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Abstract

The focus of this thesis is the modelling and analysis of biological systems us-
ing formal methods. The dynamics of biological systems exhibit continuous be-
haviours but also abrupt changes. Ordinary differential equations and hybrid dy-
namical systems are two mathematical formalisms that naturally model such dy-
namics.

A crucial aspect of modelling is the determination of valid parameter values
that enable to simulate the behaviour and reproduce experimental data sets. If no
valid parameter values are found it becomes necessary to revise the model. An
option is to replace one or several lumped parameters (parameters which represent
a set of processes) by functions of time. In this thesis we rst study the model
revision problem on hybrid dynamical systems. To this aim we propose a greedy
scheme of optimal control methods based on occupation measures and convex re-
laxations.

Then, we study how to characterize dynamical properties of a model using
set-based simulations and reachability analysis. For this purpose, we propose two
methods: the rst one, which relies on Bernstein expansion, is an extension for
hybrid dynamical systems of the reachability t&zpo [1], while the other one
uses Krivine-Stengle representations [2] to perform the reachability analysis of
polynomial ODEs. Finally, We also propose a methodology to generate hybrid
dynamical systems modelling a class of experimental protocols.

The proposed methods are applied to different case studies. We rst propose
a model of haemoglobin production during the differentiation of an erythrocyte
in the bone marrow [3]. To develop this model, we rst apply the Monte-Carlo
based parameters synthesis, followed by the model revision to correctly t to the
experimental data [4]. We also propose a preliminary study of the effect of low
dose Cadmium on glucose response at different steps of a rat growth. Finally, we
apply the reachability analysis techniques for the validation on large parameters
set of the existing iron homoeostasis model [5], [6]. We note the haemoglobin
production process, as well as the glucose response system can be formalised, with
their experimental context, as hybrid dynamical systems. Thus, they serve as proof
of concept for the methodology of biological experimental protocols modelling.
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Resune

L'objectif de cette tlese est la mdglisation et Ietude de sysimes biologiques par
l'intermédiaire de raéthodes formelles. Les sgshes biologiquesa@montrent des
comportements continues mais sont aussi susceptibles de montrer des changements
abruptes dans leur dynamiques. léegiations difrentielles ordinaires, ainsi que

les sysémes dynamiques hybrides, sont deux formalismesénadkiques utiligs

pour moctliser clairement de tels comportements.

Un point critique de la maglisation de sysimes biologiques est la recherche
des valeurs des paratnes du moele a n de reproduire de magiie pécise un
ensemble de do@es exprimentales. Si aucun jeux de paeines valides n'est
trouvg, il est recessaire deewiser le modle. Une possibilé est alors de remplacer
un paranetre, ou un ensemble de paretnes, & nissant un processus biologique
par une fonction épendante du temps.

Dans le cadre de cettedbe, nous exposons tout d'abord unetinode pour la
révision de modles hybrides. Pour cela, nous proposons une approche gloutonne
appligieea une néthode de condle optimal utilisant les mesures d'occupations et
la relaxation convexe. Ensuite, nogisidions comment analyser les prés dy-
namiques d'un moelea temps discret en utilisant la simulation ensembliste. Dans
cet objectif, nous proposons deukthodes bases sur deux outils mamatiques.

La premere nethode, qui se repose sur les pdiymes de Bernstein, est une ex-
tension aux sysimes dynamiques hybrides, de I'outil de calcul ensembBaiso
[1]. La seconde rethode utilise les repsentations de Krivine-Stengle [2] pour
permettre I'analyse d'atteignaibditde systmes dynamiques polynomiaux. En n,
nous proposons aussi unetthodologie pour grérer des sysimes dynamiques
hybrides moélisant des protocoles biologiques éxjnentaux.

Les methodes groedemment propées sont appligees sur diverg&tudes bi-
ologiques. Noug&tudions tout d'abord un mede de la production d&moglobine
durant la diferentiation degrythrocytes dans la moelle [3]. Pour permettre la con-
struction de ce magle, nous avons dans un premier tem@gege un ensemble de
jeux de pararetres valides I'aide d'une néthode de type Monte-Carlo. Dans un
second temps, nous avons appéda nethode deé&vision de modle a n de re-
produire plus pecigement les donges exprimentales [4]. Nous proposons aussi
un mockle péliminaire des effeta faibles doses du Cadmium sur &ponse du
métabolismea differentesétapes de la vie d'un rat. Enn, nous appliquons les

Vii



techniques d'analyse ensembliste pour la validation d'hygsgl sur un made
d'homéostasie du fer [6] dans le cas des paramtres varient dans de larges in-
tervalles. Dans cette ése, nous montrons aussi que le protocole assotetude
de la production d'Bmoglobine, ainsi que le protoco&tudiant I'integration du
Cadmium durant la vie d'un rat, peuvegtre formali€s comme des sys@nes dy-

namiques hybrides, et servent ainsi de preuves de concepts pour thadsmde
mocklisation de protocoles eggmentaux.
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CHAPTER

Introduction

Essentially, all models are wrong, but some are useful.

George E.P. Box

1.1 Context

Computational models in systems biology. Any science in interaction with the

real world needs models. In Figure 1.1, we give a possible point of view on the
modelling approach. The real world forms a whole: the environment in which
we measure observations exhibiting a particular phenomenon. The phenomenon
results from interactions of entities that are part of the environment. This environ-
ment may be set or constrained by an experimentation, or it can be free and uncon-
trolled. The observations are the measures performed that allow to observe, at least
partially, the phenomenon. Then, a model is an abstraction of the observable world
using a mathematical or computational formalism. Given inputs representing a
possible state of a considered environment, a model provides outputs associated to
some observations of a real phenomenon (see Figure 1.1).

The purposes of models are numerous. They can be used to replicate in-silico
real-life experiments, reducing the time and cost of multiple real-life tests. Simi-
larly, they can provide prediction, monitoring and diagnosis capabilities for a given
phenomenon and for a known environment. This is primarily achieved by black-
box models (also called operational models) which are built directly from observa-
tions, using inference-based techniques, machine learning, or model identi cation.
In the biological context, this is especially useful when the environment is repet-
itive, well-sampled and with numerous observations. For example, any statistical
model performing disease diagnostics is of this kind: given a set of well determined
biological markers a model provides the probability of a good or bad evolution of

1
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Real world

phenomenon Observations

Environment—>

Sample Reproduce

Abstraction

Inputs—> Outputs

Figure 1.1: Models as an abstraction of the real world.

the disease. More advanced techniques, under the name of model identi cation,
try to infer the complete structure of a model in an attempt to obtain a representa-
tion of the actual mechanism leading to the observed phenomenon. An example of
such methods using hybrid systems as models is [7]. While black-box models are
a very ef cient way to represent a phenomenon for the previous applications, they
are clearly limited on, at least, three points:

1. They are only useful when the inputs are taken inside a well de ned envi-
ronment.

2. Itis hard to integrate new results, any real-life observations, which are not
reproduced by the model, without reconsidering the whole model.

3. No actual knowledge or understanding of the underlying mechanism can be
easily obtained from such models.

Therefore, in addition to black-box model there are models whose purpose is to
represent and abstract the knowledge about the mechanism leading to the observed
phenomenon. In the following, we will call these models mechanistic models.
However, in the literature they are also nhamed white-box models or denotational
models. In black-box models the structure of the mathematical functions describ-
ing a phenomenon is directly inferred from observations. This is in contrast with
mechanistic models where the structure of the laws de ning the inputs-outputs re-
lationship results from hypotheses and/or previous knowledge on the mechanism
associated to the studied phenomenon.

Mechanistic models are employed to understand and represent the existing
knowledge about a particular mechanism. Therefore, another purpose is to test
hypotheses on unknown components of the mechanism Otherwise, up to our cur-
rent observations, our understanding of the mechanism is more likely to be true:
there is yet no guarantee. Consequently, a model can only disprove a hypothesis.
Finally, mechanistic models can be used, to a certain extent, to design more faith-
ful black-box models or to provide prediction and monitoring abilities in some
applications [8, 9]. Unlike black-box models, which are useful only when they
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1.1. CONTEXT 3

are coherent with the observations, the mechanistic models have a greater panel
of applications. However, they require in general more time to be designed and
result from numerous loops between experimentation and validation with respect
to the observations. Moreover, they are often more computationally expensive than
black-box models.

We remark that mechanistic models can be studied with qualitative and/or
guantitative methods. Qualitative methods seek to represent and describe the gen-
eral behaviours of an observed phenomenon, for example the number of attractors
or cycles, the stability or bifurcation conditions, etc. They often rely on strongly
theoretical approaches and do not necessarily need numerical methods and compu-
tations for other purposes than displaying results. On the other hand, quantitative
methods do not necessarily provide strong theoretical results on the behaviours.
However, they seek to reproduce the observations as faithfully as possible, by
studying the behaviours and the numerical values associated to both the obser-
vations and the variables describing the environment.

In this thesis, we will mainly address the problem of modelling biological phe-
nomena and observations using mechanistic models with quantitative methods.

Mathematical formalisms. There exists a large choice of mathematical formalisms
such as process algebra, Boolean networks, Petri nets, Thomas networks, stochastic
models, difference equations, ordinary differential equation (ODES), partial differ-
ential equations (PDESs), or hybrid dynamical systems. The choice of the formalism
strongly depends on the types of available data and the questions asked.

Along this thesis, we use three from these mathematical formalisms. The rst
one is the ODE formalism. ODEs describe the variations of the entities under study
over an in nitely small time instantt. Hence, instead of directly modelling the
evolution of each entity as function of time, we represent how the entities interact
with each other. The actual evolution is then obtained by integrating the ODEs
over the time.

In the ODE formalism, both time and state variables are continuous. Moreover,
the ODE is a deterministic formalism and describes in general average and macro-
scopic quantities. Therefore stochastic effects are neglected: the ODE's solution
must be similar to the average observations of numerous experimental runs with
the same environment settings. In system biology, the relevance of the ODEs can
be discussed, in particular for the study of molecular reactions with small or in-
homogeneous entities concentrations. In this thesis we do not consider stochastic
models.

The second formalism is discrete time systems and in particular difference
equations. Difference equations are similar to the ODE formalism in the sense
that we assume determinism and continuous state variables. However, they operate
on discrete time instead of continuous time. Consequently, discrete time system
computation is more direct than ODE numerical integration. It is also interesting
to note that solutions of ODEs can be approximated by discrete time systems.
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4 CHAPTER 1. INTRODUCTION

The third formalism is hybrid dynamical systems. Using this formalism, one
can combine discrete and continuous dynamics. Itis important to note that the term
“hybrid system” in system biology refers to a wide range of formalisms as shown
in [10]. Thus, we emphasize that in this thesis we use this term to denote hybrid
dynamical systems. Additionally, as we do not consider stochastic hybrid systems,
we refer the interested reader to a recent review [11] for information about them.

Problems arising in biological systems modelling. We recall that we are con-
sidering the problem of modelling of biological systems de ned by: a phenomenon
under study (for example, metabolic response to glucose intake), an environment
( for example, a study on rats, or a particular diet), and a set of observations (for
example the plasma glucose and insulin measurements).

The rst step of the modelling process is the de nition of the involved enti-
ties and the model structure describing the interactions between the entities. The
entities (represented by state variables) to consider can be determined from the
observations, the perturbations performed during the experiment, or they can be
de ned an abstract representation of a more complex mechanism. Similarly, the
model structure (network topology) can be established using a priori knowledge,
or from hypotheses and insights on the experimentations. Then, kinetics laws,
such as the mass action laws, provide the equations governing the dynamics. We
remark that at these equations are de ned using parameters whose values may be
uncertain. We explain the need of parameter estimation a bit further.

The rst challenge is to determine the appropriate approximation level of the
model. One attempt would be to integrate all previous modelling efforts and knowl-
edge into the new model. This results in an overly complex model spanning over
multiple scales which is hard to understand, validate and/or simulate. Another
attempt is to design a model as simple as possible by representing solely the ob-
servable entities and by approximating or inferring other mechanisms. This leads
to models which either cannot reproduce the existing observations, or cannot re-
produce future observations of the same phenomenon but in slightly different en-
vironment settings. To know about methods for formally handle this rst step,
we refer to some work on model integrations [12], or model reduction techniques
[13, 14, 15]. These results provide mathematical frameworks to approximate and
integrate previous knowledge, or to reduce multi-scale models arising from knowl-
edge integration, while ensuring the correctness of the resulting approximations.

The values of the parameters are especially important in quantitative modelling
as we seek not only to reproduce the general behaviours of the observations, but
also to replicate the same numerical results.

In classical physics these parameters are often well-de ned physical constants
which can be directly measured through experiments. In engineering, the amount
and the accuracy of observations are often very high, leading to accurate parameter
identi cation. Moreover, a priori ranges for the parameter values are easily esti-
mated from physical laws, or parameters are often related to real world components
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1.1. CONTEXT 5

and have xed values by construction.

In biology, parameters may represent physical or chemical constants, but they
are often an abstraction of an underlying mechanism which is approximated by a
constant for a given environment setting. Consequently, parameters may not be
directly observable as in classical physics or engineering, and their actual ranges
may be completely unknown at rst. Moreover, actual experimental observations
are scarce, and/or with high variance leading to poor parameter estimation quality.
The parameter estimation and validation are critical issues in biological systems
modelling. In the next section, Section 1.2, we will discuss brie y some work
on parameter estimation for the considered formalisms. Once a set of parameter
values (also called parametrization of the model, or parameter set) enable us to
reproduce experimental observations, we need to determine the level of con dence
in the quality of this parameter set, and to validate the model.

Parameter uncertainty analysis (sensitivity analysis, identi ability, and robust-
ness) is a way to assess the quality of a parameter estimation with respect to ex-
perimental observations. In this work, we do not develop new methods to address
these issues and we refer the interested reader to a recent review on the subject [16]
for ODEs.

In addition to these methods, it is also possible to apply set-based methods
from the eld of formal veri cation to ensure the validity of the model with re-
spect to the observations. Formal methods are the set of computational methods
which provide guarantees and proofs, which can be achieved by convergence prop-
erties, conservative or certi able results. Formal methods originally come from
the eld of automated theorem proving and algorithmic veri cation. In these top-
ics, a model is considered as an accurate representation of the reality, such as a
mathematical theorem, or a system/program execution and a major problem is to
provide a binary answer to the question whether the model satis es some property.
In biology, a model is a hypothesis or an abstraction of the reality, and it is impor-
tant to nd a counter-example disproving the model, but proving that there is no
counter-example is not critical, since experiments themselves may be inaccurate
or incomplete. We remark that when dealing with the particular eld of synthetic
biology, therapy on patients and experimental protocol design, the issue of proving
the correctness of the model may become critical in the future. Indeed, an error
in the model would lead to patient death or failure of an expensive experimenta-
tion. However, formal methods are ef cient in proving qualitative properties of
the models, which eases considerably the theoretical work. Moreover, set-based
methods and methods from formal veri cation give an exhaustive abstraction of
all the possible solutions for a given set of inputs. They are also ef cient to nd
counter-examples, or to deal with dense sets of possible inputs. When dealing with
parameter uncertainties over multiple orders of magnitude, methods based on nu-
merical simulations and large number of samplings may be cost inef cient due to
the exponential volume of the parameter space to explore. Using set-based analysis
from formal methods one can provide conservative results in the form of solution
sets which can be more ef cient than simulations. We refer the reader to three in-
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6 CHAPTER 1. INTRODUCTION

teresting articles on the use of formal methods for systems biology [17, 18, 19]. In
addition, for more details on the general process of biological systems mathemati-
cal modelling we recommend the following work [20, 21, 22].

Finally, we note that if there is no parameter valuation that allows reproducing
the experimental observations, either the parameter estimation method is lacking,
or the proposed model of the mechanism is incorrect. In the latter case, we need to
update the model: we call this step model revision. This step can be performed in
two manners. First, a model can be revised by adding additional knowledge, which
were not previously considered, into the model. Second, in absence of insight and
additional information, model revision can be done by assuming that a parameter
modelling an underlying mechanism needs to be studied more in depth: in this case,
one can resort to functional optimization techniques similar to model identi cation,
to infer a better approximation for the underlying mechanism.

In this thesis, we address three of the above issues (designing biological model,
model validation, and model revision) using techniques from the eld of formal
methods.

In the next section we provide an overview on dynamical hybrid system mod-
elling for systems biology, a short review on parameter synthesis and parameter
estimation, and nally on formal methods for validation of biological systems. An
additional discussion on related work is provided in each chapter.

1.2 State of the Art

Hybrid dynamical systems modelling. In this thesis we use hybrid dynamical
systems as a mathematical formalism to represent biological systems. Models of
biological systems can be directly designed using hybrid dynamics. Indeed, this
formalism allows us to clearly de ne and combine the continuous and homoge-
neous behaviours with discrete or discontinuous ones. One can model the different
phases of a biological process, or cyclic behaviours, as a hybrid system. For ex-
ample, in [23] the hybrid formalism was applied to the cell cycle modelling, while
[24] and [25] are concerned with modelling cell behavioural changes under a stim-
ulus. In [26], this model is used to specify multi-step prototoishile in [27]

hybrid systems describe the spiking models and multi-phases behaviour of neuron
activity.

In addition to the modelling purposes, hybrid systems can be used to reduce
the complexity of non-linear dynamical systems.

Such approach was rst considered for engineering goals as in [28] on plane
control systems. More recent work addresses the problem of hybridization, that
is approximation of complex non-linear dynamics by a hybrid system which is
easier to compute and/or analyze. The resulting hybrid system can have dynam-
ics described by linear ODEs in which case we speak of piecewise linearisation

1In a similar approach to the work described further in this thesis
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1.2. STATE OF THE ART 7

technique& These linearisations can either be decided initially from the system
equations [29, 30, 31] or on the y [32, 33]. Itis also possible to approximate a
non-linear continuous model by a hybrid system with simpler non-linear dynamics
[34].

For biological models, another way to reduce the model complexity is to pro-
pose hybridization methods approximating multi time scales dynamics and explic-
itly separate fast and slow modes inherent to biological processes [35, 36, 37]. We
note that the latter work recovers, using formal methods, the previous hybrid mod-
elling proposed in [23]. Activation processes in gene regulatory networks can also
be formally represented by hybrid systems (piecewise linear) as demonstrated in
[38].

Finally, we invite the reader to consult [18, 39] which review the aims and
methods for hybrid systems modelling as an application to systems biology [18,
39]. More details on the hybrid system formalism itself can be found in Chapter
2-Section 2.2, or in introductory books [40, 41].

Parameter estimation techniques. In this thesis we do not directly address the
problem of parameter estimation (also called parameter synthesis), and only pro-
vide simple exploratory schemes that we use in our case studies. However, we still
provide here a short view of different tools and methods which handle this issue.
First, we remark that there are a number of methods and tools based on nu-
merous simulation and optimization methods as explained in the previously cited
review on ODE parameter uncertainty analysis [16]. The search of valid param-
eters is equivalent to minimizing a cost function modelling either the distance
to some experimental time series [42, 43] or some temporal logic formulas de-
scribing expected realistic behaviours [44] or [45, 46] (based on Breach toolbox
[47, 48]). While some of this work uses a purely optimization based approach
[45, 46, 42, 43, 49] (see [50] for a review on optimization methods in systems biol-
ogy), others consider statistical or probabilistic methods [51, 52] and [53] (based on
[54] Bayesian modelling). Among this work, only [43, 47] are designed to handle
hybrid systems or black-box simulatichsvhile all the other methods are speci ¢
to ODEs or stochastic models. The work in [26] proposes, for a case study, an
adaptation of the particle swarm technique for parameter estimation of non-linear
hybrid systems. Only [43] handles multi-objective optimization problems, which is
a useful when simultaneously considering observations from various experiments.
In addition to these simulation-based techniques, some other works consider
the problem of searching for a set of valid parameters using techniques from for-
mal veri cation. In [5] the author proposes a method to search for clusters of valid
parameter sets using the robustness-based algorithm from [47]. Gene regulatory
networks are an important topic in systems biology, which has led to intensive

2The hybrid dynamical system formalism may not be explicitly used but the resulting behaviours
can be considered considered as hybrid.
3The tool only knows the trajectory solution and not the actual structure of the model.
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8 CHAPTER 1. INTRODUCTION

modelling effort [55, 56, 57, 58, 59]. Gene regulatory networks can be modelled
as multi-af ne hybrid systems with box domains. Using previous theoretical work
[60, 61, 62] on sigmoid approximations, it is possible to exploit the convexity of the
ow at the corner of the domains. The previously cited works [55, 56, 57, 58, 59]
use this to perform reachability analysis and parameter estimations. In [55, 56] the
authors over-approximate multi-af ne hybrid systems by linear hybrid automata
[63] for which the reachable sets are easier to compute: parameter estimation is
performed in parallel. Similarly, [57] approximates the ow on the faces of the
domains and use model-checking technigues to compute the reachable set and per-
form parameter synthesis. The work [58, 59] uses the approximation from [61]
to approximate the regulation networks by a discrete interaction graph on which
constraint and satis ability solvers can be ef ciently applied to obtain a valid pa-
rameter set.

Finally, we mention some work which aims at handling directly dense param-
eter sets. On discrete time polynomial population models, the authors of [64, 65]
propose a method to compute an under-approximation of a valid parameter space
satisfying a set of temporal constraints (in Signal Temporal Logic). A similar ap-
proach by invalidation is investigated in [66] and the toolbox ADMIT [67]. Finally,
the semi-de nite programming methods usually applied for control problems can
be used for parameter estimation of biological systems: we refer to [68] for dis-
crete time biochemical systems, and [69, 70] for more general work on ODEs and
non-linear hybrid dynamical systems, respectively.

Methods for model validation and veri cation. Once a parameter valuation is
estimated, we want to gain con dence or validate in the determined model. This
con dence can be obtained by computing with statistical methods the robustness
of the current model with respect to some perturbations [16]. It is also possible to
validate the model using either model-checking methods or set reachability anal-
ysis. Model checking can be roughly described as checking the satisfaction of a
logic formula (describing a desired property) on a mathematical model. With the
development of SAT solvers and SMT (SAT-modulo theory) the model-checking
approach is an ef cient way to validate a model. However, this method is in gen-
eral more adapted to the validation of qualitative properties. The are numerous
work applying the model-checking approach to systems biology. The work of [71]
proposes to apply abstract interpretation to perform model checking on models
de ned in different formalisms: continuous Markov chains, Petri nets, boolean
networks and in differential equations. Through the de nition of type structures
for multiple interactions arising in biochemical reactions, they can generate a satis-
ability problem to validate qualitative properties. This approach is integrated into
the toolbox Biocham [44]. We note this toolbox also includes a monitoring engine
to perform robustness analysis over simulation traces of ODE systems. In addi-
tion to this tool, there are numerous other tools for veri cation of gene regulation
networks using convex approximation of the ow as de ned in [61]. The genetic
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network analyser (GNA) [72, 73] provides a qualitative validation of a discrete ab-
straction for piecewise af ne models of gene regulation networks. An extension
for quantitative analysis of piecewise multi-af ne models provided in RoVerGeNe
[74, 75, 76]. A similar approach is also considered in more recent work [57]. Apart
from gene regulation networks, we mention [77] which provides an algorithm for
model checking of hybrid automata with explicit ow and algebraic constraints.
We remark that outside of the biological context, the theorem prover toolbox Key-
maera [78, 79, 80] also handles veri cation of temporal logic formula on hybrid
dynamical systems whose trajectories can be explicitly described. Finally, we rec-
ommend the reader to consult an overview of the model-checking approach on
discrete models of gene regulation [81] and broader reviews of the application of
model-checking and their tools for biochemicals systems [19, 82].

In addition to model-checking based approaches there are a number of tools
which can compute reachable sets of differential equation models by set-based
simulation methods. However, there are only few which are dedicated to sys-
tem biology [83, 84]. We note the toolbox Marco [85] which uses the previously
cited works on ow convexity for piece-wise multi-af ne systems [60, 61] to pro-
vide reachability analysis of biological systems. Indeed, most of these results are
either applicable only to linear ODE system, or do not handle ef ciently mod-
els with uncertain parameters. The works which handle both non-linear dynam-
ical systems and uncertain parameters are [29, 34, 86, 83]. The rst two tools
[29, 34] rely on linearisation and non-linear hybridization, respectively. The last
two tools [86, 83] use parametric Bernstein expansion of polynomials to compute
over-approximations of reachable sets. Note that the last two tools are the start-
ing steps that lead to the work we propose in Chapter 4. We also mention in
the following some results which seem to be promising in their applications for
systems biology, even if they do not consider uncertain parameters, but only un-
certainty on the initial conditions. The toolbox [87] provides an ef cient method
to validate hybrid automata with linear dynamics. This method scales with the
state-space dimension and accepts uncertain inputs. However, in its current state
it does not accept non-linear dynamics. The toolbox [88] accepts non-linear hy-
brid systems, but do not ef ciently handles uncertain parameters. Additionally,
we mention some results for reachability of non-linear systems without uncertain
parameters [89, 33, 90, 91, 92]. Finally, we recommend a recent review [93] on
modelling and validation of biological systems using formal methods.

1.3 Contributions

In this thesis, we present our contributions in addressing three issues in biological
systems modelling: the design of a model, its validation, and the model revision
problem. In addition to the contributions described in Chapters 3-6, we rst give
a short mathematical introduction to differential equations, optimal control and
hybrid dynamical systems in the Chapter 2.
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Model revision. In Chapter 3, we propose an original method to revise a hybrid
dynamical system with respect to some observations in the form of intermediate
time measures. More concretely, we search for a time varying law better approxi-
mating an underlying mechanism (previously described by a constant parameter).
We want to achieve this goal without prede ned functional form for the sought
law. Indeed, we consider the case where we do not possess any additional insight
or knowledge. Moreover, we want to avoid classical optimization methods relying
on an extensive sampling of a parameter space and numerous simulations. For this
purpose, we propose an algorithm based on the optimal control method for hybrid
systems proposed in [94]. Experimental results are later exposed in Section 6.1.2
in the chapter describing case studies. This work was accepted in the conference
ADHS 2018 [4] (Analysis and Design of Hybrid Systems).

Set-based simulation. In Chapter 4, we extend the previous work of [83]. This
work allows to perform reachability analysis of discrete time polynomial system
with uncertain parameters. To do so, it relies on the Bernstein expansion, a math-
ematical tool which can be used for multivariate polynomial optimization over
box domain. We contribute in this problem by extending [83] to discrete time
piecewise-rational functions, allowing handling a larger panel of biological appli-
cations. Moreover, we also propose a few improvements to speed up the actual
reachability analysis in some particular cases. In addition, we propose another set-
based simulation method using Krivine-Stengle representations, which are another
mathematical tool for polynomial optimization. We show that it can be adapted for
an ef cient application to reachability analysis of discrete-time polynomial systems
with uncertain parameters in box domains. Finally, we discuss the complexity of
both methods for polynomial optimization, and devise a policy for a more ef -
cient reachability algorithm. The Bernstein reachability method is applied on a
case study in Section 6.2. The Bernstein reachability approach and its associated
case study were published in the conference HSB 2016 [6] (Hybrid System Bi-
ology). The Krivine -Stengle approach has been published in conference ARITH
24 [2] (IEEE Symposium on Computer Arithmetic) as an application to compute
upper-bounds of the oating point round-off error. An extended version of this
publication has been submitted to the journal IEEE Transaction on Computer [95].

MOEPLA: modelling oriented experimental protocol language. In Chapter

5, we propose a preliminary work on a language to formally specify an experi-
mental protocol while taking into account a model of a mechanism. This language
aims to facilitate the interactions between the experimentalists and the modelling
team. It also allows automatic generation of a formal framework using the hybrid
automaton formalism. Taking advantage of the non-determinism inherent to the
hybrid automaton de nition, we can either validate a model while taking into ac-
count an existing protocol (with its uncertainties), or verify that a future protocol
(or therapy) will always be correctly executed. This can be achieved by using the
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existing tools for hybrid automaton veri cation [87, 88, 89], or at least semi-formal
validation with simulations [47]. As this work in still under development, it is not
yet published.

Case studies. In Chapter 6, we describe three modelling studies which were done
along the thesis in parallel to the methodological work. We rst give a model of
haemoglobin production during the differentiation stages of the an erythroblast
into an erythrocyte (also called red blood cells). In the rst part of this study,
we use a simple exploratory scheme to perform parameter estimation with respect
to multiple experimental data sets. The associated results constitute a part of the
following reference [3]. In the second part, we propose to use this model as a
proof of concept of the model revision method. This model revision with a time
varying parameter enables us to better reproduce a considered dataset. We also
note that from the inferred solution we derive multiple hypothesis which lead to a
meaningful biological interpretation of the time varying parameter as an activation
function. This model revision study is accepted in the conference paper [4].

The second case study use the iron homoeostasis model designed in [45]. In
this second work, we applied the Bernstein reachability analysis from Chapter 4
to con rm a hypothesis formulated in [45] using exhaustive methods for uncertain
parameters and initial sets. These results are published in [6].

The last case study is a preliminary modelling of a recent study of generational
effect of low dose and chronic Cadmium intake on the metabolism [96]. In this case
study, we propose a rst simple model of the oral glucose tolerance test (OGTT)
adapted from a previous glucose response model [97]. We also provide multiple
parameter estimation associated to different data sets. This work is still on-going,
and has yet to be published.
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2.2 Hybrid dynamical systems . . . ... ... ... .. .... 19

In this rst chapter we give necessary basic de nitions and insights on the two
dynamical system mathematical formalisms we use throughout the tbediisary
differential equationgODESs) andhybrid dynamical systemsThe rst Section
de nes multivariate calculus notations, introduces ODEs notations, and describes
their main properties. Then, we extend these de nitions and properties to para-
metric ODEs with inputs. Finally, we will use these de nitions to formalize the
optimal control problem for ODEs. The second Section de nes hybrid dynami-
cal systems, that is dynamical system mixing discrete and continuous trajectories.
We also provide the de nition of an instance of this formalism, namely the hybrid
automaton.

2.1 Ordinary differential equations

Multivariate calculus notations. We rst recall useful notation on multivariate

calculus. Foix = (X1;:::;Xn) 6 R" and the multi-index = ( 1;:::; n) 2
N", we denote b the product™_; x;'. Wealsodeng j=j 1j+:::+] nj,
0=(0;:::;Qand1 =(1;:::;1). Q

The notation 0 is the@ested sum it . Equivalently " isequaltothe

nested product

Nt

d) means that the inequality holds for each sub-index:< dq;:::; n <dj
(resp. 1 di;:::; n  dn). Moreover, the binomial coef cient? s the prod-

13



14 CHAPTER 2. PRELIMINARIES

uctQn d

i=1 i
Letf : R" ! R" be avector eld onR", thenmax(f (x)) denotes the vector of
optima(maxf1(x);:::; maxf,(x)).

of f with respect to the variabbg . Then, we can writé (x) = qa X ,with
a (also denoted byf) ) being the coef cients of in the monomial basis and
each 2 N"isamulti-index. The degresof f is given byd := max; .5 eogj J.

Example 2.1(Multivariate polynomial degrees)As an example, if (x1;X2) =
xfx2 + x1x3 thend = (4;3) andd = 5. For the polynomiaf (x; k1; kz; k3) =
(2x%2  x)ky+ x%ko+(x?  x)ks used later in Section 4.2, one hhs (2;1;1; 1)
andd = 3.

Ordinary differential equations. Apart from some particular cases, the dynam-
ical systems studied we consider evolve in continuous timet betthe variable
representing the time. Without loss of generality we can defiote[0; T] R*
the time interval, or time domain of the dynamical system under study, such that
t2T.

Letx 2 X R" be a vector whera is the number of components and the
i-th elemenk; denotes thé-th variable. The seX is the set which constraints the
possible values of the variablgs Then,n-dimensional ODEs are de ned by:

x = f(t;x); (2.1)

wheref : T X I R". We callx the state variables, antl the state space of the
system. We recall in the following some main results on ODEs. However, we omit
the proofs which can be found in a more in-depth textbook on the subject [98].

We rstintroduce the notion of continuous trajectory: A trajectogy(t) : T
X 1 X is afunction which describes, forgaven initial pointx g, the evolution of
the state variables as function of time. The Cauchy-Lipschitz theorem ensures the
existence of a unique trajectory solution (t) of the ODEs (2.1) wher(0) = Xo.
We note that Theorem 2.3 issalf cient conditionfor the existence and uniqueness
of a (maximal) solution. Let us recall the notion of locally Lipschitz for a function
f.

De nition 2.2 (Locally Lipschitz) Afunctionf : T X ! R"islocally Lipschitz
w.rt.x iffforall (t;x) 2T X there exists a neighbourhodt(t; x), andL > 0
such that for al(t® x1) and(t® x») 2 N (t;x):

f(t%x1) f(t%x2)  Lkxi xpk
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2.1. ORDINARY DIFFERENTIAL EQUATIONS 15

A suf cient condition forf to be locally Lipschitz is to be differentiable of.
We note that ifL is a constant valid for alk 2 X, thenf is globally Lipschitz. A
suf cient condition forf to be globally Lipschitz is that its derivative is uniformly
bounded by .

Theorem 2.3(Cauchy-Lipschitz) If f : T X ! R" is a continuous function
locally Lipschitz w.r.t.x. Then, for all(to;Xp) 2 T X there exists a unique
maximat solution of (2.1)denoted byy, : [to; T[! R" withto<T  +1 such
that Xo(tO) = Xg and

d Xo(t) —

8t 2 [to; T[; o

f(t xo(1))

We note that Theorem 2.3 issaf cient conditionfor the existence and unique-
ness of a (maximal) solution.

Example 2.4(Simple ODE) As a simple example let us take the following ODE:
X= 4 (2.2)

Then, there exists a unique solutiog (t) = xee * fort 2 [0;+1 [ such that
xo(0) = Xo. Let us now substitute the constant valusvith the letterk. The
example (2.2) becomes

X = Kkx; (2.3)

wherek is a constant parameter. Consequently, giveénR there is still a unique
solution to (2.3), x,k(t) = Xee€ Kt fort 2 [0;+1 [, such that x,«x(0) = Xo.

Parameters and inputs functions. We can generalize Example 2.3 and de ne
parametric ODEsas
x = f(t; x;k); (2.4

wherek is a vector ofm parametersK 2 R™ is the parameter space, ahis a
functionf : T X K ! R". Then, for every constant value kf2 K and a
given initial conditionx, in a similar manner to Theorem 2.3 fifs a continuous
function locally Lipschitz w.r.tx and continuous Lipschitz w.r.k, then there
exists a unique solution. One way to understand it is to represent the parameters as
constant state variablgs addingm new equationg_= 0, and choosing an initial
conditionyg = k.

We recall that in systems biology, parameters may have multiple interpreta-
tions. They can represent a physical constant, for example the Avogadro constant,
or is used to approximate an underlying mechanism by a constant for a specic

1The solution is said to be maximal if it cannot be continued any further than T
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experimental environment, As an example, kinetic rates are often modelled by con-

stants for a given temperature.

In addition to constant parameters, one can model external in uences, approx-

imations of internal mechanisms or uncertainties, through an input fungtion
Inputs can be put into two categories given their interpretations in the model.

— The uncontrolled inputs or perturbations: they can represent the environ-

ment, an in uence external to the modelled system and not driven by hu-
man strategies, or an approximation of some underlying mechanism. Inputs
can also be employed to obtain more accurate approximations of subsystems
than a constant parameters.

Some examples of uncontrolled inputs are a uctuating temperature during
an experiment, a noise function representing some uncertainty on the exact
behaviour of a system (in which case we may lose determinism).

— The controlled inputs or controls: they model an external action applied to
reach atarget state given by a human being. The control inputs re ect strate-
gies to achieve some objective. In some cases, the strategy is not only to
reach a target, but also to minimise some function, such as a cost function
along the trajectories, we then speak of optimal control.

An example of controlled inputs are the concentration of a drug given to a
patient during therapy. Another example would be the necessary number of
ill people to treat at a given time to avoid a disease propagation.

Structurally, the input functions can be put into two families: the open loop

inputs, and the feedback inputs. An open loop irpj is a functionu : T ! U,
whereU RP is the input space, anglthe dimension ofi. The set of all the
functionsu such thau(t) 2 U fort 2 T is also called theccepted input setnd

we denote by iUT. Then, parametric ODEs (2.4) can be extended to parametric

ODEs with inputs
x = f(t; x; k;u(t)) ; (2.5)

and for a xed functioru, (2.5) can be re-written as parametric ODEs F(t; x; k)
with F(t; x; k) = f(t; x; k;u(t)) forallt 2 T . Consequently, Theorem 2.3 can be
extended to the case with an open loop input function wheaspects the condi-
tion from Theorem 2.3.

Theorem 2.5. Letf be afunctondenedby : T X K U! R". Letf
be locally Lipschitz w.r.tx, continuous w.r.ti, and letu : T ! U be continuous.
Then, given an initial conditiofto; Xp) 2 T X and a parametrizatiok 2 K,
there exists a unique maximal trajectory solutign.k.,(t) for t 2 [to; T[, with
to<T +1,suchthaty,k.u(to) = Xo and

8t 2 [to; T[ dx"é‘t”(t) = (6 xoku(t);k;u(t))

Monday 6" August, 2018 (08:34)



2.1. ORDINARY DIFFERENTIAL EQUATIONS 17

A feedback input is a function : X ! U, where the output depends of the
state variables of the system. The set of all the funatiGuch thau(x) 2 U for
x 2 X is denoted byu* . An extension of (2.4) for feedback input is:

x = f(t; x;k;u(x)) ; (2.6)

and in a similar way we did for open loop inputs, given an input funatiorX !
U, (2.6) can be re-written
x = F(t x;k);

whereF (t; x; k) = f(t; x;k;u(x)) forallx 2 X andt 2 T. Then an extension
of Theorem 2.3 to feedback input is as follows.

Theorem 2.6. Letf be afunctiondenedby : T X K U! R". Let
f be locally Lipschitz w.r.tx andu. We recall this means that for at; x;u) 2
T X K, (x1;u2) and(xz1;u?2) in the neighbourhood ofx; u), there exists
somel > 0such that:

Kf(t; xq;u1)  f(t;x2;u2)k  L(kx1 X2k+ kup u2k)

Moreover, letu : X ! U be continuous locally Lipschitz w.rx. Then, given an
initial condition (tg; Xp) 2 T X and a parametrizatiokk 2 K, there exists a
unique maximal trajectory solution k., (t) fort 2 [to; T[, withto <T  +1,
such that y,.x:u (to) = Xo and

82 [t TT 8 = £ (6 01K UC ()
Optimal control problem.  As seen previously, input functions can also represent
an external control applied on the systems such that it reaches a nal target set. Let
X1 be that target set at the nal time.

In the open loop case, given a continuous control inpl® UT, xq 2 X,
k2K,andf : T X K U! R"afunction locally Lipschitz w.r.t.x,
continuous iru, then y,.x.u () is an admissible trajectory, and ) is its associated
admissible control, if x,«.u(T) 2 X1. The set of possible admissible controls
can be very large, and two different admissible trajectories can reach the target set.
To restrain the set of possible trajectories one can add a cost to minimize along
the trajectory or at the nal time. For example, we may want to minimize the
amplitude of the control. Let us de ne the cost associated to a given admissible
trajectory x,.k.u and controu as

Z 1
J(t xokuiU) = o h(t; xoku(t);u®))dt+ H(T; xoku(T)u(T)) s (2.7)
whereh(t; x,:k:u(t);u(t)) is the running cost on thfd; T] interval, andH (T,
xok:u(T), u(T)) the cost at nal timeT. From this cost function we can de ne

the optimal control problem (OCP) in the open loop case.
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De nition 2.7 (Open loop OCR)Letf : T X K U ! R" be a function
locally Lipschitz w.r.t.x and continuous imi. Givenxg 2 X,k 2 K, andXt a
compact subset of the optimal control problem is:

z
J = inf Th(t; cokeu (D)UYt + H (T oo (T); u(T))
! 0
st dXOCl;t“(t) = (6 xoku(t)k;u(t));
xoku(t) 2 X; 82T (2.8)

xo;k;u(o) = X0,
xo;k;u(T) 2 X713
u:T! U acontinuous functian

We denote respectively by the optimal control and byy,.k., its associated
optimal trajectory.

Similar to the open loop case, we can de ne the optimal control problem for
feedback inputi : X ! U.

De nition 2.8 (Feedback OCR)Letf : T X K U ! R" be a function
locally Lipschitz w.r.t.x andu. Givenxp 2 X,k 2 K, andXt a compact subset
of X the optimal control problem is:

Zq
J = inf h(t; xok;u(t);U( xok;u(t))) dt
u 0
+ H(T; xoku(T)u( xokeu(T))) 5
st R o KUk O)

xo;k;u(o) = X0,
xo;k;u(T) 2 X713
u: X ! U afunction continuous locally Lipschitz w.rx.

Again, we denote respectively by the optimal control and by k., its associ-
ated optimal trajectory.

The existence of an optimal control is not an easy problem. For a detailed in-
troduction to optimal control (from a variation theory point of view) the reader is
referred to the textbook [99] and in particular [99, Section 4.5] for a discussion and
review on the existence problem.

Numerical integration. From now on for simplicity of notation, a trajectory is
denoted by (t) instead of k. (t), when the initial conditiorx, the parameters
k, and the input function are not ambiguous.
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2.2. HYBRID DYNAMICAL SYSTEMS 19

While for linear ODEs it is possible to determine their exact solution, in most
non-linear cases the analytic solution is not available. In these cases, one can com-
pute approximate solutions using numerical simulation methods. Let us now say
a few words on numerical simulation. Most methods compute a discrete time ap-
proximationx q of the continuous solutior(t) of the ODEsx = f (t;x). Among
the simplest methods are the explicit numerical integration schemes, such as the
forward Euler or Runge-Kutta schemes. They are in general designed from the
Taylor expansion of the trajectory(t) around a given timé. For example, the nu-
merical integration scheme using the forward Euler scheme and a xed time step

t andxq+1 denotes the approximate solution at titge = (g+ 1) t:

The accuracy of these methods is measured by the distance between the ex-
act solutionx(t + t) attimet + t and its discrete approximationg:1 =
x(t)+ t f(t;x(t)). Inthe forward Euler caséx(t+ t) Xg1k= O( t)
and the method is said to be of order Given a suf ciently small time step t,
the approximate solution converges toward the exact solution. However, nding a
correct time step to ensure the stability of these simple algorithms results in inef -
cient simulations even with very small time step. For these reasons, it is necessary
to use more recent algorithms which rely on an adaptive time step which produce
an approximation valid for a given accuracy. In practice, when possible one can
use the advanced algorithms detailed in [100] to perform the numerical simulation
of ODEs.

2.2 Hybrid dynamical systems

Context. Hybrid dynamical systems describe the behaviours of both discrete
and continuous components. They are useful to model systems with jumps, fast
changes in dynamics, or multiple step processes where dynamics can vary depend-
ing on external conditions. While there exists a general notion of hybrid dynamical
systems constituted of discrete states with associated continuous dynamics, and a
transition function between these states, there is no unique formalism under the
name of dynamical hybrid systems. Indeed, depending on the application con-
text the models can be different. The computer science community tends to use
complex discrete mechanisms and simpler continuous processes, which re ect the
particularities of their applications such as programs or communication protocols.
The control theory community deals with more complex continuous part to stay as
close as possible to the classical laws modelling the physical world. A PhD thesis
of MIT from 1995 [101] give a classi cation of hybrid dynamical systems and a
general de nition of hybrid dynamical systems. Another coarser classi cation of
dynamical hybrid systems can be found in a more recent study on the existence of
solutions of hybrid dynamical systems [102]. Finally, the 2009 review article from
IEEE on hybrid dynamical systems contains an in-depth introduction to the recent
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problems and solutions in the eld of hybrid dynamical systems from a control
theory point of view [40].

Hybrid automaton de nitions.  In this thesis, we use the hybrid automaton for-
malism to model hybrid dynamical systems. This formalism has the advantage of
being commonly used in many veri cation tools such as SpaceEx [87, 103], and
general enough to be applied in a large set of applications. We will also consider
some modi cations to the original de nition [104], and its generalisation given in
the textbook [41, Chapter 1]. Indeed, in the original de nition, the continuous tra-
jectories in each discrete states are explicitly given by a functioh However,

with the exception of the linear ODEs and few non-linear ODEs, such analytic
expressions are hard to obtain. Thus, the continuous trajectories are represented
implicitly by the ODEs in each discrete state as in [41]. In our particular case, we
use hybrid automata where continuous dynamics are speci ed by parametric ODEs
with input, as de ned in previous Section 2.1. The de nition of such parametric
hybrid automata is as follows.

De nition 2.9 (Parametric hybrid automatan)et x 2 R" be a set of continuous
state variablesk 2 R™ a set of parameters anda set of input functions with
value inRP. GivenT a nal execution time, possibly 1 . We de ne a parametric
n-dimensional hybrid automaton by the tugte := (I; E;L; X;U;K;S;R; F)
where:

— | N is a nite set of indices, used to index discrete states, also called
locationsor modes

— E | 1 isthe set oftransitionse = (i;]j ) between two modes: is the
source mode, anjdthe destination mode.

— L : e7! Leisalabelling function which associates to transiton (i;j ) 2
E its synchronisation labelL .. Labels are necessary for the synchronous
parallel composition in de nition 2.11.

. ) . S
— X R"isthe state space of the continuous variakledere X = 5, X;
whereX;, a compact subset &", is called theinvariant sef or domain,
associated to the mode

S
— U RPisthe setof input values ¢1. Similarly, U = ,,, U; whereU;, a
compact subset d®P, is the set of input values associated to the mode

S
— K R™ is the set of parameter valuestdf Again,K = ., K; where
Ki R™is the set of parameter values associated to the mode

— S:e7! Sgis alabelling function which associates to transitéon (i;j ) 2
EitsguardSe  Xj. The guardS;;; ) de nes the transition condition from
modei to modej : for x 2 Xj, if x 2 S;;) then the system at can take
transitione = (i;j ) from modei to modej .
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2.2. HYBRID DYNAMICAL SYSTEMS 21

— R : e 7! R is a labelling function which associates to a transiteon
(i;j) 2 E itsreset functiorRe : Se !  Xj. It de nes how the continuous
variables change after the discrete transition from mddemodej .

—F i 7! F;is alabelling function which associates to a mod2 | its
activity F; de ning the continuous behaviour in this mode. In this work, we
de ne F; as a continuous dynamical system described by parametric ODEs
with inputs as in (2.5) or (2.6). Consequently we degas:

Fi=(0;T]X;Ki; Ui;fi); (2.10)

withf; : [0;T] X K; Uj! R"afunction satisfying the conditions of
Theorem 2.3, 2.5, or 2.6 depending of the formugbpen or close loop).

One can see the discrete structure of a hybrid automaton as a labelled directed
graph, inwhich case we can de ne a set of labelled edgesf (i; Si; y; L (i ) Reij )2 ) 2
I S(E) L(E) R(E) | je=(i;j) 2 Eginasimilar manner to the original
paper [104].

We now assume that the input functiamsare feedback inputs; : X; ! U;.

The de nitions for the open loop case are similar. We now de ne the trajectories
accepted by a hybrid automaton.

De nition 2.10 (Hybrid automaton trajectory)An accepted trajectory or execu-
tion of a hybrid automaton is de ned by the pair of temporal functionand x
for the time domainO; T], denoted by ();x()), withi = (t) 2 1 being the
mod¢ at timet, andx(t) 2 X; being the values of the continuous variables. at
The pair( (t);x(t)) is also called the hybrid state at tiheFrom an initial con-
dition (io; X0), a hybrid automaton trajectorfy ( ); x()) satis es the following
condition for every time point 2 [0; T]:

— Continuous behaviour. If(t) = i 2 I, thenx(t) 2 X;. Letu; : X; ! U,
be a given input function ankl; 2 K; a parametrization. Ldp be the time
point such that eithety = 0, orty t is the latest time point at which the
function jumps from some valugtoi (corresponding to a transitiaa=
(j;1) 2 E). Then, the continuous pax{(t) is determined by the trajectory

x(to);ui ki (1), which is the solution to

d x(to) ki ui (1)
dt

forall't 2 [to; T[ such that  (1g).u;:k; (1) 2 Xi.

— Discrete behaviour. If(t) = i 2 1 andx(t) 2 S;j;), then the systernan
take the discrete transitiom= (j;i) 2 E, in which case, the trajectory at
the right limit timet™ of t becomeq (t*);x(t%)) = (J;R ¢i;j)(x(1))). If
x(t) 2 S(” ) \ @X andx(t*) = X(to);Ui;ki(t+) 2 X; at the limit right

= fi(t; x(to);ki;ui(t);ki;ui( x(to);ki;ui(t))) )

2Note that here is a piecewise constant function over time.
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instantt™ of t, then the systermusttake the discrete transitiam= (j;i),
since it goes outside the invariant set of mod@d thus is no longer allowed
to stay in this mode. We say that the guarthbleshe transition, while the
invariantenforcest.

It is possible for a trajectory such that(t) = i; x(t)) to leave invarianX; at
timet* without having the possibility to take a transitioh j: x(t) 2 @X and
thereisng 2 1 s.t.x(t) 2 S;;). In this condition the trajectory cannot continue
neither by the continuous dynamics, nor by the discrete dynamics: we say that the
system reaches @eadlock and that the trajectory is calledbdocking trajectory
Some results on condition for a hybrid automaton to be non-blocking can be found
in [105].

Letus de neReach(H) | X the set of all the possible points reachable
in time at mosfT from any initial condition(ig; Xo) 2 1 Xij,.

Reach(H) = f(i;x) 21 X; s.t.
(io;x0) 21  Xj, andt T ;( (t);x(t))=(1;x) (2.11)
and( ();x()) is ahybrid trajectory starting &to; xo) over[0O; T]g:

Special Behaviours. As discrete transitions happen instantaneously, a hybrid au-
tomaton execution can exhibit some non trivial behaviours. Among them we will
mention two types: th&eno behavioursand themultiple event behaviours

A Zeno behaviour happens when the trajectory performs an in nite number of
discrete transitions in a nite time intervfth; to[. This behaviour can happen even
on simple models such as the bouncing ball [105] or, in the biological context,
for gene regulation networks [106]. Singular perturbation theory [106] or Filippov
theory [60, 107, 108] are possible ways to solve this problem.

A multiple event behaviour happens when a trajectory can take multiple dis-
crete transitions (possibly an in nity) without letting time elapse. Indeed, a system
may take discrete transitions all the time without evolving according to the contin-
uous dynamics.

As one can observe in De nition 2.10, for a given initial conditiGg; Xq) 2
I Xi, a hybrid automatotd may accept more than one trajectory. Indeed, let
the continuous dynamics be deterministic by enforcing the Cauchy-Lipschitz con-
ditions from Theorem 2.6 for the activities de ned in De nition 2.9. Then, non-
determinism can still be caused by the discrete dynamics, since at a given hybrid
state the system can satisfy multiple transition guard conditions.

In the remainder of the thesis, our optimal control applications will only be
considered for hybrid automata with deterministic discrete dynamics, and non-
determinism in continuous inputs will be resolved by picking a solution to the
involved optimization problems.

It is easy to see the following suf cient conditions for a hybrid automaton to
be deterministic.

— If (I,j ) 2E and(i;j % 2E Wlthj 6 jO, thenS(i;j )\ S(i;j 0 = .

Monday 6" August, 2018 (08:34)



2.2. HYBRID DYNAMICAL SYSTEMS 23

— Givene = (i;j ) 2 E andx 2 S, then9!x%2 X; s.t. Re(x) = x°

For more “semantic” necessary and suf cient condition, the reader is referred to
[105].

Synchronous parallel composition. We now de ne the composition of two hy-
brid automata. We consider here the simple case without common state variables,
input functions, or parameters.

De nition 2.11 (Synchronous parallel compositiojVe consider two hybrid au-
tomataH® = (1 @.g@.L@.x @ - y@. K@ 5@ -R@:F (a)), andH® =

(I B gb- L(b);X(b);U(b);K(b);S(b>;R(b);F(b)), with x@ \ x® = where

x@ (resp. x(®) the continuous variables associatedHt? (resp. H(®). Lett

be the common time variable. Then, the synchronous parallel composition of two
hybrid automatad (@ andH(® is the hybrid automatofi (@ = H@ H (©)
where denotes the parallel compaosition operator, and de ned by:

— The continuous variables &f(@D grex@kb) = (@ x® where is the
concatenation operation.

— The dimension oH @) js n(@kb) = (@ + 0 with n(@ (resp.n®) the
dimension oH (@ (resp.H ®).

— The modes oH (@) are de ned by:

| (akb) .— (@ (D).

— The set of transitiong@@® E (@ E (b of H (@D g5 well as their associ-
ated synchronisation labdl$@<?) (E(@kD)) are de ned by the following rules.
Let (j @;j®) 2 (@b then given a discrete state®;i(?) 2 1@KD) jtg
possible transitions and their associated synchronisation labels are:

— glakh) — (i(a);i(b));(j (a);j (b)) 2 E(akb) -
e@ = (i@:j@) 2 E@ ande® = (i®;j0) 2 M
Then,L (@kb) (glakb)y = | (@) gl@)) [ L1 (b)),

— glakb) — (i(a);i(b));(j (@) i(b)) 2 E(akb) -
e@ = (i@:j@)2E® and
8 M2 Mgt ed=(i®:j0)y2E®:; @)\ LOED)=":,
Then, L (akb) (elakb)) = | (a)(gla)y.

— Similarly for e@b) = (i@ j®)y. (j(@;j () 2 pakh)

We observe that common synchronisation labels enforce simultaneous tran-
sitions, meaning synchronisation, between two hybrid autoiata

3We also note that for synchronised transitions, the guard conditions on the continuous variables
will have be to be satis ed simultaneously to enable the transition.
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— The state space bf(2 is de ned byX (@b := x (@ X (B Moreover, we
associate to each mod@<? = (i(@;i®) 2 | (@D the invariantx @ =

j(akb)
(a) (b)
X j(a) X j(b)

— The set of possible input valuesigfa<?) for each mode is de ned by:

U_(akb) — U(a) U(b) . i(akb) — ( I(a), I(b))

j(akb) * i(a) j(b) 1

— The set of possible parameter value$i6#<? for each mode is de ned by:

K(akb) — K(a) K(b) . j(akb) :(i(a);i(b)):

j(akb) =7 i(@) j(b) 7

(akb)
e

— The guardd x & x (3 of HED associated to the transition:

—e= (i®;i0):(j@:j®) 2 E@D s de ned by :

(akb) _ <(a) (b .
e = Si@jmy  Sio;jo)
—e= (i®:i®);(j@;i0) 2 E@KD j5de ned by :
(akb) _ «(a) (b .
Se - S(i(a);j (a)) Xi(b)'

— Similarly fore=(i®;i®); (i@;j®) 2 gakb),

— The reset map®® of H(@b associated to the transition:

—e= (i®:i®);(j@;jd) 2 E@KD jsde ned by :
REY = R ) Rijto o)

—e= (i®:i®);(j@;i0) 2 E@KD jsde ned by :
R(EKD) Rgia()a) oy 1d®)

b) .y (b b) . . , .
Whereldi((g) .Xi((b)) ! Xi((b)) is the identity function.

— Similarly fore=(i®;i®); (i®;j®) 2 g@kb),

— The continuous dynamical systemd-5f«? in mode(i(®;i(®) areF (."’(‘k)b_).(b)
(i(2)5i(0))
de ned by:
(akb) — LT kby.j(akb) . (akb) . c(a). (b
Fli@imy = [0;T]; x @ ),U(i(a);i(b)),K(i(a);i(b)),(fi(a),fi(b))
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Example 2.12(Synchronous parallel compositionn this example we perfor

the synchronous composition (8B) C of the (hybrid) automata A, B, C give

on the left side of the Figure 2.1. The automaton A can take its transition in par-
allel of the automata B and C as it shares no common label. The automata B and
C share the labdl, and thus must take their transition synchronously. The terms
C1; C2; C3 represent the conditions (guards in De nition 2.9) associated to the tran-
sitions Ay ! A1, Bg ! By, Co ! Cy, respectively. We recall that we assume the
composed hybrid automata do not share any common variables. Consequently, the
conditioncy; ¢p; c3 are incomparable.

As A and B share no common label we must consider all the possible combination
of transitions. This leads to4states automaton AB. The transitions involvin

a change on B involve the labeb. Consequently, the size of (AB) C does not
change as all the transitions on B are equivalent (synchronous) to a transition on C.
The nal automaton of (A B) C is given in the right side of Figure 2.1.

Figure 2.1: Composition of three (hybrid) automata A, B, and C given on the left. This
pictures corresponds to Example 2.12.

Optimal control problem on hybrid automata. We now de ne the control
problem for general hybrid automata. Let rst de ne a targetXetsuch that:

a

Xt = XT;i ; (2.12)

i21
whereX 1, is a compact subset of; and is the disjoint union operator. The
disjoint union can simply be considered as a labelling operation on the skt
modes.
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Let us rst consider the open loop control case. I&f;xo) 2 | X,
be an initial condition and; 2 K; in modei 2 | a set of parameter values.
Then, for a given input function; : [0;T] ! U; for each modd 2 | and
( (1);x() 21 X (fort2[0;T]be atrajectory accepted by De nition 2.10,
we de ne a control input functichu() asu(t) = u w(t) forallt 2 [O;T]. If
( (T);x(T)) 2 X7 thenu is an admissible control, ar(d (t); x(t)) ;t 2 [0; T]is
its associated admissible trajectory. The optimal control problem is then to nd a
control inputu( ) and a valid trajectory ( );x()) minimizing a given cost func-
tionJ ((; x);u), similar to 2.7:

Zy
J((; xX);u) = . h G x@);u)+ H ) (T;x(T);u(T))

The hybrid optimal control problem is then:

J = inf  J((; x);u)

(5 x);u
s.t. ( (1);x(t));8t 2 [0;T], is accepted by De nition 2.10
( ();x(®)21 X ):;8t2[0T];
( 0:x(0) = (ioix0) 21 Xig; (2.13)
( (T)x(T)) 2X1;
uj : T ! U continuous functions 2 |
u(t)=u (t);8t 2 [0;T]:

For the feedback control case: we assume that we are given a set of input
functions whereu; : X ! Ui foreachmode 2 | and( (t);x(t)) 21 X (yis
its associated trajectory ovel [0; T], then we de ne the contral asu(x(t)) =
U o (x(t)) forallt 2 [0; T], andx(t) 2 X (). Again, if ( (T);x(T)) 2 Xt then
u is one admissible control, arfd(t); x(t)) ;t 2 [0; T]is its associated admissible
trajectory.

Similarly, the cost function and the hybrid optimal control problem in the feed-
back case are respectively de ned by:

Zy
J((; x)u)= . h o xO;ux )+ H ) (T;x(T); u(x(T)));

4Consequently, the functiom is a piecewise function constituted from the input functiansn
each mode.
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and
J = (i_nf)_ J((; x);u)
st ( (t);x(t));8t 2 [0;T], is accepted by De nition 2.10
( @;x)21 X );8t2[0T];
( (0);x(0)=(ioix0) 21 Xip; (2.14)
( (T);x(T)) 2 X+,
uj : Xj ! U Lipschitz continuous ix ;i 21
u(x(t) = u (x(1);8t 2 [O;T]:
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Context. Mechanistic models in biology generally involve many parameters. The
value of a given parameter can be either measured directly in a dedicated exper-
iment (e.g. measurement of a kinetic parameter of a biochemical reaction in en-
zymology), or inferred from data which provide relationships between parameters
and other known biological entities.

As seen in Chapter 1, a basic issue in biological systems modelling is the de-
termination of numerical values for the parameters, or more generally a subset of
the parameter space, under which the model agrees to some extent with the avail-
able data. We focus on multiple-step experiments, in which a biological system is
perturbed or measured during its evolution.

In the biological modelling literature, it is common to synthesise parameters
using a Monte-Carlo sampling of the parameter space, which is validated then by
numerous simulations. An important effort to formalize and validate the parameter
synthesis of biological models has been made in [47, 5, 83, 66]. Other articles
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such as [109] or [110] design ODE models satisfying sets of temporal constraints.
When model simulation does not reproduce satisfactorily available experimental
data, to a degree which depends on data quality, for any admissible parameter
value, the model has to be revised. One way of revising the model is to change
some parameters into different types of functions of time, re ecting underlying
biological mechanisms. We introduce a systematic way, based on formal methods,
to study mechanistic biological models in their experimental context and revise
parameters to produce conservative results with respect to experimental data. In
this work, we consider a problem of model revision, de ned as nding time varying
laws of parameter evolution that minimizes the error in matching experimental
measurements. Informally, it is the following optimization problem:

Bexe
min disttm(x(T;)); zj) (3.2)
x;u) =1

wherex is a vector of biological variables, such as concentrations, whose evolution
is modelled by trajectories of a biological dynamical system: in our particular
context a hybrid automaton as de ned Chapter 2. Time varying parameters are
represented by the input variablegmodelling biological parameters) such that

8t 2 [0;T];u(t) 2 U. Xp is the set of initial values of the variables, and the
set of pairsf (Tj; zj)g; is the set of data points, fdr | Nexp, IN the time
frame[0; T]. An experimental measurement is a function of the variablaad is
modelled via the functiom (x).

Contributions. The framework of our approach is a mathematical formalization
of experimental protocols as hybrid automata, describing biological systems of in-
terest and experiments which are performed on them. An example of such protocol
will be studied in Chapter 6, and a general way to generate hybrid automata from
such protocol is given Chapter 5. However, the algorithm we provide can be ap-
plied to any biological hybrid systems with similar model revision problems.

In this chapter, we address the model revision problem (3.1) by formulating a
particular instance of the optimal control problem with intermediate points, which
means that the objective function depends on the system trajectory and control
inputs at a given set of time points. This problem is then approximated by multi-
ple optimal control problems on hybrid automata. Then, each problem is solved
through a reformulation as a hybrid optimal control problem (HOCP) with one -
nal cost. To this end, we apply a recently developed method [94] from the eld
of certi ed convex optimization to globally solve these HOCP. The method de-
scribed in [94] produces piecewise optimal control functions which either may not
correspond to biological knowledge of parameter variations or may be dif cult to
yield coherent and meaningful biological interpretations. Consequently, in order
to satisfy realistic constraints on parameters, we use smooth approximations of the
generated control input, in order to revise the given model while maintaining good
data tting accuracy. The method is demonstrated later in Chapter 6 on a hybrid
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system modelling haemoglobin production whose parameter estimation is studied
Section 6.1.1 of Chapter 6.

Related works. We recall that the hybrid formalism has previously been used as
an abstraction method to simplify complex mechanisms which are hard to analyse
[111, 6], or to represent “jump” evolution such as activation processes in genes
regulatory networks for example using the stochastic formalism as in [11].

Optimal control theory and variation theory have been applied to biological
systems in several works. Most of them address the classical problem, given in
Chapter 2, of nding a correct input such that the system reaches a desired state.
For example, one can control drug input such that a patient reaches a healthy state
[112], or [8]. Another example is the control of some input in population studies
[113]. A detailed review on the use of optimal control in systems biology can be
found in [114]. The problem of parameter estimation (as a constant) in presence of
multiple data, also called data assimilation, is stated in [114, Chapter 26]. However,
none of these techniques for parameter estimation have been applied to the hybrid
automata formalism.

The optimal control problem for speci ¢ classes of hybrid systems has been
investigated in several domains, such as mechanical systems [115] and switched-
mode systems [116]. More generally, [117] relies on Dynamic Programming and
an extension of Pontryagin's Maximum Principle. However, these approaches need
a priori knowledge either on the sequence of discrete transitions, or on the number
of visited subsystems. To perform optimal control on hybrid systems, we build
our work on the techniques from [94], which proposes a method to obtain a global
solution for hybrid systems with state-dependent transitions, without any a pri-
ori knowledge on the execution and the sequence of transitions. We refer to [94,
Section 1.1] and references therein for more details on optimal control of hybrid
systems.

Semide nite programming (SDP) eases the resolution of hard optimization
problems and yields conservative results ensured by positivity certi cates. In[118],
hierarchies of semide nite relaxations were introduced for static polynomial opti-
mization. The de nition of an in nite-dimensional linear program (LP) over occu-
pation measures, for optimal control problems, was rstintroduced in [119]. From
this in nite-dimensional LP, [120] de nes hierarchies of Linear Matrix Inequali-
ties (LMI) relaxations, to synthesise a sequence of polynomial controls converging
to the solutions of the optimal control problem. In [121] the authors propose an
extension to piecewise af ne systems. Our underlying idea of constructing a sub-
optimal control with an iterative algorithm is similar to [121, Section 4]. However,
we use this scheme to nd input functions allowing to reproduce data not only at a

nal time point but also at intermediate time points.

We make use of the recent method proposed in [94], which relies on occupa-
tion measures and a sequence semide nite relaxations to produce a sequence of
polynomial controls converging to the optimal solution of a hybrid optimal con-
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trol problem (HOCP). There exists other methods which use occupation measures
and LMI relaxations to produce both admissible controls and converging outer-
approximations of the backward reachablé §BRS) [122, 70], or the region of
attractiort (ROA) [123]. Finally, we note that nding a sequence of converging
outer-approximations for all valid parameters sets, such as in [68, 69, 83], is an-
other crucial issue in the context of systems biology. When dealing with hybrid
systems, an extension of the BRS computation method [124] can be applied to
solve this problem.

3.1 Hybrid Optimal Control using Occupation measures

Before presenting our approach for model revision of biological hybrid systems,
we give in Section 3.1.1 a short mathematical background on occupation measures
inspired from the introductions to occupation measures in both [125] and [122].
In Section 3.1.2 we present recent results from [94] on optimal control for hybrid
systems. These results will be used in our own method for model revision.

3.1.1 Introduction to occupations measures

Let rst consider the following ODE system:
x = f(t;x); (3.2)

wherex 2 X compact subset dR", t 2 [0;T], andf a Lipschitz continuous
non-linear function offi0; T] X with values inR".

De nition 3.1 (Measures)Let X  R" andA its the Borel -algebra built over
the subset®; of X . We call a measure oA the function which assigns to each
subseP; 2 X areal scalar such that:

- ()=0
- 8Pist.Pi\ Pj=,;,(16]j):

[ X
( Pi)= (Pi)

Additionally, we say that is a Radon measure if is locally nite and inner
regular, meaning for all Borel-algebraA of X, (A) =sup( (K)), withK a
compact subset ¢k .

For a compact seX R", letM (X) (resp. M . (X)) denote the space of
unsigned (resp. signed) Radon measures support¥d &lements oM (X ) can
also be seen as bounded linear functionaielonging to the dual spa&( X )°and

The set of points reachable from a target set while going back in time.
2The set of initial conditions leading to an attractor.
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acting on continuous function2 C(X), also called test functions. The image of
a test functiorv 2 C(X) by a measure 2 M (X) is given by the following
relation: 7
h;vi:= vd : (3.3)
X
Given an initial conditiorxg 2 X, we notex(tjxg) the solution of (3.2) fot 2
[0; T] such thaix (0) = xo. We de ne theoccupation measure as:

Z 1
(A Bjxo):= la (L X(tjxo)dt;
0

whereA B isinthe Borel -algebraof0; T] X andla () beingthe indicator
function, equalto 1 o B and 0 outside. We note that the occupation measure

(A Bjxg) provides the total time the trajectory( jXo) stays in the subs&
fort 2 A, while the support of (A Bjxg) is the trajectory. We also note that
% (A Bjxp) is the probability measure of the time the trajectory stayB in
One can makes the relation with the concept of occupation time distribution in
stochastic reachability analysis such as de ned in [126, Chapter 5].

If the initial condition is unknown we can de ne theitial measure o 2
M (X)) associated to the initial distribution @b in X . Then, we can de ne the
average occupation measuas the Lebesgue integral:
z

(A B):= y (A Bjxo)d o(xo): (3.4)

Again, we note that the support ofA  B) is the reachable set on the interval
[0; T] for all xg in the support of o. Given nal set at timel de ned as a compact
setXt X, we can also de ne the nal measurer 2 M (X1) as:

Z
T(B) = . Is (X(Tjxo0))d o(Xo): (3.5)

From (3.3), the image of a test functien2 C([0;T] X) by a measure 2
M ([0; T] X) is given by the following relation:
Z

h;vi:= v(t; x)d (t; x):
0Tl X

Moreover, given a test function smooth enowg2 C([0; T] X ) and an initial
conditionx(0) = xg 2 X, we can also writefrom (3.2):
Z1
v(T;x(Tjxp)) = v(0;x(0)) + v(t; x(tjxo))dt (3.6)
0

3We notev the total derivative of/: dv/dt.
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Let now de ne a linear operatdr; : C1([0;T] X)! C([0;T] X) also
calledLiouville operatorassociated to a dynamic applied on a test functiow

@v X v
Livi= — + —fw(t; X);
f et @x k(t; X)
wherexy is thek-th element ofk. We note that = L; v leading from (3.6) to:
Zt
V(T;x(Tjxo)) = v(0;x(0)) + L v(t; x(tjxo))dt (3.7
0

LetL? : C([0;T] X)O! CX[0;T] X)Cbe the adjoint operator df; de ned
by the relation:
Z

hLP;vi=h; Livi = Lsv(t; x)d (t;x):
[0;T] X
Integrating (3.7) with respect toy accordingly to (3.4) and (3.5), we obtain for all
test functionss 2 C1([0; T] X):
z z Z Z,
v(T;x(THd 1(x) = v(0; x(0))d o(x) + L+ v(t; X(tjxo))d o(x)dt
v z" z* 2
v(T;x(T)d t(x)=  v(0;x(0))d o(x)+ L¢v(t; x(t))d (t;x):
X X X 0
(3.8)
Using the Dirac measureg and T, respectively at = 0 andt = T, we can
transform (3.8) into:
h :vi =h vi+ h; Lsvi
T T ! 0o o ! , f ! (3.9)
ht T:vi=hg o;Vvi+ hLf ;vi;
where is the product of measures. Finally, as we worked for all test functions
v 2 C([0; T]; X)) we can write from (3.9) the followingiouville equationin the
space of the measures:

o o+l =1 1 (3.10)

Liouville equation (3.10) is also called continuity equation in statical physics and
describes the evolution of a density of particles within a uid [127]. We note
that we transformed mon-linearordinary differential equation over state variables

x 2 R" into alinear partial differential equation in the space of measures. More-
over, using this equation one can express evolution of a family of trajectories with
initial conditions described byo. We refer to prior works from Henrion & al.
establishing this equation and demonstrating its use in the context of reachability
analysis, parameters and controller synthesis [128, 69, 121]. For more details on
the recent effort on the application of measures theory and the generalized prob-
lem of moments we refer the readers to the books from G. B. Folland [129] and
J.B.Lassere [130].
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3.1.2 Solving the hybrid optimal control problem (HOCP)

In the previous section we provided a short introduction to the use of measures to
transform non-linear ODEs into the linear Liouville equation. In this section, we
present a recent work from Zhao & al [94] which provides through the writing of
thehybrid Liouville equationgin approach to address the optimal control problem
of hybrid system. This approach described is valid of a given class of hybrid system
calledControlled Hybrid SystetCHS) in [94]. This class differs from the hybrid
automata by some change in the formalism and assumptions. These differences
ensure that any CHS is deterministic. Itis possible to construct a hybrid automaton
from a CHS by simply adding to each modes the missing continuous variables.
Noting (x(t)) the function which associates to an instantaneous stdjeits
corresponding mode, De nition 3.2 also ensures that the mode corresponding to
X (t) is unique. Moreover, we obtain the relatioft) = (x(t)).

De nition 3.2. (Controlled Hybrid System) A controlled hybrid system can be
considered as a variation of the hybrid automaton formalism (see De nition 2.9)
with the following differences:

— Each mode has it own dimensiom; such thatX;  R". Consequently,
we denotex; 2 R"i the continuous variables associated to the nidglé .

— All the guardsS;;; y are disjoint, ands;;;y  @X, for each pair of modeis
andj , with @ X being the border of the invariait;

— The input set); = U for each mode, and the parameters are xed (all the
setsK; are reduced to singletons).

Moreover, we assume that:

— The initial set is restricted to a single poky, with an associated modlg.

— The vector eldsf; are polynomials irx; 2 R", afne in u, and have a
nonzero normal component on the boundarXef

Given measurable functiorfd; : [0;T] R™ R™ I Rgjz; andfH; :
R™ 1 Rgis, respectively representing the running costs and nal costs associ-
ated to each mode2 |, ahybrid optimal control problenfHOCP) is de ned by:
Zt
JChS = inf o h (t) t; X (t)(t),U(t) dt+ H () X (T)(T) .

(x;u)
st ( (0);x(0)) = (io;%0) ;
( (T)x(T)) 2 Xr1;
u(t)2U 8t2[0;T];
( (t);x(t));t2[0;T]; atrajectory of a CHS.

(3.11)

Here Xt denotes the target set as de ned by (2.12). This problem is solved
using a hierarchy of semide nite relaxations as described in [94], and for which
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we recall the main ideas. Let rst rede ne occupation measures and Liouville
operator accordingly to our hybrid context.

Given an hybrid trajectory = ( ; x) : [0;T]! | X and a control input
u:[0;T]! U, letde ne theoccupation measurn& modei 2 | as:

Z
'"(A B Cjx;u):= TIAB c(t xi(t);u(t))dt (3.12)
0

for all subsetsA B C inthe Borel -algebra of subsets ¢0; T] X; U.
Similarly to Section 3.1.1, we denote big, 'T the initial and the nal occupation
measures and respectively, and fores E, the guard occupation measures 2

M 4 ([0; T] Se) describing the measures associated to distribution of continuous
variables in a given guard d@; T]. We recall that ifx;(t) 2 S;j) @X, the
trajectory have to take the transition j: then Sii) is also a measure of what
leave$ a given mode on the interva[0; T].

Let =( ' L S)2M L(0;T] X UM (X7) M +(0;T] S).

For each modé 2 |, let | be de ned using the Diracy, if xo 2 X; and0
otherwise.

The occupation measures technique allows to transform the optimal control
problem (3.11) into a linear (but in nite-dimensional) problem (3.15) in the vector
space of measures in a similar manner we did for the ODEs in Section 3.1.1. In
terms of occupation measures, the cost function in the HOCP (3.11) can be ex-
pressed as [94, Lemma 5]

X X
Jx;u)= h'(ix;u)shii + h R(jx); Hii: (3.13)
i21 i21

For each modg we de ne a Liouville operatok; : C1([0; T] X;)! C([0;T]
Xi U) which acts on test functionsas:

X
= g\t/+ @[f(t; x5 W) (3.14)

L;v
! Q@x

k

Again, we note.?: CX([0; T] X; U)°! C([0;T] X;)°the adjoint operator
of Li. LetR .oy be the pushforward measure associated to the reseRpap
as in [94, Lemma 6], we can write thngybrid Liouville equation

. : , X
o otlL]'+ R oy 0% = 1 G+ S 9 ;
(i%)2E (i5i 92E

Consequently, (3.11) can be reformulated as the in nite-dimensional LP [94, Sec-

“or enter the modefor a transition(j; i ).
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tion 4]: X ' X .
p = inf h ' hii+ h T Hiji
i2l i2l
st. o h+L?'+ R (o) Siioi)
(i%)2E (3.15)
D _
= 1t L+ @9 8i 2l
(i5i 92E

L. Se 0 8i2l;e2E;
where the in mum is taken over the tuple of measurede ned above. Let
denote the optimal value of the measures associated to the sqgiution

The optimal solutiop can be approximated from below through a converging
sequence of relaxed problems [94, Theorem 17]. In this particular case, we will
focus on the SDP relaxation of the in nite-dimensional primal formulation (3.15).

Before continuing, we rst introduce a few de nitions and notations on mo-
ments, moment matrix, and localizing matrix of a measure. Given a multi-index

2 N", lety be the moments of a measure
Z

Iy] = xd(X):

Givenr 2 N, andp 2 R;[x], let
Z x
Ly (/= hipi= ( px)d:
i

Given multi-indices and 2 N", the moment matrixM,(y ), is de ned
as: [Me(y )¢ .y =1Ly It + ) wherej + | 2r. Then, letg 2 Ry[X]
be any polynomial I\_/yitH < r , the localizing matrixM, (g;y ), is de ned® as:
Mc(gy ) :y= 509 I+ )

Now, we assume that the seXs are semialgebraic, i.eXj := fx 2 R" :
gx, (X) Og for each mode 2 |, wheregy, (x) is a vector of polynomials

de ning X;.

Similarly for X1, := fx 2 R" : gr;(x)  0g, wheregr;(x) is a vector
with componentggr;;), 2 R[x]forallk 2 f 1;:::; (X1;)g. For each transition
e=(i;i92E,letSgjo = fx 2 @X:ggio(x) Og.

Let the input set b&) := fu 2 R™ : gy(x) 0g, wheregy(x) is a vector

g =t(T 1t).

By re-writing, in (3.15), the positivity constraints as semide nite constraints on
moments, and localizing matrices, and then truncating the degree of the moments
to 2r, we obtain a nite dimensional semide nite program [94, Section 5.1].

SWe recall thag denotes the coef cient of at the multi-index for the monomial basis.
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Now, usingq to de ne the disjoint union of meagjresslet us denote:=

Ji2i ', €= Qe >, T := iz r,and == | g 7 thesetofall
the measures associated to the problem. l.eefers to a measure in, ass_ociated
to the mode 2 I, so either |, Sa% 892 |, Swi9 8%2 1, or . Let

fyr .9, be the sequence of moments of deggedor each ; 2 , andy, =

fyr. ;9 ,. Then, the equality constraints in (3.15) can be approximated as a nite
dimensional linear system (3.16), by taking the truncated moments, and localizing
matrices:

Ar(yr) = by (3.16)

Then, the relaxegrimal problem(3.17) is de ned by:

. X X
p, := inf Ly, (hi)+ Ly (Hi)
i2] iz T
S.t. Ar(yr)= bl'v
Me(ys ) 0i8 12 :

erik((gxi)k;yr; i) 0;

My, ((Qu)kiyr 1) O (3.17)

8(k; S)2fL:::: (Se)g  E;

8(k; Y)2fL:; (Xti)g T
MI’ l(g ;yr; i) 0, 8 i2 | [ E.

wherery,, = r ded(9x,)k)=2 fu, = r ded(9Qu)k)=2, I'se = T
ded(9s,)k)=2 andr(t;) = r ded(gr;)k)=2. Above,M  Ode nes amatrix
M as positive semide nite.

Now, from the occupation measures solutions of the relaxed primal (3.17) and
their associated momenys, it is possible to synthesise the control. Given a poly-
nomialu 2 R[(t; x)], and a measure we de ne the vectoly(y ) as:

by )l =1Ly ((tEx) u); (3.18)
with (t; x) a monomial ofR|[(t; x)] of degree , andj j |. Given moment
sequences truncated to deg@el, the optimal control lawu 4, for each mode

i 2 | is approximated by d,-th order polynomial by solving the following linear
system of equations:

[Ug,:ilk = Ma,(y, ) 1bdu;k(yr; ); 1 k m (3.19)
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forallmodes 2 |, and wheré denotes the control's component. Hétg, (y,. i)

is the truncated moment matrix of orddy associated to the measuresolution

of the primal problem (3.17). This matrix is in general not invertible. However, it

is positive semide nite, and in consequence there exists a pseudoinverse, known as
the Moore-Penrose generalized inverse [131, Chapter 7].

3.2 Fitting time varying parameters

3.2.1 The model revision problem

In this section, we solve the model revision problem of a hybrid automaton mod-
elling a biological system together with a set of experiments. Therefore, we provide
a method to nd time varying parameters of biological hybrid automata, modelled
as input functionai(t), in order to t the hybrid automaton model to a set of ex-
perimental data. Thus, we write our problem as an optimal control problem where
desired input functions are the optimal controls which minimize the distance of the
results produced by the model and these experimental data (3.1).

We rst formulate (3.1) as a particular instance of the optimal control problem
on hybrid automata with intermediate points. Then, we propose a rst approxima-
tion as a set of instances of the optimal control problem on hybrid automata 2.13
de ned Chapter 2. However, instead of solving the possibly non-deterministic
problem on hybrid automata, we restrict ourselves to a subset of deterministic hy-
brid automata using the controlled hybrid system formalism from [94] and de ned
previously. Consequently, we need to solve the hybrid optimal control problem
presented Section 3.1.2. The solution is obtained using the previous results from
[94, Section 4], of which we summarized the key points in Section 3.1.2. Finally,
in Section 3.2.2 we explain the complete algorithm addressing our initial problem.

Let rst give a few de nitions and notations: experimental measurements, rep-
resented by a functiom (x), are performed at given specic timd§, 1 |
Nexp- Letzj be the observed value of the experimental measurement aflfime
thenney, is the number of experimental data points.

Let X1, be compact subsets ¥f;, andXt, = ;) X7;;i. Asin (2.13), let
(io;x(0)) 2 1 Xo, and suppose that we are given a set of time véldeg, with
1 j Nexp,andTp,, =T.

We say that(( ();x());u()) is an admissible pair for a problem with in-
termediate points, if (t);x(t)) 2 I X is a trajectory ofH accepted by the
De nition 2.10, and( (Tj);x(Tj)) 2 Xy, forallj.

LetH (x(Tj)) be anintermediate cost at tirfig, andh(t; x(t); u(t)) arunning
cost for the whold0; T] interval. The optimal control problem with intermediate
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points for the hybrid automatdd is then:

J = inf h(t; x(t); u(t))dt + H (x(T;))
(i x)u 0 0 j nexp
s.t. ( (t);x(t));8t 2 [0;T]atrajectory oH ;
( Mx®)21 X );8t2[0;T]; (3.20)

( (0);x(0))=(io;x0) 21 Xiy;
( (M)x(Tj) 2X1,58L |  Nexps
u:T! U continuous functions

In our biological context we search in general to minimize the least square

residual:
H (x(Tj) = im(x(T}))  zii3:

Solving the above problem can entail an excessive computational cost on a large
hybrid model (see implementation results on the haemoglobin production model
studied in Chapter 6). To reduce this cost, we propose an optimization scheme
where we iteratively compute the control for each intermediate time in a greedy
way.

Givenl |  nNeyp, let

Z +
Jj (tx(D);u(t)) = ! h(t; x(t); u(t))dt + H (x(T;)) ;
T 1
with To = 0, andTnexp = T, such that
X
J(tx(t);u(t)) = Jj (& x(t); u(t)):
1] nNexp

Noting( 1) (t); xU)(t)) a trajectory of a hybrid automatdt on the intervall; :=
[Ty +;Tj]l,and similarlyeU) (t) the control ol , we consider the following prob-
lem as particular instance of (2.13):

3= inf 3t xD(0); (1)
(xG);e())

S.t.
( 0);x0)y a trajectory oH onTj;
#l)(t)y2 U; 8t 2T,

( DxDy2x; 8t2T; (3.21)
ifj=1;

( 0);xD0) = (ioixa) 21 Xip;
ifj 2

(O 0;xOm = OO ;x0T );
( D@)xO() 2 Xy
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We note thatif atransition! i%occurs atthe timg; of the intervalT; 1;Tj],
we retain only the left part in the moddor the next optimization on the interval
[Tj yTi+1 ]

Letu(t) and( (t);x(t)) be respectively the control and the trajectory,tf@
[0; T]. They are respectively de ned by the concatenation of all the cortfblét)
and the trajectorieg 0)(t);x0)(t)) on the sub-intervalfl; 1;T;]. By construc-
tion, (( (t);x(t));tr(t)) is an admissible pair for (3.20), &s(T;);x(T;)) =
( OT);x0(T)) 2 X+,

Remark 3.3. We emphasize thagtx(t); t(t)) is not necessary an optimal solu-
tion for (3.20). Moreover, as the optimization problem (3.21) is obtained through
a greedy scheme, we have no guarantee that its optimaU}:oistinferior to a
given". However, our goal is only to nd parameter functions satisfying desired
error bounds, thus this approximate solution provides a good trade-off between op-
timality and computation cost. We note that we consider in this work the case of
experimental measurements with partial information: if the measurements provide
information on the state of all the variables at a time point, then the greedy scheme
converge to the optimal solution.

3.2.2 Algorithm and implementation details

Let (Tj;z),0 ] Nexp be pairs of experimental data points and their mea-
surement time, and we also natg andxg the initial mode and initial conditions
of the studied hybrid automat# respectively. Let be a given starting relaxation
degree.

Algorithm 1 nds an admissible solution to (3.20), by solving the reformulation
of the optimization problem (3.21) into a HOCP (3.11) for each experimental data
point (T;;z). For eachj, the degree of the polynomial contref) (x(t);t) is
determined as the smallest degree suchjihatx(T;)) z i3 ".Indeed,inthe
context of biological system modelling we desire to obtain a control of degree as
small as possible to avoid over tting. Then, for each iteration gyeklgorithm 1
is decomposed in three steps.

The rst step is the procedurdOCPR associated to an instance of the HOCP
(3.11) forj -th pairs(T; ; z; ). Given a relaxation ordef;,  r, we solve the relaxed
primal (3.17). It returndMy, (y ;), the sequence moment matrices of degiee
associated to the occupation measuref each modeé 2 1. We also obtaird . j(dr)
an under approximation of the optimum of (3.21).

The second step is the proced@ynth , which returns the admissible control
) (t; x) of degreed,  d; using a truncated moment matigq, (y ;) as in
(3.19).

The third and last step is the proced@inu. It performs the validation that
the synthesised contrell) yieldsjim (x(T;)) zjj3 ". This step is done by
approximating the trajectory of the controlled hybrid system using a solver of ODE
with discrete events to produce numerical simulations.
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If in iterationj, jm(x(T;)) zjj3 ", thenx()(T;) and the corresponding
modei; reached at = T; by the numerical simulations are the initial conditions
for the next iteration + 1.

Otherwise, th&Synth andSimu procedures are repeated while increasing the
degree of the synthesised polynomial control udiiil= d;. In case the condition
im(x(T;))) zji3 " is still not satis ed, the relaxation orde is increased,
and the three steps are repeated.

If " ij(d') then we are sure that for the given initial condition at step
there is no control such thgm (x(T;))  zjj3 ". Consequently, we keep
our previous resulé!) and the corresponding mode reached at = T; by the
numerical simulations are the initial conditions for the next iterajtierl .

Algorithm 1 hybrid systems model revision algorithm

1: procedure REVISION(H; f(Tj;z;)gj;i0; Xo0;"; 1)
2 Tint =0

3. forall experimental datéT;; z;) do

4 dy=0;dr =rjer =+1

5 whileerr "~ ij(dr) " do

6: 3% Mg, (y ) = HOCRH; io;..

7 - X0; Tinit ; Ty 2, dr)
8 whileerr  "andd, d, do

o: e (x(t);t) = Synth (Mg, (y );du)
10: (it ;xW (1) = Simu(H; e (x(t);1);...
11: w103 X0; Tinit 5 Tj)
12: err = Hx0)(T));z)

13: increase  dy

14: end while

15: increase  d;

16: end while

17: io =it

18: xo = x0)(Tj)

19: Tinit = Tj

20: end for
21: end procedure

3.3 Perspectives

In this chapter we proposed a method for fast model revision of hybrid dynamical
system. Even if the result is not optimal, and convergence is not guaranteed using
the scheme of Algorithm 1, we observe a good accuracy on the particular example
of Section 6.1.2 in Chapter 6. We now propose two ideas to extend this work. The
rstideais to search for a in nite LP on occupation measure which directly address
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the problem with intermediate costs, which is not possible with the current method
from [94]. Such rewriting would provide a method to obtain a solution converging

to the optimal control. To do so we propose to extend the formulation of [69] on

ODEs using multiple the hybrid Liouville equations restricted to each sub time in

[Ti 1:Tj,1 J nexp. Thisleads to the following in nite LP:

X X X X
p := inf h ' hii+ hl-l’-Jj;Hi;ji
Fi9  he i2l | Nexp 2]
i 0 i Si0i1.
sty goptly Ut R oiy; 0%
(i%)2E (3.22)
= Tj 1|’-JJ + S(i;i 0 ; 8| 2| ; 1 J nexp
(i 92E
B 'TJJ Sei 0, 8i21;€2E;1 j Nep;
wherel |  nexp is the index associated the time interfgl 1; T;]. We note

the number of constraints and occupation measures of the LP (3.22) is multiplied
by nexp Which entails a great computational cost. In the example studied in Section
6.1.2, such formulation would be computationally expensive, which justi es our
approach in Section 3.2.1.

The second idea is to use the scheme of Algorithm 1 to perform parameter
synthesis. Indeed in the work [124] the authors propose a method for parameters
synthesis using Backward Reachable Set (BRS) computation of hybrid systems. In
a similar fashion to [94] they use the hybrid Liouville equation when the system
needs to reach a single target at a nal time. Using the method of [124] comput-
ing BRS for each intermediate points, and then intersecting the results we would
obtain a converging over-approximation of the valid parameter set when there are
constraints at intermediate time. However, currently the method from [124] is
more expensive than [94], and cannot be applied on the example studied in Section
6.1.2.
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Context. In cellular biology, models are often based on the elementary law of
chemical reactions or empirical laws for lumped reactions, and expressed in terms
of Ordinary Differential Equations (ODES). However, as we have seen in the pre-
vious chapters, unlike models in classical chemistry, most of the parameters in
biological models are uncertain, or can greatly vary from one sample (or one indi-
vidual) to another. For these reasons, modelling in biology involves many round-
trips between experimentation and validation of a hypothesis about a biological
mechanism formulated by a model. Because these models are uncertain, hypoth-
esis validation is often done with numerous numerical simulations. However, this
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simulation-based method is both costly for large parameter spaces and, in addition,
not exhaustive. Note that a particularity of biological models is that the sets of pa-
rameter values (as well as the set of initial conditions in some cases) can be large.
Our objective is to validate a hypothesis on some properties of a given biological
model which contains uncertain parameters. Furthermore, the initial conditions,
such as the initial concentrations of most species, are not accurately known but
lie within identi able intervals. Therefore, the hypothesis should be validated for
all the behaviours generated by such uncertainty, for which reachability analysis is
an appropriate tool. Formal veri cation techniques allow proving properties, with
set-based reachability computation techniques, by replacing simulation runs with
conservative sets of trajectories. The result of this analysis is the validation of a
proposed parameters space for which the model satis es a set of constraints, pro-
posed by the biologist or coming from experimental results. Thus, in this chapter
we propose an approach which can be seen as a complement to the approach based
on simulations. It uses discrete time reachability analysis (that is set-based simu-
lation) to formally validate a hypothesis on the model. For polynomials systems,
we propose two different methods for reachability analysis: using the Bernstein
expansion and the Krivine-Stengle (K.S.) representation.

Contributions. In the rst part, we propose an extension of the Bernstein-based
method previously developed in [83] which allow tackling uncertain parameters
at a small cost. Furthermore, we propose an extension of this Bernstein reacha-
bility analysis method to handle polynomial fractions. Another extension, useful
to tackle the complex case studies such as the iron homeostasis model developed
latter in Chapter 6, is a method for piecewise polynomial approximations of the
dynamics and a reachability method for the resulting hybrid dynamics. These ap-
proximations and adaptations will be demonstrated in Chapter 6 on the concrete
iron homeostasis model, allowing us to validate a hypothesis stated in [5], with an
exhaustive analysis over uncertain parameters and initial conditions. In the sec-
ond part, we propose an alternative method to the Bernstein expansion, namely the
K.S. representation, to perform template reachability analysis of polynomial sys-
tems. The K.S. representation can be used as a relaxation method to approximate a
non-linear optimization problem by a linear optimization problem (LP). We show
that in the particular case of parameter space restricted to a box (or a linear transfor-
mation of a box), K.S. is another ef cient method to perform template reachability
analysis. Finally, we discuss its pros and cons compared with the Bernstein-based
method.

This chapter is organized as follows. We rst formulate, in Section 4.1, the
discrete time parametric reachability analysis problem. We introduce, in Section
4.1.3, our method to handle piece-wise polynomial dynamics modelling the ap-
proximation of a more complex system over a xed partition. In Section 4.2, we
describe the reachability analysis method using the Bernstein expansion. Then, in
Section 4.3, we give details on the second approach based on the K.S. represen-
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tation. Finally, in Section 4.4 we discuss the differences between the Bernstein
expansion and the K.S. representation approaches and their perspectives.

Related work. To study biochemical systems, such as the Mammalian Cellular
Iron Homeostasis (MCIH) model presented in Chapter 6, we base our framework
on theC++ tool Sapo [1] for polynomial systems. The work [1] shows that the
Bernstein technique is ef cient for computing reachable sets of polynomial para-
metric ODE models. As polynomials arising in biological models are often sparse,
using the implicit formulation of the Bernstein expansion in [132] allows us to
avoid the explosion of Bernstein coef cients with the dimension and thus improv-
ing reachability computation for biological models. Adding our improved com-
putation of the Bernstein coef cients and approximation by piece-wise non-linear
models, the current framework can perform reachability analysis on a large class of
biological models with switching behaviours. This work can be compared to other
work focusing on reachability analysis of non-linear biological models.

There is similar previous work using the Bernstein expansion, such as [133]
and [134]. The work [133] allows performing reachability analysis over polytopic
sets, instead of bundles of parallelotopes. However, this approach does not directly
handle parametric models and is much slower than the current approach due to the
conversion from polytopes to boxes. The work [134] uses the Bernstein expansion
to compute an LP-relaxation of a polynomial optimization problem (POP), which
is then solved over a polytopic set. The technique proposed in [134] can com-
pute reachable sets with high precision using polyhedral templates, but is more
expensive than [1] which only needs to compute the parametric Bernstein coef -
cients once. The work of [134] is also related to the K.S. approach, since it uses
a relaxation of a polynomial optimization problem as a LP. Our approach differs
from [134] by the ability of our approach to ef ciently handle parameters in the
optimization. We also mention a recent method using SDP relaxation [128] for
discrete time reachability analysis of polynomials.

We also point out the tools, such as [85], [57], [135], which have been devel-
oped mainly for reachability analysis of biological models. The work in [85] and
[57] is dedicated to piecewise multi-af ne models with either conical representa-
tions of reachable sets or rectangular abstractions, while [135] focuses on param-
eters synthesis of piecewise multi-af ne models such as gene networks. We also
note that the piecewise approximation in our work is similar to the hybridization in
[32].

Finally, we can mention well-known tools suchkew * [89] andKeymaera
[80], for the reachability analysis of non-linear systef®w * is an ef cient tool
based on Taylor models for approximating owpipes in form of unions of boxes,
while the Bernstein and K.S. methods computes owpipes as unions of polytopes.
Flow = can be used for more general non-linear hybrid models but it does not
seem to extend easily to parametric analysis. The k@ymaera [80] uses a
different approach: it is a theorem prover based on differential logic. It requires
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knowing solutions to differential equations or solving them numerically. It can
compute invariants; however in the context of systems biology, it is very useful
when interacting with the biologist to provide explicit reachable sets as temporal
owpipes.

Before continuing, it is important to note that the technical contents of this
chapter use a lot of multivariate calculus notations de ned in Section 2.1.

4.1 Set-based simulation

4.1.1 Discrete time models

In this chapter we consider biological systems modelled by discrete time paramet-
ric dynamical systems. The discrete time parametric dynamical systems we study
are de ned by a set of difference equations:

X +1 = f(x ; k) (4.2)

where 2 N, x 2 R"is the value of the variables at the iteration , andk 2

K R™is aset of parameters. A trajectory solution is a sequepee: N! X

de ned for an initial conditiorxg 2 R" and a parametrizatidn 2 K . We note that

the iteration index 2 N replaces the time variabte However, as seen in Chapter

2 for the particular case of numerical integration, one can retrieve the value of the
continuous time variablefor a given time step t.

Discrete time is often used in models from computer science, such as programs
where the notions of clock and iteration are natural. However, it can also be used
as an approximation of continuous time systems, such as gene regulatory networks
(see for example the work of [136] or [72]). Discrete time models can also be ob-
tained though explicit numerical integration of ODESs system as seen in Chapter 2.
In the following, we assume that we are given a model as a discrete time parametric
dynamical system.

Example 4.1(2D discrete time system of Lotka-Volterral discretization of the
Lotka-Volterra continuous time model (LV-ODE) taken from [137, 138] descrihing

the oscillations of a prey-predator interaction system is given in (LV-discrete), We
assume the following values for the parametérs; ; )=(2=3;4=3;1;1).
To obtain this discretization we apply the forward Euler numerical integra-
tion scheme with a time stept = 0:01L Figure 4.1 showsl600 iterations
of the resulting discrete time dynamical system (LV-discrete). In Section 4.4
we demonstrate a method for reachability analysis on the model (LV-ODE).

X2 xCY) vopgy X T XA Y DGy disorete)

y= y( X) ya=y @ ( X ) t)
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Simulations of Lotka-Volterra continous and discrete models
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Figure 4.1: Simulations of the ODE model (LV-ODE) in red, and the discrete time model
(LV-discrete) in blue (one out of 20 points are plotted).

4.1.2 Template reachability analysis

Reachability analysis. In this chapter, we extend the previous work of [83] on
the computation of owpipe and reachable sets for parametric discrete time dynam-
ical systems. We rst recall the general de nition of the reachableRseto; T; k)

of the dynamical system (4.1), up to iteration> 0 (possibly+ 1 ), for given an
initial conditionxg 2 R" and a parametrizatiokn 2 K :

R(xo; T;k) == fxjx = x,k( ):;8 s.t.0 Tg: 4.2)

For a given initial seiXp R" and for all parameter values i, we obtain the

reachable set: [ [

R(Xo;T;K) := R(Xo; T;k): (4.3)
k2K x02Xo

We can put the reachable set computation methods into two categories:

— Depth- rst methods they compute the reachable set up to iteraffoffior
each sample pointxg; k) 2 Xo K independently, and then iterate over
the set of all the possible points. These methods are also called trajectory-
based reachability analysis. As they rely on numerical integration tools they
are very fast. In practice these techniques are often used when searching for a
counter-example [139], as one counter-example is suf cient, or in combina-
tion with sensibility analysis [47] or ow abstraction to produce a ow-pipe
approximation [140]. A non-exhaustive list of trajectory based methods is
[141, 47, 139].
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— Breadth- rst methodsInstead of computing the reachable set for each ini-
tial condition and parameter set, the breadth- rst (also called set-based) ap-
proach uses set operations to compute th&Xset (that is the image oK
for each iteration ), given an initial seK o and a parameter spake The set
operations are more expensive than operations on points and for non-linear
vector eldsf a precise approximation of +; has in general a computa-
tional cost exponential in dimension. However, the set-based methods pro-
duce conservative results which correspond to an exhaustive simulation. A
non-exhaustive list of set-based reachability tools is [87, 89, 83, 88].

In the general case, the problem of computing the reachable set is undecidable [63].
However, we note that in the particular case of polynomial discrete-time dynamical
system, withX o andK two semi-algebraic compact sets, the computation of the
reachable set at a nite tim€ is a decidable problem. Indeed, it can be formulated

as a logic formula which is decidable [142] and exactly solved by quanti er elim-
ination methods as in [143]. However, this solution using quanti er elimination
remains too expensive and for this reason we use template reachability, a method
to compute an over-approximation of the reachable set.

Template reachability analysis. We now assume tha{, is a compact subset

of R". Exactly computingX +; = f(X ;K), that is the image oK by f, can

be challenging, since an exact representation of the image is not known. We thus
apply the following compact over-approximation:

fx2R"jg(x) c; 82X +10; (4.4)

whereg(x) is a vector of polynomialgj(x) 2 R[x] forall 1 i p. Hence
thesep polynomial constraints de ne a compact semi-algebraic subsBt' ofWe

call c 2 RP the offset vector associated to the constraint system. The vector of
polynomialsg de nes a xed template if the coef cients of each polynomglare

xed. Thus, by xing the templateg(x) and de ningc +1 2 RP as the optimum

of the polynomial optimization problem:

€+ = max (g(x))
* (4.5)

= (y;kr)rgx ‘ (a9(f(y:k));

we can obtain the followin{ +; as a tight template over-approximationof. :
X 41 =fx2R"jg(x) c410: (4.6)

Given a semi-algebraic templageas de ned in (4.5), 1eOg(X ) be the opera-
tor computing a tight over-approximatiof of a setX . An over-approximation
R(Xo;T;K) of the reachable set is obtained by the following recurreig=
Og(Xo) andX .1 = Og(f(X ;K)). The approximated reachable set at a xed
timeT is then: [
R(Xo;T;K) = X :

0 T
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Polyhedral template. We now de ne a patrticular type of semi-algebraic tem-
plates we use in the remainder of this chapter: polyhedral templates. A temgplate
is called polyhedral templatéf it is constituted of a system gflinear constraints.
Let 2 Mpn(R) denote the template matrix such thigk) = x. In a similar
way to (4.4), giverc 2 RP we say tha( ;c) is a template over-approximation of
asetX ifforall x 2 X, x c. Itfollows from (4.5) that given a template matrix

, a tight template over-approximation of a ¥etcan be the polyhedral set:

X:=fx2R"] x max( x)g 4.7)
x2X

Finally, using the above-described template reachability scheme we obtain a par-
ticular case of (4.6) for a polyhedral templdte ¢ +1):

— n ; _ . .

X1 =fx2R"j x Cu = max f(y:k)g: (4.8)
It is clear that the complexity of the reachability algorithm will depend on the
resolution of the optimization problemax, xyox « f(y;k). If X isa poly-
hedron and is a linear vector eld, such problems can ef ciently be solved using
linear programming. Otherwise,fifis non-linear the complexity of the optimiza-
tion increases drastically. Indeed, one cannot rely on local optimization method,
since the result may be inferior to the maximum, leading to a non-conservative ap-
proximation of the set. In the following, we propose two approaches based on two
different global optimization techniques providing upper-bounds of the optimum,
and thus a conservative over-approximation.

Example 4.2(Box template) Let us consideX a compact subset &2 as shown
in Figure 4.2. The template matrix,ox de nes axis parallel constraints, and the
template over-approximation pex; C) as shown in Figure 4.2 is the box template
over-approximation oX .

0 1 0 1
1 1 0
0 1
box:%E :%} 1 0§ ( box)
4 0 1

4.1.3 Approximated dynamics over partitions

State-space patrtition. In this section we consider how to handle discrete time

dynamical systems de ned using piecewise continuous functions. Such models
can be obtained through local approximation of the dynamics over a xed par-
tition of the state space. For example, in the particular case of the Mammalian

!We assume thatx ¢ de nes a compact subset &" .
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X2

LXx = ¢y X, < max (x,)
(xy, %,) €

(I',c)
X =< ¢ -x = max (-x;
(x, %) €X
X =cy X< max(xy)
1 1 1 %) €X b

X < ¢, -X,< max (-x,)
4 4 2 (x;, %) €EX 2

A1

Figure 4.2: Tight over-approximatidn nox; C) (in blue) of a seX (in red) by a box tem-
plate pox given in Example 4.2.

Cellular Iron Homeostasis (MCIH) model studied in Chapter 6, we approximate
sigmoid functions in three af ne pieces. Piecewise models can also be obtained
using model reduction techniques such as [111] where models of multi-scale bio-
chemical reaction networks are decomposed in piecewise polynomial systems.

Let h be a linear constraint of the form x cwherea 2 R" andc 2 R.
We denote by h the constraina x > ¢, the negation of the constrafrit. For
simplicity of notation and presentation we Us¢o denote both the constraint and
the half-space de ned by this constraint. We also assume that our state-space is
a compact subset &®": for example a box oR" large enough such that all the
trajectories stay inside for the considered time interval.

constraints o partition the state space inmon-empty compact subsetsif,
fN ig1 i q, called domains of the partition.

Remark 4.3. We recall that we are considering models with discrete time dy-
namics. Under such dynamics, it is possible, in one discrete step, to jump across
multiple domains of the partition (see Figure 4.3). In this work, we accept such be-
haviours as we are considering the general case of discrete time dynamics. How-
ever, while the discrete time model is produced through an approximation of a
continuous time model, such “jump” are considered as a bad behaviours and must
be detected. At the end of this section we present how to detect such behaviours
using our tree representation.

%In practice we perform computations with non-strict inequalities to keep compact sets.
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We note that under the assumption of the existence of the behaviours described
in Remark 4.3, we can provide the following translation of a partition into a hybrid
system with discrete time dynamics as in De nition 4.4. We deqmodes, one
for each domaiN;; i 2 [1;q]: the invariant associated to a modes the whole
state space. Through Remark 4.3, we note that a mbds an urgegttransition
to any other modé® 6 i, with an associated guard being the donidjn The reset
associated to each transition is the identity.

De nition 4.4 (Approximation map) Given a continuous functioh : R" !
R, we de ne as its approximation map associated to the list of constrhitite
piecewise continuous functioks : R" ! R such that:

AN )= ADx): 8x 2N;;

with eachAi(f) :R" ! R apolynomial (or rational function) approximatimgfor
X 2N i

We rst mention that in this work we do not focus on how the approximation
is obtained (be it by Taylor approximation, or by global interpolation methods for
example): we assume that it is given. We also do not take into consideration the
approximation error, as it can be handled latter as a parameter of the system.

Binary space patrtition trees (BSPT). To deal with these hybrid dynamics, we
need an ef cient way to encode this partition of the state space, such that it is easy
to locate a set on the partition during its evolution under the dynamics. To this
end, we use the Binary space patrtition tree (BSPT) techniques [144]. Each node
of a BSPT is associated with a non-empty set (also called domain of the node) that
is de ned by a conjunction of linear constraints. For simplicity of notation and
presentation, instead of saying that the domain of a node intersects with some set,
we simply that say a node intersects with some set and we use the ndation
denote both the nodes and its associated domain.

in the piecewise approximations of the dynamics. The domain associated with the
root node> of the tree is the whole state space. For each leaf node, if adding
one constraint fronH splits the corresponding domain into two non-empty sub-
domains, we create two child nodes from it, each corresponds to a sub-domain.
This constraint is called theplitting constraintof the node. We repeat the same
procedure until all the constraints lih are added.

We associate with the root node the highest rapk and a child node has a
rank smaller than its parent dy Once the BSPT is constructed, each leaf of this
tree corresponds to a modessociated to each sub$¢t of the partition of the
state space b .

3The transitiormustbe taken if the conditions are satis ed.
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If a model involves multiple approximation maps, it is possible to statically
build a single BSPT representing all the possible discrete modes. Two BSPT can
be fused by replacing each leaves of the rst tree by the top node of the second
tree. Then, starting from the node of smallest rank of the rst tree (previously the
leaves) we go downward and eliminate the branches corresponding to redundant
constraints and the nodes with empty domains. Such a method corresponds to the
simple parallel composition of the two associated hybrid systems. In this work,
the composition is performed statically at the beginning. In the recent work [145],

a similar approach has been applied to approximate non-linear dynamics using
piecewise linear ODEs. Unlike our work, they perform the composition of each
approximation map on the vy in the hybrid automata tool SpaceEx [87].

Example 4.5(Partition ofR?). In this example we consider a partition of tRé by
three constraintly; hy; hsde nedbyx; c1,X1  Candxz czrespectively.
We also assume that < c,. Then the state-space is partitioned in 6 domélas
to Ng. We associate to a domah a vector IedAi(f)(x). This partition ofR? is
represented in Figure 4.3. Its associated BSPT is given in Figure 4.4.

Set localization. We now explain how to locate a given polyhedral compact set

X on the partition, and identify the nodes that intersect Wth Note that such

setsX can be sets generated by the dynamics of the system. Indeed, even consid-
ering the worst case of Remark 4.3 we expect some continuity in the ow to speed
up this localization operation in the general case. Thus, we can expect that the
successor se{ .1 is in the same locations or in the locations that are adjacent to
the positions of the current sit . Consequently, during the reachability process,
instead of starting the search from the root of the tree, we can start from the current
or adjacent locations. We call these starting nodes the guess nodes. However, at
the initial step = 0, since there is no previous information, we start our search
from the root of the tree. The search algorithm, natoedting , consists of the
following two steps.

In the rst step, we search for the nodie of the lowest rank which strictly
containsX, thatisX N . To do so, we test if there is no node in the guess
list satisfying this condition. If this is the case, we go upward in the tree and test
their parent nodes, until the condition is satis ed. If the ndddound this way is
a leaf,N is the only node containiny , the algorithm returngN ; X ) and stops.
Otherwise, it proceeds to the second step starting flon©ne can easily see that
the ef ciency of this algorithm depends on the ordering of the constraints when
building the BSPT. In any case using guess lists is not worse than starting from the
root. A good heuristic when building the tree, is to have the constraints the most
susceptible to be crossed at the lowest ranks. This way, the previous scheme avoid
going too much upward in the tree before nding the rst strictly containing node.
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Figure 4.3: Partition of the state space by three constraintd,, andhsz as de ned in
Example 4.5. The associated BSPT is given in Figure 4.4. The g&t Mcated in the

domainN;. Its image byA(lf) is X; located in domaiNs which is not adjacent tdl:
we say that X performed a jump.

Figure 4.4: BSPT associated to the partition proposed in Example 4.5 and shown in Figure
4.3. In red we show the step associated to the localization of the;sat Yescribed in

Example 4.6
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This ordering can be preprocessed using the traces of a few simulations to have an
estimation of the number of time each constraint is crossed.

The second step of the algorithm is a breadth- rst search starting from the
nodeN, in order to obtainL; X) whereL is the set of nodes with non-empty
intersections, an is the set of corresponding intersections (stored as a set of
convex polyhedra). This step is a recursive procedure applied tolacfetodes
intersecting withX , until we reach the leaves. Initialll, = fNg, and the seX
contains onlyf X g. Then, untilL contains only leaves when the algorithm returns
(L;X) and then stops, the following procedure is iterated. By construction, at
any iteration, all the nodes in have the same rank and therefore have the same
splitting constraint, denoted by,

- If X h, thenX intersects the left child of every nodeslin thenL =
left _children (L).

— If X : h, thenX intersects the right child of every nodeslin then
L = right _children (L).

— If X satis es none of the two above conditions, th¥nntersects both all the
right and left children of the nodesin Then,L = left _children (L)[
right _children (L), and the algorithm updateé = X\ hg[fX \

. hg, wherefX\ hgandfX\. hgare polyhedra resulting from intersecting
each set irX with the half-spaces corresponding to the constrdiread: h
respectively.

Example 4.6(Locating a set) In this example, we continue with the partition pf
R? de ned in Example 4.5 and represented in Figure 4.3. We want to locate Y
the image of ¥ by the vector eIdAg) (see Figure 4.3). Let consider the BSPT
given in Figure 4.4 as a representation of the partition of Example 4.5. We know
that Yo N 3, therefore we rst guess thatyY N 3. As itis false, we go upward
inthetree and testifY f.  hi” hogwhich is true. Consequently, we know that
either Y; N 4orYjisintersecting bottN3 andN4. AsY; :f hsgwe know
that Y1 N 4 which terminates the localisation search.

Detecting jumps. We now want to de ne a procedure to test if a ¥et,; isina
domain adjacent to the position of the previousXet or if it has “jumped” across
multiple domains as shown in Figure 4.3. In case a jump is detected, a roll-back to
iteration may be performed and, for example in the case of discrete time systems
coming from numerical integration, the time step may be reduced.

First we de ne a constrairtt in the formax ¢, as tangent to a compact set
N if maxson (2@ X) = ¢. We recall that we de ned a nodé¢ by a conjunction
of constraints, possibly redundant. For each Mafve identify all its constituting
constraints that are not tangent.
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Let us assume that is located in the nodbl; at step . Let us also assume
thatX .1 intersects a noddo at step + 1 such that there is a constraimthat
is crossed: meaninig appears in the de nition oN; and: h in the one ofNjo. If
h is not tangent tiN; thenX ;1 has performed a “jump” (see Figure 4.3).

4.2 The Bernstein expansion based method

As seen in the previous section, one can compute an over-approximation of a reach-
able set using template reachability analysis. One of the main dif culties is the op-
timization problemmaxy.j2x «k f(y;k) (in the particular case of polyhedral
templates) to compute a tight template over-approximation.

In this section, we present the rst method for reachability analysis based on the
Bernstein expansion of polynomials. This approach has been previously studied in
[83] and we propose to extend it to a larger class of dynamical systems.

We rst present the necessary background on the Bernstein expansion and its
application to non-linear optimization. Then we introduce our contribution for the
reachability analysis of discrete time piece-wise polynomial dynamical systems.

4.2.1 Polynomial optimization using the Bernstein expansion

Bernstein expansion. Bernstein expansion is the reformulation of a polynomial
from its expression in the canonical basis to its expression in the Bernstein ba-
sis. It was rst proposed by S.N. Bernstein, at the beginning ofXX# century,

in a proof of the Weirstrass theorem [146]. Its use for the enclosure of univari-
ate polynomials was later proposed in [147] and extended in [148] to multivariate
polynomials. We recommend two recent surveys [149, 150] on the Bernstein ex-
pansion, its computation, and applications. We recall from [148, Theorem 2] the
de nition of the multivariate Bernstein expansion:

De nition 4.7 (Multivariate Bernstein expansian{siven a multivariate polyno-
mialf and adegrek d with d being the multi-degree df, then forx 2 [0; 1],
the Bernstein expansion of multi-degieef f is given by:
X X )
f(x)= ax = b By (x): (4.9)
[

wherel™ (also denoted bip when there is no confusion) are the Bernstein coef-
cients (of multi-degre@ of f , andB,. (x) are the Bernstein basis polynomials
dened byB,. (x) := i”=1 Bi; ,(Xi) andBy;. ;(x) := li X '(1 xi)lo.
The Bernstein coef cients are given by the following formulas:

b = —a; 0 X (4.10)
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We call the set of pointé =I;b ) 2 R"*! the Bernstein control points associated
to the Bernstein expansion of multi-degitee

Example 4.8(Bernstein expansion)The Bernstein coef cients up to degrée-
10 of the univariate polynomidl(x) = x°+3x?forx 2 [ 1;1]are:
9441 26 1 161349

0= 125 255 105 3 105'5 45 5 ¢
The associated Bernstein control points are represented in the Figure 4.5. We note
that the maximum of the coef cients & As it is achieved irx = 1, we know the
solution is optimal, which can be observed in Figure 4.5. However, the minimum
of the Bernstein coef cientd, which is Tl is not the minimum off (x) over
[ 1;1]

Figure 4.5: Representation in blue of the polynonfi@t) = x> + 3x2? given in Example
4.8, forx 2 [ 1;1]. Inred, we show its Bernstein control points for 10.

The Bernstein expansion having numerous properties, we give only the ones
necessary for our reachability purpose in Section 4.2.2. For a more exhaustive in-
troduction to the Bernstein expansion, as well as some proof of the basic properties,
we refer the interested reader to [151].

Property 4.9 (Cardinality [151, (3.14)]) The number of Bern%ein coef cients in
the Bernstein expansion of multi-degreis equal to(l + 1)1 = = (l; +1) :
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Property 4.10 (Linearity [151, (3.2.3)]) Given two polynomialg ; andf 5,
b(cf1+fz) — Cb(fl) + b(fz) - 8c2 R
where the Bernstein expansions with same multi-degrees are considered.

Property 4.11 (Enclosure [151, (3.2.4)])The minimum (resp. maximum) of a
polynomialf over[0; 1]" can be lower bounded (resp. upper bounded) by the min-
imum (resp. maximum) of its Bernstein coef cients:

mir|1b f (x) malxb ; 8x 2 [0;1]" :

Property 4.12(Sharpness [151, (3.2.5)])f the minimum (resp. maximum) of the
b is reached for in a corner of the boX0; 4] [0;1n], thenb is the
minimum (resp. maximum) df over[0; 1]".

Property 4.9 gives the maximal computational cost needed to nd a lower
or a upper bound of (x), 8x 2 [0;1]" and for a Bernstein expansion of xed
multi-degreel. Property 4.11 is used to provide a lower (resp. upper) bound of
miny o, f (X) (resp. max), while Property 4.12 allows us to determine if the
given bound is optimal. The convergence toward the optimum can be obtained ei-
ther through subdivision of the domdidy 1]", or through an increase of the multi-
degred. The work of [152, 153, 154] proposes multiple subdivision schemes and
gives their associated convergence rates. The convergence rate in degree elevation
can be found in the original work on the multivariate Bernstein expansion [148]
or more recently in [155]. Finally, we recall from [133] an upper bound on the
distance between a polynomialand its Bernstein enclosure:

Lemma 4.13. Let |(f) :R" I R be the piecewise linear function de ned by the
Bernstein control point of a polynomiélat a given degreé. Then, the following
inequation holds for alk 2 [0; 1]":

K (X) |(f)(X)k1 x2[0;1]f(r;]i?)§f 1:::ngj@@f (X)J (4'11)

In the recent years multiple methods have been developed to compute ef -
ciently the Bernstein coef cients. In this work we use two of them depending of
the situation: the matrix computation [65] and the implicit form [132]. The rst
method is the method originally implemented in the softweapo [65] and ef -
ciently computesill the Bernstein coef cientasing matrix operations. The second
method uses an implicit representation of the Bernstein coef cients. Indeed, it can
be observed, in [132], that the Bernstein coef cients of a multivariate monomial
up to a degrekcan be expressed as the product of the coef cient of each univariate
monomialx; ' constitutingx :

Yo
= ) (4.12)

in
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Consequently, instead of storing all the Bernstein coef cientg oit suf ces to
compute the Bernstein coef cients of the univariate monomials which are less nu-
merou$. If needed, the Bernstein coef cients ®f (and any polynomial thanks

to Property 4.10) can be computed independently and on the y at a lesser cost.

Example 4.14(Implicit representation)Let us consider the 2 dimensional poly-
nomialf (x1;X2) = Xx3x2  3x1x3 for (x1;x2) 2 [ 2;0:5P. Then, the implicit
representation far= (3 ; 3) is given by:

1 (S 8 2 1=2 1=8) 3 8 2 7=6 1=3  1=2)
0 1 1 0 1
2 16 4 1 1=4 4 8 14=3 4=3 2
% 7=6§ %28=3 7=3 7=12 7=4§§ N % 2=3 §% 4=3 7=9 2=9 1=3
1=3 8=3 2=3 1=6 1=2 7=12 7=6  49=72 7=36 7=2
1=2 4 1=2

1 1=4 1=16 1=4 = 7=24 1=12 1-8

Finally, the Bernstein coef cients are obtained by combing both matrices with the
coefcientsland 3:

0 1
40 10 5 25=4

%4&3 0 5=4 55=48§
56 6524 5512 5%
5=2 158 0 5=16

This representation is especially useful to determine the enclosure as one does
not always need to compute explicitly all the Bernstein coef cients to nd their
maximum or minimum. Indeed, the work of A.P. Smith [132] provides a set of
rules based on the sparsity of the polynomial to determine a subset of coef cients
containing the enclosurain (b ) andmax (b ). We also note that the complete
set of the Bernstein coef cients of can be obtain as the successive Kronecker
product [156] of the coef cients of each constituting univariate monorgjal
As the set of coef cient as de ned in De nition 4.7 can also be represented as a
tensor, this Bernstein form is also called tensorial Bernstein expansion over boxes
(in contrast with the simplicial Bernstein expansion over simplices [157]).

In practice biochemical reaction networks are often described by sparse poly-
nomials: the dynamic of each species may not depend of all the species of the
systems. This sparsity characteristic makes the implicit form very ef cient for
template reachability analysis of biochemical systems. However, when one can-
not take advantage of any sparsity pattern or when all the coef cients have to be
computed, it is preferable to use the matrix computation method from [65].

Parametric Bernstein expansion. The previous work of [65] introduces a para-
metric Bernstein expansion for functiohg¢x;k) : R" R™ ! R, which are

“We recall that the number of Bernstein coef cients is exponential in dimension.
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multivariate polynomial irx and linear irk. In a similar manner to De nition 4.7
we can write a parametric Bernstein expansioh ap to multi-degreé as:

X X
fgk)=  a@x = BKB (x); (4.13)
|

where eacla (k) : R™ ! Ris alinear functions irk. Similarly, each Bernstein
coef cient is formulated as a linear function in the parameters

X
b (k)= —a(k); O [ (4.14)

The previous work of [65] demonstrates that the enclosure and sharpness properties
hold for the parametric Bernstein expansion:

minminb (k) min f(x;k)
| k2K (x:K)2[01 K (4.15)
max f(x;k) maxmaxb (k): '
(x;k)2[0;2)" K I k2K

Moreover, we note that the methods and implementation to compute the Bernstein
coef cients in the non-parametric case can still be applied in the parametric case.
Indeed, one can write by linearity (Property 4.10):

X
k)= a k)™ ): (4.16)
We also note that the number@drametric Bernstein coef cients still Q i+

1). Finally, if the seK is a polyhedral set then each optimizatioimyox b (k)
can be solved using linear programming.

Example 4.15(Parametric Bernstein expansion)et de ne f {x; k) = (2 x?
x)ki + x%ko + (x?  x)ks, with k 2 [ 1;1. Applying the above described
methods for the parametric Bernstein expansion Withd = 2, we consider the
following parametric Bernstein coef cients:

k k
=00 6= 3 T B sl e

We note that the number of Bernstein coef cients wx.is 3, which is much lower
than the one w.r.t(x; k), which is equal t®24. One can obtain an upper bound
(resp. lower bound) by taking the maximum (resp. minimum) of the Bernstein

coef cients. In '[hIS casemaX [ 11]3b1k) = 0, maXgo[ 1.1 b(sz) 1 and
maxXyop 113 b3 §) = 2. Thus, one obtalnsoz 2 as an upper bound 6.
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In this work we also propose an additional method to compute an upper bound
of the optimummax.k)2j0.1n « f (X;K) in the particular case of parameters
varying inside a boX = [k;k]. As eachb(f)(k) is linear ink, by monotonic-
ity of linear applications, the maximum and minimum of etH are obtained at
the corners oK . Through a linear transformation to the box1; 1]™ it is possible
to further speed up this computation.

Let (k): R™! R™ be the linear transformation that associates to &2h
K avectore 2 [ 1;1]™, notinge = (k). The optimization problem transformed
toe2 [ 1;1]™isnowmaxy.e2pap [ 1ym fAX;€) = f(x;  1(e)). Then, by
linearity off {x; e) in e we can write:

X
fx;e)= es(x); (4.17)
j=1

wheres; (x) = %’;e) is a polynomial inx.

P .
Finally, foreacH  d° letusnotd *:=max [ it} andf o= f0
Our procedure is based on the following lemma: o

Lemma 4.16.For eachl  d, the polynomiaf {x; e) can be bounded as follows:
0 f9e) 2 8(x;e) 201 [ L1": (4.18)

Proof. We write fQ 2 R[x] the polynomialf {x;e) for a givene 2 [ 1;1]".
Property 4.11 provides the enclosuref §fx) w.r.t. x fora givene 2 [ 1;1]™:

min 57 £9(x) max 57 ex 2 01 (4.19)

: - a0 _ P s
where each Bernstein coef cient satis & = =1 8 b™’ by Property 4.10
(eachg being a scalar ifi 1;1]). The proof of the left inequality comes from:

xXn , X0 .
min - min( gb®) =min  min ( ¢b®))

e2[ 1;1]m = k e2[ 1,1)m i=1
X0 , x o
=min  jbBj= max B :
“j=1 “j=1

The proof of the right inequality is similar.

Remark 4.17. The computational cost df°is nowm(l + 1)! since we need to
compute the Bernstein coef cients for eagf(x). This cost is polynomial in the
degree and exponential mbut is linear inm the number of parameters. In the
implementation, we rst compute eadff e) as a function ok and then optimize

We recall thad is the multi-degree of ° (andf ) in x.
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afterwards using either optimization as in [65] or Lemma 4.16 depending of the
situation. As described further in Section 4.2.2, we show how [1] gets around the
limitation to boxes in Property 4.11 and handlén polyhedral domains through

the de nition of bundles of parallelotopes. A similar approach can be taken if one
wants to extend Lemma 4.16 to polyhedral sets.

Parametric Bernstein expansion of rational functions. To handle a larger class
of biological models we introduce an additional method, based on the original
results of [158], to optimize rational function using the Bernstein expansion. Let
us now assume thét(x; k) : R" R™ ! Risarational function irx and linear
ink:
f1(x;K)

fa(x)
wheref 1 2 R[x] linear ink andf, 2 R[x] with f2(x) 6 0 ; 8x 2 [0;1]". Then,
from the previous results on the parametric Bernstein expansion (4.13),(4.16) and
by linearity ink we can extend the theorem from [158] to the parametric case.

f(x;k) =

Theorem 4.18. Letf 1(x; k) be a polynomial irx of multi-degreed (1) and linear
in k and f,(x) be a polynomial inx of multi-degreed(f2) such thatf ,(x) 6
0: 8x 2 [0;1]". Givenl  max(d;d(2), we notef '* (k)g and b 2g the
Bernstein coef cients up to degréeff; andf ; respectively.

Thenf (x;k) = f1(x;k)=f2(x) is bounded fofx; k) 2 [0;1]" K by:

b (k) bt (k)
bfz bfz

min min f(x;k) maxmax (4.20)
I k2K I k2K
Proof. For a given xedk 2 K we have thank to [158]:

fi X
b~ (k) = ma>|< a (k)bx—

f (x; jk) malx nE

Thus, it yields for alk 2 K by linearity ina (k)

X b¥
f(x;k) maxmax a (K)—
ki E

X b bt (k
max max a (k) —> = max max f( )
Pkt E I k2K P2

The proof is similar for the other inequality.

The main advantage is that this enclosure is more accurate than the naive en-

closure:
maxy:k f1(X;K) .

miny f2(X)

miny;k f1(x;K)

max, fo00) k)
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Indeed, in the formulation of Theorem 4.18 we avoid decorrelating the optimiza-
tion on the numerator and denominator. However, this property requires generat-
ing the complete Bernstein expansion of both functionandf ; up to the closest
common multi-degree  max(d(f1); d(f2)). We refer the reader to [159] for the
convergence rates in degree elevation and subdivision for the Bernstein expansion
of rational functions. We will call in the following a rational vector eld, a vector

eld constituted of polynomial functions and at least one rational function.

4.2.2 Validation of piecewise polynomial ODE systems using the Bern-
stein expansion

In the previous sections, we de ned the necessary background on discrete time
reachability analysis using polyhedral templates. We also introduced the paramet-
ric Bernstein expansion as a method to solve parametric polynomial optimization
problems. We exhibited our contribution for an ef cient representation of discrete
time system approximation maps. Finally, we showed how the work of [65] can be
extended to the optimization of parametric rational function, and we proposed an
alternate method for parametric polynomial optimization when parameters lie in a
box.

In this section, we introduce the algorithm for discrete time reachability anal-
ysis by extending the previous implementation of [83]. To this aim, we propose
in Algorithm 2 an algorithm to compute the intersection of parallelotope bundles
with linear constraints. Then, we extend in Algorithm 3 the work of [83] to discrete
time reachability analysis of piecewise rational functions.

We recall that we are considering dynamics de fi&y a polynomial (or ra-
tional) vector eldf in x and linear in the parameteks We remind from Section
4.1.2 (4.8) that given a template matrix the template-based reachability algorithm
can be summarized to the following optimization problem at each iteration

1
max 1F(X; K)

(x;k)2X K
C+ = max f(x;k):% o

(x:k)2X K ' .
max f(x;k
xK2x K P (x; k)

(4.21)

In the previous section we showed how the Bernstein expansion can be used to
ef ciently solve this optimization problem fox 2 [0;1]". We note such opti-
mization method can be extended foiin any linear transformation of the unit
box[0; 1]". The previous implementation [83] focused on the parallelotope: a set
representation that can be expressed as a linear transformafi Pt

De nition 4.19 (Parallelotope generator representatidogt q 2 R" be a point,
andf .:::; nhgasetofn linearly independent vectors R". We associate tq

SLocally de ned by rational or polynomial vector eld in each domain, for the particular case of
piecewise approximated dynamics
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andf gthe parallelotope suchthatforalk 2 there existy 2 [0; 1]" with:

xXn
Xx= (y)=q+ Yi (4.22)
j=1

Figure 4.6: We representZzadimensional parallelotope de ned by its generator form: a
linear combination of the base vertgxand the generators;, ,. We also represent its
associated constraint from de ned by the facets normal, ; ,; 1: >

A parallelotope can also be described by a set of linear constraints that
we denote by the linear system x ¢ (see Figure 4.6). The representation
change from the generators to the constraints representation, or inverse, is de ned
in the original work on parallelotopes [65]. Using the linear transformation from
(4.22), then in the particular case whete is a parallelotope each optimization
maxx g if(x;k) from (4.21) becomes:

C+1; = Max if(x; k)
(x;k)2X K
(H2loar K e )ik) (4.23)

= sy w10

where s the linear transformation from the unit box to the parallelotpe

and j(y;k) = f( (y);k) atiteration . This optimization can now be ad-
dressed using the Bernstein expansion. However, after this single step we may still
obtain a polyhedral seéf .1, which is not necessarily a parallelotdp&he work

of [1] develops further [65] and introduces the parallelotope bundle to approximate
polyhedral compact sets. In [1] it is proved that a polyhed?oran be exactly de-
scribed by the intersection of at least = round " (p=n) parallelotopes, where
round " () is the rounding to the superior natural integers the dimension and

p the number of non-symmetric constraints (two constraints are symmetric if their
normal vectors are opposed) de ning in the constraint matriR of

P= 1\ 2\ \ o (4.24)

"The polyhedral template can be chosen to be a parallelotope however we may lose in accuracy.
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We note from [1] that the constraint representation of each parallelotppe 2
[1; np] is constituted frorm constraints oP and their symmetric.

template matrix of 5 constraints: 1; 2; 3; 1; 2: we note thap = 3 as
only 3 constraints are non-symmetric. We represent this polyhedron in the H
4.7. We can de nedound " (3=2) = 2 parallelotopes 1 and » such that
P = 1\ 5. Theyare represented in Figure 4.7.

The parallelotope 1 is dened by the constraint system ! =
f 1; 37 1; 30, while the parallelotope , is de ned by the constrain
system t=1f 1; 2, 1, 20. We note that the constraint is redundant in

1 and ,: this redundancy will be used later in Example 4.21.

Example 4.20(Bundle of parallelotopes)Let P be a polyhedron de ned by a

igure

!

Figure 4.7: In this gure we show a possible bundle of parallelotdpes; g which
represents the polyhedréhas de ned in Example 4.20
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It is also proved that the image Bfby a non-linear transformation is included
in the intersection of the image of all its associated parallelotoped. heta non-
linear vector eld:

f(P) fC OVEC 2V \ f( np) (4.25)

If at iteration the setX is a polyhedron that is described by the intersection of a
set of parallelotopek jg;2[1:n, 1, then we need to solve an optimization problem
similar to (4.23) for each parallelotope and keep the tightest result:
C i T R ot kT B0
_ (4.26)
= min max ij (YiK)
i2[Lnx 1(y;k)2[0;1]" K

where i (y;Kk) = if( j; (y);k) atiteration . This procedure is calledll for
one(AFO) in [1] as the position of each constraint is the tightest among all the ones
resulting from the optimization over each parallelotope. Using the formulation of
(4.26) we can now use the Bernstein expansion to compute the over-approximation
using polyhedral template of the image of a polyhedron by a polynomial (or ratio-
nal) vector eld.

In this work we want to perform reachability analysis of piecewise continuous
vector elds. To this aim, we de ned in Section 4.1.3 approximation maps and
their associated representation as BSPT. To locate the position of a polyhedron in
the tree, and its intersection with the different nodes we use the intersection oper-
ator between a polyhedroX and a linear constrairit. The work of [1] does not
introduce an equivalent operator for parallelotope bundles.

The previous work of [1] presented a procedure, caledompose , to pro-
duce a bundle of parallelotopes representing a template polyhédra@ne can
compute the intersection of a bundle associated to the polyhedneith a linear
constrainth by applying the procedurdecompose on the resulting intersection
X'\ h. In[1], the authors note that nding the most accurate parallelotope decom-
position representing a polyhedron is NP-hard. To this aim, they include into the
proceduradecompose an heuristic to obtain an accurate decomposition.

In this work we propose a different approach which focuses less on accuracy
and more on performances. A method to compute this intersection without having
to recompute the bundle representation from scratch usingebempose pro-
cedure [1] is de ned in the Algorithm 2. This algorithm is divided in two steps:
the rstis to add the intersecting constraint to the bundle de nition, and the second
is to tighten the redundant constraints in consequence. Indeed, as we work with a
xed template, some constraints of the template may become redundant at some
point of the analysis. We note that if the intersecting constraint does not appear in
the template, and there is no constraint in common between two parallelotopes of
the bundle, unlike in Figure 4.8 for example, then we need to add a new parallelo-
tope: this occurs whenp = p=n.
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In view of application to systems biology, we already noted that the polyno-

mials modelling the dynamics are often sparse. This implies that the optimization

of the constraint parallel to the axis (de ning a box) are in general cheaper to

compute. A good heuristic is to always add such axis parallel constraints in the
template, and keep a complete box in the bundle (see Figure 4.8). This box can

then be duplicated when one needs to add new parallelotope to the bundle.

Example 4.21(Bundle intersection)We consider the bundle de ned in the prey
ous Example 4.20. We now compute its intersection with a constnaastshown
in Figure 4.8. As seen in Example 4.285sn = 1:5 2 and there is a redundant

constraint: ;* = ;2= 1. Following Algorithm 2, we need to update the paral-

0
lelotope ; into ¢ by changing the constraint; * into ;* = h. Consequently
the parallelotope { is de ned by the constraint system 3; h; 3.

remaining constraints ,* and ,? such that they are tangent to the Bet h.

Figure 4.8: On the left we show a parallelotope bundIE @ind the intersecting constraint

Finally, to obtain a representing bundle we tighten, using linear optimization, the

h. On the right we show a bundle generated by Algorithm 2 representing the intersection

P\ h.
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Algorithm 2 Intersection (X ,B,h)
1: INPUT: X =( ;c), current set (template polyhedron) .

2: INPUT:B = f iGiap;n,1, @ssociated bundle constitutedgf parallelotopes.
3: We note ( );c( 1) their associated constraint representations.
4: INPUT: h, intersecting constraint of the forax ¢,

5: [*If ais already in the template matrix*/

6: ifa2 then

7: | = position _in (a;)

8: cll]= ¢,

9:  Update accordinglg( i) for ; 2 B associated tq 1]

10: else

11 if p=n== round " (p=n) then

12: /* The new constrainh is represented by a new parallelotope */
13: new = 1 /* Create a duplicate */

14: ( new )[1] = a, c( new )[1] = Ch

15: /* Add ew to B and add a new line to andc */

16: [last 1= a,c[last ]= cn

17: else

18: 9i 6 i°2 [1;np]s.t.I =commoncstr ( i; o)

19: [* A constraint appears multiple times: we replace ithoy/
20: (1= a,ct D] = o

21: end if

22: end if

23: for [1]2 do

24; /* Tighten the constraints of the polyhedron */

25: cll]=maxy,( ¢y [1]x

26: Update each parallelotope constraint representation accordingly.
27: Update each parallelotope generator representation.

28: end for

29: return X, B

Finally, we describe in Algorithm 3 the complete algorithm for one step of
polyhedral template reachability analysis of piecewise dynamics such as de ned
in De nition 4.4 using Bernstein expansion. The complete reachability analysis is
done by iterating over Algorithm 3.

4.3 The Krivine-Stengle representation based method

In this section we provide a method for reachability analysis of parametric polyno-
mial system using sparse Krivine-Stengle (K.S.) representations of positive poly-
nomials. This method is an alternative to the Bernstein expansion based method
as it is also designed to solve parametric polynomial optimization problems. How-
ever, unlike Bernstein expansion, which is limited to variables constrained in a box,
K.S. can be used for polynomial optimization with semi-algebraic constraints. In
practice we propose an algorithm for polyhedral template reachability analysis of
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Algorithm 3 Bernstein_One_Step.ReachX, , K)

1: INPUT: X : Current set (template polyhedron)

2: INPUT: : BSPT and its associated piecewise approximation of the dynamics.

3: INPUT: : template which is used to over-approximate the reachable set.

4: INPUT: K : parameters set

5. OUTPUT: an over-approximation of the reachable se adfter one step.

6: G set of current nodes, or the tree reot

7: (LX) = \.ocating (X; G) /* nding intersecting nodes, and associated intersec-
tions */

8: for ;2 do

9: /*i computing offset bound for each constraint ; in the template */
10: for (L ;X )2L do

11: Compute the approximate dynamicsassociated with the node

12: for ; 2 Bundle (X ) do

13: [* Get parallelotopic bundle associated to polyhedién */

14: Construct the polynomial;; ; from polynomialf of the dynamics,
15: template constraint; and paralletopic domain;, as de ned in £?)
16: G =maxf i (v:ik)jy2[01"k2Kg

17: * using the Bernstein expansion for polynomial; */

18: end for

19: G, =min;(G; ) ]

20: * smallest bound over all parallelotopes in the bundle */

21: end for

22: G =max (c. )
23: /* largest bound by all approximate dynamics of intersecting nodes */
24: /* We keep one set to avoid cost explosion due to successive intersections */

25: end for ) ]
26: return ( ;c) /* the result is the template polyhedron with offsets

discrete time polynomial dynamics with parameters constrained in a box.

We rst give, in Section 4.3.1, the necessary background on Krivine-Stengle
representations, used in the context of polynomial optimization. Then, we present
a sparse version based on [160]. These notions are later applied in Section 4.3.2 to
parametric polynomial optimization and template discrete time reachability analy-
sis.

4.3.1 Polynomial Optimization using K.S representations

Dense Krivine-Stengle representations. Krivine-Stengle certi cates for posi-

tive polynomials can rst be found in [161, 162] (see also [163, Theorem 1(b)]).
Such certi cates give representations of positive polynomials over a compact set
X=fx2R":0 g(x) Li=1;:::;pg withgi;:::;0 2 R[X]. We note

d9 = max;(dedgi)). The compact seX is a basic semi-algebraic set, that is a set
de ned by a conjunction of nitely many polynomial inequalities. In the sequel,
we assume without loss of generality that  [0; 1] and thatX involves the
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Theorem 4.23. Given = ( 1;:::; and =( 1;:::; p), letus de ne the
polynomialh ; (x)=g (1 9) = ", g'Q o)

t

Example 4.22(K.S. representations)-or instance on the two-dimensional un
box,oneham = p=2,X =[0;1=fx2R?:0 x; 1;0 x, 1g
For =(2;1)and =(1;3),0nehas . (x)= xx2(1 x1)(1 xp)3.

Theorem 4.23(Dense Krivine-Stengle representatiansgt 2 R[x] be a posi-
tive polynomial oveX . Then there exidt2 N and a nite number of nonnegative

weights . 0 such that:
X
(x) = - h . (x); 8 2R™ (4.27)

o+l
Itis possible to compute the weights. by identifying in the monomial basis
the coef cients of the polynomials in the left and right sides of (4.27). Denoting by

( ) the monomial coef cients of ,with 2 N} := 2N":jj 19= kd9g,
the . fulll the following equalities:
X
= - (h.); 8 2N (4.28)

IR

Global optimization using the dense Krivine-Stengle representations. Here
we consider the polynomial maximization problém := maxyzx f (x), with f
a polynomial of degred. We can rewrite this problem as the following in nite
dimensional problefh
f :=min ft
2R (4.29)
st.t f(x) 0; 8x2X:

The idea is to look for a hierarchy of nite dimensional linear programming (LP)
relaxations by using Krivine-Stengle representations of the positive polynomial
=t f involved in Problem (4.29). Applying Theorem 4.23 to this polynomial,

we obtain the following LP problem for ea¢h d:

p = tr.nin t;
1 ; X
st (t f) = . (h ;) 8 2Np; (4.30)
o+l
0:

Asin [163, (4)], one has the following convergence theorem:

8the minimization problem resolution is analogous.
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Theorem 4.24(Dense Krivine-Stengle LP relaxationsjhe sequence of optimal
values(p ) satisesp, ! f asl! +1 .Moreover eactp, is a upper bound of
f.

At xed I, the total number of variables of Problem (4.30) is given by the
number of . andt, that is 2p|+' + 1, wherep is the dimension ofy. The
number of constraints is equal to the cardinality\Ny, which is ”To'o . We recall
thatl®= 1d9. In the particular case wheke is an hypercube, the LP ha?é‘l+I +1

variables and™!' constraints.

Sparse Krivine-Stengle representations. We now explain how to derive less
computationally expensive LP relaxations, by relying on sparse Krivine-Stengle
representations. Fdr f 1;:::;ng, let R[x; 1] be the ring of polynomials re-
stricted to the variablelx; : i 2 1 g. We borrow the notion of a sparsity pattern
from [164, Assumption 1]:

conditions:

P
— f canbewrittenast = 1, fj with fj 2 R[x; ],

S
j"‘:l l; = f1;:::;ngand jm:l Jj =fL:::;po,
— (Running @tersection Property) for@al= 1;:::;m 1, there exists |
sthis\ I s

Example 4.26(Sparsity Pattern)As an example, the four conditions stated in Def-
inition 4.25 are satis ed while considerirfgx) = x1X2 + x3x3 on the hypercube
X =[0;1P. Indeed, one hals;(x) = x1x2 2 R[x; 1], f2(X) = x3x3 2 R[X; 7]
with I, = f1;29, I, = f1;3g. TakingJ:s = I1 andJ, = I, one has
g = Xi 2 R[x;lj]foralli 2 1j,j =1;2

Let us consider a given sparsity pattern as stated above. By mytirgjl;j,
P = jJjj, thentheseX = fx 2 R" : 0 g(x) Li=1;:::;pgyields
subsetsX; = fx 2 R : 0 g(x) 1,i2Jjg,withj =1;:::;m. If X is
a compact subset &t" then eaclX; is a compact subset &"i . As in the dense
case, letusnote . =g i(1 g) i, forgiven j; ;2 N".

The following result, a sparse variant of Theorem 4.23, can be retrieved from [164,
Theorem 1] but we also provide here a shorter alternative proof by using [160].
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be given and assume that there ekjsandJ;,j =1;:::;m, WhICh satisfy the four
conditions stated in De nition 4.25. ly IS positive ovelX then there existj 2
RIX; 11 =1, ,m such thatf = J ., jand j > OoverXJ In addltlon
there exist 2 N and nitely many nonnegative weights ;. ., j = 1;:::;
such that: X

Proof. From [160, Lemma 3], there exis}{ 2 R[x;I;] such thaff = P jmzl i
and j > OonX;. Applying Theorem 4.23 on eact’l3 there exist; 2 N and
nitely many nonnegative weights . j suchthatj = T IR LN
With | =maxi ; mfljg, we complete the representations with as many zeas
necessary and obtain the desired result.

In Theorem 4.27, one assumes thatan be written as the sufn= P Jm fi,
where eaclf; is not necessarily positive. Ttle rst result of the theorem states
that thatf can be written as another sum= 1—1 , Where each j is now
positive. As in the dense case, the;; , can be computed by equalizing the
coef cients in the monomial basis. We also obtain a hierarchy of LP relaxations to
approximate the solution of polynomial optimization problems. We now provide
these relaxations as well as their computational costs in the particular context of
parametric polynomial optimization for reachability analysis in Secti@an

4.3.2 Set-based simulation using K.S representations

We recall from (4.5) and (4.8) that template reachability analysis with polyhedral
templates can be summarized into solving the optimization problem:
Ca41; =  max if (x;K)
(x;k)2X K
For the sake of keeping close notations to Section 4.3.1, we fribxek) =
if(x; k) which is polynomial inx and linear ink. In this particular section,
we assume thaf (also noted X in the following) is a compact semi-algebraic set
include in[0; 1]". We also assume tht is the hypercubg[ 1;1]™.

Here we explain how to compute upper boundsbE max (Gk)2X K f qx; k)
by using sparse Krivine-Stengle representations. If necessary, we can obtain lower
bounds off %= min (.)2x « f {x;k) in a similar way.

Letgx be the vector op polynomial constraints whose conjunction de nes the
semi-algebraic seé . For the sake of consistency with Section 4.3.1, we introduce
the variabley 2 R"™ ™ dened byy; := xi,j = 1;:::;nandy; = ki n,
i=n+1;:::;n+ m. Then, one can write the skt= X K as follows:

X=fy2R”+m:0 g(y) 1; j=1;:::;p+ mg; (4.32)

°0Or obtained though a linear transformatior ofL; 1]™ .
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with g (y) = gjx (x), for eachj = 1;:::;nandg(y) := % %‘ for each

Jj == f1;:::;p;p+ jg. Then the setg andJ; satisfy the four conditions stated
in De nition 4.25.

P
roof. The rst condition holds asf qy) = fqx;k) = = [1; s(x;k)kj =
jm:l Sj (y)kj, withsj(y) 2 R[y; lj]. The second and third condition are obvious.

The running intersection property comes fropa; \ 1; = f1;:::;ng ;.
Given j; ; 2 NP1, onecanwrite ; = ( %!j)and ; =( }; ), for
jo; J-°2 NP, 15 2 N. Inour case, this gives the following formulation for the

polynomialh . (y)=9g (1 9) i
h i j(y): h jo; jo;!,';j(X;k)
1 k

0 0 k | i .
=400 T oK) GG D)

Example 4.29(Sparse representation in the parameteFsy instance, with the
polynomialf © = (2x2  x)ki + x%k + (x?  x)ks depending orx; k1; ko; K3,
wherex 2 [0;1] = fx 2 Rj0 x 1gandk 2 [ 1;1J° one can consider
the multi-indices 1 = (1;2), ; = (2;3) associated to the scaled paraméter
Thenh . ,(y)= x(2 )23+ )23 9)*

Now, we consider the following hierarchy of LP relaxations, for elachd:

f0:= min-

4L (4.33)

Similarly, we obtairf "while replacingnin by maxandt f %byf° tinLP (4.33).

Lemma 4.30. The sequence of optimal valugfy) (resp.(f J) satis esf? " f°
(resp.fP#fQasl! +1.

Proof. By constructior(f 9 is monotone nondecreasing. For a given arbitt&ey
0, the polynomiaf © f % "0is positive oveiX . By Lemma 4.28, the subsdtsand
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Jj satisfy the four conditions stated in De nition 4.25, so we can apply Theorem

427 tof ©  f2+."0 This yields the,existence of;, j = 1;:::;m, such that
fO fO+ 0= "M, jand j = g J.;J.h.;.,le;:::;m.
Hence(f "0 i )|s feasible for LP (4 33). It follows that there exists

suchthaf® 0 "0 Slncef O 0 and"®has been arbitrary chosen, we obtain
the convergence result for the seque(f(fé The proof is analogous fdf f)

Remark 4.31. In the special case of parametric reachability analysis of polynomial
systems, one can prove that the number of variables of LP (4.8848* 1" | +1

with a number of constraints equal tg'q +1] ”"' . This is in contrast with the
dense case where the number of LP varlable§(f‘§ ™1+ 1 with a number of
constraints equal to"* 1" "°

Proof of Remark 4.30We replace the representation of a functioaf dimension
(n+ m) on the seX by a sum oim functions j of dimension(n +1) de ned on
their associated subseXs. From Section 4.3.1, the number of coef cients; ; |

for the K.S. representation of g overX; is P** ! | This leads to a total of

m 2P*D* 1 forallthe | andm 2P*D* 1+ 1 variables when adding
= The number of equality constralnts is the number of monomials involved in

™, j.Each j has ™" " monomials. However there are redundant mono-

mials between aII the;: the ones depending of onk, and note. These ”+'

monomials should appear only once. This leads to a nal number &t*7)° ¢

(m 1) "% monomials which is equal gt + 1] "5,

Example 4.32(K.S. parametric optimization)Continuing Example 4.15 and 4.2
for the polynomiaf °= (2x2 x)ky+ x?ka+(x? x)ks, we consider LP (4.33) a
the relaxation order= d =3 overX =[0;1] [ 1;1]°. This problem involves
32 W8 41 = 106 variables and3,2 + 1] 3 = 22 constraints. This is
in contrast with a dense Krivine-Stengle representation, where the correspanding
LP involves35 linear equalities and 66 variables. Computing the values ﬂ?
provides an upper bound 8fyieldingf {x;k) 2" 8(x:k)2[0;1] [ 1;1F.

—~ O

The algorithm for reachability analysis of discrete time polynomial systems us-
ing K.S. representations is more straightforward than Algorithm 3. Indeed, using
K.S. representations we avoid the decomposition of the polyhedrons into paral-
lelotopes bundles. In previous Algorithm 3, these decompositions were not only
costly as they multiplied the number of necessary optimizations at each step by the
number parallelotopes, but also less accurate as Bernstein method does not directly
handles variables in polyhedron.
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Algorithm 4 KS _One_StepReachX, , \K)

1: INPUT: X : Current set (template polyhedron)

2: INPUT: : BSPT and its associated piecewise approximation of the dynamics.

3: INPUT: : template which is used to over-approximate the reachable set.

4: INPUT: K : parameters set

5. OUTPUT: an over-approximation of the reachable se adfter one step.

6: G set of current nodes, or the tree reot

7: (LX) = \.ocating (X; G) /* nding intersecting nodes, and associated intersec-
tions (still polyhedron) */

8. for ;2 do

9: /*i computing offset bound for each constraint ; in the template */
10: for (L ;X )2L do

11 Compute the approximate dynamicsassociated with the node

12: Construct the polynomial, from polynomialf of the dynamics and
13: template constraint;, as de ned in £?).

14: G =maxf . (x;k))jx2X ~k2Kg

15: * using Sparse K.S representation for polynomial */

16: end for

17: ¢ =max (G )
18: /* largest bound by all approximate dynamics of intersecting nodes */

19: end for ) ]
20: return ( ;c) /* the result is the template polyhedron with offsetd

In Algorithm 4, we present our algorithm for one step of the discrete time
reachability analysis. We note that we did not introduce a method to apply K.S. rep-
resentations to rational functions, but this can be perform through variable changes,
in a similar fashion to [1].

Finally, we do not provide any cases study applying K.S. for reachability anal-
ysis as an ef cient implementation is still on-going. However, we propose Section.
4.4 a discussion on our preliminary results on the comparison between Bernstein
expansion and K.S. representation applied to parametric polynomial optimization
problems. This results are from outside the eld of system biology, and were
published in [2] for bounding the oating point roundoff error. They still give
a groundwork for a choosing policy between these two methods for polynomial
optimization.

4.4 Discussion and perspectives

Theoretical complexity. In this section we provide a preliminary comparison be-
tween Bernstein expansion and K.S representations as two methods to solve para-
metric polynomial optimizations problems. We recall that we seérem upper

bound of the optimization problem:

f = max f(x;k) f;
(x;k)2X K
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wheref is polynomial inx and linear irk.

The Bernstein expansion method to provide an upper bountlenX  R"
isabox,andk  R™ is either a box or a polyhedron. K is a box then we recall
from Section 4.3.1 that the theoretical complexity is at most equal to the number
of Bernstein coef cients, which isn(l + 1). The cost is linear in the number of
parametersn, polynomial in the degrek(at xed dimensionn), and exponential
in dimensiom (at xed degred). If K is a (compact) polyhedron then we have to
solve at mosfl + 1)! linear programs ofn variables ang constraints, wherp is
the number of constraints de ning .

From this theoretical cost we note that the Bernstein based method greatly suf-
fers when dimension increases. Methods such as [132] can reduce this cost when
there is some sparsity in, but in general Bernstein perform badly in high dimen-
sion. However when dimension is small, as the Bernstein expansion is polynomial
in degree it is possible to obtain ef ciently a precise bound of a high degree poly-
nomial.

We note that ifX is a polyhedron we have to de ne an associated bundle of
parallelotoped g n,. However, we have no guarantee of convergence to the
optimal solution by optimizing over the bundle as described in Section 4.2.2. More-
over, as we have to perform one optimization for each parallelotope, the compu-
tational cost is now linear in the number of parallelotopes constituting the bundle:
nem(l + 1)%.

The K.S. representations based method provides bounds Xhisna semi-
algebraic compact set, ad either a box or a semi-algebraic compact set. In the
case wher& is a box, we can use the sparse K.S. representation as described in
Section 4.3.1. This yields a relaxation of the polynomial optimization problem into
an linear programs ah 2P 1 + 1 variables and™? +1] " constraints,
wheren is the dimension ok, p the number of constraints de ning , m the
dimension of the parameteks and the adjusted degréd®= 1d9.

From [165],[166] we know that the computation cost of an LP resolution is
polynomial in the number of constraints and variables. Consequently, when the the
degreek is xed this yields a polynomial cost in the dimensiaror p the number
of constraints de ningX . We note that the complexity is linear im allowing
to ef ciently handle parameters as the Bernstein-based method. Experimentally
(see Table 4.1), the K.S. based method seems to have a large cost when the degree
increase, and the dimension is xed.

WhenK is a semi-algebraic compact set, we have to use the dense K.S. repre-
sentation over the whole st K , leading to the important computational cost:
variables and constraints. To reduce the cost, it may be possible to provide a
problem speci c sparsity pattern: however nding an optimal sparsity pattern is an
NP-hard problem [167].

In our reachability analysis application, we always compute linear relaxation
of orderl = d, or Bernstein expansion of multi-degree d: thus by xing the

1ONote thatl® = | in the particular case of polytopes.
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Benchmark n m d | Bern(double) Bern(exact) K.S.
ex-2-2-5 2 9 3 3e4 3e4 0:13(0:02)
ex-2-2-10 2 14 3 4e-4 4e-4 0:18(0:02)
ex-2-2-15 2 19 3 5e4 5e4 0:24(0:03)
ex-2-2-20 2 24 3 5e4 8e4 0:30(0:03)
ex-2-5-2 2 9 6 2e-3 3e-3 1:08(0:14)
ex-2-10-2 2 14 11 2e-2 de-2 901(531)
ex-5-2-2 5 12 3 7e-3 4e2 0:63(0:05)
ex-10-2-2 10 22 3 2:48 1242 55(0:3)

Table 4.1: Comparison of execution times (in seconds) for examples generated®®om (
First and second column are the execution times using Bernstein optimization with either
double precision or rational arithmetic (exact precision). The last column details execution
times for Krivine-Stengle method. For Krivine-Stengle theLExX solving time is given
between parentheses. For each polynomial, the best results are emphasizdablasing
fonts.

degree we know that for high dimension K.S. is more ef cient that Bernstein. If
this relaxation order, or this multi-degree is not high enough to provides accurate
bounds, we prefer to split the set than increase the degree. From these theoretical
consideration we argue that K.S. is a good complement to Bernstein expansion
when optimizing high dimensional polynomial with low degree. K.S. can also
handle more complex representation Xorthan Bernstein when accuracy is a key
factor of the analysis. Thus, we argue that a policy choosing at each step the
optimization method to use depending of the context would be more ef cient.

Experimental results. Finally, we provide a table with experimental results com-
paring K.S. and Bernstein for polynomial optimization of boxes. This is a subset
of the benchmarks performed in our paper [2]. The studied examples are of the
form:
xn oy xn
ex-n-sum-d (x) := ( ( xi): (4.34)
j=0 1=1 i=1
with parameters taken ih 1;1]". Their dimensiomm is determined separately
in [2]. The dimension ok is n andx is also taken i 1;1]". Finally, andd
is the degree of the polynomial. We also note that the associated multi-degree is

plementation fronsapo [83] based on the matrix method [65]. The optimization
using sparse K.S. representations is currently implemented in interp/eiiatb

2015a as a modi cation of the previous toolbox SBSOS implemented for [164].
Experimentations were performed on an Intel Core i7-5600U (2.60Ghz, 16GB)
with Ubuntu 14.04LTS, using BIAC 1.7.1 version in association gapo , and
CpPLEX 12.63 to solve linear programs from K.S. representation method. In Table
4.1 we compare the performances of the two methods. Taking into account that
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Benchmark n m d | Bernstein Krivine-Stengle
ex-2-2-5 2 9 3 201 201
ex-2-2-10 2 14 3 480 480
ex-2-2-15 2 19 3 860 860
ex-2-2-20 2 24 3 1342 1342
ex-2-5-2 2 9 6 1504 1504
ex-2-10-2 2 14 11| 94576 94576
ex-5-2-2 5 12 3 770 770
ex-10-2-2 10 22 3 4648 4648

Table 4.2: Comparison of the accuracy for examples generated #9nilhe rst column
contains the upper bounds using Bernstein optimization with either double precision or
rational arithmetic (exact precision). The second column details the upper bounds given
by Krivine-Stengle method.

the LP generation for K.S. is implemented in interprefiéatlab we provide in
parenthesis the solving time of the LP Bplex . From the results of examples
ex-2-2-5 toex-2-2-20 , we observe that accordingly to the theoretical cost
both methods are linearly affected by the number of parameters. Comparing ex-
amplesex-2-5-2 andex-2-10-2 , we note that K.S. is strongly affected by
degree elevation, while in exampleg-5-2-2 andex-10-2-2 , Bernstein is
greatly affected by dimension increase. In particular in exarepl&0-2-2 , we

note that the LP solving time related to K.S. method is small, which agree with the
polynomial cost of K.S. at xed degree.

Finally we note that the current implementation of K.S. is limited by the LP
generation time iMatlab , and a new implementation in a compiled language
must provided in order to obtain more results, and a reliable implementation for
reachability analysis. In Table 4.2, we compare the accuracy of the two method at
the smallest relaxation ordee d, and the smallest multi-degree for the Bernstein
expansion| = d. This provides a similar context to an application to reachability
analysis where we focus on rst approximation results. In all examples both meth-
ods have the same accuracy, further benchmarks are provided in [2] which yield a
similar conclusion. Consequently, there is apparently no loss in accuracy by using
K.S. instead of Bernstein when it is theoretically more cost ef cient.

In the following we describe our perspectives and future work for both K.S.
and Bernstein based methods. The future works associated to this chapter can be
divided in three: the further development of the current implementation, and two
different approaches to perform reachability analysis.

Future implementations. First we need to improve the performances of the cur-
rent implementation of the K.S. based optimization method and to integrate it in-
side a toolbox for reachability analysis. Indeed, the current implementation in
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Matlab (based on [164]) cannot ef ciently be applied on large problems (see Table
4.1).

As previously stated, our results on the Bernstein-based method are already an
improvement of the reachability toolbmapo . However, the current implemen-
tation relies on an old version shpo, and it is now important to merge our new
features into a more recent version.

Both algorithms 3 and 4 have been detailed for reachability analysis of discrete
time systems. If they produce safe and conservative results in this context, they
are not guaranteed to be conservative for continuous time systems. To this aim we
need to implement a method to ef ciently handle numerical integration error, and
we need to compute the continuous time corrected initial set, ®riject (Xg)
de ned as:

correct (Xo):= Xo f(Xo0;K); (4.35)

where is the Minkowski sum operator.

Finally, it is important to provide an implementation for hybrid automata simi-
lar to [87], to handle hybrid systems with polynomial continuous dynamics, as well
as experimental protocol models we de ne further in Section 5.

Fixed time reachability analysis. In addition to future improvements of the cur-
rent implementation we identify some new ideas which seems to be promising. The
rstidea is the use of simulation and approximation methods to compute reachable
set at xed instant. Given the ODE system:

x(t)= f(;x); x2R": (4.36)

Let us consider a closed time inter{® T] R. Forallt 2 [0; T], x,(t) denotes
the trajectory solution of (4.36), with initial condition(0) = xg. By extension,
8t 2 [0; T], x,(t) isthe set of trajectories for atlp 2 Xo.

We want to address the following problem: for a given timg2 [0; T], we
consider ¢(x) : R" I R", the function which gives the value at timeof the
trajectory (). Instead of computing the whole ow pipe, we only want to nd
an over-approximation of the st = {(x), 8x 2 Xo. Results from biological
experiments are often time series, with sometimes samples separated by hours.
We argue that interpolating some continuous temporal properties from these time
series is already a strong assumption on the model. Thus we seek to ensure that
given some ODEs modelling our system, all the trajectories associated to the model
reach the desired data points, without assuming anything in between.

To computeX ; we ideally need the exact analytical functiof{X o). In simple
cases, for example with linear autonomous ODE systems, we have this function.
For the ODE systenx = Ax;x(0) 2 X, we have (Xo) = Xoe A

However, in the general case we may not know this analytical solution and in
particular forf 2 R[x]. For this reason we will search an approximatiqiix)
of ((x) and the associated approximation error de nedkby(x)  "t(x)k
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"abs, 8X 2 Xo. This way we can build a new over-approximation<afby:

X1 = 0("t(X0) "abs (4.37)

Assuming that (x) is at leastC}(R"), we propose to use polynomial inter-
polation over the trajectories from an initial sampleXaf obtained by numerical
simulation, to determine this approximation. For two or three dimensional systems
we can use interpolation over a Padua-Grid and Chebychev polynomials [168]
to obtain a precise polynomial approximatiof( ) of (). The template over-
approximationO can be performed using the Bernstein or K.S. based methods
described in this chapter. In Fig 4.9, one can see the results of box approximations
using the Bernstein expansion at xed time points of the Lotka-Volterra continuous
model (LV-ODE) from Example 4.1. If this method performs well in two dimen-

Figure 4.9: Interpolation method for reachability analysis applied on the Lotka-Volterra

ODE system. The '+' dots are the numerical simulations of the 2D Padua grid of the initial

set: the boX0:9; 1:1]2. The other boxes are the over-approximation the reachable set using
polynomial approximation$; (X o) interpolated from simulations on the initial set grid.

sion, it is not viable without modi cation for dimension higher than Indeed,

using dense grid of the state-space results in an exponential number of samples,
and thus simulations. Moreover, the theoretical accuracy of the polynomial ap-
proximation quickly decreases if the degree of the approximaﬁc@r) remains

xed while the dimension increases. To tackle the problem of the size of the grid
exponential in the dimension we plan to use sparse grid such as describes in [169].
The work of [169] also provide a scheme to converge to an accurate polynomial
approximation up to a given err8gps Using sparse grids. However, it would be

Monday 6" August, 2018 (08:34)



CHAPTER 4. SET-BASED SIMULATION
82 FOR BIOLOGICAL MODELS VALIDATION

a great improvement to obtain an even more accurate valuggethan the one
provided by their bounds. For this, one idea would be to obtain an upper bound of
maxy2x j( t(x) At(x))j, using occupation measure relaxation methods similar
to the one described in Chapter 3 (we recall thdk) is not analytically known).

Polynomial lift using Bernstein expansion. Carleman linearisation is a method

to approximate non-linear vector eld by a high dimensional linear transformation.
The previous work [170] provides an error bound on the approximation of a non-
linear ODE by its Carleman linearisation. It is possible to extend [170] to reacha-
bility analysis in three steps: rst we lift the initial set into the higher dimensional
space. Then, we perform reachability analysis in this high dimensional space using
linear reachability analysis tools such as [87] or [171]. Finally, we project the result
into the original low dimensional space while taking into account some linearisa-
tion error given by [170]. We propose to approximate the polynomial lift described
in [170] using the Bernstein expansion to compute a convex over-approximation
using the convex hull of the coef cients. For performance purposes in the high
dimensional cases, we want to use the linear reachability tool [171]. To this aim,
we propose to compute an over-approximation of the lift in Cartesian product for-
mat, which directly usable by [171]. In Figure 4.10, we show the polynomial lift
L:R! RS L(x)=(x;x%x3 as well as two possible over-approximations
using the Bernstein expansion.

Figure 4.10: Polynomial lifi{x; x2; x3) of the interval[0; 1] (blue dotted-line) approxi-
mated by either the convex hull of the Bernstein control points (blue enclosure), or its
Cartesian product decomposition (red enclosure). The green box would be a box over-
approximation of the polynomial lift.
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In this chapter, we focus on biological mechanism modelled using ordinary
differential equations (ODEs). They can represent mechanisms on multiple scales
including the molecular scale, cell scale or physiological scale. The motivation
for such models is not only to give quantitative predictions, when suf cient data is
available to validate the model, but also to provide a mathematical representation of
a biological system. Such formalization then provides a framework to incorporate
new data and knowledge of various types in a consistent way.

We address the models corresponding to a class of biological experiments in
which the system, in a given initial state, is perturbed in some way, evolves, and
then at a later time some measurements are performed. To represent such be-
haviours, we provide a mathematical formalization of experimental protocols. A
model in this sense describes the system under study and the experiments which
have been performed on it. To achieve this, a formalization as hybrid automata is
proposed for this class of experimental protocols. With the hybrid automata for-
malism, we introduce a systematic way to study mechanistic biological models, in
their experimental context, using formal methods which produce conservative or
certi able results.

In this chapter, we rst propose, in Section 5.1, a high level “action based”
speci cation language of experimental protocols, named Modelling-Oriented Ex-
perimental Protocol Language (MOEPLA). This action-based language serves as
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an interface between the experimental view and the mathematical modelling of a
given mechanism. Using this description, an abstract experimental protocol and its
execution are formally represented in MOEPLA using an explicit semantic. More-
over, it is expressive enough to be applied in numerous biological contexts such as
therapeutic modelling, pharmacology, or molecular modelling. It can be seen as
the rst step of a pipeline to study in a systematic manner the experimental pro-
tocols. Other protocol speci cation languages, such as EXACT [172], focus on
expressing all the stages and details of an experiment to enable its real life repro-
ducibility in another laboratory. In particular, our speci cation language expresses
experimental protocols while taking into account insight on speci ¢ mechanism
models. Of course, this may lead to neglecting some particular stages or details of
the experiments since they are either without any in uence, or too complex, for the
chosen mechanistic modelling purposes.

There are multiple results [172, 173, 174, 175] on formal languages for the
description of experimental protocols in some particular context (experiments over
genes, or proteins). The development of the Systems Biology Markup Language
(SBML) format [176] allows representing biological data and models using process
algebra. These efforts are motivated by the inherent ambiguity in natural language
for describing real-life experiments, which can result in the lack of repeatability of
a given biological laboratory protocol.

In Section 5.2, we provide a preliminary translation from this speci cation lan-
guage into a hybrid automaton, an expressive mathematical formalism on which a
panel of analysing tools already exist [87, 47, 88]. Using hybrid automata, discrete
changes describe the different stages of the protocol, while ODEs describe bio-
logical mechanisms. This hybrid automaton representation can be analyzed using
formal validation, providing conservative or certi ed results that a proposed bio-
logical mechanism is coherent with experimental observations. The general work-
ow de ned by the conjoint use of MOEPLA, the hybrid automaton representation
and an analysis tool, is described in Figure 5.1

ODE
Modelling

Experimental
Protocol

MOEPLA Hybrid _
peserptn }— E‘m@

Figure 5.1: Biological experiment modelling work ow.

The hybrid formalism has previously been used as an abstraction method to
simplify mechanistic models which are complex and hard to analyse [111], or to
represent activation and switch processes such as in the genes regulatory networks
[11]. To our best knowledge, except for some general guidelines [177], the closest
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work on the formalization of biological protocol incorporating mechanistic models
is [178]. This recent work proposes a formalization as piecewise Markov-process
of biological protocol. This work differs from ours on the mathematical formaliza-
tion and seems to be designed to address models from biochemistry protocol. In
our case, we want to handle a larger panel of possible experimental protocols: from
biochemistry to therapy or animal study. In this chapter, the model of haemoglobin
production in erythroblast from [3] is used as a running example and will be further
analyzed in Chapter 6.

5.1 MOEPLA description

In this section, we de ne the formal speci cation language MOEPLA. We aim to
mix experimental protocol speci cations with modelling hypotheses on speci ¢
biological mechanisms. We note that this speci cation language is useful when
the experimental protocol exhibits multiple step in uences on the behaviour of the
entities involved in the biological mechanism. This is especially true for particular
evolving systems such as differentiating cells, or different stages of an organism's
life. On the downside, ifitis possible to express short protocols constituted only of
one stage (one initial state and a nal measurement), this is not the case for which
MOEPLA is the most useful. We now de ne the main notions used to describe a
protocol.

The protocol we construct is organized around two main notions: experimental
objects and experimental actions, respectively denot&d agpdA . We call exper-
imental object, an object (in a physical sense) on which an experimental protocol
action is applied at a given time. Following the context, it can represent objects of
multiple scales, such as the animals or cells. A given protocol can have different
experimental objects, for different stages of the protocol. As we focus on the mod-
elling of the effect of a protocol on a given biological system, we need information
on the associated biological mechanism. This mechanism is represented by a para-
metric dynamical systefi = ( T;X; U;K; f). Thus each experimental obje®t
is connected to a biological mechanigm

De nition 5.1 (Experimental object)Let Fo be a parametric dynamical system:
Fo :=(To;Xo0;Uo;Ko;fo):

We de ne by:
O = O(Fo); (5.1)

an experimental objec associated to the parametric dynamical syskeg In

this context,Fo represents various mechanisms related to this particular object
the biologist wants to study. Thefg, Xo; Uo; K ) respectively are the default
time interval associated 10, its default state space, input space, and parameters
space; andp are parametric ODEs with input, which models the dynamics of the

Monday 6" August, 2018 (08:34)



CHAPTER 5. MOEPLA: A LANGUAGE FOR
86 EXPERIMENTAL PROTOCOL MODELLING

variables ofO. In the following, we assume thdi, = T = [0;T] for all the
objects.

Remark 5.2 (Notations) For a given experimental obje@, letXo R"°, then
x© is the set of state variables associate@tavith x© 2 X o. LetfO ( I?,g be the
set of all the experimental objects involved in a protocol. Giken NoC ),

then lety 2 R" be the concatenation of all the variabi€¥' ’, that is the set of all
variables associated to the whole experimental protocol.

The notationsk Knew andu Unew) de ne the rede nition operators
which associate respectively a new parameters siaeg and input spac&ew,
to respectively the subset of parameternd subset of inputs.

Andx  R(z) de nes the operation which associates to a subsétariables
X a new valueR(z), via the reset map.

De nition 5.3 (Conditional Statement)A conditional statement is a function

c: T R"! Bsuchthatforagiven pat; y), c(t; y) decides if a condition op

is satis ed or not. Such conditional statements will be used to de ne the condition
under which a particular step of the protocol must be applied.

We de ne experimental actions as actions which are performed by the biologist
during the experiment and are relevant for the modelling. They include: actions
which createan experimental obje® at a given step of the experiment; actions
performed on an experimental obj&at which have an in uencen its associated
dynamics; and nally, the measurement performed on a given experimental ob-
ject. We associate to an experimental action, a conditional statetgeyj. In the
general case, we de nékinds of actions which can be separated in 3 classes: cre-
ation ( o; Acreate; Acr from ), perturbationfy; Ax; Ay), measurementyy ). We
say that an action is executed when the effect of this action on the associated object
takes place. We say that an obj€xis created when it is part of the initialisation
10(O), or when one of the actionScreate (O) Or Acr from (O;:::) are executed.

We assume that an experimental protocol always starts at tine.

First we de ne the actions creating a new experimental object. These actions in-
clude the initialisation stefp(O) which de nes the initial state of the experiment
for a given objecO. In the following de nitions, the symbol represents a syn-
chronisation label associated to a particular action.

De nition 5.4 (Experimental actions - Creatian)

— 19(0; x°(0) := x§): this creates an initial obje@, and initialises its state
variables tox§ .

— Acreate (O; L; xO(1) := xP;c(t)): this action de nes the creation of a new
objectO under the conditiom(t) = true , with some initial valuex?. The
condition ¢ only depends on in this particular case. This action allows
creating a new object at a given time independently of another experimental
object.
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— Acrfrom (0;fO0 O)giL; xO(t)  R(x(t)); c(t; x)): this action de nes the
creation ofO from a given set of experimental objed® ( )g, under the
conditionc(t; x(t)) = true . Here,x is the concatenation of the variables
xO' . The initial conditionx©(t) of O is determined by a reset map on the
state variablex (t) of the set of objectfO ( )g.

Secondly, we de ne the actions which perturb a given experimental oBject
by changing its state variables, its parameters space, or its input space. In real life,
if an action has multiple effects, then in the speci cation language, this is translated
by multiple actions under the same condition.

De nition 5.5 (Experimental actions - Perturbation)

- Ax(O;L; k K new: c(t; x©)): the action performed o@® affects the pa-
rametersk, changing the associated parameters spadéntq,, under the
conditionc(t; x©(t)) = true .

— Ax(O;L; x®  R(x9);c(t; x°)): the action performed o® affects the
state variablex®, changing their values t®(x°), under the condition
co(t; xO(t)) = true .

— Au(O;L;u  Unew:c(t; x9)): the action performed o® affects the input
functionsu, changing the associated input spac&te., under the condi-
tion c(t; x°(t)) = true .

Example 5.6(Perturbation action)An example of experimental action is as fq
lows: at exactly 3 hours after the start of the experiment, the biologist increases the
temperature t@7 C. It has the effect on a production rdtg,q associated to the
experimental objedD1. Then the experimental action is: temperature increase to
37 C on O affectingkprog under conditiort == 3 h, and expressed as

Ax(O1; L1 Kprod ' Kprod(37 C)g;t == 3 h):

In this example, the synchronizatiary- allows to gather all the perturbation als-
sociated to this perturbation: T increase87C. One of the perturbation of thi
actions is described b4 : the parameter spacekyoq is changed to the singleto
fkprod (37 O)g.

> O

Finally, we de ne the action corresponding to an experimental measurement.

De nition 5.7 (Experimental actions - Measurement)

— A (O:L; Xmeas(t) := m(x©(t)); c(t; x°)): the action performed 0@ is
a measurement of the state variable®ofinder the condition(t; x° (t)) =
true . Theinformation of the measurement is preserved in a vanghlg;(t),
for all time instantg which satisfy the condition.
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We use measurement actions to de ne possible (or actual) observation windows
during the experiment. These action are parallel to actual experiment, and do not
in uence it directly. If an experimental measurement does have in reality an effect
of the observed object, then it is represented as a perturbation action with the same
condition.

The set of possible experimental actions, with the exception of the initialisation
| g, is summarized as follows:

A = Acreate; Acr_from s Ak Ax; Aus A

It is important to notice that we expect the biologist to have some insight on
how an action will affect the model. However, we do not actually expect him to
always provide explicit mathematical functions, or numerical values, when spec-
ifying the protocol in our language. In the following we may use dots, as in

of a given explanation. These dots are not part of the language.

De nition 5.8 (Experimental Protocol SyntaxyVe call experimental protocol a set
of actionsfAg performed on objectEDg, the objective of which is to highlight a
biological mechanism, and to measure directly or indirectly its evolution, in time
and/or after some events. The kg provides the initial conditions of a protocol.

A protocol must end with a nal measuremeff, . After de ning the variables,
dynamical systems, protocol maximal duratiapgy, experimental object®(F)

that will appear in the experiment, as well as their (possible) initial conditions
I0(0O), we express the protocol as a sequence:

P :=1,A Awm ;

wherel ; andA are a nite sequence of initial conditions and a nite sequence of
any actionsA, respectively.

De nition 5.9 (Experimental Protocol Rules)lo ensure a correct description of
protocols using the speci cation language, we add two rules on the de nition of an
experimental action:

— There can be only one action of creation ambhgA create A cr from g for a
given objectO.

— All the actionsmust havea synchronisation label denoting the associated
step in the protocol progress.

the same objedD can share the same lalle] in this case they share the
same conditiore as they should represent the same step in the protocol.

— Similarly, if multiple perturbation (or creation) actions on the same object
O, expressed asuccessivén P, are performed under trgame condition
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c(t; y), they indeed represent multiple effects of the same step in the ex-
periment. Consequently they must have the same synchronization label and
cannot affect the same variables, parameters, or inputs.

— Perturbation (or creation) actions and measurement aatioss notshare
the same synchronisation labels since measurement actions are just a means
to represent a possible observation window on a given object (but they can
share the same conditions).

De nition 5.10 (Experimental Protocol Execution Semanticket us rst con-
sider the case without synchronization. The initialisations are executed rst and

the only conditionc(t) == true . We abuse the notations here by denoting
A(O; c(t; xO (1)) the actionsAx; Ay; Ay, andA (O; fO Dg; c(t; x(t))) the action
Acr from ; and nally Ay (O;c(t; x9(t))) the measurement action. The action
A(O;c(t; xO(t))) can be executed asuch that:

— O has been created, all the previous actidi{®) in the sequenc® have
been executednd t is a solution ofc(t; x©(t)) == true .

An actionA (O; fO (Dg; ¢(t; x(t))) can be executed &isuch that:

— All the objectsO() have been created, ahds a solution ofc(t; x(t)) ==
true , with x as in De nition 5.5. Thus, the execution of this action is in-
dependent of the other actions performed on all the objed@ {R g except
for the creation one.

An actionAy (O; c(t; xO(t))) is executed at timesuch that:
— O has been created, ahis a solution ofc(t; x©(t)) == true .

In absence of synchronization labels the execution of a protocol can be interpreted
as a set of concurrent processes for each oljeetach set of actiona(O) onO

being a process. The only possible interaction between two or more objects is the
creation actionA (O; fO (Dg: c(t; x(t))). When using synchronisation labels we
must add the following rule:

— All the actions with the same label must be executed at the same time: this
implies that the conditions of all these actions must be satis ed simulta-
neously. If it is not possible, this implies an inconsistency in the protocol
de nition (see Example 5.11).

This additional rule allows multiple experimental objects to move from one step of
the experiment to another in a synchronized way.

5.2 MOEPLA speci cation to hybrid automata

We propose to generate a hybrid automaton from a protocol speci ed using the
above-described speci cation language for experimental protocols. This automa-
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Example 5.11(Synchronized actions)A good example of synchronized evolutig
can be observed in animal studies. When one considers the evolution of a pre¢
mother, the perturbations or different evolution stages occur simultaneous
the mother and the foetus. Following the semantic rule for synchronized ac

is modi ed, the model of the “foetus” must change: the baby is in the foetus

only if the mother is in the pregnant state.

We propose an example of sequence of actions describing the start of a preg
process. Let us rst consider two experimental objects. We de @gger the

experimental object representing the mother and its associated dynamical g
Fmother  Similarly, Opany(F bany) Which models the baby. We now show how
write the sequence:

First we model the initial condition as a non-pregnant mother by the initialisa
I'0(Omother - ).

Then, we model the start of the pregnancy under the conditipn
by a creation action for the baby from the mother, for exam

the labell preg) to the creation of the baby (in foetus stage).

)N
pgnant
y for
tions,

it is indeed inconsistent to consider transitions for the foetus and the mother as
asynchronous. If a delivery is performed on the mother, then, since its environment

state
ynancy

system
to

ation

ple:

some
19

Figure 5.2: Representation of the haemoglobin protocol described in Example 5.12
later in Section 6.1

and

ton should accept the trajectories corresponding to the execution of the protocol

following our previously de ned semantic.

The automaton representing the experimental protocol can be de ned by the
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Example 5.12(Haemogolbin production protocol)n Chapter 6 we study more
in detail a model of haemoglobin production in erythroblast: a particular kind of
cells which differentiates into blood cells inside the bone marrow. In this example
we show how the associated experimental procedure [179] can be described in
MOEPLA.
The experimental paper [179] proposes a protocol to observe Heme production in
erythroblast (among other experimental results). This measure is done through the
introduction of a radioactive entityFe. The incorporation of°Fe in Heme on a
3 hours intervals is measured multiple time along the 52 hours of the experiment:
this gives an approximation of the Heme production speed at multiple instants of
the erythroblast differentiation process (see Figure 5.2)

We can highlight two different mechanisms. First, the mechakigg modelling
the cells in presence &fFe in the batches where we measure are performed. Sec-
ond, the mechanist ¢, without the radioactive entity associated to the control
batch. The ODE systemg&{) and §;aq), as well as the associated parameters (see
Table 6.6) can be found in Chapter 6 dedicated to the biological case studies. As
this protocol implies multiple steps with variation in the dynamics under study, and
intermediate measures, its formalisation in MOEPLA is relevant. More details on
the analysis of this model can be found in the associated Section 6.1 in Chapter 6.
First we de ne all the experimental objects, as well as their associated dynamical
system, and parameters instantiation:

O(Octri ; Fetrl ), O(Oun; Frad),O(Osh; Frad),O(O16h; Frad),
O(O24n; Frad),O(032n; Frad),0(042n; Frad),O(Os2n; Frad)-

Then we explicit the experimental protocol. We note the absence of synchronisa-
tion label since this particular example is simple enough.

. 1o(Octri ; Xctrl (0) [X]o)
. Acr from (Oan;Octrl s Xrad R (Xewrt );t == 4 h)

=

2
3. Am (Ogn; SH(t) + 4 ®Hb(t);t == 7 h)

4. Acr trom (Ogn; Ocrl i Xrad R (Xer );t == 8 h)

5. ::: (Here itis a compacted version as it is a repeating scheme)

15. A (Osan; H(t) + 4 ®Hb(t);t == 55 h)
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composition of the hybrid automata modelling each concurrent process, i.e. the
evolution of each experimental object considered separately.

First we de ne the hybrid automaton created by the set of experimental actions
performedon a singleobjectO with dynamical systeri o. We recall these actions
are constituted by exactly one action of creation ame@), A create (O,L 0:0,Co(t)),

of different conditionc; and associated IabEP ;i 0ordered following the se-
quenceP, and at least one measureménj (O; Lo ; ¢ (t; X°)). We recall that
successive perturbations actionsHnunder the same conditions share the same
labels and represent the same step in the protocol progress.

We now proceed to de ne the hybrid automaton representing the different
stages of the evolution @. Letus denotélp = (1 0;Eo;Lo;X0;Ko;Uo; So;Ro;
F o) the hybrid automaton associated to the single ol§jedtve remark that in Sec-
tion 2.2 we introduced the set of labels, guards, reset maps, and activities through
the de nition of functions associating to these respective sets to each mode or tran-
sition. Here we surcharge the notation using, So, Ro andF o to denote either
the set of possible labels, guards, reset maps, and activities respectively, or the
associated labelling functions as in De nition 2.9.

Letus denot®;,i 0O, the modes following the creation &f. We also calD.
a mode where the objeCt does not exist, an@stopa mode where measurements
are stored in constant variables. The creation actio@pdetermines the initial
mode and the initial condition df o :

— If the creation action isg(O) then the initial mode i©¢ with the paramet-
ric dynamical systenfo as in De nition 5.1. The initial condition of the
variables are de ned b (O).

2115 Co(t; y)), the initial mode is the mod®. whenO does not exist, and we
de ne a transition fromO. to Oq with the associated guaf8l ., associated
with the conditioncy and a reseR. .. We also associate the synchronisation
label to the transitio®. ! O .

co(t; y)) we have a condition and assignment (as seen in De nition 5.4) possibly
depending on variables associated to another object. As the de nitibhsols

only an intermediate step to formalize the global hybrid automaton of the whole
protocol, we consider at this point that only for the de nitions of the gu&glshe
variables of the hybrid automatdto is extended fronx® 2 R"° to the whole

set of variabley 2 R".

Thei-th set of perturbation actioh#\ (O; Lo ;G (t; x©)) de nes a transition
from the modeO; ; to O;, with i 1. The guardS;; 1y; associated to this

1We recall that perturbation actions are the actidRs A, Ay.
2\We recall thai is the index of the different stages of the objéxt
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transition is de ned byc;(t; x©) and the synchronisation label associated to the
transition(i  1;i) isLo;. The continuous dynamics of the moGg is the one

of the modeO; 1 with the effects of the action (in case Af or A,). In case of
multiple simultaneous actions as in Remark 5.9, multiple effects are applied if they
share the same label and represent the same stage in the protocol progress. In a
similar manner, the reset m&}; 1);; is de ned by the effect of the actioAy (if
applied), and by default it is the identity map.

The invariants of the mode3. ; Og; O;,i 1, andOstopare de ned by the
Cartesian product of the state spacg R"°© of the dynamical systefip and
the time intervalO; teng], with teng the maximum duration of the protocol as in
De nition 5.8.

Finally, we handle each measurement ac#gn (O;Lo;; G (t; x9)) by cre-
ating a transition from all the modes;, i 0 to a modeOstop With frozen
dynamics (with derivatives equal to zero), which has for the only purpose of hold-
ing the measurement information. The guards of these transitions are de ned by
the conditiong; (t; x©).

Remark 5.14. We highlight the particular case of the measurement actions: the
Ostopmode de ned here is only used as a way to integrate the measurement in the
hybrid automaton. In practice, the measurement actions need to be handled case
by case for each tool selected for the analysis as we will see in the Section 6.1.2 of
Chapter 6.

Methodology 5.16(Hybrid automaton generation)'he hybrid automatomd of

the experimental protocol using a set of objg@s)g,with0 i  pthe num-

ber of experimental objects, can be generated, using De nition 2.11, by the syn-
chronous parallel compositions of each hybrid autontdiga, de ned for each
objectO() as described above.

After each composition, we delete all the resulting transitions leaving a com-
posite mode de ned by at least one mo@eror This last step ensures that ex-
perimental measurements are separated from the actual mechanism in the protocol
and do not perturb the simulation.

We refer to the Examples 5.15 and 5.17 for two examples of the application of
Methodology 5.16.
5.3 Discussion and future work

In its current state the speci cation language MOEPLA allows describing the evo-
lution of a mechanistic model during a multi-stage experiment. It is expressive
enough to represent a large panel of possible experiments either coming from the
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Example 5.15(Hybrid automaton of protocal)Given the following experimental
objects with their associated dynamical syste@&F o), OYF go)
We propose an example of experimental protocol, in a simpli ed form:

1. 19(0; x°(0) = x§): We start withO.

2. A (O:Lq;K© K new; C1(t; x©)): ObjectO may be perturbed and its
parameter space changed.

3. Agrfrom (0%0;L2;x%"  R(x9);cu(t; x©)): ObjectOVis created from
0.

4. Ay (O%L3; Xmeas  R(x°%);ca(t; xO%)): A measure or0°of the vari-
ablesx©’ is stored i meas.

The two hybrid automata corresponding to the evolution of each okjeahd
0% are represented in Figure 5.3. The hybrid automaton of above protocal and
resulting from the composition of the two automata of the Figure 5.3, can be found
in Figure 5.4. In the Figure 5.4 we assume there is no synchronizatiba.34fL »
then only the transition with the conditian ~ ¢, would remain.

elds of molecular biology, or biochemical reactions, or medicine and therapy
modelling.

Thanks to the formalization of a MOEPLA protocol as a hybrid automaton, we
can provide a formal representation of all the possible executions of a protocol and
its associated mechanisms. Indeed, hybrid automata allow non-determinism and
through the synchronous parallel composition of automata we can represent the
evolution of multiple processes involved a given protocol, and their interactions.
This non-determinism represents all the possible executions of a protocol assuming
a model for each experimental object mechanism. Then, depending on the sparsity
of the knowledge about the mechanisms or the uncertainty (or ambiguities) in the
protocol de nitions, it is, for example, possible to search for bad behaviours and
assert properties for critical procedures (as in therapy).

However, the current work still has multiple aws that need to be addressed:
they are related either to the hybrid system representation or to the speci cation of
the protocol itself. The rst list of comments concerns the hybrid automaton repre-
sentation. Hybrid automata are very useful to represent non-deterministic systems.
However, they are lacking on multiple points in the formalism that we use. In the
currently used formalism for hybrid dynamical systems, we do not consider urgent
transitions as they are not handled by most of the formal veri cation software such
as SpaceEx [87]. Moreover, as seen in De nition 2.9 in Chapter 2, all the modes
of a hybrid automaton have the same dimension, which in our case leads to a huge
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N a(t; x0)

\ co(t; xO)  ca(t; x©°

Figure 5.3: The hybrid automata of the objects de ned in the protocol in Example 5.15.

0
.00
0O1; Osrop

Figure 5.4: Parallel composition of the hybrid automata of the protocol in Example 5.15.

dimension increases. For example, in the hybrid automaton from Example 5.17
each mode ha46 state variables, while in practice when addressing this model
using the Controlled Hybrid Systéhn Section 6.1.2, we have to consider at most
9 variables (including a clock variable). Similarly, the protocol of Example 5.17
could be modelled by a 2 modes hybrid system instead of the one we show in
Figure 5.5 using in Methodology 5.16 to generate an hybrid automata. While our
method avoids producing loops in the hybrid automaton representation and do not
allow Zeno behaviours, it results in large hybrid systems. We note that one way to
ef ciently handle the exponential cost of the parallel composition would be to per-
form it on the y during the analysis, as done in the reachability toolbox SpaceEx
[87].

The second list of comments concern the expressiveness of the speci cation
language itself. A rst comment is that we assume that the different objects share

3See De nition 3.2
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Example 5.17(Hybrid automaton for Haemoglobin productionh Figure 5.5, we
show a shortened version of the hybrid automaton generated by the composition of
all object automata as de ned in the Methodology 5.16. We note that in each
mode, there ar8 dynamical systems running in parallel. This method for hybrid
automaton generation leads to a theoretically huge number of variables. In Section
6.1.2, we will work on an adapted and simpli ed version of Figure 5.5 automaton
using the Controlled Hybrid System formalism de ned in Chapter 3.

N

Octrl ,\Oan;o,
Ogh;sToR:::,
O52h;;

Oun;sToR
:22,0s2n:

Figure 5.5: Hybrid automata (shortened) resulting from the application of Methodology
5.16 to the protocol of Example 5.12. We do not show the transitions resulting from the
composition whose conditions can never be satis ed (as we have xed time condition).

no common variables, parameters, or input, at the exception of the possible cre-
ation actionA¢ from . This assumption was done to simplify the semantics in a
rst version of the language. A way to get around this current limitation is to de-

ne a single object modelling all the interaction or coupled variables. However,
this limits the expressiveness of the language as we cannot de ne separate objects
which share variable for only a few stages. Therefore, it is necessary to update the
language (and the de nition of the synchronous parallel composition) to handle the
de nition of common variables (parameters, or inputs) on a given set of actions, or
stages.

Another comment is that time is currently a global variable separated from the
other state variables. Such global time only allows us to easily de ne conditions
on the absolute time, for example 4 hours. However, conditions on events or
relative to a previous event are hard to express. To easily express them we need
to introduce clock variables. Such variables can currently be introduced as state
variables (see Section 6.1.2) but are not directly apparent in the protocol syntax. In
addition, the actions are performed instantaneously and it should be an interesting
addition to consider delays in the actions. In the current language this can be done

Monday 6" August, 2018 (08:34)



5.3. DISCUSSION AND FUTURE WORK 97

by de ning a time (or clock) interval on the condition of each action: for exam-
ple the rst action is performed far 2 [1h; 2h] and the second fdr2 [1:5h; 2:5h]

means there is a delay of at mdkton both actions. However this leads to spurious
sequences of multiple instantaneous transitions in the hybrid automaton represen-
tation, without having the global time elapsing. Indeed, in the previous example,
both actions can still occur without letting the global timelapse: for all the
instantst 2 [1:5h; 2h] both transitions can be taken successively.

Finally, the syntax of the language itself may change to facilitate the interac-
tions between the biologist and the modelling team. However, the aim remains that
the language must have a succinct de nition with few rules while allowing its pos-
sible executions, de ned by the language semantics, to be represented by a hybrid
dynamical system.
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6.1 Erythropoiesis haemoglobin production model

In this rst section we study a model of haemoglobin production during the dif-
ferentiation of erythroblasts into erythrocytes. Erythrocytes (also named red blood
cells) are produced inside the bone marrow. In this place, they go through multiple
differentiation stages from stem cells (also called hemocytoblasts in this context)
into erythroblasts and nally erythrocyte. This differentiation process is also called
erythropoiesis.

During its differentiation, an erythroblast produces haemoglobin. At the nal
stages, the erythroblast forces out its nucleus and is released in the circulating
blood. The haemoglobin stored in the erythrocyte will play the role of oxygen
transport protein. Without entering into details, the haemoglobin is constituted
from 8 sub-componentst hemes and globins'.

In this work, we model the haemoglobin production during the nal stages of
an erythroblast differentiation into erythrocyte. The proposed model is given by the

'Here we do not consider the multiple variations of haemoglobin, and globin.
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ODEs systemf() which describes the dynamics of intracellular concentrations
of: iron Fe, hemeH, globin G and haemoglobikib.

dH = ksFe ksH 4ksHG

dt (fctrl)

c(jj? = k6H 4k5HG k7G
dHb

—— = ksHG kgHb

dt 5 8

In the rst equation of {¢), the termk;Feex describes iron in ux from the ex-
tracellular space, while the second tekpire and third ternksFe respectively de-
scribe the iron ef ux from the cell and its consumption for the production of heme.
In the second equation, the terkgFe and ksH respectively describe the heme
production and heme degradation and transport from the cell. Thedle/thG
models the heme and globin consumption for the production of haemoglobin in the
second and third equations. Note that the fadtdescribes the need dfhemes
for the production ofl haemoglobin. In the third equation, globin synthesis is ac-
celerated by heme, hence the production term depen#k(ast term kgH). The
heme is not consumed so this term does not appear in the second equation. The
globin degradation term ik;G. Finally, in the last equation, the two terms are
haemoglobin productioksH G and degradatiokgHb.

In Section 6.1.1, we describe how the data obtained from mouse erythroid cell
cultures are exploited to estimate the value of parameters occurrifigyin Then,
in Section 6.1.2, we use this model as a proof of concept of the model revision
method previously described in Chapter 3.

6.1.1 Parameter study

In modelling complex biological phenomena, the identi cation of parameter values
is always a critical problem due to the scarcity of kinetic data. Here the situation is
rather favourable. We have been able to use four datasets [180, 181, 179, 182]
to determine the values of th& kinetic parameters contained in the model of
haemoglobin production presented ig().

These experiments were performed on cultures of erythroid cells from the
spleens of mice during their differentiation. The general scheme is to add radio-
labels {°Fe or *H-leucin€) at different time points, continue the culture for a given
time duration and then measure the quantity’&€ incorporated in heme dH-
leucine incorporated in-major globin.

In order to exploit this kind of experiment we use two extended systems of
equations: the rst contains additional equations for the evolutidhFaf-containing

Note that the symbdH in *H-leucine stands for the isotope of hydrogen.
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species (intracellula® Fe itself and radioactive heme and haemoglobin); the sec-
ond contains additional equations for the evolutioAttfleucine-containing globin

and haemoglobin. Consequently, each speci c type of experiment has to be sim-
ulated by the corresponding system of differential equations respectivgyfor
datasets #1 and #2 (see Tables 6.1 and 6.2), and (6.1) for dataset #3 (see Table 6.3).
The system of equations representing the haemoglobin production in presence of
®Feis givenin (ag). We note that the dynamics & andHb are optional if one

only observes the radioactive species.

ddFte = leeeX kzFe k3Fe
C:;' = k3Fe k4H 4k5H G
C(Ij(f = kGH 4k5HG k7G
L(l;tb = k5HG kgHb
dSQFe (frad)
= KiFeex  KSFe k3Fe
59
TH=kgFe KPH 4CHG
dGiot _ 50 50
e ke(H+> H) 4ks(H+> H)Giot  K7Grot
59
d dljb = kggH Gtot kggHb

We now provide the system of equation corresponding to the experimental protocol
of dataset #3: we not8" the*H-leucine-containing globin.

d(;:te = leeex k2Fe k3Fe

dg;"t = ksFe ksH 4ksH(G+G')

?jfcta = keH 4k5HG k7G

dHb 6.1)
r

d; = ksH 4k5HGr |(7Gr
r

dﬂ:’ = ksHG'  kgHb'

The experimental results from Tables 6.1, 6.2, and 6.3 are given in radioactiv-
ity units (cpm standing for counts per minute) since the experiments measure the
activities of the radio-label¥Fe and®*H. However, these data are incomplete as
we lack the actual conversion factor from the radioactivity measuregrimto the
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actual molecule quantity imol. As we have mixed information, concentrations
on one part and radioactivity measures on the other, we choose to work with nor-
malized data points, by choosing a point in each dataset as a reference point, and
dividing the other points by this value. The chosen reference data point is the one
providing the smallest residual value (6.2) after scaling. However, we add a few
constraints to ensure the simulations results stay in viable biological ranges.

The dataset [181, Table 2] (not reproduced here) allows us to estimdbe
iron intake rate into the cell. We make the approximation that the ux of iron intake
is constant. With thik; is found equal t@250atoms/fL/min. In the conditions of
this experiment the concentration®fFe:Tf in the culture medium i200 g/mL.
We take the molecular mass of glycosylated, iron-saturated Tf (diferric) as being
equal to80 kDa, and we obtaiky, = 1:4e 3s 1,

Exposure time (h) 4 8 16 24 32 42 52
*Fein Heme
(cpmele L) 47 213 697 1020 1725 2379 2370

Table 6.1: Dataset #1: Accumulatédre in Heme. The radiolabel (transferrin-boufiée)
is added to the medium att = 0Oh. The rstline indicate the time at which cells are collected.

Exposure time (h) 4-7 8-11 16-19 24-27 32-35 42-45 52-55
*Fein Heme
(cpnFle ‘L=h) 16 85 348 391 399 481 395

Table 6.2: Dataset #2: The cells are rst cultured in presence of iron (normal, non-
radioactive, isotope). Then the radiolabel (transferrin-botifd) is added directly to

the medium, and the culture continues for the period indicated in the rst line (duration =
3h).

In addition to these datasets we consider a set of constraints to keep the results
biologically viable.

— The quantity of°Fe incorporated in free heme at t=52h is at most 5% of the
*Feincorporated in all forms of heme (free heme and heme in haemoglobin).

— The quantity of°Fe incorporated in free heme at t=52h is at least 0.002% of
the*® Feincorporated in all forms of heme (free heme and heme in haemoglobin).

— The concentration of haemoglobin at t=52h is at least 100 molecules/fL.

— The concentration of intracellular labile iron is less than 10 times the con-
centration of haemoglobin (all taken at t=52h).
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Exposure time (h) 0-12 12-24 24-36 36-48
*H-leu in -major globin
(cpmele “L=h) 103 255 771 942

Table 6.3: Dataset #3: Incorporationi-leucine in -major globin. The cells are rst
cultured in a medium without radiolabel. Then the radiolabeHeucine) is added directly

to the medium, and the culture continues for the period indicated in the rst line (duration
=12h).

For the7 kinetic parameters other thdn and the initial concentration in intra-
cellular ironFep, we have to resort to a systematic search. It is known from [183]
that thelRP concentration decreases down as differentiation proceeds. Because
IRP activity represses the biosynthesis of protoporphyrin X, which is inversely
related to internaFe concentration, the rate of heme production increases with
time. To take this into account we consider that parameiés time dependent.

In this rst study we consider the following polynomial functioks(t) = axs +
(beat)?. With this function, the increase is slow during the rst hours and becomes
steeper in the later stages of differentiation. A linear time dependence was tried,
but it did not provide a good adjustment to the experimental data. In Section 6.1.2
in the following, we propose to revise this parameter as a proof of concept of
our method described in Chapter 3. Therefore, we consider in8giatameters
related to kinetics. As we start this modelling without any prior knowledge on
the parameter ranges (except physiological bounds), our initial parameter space
where the search is performed is given in Table 6.4: for each unknown quantity we
de ne a search interval (spanning several orders of magnitudes). In Table 6.4 we
also provide the set of intracellular iron initial conditiohg we consider in our
search.

Variables ko ay3 (%
Search intervals [1le 1% 1e 92] [1e 19;1e %] [le 10;1e 94
Variables k4 k5 ke
Search intervals [1le %6;1e1] [1e 1;1e 97 [le 97;1e™01]
Variables k7 kg Feg

Search intervals [1le 9%;1e %] [1e 1;1e 1] [6e™03;6e™09]

Table 6.4: This table provides the intervals considered for the search for parameters sets
and initial conditions satisfying the experimental results of Tahigg.qand 6.1.

In this work we searched for parameters sets satisfying three experimental
datasets. These datasets were obtained through three different experimental pro-
tocols and we simulate them accordingly with three different models. At the time
of this work, we did not consider the formalization of experimental protocol as a
hybrid system: we argue that this formalization would have eased our analysis.
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Parameters Enclosure Units

Ko [1:0e 10;5:81e 9] st

a3 [3:43e 9;1:47e 8 st

bes [6:8% 7;7:36e ] s i

Ka [3:82e 4 5:16e 4] s?

Ks [2:87e 6;1:01e 5] fL.molecules':s !
Ke [3:94e 4;5:68 4] st

k7 [2:48 10:5:08 7] s?

kg [1:01e °;1:4% 9] st

Feg [2:99%2:6:07e*?] atoms/fL

Table 6.5: Results of the search procedure. The second column de nes the box enclosing
the set of valid points in parameter space. The following columns contains the values for
4 particular solutions. kgis the initial concentration of internal iron (not labelled). The
concentration of external labelled irofi Feqy) is 3000atoms/fL, while the concentration

of external ironFeqx (not labelled) istatoms/fL.

Parameters P P> P3 Pmean

Ko 1:61e 10 1:22¢ 10 6:0e 10 378 10
a3 1:42¢ 8 7:70e ®© 925 °  T4e ?

bes 727 713 7 T15% 7 T2 7

Ka 395 4 463 4 4:30e 4 447e 4
ks 55% 6 648 6 571e® 727 6
ke 4:74e 4 510 4 4:31e 4 4:47e 4
k7 4:46e 8 2:88 10 3:01e 7 4:97e 10
ks 1:3e ® 1243 ° 1:17e ° 1:14e ®
Fep 3:10et?  346et? 327e? 3:21et?

", 0.220 0.235 0.239 0.238
", 0.239 0.228 0.238 0.238
"3 0.225 0.238 0.199 0.200
" mean 0.228 0.234 0.226 0.226

Table 6.6: Results of the search procedure. Columns 2, 3 and 4 provide solutions corre-
sponding to the minimum (within the set of found solutions)gf',, and" 3, respectively.
The following column is the one with the lowest average resitigal,= ("1 + "2+ "3)=3.

However, as these protocols are simple enough, we can still simulate them as se-
quence$of classical ODE simulations using either the ODE system modelling the
cell without radiolabelsf(y), the ones modelling the cell in presencé®die (f,aq)

or3H (6.1).

3The simulations we perform are conform to the experimental protocol of each particular dataset.
In Section 6.1.2, we use the hybrid systems formalization to improve the analysis.

Monday 6" August, 2018 (08:34)



6.1. ERYTHROPOIESIS HAEMOGLOBIN PRODUCTION
MODEL 105

The Cartesian product of the parameter intervals (see Table 6.4) de nes a mul-
tidimensional search box. To perform simulations and search for valid parameter
sets, we draw a large number of random points in that box, and for each parame-
ter point we perform simulations and compare accordingly with each experimental
dataset. In order to sample equally all the orders of magnitude, the sampling is
done on a logarithmic scale. We use the quasi-Monte Carlo method [184] with the
Sobol sequence. For each dataset we quantify the agreement between signulated
and experimenta measured quangties by computing the following residual:

oz —P_ 2 (6.2

whereq 2 f 1; 2; 3g denotes one of the three studied datasets and the irider-
ti es the measurements belonging to that dataseF#r the experiment associated
to the dataset of Table 6.1, we hawes **H+4 5°Hb . In the context of Table 6.2,
y = (*H + 4 *°*Hb)=3. Finally, the measurement observed in the dataset of Table
6.3 is given byy = (0:4G" + 1:6Hb")=12.

Each datasef] is associated with a threshoM 4, and we keep as potential
solutions all parameter points which satisfy Mg, whereM4. Since we have
3 datasets, we hav@ constraints of this type. It is, in general, not possible to
minimize all 3 residuals simultaneously. In order to retain only physiologically
relevant solutions we also add constraints bearing on the concentrations reached at
the end of the differentiation process using the constraints we previously de ned.
This simple parameter search method is summarized in Algorithm 5. We note that
we can iterate over Algorithm 5 by constructing new smaller parameter spaces over
each previous results of Algorithm 5.  Since there is ho unique way to combine
several experimental datasets and additional constraints, we present the results as
a set of solutions (a cloud of points in parameter space).3TtheesholdM 4 are
chosen equal t6:25 as we want to equally verify all datasets. The box enclosing
the cloud of valid points is given in Table 6.5. These results are given after a search
over 35 millions samples (for around8h of computation). This gives an idea of
the spread of the set of solutions. It can be seen that most parameters are rather
well de ned, exceptk, andky. A scatter plot of the cloud of valid points on the
planeks ks is displayed in Figure 6.1 in order to visualize the shape of the cloud
on that projection. Table 6.6 shows 4 solutions we have selected in this set: the
solutionsps, P2, P3 andpmean Which minimizes's, "2, "3 0r "mean=("1+ "2 +
"3)=3, respectively. Figure 6.2 displays the evolution of the system witlptlag,
values. This last solution is the one which has the lowest average reSjgisal
within the solution set. It can be observed that internal iron concentration goes
through a maximum and then decreases to low values. Haemoglobin concentration
increases steadily to a value of abdi®?® molecules/fL. The agreement between
the measurements and the corresponding quantities derived from the simulations
is displayed in Figures 6.3, 6.4, and 6.5 for datasets #1, #2 and #3, respectively.
In each gure the results obtained with parameter pont,, ps, andpmean are
shown.
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Figure 6.1: Projection of the cloud of valid points on the plape ks. The solutiongy,
P2, P3, Pmean are indicated in red.

Algorithm 5 Simple parameter searchK ,M ,E ,Nsampled

1:
2:
3:

a b

10:
11:
12:
13:
14:
15:
16:
17:

© o N o

INPUT: K parameter space considered for search box.

INPUT:M = (Mgq;M3;Mjs), threshold considered for the experimgnt

INPUT: E = fE1;E»; E3z0, 3 piecewise ODE systems modelling the experiments
associated to datasets #1, #2 and #3, respectively.

¢ INPUT: nsamples the number of samples draw in the parameter space
: OUTPUT:r, set of samples which satisfy all the error threshditds

: S = sobol (K, n sample;

r=;

:fork 2S do

for g2 f 1;2;3gdo
yld = simulate  (Eq; k)
"q = evaluate (yldl;zldl)
end for
if 892f1,2,39; "q Mgthen
r=r[ Kk
end if
end for
return r
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Figure 6.2: Evolution of the 4 concentrations computed with the parameter values identi-
ed as Pmean in Table 6.6.

6.1.2 Model revision

Model adjustment. In the previous section, we addressed the problem of re-
ning the parameters space and tting multiple datasets on the haemoglobin pro-
duction model. In this section, we apply the model revision method proposed in
Chapter 3 on the haemoglobin production modigh) for the protocol [179] corre-
sponding to the dataset #2 in Table 6.2. Using the method de ned in Chapter 3, we
search for another modelling of the time varying paramkiér), which better t

the dataset #2, while being biologically interpretable. While in the previous section
the experimental protocol was not explicitly formalized as a hybrid system, we will
consider in this section a formulation close to the one proposed in the Chapter 3.
We use the values given in the columpeanfrom the Table 6.6 for any parameters
other tharks .

We recall that the ODEd ;) model the evolution of the haemoglobin pro-
duction in the differentiating erythrocyte cells situated in the bone marrow. In this
section, to stay close to the notations of Chapter 3 we xpte x4 the variables
that represent respectively the internal iron in the Eellthe hemeH , the globin
G, and the haemoglobikb. The hybrid dynamical systetd models an exper-
imental protocol designed to measure the integration of iron inside henat(
several steps of the cell differentiation. For example, we recall that the data point
at timet = 7 hours in Table 6.9, is obtained through the following procedure: we
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Figure 6.3: Visualization of the match between the measurements and the corresponding
quantities computed from the simulations, for dataset #1. Measurements are represented
by circles and computed quantities by asterisks. Jlparameter pointp;, p2, p3, and

Pmean de ned above are shown.

rst start with a control batch of cells, then at tinhe= 4 hours after the start of

the experiment, the culture medium is perturbed with an injection of measurable
radioactive iron*°Fe for a subset of the cells. This perturbation implies the new
ODESs ;aq) modelling the evolution of two interdependent modelthe model of
non-radioactive haemoglobin production and the model of haemoglobin produc-
tion with radioactive species. Three hours after the perturbation with radioactive
iron, the total radioactive heme is measured, meaning the heme free in the cell and
the one in the radioactive haemoglobin. This measurement is given by the formulas
¥H + 4 *°Hb.

This hybrid dynamical systet is close to the one proposed in Chapter 5, and
differs from it on two points: the lack dstop modes and a number of variables
that changes between two modes. Indeed, in this work we do not model the mea-
surement actions as they are represented in the cost function of the optimization
problem.

We recall in Table 6.9 the observed radioactivity divided by three hours. Fi-
nally, these measurements provide results on the variation during the cell differ-
entiation of the integration of iron in heme, which is associated to the parameter
Ks.

4For this reason we ke@ andHb present in the ODE systerfi{)
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Figure 6.4: Same as previous for dataset #2.

Figure 6.5: Same as previous for dataset #3.
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Mode n; fi(t; x;u) Xi Ui

i = 5 fean(tix;u) [0;4] [0;1)  [0;1]
i=2 9 fa(tx;u) [47] [01F  [01]
i=3 5 feu(tx;u) [7;8] [0;11  [0;1]

fon (t x;U) [45;52] [0;1]* [0;1]
fraa(t; X;u) [52,55] [0;1F [0;1]

=13
i =14

(&)

©

Table 6.7: Dimensions (witk.), vector elds, domains, and input sets for the controlled
hybrid systenH of the haemoglobin production model.

Mode e=(i;j) Se Re

: Is5

i=1 1:;2 t== ’
1;2) Oua

i=2 (2 ; 3) t== |5;5; 04;4

Is;5

=3 3;4 t== :

(3;4) o

13 (13;14) t==52 55
Ous4

Table 6.8: Transitions, guards, and reset maps of the controlled hybrid skistem

The controlled hybrid systeril associated to the experiment of dataset #2
studied in Section 6.1.1 is given, in a shortened version, in Tables 6.7 and 6.8.
The ODEs ) and €raq) are given in the previous section 6.1.1, and we consider
the parameter set,,for the values of the parameters other tlkan In the im-
plementation, we also introduce a variaklemodelling time, whose derivative is
equal tol. We recall that we want to search for an optimal conti@) minimizing
the distance of the simulated trajectory to the corresponding point in the dataset. In
this particular study, we consida(t) = ks(t) and we will keep this notation until
further notice.

For numerical reasons, it is necessary to scale the parameters and state vari-
ables, making it easier for the solver to succeed in solving the relaxed problem.
Similarly, to facilitate the numerical optimization we rewrite the control variable
u(t) 2 U = [0;1]asu(t) = o(t), with 1 anda(t) 2 [0; 1= ]. While the
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scale factor may take different values depending on the numerical optimization
details, the objective control(t) always evolves if0; 1].

Implementation. Now that we have a valid controlled hybrid systehh, we
solve the optimal control problem with intermediate time points de ned in (3.20),
using the method from Section 3.2.1 and its implementation in Section 3.2.2. The
experimental measurement is modelled by the funatidw) = *°H + 4 *Hb =

Xe + 4 Xg. Thus, we set

H(x(T})) == ( xe(Tj) + 4 xs(Tj) 3z)%
as we search to minimize the total residual error term:
P
X H (x(T;
“total = IM (6.3)

1] nexp 1] nep 7

We recall that the original experimental data poifits, z; ) are given in Table 6.9.

Time (h) 7 11 19 27 35 45 55
Measure {"-—) 16 85 348 391 399 481 395

Table 6.9: Experimental data poir({; ; z; ) used as references.

Here, the input contrdks(t) = u(t) models some hidden mechanism result-
ing in an evolution of the iron integration rakg with the differentiation of the
cells. It should be the same function of time for both the control and the radioac-
tive cells batch. However, as the control generated by Algorithm 1 is piecewise
for each mode, and the fact that our data are on the radioactive species only, the
solution of the optimization problem with only a nal cokt(x(T;)) is notbal-
anced having a much stronger control in the modes where the radioactive species
are evolving. A workaround for the balancing problem is the following. We add
a small penalization cosgl(t) = (0:01u(t))? to equilibrate the control when
corresponds to a mode with radioactive species, otherg§i@g = 0. In a sim-
ilar vein, we add another penalization cai{t) = (u(T;) u(t))? to avoid
when the control strongly varies between two iteratipos the interva[T; 1;T;j]
andj + 1 on[Tj;Tj+1] (with the exception of the rst iteration). This leads to
hi (t; x(t); u(t)) = c'(t)+ c(t). Letus note that, even if these additional costs can
eventually degrade the accuracy of the data tting, we gain in terms of biological
interpretation of the resulting traces.

Finally, by partitioning the computation in the time domain, we can greatly
reduce the computational cost at each iteration. More technically, since the tran-
sitions of the hybrid systeri are fully determined by the timg we can pre-
compute the function : R ! | , which associates a moddt) to each time
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Figure 6.6: Synthesized optimal control and various approximations that yield a realistic
interpretation.

Figure 6.7: Radio-active variablé&Fe, Gy in (fiag), as well as, the comparison of the
measurement function results to the dataset #2 (see Table 6.9).
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instantt. Thus, each iteration of Algorithm 1 can be restrained to the hybrid
sub-systent! of H, constituted by the modes visited in the interf@l 1; T;].

For numerical implementation, the problem on measures is formulated in SPOT-
LESS, and then we extract the primal solution provided by a primal-dual SDP
solver. To do so, we use the implementation from [94] to generate the dual prob-
lem of (3.17) de ned in Chapter 3. As an SDP solver we used MOSEK [185]
v.7.1. These tools are used in MATLAB v.9.0 (R2016a). Performance results are
obtained with an Intel Core i7-5600U CPR:§0GHz) with 16Gb of RAM running
on Debian 8.

Applying Algorithm 1 on theH hybrid system, as described above, we have
to solve7 times the optimization problem (3.17), @mode hybrid systems of
respectivel\b and9 continuous variables in each mode. We only solve the problem
for a relaxation order = 4, as any higher order would be too memory expensive.
We only synthesize a piecewise constant control, and to avoid oscillation in the
resulting control we forcel, = 0 in Algorithm 1 from Chapter 3. Using this
con guration, the total time taken by Algorithm 1 2107%, with1700s spent in the
HOCRprocedure, an@90s in theSynth procedure.

In Figure 6.6, the control generated by Algorithm 1 is shown in blue. This
control is piecewise, and clearly divided in two phases: before andtadtpralsl1
hours. However, the control synthesized is still dif cult to interpret as a biological
phenomenon. Consequently, we propose three additional ts of this control to ease
interpretation by using functions closer to biological knowledge. In Table 6.10
one can nd the total error associated to all the possible controls, as well as the
previous result of Table 6.6. In Figure 6.7, we show a graphical representation of
how closely each function can control the model to reach the desired data points.

Control Type "total

Best", in Table 6.6 0:23
Results generated by Algo 10:096

Step function t 0:12
Piecewise Polynomial t  0:13
Hill function t 0:075

Table 6.10: Total errotiy, associated to each proposed input.

Discussion. In a simulation-based approach, we have to propose for the desired
time varying parameter, a template function to t the data, e.g. a polynomial of
given degree. If we want to t a polynomial of higher degree, the simulations have
to be run again multiple times. On the contrary, the proposed approach returns a

The SPOTLESS implementation was taken fronhttps:/github.com/
spot-toolbox/spotless
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control signal, and since the t to data points is performed a posteriori, there is no
additional computation cost in re ning the model.

From the form of the experimental data points, an usual hypothesis is that
k3(t) = u(t) should be similar to a jump function, with a low value for the two
rst points, and a higher one for the following ones. However, even with such
information a good t is not easily achieved with simulations.

The control generated using Algorithm 1 returns the expected “jump” behaviour
for u(t), and even with a low relaxation degree, the total residual error for the gen-
erated control i9:59% which is much lower than th22:8% from the minimal
value of", in Table 6.6.

We rst t a step function to the generated control, with a change at11.

The associated error d2:24%is still lower than Section 6.1.1, yet being higher
than the generated control mainly due to the second-to-last point.

The second tis a piecewise polynomial function in two pieces. The rst piece,
fort 2 [0;11], is a polynomial of degre@ while the degree of the second, for
t 2 [11;55], is4. This proposed input control allows to reproduce more accurately,
than the step function, the third data point. However, its accuracy is worse on the

rst and two last points. The total error associated to this contrdl3%s being
overall the worst of the proposed ts.

Lastly, we t a Hill function, a function used to model the kinetics of a class
of biochemical reactions and which is a very common way to represent biological
activation processes. The associated total erribi%, which is the lowest, taking
advantages from both the step function and the piecewise polynomial function. In
this case, the inaccuracy also mainly comes from the second-to-last point, which
is quite separated from trend of the other experimental points, and may be due to
some experimental problems (no standard deviation results were available). With-
out taking this point into consideration for the error computation the error falls to
3% for the Hill function t.

On this particular example, this method provided a way to generate a control
satisfying intermediate points without aaypriori on a particular form, avoiding
the need for extensive numerical simulations. The generated control is accurate,
and computed in a reasonable time36min), even for a large hybrid system of
14 modes with at mos® continuous variables. Using some tting functions af-
terwards, it is even possible to re ne the results and obtain a more interpretable
function for the desired time varying parameters.

Since in this model, the sequence of transitions is known in advance, the use of
[94] to solve (3.11) at each iteration of Algorithm 1 is arguable, as other methods
can handle this problem. If needed Algorithm 1 can easily be adapted with another
method to solve the optimal control problem on hybrid automata. However, Al-
gorithm 1 in its current form does not require any knowledge on the sequence of
transition and can be applied to a larger set of biological models. We can also note
a similar approach to our own in [26]. In this paper, the authors rst search for
parameter sets satisfying experimental data on an hybrid dynamical system using
particle swarm techniques. Then, they revise the model by searching a parame-
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ter as a time varying function using optimal control technique. While they have
similar objectives, our work differs from theirs in the methods used for both the
parameter tting and the model revision.

6.2 Mammalian cellular iron homoeostasis (MCIH) model

6.2.1 Context

In this section we apply the set-based analysis method from Chapter 4 on a dis-
cretization of the mammalian cellular iron homoeostasis (MCIH) model previously
characterized in [5]. Using this model as a proof of concept we show that the
method proposed in Chapter 4 can be applied to ensure properties or hypothesis
while taking into account uncertainty on both initial conditions and parameters
(possibly spanning multiple orders of magnitude).

The ODE system proposed in [5] is built to study and represent the mechanism
of iron homoeostasis for a large parameter space. This previous work [5] provides
a method to characterize a large valid parameter sgepgrameters, spanning
several orders of magnitude), by nding the parameters points which respect a set
of temporal constraints and clustering them in multiple ellipsoids. Here we de ne
our experiments based on both a discretization of this model and some previous
results from [5].

This model describes the control of the iron concentration inside a cell, thanks
to both an iron storage protein, ferritin, and regulatory protd#R# (Iron Regula-
tory Proteins). Moreover, both the transferrin receptor TfR1(which in uences the
iron input in the cell) and the iron exporting protein FPN1a are in uenced by the
IRP concentration. T;is the external saturated transferrin concentration, which
is the iron transport protein outside the cell. The concentration of free iron in the
cell that is not stored inside ferritin must be well controlled since too much or too
little of it can have deleterious effects.

In the presence of a stable concentration of iron-loaded transferrin, outside the
cell, the cell system converges to a steady state. When there is no more iron outside
the cell (Tfatis almost equal t®) the non-ferritin bound iron quickly drops for a
short time, but then increases again at the expense of ferritin iron and stabilizes for
some time (aroundO hours) after the activation of the regulation mechanism. The
low iron concentration stimulates thigP activity which itself activates the release
of the iron stored in the ferritin. This supply of iron from the ferritin leads to a
pseudo-steady state for a few hours, until the ferritin concentration is too low to
release enough iron to maintain the equilibrium. If no iron is added to the medium
shortly thereatfter, the cell dies.

The model contain$ state variablesHe, IRP, Ft, TfR1, FPN1a), and 19
parameters. The dynamics are de ned in the ODE system (6.4).

The work [5] observed that for all the valid parameter points, the value of
FPN1a is almost not in uenced by the value of the other variables during the ex-
periments, FPN1a being almost constant with this modelling. FPN1a, being the
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iron exporting protein, should quickly decrease with the iron concentr&gpas
modelled by théRP dependency. However, the FPN1a concentration stays stable
for all thevalid parameters points.

In this work, we propose to compute the reachable set of FPN1a for the pa-
rametergkrpniae, KFPN1go0 KIRP-FPN1a Fe 1RP ] taken in the interval given by the
valid parameter points. The computed reachable set must ensure that in presence of
external iron, the system evolves to a steady state, and in absence of external iron,
there is a plateau of at leald hours for the variabl&e, followed by a decrease in
iron concentration.

dFt :
o = kFtprod Kirp-riSiIg (IRP; |rP-Fg dsig ) kFtdegFt

dF dFt
dTe = KeayuTrsaTIRL Nt " KrappFeFPNLA ke, Fe

dIRP .
e KiRPyos  KFe-IRPSIQ (F€; Fe-IrP Usig )IRP  Kirp,,|RP

dFPN1la

— c KepNigos  KiIRP-FPN1aSIO (IRP RP-FPN1alsig ) KrpNia, FPN1a
dTfR1
G - KTR1ye+ KIRP-TRURP KTiR1, TTR1
(6.4)
h . - d — XdSig .
wheresig (x; ;dsig ) = g = g,

The original model of iron homoeostasis (6.4) leads to a huge number of Bern-
stein coef cients because of the high degree of the sigmoids which are rational
functions. On the other hand, simply lowering the deglgg can cause signif-
icant errors, compared to the original model. To cope with this dif culty, each
sigmoid has been approximated by a piecewise function. For a sigmoid function
x%io =(x%is + dsi ) (wherex and are scalar variables), the associated piecewise
function ofx and (dsig being a constaf is:

8 dsi 2
0; if X (dsig  2)
d 1 d-oISig 2 deg +2
sig (x; ;dsig)= _ — S( )4 5 x> (g 2) S'%Sig ) andx (%o *2) S'%Sig )
.é 1; if x> (Gsig ¥2)
dsig

The new MCIH model containg parameterﬂx,:pm%eg, k,:le%md, Kirp-EPNn122Nd

re IRP taken on large intervals. While the parametietsnia., Krpnige, and
Kirp-rPN12@ppPear linearly in the dynamicsgp rpnia@ppears non-linearly. For
this reason, we treat the parametgfpr rpn1a@S a Sixth variable, and thus the
termIRP°=(IRP° + 2. py;a iS NOt approximated by a piecewise linear func-
tion but its approximation is non-linear (rational function) iigp Fpn1ain One
of the pieces. These piecewise approximations lead to a new model where each

®Here we considedsig = 5.
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Figure 6.8: 9 modes generated bfj,;f,;f3] = [0;1:25¢® IRP
imation of sig (IRP; rp rt) and[gr;2; 03] = [0;2:74® Fe
sig (Fe; r 1rp). The constraintd; are of the forma x C,
Fe 273 °.

; 1] the approx-
; 1] the one of
or exampleh;:

INI®

—h

sigmoid is substituted by &piece approximation. In place of one ODE system,
the dynamics is now hybrid with5 modes’. The9 domains corresponding to the

approximations okig (IRP; rp rt) andsig (Fe; g rp) are represented in
Figure 6.8.

6.2.2 Set-based analysis

We recall that our goal is to validate the observations which were obtained in [5]
using numerical simulations, about the regulation of FPNla. These observations

were made with parameter values chosen such that the system respects some prop-
erties:

— In presence of external iron input ¢5f6 0), theFe, Ft, andIRP concen-
trations reached a steady state.

— In absence of external iron input ¢&f = 0), the iron concentration rst
stabilized on a plateau for at ledsih, then decreased @

The set-based analysis produces an over-approximation of the reachable set. Be-
cause of accumulated error, this set may grow at each step in every directions.
We thus do not impose strong constraints for the plateau de nition, and currently
restrict to a qualitative observation. For the same reason and because we are inter-
ested in the question whether the FPN1la concentration strongly decreases during
the Tfy = O phase, we restrict to a qualitative observation on the lower bound
of the reachable set of FPNla. The reachability analysis of the adapted model
was done using the following method: starting from initial conditions (taken from
[5]) and a corresponding valid parameter gethese initial conditions are bloated
to a set. The fO”OWing parameteﬁs:pm@eg; kFPNl?%rod; KirP-EPN14 |Rp_|:p|\|1& are
extended to cover a few orders of magnitude based on the results of [5]. The con-
sidered initial conditions and parameter space are given in Table 6.11.

From this starting initial set, we rst let the system evolve to a steady state

"Two sigmoids are ofRP, and one orFe
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parameters  Value or Interval Unit
KePN1geq [le 7 1e °] st
KEPN1g,00 [le ¥ 1e B®] mol(Ls)?
k|Rp.FpN1a [18 S le 13] moI(Ls) 1
IRP-FPN1a [1e 8 2:01e 6] mol L !
Kre IRP 5:24e 5 S 1
KFe cons 1:56e * st
Variable Interval Unit KFe export 2:191e32 L(mol ls) !
Fe [2:27e & 2:28¢ 8]  mol=L tFei“P“‘ 3;%5;65 S
IRP [6:646e ° 6:647e °] mol=L Pl deg e A
: 7, 7 8 Ket 8:93e mol(L s)
Ft [2:804e  2:805% ‘] mol=L K prod 871e 12 mol(L s) 1
FPNla  [2:35e 87 3:61e 87] mol=L k:ii :m 2030 4 o 1
TfR1 [9:8e © 10:2e °] mol=L KiRP g 1:5e 5 g !
KIRP o 4:48e B mol(Ls) !
kaRldeg 2:23e 5 S !
K TR Lo 1:78 - mol (Ls) *
Fe IRP 9:8% ° molL !
RP  Ft 4:56e ° molL !
nkt 177:4
dsig 5

Table 6.11: On the left: set of initial conditions (after the stabilization phase). On the right:
considered parameter space for the reachability analysis.

with Tfsg 6 0. This is the mode where the system should be stable. We let the
system stabilize for a few hours. Some results of this stabilization are shown in
Figures 6.9 and 6.10. It is clear that the system evolves towards an invariant set,
and converges. Because this tool does not compute a precise invariant set, we will
take, for the next part of the computation, this over-approximation as the initial set.
The initial set for this part is given in Table 6.11.

In the second part of the analysis we reducgy,To O: this is the mode where
the external iron is depleted. Then, we simulzg2dours 30400terations using a
xed time step of0:5 seconds) of the iron depleted mode. InFigures6.11,6.12, and
6.13, we can observe the different phases of the computations in different colors
(blue, red, green, and purple).

— Phase 1 (blue): On the initial state previously computed, we apply the fol-
lowing change: T, drop from1 to 0. Experimentally this corresponds
to washing the external medium of the cell and replacing it by a medium
without iron. This sudden change of:}fleads to the very low iron concen-
tration att nearO (see Figure 6.11). This very low iron concentration triggers
the production ofRP, which itself activates the release of iron by the fer-
ritin. The iron and thdRP concentrations quickly grow back until both the
IRP and iron are around their respective thresholgs r and g rp.-
The IRP increase slows down while the iron concentration stabilizes. To
compute precisely this blue part, reachability analysis was done d&ing
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Figure 6.9: Iron stabilization

Figure 6.10:IRP stabilization

different directions to represent template polyhedral set. The reachability
computation time for the blue part is aroubthours.
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— Phase 2 (red): Because the iron is now in the plateau, we need to ensure
that the analysis is as precise as possible. Thus, we reduce the error by
bisecting the set on the IRP axis, and perform reachability analysis with two
smaller sets instead of one big set. Even with such a method, one can observe
the fast growing accumulated error in the red phase. In the red part, the
system overlaps two partitions of IRP: the one whege (IRP; rp rt) iS
represented by an af ne function, and the one wtege (IRP; rp Ft) =
1. Overlapping two partitions increases the error during a short time, leading
to the observed growth of the reachable set in red in Figure 6.11.

— Phase 3 (green):. Once the reachable set has completely crossed the border
between the two partitions, arsiy (IRP; rp rt) = 1, the reachable set
quickly contracts, and the iron concentration begins to decrease notably. Re-
ciprocally, thelRP concentration increases trying to compensate the lack
of iron. However at this moment, there is no longer enough ferritin to sup-
ply the cell in iron. The red part and the green part took arddihdurs to
compute in total.

— Phase 4 (purple): The iron concentration is not stable in a plateau, but now
decreases t06. To compute this part we did not need as good precision as
before and used a simple box over-approximation, and the computation time
of the purple part is arounts minutes.

Figure 6.11: Iron reachable set forsfif= 0

The reachability analysis of the system allows us to validate the previous obser-
vation made in [5] using point-based simulations: the regulation term of FPN1a by
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Figure 6.12:IRP reachable set for Tfi=0

Figure 6.13: FPN1a reachable set fogJ£ 0

only IRP in this model and within these parameters intervals is not effective. This
suggests that another actor is needed for the regulation of FPN1a. Indeed, even
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with an initial set for FPN1a, and having the parameters in uencing FPN1a span-
ning over large intervals (multiple orders of magnitude), the reachability analysis
results show that the model satis es the expected properties:

1. Fe, IRP, andFt tend to a small invariant set whengf6 O.
2. The iron concentration reaches a “plateau” for at |&8stours.
3. After reaching a plateau the iron concentration decreadgs to

4. ThelRP concentration rst increases quickly then more slowly during the
plateau and then increases quickly again.

However given all those conditions, the FPN1a concentration did not undergo any
notable decrease. Indeed, in Figure 6.13, while the upper bound slowly increases
due to the accumulated error, the lower bound, which is conservative, does not
decrease notably unlike what we could expect.

This analysis shows that if the model ef ciently represents the regulation of
the iron concentration with thiRP proteins, it does not fully model the FPN1la
regulation, and andRP is not the main regulating factor in this regime on the
FPN1a concentration.

6.3 Cadmium impact on glucose response model

Context. Inthis section we present a preliminary analysis of the glucose response
mechanism and its evolution when exposed to cadmidd).(This work follows a
thorough experimental study [96] about the effect of low-dose cadmium exposure
on the glucose regulation, and its link to type 2 diabetes. Indeed it was observed
that some populations exposed to low-dosecadmium for a long period devel-
oped type 2 diabetes syndromes [186, 187, 188]. The experiments in [96] are per-
formed on both cultured cells and animals: in this section we study the experiments
on the animals.

Glucose regulation mechanism mainly depends on an hormone called insulin
which trigger the integration of plasma glucose into cells: especially muscles or
adipocytes (fat holding cells). The insulin is produced by theells of the pan-
creas in response to a glucose increase [189, 190]. As we search to link the cad-
mium exposure to type 2 diabetes, it was rst hypothesized that the cadmium had a
negative effect on insulin production mechanism in theells. However, prelimi-
nary experiments from [96] on cells cultures show not clear results in this sense.

In parallel to the cells cultures, a second set of experiments were performed on
rats. These experiments can be separated in two subsets: the experiments on adults
animals directly exposed to the cadmium, and the experiments on pups (baby rats)
indirectly exposed to the cadmium through the mother placenta before birth, or
milk after birth. The last experiments on pups are summarized in Figure 6.14.

8Compared to usual cadmium toxicity studies.
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During the experiments described in Figure 6.14 multiple oral glucose tolerance
tests (OGTT) were performed. This test consists in measuring the evolution of
plasma glucose concentration during ghieours following an oral glucose intake.
The tests were performed on the pup&htlays after birth, which is the end of the
milk based diet26 days, andb0 days. We rst propose a preliminary modelling

Figure 6.14: Protocol for indirect exposure of small rats to Cadmium through their mothers.

and parameter analysis of the OGTT resul®laR6and60days. Then, we discuss
of the application of MOEPLA for the a further study of the experiments practised
on the pups.

Parameter study. We rst propose a model to reproduce the OGTT results ob-
tained by [96] with the protocol described in Figure 6.14. To this aim, we use the
MINMOD model [97], a small ODE model describing the evolution of glucose
concentration after an initial glucose intake. We also refer to [191] for a review of
glucose regulation models, and in particular to [192, 193, 194, 195] for a modelling
of the OGTT. Finally, we highlight the work [196] which contains a very detailed
model of glucose response after a meal. We may want to apply formal methods
or computationally expensive techniques on our model, for this reason we use the
minimal model MINMOD as a starting point.

The model MINMOD from [97] is not designed for OGTT, but for intravenous
glucose tolerance tests (IvGTT). Therefore, we cannot consider that the plasma
glucose is already at its maximum concentratioh at0, as it is done for IVvGTT
studies. Complex OGTT models such as [196] use compartmental modelling to
represent the multiple stages of the digestion, and to obtain the glucose rate of
appearance in plasma after the meal. In rst approximation we propose a simpler
modelling using directly experimental results measuring the glucose rate of appear-
ance in the winstar rat. From [197, Figure 4] we determine the maximum of the
rate of appearance is obtained30min after the medl Similarly, the initial value
of the rate of appearance is 70% of its maximum (see Figure 6.15). This curve

®We consider that the time food spends in stomach is close to zero as the glucose meal is liquid.
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Figure 6.15: Approximation of the plasma glucose rate of appearance.

is modelled by the continuous functi@ra(t):

1 t )2
Gra(t) = K —p—e 27 ;

where = 30, and = 60. The value of the paramet& is determined by
the actual quantity of glucose fed to the rats. Lefdrbe the mass of glucose
fed to the rats and¥g|o0q the rat blood volume as given in [198]. Then given an
administrated concentration of glucose g Vsi0od, the value oK is the solution

of the following equation:

zZ,
1
Mgic .

1 (G
K—p—e 22 dt= :
2 VBIood

0
In presence of glucose, the release of insulin by theells can be separated in two
phases. The rst phase is the exocytosis of the insulin already present and stored
near to the cellular membrane. The second phase corresponds to the release of
insulin whose production was triggered by the glucose increase. The MINMOD
model correctly simulates the second phase of insulin production, but does not
reproduce satisfactory the rst phase. To address this problem we add an additional
state variable representing the insulin already present and ready to be released in
the blood circulation. Finally, the adapted MINMOD model is given by (6.5).

G= pu(G(t) Gp) rcaX(1)G(1)+Gra(t)
X= paX(t)+ ps(I(t) 1p)

L= nl(t)+ (G(t) h)t+ pals(t)

L= pals(t)

In the ODE system (6.5%; is the glucose concentration in circulating blo&dthe
rate of glucose absorption in muscles and adipocytes due to insukin,insulin

(6.5)
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concentration in circulating blood, arid the insulin concentration stored in the
-cells and ready to be released.

The experimental results are separated gwoups: the control group which
was not exposed to cadmium, the group Cd1 which shows a medium cadmium
exposure, and the group Cd2 with a high cadmium exposure.

To estimate the goodness of t of a given simulation compared to the experi-
mental data, we use the root weighted least-square error:

s
"(k) = Wi(Xexp;i  Xsimu (ti; k))2; (6.6)

y

2

wherek is a parameter set, arxdimy (t; K) its associated simulation of the OGTT.
The weightW; is determined by the equation:

1
W= 5P——;
| 2( ixgxp;i)

where are the variance to the mean associated to-thedata point.

The initial condition, and parameters are searched in the intervals proposed
in [97] bloated by one order of magnitude. To ease the parameter search, when
tting the parameter to the datasets corresponding to group Cd1 and Cd2 we only
consider a few hypotheses on the evolution of the parameters (compared to the one
tting the control group). At rst for the experiments &1 days we consider the
following hypotheses:

— Hypothesis 1:Increase or reduction of the insulin sensibility.

— Hypothesis 1.1: rcq varies: this shows the effect of cadmium on
the glucose absorption in the cells. rifg < 1 then the system has
developed insulin resistance, otherwise the system is more sensitive to
insulin.

— Hypothesis 1.2: p3 varies: this represents the effect of insulin on the
rate of absorption dynamics.

— Hypothesis 2:n varies: this models an effect on the insulin degradation.

— Hypothesis 3:p, varies: this affects the degradation of the glucose absorp-
tion rate.

— Hypothesis 4: varies: this modi es the sensitivity to glucose of the phase
2 of insulin production.

A 21 days, the goodness of t for each hypothesis and associated to group Cd1l
dataset are shown in Table 6.13. The associated best parameter sets are given in
Table 6.14. The initial conditions are given in Table 6.12. The simulation corre-
sponding to the best parameter ts are shown in Figure 6.16. The goodness of t

10Except the default food pollution as it is noted in [96].

Monday 6" August, 2018 (08:34)



126 CHAPTER 6. APPLICATIONS AND CASE STUDIES

Figure 6.16: Simulations of the OGTT 21 days for the control group, Cd1 and Cd2
groups.

associated to the control group data s€t@512 The best ts for group Cd1 are
obtained considering the Hypothesis 4: a reduction of glucose sensibilitgelis
during the phase 2 of insulin production. We consider the same hypothesis when
searching for a parameter t of group Cd2 dataset: the best solution yields a good-
ness of0:006. After 26 days, we consider an additional hypothesis. Indeed, from

Variable Value Unit
G(0) 11060 mg/dL

Hypothesis  Cd1l

1(0) 16:0 nu/dL Hyp 1.2 0:0185
1s(0) 59500 nU/dL Hyp 2 0:0178
Hyp 3 0:0202

Table 6.12: Initial condition deter- Hyp 4 0:.0117
mined for the control group at 21
days. These initial conditions are Table 6.13: Goodness of t(6.6) of each
conserved for the groups Cd1 and hypothesis applied to group Cd1 dataset
Cd2. Note that 1U = 0.0347mg of at 21 days.
insulin.

21 days to26 days the pups went from a milk-based diet to a “normal” food diet.
This change of diet induces important change on the regulation mechanism: this is
observed by an evolution of the parameter set tting the control group dataset.

— Hypothesis 5:[p2; ; h;p 4] are all allowed to vary: these parameters are the
ones which differ the most between the ts of the control grouglatays
and26 days.

The goodness of t for each hypothesis on group Cdl and Cd2 are given in Ta-
ble 6.16. The associated best parameters sets are given in Table 6.17. The initial
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Parameters  Citrl Cdl Cd2 Unit
Py 0:01 min 1
Gp 1000 mg/dL
P2 0:56 min !

P3 0:0142 (dL/nU)min 2

Iy 100 nU/dL

n 5:93 min 1
0:0625 Q05 Q04 (nU/dL)min 2

h 90:.0 mg/dL

P4 0:07 min 1

red 1.0 N.U.

Table 6.14: Parameters values tted for the control group as well as the groups Cd1 and
Cd2 at 21 days (considering hypothesis 4).

conditions are given in Table 6.15. The simulation associated to the best ts are
shown in Figure 6.17. The goodness of t associated to the control group data
set is0:011 We note that Hypothesis 5 yields the best results, and the associated
parameter values are in-between the values of the cont&dl days and?6 days.

One interpretation of this hypothesis would be that the cadmium affects the speed
at which the organism adapts itself to a new diet. Finally the parameter set t-

Variable Value  Unit Hypothesis Cdl  Cd2

G(0) 76:0 mg/dL Hyp 1.1 0:009 Q012

X(0) 0:0 min1? Hyp 1.2 0:009 Q012

1(0) 34:0 nuU/dL Hyp 2 0:009 Q012

Is(0) 59500 nU/dL Hyp 3 0:009 Q012

Hyp 4 0:010 Qo010

Table 6.15: Initial condition determined Hyp 5 0:005 Q005
for the control group a6 days. These
initial conditions are conserved for the Table 6.16: Goodness of t (6.6) of
groups Cdl and Cd2. Note that 1U = each hypothesis applied to the datasets
0.0347mg of insulin. of groups Cd1 and Cd2 &6 days.

ted to the datasets &0 days are given in Table 6.20. The goodness of t of the
control group dataset &006. As shown in Table 6.19, it is hard to distinguish a
hypothesis for the t of the dataset 80 days of the group Cd2: all of the tested
one yielded good results, but this is mainly due to the high variance on this dataset.
We introduce an additional hypothesis to better t the dataset of the group Cd1.

— Hypothesis 6: h varies: this models an in uence on the threshold to trigger
the phase two of insulin production.
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Figure 6.17: Simulations of the OGTT 26 days for the control group, Cd1l and Cd2
groups.

Parameters Ctrl Cd1 Cd2 Unit
P1 0:.01 min !
Gp 1000 mg/dL
p2 0:50 0805 Q86 min 1
P3 0:0312 (dL/nU)min 2
Iy 10.0 nu/dL
n 5:33 min 1
0:0165 00347 00410 (nU/dL)min 2
h 65.0 850 850 mg/dL
P4 0:035 Q0585 Q065 min 1
lrcg 1.0 N.U.

Table 6.17: Parameter values tted for the control group as well as the groups Cd1 and
Cd2 at 26 days (considering Hypothesis 5).

Overall, we propose multiple parameter sets associated to each particular experi-
ment. All of these ts are good and allow us to successfully reproduce the data.
Additionally, we propose possible interpretations on the cadmium impact at each
step of the pups growth.

However, the results are local and only represent one possible valid parameter
set for each experiment. To go further, we need to provide a model of the cadmium
absorption by the pups and we have to make explicit its in uence on the dynamics
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Hypothesis Cdl  Cd2

Variable Value Unit Hyp 1.1 0:008 Q005
G(0) 95:.0 mg/dL Hyp 1.2 0:008 Q005
X(0) 0:0 min 1 Hyp 2 0:008 Q005
1(0) 34:0 nuU/dL Hyp 3 0:008 Q005
1s(0) 59500 nU/dL Hyp 4 0:007 Q005

Hyp 6 0:005 Q005

Table 6.18: Initial condition determined

for the control group and the groups Cdl ~ Table 6.19: Goodness of t (6.6) of

and Cd2 a60days. each hypothesis applied to the datasets
of groups Cd1 and Cd2 &0 days.

Parameters  Citrl Cdl1 Cd2 Unit
P1 0.01 min !
Gp 1000 mg/dL
P2 0:55 min !
P3 0:0205 0:0210 (dL/nU)min 2
lp 100 nU/dL
n 5:33 min 1
0:0265 (nU/dL)min 2
h 650 730 mg/dL
Pa 0:05 min 1
I'cd 1.0 N.U.

Table 6.20: Parameter values tted for the control group as well as the groups Cd1 and
Cd2 at 60 days (considering hypothesis 1.2 for Cd2 and hypothesis 6 for Cd1).

to con rm our hypotheses. Moreover, unless we ensure that there is no other valid
parameter set, our interpretations are just one possible solution.

Future work. In addition to the modelling of the OGTT, we need to model the
cadmium absorption into the mother and pups organs at each step of the protocol.
In the following we propose a simple example of speci cation for the protocol from
Figure 6.14. From the associated hybrid system we still have to nd a parametriza-
tion of the cadmium absorption rate.

For a rst example of speci cation of the protocol from Figure 6.14, we con-
sider two experimental objects: the motki&hotherand the pup©pyp. We consider
two mechanisms of Cadmium absorption (they may differ for the mother and the
pups):F motherandF pyps We also note the default parameters space of the mother
K mother and the one of the pupSpups

We remark that the mother and the pup could be merged into one single exper-
imental object. Indeed, in the current formalization described in Chapter 5, we do
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not accept common variables or parameters. As stated in Section 5.3, this is one
of the points we want to address to improve the MOEPLA language in the future.
If we want to make the pups depend of the mother, we currently need to de ne a
single object including the coupled mechanisms of the mother and the pups. In the
following, we give the sketch of the formalisation with two objects. However, the
approach with one object is similar.

The time is counted in days, and the protocol last at @5days (5 weeks).
At t = 0 day, we start with the mother alonéy(Omothep. After 21 days the
mothers enter in the mating period which leads to pregnancy: this period lasts at
most1l week. In MOEPLA, this can be expressed as a perturbation under the label
L pregnacythat occurs in the time interval2 [21; 28] days:

A (Omother L pregnacy K mother K pregnantt 2 [21;28]):

Similarly, the pups come into being under this perturbation and we associate a
creation action with the lab&lyregnacy

Acreate(opup; LpregnacyxguP; t 2 [21;28]):

In a similar manner we can de ne a perturbation on a change of the parameter
space of both the mother and the pups at the birth stage, and the switch to the
normal food. Measurements are performed independently on either the pups (at
timet = 70 days, 76 days andlL05 days) or the mother (dt= 39 days and0

days). All these measurements can be expressed in MOEPLA using the action
A meas 0N either the variables of the obje0thother O Opyp.
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7.2 Futurework . ... ... 132
7.1 Summary

In this thesis, we addressed three issues in biological systems modelling: model
design, model validation, and model revision. In addition, we investigated three
biological case studies and used them as proof of concept for our different methods.

Model revision. In Chapter 3, we proposed a method to revise a hybrid dynam-
ical system with respect to some observations in form of intermediate time mea-
sures. The method searches for time varying parameters which produce better ap-
proximations of an underlying mechanism, compared to constant parameters. For
this purpose, it uses an algorithm based on the optimal control method for hybrid
systems proposed in [94]. The model revision is achieved without imposing be-
forehand any structure on the sought law, since we consider the case where we do
not possess any additional insight or knowledge.

Set-based simulation. In Chapter 4, we extended the previous work of [83]

for reachability analysis of discrete time polynomial systems with uncertain pa-
rameters. We contributed in this problem an extension of [83] to discrete time
piecewise-rational functions, allowing handling a larger panel of biological appli-
cations. Moreover, we also give a few improvements to speed up the actual reacha-
bility analysis in some particular cases. In addition, we proposed another set-based

131
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simulation method using the Krivine-Stengle representations. We showed how to
adapt the Krivine-Stengle representation based method for an ef cient application
to reachability analysis of discrete-time polynomial systems with uncertain param-
eters in box domains.

MOEPLA: Modelling Oriented Experimental Protocol Language. In Chap-

ter 5, we proposed a preliminary work on a language to formally specify an exper-
imental protocol while taking into account a model of a mechanism. In its current
form, the proposed language allows modelling multi-stage evolutions of multiple
experimental objects in parallel, with possible synchronization steps. It also allows
automatic generation of a formal framework using the hybrid automaton formal-
ism. Taking advantage of non-determinism inherent to hybrid automata that can
model uncertainty in biological models, we can either validate a model while tak-
ing into account an existing protocol (with its uncertainties), or verify that a future
protocol (or therapy) will always be correctly executed. We demonstrated the use
of MOEPLA on two experimental protocols associated to the haemoglobin pro-
duction model and the glucose response model, respectively.

Case studies. Finally, in Chapter 6 we described three modelling studies. We rst
investigated a model of haemoglobin production during the differentiation stages
of the an erythroblast into an erythrocyte (also called red blood cells). In the rst
part of this study, we used a simple exploratory scheme to perform parameter esti-
mation with respect to multiple experimental data sets. In the second part, we used
this model to demonstrate the applicability of our model revision method. This
model revision with a time varying parameter enabled us to better reproduce a con-
sidered dataset. We also note that from the inferred solution we derived multiple
hypotheses which led to a meaningful biological interpretation of the time varying
parameter as an activation function.

The second case study used the iron homoeostasis model designed in [45]. In
this work, we applied the Bernstein reachability analysis from Chapter 4 to con rm
a hypothesis formulated in [45] using exhaustive methods for uncertain parameters
and initial sets.

The last case study was a preliminary modelling of a recent study of genera-
tional effect of low dose and chronic Cadmium intake on the metabolism [96]. In
this case study, we proposed a rst simple model of the oral glucose tolerance test
(OGTT) adapted from a previous glucose response model [97]. We also provided
multiple parameter estimations associated to different data sets.

7.2 Future work

The work described in this thesis still needs improvement on several points, but
also suggests numerous ideas for future work.
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Improvements and implementation. In addition to the theoretical work given

in this thesis, we still need to provide an implementation in a user-friendly toolbox.
The improvements provided in Chapter 4 can be integrated in the latest version of
reachability toolboxsapo [83]. Similarly, the current implementation of sparse
Krivine-Stengle representations must be re-written in a more ef cient implemen-
tation than the current one iMatlab . The MOEPLA language is still under
development, we need to implement an interface and a parser to check the validity
of experimental protocols and automatically generate their hybrid automaton mod-
els for formal analysis purposes. In addition to the implementation work, we still
need to provide a solution to handle common variables, relative time constraints,
and a more ef cient hybrid automaton generation.

Occupation measure methods. The theoretical results of Chapter 3 for model
revision can be improved by providing a converging sequence of relaxations for the
optimal control problem with intermediate points instead of using a greedy algo-
rithm. In addition, it has been shown that occupation measure methods [124] allow
computing converging over-approximations of the valid parameter sets. These re-
sults can be extended to our biological problem of tting parameters with respect
to intermediate time measures.

Non-linear reachability analysis. The work on the Bernstein expansion pro-
vided some ideas for its application for conservative approximations of polyno-
mial lifts. Then, such a method can be used within an algorithm for non-linear
reachability analysis using Carleman linearisation [170]. Another idea is to use
multivariate polynomial interpolation to approximate the image of an initial set by
atrajectory at a xed time.

Glucose response model. The experimental results of Cadmium effect on the
glucose response are recent, and in this thesis we presented a preliminary modelling
work and parameter estimation of the glucose response model, independently of
the Cadmium. We now need to ensure the robustness and validity of the estimated
parameters using either statistical methods or set-based methods. Additionally, we
still need to consider the whole protocol to design a model of Cadmium integration.
The MOEPLA language will help to formally specify this protocol and generate an
associated model.
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Formal methods for modelling and
validation of biological models

Alexandre Rocca
Thesis Directed By Thao Dang and Eric Fanchon

The focus of this thesis is the modelling and analysis of biological systems using formal methods. The
dynamics of biological systems exhibit continuous behaviours but also abrupt changes. Ordinary differ-
ential equations and hybrid dynamical systems are two mathematical formalisms that naturally model
such dynamics.

A crucial aspect of modelling is the determination of valid parameter values that enable to simulate
the behaviour and reproduce experimental data sets. If no valid parameter values are found it becomes
necessary to revise the model. An option is to replace one or several lumped parameters (parameters
which represent a set of processes) by functions of time. In this thesis we rst study the model revision
problem on hybrid dynamical systems. To this aim we propose a greedy scheme of optimal control
methods based on occupation measures and convex relaxations.

Then, we study how to characterize dynamical properties of a model using set-based simulations and
reachability analysis. For this purpose, we propose two methods: the rst one, which relies on Bernstein
expansion, is an extension for hybrid dynamical systems of the reachabilitapa [1], while the

other one uses Krivine-Stengle representations [2] to perform the reachability analysis of polynomial
ODEs. Finally, We also propose a methodology to generate hybrid dynamical systems modelling a class
of experimental protocols.

The proposed methods are applied to different case studies. We rst propose a model of haemoglobin
production during the differentiation of an erythrocyte in the bone marrow [3]. To develop this model, we
rst apply the Monte-Carlo based parameters synthesis, followed by the model revision to correctly t

to the experimental data [4]. We also propose a preliminary study of the effect of low dose Cadmium on
glucose response at different steps of a rat growth. Finally, we apply the reachability analysis techniques
for the validation on large parameters set of the existing iron homoeostasis model [5], [6]. We note
the haemoglobin production process, as well as the glucose response system can be formalised, with
their experimental context, as hybrid dynamical systems. Thus, they serve as proof of concept for the
methodology of biological experimental protocols modelling.

L'objectif de cette tlese est la madlisation et |etude de sysimes biologiques par l'interediaire de
méthodes formelles. Les sgshes biologiques&montrent des comportements continues mais sont aussi
susceptibles de montrer des changements abruptes dans leur dynamiquepudtiems diferentielles
ordinaires, ainsi que les sgshes dynamiques hybrides, sont deux formalismes énadktiques utiliss
pour moctliser clairement de tels comportements.

Un point critique de la moglisation de sysimes biologiques est la recherche des valeurs des ptaesm
du mockle a n de reproduire de magiie pécise un ensemble de ddres exprimentales. Siaucun jeux
de paramtres valides n'est tro@y il est recessaire degwiser le modle. Une possibilé est alors de
remplacer un paraetre, ou un ensemble de paretnes, @ nissant un processus biologique par une
fonction cependante du temps.

Dans le cadre de cettegbe, nous exposons tout d'abord unetihhode pour lagvision de modles hy-
brides. Pour cela, nous proposons une approche gloutonne d@gaigue néthode de condile optimal
utilisant les mesures d'occupations et la relaxation convexe. Ensuite gtudisns comment analyser
les propréetes dynamiques d'un mede a temps discret en utilisant la simulation ensembliste. Dans cet
objectif, nous proposons deuxéthodes baes sur deux outils matmatiques. La prerare néthode,
qui se repose sur les polmes de Bernstein, est une extension auxesyes dynamiques hybrides,
de l'outil de calcul ensemblist8apo [1]. La seconde rathode utilise les repsentations de Krivine-
Stengle [2] pour permettre I'analyse d'atteignaiblite systmes dynamiques polynomiaux. En n, nous
proposons aussi uneéthodologie pour grérer des sysimes dynamiques hybrides néidant des pro-
tocoles biologiques exgimentaux.

Les nethodes predemment prop@es sont applicees sur divergtudes biologiques. Noutudions
tout d'abord un modile de la production démoglobine durant la diffrentiation degrythrocytes dans
la moelle [3]. Pour permettre la construction de ce mlednous avons dans un premier tem@=ege un
ensemble de jeux de paraires valides I'aide d'une n&éthode de type Monte-Carlo. Dans un second
temps, nous avons appligua méthode de@vision de modle a n de reproduire plus pciment les
donrees exprimentales [4]. Nous proposons aussi un gleg€liminaire des effeta faibles doses du
Cadmium sur la&ponse du m@tabolismea differente€tapes de la vie d'un rat. En n, nous appliquons
les techniques d'analyse ensembliste pour la validation d'hgseth sur un made d'honeostasie du
fer [6] dans le cas wdes paramtres varient dans de larges intervalles. Dans ce@tgethnous mon-
trons aussi que le protocole assoail'étude de la production ddmoglobine, ainsi que le protocole
étudiant 'integration du Cadmium durant la vie d'un rat, peuvétre formali€s comme des syshes
dynamiques hybrides, et servent ainsi de preuves de concepts pour éthamde moglisation de
protocoles exprimentaux.
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