
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commitment of [KTX08] is used) by replaying the adversary according to the General
Forking technique [BPVY00]. The result of [BPVY00] tells us that replaying Ŝ up
to 32 ·QH/(ε− 3−t) times (where QH is the number of queries to HFS) su�ces to
break the binding property of the commitment. Under the SIS assumption, we have
|Pr[W3]− Pr[W2]| ∈ negl(λ).

Exp4: This experiment is like Exp3 with the di�erence that, at each transfer, the receiver R′
chooses the index ρi = 1 and thus always requests the �rst message of the encrypted
database. In more details, at each transfer, R′ samples vectors e←↩ U({−1, 0, 1}m),
µ←↩ U({0, 1}t) and ν ←↩ U([−B,B]t) to compute and send

(c0, c1) =
(
a1 + F · e, b1 + PT · e + µ · bq/2c+ ν

)
∈ Znq × Ztq,

which is a re-randomization of (a1,b1 + µ · bq/2c). Moreover, R′T uses the wit-
ness ρi = 1 to faithfully generate an interactive WI argument that (c0, c1) is a
re-randomization of (aρi ,bρi). It thus generates a WI argument of knowledge
of vectors m = vdecn+t,q−1(a1|b1) ∈ {0, 1}md , e ∈ {−1, 0, 1}t, µ ∈ {0, 1}t,
ν ∈ [−B,B]t, τ ∈ {0, 1}` and (vT1 |vT2 )T ∈ Z2m satisfying relations (9.22). By
the statistically WI of the interactive argument system, this modi�cation has no
noticeable impact on the output distribution of a cheating sender Ŝ whatsoever. We
have |Pr[W4]− Pr[W3]| ∈ negl(λ).

In Exp4, we de�ne the ideal-world cheating sender Ŝ′ in the following way. It programs
the random oracle HF : {0, 1}∗ → Zn×mq in such a way that HF (ε) = F ∈ Zn×mq for
some statistically random matrix produced as (F,TF) ← TrapGen(1n, 1m, q). At the
initialization phase, Ŝ′ uses the small-norm basis TF of Λ⊥q (F) to extract the small-norm
matrices S = [s1| . . . |st] ∈ χn×t and E = [e1| . . . |et] ∈ χm×t satisfying (9.35) and decrypt
{(ai,bi)}Ni=1 into messages M1, . . . ,MN ∈ {0, 1}N . If the extraction fails because one
of the events E.1 and E.2 (as de�ned in Exp2) comes about, Ŝ′ aborts. Otherwise, it then
submits M1, . . . ,MN ∈ {0, 1}N to the trusted party TT. As in Exp2, during each transfer
phase, Ŝ′ computes (c0, c1) as a re-randomization of (a1,b1) ∈ Znq × Ztq and faithfully
generates the receiver’s argument of knowledge using the witness ρi = 1 at step 1. At
step 2 of each transfer, Ŝ′ aborts if it realizes that Ŝ created a convincing NIZK argument
πT for a false statement. If πT correctly veri�es and indeed relates to a true statement
(which Ŝ′ can detect by applying the test (9.44) using the matrix S ∈ χn×t extracted in
the initialization phase), Ŝ′ sends 1 to the trusted party TT so as to authorize the transfer
in the ideal world. Otherwise, Ŝ′ sends 0 to TT. At the end of the k-th transfer phase, Ŝ′
outputs whatever Ŝ outputs as its �nal state Sk.
In Exp4, it is easy to see that

Pr[W4] = Pr[D(X) = 1 | X ← IdealŜ′,R′ ].

Putting the above altogether, we �nd that the SIS assumption implies such that

|Pr[D(X) = 1 | X ← RealŜ,R]− Pr[D(X) = 1 | X ← IdealŜ′,R′ ]| ∈ negl(λ).
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The proof of security against a dishonest receiver is almost identical to the proof of The-
orem 9.5. The only di�erence is that, from experience Exp3 onwards, the sender’s ZK
arguments are non-interactive and can be simulated by programming the random ora-
cle HFS : {0, 1}∗ → {1, 2, 3}ς in the standard way. The detailed proof of the following
theorem is thus omitted.

Theorem 9.8. The aboveOT Nk×1 protocol provides sender security under the SIS assumption
in the random oracle model.

As mentioned in [GH11], extending the simulation-based de�nitions to the multi-receiver
setting is rather straightforward (see [GH11, Appendix B] for details).
Analogously to the Green-Hohenberger protocol [GH11, Section 4], our proof of sender
security goes through in the multi-receiver setting as long as the receivers interact with
the sender in a sequential manner. This restriction is important since the simulator has to
rewind the receiver’s zero-knowledge arguments at step 1 of each transfer, which would
not be possible in concurrent sessions.

9.7 Comparison of Oblivious Transfer Schemes

Protocol Initialization
Cost Transfer Cost Assumptions Security

Folklore · O(λN) general Full Sim
NP [NP99] · O(λ · log(N)) DDH + OT2

1 Half Sim
KPN [KPN10] O(λ(N · U)) O(λ) DDH Full Sim
CNS [CNs07] O(λ(N + U)) O(λ) q-type Full Sim
GH08 [GH08] O(λ(N + U)) O(λ) DLIN + q-type UC

JL [JL09] O(λ(N + U)) O(λ) Comp. Dec. Residuosity + q-type Full Sim
GH11 [GH11] O(λ(N + U)) O(λ) Decision 3-Party DH Full Sim
GH11 [GH11] O(λN) O(λ) 3-Party DDH + DLIN Full Sim

Ours, §9.1 O(λ(N · U)) O(λ · logN) LWE + SIS Full Sim
Ours, App 9.6 O(λN) O(λ · logN) LWE + SIS Full Sim (ROM)

Table 9.2 – Overview of the di�erent adaptive OT (without access control) protocols secure
in the standard model (except for our scheme in Section 9.6 of this Supplementary Material).
In this table, λ denotes the security parameter,N the size of the database and U the number
of receivers. The horizontal lines separate the di�erent schemes into categories based of
their e�ciency. We note that, like those of [KPN11], the KPN [KPN10] scheme is secure in
a strictly weaker model than ours. In particular, the sender detects if the same record is
obtained twice, as pointed out in [GH11].

In this section, we present, in Tables 9.2 and 9.3, comparisons between existing adaptive
oblivious transfer protocols and ours. These results are to be taken carefully, as the
existing schemes are mostly designed in the pairing-based cryptography setting. The
communication complexities thus take into account the number of underlying mathematical
objects exchanged during each interactive protocols, which are group elements in the
previous constructions, and vectors in our case.
Another remark is that the other schemes which support access control, shown in Table 9.3,
manage access policy in the fashion of Camenisch et al. [CDN09]. In their work, they model
the access policy as access categories bounded to users (like their role, or their permission)
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which are delivered by the issuer. A given message in the database is made available for a
conjunction of access categories: meaning that to access a given �le, a user has to be in all
the categories the message in linked to. To handle disjunctions, the �le is duplicated. The
number of messages in the database N in these schemes is then dependent of the access
policy, and a cost for duplications is to take into account, as the database has to prove that
encryption of the same message with di�erent access policy is indeed the encryption of
the same message.
By handling access control through branching programs, we avoid the hidden cost of
disjunctions, while enabling access control for attribute’s language in NC1.

Protocol Initialization
Cost Transfer Cost Assumptions Policies Private

Policies Security

CDN [CDN09] O(λ ·N) O(λ) · poly(λ) q-type Conj. 7 Full Sim
CDNZ [CDNZ11] O(λ ·N) O(λ) · poly(λ) q-type + XDDH Conj. 3 Full Sim
ACDN [ACDN13] O(λ ·N) O(λ) · poly(λ) DLIN + SXDH Conj. 7 UC
ZAW+ [ZAW+10] O(λ ·N) O(λ) CP-ABE + q-type NC1 7 Full-Sim
CDEN [CDEN12] O(λ ·N) O(λ logN) + poly(λ) CP-ABE + GGM CNF− 3 Full-Sim

Ours, §9.4 O(λ ·N) Õ(λ logN) + poly(λ) LWE + SIS NC1 7 Full Sim

Table 9.3 – Overview of the di�erent adaptive OT-AC protocols secure in the standard
model. Here N denotes the size of the database. The polynomial poly(λ) in transfer costs
captures the expense of access policies. In CDEN, GGM stands for generic group model,
and CNF− means a restricted version of conjunctive normal form formulas, namely a user
has to possess all attributes in its access credentials, and to do so, it is able to provides a
disjunction of its accesses. Finally “Conj.” means “Conjunctions”, meaning that the user
has to possess all the credential for a given message, and disjunctions can be achieved at
the expense of duplications of database entries.
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Conclusion

In this thesis, we presented new cryptographic schemes that rely on lattice or pairing
assumptions. These contributions focus on the design and the analysis of new cryptographic
schemes that target privacy-preserving applications.
In pairing-based cryptography, we proposed a practical dynamic group signature scheme,
whose security relies on well-understood assumptions in the random oracle. It relies on
widely used assumptions with simple and constant-size descriptions which have been
studied for more than ten years. This work is also supported by an implementation in C.
The results in the lattice setting gave rise to three realizations of fundamental primitives
that were missing in the landscape of lattice-based privacy-preserving cryptography. Even
if these schemes su�er from a lack of e�ciency due to their novelty, we do believe that
they take one step towards a quantum-secure privacy-friendly world.
On the road, improvements have been made in the state of the art of zero-knowledge proofs
in the lattice setting by providing building blocks that, we believe, are of independent
interest. For example, our signature with e�cient protocols has already been used to design
a privacy-preserving lattice-based e-cash system [LLNW17].
All these works are proven to satisfy strong security models under simple assumptions.
This provides a breeding ground for new theoretical constructions.

Open Problems

The path of providing new cryptographic primitives and proving them secure is full of
pitfalls. The most obvious question that stems from this work is how to tackle the trade-o�s
we made in the design of those primitives. In particular, the speci�c question naturally
arise:

Question 1. Is it possible to build a fully-simulatable adaptive oblivious transfer (even without
access control) secure under LWE with polynomially large modulus?

In other words, is it possible to avoid the use of noise �ooding to guarantee receiver-security
in the adaptive oblivious transfer scheme of Chapter 9. In our current protocol, this issue
arises from the use of Regev’s encryption scheme, where we need to prevent the noise
distribution from leaking the receiver’s index. However, while a �ner analysis of the noise in
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GSW ciphertexts [GSW13] seems promising to achieve this at reasonable cost [BdPMW16],
it is not su�cient in our setting because it would leak the norm of the noise vector of
ciphertexts. Then, another di�culty is to have zero-knowledge proofs compatible with the
access control and the encryption components.

Question 2. Can we construct provably-secure adaptive oblivious transfer schemes in the
universal composability model?

Our adaptive oblivious transfer scheme relies on zero-knowledge proofs to hedge against
malicious adversaries. The security proofs take advantage of the fact that the proofs can be
rewound to extract a witness (as described in De�nition 4.2). The Peikert-Vaikuntanathan-
Waters [PVW08] construction, based on dual-mode encryption, achieves 1-out-of-2 com-
posable oblivious transfer (which can be generalized to 1-out-of-2t OT), without relying on
zero-knowledge proofs, but it does not imply OT with adaptive queries (i.e., where each
index ρi may depend on messages received in previous transfers). Actually, the use of
ZK proofs is not ruled out in this setting, as shown by the pairing-based construction of
Green and Hohenberger [GH08]. However, this protocol uses the trapdoor extractability of
Groth-Sahai proofs [GS08] to achieve straight-line extraction. It is not known to be possible
in the lattice setting.

Question 3. Can we obtain a more e�cient compact e-cash system from lattice assumptions?

Another privacy-preserving primitive is compact e-cash [Cha82, Cha83, CHL05b]. As
explained in the introduction, it is the digital equivalent of real-life money. A body of
research followed its introduction [CFN88, OO91, CP92, FY93, Oka95, Tsi97], and the �rst
compact realization was given by Camenisch, Hohenberger and Lysyanskaya [CHL05b]
(here, “compact” means that the complexity of coin transfers is at most logarithmic in the
value of withdrawn wallets). Before the work of Libert, Ling, Nguyen and Wang [LLNW17],
all compact constructions were based on traditional number-theoretic techniques. This
construction still su�ers from e�ciency issues akin to the problem we met in this thesis. It
is thus interesting to improve the e�ciency of this scheme and obtain viable constructions
of anonymous e-cash from post-quantum assumptions.

Zero-Knowledge Proofs

Question 4. Can we provide NIZK proofs in the standard model for all NP languages while
relying on the standard LWE assumption only?

Extending the work of Groth, Ostrovsky and Sahai [GOS06] to the lattice setting would be a
breakthrough result for lattice-based cryptography in general. This question remains open
for more than 10 years [PV08]. A recent line of work makes steps forward in this direc-
tion [KW18, RSS18], but they rely on primitives that do not exist yet [RSS18] (NIZK proofs
for a variant of the bounded decoding distance problem) or assume pre-processing [KW18].
The Stern-like proof systems we studied in this thesis, despite being �exible enough to
prove a large variety of statements, su�er from the sti�ness of being combinatorial. The
choice of permutations used to ensure the zero-knowledge property (and thus witness-
indistinguishability) is quite strict, and forces the challenge space to be ternary. This turns
out to be a real bottleneck in the e�ciency of such proof systems.
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Question 5. Can we get negligible soundness error in one shot for expressive statements in
the post-quantum setting?

This question can be restated as “can we combine the expressiveness of Stern-like proofs
with the e�ciency of Schnorr-like proof with rejection sampling?”. For Stern-like protocols,
decreasing the soundness error from 2/3 to 1/2 would already be an interesting improve-
ments with a direct impact on the e�ciency of all lattice-based schemes presented in this
thesis. Recall that the soundness error is the probability that a cheating prover convinces an
honest veri�er of a false statement. As long as it is noticeably di�erent from 1, it is possible
to make the soundness error negligible by repeating the protocol a su�cient number of
times. Likewise, isogeny-based proof systems [JDF11, GPS17] su�er from similar issues as
the challenge space is small (binary). The 2/3 soundness error is also present in [IKOS07],
which is a technique to obtain zero-knowledge proofs relying on secure multi-party com-
putation. With this technique, however, the size of the proof is proportional to the size of
the circuit describing the relation we want to prove (which is not the case with Stern-like
protocols). Thus, the question of having e�cient post-quantum zero-knowledge proofs for
expressive statements is a di�cult question and remains open as of today.

Cryptographic Constructions

Question 6. Can we construct more e�cient lattice-based signature schemes compatible with
zero-knowledge proofs?

In the general lattice setting, the most e�cient signature schemes require at least as
many matrices as the length ` of the random tag used in the signature (like the scheme
in Section 7.1). This cost has direct impact on the e�ciency and public-key size of schemes or
protocols that use them: in our group signatures of Chapter 7, for example, ` is logarithmic
in the maximal number of members the group can accept Ngs. In ideal lattices, it is possible
to reduce this cost to a vector of size ` [DM14]. In the group signature scheme of [LNWX18],
which is based on ideal lattice problems, they use this property to allow an exponential
number of group members to join the group, and thus propose a “constant-size” group
signature scheme. The method used to construct this group signature is essentially the same
as in Chapter 7, where matrices are hidden in the ring structure of the ideal lattice [LS14].
In the construction of [LNWX18], the dependency on logNgs is actually hidden in the
dimension of the ring. As these signatures are a fundamental building block for privacy-
preserving cryptography, any improvement on them has a direct impact on the primitives
or protocols that use them as a building block.

Question 7. Can we obtain more e�cient lattice-based one-time signatures in general lattices?

In our group signature and group encryption schemes (in Chapter 7 and Chapter 8 respec-
tively), signature and ciphertext contain a public key for a one-time signature scheme. One
e�ciency issue is that, in lattice-based one-time signatures [LM08, Moh11], the public-key
contains a full matrix, that is part of the signature/ciphertext. Therefore, this matrix signi�-
cantly increase the size of the signature/ciphertext. As security requirements for one-time
signature are weaker than those of full-�edged signatures (namely, the adversary has
access to only one signature per public key), we can hope for more e�cient constructions
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of one-time signatures based on general lattices where, the public-key is smaller that a
full-matrix.
As we explained in the introduction, advanced cryptography from lattices often su�ers
from the use of lattice trapdoors. Thus, a natural question may be:

Question 8. Does an e�cient trapdoor-free (H)IBE exist?

In the group encryption scheme of Chapter 8, for instance, trapdoors are used for two
distinct purposes. They are used to build a secure public-key encryption scheme under
adaptive chosen-ciphertext attacks and a signature scheme. These primitives are both
induced by identity-based encryption: the Canetti-Halevi-Katz transform generically turns
an IBE into a IND-CCA2 PKE [CHK04], and signatures are directly implied by IND-CPA-
secure IBE [BF01, BLS01]. Actually, a recent construction due to Brakerski, Lombardi, Segev
and Vaikuntanathan [BLSV18] (inspired by [DG17a]) gives a candidate which relies on
garbled circuits, and is fairly ine�cient compared to IBE schemes with trapdoors. Even
the question of a trapdoor-less IND-CCA2 public key encryption still does not have a
satisfactory solution. The construction of Peikert and Waters [PW08] is trapdoor-free, but
remains very expensive.
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