B. Mysen and P. Richet, Silicate Glasses and Melts-Properties and Structure, 2005.

H. Scholze, Le verre : nature, structure et propriétés, 1980.

J. Barton and C. Guillemet, Le verre-Science et technologie, 2005.

V. Schick, B. Rémy, A. Degiovanni, F. Demeurie, J. Meulemans et al., Measurement of thermal conductivity of liquids at high temperature, Journal of Physics : Conference Series, vol.395, issue.1, p.12078, 2012.

V. Schick, B. Rémy, A. Degiovanni, J. Meulemans, and P. Lombard, Mesure de la conductivité thermique de verre de silice liquide, Actes du Congrès Français de Thermique, pp.28-31, 2013.

Y. Jannot and A. Degiovanni, Mesure des propriétés thermiques des matériaux, ISTE Editions, 2018.

, Isolation thermique-Détermination de la résistance thermique et des propriétés connexes en régime stationnaire-Méthode de la plaque chaude gardée, ISO, vol.8302, 1991.

, Isolation thermique-Détermination de la résistance thermique et des propriétés connexes en régime stationnaire-Méthode fluxmétrique, ISO, vol.8301, 1991.

J. J. Healy, J. J. De-groot, and J. Kestin, The theory of the transient hot-wire method for measuring thermal conductivity, Physica B+C, vol.82, issue.2, pp.392-408, 1976.

X. Zhang, A. Degiovanni, and D. Maillet, Hot-wire measurement of thermal conducivity of solids : a new approach, High Temperatures-High Pressures, vol.25, pp.577-584, 1993.

, ISO 8894-1 :2010. Matériaux réfractaires-Détermination de la conductivité thermique-Partie 1 : Méthodes du fil chaud ("croisillon" et "thermomètre à résistance"), 2010.

, Matériaux réfractaires-Détermination de la conductivité thermique-Partie 2 : Méthodes du fil chaud (parallèle), 2007.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, Journal of Applied Physics, vol.32, issue.9, p.85, 1961.

L. Vozár and W. Hohenauer, Flash method of measuring the thermal diffusivity a review, High Temperatures-High Pressures, pp.253-264, 2004.

B. Hay, J. Filtz, and J. Batsale, Mesure de la diffusivité thermique par la méthode flash, p.955, 2004.

A. Degiovanni, Conductivité et diffusivité thermique des solides. Techniques de l'Ingénieur, p.850, 1994.

G. V. Mccauley, Fundamentals of heat flow in molten glass and in walls for use against glass, Journal of the American Ceramic Society, vol.8, issue.8, pp.493-504, 1925.

S. Kruszewski, Total Heat-Transmission Coefficients of Amber and Green Glasses in Temperatures of Melting Range, Journal of the American Ceramic Society, vol.44, issue.7, pp.333-339, 1961.

J. Endrýs, A. Bla?ek, and J. Ederova, Experimental determination of the effective thermal conductivity of glass by steady-state method, Glastechnische Berichte, vol.66, issue.67, pp.151-157, 1993.

J. Gille and R. Goody, Convection in a radiating gas, Journal of Fluid Mechanics, vol.20, issue.1, pp.47-79, 1964.

M. N. Özisik, Radiative Transfer and Interactions with Conduction and Convection, 1973.

S. Rosseland, Astrophysik auf Atom-Theoretische Grundlage, 1931.

S. Rosseland, Theoretical Astrophysics ; Atomic Theory and the Analysis of Stellar Atmopsheres and Envelopes, 1936.

L. Pilon, F. Janos, and R. Kitamura, Effective thermal conductivity of soda-lime silicate glassmelts with different iron contents between 1100 ? C and 1500 ? C, Journal of the American Ceramic Society, vol.97, issue.2, pp.442-450, 2014.

H. Liu, R. Kitamura, X. Xia, and L. Pilon, Conductive and Radiative Properties of Soda-Lime Silicate Glassmelts with Different Iron Contents from 1100 ? C to 1500 ? C, Journal of the American Ceramic Society, vol.99, issue.4, pp.1271-1279, 2016.

J. R. Howell, The Monte Carlo Method in Radiative Heat Transfer, Journal of Heat Transfer, vol.120, issue.3, pp.547-560, 1998.

A. Bla?ek and J. Endrýs, Review of thermal conductivity data-Part II : Thermal conductivity at high temperatures, Review of thermal conductivity data. Institut National du Verre, 1983.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Science Publications, 1986.

V. G. Gutop, Heat Conductivity of Molten Glass, Stekol'naya Prom, issue.11-12, pp.24-27, 1940.

G. Eckhardt, Wärmeleitung und Wärmestrahlung in Gläsern zwischen 100 und 1200 ? C (Conduction and Radiation of Heat in Glasses Between 100 and 1200 ? C). Glastechnische Berichte, vol.32, pp.373-380, 1959.

A. F. Van-zee and C. I. Babcock, A Method for the Measurement of Thermal Diffusivity of Molten Glass, Journal of the American Ceramic Society, vol.34, issue.8, pp.244-250, 1951.

F. J. Grove and H. Charnock, Thermal Conductivity of Molten Glass : Comparison of Theory and Experimental, Glastechnische Berichte, vol.32, pp.24-28, 1959.

H. Charnock, Experimental and Theoretical Comparison of Radiation Conductivity Predicted by Steady-State Theory With That Effective Under Periodic Temperature Conditions, Journal of the American Ceramic Society, vol.44, issue.7, pp.313-317, 1961.

F. Champonier, Mesures de la conductivité et de la diffusivité thermique d'un verre float entre 0 et 550 ? C environ, 1976.

R. Gardon, Review of thermal conductivity data-Part I : Thermal conductivity at low and moderate temperatures, Review of thermal conductivity data. Institut National du Verre, 1983.

S. André and D. , Mesure de la diffusivité thermique par méthode flash dans un solide semi-transparent : Application au verre, 1991.

S. André, Identification de la diffusivité phonique du verre par méthode flash de 20 ? C à 500 ? C, 1992.

S. André and A. Degiovanni, Experimental measurements of the phonic diffusivity of semitransparent materials up to 800K, Glastechnische Berichte, vol.66, issue.11, pp.291-298, 1993.

S. André and A. Degiovanni, A theoretical study of the transient coupled conduction and radiation heat transfer in glass : phonic diffusivity measurements by the flash technique, International Journal of Heat and Mass Transfer, vol.38, issue.18, pp.3401-3413, 1995.

M. Lazard, Modélisation macroscopique du transfert de chaleur transitoire couplé conduction rayonnement dans un milieu semi-transparent. Estimation de paramètres, 2000.

M. Lazard, S. André, and D. Maillet, Diffusivity measurement of semi-transparent media : Model of the coupled transient heat transfer and experiments on glass, silica glass and zinc selenide, International Journal of Heat and Mass Transfer, vol.47, issue.3, pp.477-87, 2004.

J. Henriques, Etude de la méthode du fil chaud-Modélisation des transferts de chaleur à l'aide du quadripôle thermique et application de la méthode d'identification des paramètres, 1989.

J. Colas, Etude et mise en oeuvre de la méthode de la variation de la résistance électrique du fil chaud pour des verres solides et en état de fusion-Modélisation des transferts thermiques par analogie quadripolaire et identification des paramètres, 1991.

D. Snyder, E. Gier, and I. Carmichael, Experimental determination of the thermal conductivity of molten CaMgSiO and the transport of heat through magmas, Journal of Geophysical Research, vol.99, issue.B8, pp.15503-15516, 1994.

M. Shore, Experimental determination of the thermal conductivity of molten CaMgSiO and the transport of heat through magmas" by Don Snyder, Elizabeth Gier, and Ian Carmichael, Journal of Geophysical Research, vol.100, issue.B11, pp.22401-22402, 1995.

C. Carrigan and A. Mcbirney, Experimental determination of the thermal conductivity of molten CaMgSiO and the transport of heat through magmas" by Don Snyder, Elizabeth Gier, and Ian Carmichael, Journal of Geophysical Research, vol.102, issue.B7, pp.15073-15076, 1997.

D. Snyder, E. Gier, and I. Carmichael, Reply. Journal of Geophysical Research, vol.102, issue.B7, pp.15077-15080, 1997.

Y. Kang and K. Morita, Thermal Conductivity of the CaO ? Al 2 O 3 ? SiO 2 System, ISIJ International, vol.46, issue.3, pp.420-426, 2006.

Y. Kang, J. Lee, and K. Morita, Thermal Conductivity of Molten Slags : A Review of Measurement Techniques and Discussion Based on Microstructural Analysis, ISIJ International, vol.54, issue.9, pp.2008-2016, 2014.

J. P. Van-den-brink and M. H. Rongen, Thermal conductivity of glasses at high temperatures. Thermal Conductivity, vol.22, pp.70-79, 1994.

H. Kiyohashi, N. Hayakawa, S. Aratani, and H. Masuda, Thermal Conductivity Measurements of Float Glass at High Temperatures by Needle Probe Method, Journal of the Ceramic Society of Japan, vol.108, pp.381-386, 1256.

H. Kiyohashi, N. Hayakawa, S. Aratani, and H. Masuda, Thermal conductivity of heat-absorbed soda-lime-silicate glasses at high temperatures, High TemperaturesHigh Pressures, vol.34, pp.167-176, 2002.

H. Ohta, G. Ogura, Y. Waseda, and M. Suzuki, Thermal diffusivity measurements of molten salts using a three-layered cell by the laser flash method, Review of Scientific Instruments, vol.61, issue.10, pp.2645-2649, 1990.

Y. Maeda, H. Sagara, R. P. Tye, M. Masuda, H. Ohta et al., A hightemperature system based on the laser flash method to measure the thermal diffusivity of melts, International Journal of Thermophysics, vol.17, issue.1, pp.253-261, 1996.

Y. Tada, M. Harada, M. Tanigaki, and W. Eguchi, Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids, Review of Scientific Instruments, vol.49, issue.9, pp.1305-1314, 1978.

Y. Tada, M. Harada, M. Tanigaki, and W. Eguchi, Laser flash method for measuring thermal conductivity of liquids. application to molten salts, Ind. Eng. Chem. Fund, vol.20, issue.4, pp.333-336, 1981.

H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature, Review of Scientific Instruments, vol.72, issue.3, p.1899, 2001.

H. Shibata, A. Suzuki, and H. Ohta, Measurement of Thermal Transport Properties for Molten Silicate Glasses at High Temperatures by Means of a Novel Laser Flash Technique, Materials Transactions, vol.46, issue.8, p.88, 2005.

H. Ohta, H. Shibata, and T. Kasamoto, Estimation of Heat Transfer of a Frontheating Front-detection Laser Flash Method Measuring Thermal Conductivity for Silicate Melts at High Temperatures, ISIJ International, vol.46, issue.3, pp.434-440, 2006.

R. Büttner, B. Zimanowski, J. Blumm, and L. Hagemann, Thermal conductivity of a volcanic rock material (olivine-melilitite) in the temperature range between 288 and 1470 K, Journal of Volcanology and Geothermal Research, vol.80, issue.3-4, pp.293-302, 1998.

R. Büttner, B. Zimanowski, C. Lenk, A. Koopmann, and V. Lorenz, Determination of thermal conductivity of natural silicate melts, Applied Physics Letters, vol.77, issue.12, p.1810, 2000.

A. M. Hofmeister, Dependence of diffusive radiative transfer on grain-size, temperature, and Fe-content : Implications for mantle processes, Journal of Geodynamics, vol.40, issue.1, pp.51-72, 2005.
DOI : 10.1016/j.jog.2005.06.001

A. G. Whittington, A. M. Hofmeister, and P. I. Nabelek, Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism, Nature, vol.458, issue.7236, pp.319-321, 2009.

A. M. Hofmeister, Thermal diffusivity of oxide perovskite compounds at elevated temperature, Journal of Applied Physics, vol.107, issue.10, 2010.
DOI : 10.1063/1.3371815

A. M. Hofmeister and A. G. Whittington, Effects of hydration, annealing, and melting on heat transport properties of fused quartz and fused silica from laser-flash analysis, Journal of Non-Crystalline Solids, vol.358, issue.8, pp.1072-1082, 2012.

A. M. Hofmeister, A. G. Whittington, J. Goldsand, and R. G. Criss, Effects of chemical composition and temperature on transport properties of silica-rich glasses and melts

, American Mineralogist, vol.99, issue.4, pp.564-577, 2014.

A. M. Hofmeister, J. Dong, and J. M. Branlund, Thermal diffusivity of electrical insulators at high temperatures : Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction, Journal of Applied Physics, vol.115, issue.16, 2014.

R. G. Deissler, Diffusion approximation for thermal radiation in gases with jump boundary condition, Journal of Heat Transfer, vol.86, issue.2, pp.240-246, 1964.

H. Poltz and R. Jugel, The thermal conductivity of liquids IV : Temperature dependence of thermal conductivity, International Journal of Heat and Mass Transfer, vol.10, issue.8, pp.1075-1088, 1967.

R. A. Perkins, M. L. Ramires, and C. A. Nieto-de-castro, Thermal Conductivity of Saturated Liquid Toluene by Use of Anodized Tantalum Hot Wires at High Temperatures, vol.105, pp.255-265, 2000.

J. Menashe and W. A. Wakeham, Effect of absorption of radiation on thermal conductivity measurements by the transient hot-wire technique, International Journal of Heat and Mass Transfer, vol.25, issue.5, pp.661-673, 1982.

C. A. Nieto-de-castro, R. A. Perkins, and H. M. Roder, Radiative Heat Transfer in Transient Hot-Wire Measurements of Thermal Conductivity, International Journal of Thermophysics, vol.12, issue.6, pp.985-997, 1991.

D. Maillet, Y. Jarny, and D. Petit, Problèmes inverses en diffusion thermique-Modèles diffusifs, mesures, sensibilités. Techniques de l'ingénieur, vol.8, p.265, 2011.

D. Maillet, Y. Jarny, and D. Petit, Problèmes inverses en diffusion thermique-Outils spécifiques de conduction inverse et de régularisation, vol.8, p.267, 2011.

J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science, 1977.

J. V. Beck, B. Blackwell, C. R. St, and . Clair, Inverse heat conduction : Ill-posed problems, 1985.

Y. Bard, Nonlinear Parameter Estimation, 1974.

M. N. Özisik and H. R. Orlande, Inverse Heat Transfer : Fundamentals and Applications, 2000.

H. R. Orlande, O. Fudym, D. Maillet, and R. M. Cotta, Thermal Measurements and Inverse Techniques, 2011.
DOI : 10.1201/b10918

URL : https://hal.archives-ouvertes.fr/hal-01729129

D. Petit and D. Maillet, Techniques inverses et estimation de paramètres. Partie 1. Techniques de l'ingénieur, vol.4, p.515, 2008.

D. Petit and D. Maillet, Techniques inverses et estimation de paramètres. Partie 2. Techniques de l'ingénieur, vol.4, p.516, 2008.

D. Maillet, Y. Jarny, and D. Petit, Problèmes inverses en diffusion thermique-Formulation et résolution du problème des moindres carrés, vol.8, p.266, 2011.

D. L. Jupp and K. Vozoff, Stable Iterative Methods for the Inversion of Geophysical Data, Geophysical Journal of the Royal Astronomical Society, vol.42, issue.3, pp.957-976, 1975.

B. Rémy and A. Degiovanni, Parameters estimation and measurement of thermophysical properties of liquids, International Journal of Heat and Mass Transfer, vol.48, pp.4103-4120, 2005.

B. Rémy and S. André, Thermal Measurements and Inverse Techniques, chapter Nonlinear Estimation Problems, pp.315-354, 2011.

B. Rémy, S. André, and D. Maillet, Non linear parameter estimation problems : tools for enhancing metrological objectives, Proceedings of Eurotherm Seminar, vol.104

, Advanced Spring School "Thermal Measurements and Inverse Techniques, 2015.

C. Lanczos, Linear Systems in Self-Adjoint Form, The American Mathematical Monthly, vol.65, issue.9, pp.665-679, 1958.

J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, vol.13, pp.49-52, 1902.

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol.2, issue.2, pp.164-168, 1944.

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, p.90, 1977.

D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial & Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.

N. Draper and H. Smith, Applied regression analysis, 1981.

P. Gill, W. Murray, and M. Wright, Practical optimization, 1981.

J. , The solution of nonlinear inverse problems and the Levenberg-Marquardt method, Geophysics, vol.72, issue.4, pp.1-16, 2007.

R. I. Shrager, R. Muzic, and A. Jutan,

D. Maillet, S. André, and A. Degiovanni, Les erreurs sur la diffusivité thermique mesurée par méthode flash : confrontation théorie-expérience, Journal de Physique III, vol.3, issue.4, pp.883-909, 1993.

E. Sober, Reconstructing the Past-Parsimony, Evolution, and Inference, 1989.

M. Huetz-aubert, S. Klarsfeld, and P. De-dianous, Rayonnement thermique des matériaux semi-transparents. Techniques de l'ingénieur, p.215, 1995.

J. H. Jeans, The Equations of Radiative Transfer of Energy, Monthly Notices Roy. Astron. Soc, vol.78, pp.28-36, 1917.

M. F. Modest, Radiative Heat Transfer, 2003.

J. R. Howell, R. Siegel, and M. P. Mengüç, Thermal Radiation Heat Transfer, 2011.

R. Viskanta, Review of three-dimensional mathematical modeling of glas melting, Journal of Non-Crystalline Solids, vol.177, pp.347-362, 1994.
DOI : 10.1016/0022-3093(94)90549-5

D. Krause and H. Loch, Mathematical Simulation in Glass Technology (Schott Series on Glass and Glass Ceramics, 2002.

R. Viskanta and E. E. Anderson, Heat Transfer in Semitransparent Solids, Advances in Heat Transfer, vol.11, issue.C, pp.317-441, 1975.
DOI : 10.1016/s0065-2717(08)70077-7

M. E. Goldstein and J. R. Howell, Boundary conditions for the diffusion solution of coupled conduction-radiation problems, 1968.

J. R. Howell and M. E. Goldstein, Effective slip coefficients for coupled conductionradiation problems, Journal of Heat Transfer, vol.91, issue.1, pp.165-166, 1969.
DOI : 10.1115/1.3580082

L. Pierrot and J. Meulemans, On temperature-slip boundary conditions to Rosseland's approximation with arbitrary wall emissivity, 2008.

H. C. Hottel and E. S. Cohen, Radiant heat exchange in a gas-filled enclosure : Allowance for nonuniformity of gas temperature, AIChE Journal, vol.4, issue.1, pp.3-14, 1958.

S. Chandrasekhar, Radiative Transfer, 1960.

G. D. Raithby and E. H. Chui, Finite-volume method for predicting a radiant heat transfer in enclosures with participating media, Journal of Heat Transfer, vol.112, issue.2, p.91, 1990.
DOI : 10.1115/1.2910394

W. Lick, Transient energy transfer by radiation and conduction, International Journal of Heat and Mass Transfer, vol.9, pp.119-127, 1965.
DOI : 10.1016/0017-9310(65)90102-x

R. E. Marshak, Note on the Spherical Harmonics Method as Applied to the Milne Problem for a Sphere, Phys. Rev, vol.71, pp.443-446, 1947.

S. V. Patankar, Numerical Heat Transfer and Fluid Flow, 1980.

P. J. Roache, Fundamentals of Computational Fluid Dynamics, 1998.

A. C. Ratzel and J. R. Howell, Two-Dimensional Radiation in Absorbing-Emitting Media Using the P-N Approximation, Journal of Heat Transfer, vol.105, pp.333-340, 1983.
DOI : 10.1115/1.3245583

J. J. Derby, S. Brandon, and A. G. Salinger, The diffusion and P1 approximations for modeling buoyant flow of an optically thick fluid, International Journal of Heat and Mass Transfer, vol.41, issue.11, pp.1405-1415, 1998.

K. Cheong, K. Moon, and T. Song, Treatment of radiative transfer in glass melts : validity of Rosseland and P-1 approximations, Physics and Chemistry of Glasses, vol.40, issue.1, pp.26-33, 1999.

H. Q. Nguyen, B. Rémy, and A. Degiovanni, Fast radiative model for modeling coupled heat transfers in solid and liquid semi-transparent materials, Proceedings of the 4th International Symposium on Advances in Computational Heat Transfer, 2008.

H. Q. Nguyen, B. Rémy, and A. Degiovanni, Fast and Accurate Simplified Radiative Model for Modeling Coupled Heat Transfers in Glass Forming Process, Advanced Materials Research, pp.575-578, 2008.

H. Q. Nguyen, Modélisation et simulation du remplissage de moules verriers : Prise en compte du transfert radiatif, 2009.

J. Meulemans, Towards accurate numerical modeling of radiative heat transfer for (extra-)clear glasses-A critical comparison of the Discrete Ordinates method, the P1 and the Rosseland approximations, 2009.

B. Rémy and A. Degiovanni, Measurements of the thermal conductivity and thermal diffusivity of liquids. Part II, International Journal of Thermophysics, vol.27, issue.3, pp.949-969, 2006.

I. Ansys, ANSYS FLUENT Theory Guide-Release 14, 2012.

I. Ansys, ANSYS FLUENT UDF Manual-Release 14, 2012.

P. J. Roache, Fundamentals of Verification and Validation, Socorro, 2009.

W. Oberkampf and C. Roy, Verification and Validation in Scientific Computing, 2010.

B. Legendre, Détermination des capacités thermiques spécifiques en fonction de la température, p.970, 2011.

J. Grenet and B. Legendre, Analyse calorimétrique différentielle à balayage (DSC). Techniques de l'Ingénieur, p.205, 2010.

B. Legendre, D. De-girolamo, P. L. Parlouër, and B. Hay, Détermination des capacités thermiques en fonction de la température par calorimétrie de chute. Revue française de métrologie, vol.5, pp.23-30, 2006.

P. Richet and Y. Bottinga, Heat capacity of aluminum-free liquid silicates, Geochimica et Cosmochimica Acta, vol.49, issue.2, pp.471-486, 1985.

P. Richet and Y. Bottinga, Thermochemical properties of silicate glasses and liquids : A review, Reviews of Geophysics, vol.24, issue.1, pp.1-25, 1986.

P. Richet, Heat capacity of silicate glasses, Chemical Geology, vol.62, issue.1-2, pp.111-124, 1987.

P. Richet, Chaleur massique des verres de silicate, 1991.

P. Richet, Mesures de la viscosité d'équilibre et de la capacité calorifique de différents verres de silicate industriels, 1992.

Y. Souhar, Caractérisation thermique de matériaux anisotropes à hautes températures, 2011.

Y. Souhar, B. Rémy, and A. Degiovanni, Thermal Characterization of Anisotropic Materials at High Temperature Through Integral Methods and Localized Pulsed Technique, International Journal of Thermophysics, vol.34, pp.322-362, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01431045

G. Neuer and G. Jaroma-weiland, Spectral and Total Emissivity of High-Temperature Materials, International Journal of Thermophysics, vol.19, issue.3, pp.917-929, 1998.

P. E. Liley, Thermophysical properties of ice/water/steam from ?20 ? C to 50 ? C, International Journal of Mechanical Engineering Education, vol.32, issue.4, pp.45-50, 2005.

Y. Lefrère, Propriétés d'absorption optique du Fe2+ et du Fe3+ dans des verres d'intérêt industriel (mesure, modélisation et implications structurales), 2002.

F. Michel, Relations entre structure et propriétés radiatives de verres et de liquide d'oxydes en conditions in-situ, 2013.

N. Neuroth, Der Einfluß der Temperatur auf die spektrale Absorption von Gläsern im Ultraroten, Glastechnische Berichte, vol.25, issue.8, pp.242-249, 1952.

W. J. Merren, The Use of Electronic Devices in the Glass Industry, Journal of the Society of Glass Technology, pp.230-240, 1951.

F. J. Grove and P. E. Jellyman, The Infra-red Transmission of Glass in the Range Room Temperature to 1400 ? C, Journal of the Society of Glass Technology, 1955.

F. J. Grove, Spectral transmission of glass at high temperatures and its application to heat-transfer problems, Journal of the American Ceramic Society, vol.44, issue.7, pp.317-320, 1961.

M. Coenen, Durchstrahlung des Glasbades bei Farbgläsern. Glastechnische Berichte, vol.41, pp.1-10, 1968.

H. Franz, Infrared absorption of molten soda-lime-silica glasses containing transition metal oxides, IX International Congress on Glass (ICG), pp.243-260, 1971.

B. Wedding, Measurements of High-Temperature Absorption Coefficients of Glasses, Journal of the American Ceramic Society, pp.102-105, 1975.

C. Ades, J. Traverse, and F. Naudin, Influence de la température sur les propriétés optiques du verre fondu contenant des oxydes de métaux de transition, Journal of Non-Crystalline Solids, pp.257-262, 1980.

C. Ades, J. Traverse, and F. Naudin, Spectres d'absorption des oxydes de fer, de chrome et de manganèse dans des verres silico-sodocalciques à température élevée jusqu'à 1450 ? C, XIII International Congress on Glass (ICG), 1983.

C. Ades, T. Toganidis, and J. Traverse, High temperature optical spectra of sodalime-silica glasses and modelization in view of energetic applications, Journal of NonCrystalline Solids, vol.125, issue.3, pp.272-279, 1990.

C. Ades, Propriétés optiques des verres silicatés à haute température, 1989.

A. Bla?ek, J. Endrýs, J. Kada, and J. Stan?k, Strahhlungswärmeleitfähigkeit von Glas-Einfluß der Glaszusammensetzung auf seine Wärmedurchlässigkeit, Glastechnische Berichte, vol.49, issue.4, pp.75-81, 1976.

J. Endrýs, F. Geotti-bianchini, and L. De-riu, Study of the high-temperature spectral behavior of container glass, Glastech. Ber. Glass Sci. Technol, vol.70, issue.5, 1997.

J. Endrýs, Measurement of radiative and effective thermal conductivity of glass, 5 th ESG Conference, 1999.

O. A. Prokhorenko and O. V. Mazurin, Problems of spectrophotometry of glass-forming melts : I. The current state of the problem of reliable experimental data acquisition

, Glass Physics and Chemistry, vol.25, issue.2, pp.159-162, 1999.

O. A. Prokhorenko, O. V. Mazurin, M. V. Chistokolova, S. V. Tarakanov, Y. E. Reznik et al., Problems of spectrophotometry of glass-forming melts : II. A technique for measuring the absorption spectra of glasses and melts in the red and near-infrared ranges at temperatures from 20 to 1500 ? C. Glass Physics and Chemistry, vol.26, pp.187-198, 2000.

O. A. Prokhorenko, High Temperature Glass Melt Property Database for Process Modeling, chapter Radiative Thermal Conductivity of Melts, pp.95-117, 2005.

P. A. Van-nijnatten, Evaluation of methods for the determination of thermal radiation properties of molten glass, International Conference on Glass Problems, 1996.

P. A. Van-nijnatten and J. T. Broekhuijse, A high temperature optical test faciity for determining the absorption of glass at melting temperatures, 5 th ESG Conference, 1999.

P. A. Van-nijnatten, J. T. Broekhuijse, and A. J. Faber, Spectral Photon Conductivity of Glass at Forming and Melting Temperatures, 5 th ESG Conference, 1999.

P. A. Van-nijnatten, Accurate determination of spectral absorption of highly transparent optical glass, 5 th ESG Conference, 1999.

A. M. Efimov and P. A. Van-nijnatten, High temperature optical properties of glass melts in the 0.95-4.5 µm range : an example of television glass melt, XIX International Congress on Glass (ICG), 2001.

D. S. Goldman and J. I. Berg, Spectral study of ferrous iron in Ca-Al-borosilicate glass at room and melt temperatures, Journal of Non-Crystalline Solids, pp.183-188, 1980.
DOI : 10.1016/0022-3093(80)90415-9

J. I. Berg, Near infrared absorption coefficient of molten glass by emission spectroscopy, International Journal of Thermophysics, vol.2, issue.4, pp.381-394, 1981.
DOI : 10.1007/bf00498768

D. Banner, Propriétés radiatives des verres et des fontes de silicates en fonction de la température, 1990.

D. Banner and S. Klarsfeld, High temperature infrared spectra of silicate melts, Physics of Non-Crystalline Solids, pp.371-375, 1992.

R. Fabris, J. Huclin, M. Sakami, and M. Lallemand, Identification method for infrared absorption spectra of semitransparent media by their emission data. Application to lime-aluminosilicate glasses at high temperatures, Glastechnische Berichte, vol.67, issue.4, pp.81-86, 1994.

M. Sakami and M. Lallemand, Spectres infrarouges de verres à haute temperature par inversion de l'émission thermique de couches anisothermes, Journal de Physique III, vol.4, issue.5, pp.953-965, 1994.
DOI : 10.1051/jp3:1994177

H. Hasegawa, H. Ohta, H. Shibata, and Y. Waseda, Recent Development in the Investigation on Thermal Conductivity of Silicate Melts. High Temperature Materials and Processes, vol.31, pp.491-499, 2012.

P. Jund and R. Jullien, Molecular-dynamics calculation of the thermal conductivity of vitreous silica, Physical Review B, vol.59, issue.21, pp.13707-13711, 1999.

B. Guillot and N. Sator, A computer simulation study of natural silicate melts. Part I : Low pressure properties, Geochimica et Cosmochimica Acta, vol.71, issue.5, pp.1249-1265, 2007.
DOI : 10.1016/j.gca.2006.11.015

B. Guillot and N. Sator, A computer simulation study of natural silicate melts. Part II : High pressure properties, Geochimica et Cosmochimica Acta, vol.71, issue.18, pp.4538-4556, 2007.
DOI : 10.1016/j.gca.2006.11.015

A. Pedone, Properties Calculations of Silica-Based Glasses by Atomistic Simulations Techniques : A Review, The Journal of Physical Chemistry C, vol.113, issue.49, pp.20773-20784, 2009.
DOI : 10.1021/jp9071263

, Evaluation des données de mesure-Guide pour l'expression de l'incertitude de mesure, Joint Committee for Guides in Metrology (JCGM), vol.100, 2008.

D. Maillet, S. André, B. Rémy, and A. Degiovanni, Regularized parameter estimation through iterative rescaling (PETIR) : an alternative to Levenberg-Marquardt's algorithm. 28 pages, 13 figures, 2 test cases, 2013.

G. E. Box and G. C. Tiao, Bayesian Inference in Statistical Analysis, 1973.

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, 2005.

D. Maillet, S. André, J. Batsale, A. Degiovanni, and C. Moyne, Thermal Quadrupoles : Solving the Heat Equation through Integral Transforms, 2000.

H. Stehfest, Algorithm 368 : Numerical Inversion of Laplace Transforms, vol.5

, Communications of the ACM, vol.13, issue.1, pp.47-49, 1970.

F. De-hoog, J. Knight, and A. Stokes, An Improved Method for Numerical Inversion of Laplace Transforms, SIAM Journal on Scientific and Statistical Computing, vol.3, issue.3, pp.357-366, 1982.

D. Maillet, C. Moyne, and B. Rémy, Effect of a thin layer on the measurement of the thermal diffusivity of a material by a flash method, International Journal of Heat and Mass Transfer, vol.43, issue.21, pp.4057-4060, 2000.

L. Shartsis and S. Spinner, Viscosity and density of molten optical glasses, Journal of Research of the National Bureau of Standards, vol.46, issue.3, p.176, 1951.

L. Shartsis, S. Spinner, and W. Capps, Density, expansivity, and viscosity of molten alkali silicates, Journal of the American Ceramic Society, vol.35, issue.6, pp.155-160, 1952.

L. Shartsis, W. Capps, and S. Spinner, Density and expansivity of alkali borates and density characteristics of some other binary glasses, Journal of the American Ceramic Society, vol.36, issue.2, pp.35-43, 1953.

, Les analyses chimiques quantitatives des échantillons étudiés ici sont reportées dans les Tables D.1 (résultats exprimés en % massique) et D.2 (résultats exprimés en % molaire)

, Ces analyses ont été réalisées par les laboratoires des usines ou bien par le groupe « Chimie Analytique

, Propriétés des échantillons La chaleur spécifique des échantillons a été mesurée par calorimétrie différentielle à balayage (ou DSC, de l'anglais : Differential Scanning Calorimetry) par le groupe « Minéralogie Appliquée » du département EMC 2 de SGR. Les chaleurs spécifiques des verres fondus

?. Constantes and . Valent, 51 J kg ?1 K ?1 pour l'échantillon AS

, L'incertitude associée à la mesure de la chaleur spécifique est de l'ordre de 3% *. La masse volumique a été mesurée par la méthode (directe) du principe d'Archimède, p.182

, Murano (Italie) pour les échantillons SC1 et SC2. Les valeurs mesurées de la masse volumique en fonction de la température sont illustrées sur la Figure D.1. Les valeurs issues des régressions linéaires sont reportées dans la Table D.3. L'incertitude associée à la mesure de la masse volumique est inférieure à 0,5%. L'indice de réfraction des échantillons a été considéré comme constant et vaut 1,52 pour tous les échantillons. Cette valeur repose sur des mesures de spectrophotométrie, par le Laboratory of Glass Properties (LGP) à Saint-Pétersbourg (Russie) pour l'échantillon AS et par la Stazione Sperimentale del Vetro (SSV) à

. Le-protocole, de mesure a été validé à l'aide d'une inter-comparaison avec des mesures de calorimétrie par chute réalisées par Pascal Richet et ses collaborateurs à l

E. , Echantillon SC2

E. , 1 Thermogrammes expérimentaux Les thermogrammes réduits expérimentaux obtenus pour l'échantillon SC2 entre 1100 et

, Pour chaque température, entre trois et cinq thermogrammes expérimentaux ont été exploités. Les thermogrammes expérimentaux présentent un mauvais rapport signal sur bruit. Celui-ci est attribué à l'encrassement des hublots en séléniure de zinc (ZnSe) utilisés ici, ? C sont représentés sur les Figures E.25 à E.29