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Abstract

The focus of this thesis is the modelling and analysis of biological systems us-
ing formal methods. The dynamics of biological systems exhibit continuous be-
haviours but also abrupt changes. Ordinary differential equations and hybrid dy-
namical systems are two mathematical formalisms that naturally model such dy-
namics.

A crucial aspect of modelling is the determination of valid parameter values
that enable to simulate the behaviour and reproduce experimental data sets. If no
valid parameter values are found it becomes necessary to revise the model. An
option is to replace one or several lumped parameters (parameters which represent
a set of processes) by functions of time. In this thesis we �rst study the model
revision problem on hybrid dynamical systems. To this aim we propose a greedy
scheme of optimal control methods based on occupation measures and convex re-
laxations.

Then, we study how to characterize dynamical properties of a model using
set-based simulations and reachability analysis. For this purpose, we propose two
methods: the �rst one, which relies on Bernstein expansion, is an extension for
hybrid dynamical systems of the reachability toolSapo [1], while the other one
uses Krivine-Stengle representations [2] to perform the reachability analysis of
polynomial ODEs. Finally, We also propose a methodology to generate hybrid
dynamical systems modelling a class of experimental protocols.

The proposed methods are applied to different case studies. We �rst propose
a model of haemoglobin production during the differentiation of an erythrocyte
in the bone marrow [3]. To develop this model, we �rst apply the Monte-Carlo
based parameters synthesis, followed by the model revision to correctly �t to the
experimental data [4]. We also propose a preliminary study of the effect of low
dose Cadmium on glucose response at different steps of a rat growth. Finally, we
apply the reachability analysis techniques for the validation on large parameters
set of the existing iron homoeostasis model [5], [6]. We note the haemoglobin
production process, as well as the glucose response system can be formalised, with
their experimental context, as hybrid dynamical systems. Thus, they serve as proof
of concept for the methodology of biological experimental protocols modelling.
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Résuḿe

L'objectif de cette th�ese est la mod́elisation et l'́etude de syst�emes biologiques par
l'intermédiaire de ḿethodes formelles. Les syst�emes biologiques d́emontrent des
comportements continues mais sont aussi susceptibles de montrer des changements
abruptes dans leur dynamiques. Leséquations diff́erentielles ordinaires, ainsi que
les syst�emes dynamiques hybrides, sont deux formalismes mathématiques utiliśes
pour mod́eliser clairement de tels comportements.

Un point critique de la mod́elisation de syst�emes biologiques est la recherche
des valeurs des param�etres du mod�ele a�n de reproduire de mani�ere pŕecise un
ensemble de données exṕerimentales. Si aucun jeux de param�etres valides n'est
trouvé, il est ńecessaire de réviser le mod�ele. Une possibilit́e est alors de remplacer
un param�etre, ou un ensemble de param�etres, d́e�nissant un processus biologique
par une fonction d́ependante du temps.

Dans le cadre de cette th�ese, nous exposons tout d'abord une méthode pour la
révision de mod�eles hybrides. Pour cela, nous proposons une approche gloutonne
appliqúee�a une ḿethode de contrôle optimal utilisant les mesures d'occupations et
la relaxation convexe. Ensuite, nousétudions comment analyser les propriét́es dy-
namiques d'un mod�ele �a temps discret en utilisant la simulation ensembliste. Dans
cet objectif, nous proposons deux méthodes baśees sur deux outils mathématiques.
La premi�ere ḿethode, qui se repose sur les polynômes de Bernstein, est une ex-
tension aux syst�emes dynamiques hybrides, de l'outil de calcul ensemblisteSapo
[1]. La seconde ḿethode utilise les représentations de Krivine-Stengle [2] pour
permettre l'analyse d'atteignaiblité de syst�emes dynamiques polynomiaux. En�n,
nous proposons aussi une méthodologie pour ǵeńerer des syst�emes dynamiques
hybrides mod́elisant des protocoles biologiques expérimentaux.

Les ḿethodes pŕećedemment proposées sont appliqúees sur diverśetudes bi-
ologiques. Nouśetudions tout d'abord un mod�ele de la production d'h́emoglobine
durant la diff́erentiation deśerythrocytes dans la moelle [3]. Pour permettre la con-
struction de ce mod�ele, nous avons dans un premier temps géńeŕe un ensemble de
jeux de param�etres valides�a l'aide d'une ḿethode de type Monte-Carlo. Dans un
second temps, nous avons appliqué la ḿethode de ŕevision de mod�ele a�n de re-
produire plus pŕeciśement les donńees exṕerimentales [4]. Nous proposons aussi
un mod�ele pŕeliminaire des effets�a faibles doses du Cadmium sur la réponse du
métabolisme�a différenteśetapes de la vie d'un rat. En�n, nous appliquons les
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techniques d'analyse ensembliste pour la validation d'hypoth�eses sur un mod�ele
d'homéostasie du fer [6] dans le cas o�u des param�etres varient dans de larges in-
tervalles. Dans cette th�ese, nous montrons aussi que le protocole associé �a l' étude
de la production d'h́emoglobine, ainsi que le protocoleétudiant l'int́egration du
Cadmium durant la vie d'un rat, peuventêtre formaliśes comme des syst�emes dy-
namiques hybrides, et servent ainsi de preuves de concepts pour notre méthode de
mod́elisation de protocoles expérimentaux.

viii



Contents

Abstract v
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Introduction

Essentially, all models are wrong, but some are useful.

George E.P. Box

1.1 Context

Computational models in systems biology. Any science in interaction with the
real world needs models. In Figure 1.1, we give a possible point of view on the
modelling approach. The real world forms a whole: the environment in which
we measure observations exhibiting a particular phenomenon. The phenomenon
results from interactions of entities that are part of the environment. This environ-
ment may be set or constrained by an experimentation, or it can be free and uncon-
trolled. The observations are the measures performed that allow to observe, at least
partially, the phenomenon. Then, a model is an abstraction of the observable world
using a mathematical or computational formalism. Given inputs representing a
possible state of a considered environment, a model provides outputs associated to
some observations of a real phenomenon (see Figure 1.1).

The purposes of models are numerous. They can be used to replicate in-silico
real-life experiments, reducing the time and cost of multiple real-life tests. Simi-
larly, they can provide prediction, monitoring and diagnosis capabilities for a given
phenomenon and for a known environment. This is primarily achieved by black-
box models (also called operational models) which are built directly from observa-
tions, using inference-based techniques, machine learning, or model identi�cation.
In the biological context, this is especially useful when the environment is repet-
itive, well-sampled and with numerous observations. For example, any statistical
model performing disease diagnostics is of this kind: given a set of well determined
biological markers a model provides the probability of a good or bad evolution of
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Real world
phenomenonEnvironment Observations

ModelInputs Outputs

Abstraction

Samples Reproduce

Figure 1.1: Models as an abstraction of the real world.

the disease. More advanced techniques, under the name of model identi�cation,
try to infer the complete structure of a model in an attempt to obtain a representa-
tion of the actual mechanism leading to the observed phenomenon. An example of
such methods using hybrid systems as models is [7]. While black-box models are
a very ef�cient way to represent a phenomenon for the previous applications, they
are clearly limited on, at least, three points:

1. They are only useful when the inputs are taken inside a well de�ned envi-
ronment.

2. It is hard to integrate new results, any real-life observations, which are not
reproduced by the model, without reconsidering the whole model.

3. No actual knowledge or understanding of the underlying mechanism can be
easily obtained from such models.

Therefore, in addition to black-box model there are models whose purpose is to
represent and abstract the knowledge about the mechanism leading to the observed
phenomenon. In the following, we will call these models mechanistic models.
However, in the literature they are also named white-box models or denotational
models. In black-box models the structure of the mathematical functions describ-
ing a phenomenon is directly inferred from observations. This is in contrast with
mechanistic models where the structure of the laws de�ning the inputs-outputs re-
lationship results from hypotheses and/or previous knowledge on the mechanism
associated to the studied phenomenon.

Mechanistic models are employed to understand and represent the existing
knowledge about a particular mechanism. Therefore, another purpose is to test
hypotheses on unknown components of the mechanism Otherwise, up to our cur-
rent observations, our understanding of the mechanism is more likely to be true:
there is yet no guarantee. Consequently, a model can only disprove a hypothesis.
Finally, mechanistic models can be used, to a certain extent, to design more faith-
ful black-box models or to provide prediction and monitoring abilities in some
applications [8, 9]. Unlike black-box models, which are useful only when they
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1.1. CONTEXT 3

are coherent with the observations, the mechanistic models have a greater panel
of applications. However, they require in general more time to be designed and
result from numerous loops between experimentation and validation with respect
to the observations. Moreover, they are often more computationally expensive than
black-box models.

We remark that mechanistic models can be studied with qualitative and/or
quantitative methods. Qualitative methods seek to represent and describe the gen-
eral behaviours of an observed phenomenon, for example the number of attractors
or cycles, the stability or bifurcation conditions, etc. They often rely on strongly
theoretical approaches and do not necessarily need numerical methods and compu-
tations for other purposes than displaying results. On the other hand, quantitative
methods do not necessarily provide strong theoretical results on the behaviours.
However, they seek to reproduce the observations as faithfully as possible, by
studying the behaviours and the numerical values associated to both the obser-
vations and the variables describing the environment.

In this thesis, we will mainly address the problem of modelling biological phe-
nomena and observations using mechanistic models with quantitative methods.

Mathematical formalisms. There exists a large choice of mathematical formalisms
such as process algebra, Boolean networks, Petri nets, Thomas networks, stochastic
models, difference equations, ordinary differential equation (ODEs), partial differ-
ential equations (PDEs), or hybrid dynamical systems. The choice of the formalism
strongly depends on the types of available data and the questions asked.

Along this thesis, we use three from these mathematical formalisms. The �rst
one is the ODE formalism. ODEs describe the variations of the entities under study
over an in�nitely small time instantdt. Hence, instead of directly modelling the
evolution of each entity as function of time, we represent how the entities interact
with each other. The actual evolution is then obtained by integrating the ODEs
over the time.

In the ODE formalism, both time and state variables are continuous. Moreover,
the ODE is a deterministic formalism and describes in general average and macro-
scopic quantities. Therefore stochastic effects are neglected: the ODE's solution
must be similar to the average observations of numerous experimental runs with
the same environment settings. In system biology, the relevance of the ODEs can
be discussed, in particular for the study of molecular reactions with small or in-
homogeneous entities concentrations. In this thesis we do not consider stochastic
models.

The second formalism is discrete time systems and in particular difference
equations. Difference equations are similar to the ODE formalism in the sense
that we assume determinism and continuous state variables. However, they operate
on discrete time instead of continuous time. Consequently, discrete time system
computation is more direct than ODE numerical integration. It is also interesting
to note that solutions of ODEs can be approximated by discrete time systems.
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4 CHAPTER 1. INTRODUCTION

The third formalism is hybrid dynamical systems. Using this formalism, one
can combine discrete and continuous dynamics. It is important to note that the term
“hybrid system” in system biology refers to a wide range of formalisms as shown
in [10]. Thus, we emphasize that in this thesis we use this term to denote hybrid
dynamical systems. Additionally, as we do not consider stochastic hybrid systems,
we refer the interested reader to a recent review [11] for information about them.

Problems arising in biological systems modelling. We recall that we are con-
sidering the problem of modelling of biological systems de�ned by: a phenomenon
under study (for example, metabolic response to glucose intake), an environment
( for example, a study on rats, or a particular diet), and a set of observations (for
example the plasma glucose and insulin measurements).

The �rst step of the modelling process is the de�nition of the involved enti-
ties and the model structure describing the interactions between the entities. The
entities (represented by state variables) to consider can be determined from the
observations, the perturbations performed during the experiment, or they can be
de�ned an abstract representation of a more complex mechanism. Similarly, the
model structure (network topology) can be established using a priori knowledge,
or from hypotheses and insights on the experimentations. Then, kinetics laws,
such as the mass action laws, provide the equations governing the dynamics. We
remark that at these equations are de�ned using parameters whose values may be
uncertain. We explain the need of parameter estimation a bit further.

The �rst challenge is to determine the appropriate approximation level of the
model. One attempt would be to integrate all previous modelling efforts and knowl-
edge into the new model. This results in an overly complex model spanning over
multiple scales which is hard to understand, validate and/or simulate. Another
attempt is to design a model as simple as possible by representing solely the ob-
servable entities and by approximating or inferring other mechanisms. This leads
to models which either cannot reproduce the existing observations, or cannot re-
produce future observations of the same phenomenon but in slightly different en-
vironment settings. To know about methods for formally handle this �rst step,
we refer to some work on model integrations [12], or model reduction techniques
[13, 14, 15]. These results provide mathematical frameworks to approximate and
integrate previous knowledge, or to reduce multi-scale models arising from knowl-
edge integration, while ensuring the correctness of the resulting approximations.

The values of the parameters are especially important in quantitative modelling
as we seek not only to reproduce the general behaviours of the observations, but
also to replicate the same numerical results.

In classical physics these parameters are often well-de�ned physical constants
which can be directly measured through experiments. In engineering, the amount
and the accuracy of observations are often very high, leading to accurate parameter
identi�cation. Moreover, a priori ranges for the parameter values are easily esti-
mated from physical laws, or parameters are often related to real world components
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1.1. CONTEXT 5

and have �xed values by construction.
In biology, parameters may represent physical or chemical constants, but they

are often an abstraction of an underlying mechanism which is approximated by a
constant for a given environment setting. Consequently, parameters may not be
directly observable as in classical physics or engineering, and their actual ranges
may be completely unknown at �rst. Moreover, actual experimental observations
are scarce, and/or with high variance leading to poor parameter estimation quality.
The parameter estimation and validation are critical issues in biological systems
modelling. In the next section, Section 1.2, we will discuss brie�y some work
on parameter estimation for the considered formalisms. Once a set of parameter
values (also called parametrization of the model, or parameter set) enable us to
reproduce experimental observations, we need to determine the level of con�dence
in the quality of this parameter set, and to validate the model.

Parameter uncertainty analysis (sensitivity analysis, identi�ability, and robust-
ness) is a way to assess the quality of a parameter estimation with respect to ex-
perimental observations. In this work, we do not develop new methods to address
these issues and we refer the interested reader to a recent review on the subject [16]
for ODEs.

In addition to these methods, it is also possible to apply set-based methods
from the �eld of formal veri�cation to ensure the validity of the model with re-
spect to the observations. Formal methods are the set of computational methods
which provide guarantees and proofs, which can be achieved by convergence prop-
erties, conservative or certi�able results. Formal methods originally come from
the �eld of automated theorem proving and algorithmic veri�cation. In these top-
ics, a model is considered as an accurate representation of the reality, such as a
mathematical theorem, or a system/program execution and a major problem is to
provide a binary answer to the question whether the model satis�es some property.
In biology, a model is a hypothesis or an abstraction of the reality, and it is impor-
tant to �nd a counter-example disproving the model, but proving that there is no
counter-example is not critical, since experiments themselves may be inaccurate
or incomplete. We remark that when dealing with the particular �eld of synthetic
biology, therapy on patients and experimental protocol design, the issue of proving
the correctness of the model may become critical in the future. Indeed, an error
in the model would lead to patient death or failure of an expensive experimenta-
tion. However, formal methods are ef�cient in proving qualitative properties of
the models, which eases considerably the theoretical work. Moreover, set-based
methods and methods from formal veri�cation give an exhaustive abstraction of
all the possible solutions for a given set of inputs. They are also ef�cient to �nd
counter-examples, or to deal with dense sets of possible inputs. When dealing with
parameter uncertainties over multiple orders of magnitude, methods based on nu-
merical simulations and large number of samplings may be cost inef�cient due to
the exponential volume of the parameter space to explore. Using set-based analysis
from formal methods one can provide conservative results in the form of solution
sets which can be more ef�cient than simulations. We refer the reader to three in-
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6 CHAPTER 1. INTRODUCTION

teresting articles on the use of formal methods for systems biology [17, 18, 19]. In
addition, for more details on the general process of biological systems mathemati-
cal modelling we recommend the following work [20, 21, 22].

Finally, we note that if there is no parameter valuation that allows reproducing
the experimental observations, either the parameter estimation method is lacking,
or the proposed model of the mechanism is incorrect. In the latter case, we need to
update the model: we call this step model revision. This step can be performed in
two manners. First, a model can be revised by adding additional knowledge, which
were not previously considered, into the model. Second, in absence of insight and
additional information, model revision can be done by assuming that a parameter
modelling an underlying mechanism needs to be studied more in depth: in this case,
one can resort to functional optimization techniques similar to model identi�cation,
to infer a better approximation for the underlying mechanism.

In this thesis, we address three of the above issues (designing biological model,
model validation, and model revision) using techniques from the �eld of formal
methods.

In the next section we provide an overview on dynamical hybrid system mod-
elling for systems biology, a short review on parameter synthesis and parameter
estimation, and �nally on formal methods for validation of biological systems. An
additional discussion on related work is provided in each chapter.

1.2 State of the Art

Hybrid dynamical systems modelling. In this thesis we use hybrid dynamical
systems as a mathematical formalism to represent biological systems. Models of
biological systems can be directly designed using hybrid dynamics. Indeed, this
formalism allows us to clearly de�ne and combine the continuous and homoge-
neous behaviours with discrete or discontinuous ones. One can model the different
phases of a biological process, or cyclic behaviours, as a hybrid system. For ex-
ample, in [23] the hybrid formalism was applied to the cell cycle modelling, while
[24] and [25] are concerned with modelling cell behavioural changes under a stim-
ulus. In [26], this model is used to specify multi-step protocols1, while in [27]
hybrid systems describe the spiking models and multi-phases behaviour of neuron
activity.

In addition to the modelling purposes, hybrid systems can be used to reduce
the complexity of non-linear dynamical systems.

Such approach was �rst considered for engineering goals as in [28] on plane
control systems. More recent work addresses the problem of hybridization, that
is approximation of complex non-linear dynamics by a hybrid system which is
easier to compute and/or analyze. The resulting hybrid system can have dynam-
ics described by linear ODEs in which case we speak of piecewise linearisation

1In a similar approach to the work described further in this thesis
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1.2. STATE OF THE ART 7

techniques2. These linearisations can either be decided initially from the system
equations [29, 30, 31] or on the �y [32, 33]. It is also possible to approximate a
non-linear continuous model by a hybrid system with simpler non-linear dynamics
[34].

For biological models, another way to reduce the model complexity is to pro-
pose hybridization methods approximating multi time scales dynamics and explic-
itly separate fast and slow modes inherent to biological processes [35, 36, 37]. We
note that the latter work recovers, using formal methods, the previous hybrid mod-
elling proposed in [23]. Activation processes in gene regulatory networks can also
be formally represented by hybrid systems (piecewise linear) as demonstrated in
[38].

Finally, we invite the reader to consult [18, 39] which review the aims and
methods for hybrid systems modelling as an application to systems biology [18,
39]. More details on the hybrid system formalism itself can be found in Chapter
2-Section 2.2, or in introductory books [40, 41].

Parameter estimation techniques. In this thesis we do not directly address the
problem of parameter estimation (also called parameter synthesis), and only pro-
vide simple exploratory schemes that we use in our case studies. However, we still
provide here a short view of different tools and methods which handle this issue.

First, we remark that there are a number of methods and tools based on nu-
merous simulation and optimization methods as explained in the previously cited
review on ODE parameter uncertainty analysis [16]. The search of valid param-
eters is equivalent to minimizing a cost function modelling either the distance
to some experimental time series [42, 43] or some temporal logic formulas de-
scribing expected realistic behaviours [44] or [45, 46] (based on Breach toolbox
[47, 48]). While some of this work uses a purely optimization based approach
[45, 46, 42, 43, 49] (see [50] for a review on optimization methods in systems biol-
ogy), others consider statistical or probabilistic methods [51, 52] and [53] (based on
[54] Bayesian modelling). Among this work, only [43, 47] are designed to handle
hybrid systems or black-box simulations3, while all the other methods are speci�c
to ODEs or stochastic models. The work in [26] proposes, for a case study, an
adaptation of the particle swarm technique for parameter estimation of non-linear
hybrid systems. Only [43] handles multi-objective optimization problems, which is
a useful when simultaneously considering observations from various experiments.

In addition to these simulation-based techniques, some other works consider
the problem of searching for a set of valid parameters using techniques from for-
mal veri�cation. In [5] the author proposes a method to search for clusters of valid
parameter sets using the robustness-based algorithm from [47]. Gene regulatory
networks are an important topic in systems biology, which has led to intensive

2The hybrid dynamical system formalism may not be explicitly used but the resulting behaviours
can be considered considered as hybrid.

3The tool only knows the trajectory solution and not the actual structure of the model.
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8 CHAPTER 1. INTRODUCTION

modelling effort [55, 56, 57, 58, 59]. Gene regulatory networks can be modelled
as multi-af�ne hybrid systems with box domains. Using previous theoretical work
[60, 61, 62] on sigmoid approximations, it is possible to exploit the convexity of the
�ow at the corner of the domains. The previously cited works [55, 56, 57, 58, 59]
use this to perform reachability analysis and parameter estimations. In [55, 56] the
authors over-approximate multi-af�ne hybrid systems by linear hybrid automata
[63] for which the reachable sets are easier to compute: parameter estimation is
performed in parallel. Similarly, [57] approximates the �ow on the faces of the
domains and use model-checking techniques to compute the reachable set and per-
form parameter synthesis. The work [58, 59] uses the approximation from [61]
to approximate the regulation networks by a discrete interaction graph on which
constraint and satis�ability solvers can be ef�ciently applied to obtain a valid pa-
rameter set.

Finally, we mention some work which aims at handling directly dense param-
eter sets. On discrete time polynomial population models, the authors of [64, 65]
propose a method to compute an under-approximation of a valid parameter space
satisfying a set of temporal constraints (in Signal Temporal Logic). A similar ap-
proach by invalidation is investigated in [66] and the toolbox ADMIT [67]. Finally,
the semi-de�nite programming methods usually applied for control problems can
be used for parameter estimation of biological systems: we refer to [68] for dis-
crete time biochemical systems, and [69, 70] for more general work on ODEs and
non-linear hybrid dynamical systems, respectively.

Methods for model validation and veri�cation. Once a parameter valuation is
estimated, we want to gain con�dence or validate in the determined model. This
con�dence can be obtained by computing with statistical methods the robustness
of the current model with respect to some perturbations [16]. It is also possible to
validate the model using either model-checking methods or set reachability anal-
ysis. Model checking can be roughly described as checking the satisfaction of a
logic formula (describing a desired property) on a mathematical model. With the
development of SAT solvers and SMT (SAT-modulo theory) the model-checking
approach is an ef�cient way to validate a model. However, this method is in gen-
eral more adapted to the validation of qualitative properties. The are numerous
work applying the model-checking approach to systems biology. The work of [71]
proposes to apply abstract interpretation to perform model checking on models
de�ned in different formalisms: continuous Markov chains, Petri nets, boolean
networks and in differential equations. Through the de�nition of type structures
for multiple interactions arising in biochemical reactions, they can generate a satis-
�ability problem to validate qualitative properties. This approach is integrated into
the toolbox Biocham [44]. We note this toolbox also includes a monitoring engine
to perform robustness analysis over simulation traces of ODE systems. In addi-
tion to this tool, there are numerous other tools for veri�cation of gene regulation
networks using convex approximation of the �ow as de�ned in [61]. The genetic
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network analyser (GNA) [72, 73] provides a qualitative validation of a discrete ab-
straction for piecewise af�ne models of gene regulation networks. An extension
for quantitative analysis of piecewise multi-af�ne models provided in RoVerGeNe
[74, 75, 76]. A similar approach is also considered in more recent work [57]. Apart
from gene regulation networks, we mention [77] which provides an algorithm for
model checking of hybrid automata with explicit �ow and algebraic constraints.
We remark that outside of the biological context, the theorem prover toolbox Key-
maera [78, 79, 80] also handles veri�cation of temporal logic formula on hybrid
dynamical systems whose trajectories can be explicitly described. Finally, we rec-
ommend the reader to consult an overview of the model-checking approach on
discrete models of gene regulation [81] and broader reviews of the application of
model-checking and their tools for biochemicals systems [19, 82].

In addition to model-checking based approaches there are a number of tools
which can compute reachable sets of differential equation models by set-based
simulation methods. However, there are only few which are dedicated to sys-
tem biology [83, 84]. We note the toolbox Marco [85] which uses the previously
cited works on �ow convexity for piece-wise multi-af�ne systems [60, 61] to pro-
vide reachability analysis of biological systems. Indeed, most of these results are
either applicable only to linear ODE system, or do not handle ef�ciently mod-
els with uncertain parameters. The works which handle both non-linear dynam-
ical systems and uncertain parameters are [29, 34, 86, 83]. The �rst two tools
[29, 34] rely on linearisation and non-linear hybridization, respectively. The last
two tools [86, 83] use parametric Bernstein expansion of polynomials to compute
over-approximations of reachable sets. Note that the last two tools are the start-
ing steps that lead to the work we propose in Chapter 4. We also mention in
the following some results which seem to be promising in their applications for
systems biology, even if they do not consider uncertain parameters, but only un-
certainty on the initial conditions. The toolbox [87] provides an ef�cient method
to validate hybrid automata with linear dynamics. This method scales with the
state-space dimension and accepts uncertain inputs. However, in its current state
it does not accept non-linear dynamics. The toolbox [88] accepts non-linear hy-
brid systems, but do not ef�ciently handles uncertain parameters. Additionally,
we mention some results for reachability of non-linear systems without uncertain
parameters [89, 33, 90, 91, 92]. Finally, we recommend a recent review [93] on
modelling and validation of biological systems using formal methods.

1.3 Contributions

In this thesis, we present our contributions in addressing three issues in biological
systems modelling: the design of a model, its validation, and the model revision
problem. In addition to the contributions described in Chapters 3-6, we �rst give
a short mathematical introduction to differential equations, optimal control and
hybrid dynamical systems in the Chapter 2.
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10 CHAPTER 1. INTRODUCTION

Model revision. In Chapter 3, we propose an original method to revise a hybrid
dynamical system with respect to some observations in the form of intermediate
time measures. More concretely, we search for a time varying law better approxi-
mating an underlying mechanism (previously described by a constant parameter).
We want to achieve this goal without prede�ned functional form for the sought
law. Indeed, we consider the case where we do not possess any additional insight
or knowledge. Moreover, we want to avoid classical optimization methods relying
on an extensive sampling of a parameter space and numerous simulations. For this
purpose, we propose an algorithm based on the optimal control method for hybrid
systems proposed in [94]. Experimental results are later exposed in Section 6.1.2
in the chapter describing case studies. This work was accepted in the conference
ADHS 2018 [4] (Analysis and Design of Hybrid Systems).

Set-based simulation. In Chapter 4, we extend the previous work of [83]. This
work allows to perform reachability analysis of discrete time polynomial system
with uncertain parameters. To do so, it relies on the Bernstein expansion, a math-
ematical tool which can be used for multivariate polynomial optimization over
box domain. We contribute in this problem by extending [83] to discrete time
piecewise-rational functions, allowing handling a larger panel of biological appli-
cations. Moreover, we also propose a few improvements to speed up the actual
reachability analysis in some particular cases. In addition, we propose another set-
based simulation method using Krivine-Stengle representations, which are another
mathematical tool for polynomial optimization. We show that it can be adapted for
an ef�cient application to reachability analysis of discrete-time polynomial systems
with uncertain parameters in box domains. Finally, we discuss the complexity of
both methods for polynomial optimization, and devise a policy for a more ef�-
cient reachability algorithm. The Bernstein reachability method is applied on a
case study in Section 6.2. The Bernstein reachability approach and its associated
case study were published in the conference HSB 2016 [6] (Hybrid System Bi-
ology). The Krivine -Stengle approach has been published in conference ARITH
24 [2] (IEEE Symposium on Computer Arithmetic) as an application to compute
upper-bounds of the �oating point round-off error. An extended version of this
publication has been submitted to the journal IEEE Transaction on Computer [95].

MOEPLA: modelling oriented experimental protocol language. In Chapter
5, we propose a preliminary work on a language to formally specify an experi-
mental protocol while taking into account a model of a mechanism. This language
aims to facilitate the interactions between the experimentalists and the modelling
team. It also allows automatic generation of a formal framework using the hybrid
automaton formalism. Taking advantage of the non-determinism inherent to the
hybrid automaton de�nition, we can either validate a model while taking into ac-
count an existing protocol (with its uncertainties), or verify that a future protocol
(or therapy) will always be correctly executed. This can be achieved by using the
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existing tools for hybrid automaton veri�cation [87, 88, 89], or at least semi-formal
validation with simulations [47]. As this work in still under development, it is not
yet published.

Case studies. In Chapter 6, we describe three modelling studies which were done
along the thesis in parallel to the methodological work. We �rst give a model of
haemoglobin production during the differentiation stages of the an erythroblast
into an erythrocyte (also called red blood cells). In the �rst part of this study,
we use a simple exploratory scheme to perform parameter estimation with respect
to multiple experimental data sets. The associated results constitute a part of the
following reference [3]. In the second part, we propose to use this model as a
proof of concept of the model revision method. This model revision with a time
varying parameter enables us to better reproduce a considered dataset. We also
note that from the inferred solution we derive multiple hypothesis which lead to a
meaningful biological interpretation of the time varying parameter as an activation
function. This model revision study is accepted in the conference paper [4].

The second case study use the iron homoeostasis model designed in [45]. In
this second work, we applied the Bernstein reachability analysis from Chapter 4
to con�rm a hypothesis formulated in [45] using exhaustive methods for uncertain
parameters and initial sets. These results are published in [6].

The last case study is a preliminary modelling of a recent study of generational
effect of low dose and chronic Cadmium intake on the metabolism [96]. In this case
study, we propose a �rst simple model of the oral glucose tolerance test (OGTT)
adapted from a previous glucose response model [97]. We also provide multiple
parameter estimation associated to different data sets. This work is still on-going,
and has yet to be published.

Monday 6th August, 2018 (08:34)



12 CHAPTER 1. INTRODUCTION

Monday 6th August, 2018 (08:34)



C
H

A
P

T
E

R

2
Preliminaries
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In this �rst chapter we give necessary basic de�nitions and insights on the two
dynamical system mathematical formalisms we use throughout the thesis:ordinary
differential equations(ODEs) andhybrid dynamical systems. The �rst Section
de�nes multivariate calculus notations, introduces ODEs notations, and describes
their main properties. Then, we extend these de�nitions and properties to para-
metric ODEs with inputs. Finally, we will use these de�nitions to formalize the
optimal control problem for ODEs. The second Section de�nes hybrid dynami-
cal systems, that is dynamical system mixing discrete and continuous trajectories.
We also provide the de�nition of an instance of this formalism, namely the hybrid
automaton.

2.1 Ordinary differential equations

Multivariate calculus notations. We �rst recall useful notation on multivariate
calculus. Forx = ( x1; : : : ; xn ) 2 Rn and the multi-index� = ( � 1; : : : ; � n ) 2
Nn , we denote byx � the product

Q n
i =1 x � i

i . We also de�nej� j = j� 1j+ : : :+ j� n j,
0 = (0 ; : : : ; 0) and1 = (1 ; : : : ; 1).
The notation

P
� is the nested sum

P
� 1

: : :
P

� n
. Equivalently

Q
� is equal to the

nested product
Q

� 1
: : :

Q
� n

.
Given another multi-indexd = ( d1; : : : ; dn ) 2 Nn , the inequality� < d (resp.� �
d) means that the inequality holds for each sub-index:� 1 < d 1; : : : ; � n < d n

(resp.� 1 � d1; : : : ; � n � dn ). Moreover, the binomial coef�cient
� d

�

�
is the prod-

13
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uct
Q n

i =1

� di
� i

�
.

Let f : Rn ! Rn be a vector �eld onRn , thenmax(f (x)) denotes the vector of
optima(max f 1(x); : : : ; max f n (x)) .
Let R[x] be the vector space of multivariate polynomials. Givenf 2 R[x], we as-
sociate amulti-degreed = ( d1; : : : ; dn ) to f , with eachdi standing for the degree
of f with respect to the variablex i . Then, we can writef (x) =

P

 � d a
 x 
 , with

a
 (also denoted by(f ) 
 ) being the coef�cients off in the monomial basis and
each
 2 Nn is a multi-index. The degreed of f is given byd := max f 
 :a
 6=0 g j
 j.

Example 2.1(Multivariate polynomial degrees). As an example, iff (x1; x2) =
x4

1x2 + x1x3
2 thend = (4 ; 3) andd = 5 . For the polynomialf (x; k1; k2; k3) =

(2x2 � x)k1 + x2k2 + ( x2 � x)k3 used later in Section 4.2, one hasd = (2 ; 1; 1; 1)
andd = 3 .

Ordinary differential equations. Apart from some particular cases, the dynam-
ical systems studied we consider evolve in continuous time. Lett be the variable
representing the time. Without loss of generality we can denoteT = [0 ; T] � R+

the time interval, or time domain of the dynamical system under study, such that
t 2 T .

Let x 2 X � Rn be a vector wheren is the number of components and the
i -th elementx i denotes thei -th variable. The setX is the set which constraints the
possible values of the variablesx. Then,n-dimensional ODEs are de�ned by:

_x = f (t; x) ; (2.1)

wheref : T � X ! Rn . We callx the state variables, andX the state space of the
system. We recall in the following some main results on ODEs. However, we omit
the proofs which can be found in a more in-depth textbook on the subject [98].

We �rst introduce the notion of continuous trajectory: A trajectory� x0 (t) : T �
X ! X is a function which describes, for agiven initial pointx0, the evolution of
the state variables as function of time. The Cauchy-Lipschitz theorem ensures the
existence of a unique trajectory solution� x0 (t) of the ODEs (2.1) whenx(0) = x0.
We note that Theorem 2.3 is asuf�cient conditionfor the existence and uniqueness
of a (maximal) solution. Let us recall the notion of locally Lipschitz for a function
f .

De�nition 2.2 (Locally Lipschitz). A functionf : T � X ! Rn is locally Lipschitz
w.r.t. x iff for all (t; x) 2 T � X there exists a neighbourhoodN (t; x), andL > 0
such that for all(t0; x1) and(t0; x2) 2 N (t; x ):




 f (t0; x1) � f (t0; x2)




 � L kx1 � x2k
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2.1. ORDINARY DIFFERENTIAL EQUATIONS 15

A suf�cient condition forf to be locally Lipschitz is to be differentiable onX .
We note that ifL is a constant valid for allx 2 X , thenf is globally Lipschitz. A
suf�cient condition forf to be globally Lipschitz is that its derivative is uniformly
bounded byL .

Theorem 2.3(Cauchy-Lipschitz). If f : T � X ! Rn is a continuous function
locally Lipschitz w.r.t. x . Then, for all(t0; x0) 2 T � X there exists a unique
maximal1 solution of(2.1)denoted by� x 0 : [t0; T [! Rn with t0 < T � + 1 such
that � x 0 (t0) = x0 and

8t 2 [t0; T [;
d� x 0 (t)

dt
= f (t; � x 0 (t))

We note that Theorem 2.3 is asuf�cient conditionfor the existence and unique-
ness of a (maximal) solution.

Example 2.4(Simple ODE). As a simple example let us take the following ODE:

_x = � 4x: (2.2)

Then, there exists a unique solution� x0 (t) = x0e� 4t for t 2 [0; + 1 [ such that
� x0 (0) = x0. Let us now substitute the constant value4 with the letterk. The
example (2.2) becomes

_x = � kx ; (2.3)

wherek is a constant parameter. Consequently, givenk 2 R there is still a unique
solution to (2.3),� x0 ;k (t) = x0e� kt for t 2 [0; + 1 [, such that� x0 ;k (0) = x0.

Parameters and inputs functions. We can generalize Example 2.3 and de�ne
parametric ODEsas

_x = f (t; x ; k); (2.4)

wherek is a vector ofm parameters,K 2 Rm is the parameter space, andf is a
function f : T � X � K ! Rn . Then, for every constant value ofk 2 K and a
given initial conditionx0, in a similar manner to Theorem 2.3, iff is a continuous
function locally Lipschitz w.r.t.x and continuous Lipschitz w.r.t.k , then there
exists a unique solution. One way to understand it is to represent the parameters as
constant state variablesy , addingm new equations_y = 0 , and choosing an initial
conditiony0 = k.

We recall that in systems biology, parameters may have multiple interpreta-
tions. They can represent a physical constant, for example the Avogadro constant,
or is used to approximate an underlying mechanism by a constant for a speci�c

1The solution is said to be maximal if it cannot be continued any further than T
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experimental environment, As an example, kinetic rates are often modelled by con-
stants for a given temperature.

In addition to constant parameters, one can model external in�uences, approx-
imations of internal mechanisms or uncertainties, through an input functionu(�).
Inputs can be put into two categories given their interpretations in the model.

– The uncontrolled inputs or perturbations: they can represent the environ-
ment, an in�uence external to the modelled system and not driven by hu-
man strategies, or an approximation of some underlying mechanism. Inputs
can also be employed to obtain more accurate approximations of subsystems
than a constant parameters.

Some examples of uncontrolled inputs are a �uctuating temperature during
an experiment, a noise function representing some uncertainty on the exact
behaviour of a system (in which case we may lose determinism).

– The controlled inputs or controls: they model an external action applied to
reach a target state given by a human being. The control inputs re�ect strate-
gies to achieve some objective. In some cases, the strategy is not only to
reach a target, but also to minimise some function, such as a cost function
along the trajectories, we then speak of optimal control.

An example of controlled inputs are the concentration of a drug given to a
patient during therapy. Another example would be the necessary number of
ill people to treat at a given time to avoid a disease propagation.

Structurally, the input functions can be put into two families: the open loop
inputs, and the feedback inputs. An open loop inputu(�) is a functionu : T ! U,
whereU � Rp is the input space, andp the dimension ofu. The set of all the
functionsu such thatu(t) 2 U for t 2 T is also called theaccepted input setand
we denote by itUT . Then, parametric ODEs (2.4) can be extended to parametric
ODEs with inputs

_x = f (t; x ; k ; u(t)) ; (2.5)

and for a �xed functionu, (2.5) can be re-written as parametric ODEs_x = F(t; x ; k)
with F(t; x ; k) = f (t; x ; k ; u(t)) for all t 2 T . Consequently, Theorem 2.3 can be
extended to the case with an open loop input function whenF respects the condi-
tion from Theorem 2.3.

Theorem 2.5. Let f be a function de�ned byf : T � X � K � U ! Rn . Let f
be locally Lipschitz w.r.t.x , continuous w.r.tu, and letu : T ! U be continuous.
Then, given an initial condition(t0; x0) 2 T � X and a parametrizationk 2 K ,
there exists a unique maximal trajectory solution� x 0 ;k ;u (t) for t 2 [t0; T [, with
t0 < T � + 1 , such that� x 0 ;k ;u (t0) = x0 and

8t 2 [t0; T [ ;
d� x 0 ;k ;u (t)

dt
= f (t; � x 0 ;k ;u (t); k ; u(t))
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2.1. ORDINARY DIFFERENTIAL EQUATIONS 17

A feedback input is a functionu : X ! U, where the output depends of the
state variables of the system. The set of all the functionu such thatu(x) 2 U for
x 2 X is denoted byUX . An extension of (2.4) for feedback input is:

_x = f (t; x ; k ; u(x)) ; (2.6)

and in a similar way we did for open loop inputs, given an input functionu : X !
U, (2.6) can be re-written

_x = F(t; x ; k) ;

whereF(t; x ; k) = f (t; x ; k ; u(x)) for all x 2 X andt 2 T . Then an extension
of Theorem 2.3 to feedback input is as follows.

Theorem 2.6. Let f be a function de�ned byf : T � X � K � U ! Rn . Let
f be locally Lipschitz w.r.t.x andu. We recall this means that for all(t; x ; u) 2
T � X � K , (x1; u2) and (x1; u2) in the neighbourhood of(x; u), there exists
someL > 0 such that:

kf (t; x1; u1) � f (t; x2; u2)k � L (kx1 � x2k + ku1 � u2k)

Moreover, letu : X ! U be continuous locally Lipschitz w.r.t.x . Then, given an
initial condition (t0; x0) 2 T � X and a parametrizationk 2 K , there exists a
unique maximal trajectory solution� x 0 ;k ;u (t) for t 2 [t0; T [, with t0 < T � + 1 ,
such that� x 0 ;k ;u (t0) = x0 and

8t 2 [t0; T [
d� x 0 ;k ;u (t)

dt
= f (t; � x 0 ;k ;u (t); k ; u(� x 0 ;k ;u (t))) :

Optimal control problem. As seen previously, input functions can also represent
an external control applied on the systems such that it reaches a �nal target set. Let
X T be that target set at the �nal timeT.

In the open loop case, given a continuous control inputu 2 UT , x0 2 X ,
k 2 K , andf : T � X � K � U ! Rn a function locally Lipschitz w.r.t.x ,
continuous inu, then� x 0 ;k ;u (�) is an admissible trajectory, andu(�) is its associated
admissible control, if� x 0 ;k ;u (T) 2 X T . The set of possible admissible controls
can be very large, and two different admissible trajectories can reach the target set.
To restrain the set of possible trajectories one can add a cost to minimize along
the trajectory or at the �nal time. For example, we may want to minimize the
amplitude of the control. Let us de�ne the cost associated to a given admissible
trajectory� x 0 ;k ;u and controlu as

J (t; � x 0 ;k ;u ; u) =
Z T

0
h(t; � x 0 ;k ;u (t); u(t))dt + H (T; � x 0 ;k ;u (T); u(T)) ; (2.7)

whereh(t; � x 0 ;k ;u (t); u(t)) is the running cost on the[0; T] interval, andH (T,
� x 0 ;k ;u (T), u(T)) the cost at �nal timeT. From this cost function we can de�ne
the optimal control problem (OCP) in the open loop case.
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De�nition 2.7 (Open loop OCP). Let f : T � X � K � U ! Rn be a function
locally Lipschitz w.r.t.x and continuous inu. Givenx0 2 X , k 2 K , andX T a
compact subset ofX the optimal control problem is:

J � := inf
u

Z T

0
h(t; � x 0 ;k ;u (t); u(t))dt + H (T; � x 0 ;k ;u (T); u(T))

s.t.
d� x 0 ;k ;u (t)

dt
= f (t; � x 0 ;k ;u (t); k ; u(t)) ;

� x 0 ;k ;u (t) 2 X; 8t 2 T ;

� x 0 ;k ;u (0) = x0 ;

� x 0 ;k ;u (T) 2 X T ;

u : T ! U a continuous function:

(2.8)

We denote respectively byu � the optimal control and by� x 0 ;k ;u � its associated
optimal trajectory.

Similar to the open loop case, we can de�ne the optimal control problem for
feedback inputu : X ! U.

De�nition 2.8 (Feedback OCP). Let f : T � X � K � U ! Rn be a function
locally Lipschitz w.r.t.x andu. Givenx0 2 X , k 2 K , andX T a compact subset
of X the optimal control problem is:

J � := inf
u

Z T

0
h(t; � x 0 ;k ;u (t); u(� x 0 ;k ;u (t))) dt

+ H (T; � x 0 ;k ;u (T); u(� x 0 ;k ;u (T))) ;

s.t.
d� x 0 ;k ;u (t)

dt
= f (t; � x 0 ;k ;u (t); k ; u(� x 0 ;k ;u (t))) ;

� x 0 ;k ;u (t) 2 X; 8t 2 T ;

� x 0 ;k ;u (0) = x0 ;

� x 0 ;k ;u (T) 2 X T ;

u : X ! U a function continuous locally Lipschitz w.r.t.x :

Again, we denote respectively byu � the optimal control and by� x 0 ;k ;u � its associ-
ated optimal trajectory.

The existence of an optimal control is not an easy problem. For a detailed in-
troduction to optimal control (from a variation theory point of view) the reader is
referred to the textbook [99] and in particular [99, Section 4.5] for a discussion and
review on the existence problem.

Numerical integration. From now on for simplicity of notation, a trajectory is
denoted byx(t) instead of� x 0 ;k ;u (t), when the initial conditionx0, the parameters
k, and the input functionu are not ambiguous.
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While for linear ODEs it is possible to determine their exact solution, in most
non-linear cases the analytic solution is not available. In these cases, one can com-
pute approximate solutions using numerical simulation methods. Let us now say
a few words on numerical simulation. Most methods compute a discrete time ap-
proximationxq of the continuous solutionx(t) of the ODEs_x = f (t; x ). Among
the simplest methods are the explicit numerical integration schemes, such as the
forward Euler or Runge-Kutta schemes. They are in general designed from the
Taylor expansion of the trajectoryx(t) around a given timet. For example, the nu-
merical integration scheme using the forward Euler scheme and a �xed time step
� t andxq+1 denotes the approximate solution at timetq+1 = ( q + 1)� t:

xq+1 = xq + � t � f (tq; xq) (2.9)

The accuracy of these methods is measured by the distance between the ex-
act solutionx(t + � t) at time t + � t and its discrete approximationxq+1 =
x(t) + � t � f (t; x(t)) . In the forward Euler case,kx(t + � t) � xq+1 k = O(� t)
and the method is said to be of order1. Given a suf�ciently small time step� t,
the approximate solution converges toward the exact solution. However, �nding a
correct time step to ensure the stability of these simple algorithms results in inef�-
cient simulations even with very small time step. For these reasons, it is necessary
to use more recent algorithms which rely on an adaptive time step which produce
an approximation valid for a given accuracy. In practice, when possible one can
use the advanced algorithms detailed in [100] to perform the numerical simulation
of ODEs.

2.2 Hybrid dynamical systems

Context. Hybrid dynamical systems describe the behaviours of both discrete
and continuous components. They are useful to model systems with jumps, fast
changes in dynamics, or multiple step processes where dynamics can vary depend-
ing on external conditions. While there exists a general notion of hybrid dynamical
systems constituted of discrete states with associated continuous dynamics, and a
transition function between these states, there is no unique formalism under the
name of dynamical hybrid systems. Indeed, depending on the application con-
text the models can be different. The computer science community tends to use
complex discrete mechanisms and simpler continuous processes, which re�ect the
particularities of their applications such as programs or communication protocols.
The control theory community deals with more complex continuous part to stay as
close as possible to the classical laws modelling the physical world. A PhD thesis
of MIT from 1995 [101] give a classi�cation of hybrid dynamical systems and a
general de�nition of hybrid dynamical systems. Another coarser classi�cation of
dynamical hybrid systems can be found in a more recent study on the existence of
solutions of hybrid dynamical systems [102]. Finally, the 2009 review article from
IEEE on hybrid dynamical systems contains an in-depth introduction to the recent
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problems and solutions in the �eld of hybrid dynamical systems from a control
theory point of view [40].

Hybrid automaton de�nitions. In this thesis, we use the hybrid automaton for-
malism to model hybrid dynamical systems. This formalism has the advantage of
being commonly used in many veri�cation tools such as SpaceEx [87, 103], and
general enough to be applied in a large set of applications. We will also consider
some modi�cations to the original de�nition [104], and its generalisation given in
the textbook [41, Chapter 1]. Indeed, in the original de�nition, the continuous tra-
jectories in each discrete states are explicitly given by a functionx(t). However,
with the exception of the linear ODEs and few non-linear ODEs, such analytic
expressions are hard to obtain. Thus, the continuous trajectories are represented
implicitly by the ODEs in each discrete state as in [41]. In our particular case, we
use hybrid automata where continuous dynamics are speci�ed by parametric ODEs
with input, as de�ned in previous Section 2.1. The de�nition of such parametric
hybrid automata is as follows.

De�nition 2.9 (Parametric hybrid automaton). Let x 2 Rn be a set of continuous
state variables,k 2 Rm a set of parameters andu a set of input functions with
value inRp. GivenT a �nal execution time, possibly+ 1 . We de�ne a parametric
n-dimensional hybrid automaton by the tupleH := ( I; E; L; X; U; K; S; R; F )
where:

– I � N is a �nite set of indices, used to index discrete states, also called
locationsor modes.

– E � I � I is the set oftransitionse = ( i; j ) between two modes:i is the
source mode, andj the destination mode.

– L : e 7! L e is a labelling function which associates to transitione = ( i; j ) 2
E its synchronisation labelL e. Labels are necessary for the synchronous
parallel composition in de�nition 2.11.

– X � Rn is the state space of the continuous variablesx. Here,X =
S

i 2 I X i

whereX i , a compact subset ofRn , is called theinvariant set, or domain,
associated to the modei .

– U � Rp is the set of input values ofH . Similarly, U =
S

i 2 I Ui whereUi , a
compact subset ofRp, is the set of input values associated to the modei .

– K � Rm is the set of parameter values ofH . Again,K =
S

i 2 I K i where
K i � Rm is the set of parameter values associated to the modei .

– S : e 7! Se is a labelling function which associates to transitione = ( i; j ) 2
E its guardSe � X i . The guardS(i;j ) de�nes the transition condition from
modei to modej : for x 2 X i , if x 2 S(i;j ) then the system atx can take
transitione = ( i; j ) from modei to modej .
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2.2. HYBRID DYNAMICAL SYSTEMS 21

– R : e 7! Re is a labelling function which associates to a transitione =
(i; j ) 2 E its reset functionRe : Se ! X j . It de�nes how the continuous
variables change after the discrete transition from modei to modej .

– F : i 7! F i is a labelling function which associates to a modei 2 I its
activity F i de�ning the continuous behaviour in this mode. In this work, we
de�ne F i as a continuous dynamical system described by parametric ODEs
with inputs as in (2.5) or (2.6). Consequently we de�neF i as:

F i := ([0 ; T]; X; K i ; Ui ; f i ) ; (2.10)

with f i : [0; T] � X � K i � Ui ! Rn a function satisfying the conditions of
Theorem 2.3, 2.5, or 2.6 depending of the form ofu (open or close loop).

One can see the discrete structure of a hybrid automaton as a labelled directed
graph, in which case we can de�ne a set of labelled edgesE = f (i; S(i;j ) ; L (i;j ) ; R(i;j ) ; j ) 2
I � S(E) � L (E) � R(E) � I j e = ( i; j ) 2 Eg in a similar manner to the original
paper [104].

We now assume that the input functionsu i are feedback inputsu i : X i ! Ui .
The de�nitions for the open loop case are similar. We now de�ne the trajectories
accepted by a hybrid automaton.

De�nition 2.10 (Hybrid automaton trajectory). An accepted trajectory or execu-
tion of a hybrid automaton is de�ned by the pair of temporal functions� andx
for the time domain[0; T], denoted by(� (�); x(�)) , with i = � (t) 2 I being the
mode2 at timet, andx(t) 2 X i being the values of the continuous variables att.
The pair(� (t); x(t)) is also called the hybrid state at timet. From an initial con-
dition (i 0; x0), a hybrid automaton trajectory(� (�); x(�)) satis�es the following
condition for every time pointt 2 [0; T]:

– Continuous behaviour. If� (t) = i 2 I , thenx(t) 2 X i . Let u i : X i ! Ui

be a given input function andk i 2 K i a parametrization. Lett0 be the time
point such that eithert0 = 0 , or t0 � t is the latest time point at which the
function� jumps from some valuej to i (corresponding to a transitione =
(j; i ) 2 E). Then, the continuous partx(t) is determined by the trajectory
� x (t0 );u i ;k i (t), which is the solution to

d� x (t0 );k i ;u i (t)

dt
= f i (t; � x (t0 );k i ;u i (t); k i ; u i (� x (t0 );k i ;u i (t))) ;

for all t 2 [t0; T [ such that� x (t0 );u i ;k i (t) 2 X i .

– Discrete behaviour. If� (t) = i 2 I andx(t) 2 S(i;j ) , then the systemcan
take the discrete transitione = ( j; i ) 2 E, in which case, the trajectory at
the right limit timet+ of t becomes(� (t+ ); x(t+ )) = ( j; R (i;j ) (x(t))) . If
x(t) 2 S(i;j ) \ @Xi andx(t+ ) = � x (t0 );u i ;k i (t

+ ) =2 X i at the limit right

2Note that� here is a piecewise constant function over time.
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instantt+ of t, then the systemmusttake the discrete transitione = ( j; i ),
since it goes outside the invariant set of modei and thus is no longer allowed
to stay in this mode. We say that the guardenablesthe transition, while the
invariantenforcesit.

It is possible for a trajectory such that(� (t) = i; x(t)) to leave invariantX i at
time t+ without having the possibility to take a transitioni ! j : x(t) 2 @Xi and
there is noj 2 I s.t. x(t) 2 S(i;j ) . In this condition the trajectory cannot continue
neither by the continuous dynamics, nor by the discrete dynamics: we say that the
system reaches adeadlock, and that the trajectory is called ablocking trajectory.
Some results on condition for a hybrid automaton to be non-blocking can be found
in [105].

Let us de�neReach(H) � I � X the set of all the possible points reachable
in time at mostT from any initial condition(i 0; x0) 2 I � X i 0 .

Reach(H) = f (i; x) 2 I � X i s.t.

9(i 0; x0) 2 I � X i 0 andt � T ; (� (t); x(t)) = ( i; x)

and(� (�); x(�)) is a hybrid trajectory starting at(i 0; x0) over[0; T]g:

(2.11)

Special Behaviours. As discrete transitions happen instantaneously, a hybrid au-
tomaton execution can exhibit some non trivial behaviours. Among them we will
mention two types: theZeno behaviours, and themultiple event behaviours.

A Zeno behaviour happens when the trajectory performs an in�nite number of
discrete transitions in a �nite time interval[t1; t2[. This behaviour can happen even
on simple models such as the bouncing ball [105] or, in the biological context,
for gene regulation networks [106]. Singular perturbation theory [106] or Filippov
theory [60, 107, 108] are possible ways to solve this problem.

A multiple event behaviour happens when a trajectory can take multiple dis-
crete transitions (possibly an in�nity) without letting time elapse. Indeed, a system
may take discrete transitions all the time without evolving according to the contin-
uous dynamics.

As one can observe in De�nition 2.10, for a given initial condition(i 0; x0) 2
I � X i 0 a hybrid automatonH may accept more than one trajectory. Indeed, let
the continuous dynamics be deterministic by enforcing the Cauchy-Lipschitz con-
ditions from Theorem 2.6 for the activities de�ned in De�nition 2.9. Then, non-
determinism can still be caused by the discrete dynamics, since at a given hybrid
state the system can satisfy multiple transition guard conditions.

In the remainder of the thesis, our optimal control applications will only be
considered for hybrid automata with deterministic discrete dynamics, and non-
determinism in continuous inputs will be resolved by picking a solution to the
involved optimization problems.

It is easy to see the following suf�cient conditions for a hybrid automaton to
be deterministic.

– If (i; j ) 2 E and(i; j 0) 2 E with j 6= j 0, thenS(i;j ) \ S(i;j 0) = ; .
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– Givene = ( i; j ) 2 E andx 2 Se, then9!x0 2 X j s.t. Re(x) = x0

For more “semantic” necessary and suf�cient condition, the reader is referred to
[105].

Synchronous parallel composition. We now de�ne the composition of two hy-
brid automata. We consider here the simple case without common state variables,
input functions, or parameters.

De�nition 2.11 (Synchronous parallel composition). We consider two hybrid au-
tomataH (a) = ( I (a) ; E(a) ; L (a) ; X (a) ; U(a) ; K (a) ; S(a) ; R(a) ; F (a) ), andH (b) =
(I (b) ; E(b) ; L (b) ; X (b) ; U(b) ; K (b) ; S(b) ; R(b) ; F (b) ), with x (a) \ x (b) = ; , where
x (a) (resp. x (b) ) the continuous variables associated toH (a) (resp. H (b) ). Let t
be the common time variable. Then, the synchronous parallel composition of two
hybrid automataH (a) andH (b) is the hybrid automatonH (akb) := H (a) 
 H (b) ,
where
 denotes the parallel composition operator, and de�ned by:

– The continuous variables ofH (akb) arex (akb) = x (a) � x (b) , where� is the
concatenation operation.

– The dimension ofH (akb) is n(akb) = n(a) + n(b) , with n(a) (resp.n(b) ) the
dimension ofH (a) (resp.H (b) ).

– The modes ofH (akb) are de�ned by:

I (akb) := I (a) � I (b) :

– The set of transitionsE(akb) � E (a) � E (b) of H (akb) as well as their associ-
ated synchronisation labelsL (akb) (E(akb) ) are de�ned by the following rules.
Let (j (a) ; j (b) ) 2 I (akb) , then given a discrete state(i (a) ; i (b) ) 2 I (akb) , its
possible transitions and their associated synchronisation labels are:

– e(akb) =
�
(i (a) ; i (b) ); (j (a) ; j (b) )

�
2 E(akb) if:

e(a) = ( i (a) ; j (a) ) 2 E(a) , ande(b) = ( i (b) ; j (b) ) 2 E(b) .
Then,L (akb) (e(akb) ) = L (a) (e(a) ) [ L (b) (e(b) ).

– e(akb) =
�
(i (a) ; i (b) ); (j (a) ; i (b) )

�
2 E(akb) if:

e(a) = ( i (a) ; j (a) ) 2 E(a) , and
8j (b) 2 I (b) s.t. e(b) = ( i (b) ; j (b) ) 2 E(b) ; L (a) (e(a) ) \ L (b) (e(b) ) = ; .
Then,L (akb) (e(akb) ) = L (a) (e(a) ).

– Similarly for e(akb) =
�
(i (a) ; i (b) ); (i (a) ; j (b) )

�
2 E(akb) .

We observe that common synchronisation labels enforce simultaneous tran-
sitions, meaning synchronisation, between two hybrid automata3.

3We also note that for synchronised transitions, the guard conditions on the continuous variables
will have be to be satis�ed simultaneously to enable the transition.
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– The state space ofH (akb) is de�ned byX (akb) := X (a) � X (b) . Moreover, we
associate to each modei (akb) = ( i (a) ; i (b) ) 2 I (akb) the invariantX (akb)

i ( akb) =

X (a)
i ( a ) � X (b)

i ( b)

– The set of possible input values ofH (akb) for each mode is de�ned by:

U(akb)
i ( akb) := U(a)

i ( a ) � U(b)
i ( b) ; i (akb) = ( i (a) ; i (b) ):

– The set of possible parameter values ofH (akb) for each mode is de�ned by:

K (akb)
i ( akb) := K (a)

i ( a ) � K (b)
i ( b) ; i (akb) = ( i (a) ; i (b) ):

– The guardS(akb)
e � X (a)

i ( a ) � X (b)
i ( b) of H (akb) associated to the transition:

– e =
�
(i (a) ; i (b) ); (j (a) ; j (b) )

�
2 E(akb) is de�ned by :

S(akb)
e = S(a)

(i ( a ) ;j ( a ) )
� S(b)

(i ( b) ;j ( b) )
:

– e =
�
(i (a) ; i (b) ); (j (a) ; i (b) )

�
2 E(akb) is de�ned by :

S(akb)
e = S(a)

(i ( a ) ;j ( a ) )
� X (b)

i ( b) :

– Similarly for e =
�
(i (a) ; i (b) ); (i (a) ; j (b) )

�
2 E(akb) .

– The reset mapR(akb)
e of H (akb) associated to the transition:

– e =
�
(i (a) ; i (b) ); (j (a) ; j (b) )

�
2 E(akb) is de�ned by :

R(akb)
e =

�
R(a)

(i ( a ) ;j ( a ) )
; R(b)

(i ( b) ;j ( b) )

�
:

– e =
�
(i (a) ; i (b) ); (j (a) ; i (b) )

�
2 E(akb) is de�ned by :

R(akb)
e =

�
R(a)

(i ( a ) ;j ( a ) )
; Id (b)

i ( b)

�
;

whereId (b)
i ( b) : X (b)

i ( b) ! X (b)
i ( b) is the identity function.

– Similarly for e =
�
(i (a) ; i (b) ); (i (a) ; j (b) )

�
2 E(akb) .

– The continuous dynamical systems ofH (akb) in mode(i (a) ; i (b) ) areF (akb)
(i ( a ) ;i ( b) )

de�ned by:

F (akb)
(i ( a ) ;i ( b) )

:=
�

[0; T]; X (akb) ; U(akb)
(i ( a ) ;i ( b) )

; K (akb)
(i ( a ) ;i ( b) )

; (f (a)
i ( a ) ; f (b)

i ( b) )
�

:
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Example 2.12(Synchronous parallel composition). In this example we perform
the synchronous composition (A
 B)
 C of the (hybrid) automata A, B, C given
on the left side of the Figure 2.1. The automaton A can take its transition in par-
allel of the automata B and C as it shares no common label. The automata B and
C share the labelL 2 and thus must take their transition synchronously. The terms
c1; c2; c3 represent the conditions (guards in De�nition 2.9) associated to the tran-
sitions A0 ! A1, B0 ! B1, C0 ! C1, respectively. We recall that we assume the
composed hybrid automata do not share any common variables. Consequently, the
conditionc1; c2; c3 are incomparable.
As A and B share no common label we must consider all the possible combination
of transitions. This leads to a4 states automaton A
 B. The transitions involving
a change on B involve the labelL 2. Consequently, the size of (A
 B)
 C does not
change as all the transitions on B are equivalent (synchronous) to a transition on C.
The �nal automaton of (A
 B)
 C is given in the right side of Figure 2.1.

A0 A1

B0 B1

C0 C1

c1,L 1

c2,L 2

c3,L 2

(A0; B0; C0) (A1; B1; C1)

(A0; B1; C1)

(A1; B0; C0)

c1 ^ c2 ^ c3, f L 1; L 2g

c2 ^ c3,L 2

c1,L 1

c1, L 1

c2 ^ c3,L 2

Figure 2.1: Composition of three (hybrid) automata A, B, and C given on the left. This
pictures corresponds to Example 2.12.

Optimal control problem on hybrid automata. We now de�ne the control
problem for general hybrid automata. Let �rst de�ne a target setXT such that:

XT =
a

i 2 I

X T;i ; (2.12)

whereX T;i is a compact subset ofX i and
`

is the disjoint union operator. The
disjoint union can simply be considered as a labelling operation on the setI of
modes.
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Let us �rst consider the open loop control case. Let(i 0; x0) 2 I � X i 0

be an initial condition andki 2 K i in modei 2 I a set of parameter values.
Then, for a given input functionu i : [0; T] ! Ui for each modei 2 I and
(� (t); x(t)) 2 I � X � (t ) for t 2 [0; T] be a trajectory accepted by De�nition 2.10,
we de�ne a control input function4 u(�) asu(t) = u � (t ) (t) for all t 2 [0; T]. If
(� (T); x(T)) 2 X T thenu is an admissible control, and(� (t); x(t)) ; t 2 [0; T] is
its associated admissible trajectory. The optimal control problem is then to �nd a
control inputu(�) and a valid trajectory(� (�); x(�)) minimizing a given cost func-
tion J (( �; x); u), similar to 2.7:

J (( �; x); u) =
Z T

0
h� (t ) (t; x(t); u(t)) + H � (T ) (T; x(T); u(T))

The hybrid optimal control problem is then:

J � := inf
(�; x );u

J (( �; x); u)

s.t. (� (t); x(t)) ; 8t 2 [0; T], is accepted by De�nition 2.10;

(� (t); x(t)) 2 I � X � (t ) ; 8t 2 [0; T] ;

(� (0); x(0)) = ( i 0; x0) 2 I � X i 0 ;

(� (T); x(T)) 2 X T ;

u i : T ! Ui continuous functions; i 2 I

u(t) = u � (t ) (t); 8t 2 [0; T]:

(2.13)

For the feedback control case: we assume that we are given a set of input
functions whereu i : X i ! Ui for each modei 2 I and(� (t); x(t)) 2 I � X � (t ) is
its associated trajectory overt 2 [0; T], then we de�ne the controlu asu(x(t)) =
u � (t ) (x(t)) for all t 2 [0; T], andx(t) 2 X � (t ) . Again, if (� (T); x(T)) 2 X T then
u is one admissible control, and(� (t); x(t)) ; t 2 [0; T] is its associated admissible
trajectory.

Similarly, the cost function and the hybrid optimal control problem in the feed-
back case are respectively de�ned by:

J (( �; x); u) =
Z T

0
h� (t ) (t; x(t); u(x(t))) + H � (T ) (T; x(T); u(x(T))) ;

4Consequently, the functionu is a piecewise function constituted from the input functionsu i in
each mode.
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and

J � := inf
(�; x );u

J (( �; x); u)

s.t. (� (t); x(t)) ; 8t 2 [0; T], is accepted by De�nition 2.10;

(� (t); x(t)) 2 I � X � (t ) ; 8t 2 [0; T] ;

(� (0); x(0)) = ( i 0; x0) 2 I � X i 0 ;

(� (T); x(T)) 2 X T ;

u i : X i ! Ui Lipschitz continuous inx ; i 2 I

u(x(t)) = u � (t ) (x(t)) ; 8t 2 [0; T]:

(2.14)
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Context. Mechanistic models in biology generally involve many parameters. The
value of a given parameter can be either measured directly in a dedicated exper-
iment (e.g. measurement of a kinetic parameter of a biochemical reaction in en-
zymology), or inferred from data which provide relationships between parameters
and other known biological entities.

As seen in Chapter 1, a basic issue in biological systems modelling is the de-
termination of numerical values for the parameters, or more generally a subset of
the parameter space, under which the model agrees to some extent with the avail-
able data. We focus on multiple-step experiments, in which a biological system is
perturbed or measured during its evolution.

In the biological modelling literature, it is common to synthesise parameters
using a Monte-Carlo sampling of the parameter space, which is validated then by
numerous simulations. An important effort to formalize and validate the parameter
synthesis of biological models has been made in [47, 5, 83, 66]. Other articles
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such as [109] or [110] design ODE models satisfying sets of temporal constraints.
When model simulation does not reproduce satisfactorily available experimental
data, to a degree which depends on data quality, for any admissible parameter
value, the model has to be revised. One way of revising the model is to change
some parameters into different types of functions of time, re�ecting underlying
biological mechanisms. We introduce a systematic way, based on formal methods,
to study mechanistic biological models in their experimental context and revise
parameters to produce conservative results with respect to experimental data. In
this work, we consider a problem of model revision, de�ned as �nding time varying
laws of parameter evolution that minimizes the error in matching experimental
measurements. Informally, it is the following optimization problem:

min
(x; u)

nexpX

j =1

dist(m(x(Tj )) ; zj ) (3.1)

wherex is a vector of biological variables, such as concentrations, whose evolution
is modelled by trajectories of a biological dynamical system: in our particular
context a hybrid automaton as de�ned Chapter 2. Time varying parameters are
represented by the input variablesu (modelling biological parameters) such that
8t 2 [0; T] ; u(t) 2 U. X 0 is the set of initial values of the variables, and the
set of pairsf (Tj ; zj )gj is the set of data points, for1 � j � nexp, in the time
frame[0; T]. An experimental measurement is a function of the variablesx and is
modelled via the functionm(x).

Contributions. The framework of our approach is a mathematical formalization
of experimental protocols as hybrid automata, describing biological systems of in-
terest and experiments which are performed on them. An example of such protocol
will be studied in Chapter 6, and a general way to generate hybrid automata from
such protocol is given Chapter 5. However, the algorithm we provide can be ap-
plied to any biological hybrid systems with similar model revision problems.

In this chapter, we address the model revision problem (3.1) by formulating a
particular instance of the optimal control problem with intermediate points, which
means that the objective function depends on the system trajectory and control
inputs at a given set of time points. This problem is then approximated by multi-
ple optimal control problems on hybrid automata. Then, each problem is solved
through a reformulation as a hybrid optimal control problem (HOCP) with one �-
nal cost. To this end, we apply a recently developed method [94] from the �eld
of certi�ed convex optimization to globally solve these HOCP. The method de-
scribed in [94] produces piecewise optimal control functions which either may not
correspond to biological knowledge of parameter variations or may be dif�cult to
yield coherent and meaningful biological interpretations. Consequently, in order
to satisfy realistic constraints on parameters, we use smooth approximations of the
generated control input, in order to revise the given model while maintaining good
data �tting accuracy. The method is demonstrated later in Chapter 6 on a hybrid
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system modelling haemoglobin production whose parameter estimation is studied
Section 6.1.1 of Chapter 6.

Related works. We recall that the hybrid formalism has previously been used as
an abstraction method to simplify complex mechanisms which are hard to analyse
[111, 6], or to represent “jump” evolution such as activation processes in genes
regulatory networks for example using the stochastic formalism as in [11].

Optimal control theory and variation theory have been applied to biological
systems in several works. Most of them address the classical problem, given in
Chapter 2, of �nding a correct input such that the system reaches a desired state.
For example, one can control drug input such that a patient reaches a healthy state
[112], or [8]. Another example is the control of some input in population studies
[113]. A detailed review on the use of optimal control in systems biology can be
found in [114]. The problem of parameter estimation (as a constant) in presence of
multiple data, also called data assimilation, is stated in [114, Chapter 26]. However,
none of these techniques for parameter estimation have been applied to the hybrid
automata formalism.

The optimal control problem for speci�c classes of hybrid systems has been
investigated in several domains, such as mechanical systems [115] and switched-
mode systems [116]. More generally, [117] relies on Dynamic Programming and
an extension of Pontryagin's Maximum Principle. However, these approaches need
a priori knowledge either on the sequence of discrete transitions, or on the number
of visited subsystems. To perform optimal control on hybrid systems, we build
our work on the techniques from [94], which proposes a method to obtain a global
solution for hybrid systems with state-dependent transitions, without any a pri-
ori knowledge on the execution and the sequence of transitions. We refer to [94,
Section 1.1] and references therein for more details on optimal control of hybrid
systems.

Semide�nite programming (SDP) eases the resolution of hard optimization
problems and yields conservative results ensured by positivity certi�cates. In [118],
hierarchies of semide�nite relaxations were introduced for static polynomial opti-
mization. The de�nition of an in�nite-dimensional linear program (LP) over occu-
pation measures, for optimal control problems, was �rst introduced in [119]. From
this in�nite-dimensional LP, [120] de�nes hierarchies of Linear Matrix Inequali-
ties (LMI) relaxations, to synthesise a sequence of polynomial controls converging
to the solutions of the optimal control problem. In [121] the authors propose an
extension to piecewise af�ne systems. Our underlying idea of constructing a sub-
optimal control with an iterative algorithm is similar to [121, Section 4]. However,
we use this scheme to �nd input functions allowing to reproduce data not only at a
�nal time point but also at intermediate time points.

We make use of the recent method proposed in [94], which relies on occupa-
tion measures and a sequence semide�nite relaxations to produce a sequence of
polynomial controls converging to the optimal solution of a hybrid optimal con-
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trol problem (HOCP). There exists other methods which use occupation measures
and LMI relaxations to produce both admissible controls and converging outer-
approximations of the backward reachable set1 (BRS) [122, 70], or the region of
attraction2 (ROA) [123]. Finally, we note that �nding a sequence of converging
outer-approximations for all valid parameters sets, such as in [68, 69, 83], is an-
other crucial issue in the context of systems biology. When dealing with hybrid
systems, an extension of the BRS computation method [124] can be applied to
solve this problem.

3.1 Hybrid Optimal Control using Occupation measures

Before presenting our approach for model revision of biological hybrid systems,
we give in Section 3.1.1 a short mathematical background on occupation measures
inspired from the introductions to occupation measures in both [125] and [122].
In Section 3.1.2 we present recent results from [94] on optimal control for hybrid
systems. These results will be used in our own method for model revision.

3.1.1 Introduction to occupations measures

Let �rst consider the following ODE system:

_x = f (t; x) ; (3.2)

wherex 2 X compact subset ofRn , t 2 [0; T], andf a Lipschitz continuous
non-linear function on[0; T] � X with values inRn .

De�nition 3.1 (Measures). Let X � Rn andA its the Borel� -algebra built over
the subsetsPj of X . We call� a measure onA the function which assigns to each
subsetPj 2 X a real scalar such that:

– � (; ) = 0

– 8Pi s.t. Pi \ Pj = ; , (i 6= j ):

� (
[

i

Pi ) =
X

i

� (Pi )

Additionally, we say that� is a Radon measure if� is locally �nite and inner
regular, meaning for all Borel� -algebraA of X , � (A) = sup( � (K )) , with K a
compact subset ofA .

For a compact setX � Rn , let M (X ) (resp. M + (X )) denote the space of
unsigned (resp. signed) Radon measures supported onX . Elements ofM (X ) can
also be seen as bounded linear functionals� belonging to the dual spaceC(X )0and

1The set of points reachable from a target set while going back in time.
2The set of initial conditions leading to an attractor.
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acting on continuous functionv 2 C(X ), also called test functions. The image of
a test functionv 2 C(X ) by a measure� 2 M (X ) is given by the following
relation:

h�; v i :=
Z

X
v d� : (3.3)

Given an initial conditionx0 2 X , we notex(tjx0) the solution of (3.2) fort 2
[0; T] such thatx(0) = x0. We de�ne theoccupation measure� as:

� (A � B jx0) :=
Z T

0
I A� B (t; x(t jx0)dt ;

whereA � B is in the Borel� -algebra of[0; T]� X andI A� B (�) being the indicator
function, equal to 1 onA � B and 0 outside. We note that the occupation measure
� (A � B jx0) provides the total time the trajectoryx(�jx0) stays in the subsetB
for t 2 A, while the support of� (A � B jx0) is the trajectory. We also note that
1
T � (A � B jx0) is the probability measure of the time the trajectory stays inB .
One can makes the relation with the concept of occupation time distribution in
stochastic reachability analysis such as de�ned in [126, Chapter 5].

If the initial condition is unknown we can de�ne theinitial measure� 0 2
M (X ) associated to the initial distribution ofx0 in X . Then, we can de�ne the
average occupation measureas the Lebesgue integral:

� (A � B ) :=
Z

X
� (A � B jx0)d� 0(x0) : (3.4)

Again, we note that the support of� (A � B ) is the reachable set on the interval
[0; T] for all x0 in the support of� 0. Given �nal set at timeT de�ned as a compact
setX T � X , we can also de�ne the �nal measure� T 2 M (X T ) as:

� T (B ) :=
Z

X
I B (x(T jx0))d� 0(x0) : (3.5)

From (3.3), the image of a test functionv 2 C([0; T] � X ) by a measure� 2
M ([0; T] � X ) is given by the following relation:

h�; v i :=
Z

[0;T ]� X
v(t; x)d� (t; x) :

Moreover, given a test function smooth enoughv 2 C1([0; T] � X ) and an initial
conditionx(0) = x0 2 X , we can also write3 from (3.2):

v(T; x(T jx0)) = v(0; x(0)) +
Z T

0
_v(t; x(t jx0))dt (3.6)

3We note_v the total derivative ofv: dv/dt.

Monday 6th August, 2018 (08:34)



34
CHAPTER 3. OCCUPATION MEASURES AND
OPTIMAL CONTROL FOR MODEL REVISION

Let now de�ne a linear operatorL f : C1([0; T] � X ) ! C([0; T] � X ) also
calledLiouville operatorassociated to a dynamicf , applied on a test functionv:

L f v :=
@v
@t

+
nX

k=1

@v
@xk

f k (t; x) ;

wherexk is thek-th element ofx. We note that_v = L f v leading from (3.6) to:

v(T; x(T jx0)) = v(0; x(0)) +
Z T

0
L f v(t; x(t jx0))dt (3.7)

Let L 0
f : C([0; T] � X )0 ! C1([0; T] � X )0be the adjoint operator ofL f de�ned

by the relation:

hL0
f �; v i = h�; L f vi =

Z

[0;T ]� X
L f v(t; x)d� (t; x) :

Integrating (3.7) with respect to� 0 accordingly to (3.4) and (3.5), we obtain for all
test functionsv 2 C1([0; T] � X ):
Z

X
v(T; x(T))d� T (x) =

Z

X
v(0; x(0))d� 0(x) +

Z

X

Z T

0
L f v(t; x(t jx0))d� 0(x)dt

Z

X
v(T; x(T))d� T (x) =

Z

X
v(0; x(0))d� 0(x) +

Z

X

Z T

0
L f v(t; x(t))d� (t; x) :

(3.8)
Using the Dirac measures� 0 and � T , respectively att = 0 and t = T, we can
transform (3.8) into:

h� T 
 � T ; vi = h� 0 
 � 0; vi + h�; L f vi

h� T 
 � T ; vi = h� 0 
 � 0; vi + hL0
f �; v i ;

(3.9)

where
 is the product of measures. Finally, as we worked for all test functions
v 2 C1([0; T]; X ) we can write from (3.9) the followingLiouville equationin the
space of the measures:

� 0 
 � 0 + L 0
f � = � T 
 � T : (3.10)

Liouville equation (3.10) is also called continuity equation in statical physics and
describes the evolution of a density of particles within a �uid [127]. We note
that we transformed anon-linearordinary differential equation over state variables
x 2 Rn into alinear partial differential equation in the space of measures. More-
over, using this equation one can express evolution of a family of trajectories with
initial conditions described by� 0. We refer to prior works from Henrion & al.
establishing this equation and demonstrating its use in the context of reachability
analysis, parameters and controller synthesis [128, 69, 121]. For more details on
the recent effort on the application of measures theory and the generalized prob-
lem of moments we refer the readers to the books from G. B. Folland [129] and
J.B.Lassere [130].
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3.1.2 Solving the hybrid optimal control problem (HOCP)

In the previous section we provided a short introduction to the use of measures to
transform non-linear ODEs into the linear Liouville equation. In this section, we
present a recent work from Zhao & al [94] which provides through the writing of
thehybrid Liouville equationsan approach to address the optimal control problem
of hybrid system. This approach described is valid of a given class of hybrid system
calledControlled Hybrid System(CHS) in [94]. This class differs from the hybrid
automata by some change in the formalism and assumptions. These differences
ensure that any CHS is deterministic. It is possible to construct a hybrid automaton
from a CHS by simply adding to each modes the missing continuous variables.
Noting � (x(t)) the function which associates to an instantaneous statex(t) its
corresponding mode, De�nition 3.2 also ensures that the mode corresponding to
x(t) is unique. Moreover, we obtain the relation� (t) = � (x(t)) .

De�nition 3.2. (Controlled Hybrid System) A controlled hybrid system can be
considered as a variation of the hybrid automaton formalism (see De�nition 2.9)
with the following differences:

– Each modei has it own dimensionni such thatX i � Rn i . Consequently,
we denotex i 2 Rn i the continuous variables associated to the modei 2 I .

– All the guardsS(i; �) are disjoint, andS(i;j ) � @Xi , for each pair of modesi
andj , with @Xi being the border of the invariantX i

– The input setUi = U for each modei , and the parameters are �xed (all the
setsK i are reduced to singletons).

Moreover, we assume that:

– The initial set is restricted to a single pointx0, with an associated modei 0.

– The vector �eldsf i are polynomials inx i 2 Rn i , af�ne in u, and have a
nonzero normal component on the boundary ofX i .

Given measurable functionsf hi : [0; T] � Rn i � Rm ! Rgi 2 I and f H i :
Rn i ! Rgi 2 I , respectively representing the running costs and �nal costs associ-
ated to each modei 2 I , ahybrid optimal control problem(HOCP) is de�ned by:

J �
chs := inf

(x ;u )

Z T

0
h� (t )

�
t; x � (t ) (t); u(t)

�
dt + H � (T )

�
x � (T ) (T)

�
:

s.t. (� (0); x(0)) = ( i 0; x0) ;

(� (T); x(T)) 2 X T ;

u(t) 2 U 8t 2 [0; T];

(� (t); x(t)) ; t 2 [0; T] ; a trajectory of a CHS.

(3.11)

HereXT denotes the target set as de�ned by (2.12). This problem is solved
using a hierarchy of semide�nite relaxations as described in [94], and for which
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we recall the main ideas. Let �rst rede�ne occupation measures and Liouville
operator accordingly to our hybrid context.

Given an hybrid trajectory� = ( �; x) : [0; T] ! I � X and a control input
u : [0; T] ! U, let de�ne theoccupation measurein modei 2 I as:

� i (A � B � Cjx; u) :=
Z T

0
I A� B � C (t; x i (t); u(t))dt (3.12)

for all subsetsA � B � C in the Borel� -algebra of subsets of[0; T] � X i � U.
Similarly to Section 3.1.1, we denote by� i

0, � i
T the initial and the �nal occupation

measures and respectively, and for alle 2 E, the guard occupation measures� Se 2
M + ([0; T] � Se) describing the measures associated to distribution of continuous
variables in a given guard on[0; T]. We recall that ifx i (t) 2 S(i;j ) � @Xi , the
trajectory have to take the transitioni ! j : then� S( i;j ) is also a measure of what
leaves4 a given modei on the interval[0; T].

Let � = ( � I ; � I
T ; � S) 2 M + ([0; T] � X � U) �M + (X T ) �M + ([0; T] � S).

For each modei 2 I , let � i
0 be de�ned using the Dirac� x 0 if x0 2 X i and0

otherwise.
The occupation measures technique allows to transform the optimal control

problem (3.11) into a linear (but in�nite-dimensional) problem (3.15) in the vector
space of measures in a similar manner we did for the ODEs in Section 3.1.1. In
terms of occupation measures, the cost function in the HOCP (3.11) can be ex-
pressed as [94, Lemma 5]

J (x; u) =
X

i 2 I

h� i (�jx ; u); hi i +
X

i 2 I

h� i
T (�jx ); H i i : (3.13)

For each modei , we de�ne a Liouville operatorL i : C1([0; T]� X i ) ! C([0; T]�
X i � U) which acts on test functionsv as:

L i v =
@v
@t

+
X

k

@v
@xk

[f (t; x ; u)]k : (3.14)

Again, we noteL 0
i : C1([0; T] � X i � U)0 ! C([0; T] � X i )0 the adjoint operator

of L i . Let R� ;( i 0;i ) be the pushforward measure associated to the reset mapR(i;i 0)
as in [94, Lemma 6], we can write thehybrid Liouville equation:

� 0 
 � i
0 + L 0

i �
i +

X

(i 0;i )2E

R� ;( i 0;i ) �
S( i 0;i ) = � T 
 � i

T +
X

(i;i 0)2E

� S( i;i 0) :

Consequently, (3.11) can be reformulated as the in�nite-dimensional LP [94, Sec-

4or enter the modei for a transition(j; i ).
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tion 4]:
p� := inf

�

X

i 2I

h� i ; hi i +
X

i 2I

h� i
T ; H i i

s.t. � 0 
 � i
0 + L 0

i �
i +

X

(i 0;i )2E

R� ;( i 0;i ) �
S( i 0;i )

= � T 
 � i
T +

X

(i;i 0)2E

� S( i;i 0) ; 8i 2 I

� i ; � i
T ; � Se � 0; 8i 2 I ; e 2 E ;

(3.15)

where the in�mum is taken over the tuple of measures� de�ned above. Let� �

denote the optimal value of the measures associated to the solutionp� .
The optimal solutionp� can be approximated from below through a converging

sequence of relaxed problems [94, Theorem 17]. In this particular case, we will
focus on the SDP relaxation of the in�nite-dimensional primal formulation (3.15).

Before continuing, we �rst introduce a few de�nitions and notations on mo-
ments, moment matrix, and localizing matrix of a measure. Given a multi-index
� 2 Nn , let y � be the moments of a measure� ,

[y � ]� :=
Z

x � d� (x) :

Givenr 2 N, andp 2 Rr [x ], let

Ly � (p) := h�; p i =
Z

(
X

j � j� r

p� x � )d�:

Given multi-indices� and � 2 Nn , the moment matrix,M r (y � ), is de�ned
as: [M r (y � )](� ;� ) := [ y � ]( � + � ) ; wherej� + � j � 2r . Then, letg 2 Rl [x ]
be any polynomial withl < r , the localizing matrix,M r (g;y � ), is de�ned5 as:
[M r (g;y � )](� ;� ) :=

P
j 
 j� l g
 [y � ]( � + � ) :

Now, we assume that the setsX i are semialgebraic, i.e.X i := f x 2 Rn i :
gX i

(x) � 0g for each modei 2 I , wheregX i
(x) is a vector of polynomials

(gX i
)k 2 R[x] for all k 2 f 1; : : : ; � (X i )g, with � (Xi ) the number of polynomials

de�ning X i .
Similarly for X T;i := f x 2 Rn i : gT;i (x) � 0g, wheregT;i (x) is a vector

with components(gT;i )k
2 R[x] for all k 2 f 1; : : : ; � (X T;i )g. For each transition

e = ( i; i 0) 2 E, let S(i;i 0) := f x 2 @Xi : g(i;i 0) (x) � 0g.
Let the input set beU := f u 2 Rm : gU (x) � 0g, wheregU (x) is a vector

with components(gU )k 2 R[u] for eachk 2 f 1; : : : ; � (U)g. Finally we de�ne
g� = t(T � t).

By re-writing, in (3.15), the positivity constraints as semide�nite constraints on
moments, and localizing matrices, and then truncating the degree of the moments
to 2r , we obtain a �nite dimensional semide�nite program [94, Section 5.1].

5We recall thatg
 denotes the coef�cient ofg at the multi-index
 for the monomial basis.
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Now, usingq to de�ne the disjoint union of measures, let us denote� I :=
q i 2 I � i , � E := q e2E � Se , � T := q i 2 I � i

T , and� := � I
S

� E
S

� T the set of all
the measures associated to the problem. Let i refers to a measure in� , associated
to the modei 2 I , so either� i , � S( i 0;i ) 8i 0 2 I , � S( i;i 0) 8i 0 2 I , or � i

T . Let
f y r; i g i be the sequence of moments of degree2r for each i 2 � , andy r :=
f y r; i g i . Then, the equality constraints in (3.15) can be approximated as a �nite
dimensional linear system (3.16), by taking the truncated moments, and localizing
matrices:

A r (y r ) = b r (3.16)

Then, the relaxedprimal problem(3.17) is de�ned by:

p�
r := inf

�

X

i 2I

Lyr;� i (hi ) +
X

i 2I

Lyr;� i
T

(H i )

s.t. A r (y r ) = b r ;

M r (y r; i ) � 0 ; 8 i 2 � ;

M r X i k
((gX i

)k ; y r;� i ) � 0 ;

8(k; i ) 2 f 1; : : : ; � (Xi )g � I ;

M r Ui k
((gU )k ; y r;� i ) � 0 ;

8(k; i ) 2 f 1; : : : ; � (U)g � I ;

M r Sek
((gSe

)k ; y r;� Se ) � 0 ;

8(k; � Se ) 2 f 1; : : : ; � (Se)g � � E ;

M r ( T;i ) k
((gT;i )k ; y r;� i

T
) � 0 ;

8(k; � i
T ) 2 f 1; : : : ; � (XT;i )g � � T ;

M r � 1(g� ; y r; i ) � 0 ; 8 i 2 � I [ � E ;

(3.17)

whererX i k := r � deg((gX i
)k )=2, rUi k := r � deg((gU )k )=2, rSek := r �

deg((gSe
)k )=2, andr (T;i )k

:= r � deg((gT;i )k )=2. Above,M � 0 de�nes a matrix
M as positive semide�nite.

Now, from the occupation measures solutions of the relaxed primal (3.17) and
their associated momentsy � , it is possible to synthesise the control. Given a poly-
nomialu 2 R[(t; x)], and a measure� we de�ne the vectorbl (y � ) as:

[bl (y � )] � := Ly � (� (t; x) � � u) ; (3.18)

with � (t; x) � a monomial ofRl [(t; x)] of degree� , andj� j � l . Given moment
sequences truncated to degree2du , the optimal control lawu du ;i for each mode
i 2 I is approximated by adu-th order polynomial by solving the following linear
system of equations:

�
[u �

du ;i ]k
�

=
�

M du (y �
r;� i )

� � 1
bdu ;k (y �

r;� i ); 1 � k � m (3.19)
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for all modesi 2 I , and wherek denotes the control's component. HereM du (y �
r;� i )

is the truncated moment matrix of orderdu associated to the measure� i solution
of the primal problem (3.17). This matrix is in general not invertible. However, it
is positive semide�nite, and in consequence there exists a pseudoinverse, known as
the Moore-Penrose generalized inverse [131, Chapter 7].

3.2 Fitting time varying parameters

3.2.1 The model revision problem

In this section, we solve the model revision problem of a hybrid automaton mod-
elling a biological system together with a set of experiments. Therefore, we provide
a method to �nd time varying parameters of biological hybrid automata, modelled
as input functionsu(t), in order to �t the hybrid automaton model to a set of ex-
perimental data. Thus, we write our problem as an optimal control problem where
desired input functions are the optimal controls which minimize the distance of the
results produced by the model and these experimental data (3.1).

We �rst formulate (3.1) as a particular instance of the optimal control problem
on hybrid automata with intermediate points. Then, we propose a �rst approxima-
tion as a set of instances of the optimal control problem on hybrid automata 2.13
de�ned Chapter 2. However, instead of solving the possibly non-deterministic
problem on hybrid automata, we restrict ourselves to a subset of deterministic hy-
brid automata using the controlled hybrid system formalism from [94] and de�ned
previously. Consequently, we need to solve the hybrid optimal control problem
presented Section 3.1.2. The solution is obtained using the previous results from
[94, Section 4], of which we summarized the key points in Section 3.1.2. Finally,
in Section 3.2.2 we explain the complete algorithm addressing our initial problem.

Let �rst give a few de�nitions and notations: experimental measurements, rep-
resented by a functionm(x), are performed at given speci�c timesTj , 1 � j �
nexp. Let zj be the observed value of the experimental measurement at timeTj ,
thennexp is the number of experimental data points.

Let X Tj;i be compact subsets ofX i , andX Tj :=
`

i 2 I X Tj ;i . As in (2.13), let
(i 0; x(0)) 2 I � X 0, and suppose that we are given a set of time valuesf Tj g, with
1 � j � nexp, andTnexp = T.

We say that(( � (�); x(�)) ; u(�)) is an admissible pair for a problem with in-
termediate points, if(� (t); x(t)) 2 I � X is a trajectory ofH accepted by the
De�nition 2.10, and(� (Tj ); x(Tj )) 2 X Tj for all j .

Let H (x(Tj )) be an intermediate cost at timeTj , andh(t; x(t); u(t)) a running
cost for the whole[0; T] interval. The optimal control problem with intermediate
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points for the hybrid automatonH is then:

J � := inf
(�; x );u

Z T

0
h(t; x(t); u(t))dt +

X

0� j � nexp

H (x(Tj ))

s.t. (� (t); x(t)) ; 8t 2 [0; T] a trajectory ofH ;

(� (t); x(t)) 2 I � X � (t ) ; 8t 2 [0; T] ;

(� (0); x(0)) = ( i 0; x0) 2 I � X i 0 ;

(� (Tj ); x(Tj )) 2 X Tj ; 81 � j � nexp ;

u : T ! U continuous functions;

(3.20)

In our biological context we search in general to minimize the least square
residual:

H (x(Tj )) = jjm(x(Tj )) � zj jj2
2:

Solving the above problem can entail an excessive computational cost on a large
hybrid model (see implementation results on the haemoglobin production model
studied in Chapter 6). To reduce this cost, we propose an optimization scheme
where we iteratively compute the control for each intermediate time in a greedy
way.

Given1 � j � nexp, let:

J j (t; x(t); u(t)) :=
Z Tj

Tj � 1

h(t; x(t); u(t))dt + H (x(Tj )) ;

with T0 = 0 , andTnexp = T, such that

J (t; x(t); u(t)) =
X

1� j � nexp

J j (t; x(t); u(t)) :

Noting(� (j ) (t); x (j ) (t)) a trajectory of a hybrid automatonH on the intervalTj :=
[Tj � 1; Tj ], and similarly~u (j ) (t) the control onTj , we consider the following prob-
lem as particular instance of (2.13):

J �
j := inf

(x ( j ) ;~u ( j ) )
J j (t; x (j ) (t); ~u (j ) (t))

s.t.

(� (j ) ; x (j ) ) a trajectory ofH onTj ;

~u (j ) (t) 2 U ; 8t 2 Tj ;

(� (j ) (t); x (j ) (t)) 2 X ; 8t 2 Tj ;

if j = 1 ;

(� (1) (0); x (1) (0)) = ( i 0; x0) 2 I � X i 0 ;

if j � 2:

(� (j ) (Tj � 1); x (j ) (Tj � 1)) = ( � (j � 1)(Tj � 1); x (j � 1)(Tj � 1)) ;

(� (j ) (Tj ); x (j ) (Tj )) 2 X Tj :

(3.21)
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We note that if a transitioni ! i 0occurs at the timeTj of the interval[Tj � 1; Tj ],
we retain only the left part in the modei for the next optimization on the interval
[Tj ; Tj +1 ].

Let ~u(t) and(� (t); x(t)) be respectively the control and the trajectory, fort 2
[0; T]. They are respectively de�ned by the concatenation of all the controls~u (j ) (t)
and the trajectories(� (j ) (t); x (j ) (t)) on the sub-intervals[Tj � 1; Tj ]. By construc-
tion, (( � (t); x(t)) ; ~u(t)) is an admissible pair for (3.20), as(� (Tj ); x(Tj )) =
(� (j ) (Tj ); x (j ) (Tj )) 2 X Tj .

Remark 3.3. We emphasize that(x(t); ~u(t)) is not necessary an optimal solu-
tion for (3.20). Moreover, as the optimization problem (3.21) is obtained through
a greedy scheme, we have no guarantee that its optimal costJ �

j is inferior to a
given " . However, our goal is only to �nd parameter functions satisfying desired
error bounds, thus this approximate solution provides a good trade-off between op-
timality and computation cost. We note that we consider in this work the case of
experimental measurements with partial information: if the measurements provide
information on the state of all the variables at a time point, then the greedy scheme
converge to the optimal solution.

3.2.2 Algorithm and implementation details

Let (Tj ; zj ), 0 � j � nexp be pairs of experimental data points and their mea-
surement time, and we also notei 0, andx0 the initial mode and initial conditions
of the studied hybrid automataH respectively. Letr be a given starting relaxation
degree.

Algorithm 1 �nds an admissible solution to (3.20), by solving the reformulation
of the optimization problem (3.21) into a HOCP (3.11) for each experimental data
point (Tj ; zj ). For eachj , the degree of the polynomial control~u (j ) (x(t); t) is
determined as the smallest degree such thatjjm(x(Tj )) � zj jj2

2 � " . Indeed, in the
context of biological system modelling we desire to obtain a control of degree as
small as possible to avoid over�tting. Then, for each iteration overj , Algorithm 1
is decomposed in three steps.

The �rst step is the procedureHOCP, associated to an instance of the HOCP
(3.11) forj -th pairs(Tj ; zj ). Given a relaxation orderdr � r , we solve the relaxed
primal (3.17). It returnsM dr (y � i ), the sequence moment matrices of degreedr

associated to the occupation measure� i of each modei 2 I . We also obtainJ (dr )
j

an under approximation of the optimum of (3.21).
The second step is the procedureSynth , which returns the admissible control

~u (j ) (t; x) of degreedu � dr using a truncated moment matrixM du (y � i ) as in
(3.19).

The third and last step is the procedureSimu. It performs the validation that
the synthesised control~u (j ) yields jjm(x(Tj )) � zj jj2

2 � " . This step is done by
approximating the trajectory of the controlled hybrid system using a solver of ODE
with discrete events to produce numerical simulations.
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If in iteration j , jjm(x(Tj )) � zj jj2
2 � " , thenx (j ) (Tj ) and the corresponding

modei f reached att = Tj by the numerical simulations are the initial conditions
for the next iterationj + 1 .

Otherwise, theSynth andSimu procedures are repeated while increasing the
degree of the synthesised polynomial control untildu = dr . In case the condition
jjm(x(Tj )) � zj jj2

2 � " is still not satis�ed, the relaxation orderdr is increased,
and the three steps are repeated.

If " � J (dr )
j then we are sure that for the given initial condition at stepj ,

there is no control such thatjjm(x(Tj )) � zj jj2
2 � " . Consequently, we keep

our previous result~u (j ) and the corresponding modei f reached att = Tj by the
numerical simulations are the initial conditions for the next iterationj + 1 .

Algorithm 1 hybrid systems model revision algorithm

1: procedure REVISION(H ; f (Tj ; zj )gj ; i 0; x0; "; r )
2: Tinit = 0
3: for all experimental data(Tj ; zj ) do
4: du = 0; dr = r; err = + 1
5: while err � " ^ J (dr )

j � " do

6: J (dr )
j ; M dr (y � ) = HOCP(H; i 0;...

7: ...x0; Tinit ; Tj ; zj ; dr )
8: while err � " and du � dr do
9: ~u (j ) (x(t); t) = Synth (M dr (y � ); du)

10: (i f ; x (j ) (t)) = Simu(H ; ~u (j ) (x(t); t);...
11: ... i 0; x0; Tinit ; Tj )
12: err = H (x(j ) (Tj ); zj )
13: increase du

14: end while
15: increase dr

16: end while
17: i 0 = i f

18: x0 = x (j ) (Tj )
19: Tinit = Tj

20: end for
21: end procedure

3.3 Perspectives

In this chapter we proposed a method for fast model revision of hybrid dynamical
system. Even if the result is not optimal, and convergence is not guaranteed using
the scheme of Algorithm 1, we observe a good accuracy on the particular example
of Section 6.1.2 in Chapter 6. We now propose two ideas to extend this work. The
�rst idea is to search for a in�nite LP on occupation measure which directly address
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the problem with intermediate costs, which is not possible with the current method
from [94]. Such rewriting would provide a method to obtain a solution converging
to the optimal control. To do so we propose to extend the formulation of [69] on
ODEs using multiple the hybrid Liouville equations restricted to each sub time in
[Tj � 1; Tj ], 1 � j � nexp. This leads to the following in�nite LP:

p� := inf
f � j g

X

j � nexp

X

i 2I

h� i;j ; hi;j i +
X

j � nexp

X

i 2I

h� i;j
Tj

; H i;j i

s.t. � T( j � 1) 
 � i;j
( j � 1) + L 0

i;j � i;j +
X

(i 0;i )2E

R� ;( i 0;i );j � S( i 0;i ) ;j

= � Tj 
 � i;j
Tj

+
X

(i;i 0)2E

� S( i;i 0) ;j ; 8i 2 I ; 1 � j � nexp

� i;j ; � i;j
Tj

; � Se;j � 0; 8i 2 I ; e 2 E; 1 � j � nexp ;

(3.22)

where1 � j � nexp is the index associated the time interval[Tj � 1; Tj ]. We note
the number of constraints and occupation measures of the LP (3.22) is multiplied
by nexp which entails a great computational cost. In the example studied in Section
6.1.2, such formulation would be computationally expensive, which justi�es our
approach in Section 3.2.1.

The second idea is to use the scheme of Algorithm 1 to perform parameter
synthesis. Indeed in the work [124] the authors propose a method for parameters
synthesis using Backward Reachable Set (BRS) computation of hybrid systems. In
a similar fashion to [94] they use the hybrid Liouville equation when the system
needs to reach a single target at a �nal time. Using the method of [124] comput-
ing BRS for each intermediate points, and then intersecting the results we would
obtain a converging over-approximation of the valid parameter set when there are
constraints at intermediate time. However, currently the method from [124] is
more expensive than [94], and cannot be applied on the example studied in Section
6.1.2.
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Context. In cellular biology, models are often based on the elementary law of
chemical reactions or empirical laws for lumped reactions, and expressed in terms
of Ordinary Differential Equations (ODEs). However, as we have seen in the pre-
vious chapters, unlike models in classical chemistry, most of the parameters in
biological models are uncertain, or can greatly vary from one sample (or one indi-
vidual) to another. For these reasons, modelling in biology involves many round-
trips between experimentation and validation of a hypothesis about a biological
mechanism formulated by a model. Because these models are uncertain, hypoth-
esis validation is often done with numerous numerical simulations. However, this
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simulation-based method is both costly for large parameter spaces and, in addition,
not exhaustive. Note that a particularity of biological models is that the sets of pa-
rameter values (as well as the set of initial conditions in some cases) can be large.
Our objective is to validate a hypothesis on some properties of a given biological
model which contains uncertain parameters. Furthermore, the initial conditions,
such as the initial concentrations of most species, are not accurately known but
lie within identi�able intervals. Therefore, the hypothesis should be validated for
all the behaviours generated by such uncertainty, for which reachability analysis is
an appropriate tool. Formal veri�cation techniques allow proving properties, with
set-based reachability computation techniques, by replacing simulation runs with
conservative sets of trajectories. The result of this analysis is the validation of a
proposed parameters space for which the model satis�es a set of constraints, pro-
posed by the biologist or coming from experimental results. Thus, in this chapter
we propose an approach which can be seen as a complement to the approach based
on simulations. It uses discrete time reachability analysis (that is set-based simu-
lation) to formally validate a hypothesis on the model. For polynomials systems,
we propose two different methods for reachability analysis: using the Bernstein
expansion and the Krivine-Stengle (K.S.) representation.

Contributions. In the �rst part, we propose an extension of the Bernstein-based
method previously developed in [83] which allow tackling uncertain parameters
at a small cost. Furthermore, we propose an extension of this Bernstein reacha-
bility analysis method to handle polynomial fractions. Another extension, useful
to tackle the complex case studies such as the iron homeostasis model developed
latter in Chapter 6, is a method for piecewise polynomial approximations of the
dynamics and a reachability method for the resulting hybrid dynamics. These ap-
proximations and adaptations will be demonstrated in Chapter 6 on the concrete
iron homeostasis model, allowing us to validate a hypothesis stated in [5], with an
exhaustive analysis over uncertain parameters and initial conditions. In the sec-
ond part, we propose an alternative method to the Bernstein expansion, namely the
K.S. representation, to perform template reachability analysis of polynomial sys-
tems. The K.S. representation can be used as a relaxation method to approximate a
non-linear optimization problem by a linear optimization problem (LP). We show
that in the particular case of parameter space restricted to a box (or a linear transfor-
mation of a box), K.S. is another ef�cient method to perform template reachability
analysis. Finally, we discuss its pros and cons compared with the Bernstein-based
method.

This chapter is organized as follows. We �rst formulate, in Section 4.1, the
discrete time parametric reachability analysis problem. We introduce, in Section
4.1.3, our method to handle piece-wise polynomial dynamics modelling the ap-
proximation of a more complex system over a �xed partition. In Section 4.2, we
describe the reachability analysis method using the Bernstein expansion. Then, in
Section 4.3, we give details on the second approach based on the K.S. represen-
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tation. Finally, in Section 4.4 we discuss the differences between the Bernstein
expansion and the K.S. representation approaches and their perspectives.

Related work. To study biochemical systems, such as the Mammalian Cellular
Iron Homeostasis (MCIH) model presented in Chapter 6, we base our framework
on theC++ tool Sapo [1] for polynomial systems. The work [1] shows that the
Bernstein technique is ef�cient for computing reachable sets of polynomial para-
metric ODE models. As polynomials arising in biological models are often sparse,
using the implicit formulation of the Bernstein expansion in [132] allows us to
avoid the explosion of Bernstein coef�cients with the dimension and thus improv-
ing reachability computation for biological models. Adding our improved com-
putation of the Bernstein coef�cients and approximation by piece-wise non-linear
models, the current framework can perform reachability analysis on a large class of
biological models with switching behaviours. This work can be compared to other
work focusing on reachability analysis of non-linear biological models.

There is similar previous work using the Bernstein expansion, such as [133]
and [134]. The work [133] allows performing reachability analysis over polytopic
sets, instead of bundles of parallelotopes. However, this approach does not directly
handle parametric models and is much slower than the current approach due to the
conversion from polytopes to boxes. The work [134] uses the Bernstein expansion
to compute an LP-relaxation of a polynomial optimization problem (POP), which
is then solved over a polytopic set. The technique proposed in [134] can com-
pute reachable sets with high precision using polyhedral templates, but is more
expensive than [1] which only needs to compute the parametric Bernstein coef�-
cients once. The work of [134] is also related to the K.S. approach, since it uses
a relaxation of a polynomial optimization problem as a LP. Our approach differs
from [134] by the ability of our approach to ef�ciently handle parameters in the
optimization. We also mention a recent method using SDP relaxation [128] for
discrete time reachability analysis of polynomials.

We also point out the tools, such as [85], [57], [135], which have been devel-
oped mainly for reachability analysis of biological models. The work in [85] and
[57] is dedicated to piecewise multi-af�ne models with either conical representa-
tions of reachable sets or rectangular abstractions, while [135] focuses on param-
eters synthesis of piecewise multi-af�ne models such as gene networks. We also
note that the piecewise approximation in our work is similar to the hybridization in
[32].

Finally, we can mention well-known tools such asFlow * [89] andKeymaera
[80], for the reachability analysis of non-linear systems.Flow * is an ef�cient tool
based on Taylor models for approximating �owpipes in form of unions of boxes,
while the Bernstein and K.S. methods computes �owpipes as unions of polytopes.
Flow * can be used for more general non-linear hybrid models but it does not
seem to extend easily to parametric analysis. The toolKeymaera [80] uses a
different approach: it is a theorem prover based on differential logic. It requires

Monday 6th August, 2018 (08:34)



48
CHAPTER 4. SET-BASED SIMULATION

FOR BIOLOGICAL MODELS VALIDATION

knowing solutions to differential equations or solving them numerically. It can
compute invariants; however in the context of systems biology, it is very useful
when interacting with the biologist to provide explicit reachable sets as temporal
�owpipes.

Before continuing, it is important to note that the technical contents of this
chapter use a lot of multivariate calculus notations de�ned in Section 2.1.

4.1 Set-based simulation

4.1.1 Discrete time models

In this chapter we consider biological systems modelled by discrete time paramet-
ric dynamical systems. The discrete time parametric dynamical systems we study
are de�ned by a set of difference equations:

x � +1 = f (x � ; k) (4.1)

where� 2 N, x � 2 Rn is the value of the variablesx at the iteration� , andk 2
K � Rm is a set of parameters. A trajectory solution is a sequence� x 0 ;k : N ! X
de�ned for an initial conditionx0 2 Rn and a parametrizationk 2 K . We note that
the iteration index� 2 N replaces the time variablet. However, as seen in Chapter
2 for the particular case of numerical integration, one can retrieve the value of the
continuous time variablet for a given time step� t.

Discrete time is often used in models from computer science, such as programs
where the notions of clock and iteration are natural. However, it can also be used
as an approximation of continuous time systems, such as gene regulatory networks
(see for example the work of [136] or [72]). Discrete time models can also be ob-
tained though explicit numerical integration of ODEs system as seen in Chapter 2.
In the following, we assume that we are given a model as a discrete time parametric
dynamical system.

Example 4.1(2D discrete time system of Lotka-Volterra). A discretization of the
Lotka-Volterra continuous time model (LV-ODE) taken from [137, 138] describing
the oscillations of a prey-predator interaction system is given in (LV-discrete). We
assume the following values for the parameters:(�; �; �; 
 ) = (2 =3; 4=3; 1; 1).
To obtain this discretization we apply the forward Euler numerical integra-
tion scheme with a time step� t = 0 :01. Figure 4.1 shows1600 iterations
of the resulting discrete time dynamical system (LV-discrete). In Section 4.4
we demonstrate a method for reachability analysis on the model (LV-ODE).

_x = x(� � �y )

_y = � y(
 � �x )
(LV-ODE)

x � +1 = x � (1 + ( � � �y � )� t)

y� +1 = y� (1 � (
 � �x � )� t)
(LV-discrete)
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Figure 4.1: Simulations of the ODE model (LV-ODE) in red, and the discrete time model
(LV-discrete) in blue (one out of 20 points are plotted).

4.1.2 Template reachability analysis

Reachability analysis. In this chapter, we extend the previous work of [83] on
the computation of �owpipe and reachable sets for parametric discrete time dynam-
ical systems. We �rst recall the general de�nition of the reachable setR(x0; T; k)
of the dynamical system (4.1), up to iterationT > 0 (possibly+ 1 ), for given an
initial conditionx0 2 Rn and a parametrizationk 2 K :

R(x0; T; k) := f x j x = � x 0 ;k (� ) ; 8� s.t. 0 � � � Tg: (4.2)

For a given initial setX 0 � Rn and for all parameter values inK , we obtain the
reachable set:

R(X 0; T; K ) :=
[

k 2 K

[

x 02 X 0

R(x0; T; k): (4.3)

We can put the reachable set computation methods into two categories:

– Depth-�rst methods: they compute the reachable set up to iterationT for
each sample point(x0; k) 2 X 0 � K independently, and then iterate over
the set of all the possible points. These methods are also called trajectory-
based reachability analysis. As they rely on numerical integration tools they
are very fast. In practice these techniques are often used when searching for a
counter-example [139], as one counter-example is suf�cient, or in combina-
tion with sensibility analysis [47] or �ow abstraction to produce a �ow-pipe
approximation [140]. A non-exhaustive list of trajectory based methods is
[141, 47, 139].
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– Breadth-�rst methods: Instead of computing the reachable set for each ini-
tial condition and parameter set, the breadth-�rst (also called set-based) ap-
proach uses set operations to compute the setX � +1 (that is the image ofX �

for each iteration� ), given an initial setX 0 and a parameter spaceK . The set
operations are more expensive than operations on points and for non-linear
vector �elds f a precise approximation ofX � +1 has in general a computa-
tional cost exponential in dimension. However, the set-based methods pro-
duce conservative results which correspond to an exhaustive simulation. A
non-exhaustive list of set-based reachability tools is [87, 89, 83, 88].

In the general case, the problem of computing the reachable set is undecidable [63].
However, we note that in the particular case of polynomial discrete-time dynamical
system, withX 0 andK two semi-algebraic compact sets, the computation of the
reachable set at a �nite timeT is a decidable problem. Indeed, it can be formulated
as a logic formula which is decidable [142] and exactly solved by quanti�er elim-
ination methods as in [143]. However, this solution using quanti�er elimination
remains too expensive and for this reason we use template reachability, a method
to compute an over-approximation of the reachable set.

Template reachability analysis. We now assume thatX 0 is a compact subset
of Rn . Exactly computingX � +1 = f (X � ; K ), that is the image ofX � by f , can
be challenging, since an exact representation of the image is not known. We thus
apply the following compact over-approximation:

f x 2 Rn j g(x) � c ; 8x 2 X � +1 g; (4.4)

whereg(x) is a vector of polynomialsgi (x) 2 R[x] for all 1 � i � p. Hence
thesep polynomial constraints de�ne a compact semi-algebraic subset ofRn . We
call c 2 Rp the offset vector associated to the constraint system. The vector of
polynomialsg de�nes a �xed template if the coef�cients of each polynomialgi are
�xed. Thus, by �xing the templateg(x) and de�ningc� +1 2 Rp as the optimum
of the polynomial optimization problem:

c� +1 = max
x 2 X � +1

(g(x))

= max
(y ;k )2 X � � K

(g(f (y ; k)) ;
(4.5)

we can obtain the followinĝX � +1 as a tight template over-approximation ofX � +1 :

X̂ � +1 = f x 2 Rn j g(x) � c� +1 g: (4.6)

Given a semi-algebraic templateg as de�ned in (4.5), letOg(X ) be the opera-
tor computing a tight over-approximation̂X of a setX . An over-approximation
R̂ (X 0; T; K ) of the reachable set is obtained by the following recurrence:X̂ 0 =
Og(X 0) andX̂ � +1 = Og(f (X̂ � ; K )) . The approximated reachable set at a �xed
time T is then :

R̂ (X 0; T; K ) :=
[

0� � � T

X̂ � :
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Polyhedral template. We now de�ne a particular type of semi-algebraic tem-
plates we use in the remainder of this chapter: polyhedral templates. A templateg
is called polyhedral template1 if it is constituted of a system ofp linear constraints.
Let � 2 M p;n (R) denote the template matrix such thatg(x) = � x . In a similar
way to (4.4), givenc 2 Rp we say that(� ; c) is a template over-approximation of
a setX if for all x 2 X , � x � c. It follows from (4.5) that given a template matrix
� , a tight template over-approximation of a setX can be the polyhedral set:

X̂ := f x 2 Rn j � x � max
x 2 X

(� x) g: (4.7)

Finally, using the above-described template reachability scheme we obtain a par-
ticular case of (4.6) for a polyhedral template(� ; c� +1 ):

X̂ � +1 = f x 2 Rn j � x � c� +1 = max
(y ;k )2 X � � K

� f (y ; k) g: (4.8)

It is clear that the complexity of the reachability algorithm will depend on the
resolution of the optimization problemmax(y ;k )2 X � � K � f (y ; k). If X � is a poly-
hedron andf is a linear vector �eld, such problems can ef�ciently be solved using
linear programming. Otherwise, iff is non-linear the complexity of the optimiza-
tion increases drastically. Indeed, one cannot rely on local optimization method,
since the result may be inferior to the maximum, leading to a non-conservative ap-
proximation of the set. In the following, we propose two approaches based on two
different global optimization techniques providing upper-bounds of the optimum,
and thus a conservative over-approximation.

Example 4.2(Box template). Let us considerX a compact subset ofR2 as shown
in Figure 4.2. The template matrix� box de�nes axis parallel constraints, and the
template over-approximation(� box; c) as shown in Figure 4.2 is the box template
over-approximation ofX .

� box =

0

B
B
@

� 1

� 2

� 3

� 4

1

C
C
A =

0

B
B
@

1 0
0 1

� 1 0
0 � 1

1

C
C
A (� box)

4.1.3 Approximated dynamics over partitions

State-space partition. In this section we consider how to handle discrete time
dynamical systems de�ned using piecewise continuous functions. Such models
can be obtained through local approximation of the dynamics over a �xed par-
tition of the state space. For example, in the particular case of the Mammalian

1We assume that� x � c de�nes a compact subset ofRn .
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Figure 4.2: Tight over-approximation(� box; c) (in blue) of a setX (in red) by a box tem-
plate� box given in Example 4.2.

Cellular Iron Homeostasis (MCIH) model studied in Chapter 6, we approximate
sigmoid functions in three af�ne pieces. Piecewise models can also be obtained
using model reduction techniques such as [111] where models of multi-scale bio-
chemical reaction networks are decomposed in piecewise polynomial systems.

Let h be a linear constraint of the forma � x � c wherea 2 Rn andc 2 R.
We denote by: h the constrainta � x > c , the negation of the constraint2 h. For
simplicity of notation and presentation we useh to denote both the constraint and
the half-space de�ned by this constraint. We also assume that our state-space is
a compact subset ofRn : for example a box ofRn large enough such that all the
trajectories stay inside for the considered time interval.

Let H = f hj (x) j j 2 f 1; : : : ; nH gg be a set ofnH linear constraints. The
constraints ofH partition the state space intoq non-empty compact subsets ofRn ,
fN i g1� i � q, called domains of the partition.

Remark 4.3. We recall that we are considering models with discrete time dy-
namics. Under such dynamics, it is possible, in one discrete step, to jump across
multiple domains of the partition (see Figure 4.3). In this work, we accept such be-
haviours as we are considering the general case of discrete time dynamics. How-
ever, while the discrete time model is produced through an approximation of a
continuous time model, such “jump” are considered as a bad behaviours and must
be detected. At the end of this section we present how to detect such behaviours
using our tree representation.

2In practice we perform computations with non-strict inequalities to keep compact sets.
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We note that under the assumption of the existence of the behaviours described
in Remark 4.3, we can provide the following translation of a partition into a hybrid
system with discrete time dynamics as in De�nition 4.4. We de�neq modes, one
for each domainN i ; i 2 [1; q]: the invariant associated to a modei is the whole
state space. Through Remark 4.3, we note that a modei has an urgent3 transition
to any other modei 0 6= i , with an associated guard being the domainN i 0. The reset
associated to each transition is the identity.

De�nition 4.4 (Approximation map). Given a continuous functionf : Rn !
R, we de�ne as its approximation map associated to the list of constraintH the
piecewise continuous functionA f : Rn ! R such that:

A (f ) (x) := A (f )
i (x); 8x 2 N i ;

with eachA (f )
i : Rn ! R a polynomial (or rational function) approximatingf for

x 2 N i .

We �rst mention that in this work we do not focus on how the approximation
is obtained (be it by Taylor approximation, or by global interpolation methods for
example): we assume that it is given. We also do not take into consideration the
approximation error, as it can be handled latter as a parameter of the system.

Binary space partition trees (BSPT). To deal with these hybrid dynamics, we
need an ef�cient way to encode this partition of the state space, such that it is easy
to locate a set on the partition during its evolution under the dynamics. To this
end, we use the Binary space partition tree (BSPT) techniques [144]. Each node
of a BSPT is associated with a non-empty set (also called domain of the node) that
is de�ned by a conjunction of linear constraints. For simplicity of notation and
presentation, instead of saying that the domain of a node intersects with some set,
we simply that say a node intersects with some set and we use the notationN to
denote both the nodes and its associated domain.

We recall thatH = f hi j i 2 f 1; : : : ; nH gg is the set of constraints involved
in the piecewise approximations of the dynamics. The domain associated with the
root node> of the tree is the whole state space. For each leaf node, if adding
one constraint fromH splits the corresponding domain into two non-empty sub-
domains, we create two child nodes from it, each corresponds to a sub-domain.
This constraint is called thesplitting constraintof the node. We repeat the same
procedure until all the constraints inH are added.

We associate with the root node the highest ranknH , and a child node has a
rank smaller than its parent by1. Once the BSPT is constructed, each leaf of this
tree corresponds to a modei associated to each subsetN i of the partition of the
state space byH .

3The transitionmustbe taken if the conditions are satis�ed.

Monday 6th August, 2018 (08:34)



54
CHAPTER 4. SET-BASED SIMULATION

FOR BIOLOGICAL MODELS VALIDATION

If a model involves multiple approximation maps, it is possible to statically
build a single BSPT representing all the possible discrete modes. Two BSPT can
be fused by replacing each leaves of the �rst tree by the top node of the second
tree. Then, starting from the node of smallest rank of the �rst tree (previously the
leaves) we go downward and eliminate the branches corresponding to redundant
constraints and the nodes with empty domains. Such a method corresponds to the
simple parallel composition of the two associated hybrid systems. In this work,
the composition is performed statically at the beginning. In the recent work [145],
a similar approach has been applied to approximate non-linear dynamics using
piecewise linear ODEs. Unlike our work, they perform the composition of each
approximation map on the �y in the hybrid automata tool SpaceEx [87].

Example 4.5(Partition ofR2). In this example we consider a partition of theR2 by
three constraintsh1; h2; h3 de�ned byx1 � c1, x1 � c2 andx2 � c3 respectively.
We also assume thatc1 < c 2. Then the state-space is partitioned in 6 domainsN1

to N6. We associate to a domainN i a vector �ledA (f )
i (x). This partition ofR2 is

represented in Figure 4.3. Its associated BSPT is given in Figure 4.4.

Set localization. We now explain how to locate a given polyhedral compact set
X on the partition, and identify the nodes that intersect withX . Note that such
setsX can be sets generated by the dynamics of the system. Indeed, even consid-
ering the worst case of Remark 4.3 we expect some continuity in the �ow to speed
up this localization operation in the general case. Thus, we can expect that the
successor setX � +1 is in the same locations or in the locations that are adjacent to
the positions of the current setX � . Consequently, during the reachability process,
instead of starting the search from the root of the tree, we can start from the current
or adjacent locations. We call these starting nodes the guess nodes. However, at
the initial step� = 0 , since there is no previous information, we start our search
from the root of the tree. The search algorithm, namedlocating , consists of the
following two steps.

In the �rst step, we search for the nodeN of the lowest rank which strictly
containsX , that isX � N . To do so, we test if there is no node in the guess
list satisfying this condition. If this is the case, we go upward in the tree and test
their parent nodes, until the condition is satis�ed. If the nodeN found this way is
a leaf,N is the only node containingX , the algorithm returns(N ; X ) and stops.
Otherwise, it proceeds to the second step starting fromN . One can easily see that
the ef�ciency of this algorithm depends on the ordering of the constraints when
building the BSPT. In any case using guess lists is not worse than starting from the
root. A good heuristic when building the tree, is to have the constraints the most
susceptible to be crossed at the lowest ranks. This way, the previous scheme avoid
going too much upward in the tree before �nding the �rst strictly containing node.
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Figure 4.3: Partition of the state space by three constraintsh1, h2, andh3 as de�ned in
Example 4.5. The associated BSPT is given in Figure 4.4. The set X0 is located in the
domainN1. Its image byA ( f )

1 is X1 located in domainN5 which is not adjacent toN1:
we say that X0 performed a jump.

Figure 4.4: BSPT associated to the partition proposed in Example 4.5 and shown in Figure
4.3. In red we show the step associated to the localization of the set Y1 as described in
Example 4.6
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This ordering can be preprocessed using the traces of a few simulations to have an
estimation of the number of time each constraint is crossed.

The second step of the algorithm is a breadth-�rst search starting from the
nodeN , in order to obtain(L ; X ) whereL is the set of nodes with non-empty
intersections, andX is the set of corresponding intersections (stored as a set of
convex polyhedra). This step is a recursive procedure applied to a setL of nodes
intersecting withX , until we reach the leaves. Initially,L = fN g , and the setX
contains onlyf X g. Then, untilL contains only leaves when the algorithm returns
(L ; X ) and then stops, the following procedure is iterated. By construction, at
any iteration, all the nodes inL have the same rank and therefore have the same
splitting constraint, denoted byh:

– If X � h, thenX intersects the left child of every nodes inL , thenL =
left children (L ).

– If X � : h, then X intersects the right child of every nodes inL , then
L = right children (L ).

– If X satis�es none of the two above conditions, thenX intersects both all the
right and left children of the nodes inL . Then,L = left children (L ) [
right children (L ), and the algorithm updatesX = fX \ hg [ fX \
: hg, wherefX \ hg andfX \: hg are polyhedra resulting from intersecting
each set inX with the half-spaces corresponding to the constraintsh and: h
respectively.

Example 4.6(Locating a set). In this example, we continue with the partition of
R2 de�ned in Example 4.5 and represented in Figure 4.3. We want to locate Y1

the image of Y0 by the vector �eldA (f )
3 (see Figure 4.3). Let consider the BSPT

given in Figure 4.4 as a representation of the partition of Example 4.5. We know
that Y0 � N 3, therefore we �rst guess that Y1 � N 3. As it is false, we go upward
in the tree and test if Y1 � f: h1 ^ h2g which is true. Consequently, we know that
either Y1 � N 4 or Y1 is intersecting bothN3 andN4. As Y1 � :f h3g we know
that Y1 � N 4 which terminates the localisation search.

Detecting jumps. We now want to de�ne a procedure to test if a setX � +1 is in a
domain adjacent to the position of the previous setX � , or if it has “jumped” across
multiple domains as shown in Figure 4.3. In case a jump is detected, a roll-back to
iteration� may be performed and, for example in the case of discrete time systems
coming from numerical integration, the time step may be reduced.

First we de�ne a constrainth in the formax � c, as tangent to a compact set
N if maxx2N (a � x) = c. We recall that we de�ned a nodeN by a conjunction
of constraints, possibly redundant. For each leafN i we identify all its constituting
constraints that are not tangent.
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Let us assume thatX � is located in the nodeN i at step� . Let us also assume
thatX � +1 intersects a nodeN i 0 at step� + 1 such that there is a constrainth that
is crossed: meaningh appears in the de�nition ofN i and: h in the one ofN i 0. If
h is not tangent toN i thenX � +1 has performed a “jump” (see Figure 4.3).

4.2 The Bernstein expansion based method

As seen in the previous section, one can compute an over-approximation of a reach-
able set using template reachability analysis. One of the main dif�culties is the op-
timization problemmax(y ;k )2 X � K � f (y ; k) (in the particular case of polyhedral
templates) to compute a tight template over-approximation.

In this section, we present the �rst method for reachability analysis based on the
Bernstein expansion of polynomials. This approach has been previously studied in
[83] and we propose to extend it to a larger class of dynamical systems.

We �rst present the necessary background on the Bernstein expansion and its
application to non-linear optimization. Then we introduce our contribution for the
reachability analysis of discrete time piece-wise polynomial dynamical systems.

4.2.1 Polynomial optimization using the Bernstein expansion

Bernstein expansion. Bernstein expansion is the reformulation of a polynomial
from its expression in the canonical basis to its expression in the Bernstein ba-
sis. It was �rst proposed by S.N. Bernstein, at the beginning of theXXth century,
in a proof of the Weirstrass theorem [146]. Its use for the enclosure of univari-
ate polynomials was later proposed in [147] and extended in [148] to multivariate
polynomials. We recommend two recent surveys [149, 150] on the Bernstein ex-
pansion, its computation, and applications. We recall from [148, Theorem 2] the
de�nition of the multivariate Bernstein expansion:

De�nition 4.7 (Multivariate Bernstein expansion). Given a multivariate polyno-
mial f and a degreel � d with d being the multi-degree off , then forx 2 [0; 1]n ,
the Bernstein expansion of multi-degreel of f is given by:

f (x) =
X




a
 x 
 =
X

� � l

b(f )
� B l ;� (x): (4.9)

whereb(f )
� (also denoted byb� when there is no confusion) are the Bernstein coef-

�cients (of multi-degreel) of f , andB l ;� (x) are the Bernstein basis polynomials
de�ned by B l ;� (x) :=

Q n
i =1 B l i ;� i (x i ) andB l i ;� i (x i ) :=

� l i
� i

�
x � i

i (1 � x i ) l i � � i .
The Bernstein coef�cients are given by the following formulas:

b� =
X

� � �

� �
�

�

� l
�

� a� ; 0 � � � l : (4.10)
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We call the set of points(� =l ; b� ) 2 Rn+1 the Bernstein control points associated
to the Bernstein expansion of multi-degreel.

Example 4.8(Bernstein expansion). The Bernstein coef�cients up to degreel =
10of the univariate polynomialf (x) = x5 + 3x2 for x 2 [� 1; 1] are:

b = f 2;
9
5

;
44
45

;
1
5

;
� 26
105

;
� 1
3

;
� 16
105

;
1
5

;
34
45

;
9
5

; 4g:

The associated Bernstein control points are represented in the Figure 4.5. We note
that the maximum of the coef�cients is4. As it is achieved inx = 1 , we know the
solution is optimal, which can be observed in Figure 4.5. However, the minimum
of the Bernstein coef�cientsb, which is � 1

3 , is not the minimum off (x) over
[� 1; 1].

Figure 4.5: Representation in blue of the polynomialf (x) = x5 + 3x2 given in Example
4.8, forx 2 [� 1; 1]. In red, we show its Bernstein control points forl = 10.

The Bernstein expansion having numerous properties, we give only the ones
necessary for our reachability purpose in Section 4.2.2. For a more exhaustive in-
troduction to the Bernstein expansion, as well as some proof of the basic properties,
we refer the interested reader to [151].

Property 4.9 (Cardinality [151, (3.14)]). The number of Bernstein coef�cients in
the Bernstein expansion of multi-degreel is equal to(l + 1)1 =

Q n
i =1 (l i + 1) :
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Property 4.10(Linearity [151, (3.2.3)]). Given two polynomialsf 1 andf 2,

b(cf 1+ f 2 )
� = cb(f 1 )

� + b(f 2 )
� ; 8c 2 R;

where the Bernstein expansions with same multi-degrees are considered.

Property 4.11 (Enclosure [151, (3.2.4)]). The minimum (resp. maximum) of a
polynomialf over[0; 1]n can be lower bounded (resp. upper bounded) by the min-
imum (resp. maximum) of its Bernstein coef�cients:

min
� � l

b� � f (x) � max
� � l

b� ; 8x 2 [0; 1]n :

Property 4.12(Sharpness [151, (3.2.5)]). If the minimum (resp. maximum) of the
b� is reached for� in a corner of the box[0; l1] � � � � � [0; ln ], thenb� is the
minimum (resp. maximum) off over[0; 1]n .

Property 4.9 gives the maximal computational cost needed to �nd a lower
or a upper bound off (x), 8x 2 [0; 1]n and for a Bernstein expansion of �xed
multi-degreel. Property 4.11 is used to provide a lower (resp. upper) bound of
minx 2 [0;1]n f (x) (resp. max), while Property 4.12 allows us to determine if the
given bound is optimal. The convergence toward the optimum can be obtained ei-
ther through subdivision of the domain[0; 1]n , or through an increase of the multi-
degreel. The work of [152, 153, 154] proposes multiple subdivision schemes and
gives their associated convergence rates. The convergence rate in degree elevation
can be found in the original work on the multivariate Bernstein expansion [148]
or more recently in [155]. Finally, we recall from [133] an upper bound on the
distance between a polynomialf and its Bernstein enclosure:

Lemma 4.13. Let � (f )
l : Rn ! R be the piecewise linear function de�ned by the

Bernstein control point of a polynomialf at a given degreel. Then, the following
inequation holds for allx 2 [0; 1]n :

kf (x) � � (f )
l (x)k1 � max

x 2 [0;1]n ;i;j 2f 1:::n g
j@i @j f (x)j (4.11)

In the recent years multiple methods have been developed to compute ef�-
ciently the Bernstein coef�cients. In this work we use two of them depending of
the situation: the matrix computation [65] and the implicit form [132]. The �rst
method is the method originally implemented in the softwaresapo [65] and ef�-
ciently computesall the Bernstein coef�cientsusing matrix operations. The second
method uses an implicit representation of the Bernstein coef�cients. Indeed, it can
be observed, in [132], that the Bernstein coef�cients of a multivariate monomialx 


up to a degreel can be expressed as the product of the coef�cient of each univariate
monomialx 
 i

i constitutingx 
 :

b(x 
 )

� =
Y

i � n

b
(x


 i
i )

� i (4.12)
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Consequently, instead of storing all the Bernstein coef�cients ofx 
 it suf�ces to
compute the Bernstein coef�cients of the univariate monomials which are less nu-
merous4. If needed, the Bernstein coef�cients ofx 
 (and any polynomial thanks
to Property 4.10) can be computed independently and on the �y at a lesser cost.

Example 4.14(Implicit representation). Let us consider the 2 dimensional poly-
nomial f (x1; x2) = x3

1x2 � 3x1x2
2 for (x1; x2) 2 [� 2; 0:5]2. Then, the implicit

representation forl = (3 ; 3) is given by:

1 ( � 8 2 � 1=2 1=8 ) � 3 ( � 2 � 7=6 � 1=3 1=2 )
0

B
B
@

� 2
� 7=6
� 1=3
1=2

1

C
C
A

0

B
B
@

16 � 4 1 � 1=4
28=3 � 7=3 7=12 � 7=48
8=3 � 2=3 1=6 � 1=24
� 4 1 � 1=4 1=16

1

C
C
A +

0

B
B
@

4
2=3

� 7=12
1=4

1

C
C
A

0

B
B
@

� 8 � 14=3 � 4=3 2
� 4=3 � 7=9 � 2=9 1=3
7=6 49=72 7=36 � 7=24

� 1=2 � 7=24 � 1=12 1=8

1

C
C
A

Finally, the Bernstein coef�cients are obtained by combing both matrices with the
coef�cients1 and� 3:

0

B
B
@

40 10 5 � 25=4
40=3 0 5=4 � 55=48
� 5=6 � 65=24 � 5=12 5=6
� 5=2 15=8 0 � 5=16

1

C
C
A

This representation is especially useful to determine the enclosure as one does
not always need to compute explicitly all the Bernstein coef�cients to �nd their
maximum or minimum. Indeed, the work of A.P. Smith [132] provides a set of
rules based on the sparsity of the polynomial to determine a subset of coef�cients
containing the enclosuremin � (b� ) andmax� (b� ). We also note that the complete
set of the Bernstein coef�cients ofx 
 can be obtain as the successive Kronecker
product [156] of the coef�cients of each constituting univariate monomialx 
 i

i .
As the set of coef�cient as de�ned in De�nition 4.7 can also be represented as a
tensor, this Bernstein form is also called tensorial Bernstein expansion over boxes
(in contrast with the simplicial Bernstein expansion over simplices [157]).

In practice biochemical reaction networks are often described by sparse poly-
nomials: the dynamic of each species may not depend of all the species of the
systems. This sparsity characteristic makes the implicit form very ef�cient for
template reachability analysis of biochemical systems. However, when one can-
not take advantage of any sparsity pattern or when all the coef�cients have to be
computed, it is preferable to use the matrix computation method from [65].

Parametric Bernstein expansion. The previous work of [65] introduces a para-
metric Bernstein expansion for functionsf (x ; k) : Rn � Rm ! R, which are

4We recall that the number of Bernstein coef�cients is exponential in dimension.
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multivariate polynomial inx and linear ink. In a similar manner to De�nition 4.7
we can write a parametric Bernstein expansion off up to multi-degreel as:

f (x ; k) =
X




a
 (k)x 
 =
X

� � l

b(f )
� (k)B l ;� (x) ; (4.13)

where eacha
 (k) : Rm ! R is a linear functions ink. Similarly, each Bernstein
coef�cient is formulated as a linear function in the parametersk:

b� (k) =
X

� � �

� �
�

�

� l
�

� a� (k); 0 � � � l : (4.14)

The previous work of [65] demonstrates that the enclosure and sharpness properties
hold for the parametric Bernstein expansion:

min
� � l

min
k 2 K

b� (k) � min
(x ;k )2 [0;1]n � K

f (x ; k)

max
(x ;k )2 [0;1]n � K

f (x ; k) � max
� � l

max
k 2 K

b� (k) :
(4.15)

Moreover, we note that the methods and implementation to compute the Bernstein
coef�cients in the non-parametric case can still be applied in the parametric case.
Indeed, one can write by linearity (Property 4.10):

b(f )
� (k) =

X




a
 (k)b(x 
 )
� : (4.16)

We also note that the number ofparametric Bernstein coef�cientsis still
Q n

i =1 (l i +
1). Finally, if the setK is a polyhedral set then each optimizationmink 2 K b� (k)
can be solved using linear programming.

Example 4.15(Parametric Bernstein expansion). Let de�ne f 0(x; k) = (2 x2 �
x)k1 + x2k2 + ( x2 � x)k3, with k 2 [� 1; 1]3. Applying the above described
methods for the parametric Bernstein expansion withl = d = 2 , we consider the
following parametric Bernstein coef�cients:

b
(f 0

k )
0 = 0 ; b

(f 0
k )

1 = �
k1

2
�

k3

2
; b

(f 0
k )

2 = k1 + kk2:

We note that the number of Bernstein coef�cients w.r.t.x is 3, which is much lower
than the one w.r.t.(x; k), which is equal to24. One can obtain an upper bound
(resp. lower bound) by taking the maximum (resp. minimum) of the Bernstein

coef�cients. In this case,maxk 2 [� 1;1]3 b
(f 0

k )
1 = 0 , maxk 2 [� 1;1]3 b

(f 0
k )

2 = 1 and

maxk 2 [� 1;1]3 b
(f 0

k )
3 = 2 . Thus, one obtainsf 0

l = 2 as an upper bound off 0.
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In this work we also propose an additional method to compute an upper bound
of the optimummax(x ;k )2 [0;1]n � K f (x ; k) in the particular case of parameters

varying inside a boxK = [ k; k]. As eachb(f )
� (k) is linear ink, by monotonic-

ity of linear applications, the maximum and minimum of eachb(f )
� are obtained at

the corners ofK . Through a linear transformation to the box[� 1; 1]m it is possible
to further speed up this computation.

Let � (k) : Rm ! Rm be the linear transformation that associates to eachk 2
K a vectore 2 [� 1; 1]m , notinge = � (k). The optimization problem transformed
to e 2 [� 1; 1]m is nowmax(x ;e)2 [0;1]n � [� 1;1]m f 0(x ; e) = f (x ; � � 1(e)) . Then, by
linearity of f 0(x ; e) in e we can write:

f 0(x ; e) =
mX

j =1

ej sj (x) ; (4.17)

wheresj (x) = @f0(x ;e)
@ej

is a polynomial inx.

Finally, for eachl � d5, let us notef 0
l := max � � k

P m
j =1 jb(sj )

� j andf 0
l := � f 0

l .
Our procedure is based on the following lemma:

Lemma 4.16. For eachl � d, the polynomialf 0(x ; e) can be bounded as follows:

f 0
l � f 0(x ; e) � f 0

l ; 8(x; e) 2 [0; 1]n � [� 1; 1]m : (4.18)

Proof. We write f 0
e 2 R[x] the polynomialf 0(x ; e) for a givene 2 [� 1; 1]m .

Property 4.11 provides the enclosure off 0
e(x) w.r.t. x for a givene 2 [� 1; 1]m :

min
� � k

b(f 0
e )

� � f 0
e(x) � max

� � k
b(f 0

e )
� ; 8x 2 [0; 1]n ; (4.19)

where each Bernstein coef�cient satis�esb(f 0
e )

� =
P m

j =1 ej b(sj )
� by Property 4.10

(eachej being a scalar in[� 1; 1]). The proof of the left inequality comes from:

min
e2 [� 1;1]m

�
min
� � k

(
mX

j =1

ej b(sj )
� )

�
= min

� � k

�
min

e2 [� 1;1]m
(

mX

j =1

ej b(sj )
� )

�

= min
� � k

mX

j =1

�j b(sj )
� j = � max

� � k

mX

j =1

jb(sj )
� j :

The proof of the right inequality is similar. �

Remark 4.17. The computational cost off 0
l is now m(l + 1)1 since we need to

compute the Bernstein coef�cients for eachsj (x). This cost is polynomial in the
degree and exponential inn but is linear inm the number of parameters. In the
implementation, we �rst compute eachb(f 0

e )
� as a function ofe and then optimize

5We recall thatd is the multi-degree off 0 (andf ) in x .
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afterwards using either optimization as in [65] or Lemma 4.16 depending of the
situation. As described further in Section 4.2.2, we show how [1] gets around the
limitation to boxes in Property 4.11 and handlex in polyhedral domains through
the de�nition of bundles of parallelotopes. A similar approach can be taken if one
wants to extend Lemma 4.16 to polyhedral sets.

Parametric Bernstein expansion of rational functions. To handle a larger class
of biological models we introduce an additional method, based on the original
results of [158], to optimize rational function using the Bernstein expansion. Let
us now assume thatf (x ; k) : Rn � Rm ! R is a rational function inx and linear
in k:

f (x ; k) =
f 1(x ; k)
f 2(x)

;

wheref 1 2 R[x] linear ink andf 2 2 R[x] with f 2(x) 6= 0 ; 8x 2 [0; 1]n . Then,
from the previous results on the parametric Bernstein expansion (4.13),(4.16) and
by linearity ink we can extend the theorem from [158] to the parametric case.

Theorem 4.18.Let f 1(x ; k) be a polynomial inx of multi-degreed (f 1 ) and linear
in k and f 2(x) be a polynomial inx of multi-degreed (f 2 ) such thatf 2(x) 6=
0; 8x 2 [0; 1]n . Givenl � max(d (f 1 ) ; d (f 2 ) ), we notef bf 1

� (k)g and f bf 2
� g the

Bernstein coef�cients up to degreel of f 1 andf 2 respectively.
Thenf (x; k) = f 1(x ; k)=f 2(x) is bounded for(x; k) 2 [0; 1]n � K by:

min
� � l

min
k 2 K

bf 1
� (k)

bf 2
�

� f (x ; k) � max
� � l

max
k 2 K

bf 1
� (k)

bf 2
�

(4.20)

Proof. For a given �xedk 2 K we have thank to [158]:

f (x ; �jk ) � max
� � l

bf 1
� (k)

bf 2
�

= max
� � l

X


 � d ( f 1 )

a
 (k)
bx 


�

bf 2
�

Thus, it yields for allk 2 K by linearity ina
 (k)

f (x ; k) � max
k 2 K

max
� � l

X


 � d ( f 1 )

a
 (k)
bx 


�

bf 2
�

� max
� � l

max
k 2 K

X


 � d ( f 1 )

a
 (k)
bx 


�

bf 2
�

= max
� � l

max
k 2 K

bf 1
� (k)

bf 2
�

The proof is similar for the other inequality. �

The main advantage is that this enclosure is more accurate than the naive en-
closure:

minx ;k f 1(x ; k)
maxx f 2(x)

� f (x ; k) �
maxx ;k f 1(x ; k)

minx f 2(x)
:
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Indeed, in the formulation of Theorem 4.18 we avoid decorrelating the optimiza-
tion on the numerator and denominator. However, this property requires generat-
ing the complete Bernstein expansion of both functionsf 1 andf 2 up to the closest
common multi-degreel � max(d (f 1 ) ; d (f 2 ) ). We refer the reader to [159] for the
convergence rates in degree elevation and subdivision for the Bernstein expansion
of rational functions. We will call in the following a rational vector �eld, a vector
�eld constituted of polynomial functions and at least one rational function.

4.2.2 Validation of piecewise polynomial ODE systems using the Bern-
stein expansion

In the previous sections, we de�ned the necessary background on discrete time
reachability analysis using polyhedral templates. We also introduced the paramet-
ric Bernstein expansion as a method to solve parametric polynomial optimization
problems. We exhibited our contribution for an ef�cient representation of discrete
time system approximation maps. Finally, we showed how the work of [65] can be
extended to the optimization of parametric rational function, and we proposed an
alternate method for parametric polynomial optimization when parameters lie in a
box.

In this section, we introduce the algorithm for discrete time reachability anal-
ysis by extending the previous implementation of [83]. To this aim, we propose
in Algorithm 2 an algorithm to compute the intersection of parallelotope bundles
with linear constraints. Then, we extend in Algorithm 3 the work of [83] to discrete
time reachability analysis of piecewise rational functions.

We recall that we are considering dynamics de�ned6 by a polynomial (or ra-
tional) vector �eld f in x and linear in the parametersk. We remind from Section
4.1.2 (4.8) that given a template matrix the template-based reachability algorithm
can be summarized to the following optimization problem at each iteration� :

c� +1 = max
(x ;k )2 X � � K

� f (x ; k) =

0

B
B
@

max
(x ;k )2 X � � K

� 1f (x ; k)

: : :
max

(x ;k )2 X � � K
� pf (x ; k)

1

C
C
A (4.21)

In the previous section we showed how the Bernstein expansion can be used to
ef�ciently solve this optimization problem forx 2 [0; 1]n . We note such opti-
mization method can be extended forx in any linear transformation of the unit
box [0; 1]n . The previous implementation [83] focused on the parallelotope: a set
representation that can be expressed as a linear transformation of[0; 1]n .

De�nition 4.19 (Parallelotope generator representation). Let q 2 Rn be a point,
andf � ; : : : ; � ng a set ofn linearly independent vectors inRn . We associate toq

6Locally de�ned by rational or polynomial vector �eld in each domain, for the particular case of
piecewise approximated dynamics
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andf � j g the parallelotope� such that for allx 2 � there existsy 2 [0; 1]n with:

x = � (y ) = q +
nX

j =1

yj � � j (4.22)

Figure 4.6: We represent a2 dimensional parallelotope� de�ned by its generator form: a
linear combination of the base vertexq, and the generators� 1, � 2. We also represent its
associated constraint from� � de�ned by the facets normal� �

1 ; � �
2 ; � � �

1 ; � � �
2

A parallelotope� can also be described by a set of linear constraints that
we denote by the linear system� � x � c� (see Figure 4.6). The representation
change from the generators to the constraints representation, or inverse, is de�ned
in the original work on parallelotopes [65]. Using the linear transformation from
(4.22), then in the particular case whereX � is a parallelotope each optimization
maxX � � K � i f (x ; k) from (4.21) becomes:

c� +1 ;i = max
(x ;k )2 X � � K

� i f (x ; k)

= max
(y ;k )2 [0;1]n � K

� i f (� � (y ); k)

= max
(y ;k )2 [0;1]n � K

� i (y ; k) ;

(4.23)

where� � is the linear transformation from the unit box to the parallelotopeX � ,
and � i (y ; k) = � i f (� � (y ); k) at iteration� . This optimization can now be ad-
dressed using the Bernstein expansion. However, after this single step we may still
obtain a polyhedral set̂X � +1 , which is not necessarily a parallelotope7. The work
of [1] develops further [65] and introduces the parallelotope bundle to approximate
polyhedral compact sets. In [1] it is proved that a polyhedronP can be exactly de-
scribed by the intersection of at leastnP = round " (p=n) parallelotopes, where
round " (�) is the rounding to the superior natural integer,n is the dimension and
p the number of non-symmetric constraints (two constraints are symmetric if their
normal vectors are opposed) de�ning in the constraint matrix ofP.

P = � 1 \ � 2 \ � � � \ � nP (4.24)

7The polyhedral template can be chosen to be a parallelotope however we may lose in accuracy.
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We note from [1] that the constraint representation of each parallelotope� j , � 2
[1; nP ] is constituted fromn constraints ofP and their symmetric.

Example 4.20(Bundle of parallelotopes). Let P be a polyhedron de�ned by a
template matrix� of 5 constraints:� 1; � 2; � 3; � � 1; � � 2: we note thatp = 3 as
only 3 constraints are non-symmetric. We represent this polyhedron in the Figure
4.7. We can de�nedround " (3=2) = 2 parallelotopes� 1 and � 2 such that
P = � 1 \ � 2. They are represented in Figure 4.7.
The parallelotope � 1 is de�ned by the constraint system� � 1 =
f � 1; � 3; � � 1; � � 3g, while the parallelotope� 2 is de�ned by the constraint
system� � 1 = f � 1; � 2; � � 1; � � 2g. We note that the constraint� 1 is redundant in
� 1 and� 2: this redundancy will be used later in Example 4.21.

Figure 4.7: In this �gure we show a possible bundle of parallelotopesf � 1; � 2g which
represents the polyhedronP as de�ned in Example 4.20
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It is also proved that the image ofP by a non-linear transformation is included
in the intersection of the image of all its associated parallelotopes. Letf be a non-
linear vector �eld:

f (P) � f (� 1) \ f (� 2) \ � � � \ f (� nP ) (4.25)

If at iteration� the setX � is a polyhedron that is described by the intersection of a
set of parallelotopesf � j gj 2 [1;nX � ], then we need to solve an optimization problem
similar to (4.23) for each parallelotope and keep the tightest result:

c� +1 ;i = min
j 2 [1;nX � ]

max
(y ;k )2 [0;1]n � K

� i f (� j;� (y ); k)

= min
j 2 [1;nX � ]

max
(y ;k )2 [0;1]n � K

� i;j (y ; k)
(4.26)

where� i;j (y ; k) = � i f (� j;� (y ); k) at iteration� . This procedure is calledall for
one(AFO) in [1] as the position of each constraint is the tightest among all the ones
resulting from the optimization over each parallelotope. Using the formulation of
(4.26) we can now use the Bernstein expansion to compute the over-approximation
using polyhedral template of the image of a polyhedron by a polynomial (or ratio-
nal) vector �eld.

In this work we want to perform reachability analysis of piecewise continuous
vector �elds. To this aim, we de�ned in Section 4.1.3 approximation maps and
their associated representation as BSPT. To locate the position of a polyhedron in
the tree, and its intersection with the different nodes we use the intersection oper-
ator between a polyhedronX and a linear constrainth. The work of [1] does not
introduce an equivalent operator for parallelotope bundles.

The previous work of [1] presented a procedure, calleddecompose , to pro-
duce a bundle of parallelotopes representing a template polyhedronX . One can
compute the intersection of a bundle associated to the polyhedronX with a linear
constrainth by applying the proceduredecompose on the resulting intersection
X \ h. In [1], the authors note that �nding the most accurate parallelotope decom-
position representing a polyhedron is NP-hard. To this aim, they include into the
proceduredecompose an heuristic to obtain an accurate decomposition.

In this work we propose a different approach which focuses less on accuracy
and more on performances. A method to compute this intersection without having
to recompute the bundle representation from scratch using thedecompose pro-
cedure [1] is de�ned in the Algorithm 2. This algorithm is divided in two steps:
the �rst is to add the intersecting constraint to the bundle de�nition, and the second
is to tighten the redundant constraints in consequence. Indeed, as we work with a
�xed template, some constraints of the template may become redundant at some
point of the analysis. We note that if the intersecting constraint does not appear in
the template, and there is no constraint in common between two parallelotopes of
the bundle, unlike in Figure 4.8 for example, then we need to add a new parallelo-
tope: this occurs whennP = p=n.
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In view of application to systems biology, we already noted that the polyno-
mials modelling the dynamics are often sparse. This implies that the optimization
of the constraint parallel to the axis (de�ning a box) are in general cheaper to
compute. A good heuristic is to always add such axis parallel constraints in the
template, and keep a complete box in the bundle (see Figure 4.8). This box can
then be duplicated when one needs to add new parallelotope to the bundle.

Example 4.21(Bundle intersection). We consider the bundle de�ned in the previ-
ous Example 4.20. We now compute its intersection with a constrainth as shown
in Figure 4.8. As seen in Example 4.20,p=n = 1 :5 � 2 and there is a redundant
constraint:� � 1

1 = � � 2
1 = � 1. Following Algorithm 2, we need to update the paral-

lelotope� 1 into � 0
1 by changing the constraint� � 1

1 into � � 0
1

1 = h. Consequently,
the parallelotope� 0

1 is de�ned by the constraint systemh; � 3; � h; � � 3.
Finally, to obtain a representing bundle we tighten, using linear optimization, the
remaining constraints� � � 1

2 and� � � 2
2 such that they are tangent to the setP \ h.

Figure 4.8: On the left we show a parallelotope bundle ofP and the intersecting constraint
h. On the right we show a bundle generated by Algorithm 2 representing the intersection
P \ h.
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Algorithm 2 Intersection(X ,B,h)

1: INPUT: X = (� ; c), current set (template polyhedron) .
2: INPUT: B = f � i gi 2 [1;n P ], associated bundle constituted ofnP parallelotopes.
3: We note� (� i ) ; c(� i ) their associated constraint representations.
4: INPUT: h, intersecting constraint of the formax � ch

5: /*If a is already in the template matrix� */
6: if a 2 � then
7: l = position in (a; �)
8: c[l ] = ch

9: Update accordinglyc(� i ) for� i 2 B associated to�[ l ]
10: else
11: if p=n == round " (p=n) then
12: /* The new constrainth is represented by a new parallelotope */
13: � new = � 1 /* Create a duplicate */
14: � (� new ) [1] = a, c(� new ) [1] = ch

15: /* Add � new to B and add a new line to� andc */
16: �[ last ] = a, c[last ] = ch

17: else
18: 9i 6= i 0 2 [1; nP ] s.t. l = commoncstr (� i ; � i 0)
19: /* A constraint appears multiple times: we replace it byh */
20: � (� i ) [l ] = a, c(� i ) [l ] = ch

21: end if
22: end if
23: for �[ l ] 2 � do
24: /* Tighten the constraints of the polyhedron */
25: c[l ] = max x 2 (� ;c) �[ l ]x
26: Update each parallelotope constraint representation accordingly.
27: Update each parallelotope generator representation.
28: end for
29: return X , B

Finally, we describe in Algorithm 3 the complete algorithm for one step of
polyhedral template reachability analysis of piecewise dynamics such as de�ned
in De�nition 4.4 using Bernstein expansion. The complete reachability analysis is
done by iterating over Algorithm 3.

4.3 The Krivine-Stengle representation based method

In this section we provide a method for reachability analysis of parametric polyno-
mial system using sparse Krivine-Stengle (K.S.) representations of positive poly-
nomials. This method is an alternative to the Bernstein expansion based method
as it is also designed to solve parametric polynomial optimization problems. How-
ever, unlike Bernstein expansion, which is limited to variables constrained in a box,
K.S. can be used for polynomial optimization with semi-algebraic constraints. In
practice we propose an algorithm for polyhedral template reachability analysis of
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Algorithm 3 Bernstein One Step Reach(X ,	 ,� ,K )
1: INPUT: X : Current set (template polyhedron)
2: INPUT: 	 : BSPT and its associated piecewise approximation of the dynamics.
3: INPUT: � : template which is used to over-approximate the reachable set.
4: INPUT: K : parameters set
5: OUTPUT: an over-approximation of the reachable set ofX after one step.

6: G: set of current nodes, or the tree root>

7: (L ,X ) = 	 .locating (X; G) /* �nding intersecting nodes, and associated intersec-
tions */

8: for � i 2 � do
9: /* computing offset boundci for each constraint� i in the template */

10: for (L � ; X � ) 2 L do
11: Compute the approximate dynamicsf � associated with the nodeL �
12: for � j 2 Bundle (X � ) do
13: /* Get parallelotopic bundle associated to polyhedronX � */

14: Construct the polynomial� i;�;j from polynomialf � of the dynamics,
15: template constraint� i and paralletopic domain� j , as de�ned in (??)

16: ci;j;� = max f � i;j;� (y ; k)) j y 2 [0; 1]n ^ k 2 K g
17: /* using the Bernstein expansion for polynomial� i;�;j */

18: end for

19: ci;� = min j (ci;�;j )
20: /* smallest bound over all parallelotopes� j in the bundle */

21: end for

22: ci = max � (ci;� )
23: /* largest bound by all approximate dynamics of intersecting nodes */
24: /* We keep one set to avoid cost explosion due to successive intersections */

25: end for
26: return (� ; c) /* the result is the template polyhedron with offsetsc */

discrete time polynomial dynamics with parameters constrained in a box.
We �rst give, in Section 4.3.1, the necessary background on Krivine-Stengle

representations, used in the context of polynomial optimization. Then, we present
a sparse version based on [160]. These notions are later applied in Section 4.3.2 to
parametric polynomial optimization and template discrete time reachability analy-
sis.

4.3.1 Polynomial Optimization using K.S representations

Dense Krivine-Stengle representations. Krivine-Stengle certi�cates for posi-
tive polynomials can �rst be found in [161, 162] (see also [163, Theorem 1(b)]).
Such certi�cates give representations of positive polynomials over a compact set
X = f x 2 Rn : 0 � gi (x) � 1; i = 1 ; : : : ; pg, with g1; : : : ; gp 2 R[x]. We note
dg = max i (deg(gi )) . The compact setX is a basic semi-algebraic set, that is a set
de�ned by a conjunction of �nitely many polynomial inequalities. In the sequel,
we assume without loss of generality thatX � [0; 1]n and thatX involves the
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polynomialsx i for all i = 1 ; : : : ; n in its de�nition. This implies that the family
f 1; gi gi � p generatesR[x] as anR-algebra, which is a mandatory assumption for
Theorem 4.23. Given� = ( � 1; : : : ; � p) and� = ( � 1; : : : ; � p), let us de�ne the
polynomialh� ;� (x) = g� (1 � g) � =

Q p
i =1 g� i

i (1 � gi ) � i .

Example 4.22(K.S. representations). For instance on the two-dimensional unit
box, one hasn = p = 2 , X = [0 ; 1]2 = f x 2 R2 : 0 � x1 � 1 ; 0 � x2 � 1g.
For � = (2 ; 1) and� = (1 ; 3), one hash� ;� (x) = x2

1x2(1 � x1)(1 � x2)3.

Theorem 4.23(Dense Krivine-Stengle representations). Let  2 R[x] be a posi-
tive polynomial overX . Then there existl 2 N and a �nite number of nonnegative
weights� � ;� � 0 such that:

 (x) =
X

j � + � j� l

� � ;� h� ;� (x); 8x 2 Rn : (4.27)

It is possible to compute the weights� � ;� by identifying in the monomial basis
the coef�cients of the polynomials in the left and right sides of (4.27). Denoting by
( ) 
 the monomial coef�cients of , with 
 2 Nn

l0 := f 
 2 Nn : j
 j � l0 = kdgg,
the� � ;� ful�ll the following equalities:

 
 =
X

j � + � j� l

� � ;� (h� ;� ) 
 ; 8
 2 Nn
l0: (4.28)

Global optimization using the dense Krivine-Stengle representations. Here
we consider the polynomial maximization problemf

�
:= max x 2X f (x), with f

a polynomial of degreed. We can rewrite this problem as the following in�nite
dimensional problem8:

f
�

:= min
t2 R

t;

s.t. t � f (x) � 0 ; 8x 2 X :
(4.29)

The idea is to look for a hierarchy of �nite dimensional linear programming (LP)
relaxations by using Krivine-Stengle representations of the positive polynomial
 = t � f involved in Problem (4.29). Applying Theorem 4.23 to this polynomial,
we obtain the following LP problem for eachl � d:

p�
l := min

t;� � ; �

t;

s.t (t � f ) 
 =
X

j � + � j� l

� � ;� (h� ;� ) 
 ; 8
 2 Nn
l0 ;

� � ;� � 0:

(4.30)

As in [163, (4)], one has the following convergence theorem:
8the minimization problem resolution is analogous.
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Theorem 4.24(Dense Krivine-Stengle LP relaxations). The sequence of optimal
values(p�

l ) satis�esp�
l ! f

�
asl ! + 1 . Moreover eachp�

l is a upper bound of
f

�
.

At �xed l, the total number of variables of Problem (4.30) is given by the
number of� � ;� and t, that is

� 2p+ l
l

�
+ 1 , wherep is the dimension ofg. The

number of constraints is equal to the cardinality ofNn
l0, which is

� n+ l0
l0

�
. We recall

thatl0 = l dg . In the particular case whereX is an hypercube, the LP has
� 2n+ l

l

�
+1

variables and
� n+ l

l

�
constraints.

Sparse Krivine-Stengle representations. We now explain how to derive less
computationally expensive LP relaxations, by relying on sparse Krivine-Stengle
representations. ForI � f 1; : : : ; ng, let R[x; I ] be the ring of polynomials re-
stricted to the variablesf x i : i 2 I g. We borrow the notion of a sparsity pattern
from [164, Assumption 1]:

De�nition 4.25 (Sparsity Pattern). Given m 2 N, I j � f 1; : : : ; ng, andJ j �
f 1; : : : ; pg for all j = 1 ; : : : ; m, a sparsity pattern is de�ned by the four following
conditions:

– f can be written as:f =
P m

j =1 f j with f j 2 R[x; I j ],

– gi 2 R[x; I j ] for all i 2 J j , for all j = 1 ; : : : ; m,

–
S m

j =1 I j = f 1; : : : ; ng and
S m

j =1 J j = f 1; : : : ; pg,

– (Running Intersection Property) for allj = 1 ; : : : ; m � 1, there existss � j
s.t. I j +1 \

S j
i =1 I i � I s.

Example 4.26(Sparsity Pattern). As an example, the four conditions stated in Def-
inition 4.25 are satis�ed while consideringf (x) = x1x2 + x2

1x3 on the hypercube
X = [0 ; 1]3. Indeed, one hasf 1(x) = x1x2 2 R[x; I 1], f 2(x) = x2

1x3 2 R[x; I 2]
with I 1 = f 1; 2g, I 2 = f 1; 3g. Taking J1 = I 1 and J2 = I 2, one has
gi = x i 2 R[x; I j ] for all i 2 I j , j = 1 ; 2.

Let us consider a given sparsity pattern as stated above. By notingnj = jI j j,
pj = jJ j j, then the setX = f x 2 Rn : 0 � gi (x) � 1; i = 1 ; : : : ; pg yields
subsetsXj = f x 2 Rn j : 0 � gi (x) � 1; i 2 J j g, with j = 1 ; : : : ; m. If X is
a compact subset ofRn then eachXj is a compact subset ofRn j . As in the dense
case, let us noteh� j ;� j

:= g� j (1 � g) � j , for given� j ; � j 2 Nn j .

The following result, a sparse variant of Theorem 4.23, can be retrieved from [164,
Theorem 1] but we also provide here a shorter alternative proof by using [160].
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Theorem 4.27(Sparse Krivine-Stengle representations). Let f; g 1; : : : ; gp 2 R[x]
be given and assume that there existI j andJ j , j = 1 ; : : : ; m, which satisfy the four
conditions stated in De�nition 4.25. Iff is positive overX , then there exist� j 2
R[x; I j ], j = 1 ; : : : ; m such thatf =

P m
j =1 � j and� j > 0 overXj . In addition,

there existl 2 N and �nitely many nonnegative weights� � j ;� j
, j = 1 ; : : : ; m,

such that:
� j =

X

j � j + � j j� l

� � j ;� j
h� j ;� j

; j = 1 ; : : : ; m: (4.31)

Proof. From [160, Lemma 3], there exist� j 2 R[x; I j ] such thatf =
P m

j =1 � j

and� j > 0 on Xj . Applying Theorem 4.23 on each� j , there existl j 2 N and
�nitely many nonnegative weights� � j ;� j

such that� j =
P

j � j + � j j� l j � � j ;� j
h� j ;� j

:
With l = max 1� j � m f l j g, we complete the representations with as many zero� as
necessary and obtain the desired result. �

In Theorem 4.27, one assumes thatf can be written as the sumf =
P m

j =1 f j ,
where eachf j is not necessarily positive. The �rst result of the theorem states
that thatf can be written as another sumf =

P m
j =1 � j , where each� j is now

positive. As in the dense case, the� � j ;� j
can be computed by equalizing the

coef�cients in the monomial basis. We also obtain a hierarchy of LP relaxations to
approximate the solution of polynomial optimization problems. We now provide
these relaxations as well as their computational costs in the particular context of
parametric polynomial optimization for reachability analysis in Section??.

4.3.2 Set-based simulation using K.S representations

We recall from (4.5) and (4.8) that template reachability analysis with polyhedral
templates can be summarized into solving the optimization problem:

c� +1 ;i = max
(x ;k )2 X̂ � � K

� i f (x ; k)

For the sake of keeping close notations to Section 4.3.1, we notef 0(x ; k) =
� i f (x ; k) which is polynomial inx and linear ink. In this particular section,
we assume that̂X � (also noted X in the following) is a compact semi-algebraic set
include in[0; 1]n . We also assume thatK is the hypercube9 [� 1; 1]m .

Here we explain how to compute upper bounds off 0 := max (x ;k )2 X � K f 0(x ; k)
by using sparse Krivine-Stengle representations. If necessary, we can obtain lower
bounds off 0 := min (x ;k )2 X � K f 0(x ; k) in a similar way.

Let gX be the vector ofp polynomial constraints whose conjunction de�nes the
semi-algebraic setX . For the sake of consistency with Section 4.3.1, we introduce
the variabley 2 Rn+ m de�ned by yi := x i , j = 1 ; : : : ; n and yi := ki � n ,
i = n + 1 ; : : : ; n + m. Then, one can write the setX = X � K as follows:

X = f y 2 Rn+ m : 0 � gj (y ) � 1 ; j = 1 ; : : : ; p + mg; (4.32)

9Or obtained though a linear transformation of[� 1; 1]m .
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with gj (y ) := gX
j (x), for eachj = 1 ; : : : ; n and gj (y ) := 1

2 + k j
2 , for each

j = p + 1 ; : : : ; p + m.

Lemma 4.28. For eachj = 1 ; : : : ; m, let us de�neI j := f 1; : : : ; n; n + j g and
J j := f 1; : : : ; p; p+ j g. Then the setsI j andJ j satisfy the four conditions stated
in De�nition 4.25.

Proof. The �rst condition holds asf 0(y ) = f 0(x ; k) =
P m

j =1 sj (x ; k)kj =P m
j =1 sj (y )kj , with sj (y ) 2 R[y ; I j ]. The second and third condition are obvious.

The running intersection property comes fromI j +1 \ I j = f 1; : : : ; ng � I j . �

Given � j ; � j 2 Np+1 , one can write� j = ( � 0
j ; ! j ) and� j = ( � 0

j ; � j ), for
� 0

j ; � 0
j 2 Np, ! j ; � j 2 N. In our case, this gives the following formulation for the

polynomialh� j ;� j
(y ) = g� j (1 � g) � j :

h� j ;� j
(y ) = h� 0

j ;� 0
j ;! j ;� j

(x ; k)

= gX (x) � 0
j (1 � gX (x)) � 0

j (
1
2

+
kj

2
)! j (

1
2

�
kj

2
) � j :

Example 4.29(Sparse representation in the parameters). For instance, with the
polynomial f 0 = (2 x2 � x)k1 + x2k2 + ( x2 � x)k3 depending onx; k1; k2; k3,
wherex 2 [0; 1] = f x 2 R j 0 � x � 1g andk 2 [� 1; 1]3, one can consider
the multi-indices� 1 = (1 ; 2), � 1 = (2 ; 3) associated to the scaled parameterk1.
Thenh� 1 ;� 1

(y ) = x(1 � x)2( 1
2 + k1

2 )2( 1
2 � k1

2 )3.

Now, we consider the following hierarchy of LP relaxations, for eachl � d:

f 0
l := min

t;� � j ; � j

t ;

s.t t � f 0 =
mX

j =1

� j ;

� j =
X

j � j + � j j� l

� � j ;� j
h� j ;� j

; j = 1 ; : : : ; m ;

� � j ;� j
� 0 ; j = 1 ; : : : ; m :

(4.33)

Similarly, we obtainf 0
l while replacingmin bymax andt� f 0by f 0� t in LP (4.33).

Lemma 4.30. The sequence of optimal values(f 0
l ) (resp.(f 0

l )) satis�es f 0
l " f 0

(resp.f 0
l # f 0) asl ! + 1 .

Proof. By construction(f 0
l ) is monotone nondecreasing. For a given arbitrary"0 >

0, the polynomialf 0� f 0+ "0is positive overX . By Lemma 4.28, the subsetsI j and
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J j satisfy the four conditions stated in De�nition 4.25, so we can apply Theorem
4.27 tof 0 � f 0 + "0. This yields the existence of� j , j = 1 ; : : : ; m, such that
f 0 � f 0 + "0 =

P m
j =1 � j and � j =

P
j � j + � j j� l � � j ;� j

h� j ;� j
, j = 1 ; : : : ; m.

Hence,(f 0 � "0; � j ; � � j ;� j
) is feasible for LP (4.33). It follows that there existsl

such thatf 0
l � f 0 � "0. Sincef 0

l � f 0, and"0has been arbitrary chosen, we obtain

the convergence result for the sequence(f 0
l ). The proof is analogous for(f 0

l ). �

Remark 4.31. In the special case of parametric reachability analysis of polynomial
systems, one can prove that the number of variables of LP (4.33) ism

� 2(p+1)+ l
l

�
+1

with a number of constraints equal to[ ml 0

n+1 + 1]
� n+ l0

l0
�
. This is in contrast with the

dense case where the number of LP variables is
� 2(p+ m)+ l

l

�
+ 1 with a number of

constraints equal to
� n+ m+ l0

l0
�

.

Proof of Remark 4.30.We replace the representation of a function� of dimension
(n + m) on the setX by a sum ofm functions� j of dimension(n + 1) de�ned on
their associated subsetsXj . From Section 4.3.1, the number of coef�cients� � j ;� j

for the K.S. representation of a� j over Xj is
� 2(p+1)+ l

l

�
. This leads to a total of

m
� 2(p+1)+ l

l

�
for all the� j andm

� 2(p+1)+ l
l

�
+ 1 variables when addingt.

The number of equality constraints is the number of monomials involved inP m
j =1 � j . Each� j has

� (n+1)+ l0

l0
�

monomials. However there are redundant mono-

mials between all the� j : the ones depending of onlyx, and note. These
� n+ l0

l0
�

monomials should appear only once. This leads to a �nal number ofm
� (n+1)+ l0

l0
�
�

(m � 1)
� n+ l0

l0
�

monomials which is equal to[ ml 0

n+1 + 1]
� n+ l0

l0
�
. �

Example 4.32(K.S. parametric optimization). Continuing Example 4.15 and 4.29,
for the polynomialf 0 = (2 x2 � x)k1+ x2k2+( x2 � x)k3, we consider LP (4.33) at
the relaxation orderl = d = 3 overX = [0 ; 1] � [� 1; 1]3. This problem involves
3
� 2� (1+1)+3

3

�
+ 1 = 106 variables and[3� 3

2 + 1]
� 4

3

�
= 22 constraints. This is

in contrast with a dense Krivine-Stengle representation, where the corresponding
LP involves35 linear equalities and166 variables. Computing the values off 0

l
provides an upper bound of2, yieldingf 0(x ; k) � 2" 8(x; k) 2 [0; 1]� [� 1; 1]3.

The algorithm for reachability analysis of discrete time polynomial systems us-
ing K.S. representations is more straightforward than Algorithm 3. Indeed, using
K.S. representations we avoid the decomposition of the polyhedrons into paral-
lelotopes bundles. In previous Algorithm 3, these decompositions were not only
costly as they multiplied the number of necessary optimizations at each step by the
number parallelotopes, but also less accurate as Bernstein method does not directly
handles variables in polyhedron.
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Algorithm 4 KS One Step Reach(X ,	 ,� ,K )
1: INPUT: X : Current set (template polyhedron)
2: INPUT: 	 : BSPT and its associated piecewise approximation of the dynamics.
3: INPUT: � : template which is used to over-approximate the reachable set.
4: INPUT: K : parameters set
5: OUTPUT: an over-approximation of the reachable set ofX after one step.

6: G: set of current nodes, or the tree root>

7: (L ,X ) = 	 .locating (X; G) /* �nding intersecting nodes, and associated intersec-
tions (still polyhedron) */

8: for � i 2 � do
9: /* computing offset boundci for each constraint� i in the template */

10: for (L � ; X � ) 2 L do
11: Compute the approximate dynamicsf � associated with the nodeL �
12: Construct the polynomial� i;� from polynomialf � of the dynamics and
13: template constraint� i , as de�ned in (??).

14: ci;� = max f � i;� (x ; k)) j x 2 X � ^ k 2 K g
15: /* using Sparse K.S representation for polynomial� i;� */

16: end for

17: ci = max � (ci;� )
18: /* largest bound by all approximate dynamics of intersecting nodes */

19: end for
20: return (� ; c) /* the result is the template polyhedron with offsetsc */

In Algorithm 4, we present our algorithm for one step of the discrete time
reachability analysis. We note that we did not introduce a method to apply K.S. rep-
resentations to rational functions, but this can be perform through variable changes,
in a similar fashion to [1].

Finally, we do not provide any cases study applying K.S. for reachability anal-
ysis as an ef�cient implementation is still on-going. However, we propose Section.
4.4 a discussion on our preliminary results on the comparison between Bernstein
expansion and K.S. representation applied to parametric polynomial optimization
problems. This results are from outside the �eld of system biology, and were
published in [2] for bounding the �oating point roundoff error. They still give
a groundwork for a choosing policy between these two methods for polynomial
optimization.

4.4 Discussion and perspectives

Theoretical complexity. In this section we provide a preliminary comparison be-
tween Bernstein expansion and K.S representations as two methods to solve para-
metric polynomial optimizations problems. We recall that we searchf an upper
bound of the optimization problem:

f � := max
(x ;k )2 X � K

f (x ; k) � f ;
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wheref is polynomial inx and linear ink.
The Bernstein expansion method to provide an upper boundf whenX � Rn

is a box, andK � Rm is either a box or a polyhedron. IfK is a box then we recall
from Section 4.3.1 that the theoretical complexity is at most equal to the number
of Bernstein coef�cients, which ism(l + 1)1 . The cost is linear in the number of
parametersm, polynomial in the degreel (at �xed dimensionn), and exponential
in dimensionn (at �xed degreel). If K is a (compact) polyhedron then we have to
solve at most(l + 1)1 linear programs ofm variables andp constraints, wherep is
the number of constraints de�ningK .

From this theoretical cost we note that the Bernstein based method greatly suf-
fers when dimension increases. Methods such as [132] can reduce this cost when
there is some sparsity inf , but in general Bernstein perform badly in high dimen-
sion. However when dimension is small, as the Bernstein expansion is polynomial
in degree it is possible to obtain ef�ciently a precise bound of a high degree poly-
nomial.

We note that ifX is a polyhedron we have to de�ne an associated bundle of
parallelotopesf � i gi � nP . However, we have no guarantee of convergence to the
optimal solution by optimizing over the bundle as described in Section 4.2.2. More-
over, as we have to perform one optimization for each parallelotope, the compu-
tational cost is now linear in the number of parallelotopes constituting the bundle:
nP m(l + 1)1 .

The K.S. representations based method provides bounds whenX is a semi-
algebraic compact set, andK either a box or a semi-algebraic compact set. In the
case whereK is a box, we can use the sparse K.S. representation as described in
Section 4.3.1. This yields a relaxation of the polynomial optimization problem into
an linear programs ofm

� 2(p+1)+ l
l

�
+ 1 variables and[ ml 0

n+1 + 1]
� n+ l0

l0
�

constraints,
wheren is the dimension ofx, p the number of constraints de�ningX , m the
dimension of the parametersk, and the adjusted degree10 l0 = ldg .

From [165],[166] we know that the computation cost of an LP resolution is
polynomial in the number of constraints and variables. Consequently, when the the
degreek is �xed this yields a polynomial cost in the dimensionn or p the number
of constraints de�ningX . We note that the complexity is linear inm allowing
to ef�ciently handle parameters as the Bernstein-based method. Experimentally
(see Table 4.1), the K.S. based method seems to have a large cost when the degree
increase, and the dimension is �xed.

WhenK is a semi-algebraic compact set, we have to use the dense K.S. repre-
sentation over the whole setX � K , leading to the important computational cost:
variables and constraints. To reduce the cost, it may be possible to provide a
problem speci�c sparsity pattern: however �nding an optimal sparsity pattern is an
NP-hard problem [167].

In our reachability analysis application, we always compute linear relaxation
of orderl = d, or Bernstein expansion of multi-degreel = d: thus by �xing the

10Note thatl0 = l in the particular case of polytopes.
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Benchmark n m d Bern(double) Bern(exact) K.S.
ex-2-2-5 2 9 3 3e–4 3e–4 0:13(0:02)
ex-2-2-10 2 14 3 4e–4 4e–4 0:18(0:02)
ex-2-2-15 2 19 3 5e–4 5e–4 0:24(0:03)
ex-2-2-20 2 24 3 5e–4 8e–4 0:30(0:03)
ex-2-5-2 2 9 6 2e–3 3e–3 1:08(0:14)
ex-2-10-2 2 14 11 2e–2 4e–2 90:1(53:1)
ex-5-2-2 5 12 3 7e–3 4e–2 0:63(0:05)
ex-10-2-2 10 22 3 2:48 1242 5:5(0:3)

Table 4.1: Comparison of execution times (in seconds) for examples generated from (??).
First and second column are the execution times using Bernstein optimization with either
double precision or rational arithmetic (exact precision). The last column details execution
times for Krivine-Stengle method. For Krivine-Stengle the CPLEX solving time is given
between parentheses. For each polynomial, the best results are emphasized usingbold
fonts.

degree we know that for high dimension K.S. is more ef�cient that Bernstein. If
this relaxation order, or this multi-degree is not high enough to provides accurate
bounds, we prefer to split the set than increase the degree. From these theoretical
consideration we argue that K.S. is a good complement to Bernstein expansion
when optimizing high dimensional polynomial with low degree. K.S. can also
handle more complex representation forX than Bernstein when accuracy is a key
factor of the analysis. Thus, we argue that a policy choosing at each step the
optimization method to use depending of the context would be more ef�cient.

Experimental results. Finally, we provide a table with experimental results com-
paring K.S. and Bernstein for polynomial optimization of boxes. This is a subset
of the benchmarks performed in our paper [2]. The studied examples are of the
form:

ex-n-sum-d (x) :=
mX

j =0

(
dY

l=1

(
nX

i =1

x i )) : (4.34)

with parameters taken in[� 1; 1]m . Their dimensionm is determined separately
in [2]. The dimension ofx is n andx is also taken in[� 1; 1]n . Finally, andd
is the degree of the polynomial. We also note that the associated multi-degree is
d = ( d; : : : ; d). To perform Bernstein expansion we re-use parts of theC++ im-
plementation fromsapo [83] based on the matrix method [65]. The optimization
using sparse K.S. representations is currently implemented in interpretedMatlab
2015a as a modi�cation of the previous toolbox SBSOS implemented for [164].
Experimentations were performed on an Intel Core i7-5600U (2.60Ghz, 16GB)
with Ubuntu 14.04LTS, using GINAC 1.7.1 version in association tosapo , and
CPLEX 12.63 to solve linear programs from K.S. representation method. In Table
4.1 we compare the performances of the two methods. Taking into account that
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Benchmark n m d Bernstein Krivine-Stengle
ex-2-2-5 2 9 3 201 201
ex-2-2-10 2 14 3 480 480
ex-2-2-15 2 19 3 860 860
ex-2-2-20 2 24 3 1342 1342
ex-2-5-2 2 9 6 1504 1504
ex-2-10-2 2 14 11 94576 94576
ex-5-2-2 5 12 3 770 770
ex-10-2-2 10 22 3 4648 4648

Table 4.2: Comparison of the accuracy for examples generated from (??). The �rst column
contains the upper bounds using Bernstein optimization with either double precision or
rational arithmetic (exact precision). The second column details the upper bounds given
by Krivine-Stengle method.

the LP generation for K.S. is implemented in interpretedMatlab we provide in
parenthesis the solving time of the LP byCplex . From the results of examples
ex-2-2-5 to ex-2-2-20 , we observe that accordingly to the theoretical cost
both methods are linearly affected by the number of parameters. Comparing ex-
amplesex-2-5-2 andex-2-10-2 , we note that K.S. is strongly affected by
degree elevation, while in examplesex-5-2-2 andex-10-2-2 , Bernstein is
greatly affected by dimension increase. In particular in exampleex-10-2-2 , we
note that the LP solving time related to K.S. method is small, which agree with the
polynomial cost of K.S. at �xed degree.

Finally we note that the current implementation of K.S. is limited by the LP
generation time inMatlab , and a new implementation in a compiled language
must provided in order to obtain more results, and a reliable implementation for
reachability analysis. In Table 4.2, we compare the accuracy of the two method at
the smallest relaxation orderl = d, and the smallest multi-degree for the Bernstein
expansion,l = d. This provides a similar context to an application to reachability
analysis where we focus on �rst approximation results. In all examples both meth-
ods have the same accuracy, further benchmarks are provided in [2] which yield a
similar conclusion. Consequently, there is apparently no loss in accuracy by using
K.S. instead of Bernstein when it is theoretically more cost ef�cient.

In the following we describe our perspectives and future work for both K.S.
and Bernstein based methods. The future works associated to this chapter can be
divided in three: the further development of the current implementation, and two
different approaches to perform reachability analysis.

Future implementations. First we need to improve the performances of the cur-
rent implementation of the K.S. based optimization method and to integrate it in-
side a toolbox for reachability analysis. Indeed, the current implementation in
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Matlab (based on [164]) cannot ef�ciently be applied on large problems (see Table
4.1).

As previously stated, our results on the Bernstein-based method are already an
improvement of the reachability toolboxsapo . However, the current implemen-
tation relies on an old version ofsapo , and it is now important to merge our new
features into a more recent version.

Both algorithms 3 and 4 have been detailed for reachability analysis of discrete
time systems. If they produce safe and conservative results in this context, they
are not guaranteed to be conservative for continuous time systems. To this aim we
need to implement a method to ef�ciently handle numerical integration error, and
we need to compute the continuous time corrected initial set, [87],correct (X 0)
de�ned as:

correct (X 0) := X 0 � f (X 0; K ) ; (4.35)

where� is the Minkowski sum operator.
Finally, it is important to provide an implementation for hybrid automata simi-

lar to [87], to handle hybrid systems with polynomial continuous dynamics, as well
as experimental protocol models we de�ne further in Section 5.

Fixed time reachability analysis. In addition to future improvements of the cur-
rent implementation we identify some new ideas which seems to be promising. The
�rst idea is the use of simulation and approximation methods to compute reachable
set at �xed instant. Given the ODE system:

_x(t) = f (t; x); x 2 Rn : (4.36)

Let us consider a closed time interval[0; T] � R. For all t 2 [0; T], � x 0 (t) denotes
the trajectory solution of (4.36), with initial conditionx(0) = x0. By extension,
8t 2 [0; T], � X 0 (t) is the set of trajectories for allx0 2 X 0.

We want to address the following problem: for a given timet 2 [0; T], we
consider� t (x) : Rn ! Rn , the function which gives the value at timet of the
trajectory� x (�). Instead of computing the whole �ow pipe, we only want to �nd
an over-approximation of the setX t = � t (x), 8x 2 X 0. Results from biological
experiments are often time series, with sometimes samples separated by hours.
We argue that interpolating some continuous temporal properties from these time
series is already a strong assumption on the model. Thus we seek to ensure that
given some ODEs modelling our system, all the trajectories associated to the model
reach the desired data points, without assuming anything in between.

To computeX t we ideally need the exact analytical function� t (X 0). In simple
cases, for example with linear autonomous ODE systems, we have this function.
For the ODE system,_x = Ax; x(0) 2 X 0, we have� t (X 0) = X 0e� At .

However, in the general case we may not know this analytical solution and in
particular forf 2 R[x]. For this reason we will search an approximation�̂ t (x)
of � t (x) and the associated approximation error de�ned byk� t (x) � �̂ t (x)k �
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"abs; 8x 2 X 0. This way we can build a new over-approximation ofX t by:

X̂ T = O(�̂ t (X 0)) � "abs (4.37)

Assuming that� t (x) is at leastC1(Rn ), we propose to use polynomial inter-
polation over the trajectories from an initial sample ofX 0 obtained by numerical
simulation, to determine this approximation. For two or three dimensional systems
we can use interpolation over a Padua-Grid and Chebychev polynomials [168]
to obtain a precise polynomial approximation̂� t (�) of � t (�). The template over-
approximationO� can be performed using the Bernstein or K.S. based methods
described in this chapter. In Fig 4.9, one can see the results of box approximations
using the Bernstein expansion at �xed time points of the Lotka-Volterra continuous
model (LV-ODE) from Example 4.1. If this method performs well in two dimen-

Figure 4.9: Interpolation method for reachability analysis applied on the Lotka-Volterra
ODE system. The '+' dots are the numerical simulations of the 2D Padua grid of the initial
set: the box[0:9; 1:1]2. The other boxes are the over-approximation the reachable set using
polynomial approximationŝ� t (X 0) interpolated from simulations on the initial set grid.

sion, it is not viable without modi�cation for dimension higher than3. Indeed,
using dense grid of the state-space results in an exponential number of samples,
and thus simulations. Moreover, the theoretical accuracy of the polynomial ap-
proximation quickly decreases if the degree of the approximation�̂ t (�) remains
�xed while the dimension increases. To tackle the problem of the size of the grid
exponential in the dimension we plan to use sparse grid such as describes in [169].
The work of [169] also provide a scheme to converge to an accurate polynomial
approximation up to a given error"abs using sparse grids. However, it would be
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a great improvement to obtain an even more accurate value for"abs than the one
provided by their bounds. For this, one idea would be to obtain an upper bound of
maxx 2 X j(� t (x) � �̂ t (x)) j, using occupation measure relaxation methods similar
to the one described in Chapter 3 (we recall that� t (x) is not analytically known).

Polynomial lift using Bernstein expansion. Carleman linearisation is a method
to approximate non-linear vector �eld by a high dimensional linear transformation.
The previous work [170] provides an error bound on the approximation of a non-
linear ODE by its Carleman linearisation. It is possible to extend [170] to reacha-
bility analysis in three steps: �rst we lift the initial set into the higher dimensional
space. Then, we perform reachability analysis in this high dimensional space using
linear reachability analysis tools such as [87] or [171]. Finally, we project the result
into the original low dimensional space while taking into account some linearisa-
tion error given by [170]. We propose to approximate the polynomial lift described
in [170] using the Bernstein expansion to compute a convex over-approximation
using the convex hull of the coef�cients. For performance purposes in the high
dimensional cases, we want to use the linear reachability tool [171]. To this aim,
we propose to compute an over-approximation of the lift in Cartesian product for-
mat, which directly usable by [171]. In Figure 4.10, we show the polynomial lift
L : R ! R3, L (x) = ( x; x 2; x3) as well as two possible over-approximations
using the Bernstein expansion.

Figure 4.10: Polynomial lift(x; x 2; x3) of the interval[0; 1] (blue dotted-line) approxi-
mated by either the convex hull of the Bernstein control points (blue enclosure), or its
Cartesian product decomposition (red enclosure). The green box would be a box over-
approximation of the polynomial lift.
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In this chapter, we focus on biological mechanism modelled using ordinary
differential equations (ODEs). They can represent mechanisms on multiple scales
including the molecular scale, cell scale or physiological scale. The motivation
for such models is not only to give quantitative predictions, when suf�cient data is
available to validate the model, but also to provide a mathematical representation of
a biological system. Such formalization then provides a framework to incorporate
new data and knowledge of various types in a consistent way.

We address the models corresponding to a class of biological experiments in
which the system, in a given initial state, is perturbed in some way, evolves, and
then at a later time some measurements are performed. To represent such be-
haviours, we provide a mathematical formalization of experimental protocols. A
model in this sense describes the system under study and the experiments which
have been performed on it. To achieve this, a formalization as hybrid automata is
proposed for this class of experimental protocols. With the hybrid automata for-
malism, we introduce a systematic way to study mechanistic biological models, in
their experimental context, using formal methods which produce conservative or
certi�able results.

In this chapter, we �rst propose, in Section 5.1, a high level “action based”
speci�cation language of experimental protocols, named Modelling-Oriented Ex-
perimental Protocol Language (MOEPLA). This action-based language serves as
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an interface between the experimental view and the mathematical modelling of a
given mechanism. Using this description, an abstract experimental protocol and its
execution are formally represented in MOEPLA using an explicit semantic. More-
over, it is expressive enough to be applied in numerous biological contexts such as
therapeutic modelling, pharmacology, or molecular modelling. It can be seen as
the �rst step of a pipeline to study in a systematic manner the experimental pro-
tocols. Other protocol speci�cation languages, such as EXACT [172], focus on
expressing all the stages and details of an experiment to enable its real life repro-
ducibility in another laboratory. In particular, our speci�cation language expresses
experimental protocols while taking into account insight on speci�c mechanism
models. Of course, this may lead to neglecting some particular stages or details of
the experiments since they are either without any in�uence, or too complex, for the
chosen mechanistic modelling purposes.

There are multiple results [172, 173, 174, 175] on formal languages for the
description of experimental protocols in some particular context (experiments over
genes, or proteins). The development of the Systems Biology Markup Language
(SBML) format [176] allows representing biological data and models using process
algebra. These efforts are motivated by the inherent ambiguity in natural language
for describing real-life experiments, which can result in the lack of repeatability of
a given biological laboratory protocol.

In Section 5.2, we provide a preliminary translation from this speci�cation lan-
guage into a hybrid automaton, an expressive mathematical formalism on which a
panel of analysing tools already exist [87, 47, 88]. Using hybrid automata, discrete
changes describe the different stages of the protocol, while ODEs describe bio-
logical mechanisms. This hybrid automaton representation can be analyzed using
formal validation, providing conservative or certi�ed results that a proposed bio-
logical mechanism is coherent with experimental observations. The general work-
�ow de�ned by the conjoint use of MOEPLA, the hybrid automaton representation
and an analysis tool, is described in Figure 5.1

ODE
Modelling

Experimental
Protocol

MOEPLA
Description

Hybrid
Automata

Analysis

Figure 5.1: Biological experiment modelling work�ow.

The hybrid formalism has previously been used as an abstraction method to
simplify mechanistic models which are complex and hard to analyse [111], or to
represent activation and switch processes such as in the genes regulatory networks
[11]. To our best knowledge, except for some general guidelines [177], the closest
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work on the formalization of biological protocol incorporating mechanistic models
is [178]. This recent work proposes a formalization as piecewise Markov-process
of biological protocol. This work differs from ours on the mathematical formaliza-
tion and seems to be designed to address models from biochemistry protocol. In
our case, we want to handle a larger panel of possible experimental protocols: from
biochemistry to therapy or animal study. In this chapter, the model of haemoglobin
production in erythroblast from [3] is used as a running example and will be further
analyzed in Chapter 6.

5.1 MOEPLA description

In this section, we de�ne the formal speci�cation language MOEPLA. We aim to
mix experimental protocol speci�cations with modelling hypotheses on speci�c
biological mechanisms. We note that this speci�cation language is useful when
the experimental protocol exhibits multiple step in�uences on the behaviour of the
entities involved in the biological mechanism. This is especially true for particular
evolving systems such as differentiating cells, or different stages of an organism's
life. On the downside, if it is possible to express short protocols constituted only of
one stage (one initial state and a �nal measurement), this is not the case for which
MOEPLA is the most useful. We now de�ne the main notions used to describe a
protocol.

The protocol we construct is organized around two main notions: experimental
objects and experimental actions, respectively denoted byO andA. We call exper-
imental object, an object (in a physical sense) on which an experimental protocol
action is applied at a given time. Following the context, it can represent objects of
multiple scales, such as the animals or cells. A given protocol can have different
experimental objects, for different stages of the protocol. As we focus on the mod-
elling of the effect of a protocol on a given biological system, we need information
on the associated biological mechanism. This mechanism is represented by a para-
metric dynamical systemF = ( T ; X; U; K; f ). Thus each experimental objectO
is connected to a biological mechanismF .

De�nition 5.1 (Experimental object). Let FO be a parametric dynamical system:

FO := ( TO ; X O ; UO ; K O ; fO ):

We de�ne by:
O := O(FO ) ; (5.1)

an experimental objectO associated to the parametric dynamical systemFO . In
this context,FO represents various mechanisms related to this particular object
the biologist wants to study. Then,TO , X O ; UO ; K O ) respectively are the default
time interval associated toO, its default state space, input space, and parameters
space; andfO are parametric ODEs with input, which models the dynamics of the
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variables ofO. In the following, we assume thatTO = T = [0 ; T] for all the
objects.

Remark 5.2(Notations). For a given experimental objectO, let X O � RnO , then
xO is the set of state variables associated toO, with xO 2 X O . Let fO (� )g� be the
set of all the experimental objects involved in a protocol. Givenn =

P
� nO ( � ) ,

then lety 2 Rn be the concatenation of all the variablesxO ( � )
, that is the set of all

variables associated to the whole experimental protocol.
The notationsk  K new andu  Unew ) de�ne the rede�nition operators

which associate respectively a new parameters spaceK new and input spaceUnew ,
to respectively the subset of parametersk and subset of inputsu.

And x  R(z) de�nes the operation which associates to a subsetz of variables
x a new valueR(z), via the reset mapR.

De�nition 5.3 (Conditional Statement). A conditional statementc is a function
c : T � Rn ! B such that for a given pair(t; y ), c(t; y ) decides if a condition ony
is satis�ed or not. Such conditional statements will be used to de�ne the condition
under which a particular step of the protocol must be applied.

We de�ne experimental actions as actions which are performed by the biologist
during the experiment and are relevant for the modelling. They include: actions
which createan experimental objectO at a given step of the experiment; actions
performed on an experimental objectO, which have an in�uenceon its associated
dynamics; and �nally, the measurement performed on a given experimental ob-
ject. We associate to an experimental action, a conditional statementc(t; y ). In the
general case, we de�ne7 kinds of actions which can be separated in 3 classes: cre-
ation (I 0; A create ; A cr f rom ), perturbation (A x ; A k ; A u), measurement (A M ). We
say that an action is executed when the effect of this action on the associated object
takes place. We say that an objectO is created when it is part of the initialisation
I 0(O), or when one of the actionsA create (O) or A cr f rom (O; : : : ) are executed.
We assume that an experimental protocol always starts at timet = 0 .
First we de�ne the actions creating a new experimental object. These actions in-
clude the initialisation stepI 0(O) which de�nes the initial state of the experiment
for a given objectO. In the following de�nitions, the symbolL represents a syn-
chronisation label associated to a particular action.

De�nition 5.4 (Experimental actions - Creation).

– I 0(O; xO (0) := xO
0 ): this creates an initial objectO, and initialises its state

variables toxO
0 .

– A create (O; L; xO (t) := xO
t ; c(t)) : this action de�nes the creation of a new

objectO under the conditionc(t) = true , with some initial valuexO
t . The

condition c only depends ont in this particular case. This action allows
creating a new object at a given time independently of another experimental
object.
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– A cr f rom (O; fO (� )g; L; xO (t)  R(x(t)) ; c(t; x)) : this action de�nes the
creation ofO from a given set of experimental objectsfO (� )g, under the
conditionc(t; x(t)) = true . Here,x is the concatenation of the variables
xO ( � )

. The initial conditionxO (t) of O is determined by a reset map on the
state variablesx(t) of the set of objectsfO (� )g.

Secondly, we de�ne the actions which perturb a given experimental objectO,
by changing its state variables, its parameters space, or its input space. In real life,
if an action has multiple effects, then in the speci�cation language, this is translated
by multiple actions under the same condition.

De�nition 5.5 (Experimental actions - Perturbation).

– A k (O; L; k  K new ; c(t; xO )) : the action performed onO affects the pa-
rametersk, changing the associated parameters space toK new , under the
conditionc(t; xO (t)) = true .

– A x (O; L; xO  R(xO ); c(t; xO )) : the action performed onO affects the
state variablesxO , changing their values toR(xO ), under the condition
c(t; xO (t)) = true .

– A u(O; L; u  Unew ; c(t; xO )) : the action performed onO affects the input
functionsu, changing the associated input space toUnew , under the condi-
tion c(t; xO (t)) = true .

Example 5.6(Perturbation action). An example of experimental action is as fol-
lows: at exactly 3 hours after the start of the experiment, the biologist increases the
temperature to37� C. It has the effect on a production ratekprod associated to the
experimental objectO1. Then the experimental action is: temperature increase to
37� C onO1 affectingkprod under conditiont == 3 h, and expressed as

A k (O1; L T " ; kprod  f kprod(37� C)g; t == 3 h):

In this example, the synchronizationL T " allows to gather all the perturbation as-
sociated to this perturbation: T increases to37� C. One of the perturbation of this
actions is described byA k : the parameter space ofkprod is changed to the singleton
f kprod(37� C)g.

Finally, we de�ne the action corresponding to an experimental measurement.

De�nition 5.7 (Experimental actions - Measurement).

– A M (O; L; xmeas(t) := m(xO (t)) ; c(t; xO )) : the action performed onO is
a measurement of the state variables ofO, under the conditionc(t; xO (t)) =
true . The information of the measurement is preserved in a variablexmeas(t),
for all time instantst which satisfy the condition.
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We use measurement actions to de�ne possible (or actual) observation windows
during the experiment. These action are parallel to actual experiment, and do not
in�uence it directly. If an experimental measurement does have in reality an effect
of the observed object, then it is represented as a perturbation action with the same
condition.

The set of possible experimental actions, with the exception of the initialisation
I 0, is summarized as follows:

A := A create ; A cr f rom ; A k ; A x ; A u ; A M

It is important to notice that we expect the biologist to have some insight on
how an action will affect the model. However, we do not actually expect him to
always provide explicit mathematical functions, or numerical values, when spec-
ifying the protocol in our language. In the following we may use dots, as in
A k (O; L; : : : ; c), to ease the redaction of non-relevant information in the context
of a given explanation. These dots are not part of the language.

De�nition 5.8 (Experimental Protocol Syntax). We call experimental protocol a set
of actionsfAg performed on objectsfOg , the objective of which is to highlight a
biological mechanism, and to measure directly or indirectly its evolution, in time
and/or after some events. The setf I 0g provides the initial conditions of a protocol.
A protocol must end with a �nal measurementA M . After de�ning the variables,
dynamical systems, protocol maximal durationtend, experimental objectsO(F )
that will appear in the experiment, as well as their (possible) initial conditions
I 0(O), we express the protocol as a sequence:

P := I �
0A � A M ;

whereI �
0 andA � are a �nite sequence of initial conditions and a �nite sequence of

any actionsA , respectively.

De�nition 5.9 (Experimental Protocol Rules). To ensure a correct description of
protocols using the speci�cation language, we add two rules on the de�nition of an
experimental action:

– There can be only one action of creation amongf I 0,A create ,A cr f rom g for a
given objectO.

– All the actionsmust havea synchronisation label denoting the associated
step in the protocol progress.

– Two creation or perturbation actionsA(O; L; : : : ; c) andA 0(O; L; : : : ; c) on
the same objectO can share the same labelL ; in this case they share the
same conditionc as they should represent the same step in the protocol.

– Similarly, if multiple perturbation (or creation) actions on the same object
O, expressed assuccessivein P, are performed under thesame condition
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c(t; y ), they indeed represent multiple effects of the same step in the ex-
periment. Consequently they must have the same synchronization label and
cannot affect the same variables, parameters, or inputs.

– Perturbation (or creation) actions and measurement actionsmust notshare
the same synchronisation labels since measurement actions are just a means
to represent a possible observation window on a given object (but they can
share the same conditions).

De�nition 5.10 (Experimental Protocol Execution Semantics). Let us �rst con-
sider the case without synchronization. The initialisations are executed �rst and
without conditions, in which the actionA create (O; : : : ; c(t)) is executed under
the only conditionc(t) == true . We abuse the notations here by denoting
A(O; c(t; xO (t))) the actionsA x ; A k ; A u , andA(O; fO (i )g; c(t; x(t))) the action
A cr f rom ; and �nally A M (O; c(t; xO (t))) the measurement action. The action
A(O; c(t; xO (t))) can be executed att such that:

– O has been created, all the previous actionsA(O) in the sequenceP have
been executed,and t is a solution ofc(t; xO (t)) == true .

An actionA(O; fO (i )g; c(t; x(t))) can be executed att such that:

– All the objectsO(i ) have been created, andt is a solution ofc(t; x(t)) ==
true , with x as in De�nition 5.5. Thus, the execution of this action is in-
dependent of the other actions performed on all the objects infO (i )g except
for the creation one.

An actionA M (O; c(t; xO (t))) is executed at timet such that:

– O has been created, andt is a solution ofc(t; xO (t)) == true .

In absence of synchronization labels the execution of a protocol can be interpreted
as a set of concurrent processes for each objectO, each set of actionsA(O) on O
being a process. The only possible interaction between two or more objects is the
creation actionA(O; fO (i )g; c(t; x(t))) . When using synchronisation labels we
must add the following rule:

– All the actions with the same label must be executed at the same time: this
implies that the conditions of all these actions must be satis�ed simulta-
neously. If it is not possible, this implies an inconsistency in the protocol
de�nition (see Example 5.11).

This additional rule allows multiple experimental objects to move from one step of
the experiment to another in a synchronized way.

5.2 MOEPLA speci�cation to hybrid automata

We propose to generate a hybrid automaton from a protocol speci�ed using the
above-described speci�cation language for experimental protocols. This automa-
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Example 5.11(Synchronized actions). A good example of synchronized evolution
can be observed in animal studies. When one considers the evolution of a pregnant
mother, the perturbations or different evolution stages occur simultaneously for
the mother and the foetus. Following the semantic rule for synchronized actions,
it is indeed inconsistent to consider transitions for the foetus and the mother as
asynchronous. If a delivery is performed on the mother, then, since its environment
is modi�ed, the model of the “foetus” must change: the baby is in the foetus state
only if the mother is in the pregnant state.
We propose an example of sequence of actions describing the start of a pregnancy
process. Let us �rst consider two experimental objects. We de�nedOmother the
experimental object representing the mother and its associated dynamical system
Fmother. Similarly, Obaby(Fbaby) which models the baby. We now show how to
write the sequence:
First we model the initial condition as a non-pregnant mother by the initialisation
I 0(Omother; : : : ).
Then, we model the start of the pregnancy under the conditionc1

by a creation action for the baby from the mother, for example:
A cr f rom (Obaby; Omother; L preg; : : : ; c1).
If the start of the pregnancy modi�es the model of the mother we can add some
perturbations actionsA(Omother; L preg; : : : ; c1) which must be synchronous (using
the labelL preg) to the creation of the baby (in foetus stage).

Figure 5.2: Representation of the haemoglobin protocol described in Example 5.12 and
later in Section 6.1

ton should accept the trajectories corresponding to the execution of the protocol
following our previously de�ned semantic.

The automaton representing the experimental protocol can be de�ned by the
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Example 5.12(Haemogolbin production protocol). In Chapter 6 we study more
in detail a model of haemoglobin production in erythroblast: a particular kind of
cells which differentiates into blood cells inside the bone marrow. In this example
we show how the associated experimental procedure [179] can be described in
MOEPLA.
The experimental paper [179] proposes a protocol to observe Heme production in
erythroblast (among other experimental results). This measure is done through the
introduction of a radioactive entity59Fe. The incorporation of59Fe in Heme on a
3 hours intervals is measured multiple time along the 52 hours of the experiment:
this gives an approximation of the Heme production speed at multiple instants of
the erythroblast differentiation process (see Figure 5.2)
We can highlight two different mechanisms. First, the mechanismF rad modelling
the cells in presence of59Fe in the batches where we measure are performed. Sec-
ond, the mechanismFctrl without the radioactive entity associated to the control
batch. The ODE systems (fctrl) and (f rad), as well as the associated parameters (see
Table 6.6) can be found in Chapter 6 dedicated to the biological case studies. As
this protocol implies multiple steps with variation in the dynamics under study, and
intermediate measures, its formalisation in MOEPLA is relevant. More details on
the analysis of this model can be found in the associated Section 6.1 in Chapter 6.
First we de�ne all the experimental objects, as well as their associated dynamical
system, and parameters instantiation:

O(Octrl ; Fctrl ), O(O4h ; F rad ),O(O8h ; F rad ),O(O16h ; F rad ),
O(O24h ; F rad ),O(O32h ; F rad ),O(O42h ; F rad ),O(O52h ; F rad ).

Then we explicit the experimental protocol. We note the absence of synchronisa-
tion label since this particular example is simple enough.

1. I 0(Octrl ; xctrl (0)  [x ]0)

2. A cr f rom (O4h ; Octrl ; x rad  R (xctrl ); t == 4 h)

3. A M (O4h ; 59H(t) + 4 59Hb(t); t == 7 h)

4. A cr f rom (O8h ; Octrl ; x rad  R (xctrl ); t == 8 h)

5. : : : (Here it is a compacted version as it is a repeating scheme)

15. A M (O52h ; 59H(t) + 4 59Hb(t); t == 55 h)
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composition of the hybrid automata modelling each concurrent process, i.e. the
evolution of each experimental object considered separately.

First we de�ne the hybrid automaton created by the set of experimental actions
performedon a singleobjectO with dynamical systemFO . We recall these actions
are constituted by exactly one action of creation amongI 0(O), A create (O,L O;0,c0(t)) ,
A cr f rom (O; L O;0; : : : ; c0(t; y )) , a set of perturbation1 actionsA(O,L O;i ,ci (t; xO ))
of different conditionci and associated labelL O

i ; i � 0 ordered following the se-
quenceP, and at least one measurementA M (O; L O;j ; cj (t; xO )) . We recall that
successive perturbations actions inP under the same conditions share the same
labels and represent the same step in the protocol progress.

We now proceed to de�ne the hybrid automaton representing the different
stages of the evolution ofO. Let us denoteH O = ( I O ; EO ; L O ; X O ; K O ; UO ; SO ; RO ;
FO ) the hybrid automaton associated to the single objectO. We remark that in Sec-
tion 2.2 we introduced the set of labels, guards, reset maps, and activities through
the de�nition of functions associating to these respective sets to each mode or tran-
sition. Here we surcharge the notation usingL O , SO , RO andFO to denote either
the set of possible labels, guards, reset maps, and activities respectively, or the
associated labelling functions as in De�nition 2.9.

Let us denoteOi , i � 0, the modes following the creation ofO. We also callO;
a mode where the objectO does not exist, andOSTOPa mode where measurements
are stored in constant variables. The creation action onOi determines the initial
mode and the initial condition ofH O :

– If the creation action isI 0(O) then the initial mode isO0 with the paramet-
ric dynamical systemFO as in De�nition 5.1. The initial condition of the
variables are de�ned byI 0(O).

– If the creation action isA create (O; L O;0; c0(t)) or A cr f rom (O; : : : ; L O;0;
: : : ; c0(t; y )) , the initial mode is the modeO; whenO does not exist, and we
de�ne a transition fromO; to O0 with the associated guardS; ;0 associated
with the conditionc0 and a resetR; ;0. We also associate the synchronisation
label to the transitionO; ! O 0.

Remark 5.13. We note that in the particular case of the actionA cr f rom (O; : : : ;
c0(t; y )) we have a condition and assignment (as seen in De�nition 5.4) possibly
depending on variables associated to another object. As the de�nition ofH O is
only an intermediate step to formalize the global hybrid automaton of the whole
protocol, we consider at this point that only for the de�nitions of the guardsSO the
variables of the hybrid automatonH O is extended fromxO 2 RnO to the whole
set of variablesy 2 Rn .

Thei -th set of perturbation actions2 A(O; L O;i ; ci (t; xO )) de�nes a transition
from the modeOi � 1 to Oi , with i � 1. The guardS(i � 1);i associated to this

1We recall that perturbation actions are the actionsA x , A k , A u .
2We recall thati is the index of the different stages of the objectO.
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transition is de�ned byci (t; xO ) and the synchronisation label associated to the
transition(i � 1; i ) is L O;i . The continuous dynamics of the modeOi is the one
of the modeOi � 1 with the effects of the action (in case ofA k or A u). In case of
multiple simultaneous actions as in Remark 5.9, multiple effects are applied if they
share the same label and represent the same stage in the protocol progress. In a
similar manner, the reset mapR(i � 1);i is de�ned by the effect of the actionA x (if
applied), and by default it is the identity map.

The invariants of the modesO; ; O0; Oi , i � 1, andOSTOPare de�ned by the
Cartesian product of the state spaceX O � RnO of the dynamical systemFO and
the time interval[0; tend], with tend the maximum duration of the protocol as in
De�nition 5.8.

Finally, we handle each measurement actionA M (O; L O;j ; cj (t; xO )) by cre-
ating a transition from all the modesOi , i � 0 to a modeOSTOP with frozen
dynamics (with derivatives equal to zero), which has for the only purpose of hold-
ing the measurement information. The guards of these transitions are de�ned by
the conditioncj (t; xO ).

Remark 5.14. We highlight the particular case of the measurement actions: the
OSTOPmode de�ned here is only used as a way to integrate the measurement in the
hybrid automaton. In practice, the measurement actions need to be handled case
by case for each tool selected for the analysis as we will see in the Section 6.1.2 of
Chapter 6.

Methodology 5.16(Hybrid automaton generation). The hybrid automatonH of
the experimental protocol using a set of objectsfO (i )g,with 0 � i � p the num-
ber of experimental objects, can be generated, using De�nition 2.11, by the syn-
chronous parallel compositions of each hybrid automataH O ( i ) de�ned for each
objectO(i ) as described above.

After each composition, we delete all the resulting transitions leaving a com-
posite mode de�ned by at least one modeOSTOP. This last step ensures that ex-
perimental measurements are separated from the actual mechanism in the protocol
and do not perturb the simulation.

We refer to the Examples 5.15 and 5.17 for two examples of the application of
Methodology 5.16.

5.3 Discussion and future work

In its current state the speci�cation language MOEPLA allows describing the evo-
lution of a mechanistic model during a multi-stage experiment. It is expressive
enough to represent a large panel of possible experiments either coming from the

Monday 6th August, 2018 (08:34)



94
CHAPTER 5. MOEPLA: A LANGUAGE FOR
EXPERIMENTAL PROTOCOL MODELLING

Example 5.15(Hybrid automaton of protocol). Given the following experimental
objects with their associated dynamical systems:O(FO ), O0(FO0)
We propose an example of experimental protocol, in a simpli�ed form:

1. I 0(O; xO (0) = xO
0 ): We start withO.

2. A k (O; L 1; K O  K new; c1(t; xO )) : Object O may be perturbed and its
parameter space changed.

3. A cr f rom (O0; O; L 2; xO0
 R(xO ); c2(t; xO )) : ObjectO0 is created from

O.

4. A M (O0; L 3; xmeas  R(xO0
); c3(t; xO0

)) : A measure onO0 of the vari-
ablesxO0

is stored inxmeas.

The two hybrid automata corresponding to the evolution of each objectO and
O0 are represented in Figure 5.3. The hybrid automaton of above protocol and
resulting from the composition of the two automata of the Figure 5.3, can be found
in Figure 5.4. In the Figure 5.4 we assume there is no synchronization. IfL 1 = L 2

then only the transition with the conditionc1 ^ c2 would remain.

�elds of molecular biology, or biochemical reactions, or medicine and therapy
modelling.

Thanks to the formalization of a MOEPLA protocol as a hybrid automaton, we
can provide a formal representation of all the possible executions of a protocol and
its associated mechanisms. Indeed, hybrid automata allow non-determinism and
through the synchronous parallel composition of automata we can represent the
evolution of multiple processes involved a given protocol, and their interactions.
This non-determinism represents all the possible executions of a protocol assuming
a model for each experimental object mechanism. Then, depending on the sparsity
of the knowledge about the mechanisms or the uncertainty (or ambiguities) in the
protocol de�nitions, it is, for example, possible to search for bad behaviours and
assert properties for critical procedures (as in therapy).

However, the current work still has multiple �aws that need to be addressed:
they are related either to the hybrid system representation or to the speci�cation of
the protocol itself. The �rst list of comments concerns the hybrid automaton repre-
sentation. Hybrid automata are very useful to represent non-deterministic systems.
However, they are lacking on multiple points in the formalism that we use. In the
currently used formalism for hybrid dynamical systems, we do not consider urgent
transitions as they are not handled by most of the formal veri�cation software such
as SpaceEx [87]. Moreover, as seen in De�nition 2.9 in Chapter 2, all the modes
of a hybrid automaton have the same dimension, which in our case leads to a huge
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O0 O1

O0
; O0

0 O0
STOP

c1(t; xO )

c2(t; xO ) c3(t; xO0
)

Figure 5.3: The hybrid automata of the objects de�ned in the protocol in Example 5.15.

O0; O0
;

O1; O0
;

O1; O0
0 O1; O0

STOP

O0; O0
0 O0; O0

STOP

c1(
t; x

O )

c1(t; xO ) ^ c2(t; xO )

c2 (t; x O 0
)

c2 (t; x O 0
)

c3(t; xO0
)

c3(t; xO0
)

Figure 5.4: Parallel composition of the hybrid automata of the protocol in Example 5.15.

dimension increases. For example, in the hybrid automaton from Example 5.17
each mode has46 state variables, while in practice when addressing this model
using the Controlled Hybrid System3 in Section 6.1.2, we have to consider at most
9 variables (including a clock variable). Similarly, the protocol of Example 5.17
could be modelled by a 2 modes hybrid system instead of the one we show in
Figure 5.5 using in Methodology 5.16 to generate an hybrid automata. While our
method avoids producing loops in the hybrid automaton representation and do not
allow Zeno behaviours, it results in large hybrid systems. We note that one way to
ef�ciently handle the exponential cost of the parallel composition would be to per-
form it on the �y during the analysis, as done in the reachability toolbox SpaceEx
[87].

The second list of comments concern the expressiveness of the speci�cation
language itself. A �rst comment is that we assume that the different objects share

3See De�nition 3.2
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Example 5.17(Hybrid automaton for Haemoglobin production). In Figure 5.5, we
show a shortened version of the hybrid automaton generated by the composition of
all object automata as de�ned in the Methodology 5.16. We note that in each
mode, there are8 dynamical systems running in parallel. This method for hybrid
automaton generation leads to a theoretically huge number of variables. In Section
6.1.2, we will work on an adapted and simpli�ed version of Figure 5.5 automaton
using the Controlled Hybrid System formalism de�ned in Chapter 3.

Octrl ,O4h;; ,
: : : ,O52h;;

Octrl ,O4h;0,
: : : ,O52h;;

Octrl ,
O4h;STOP,
: : : ,O52h;;

Octrl ,O4h;0,
O8h;0,: : : ,
O52h;;

Octrl ,O4h;0,
O8h;STOP,: : : ,
O52h;;

� � �
t = 4h t = 8h t = 16h

t =
7h

t =
11h

Figure 5.5: Hybrid automata (shortened) resulting from the application of Methodology
5.16 to the protocol of Example 5.12. We do not show the transitions resulting from the
composition whose conditions can never be satis�ed (as we have �xed time condition).

no common variables, parameters, or input, at the exception of the possible cre-
ation actionA cr f rom . This assumption was done to simplify the semantics in a
�rst version of the language. A way to get around this current limitation is to de-
�ne a single object modelling all the interaction or coupled variables. However,
this limits the expressiveness of the language as we cannot de�ne separate objects
which share variable for only a few stages. Therefore, it is necessary to update the
language (and the de�nition of the synchronous parallel composition) to handle the
de�nition of common variables (parameters, or inputs) on a given set of actions, or
stages.

Another comment is that time is currently a global variable separated from the
other state variables. Such global time only allows us to easily de�ne conditions
on the absolute time, for examplet � 4 hours. However, conditions on events or
relative to a previous event are hard to express. To easily express them we need
to introduce clock variables. Such variables can currently be introduced as state
variables (see Section 6.1.2) but are not directly apparent in the protocol syntax. In
addition, the actions are performed instantaneously and it should be an interesting
addition to consider delays in the actions. In the current language this can be done
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by de�ning a time (or clock) interval on the condition of each action: for exam-
ple the �rst action is performed fort 2 [1h; 2h] and the second fort 2 [1:5h; 2:5h]
means there is a delay of at most1h on both actions. However this leads to spurious
sequences of multiple instantaneous transitions in the hybrid automaton represen-
tation, without having the global time elapsing. Indeed, in the previous example,
both actions can still occur without letting the global timet elapse: for all the
instantst 2 [1:5h; 2h] both transitions can be taken successively.

Finally, the syntax of the language itself may change to facilitate the interac-
tions between the biologist and the modelling team. However, the aim remains that
the language must have a succinct de�nition with few rules while allowing its pos-
sible executions, de�ned by the language semantics, to be represented by a hybrid
dynamical system.
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Applications and case studies
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6.1 Erythropoiesis haemoglobin production model

In this �rst section we study a model of haemoglobin production during the dif-
ferentiation of erythroblasts into erythrocytes. Erythrocytes (also named red blood
cells) are produced inside the bone marrow. In this place, they go through multiple
differentiation stages from stem cells (also called hemocytoblasts in this context)
into erythroblasts and �nally erythrocyte. This differentiation process is also called
erythropoiesis.

During its differentiation, an erythroblast produces haemoglobin. At the �nal
stages, the erythroblast forces out its nucleus and is released in the circulating
blood. The haemoglobin stored in the erythrocyte will play the role of oxygen
transport protein. Without entering into details, the haemoglobin is constituted
from 8 sub-components:4 hemes and4 globins1.

In this work, we model the haemoglobin production during the �nal stages of
an erythroblast differentiation into erythrocyte. The proposed model is given by the

1Here we do not consider the multiple variations of haemoglobin, and globin.
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100 CHAPTER 6. APPLICATIONS AND CASE STUDIES

ODEs system (fctrl) which describes the dynamics of intracellular concentrations
of: iron Fe, hemeH, globinG and haemoglobinHb.

dFe
dt

= k1Feex � k2Fe � k3Fe

dH
dt

= k3Fe � k4H � 4k5H G

dG
dt

= k6H � 4k5H G � k7G

dHb
dt

= k5H G � k8Hb

(fctrl)

In the �rst equation of (fctrl), the termk1Feex describes iron in�ux from the ex-
tracellular space, while the second termk2Fe and third termk3Fe respectively de-
scribe the iron ef�ux from the cell and its consumption for the production of heme.
In the second equation, the termsk3Fe andk4H respectively describe the heme
production and heme degradation and transport from the cell. The term4k5H G
models the heme and globin consumption for the production of haemoglobin in the
second and third equations. Note that the factor4 describes the need of4 hemes
for the production of1 haemoglobin. In the third equation, globin synthesis is ac-
celerated by heme, hence the production term depends onH (�rst term k6H). The
heme is not consumed so this term does not appear in the second equation. The
globin degradation term isk7G. Finally, in the last equation, the two terms are
haemoglobin productionk5H G and degradationk8Hb.

In Section 6.1.1, we describe how the data obtained from mouse erythroid cell
cultures are exploited to estimate the value of parameters occurring in (fctrl). Then,
in Section 6.1.2, we use this model as a proof of concept of the model revision
method previously described in Chapter 3.

6.1.1 Parameter study

In modelling complex biological phenomena, the identi�cation of parameter values
is always a critical problem due to the scarcity of kinetic data. Here the situation is
rather favourable. We have been able to use four datasets [180, 181, 179, 182]
to determine the values of the8 kinetic parameters contained in the model of
haemoglobin production presented in (fctrl).

These experiments were performed on cultures of erythroid cells from the
spleens of mice during their differentiation. The general scheme is to add radio-
labels (59Feor 3H-leucine2) at different time points, continue the culture for a given
time duration and then measure the quantity of59Fe incorporated in heme or3H-
leucine incorporated in� -major globin.

In order to exploit this kind of experiment we use two extended systems of
equations: the �rst contains additional equations for the evolution of59Fe-containing

2Note that the symbolH in 3 H-leucine stands for the isotope of hydrogen.

Monday 6th August, 2018 (08:34)



6.1. ERYTHROPOIESIS HAEMOGLOBIN PRODUCTION
MODEL 101

species (intracellular59Fe itself and radioactive heme and haemoglobin); the sec-
ond contains additional equations for the evolution of3H-leucine-containing globin
and haemoglobin. Consequently, each speci�c type of experiment has to be sim-
ulated by the corresponding system of differential equations respectively (f rad) for
datasets #1 and #2 (see Tables 6.1 and 6.2), and (6.1) for dataset #3 (see Table 6.3).
The system of equations representing the haemoglobin production in presence of
59Fe is given in (f rad). We note that the dynamics ofG andHb are optional if one
only observes the radioactive species.

dFe
dt

= k1Feex � k2Fe � k3Fe

dH
dt

= k3Fe � k4H � 4k5H G

dG
dt

= k6H � 4k5H G � k7G

dHb
dt

= k5H G � k8Hb

d59Fe
dt

= k59
1 Feex � k59

2 Fe � k59
3 Fe

d59H
dt

= k59
3 Fe � k59

4 H � 4k59
5 H Gtot

dGtot

dt
= k6(H + 59 H) � 4k5(H + 59 H) G tot � k7Gtot

d59Hb
dt

= k59
5 H Gtot � k59

8 Hb

(f rad)

We now provide the system of equation corresponding to the experimental protocol
of dataset #3: we noteGr the3H-leucine-containing globin.

dFe
dt

= k1Feex � k2Fe � k3Fe

dHtot

dt
= k3Fe � k4H � 4k5H (G + G r )

dG
dt

= k6H � 4k5H G � k7G

dHb
dt

= k5H G � k8Hb

dGr

dt
= k6H � 4k5H Gr � k7Gr

dHbr

dt
= k5H Gr � k8Hbr

(6.1)

The experimental results from Tables 6.1, 6.2, and 6.3 are given in radioactiv-
ity units (cpm standing for counts per minute) since the experiments measure the
activities of the radio-labels59Fe and3H. However, these data are incomplete as
we lack the actual conversion factor from the radioactivity measures incpm to the
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actual molecule quantity inmol. As we have mixed information, concentrations
on one part and radioactivity measures on the other, we choose to work with nor-
malized data points, by choosing a point in each dataset as a reference point, and
dividing the other points by this value. The chosen reference data point is the one
providing the smallest residual value (6.2) after scaling. However, we add a few
constraints to ensure the simulations results stay in viable biological ranges.

The dataset [181, Table 2] (not reproduced here) allows us to estimatek1 the
iron intake rate into the cell. We make the approximation that the �ux of iron intake
is constant. With thisk1 is found equal to250atoms/fL/min. In the conditions of
this experiment the concentration of59Fe:Tf in the culture medium is200� g/mL.
We take the molecular mass of glycosylated, iron-saturated Tf (diferric) as being
equal to80kDa, and we obtaink1 = 1 :4e� 3 s� 1.

Exposure time (h) 4 8 16 24 32 42 52
59Fe in Heme
(cpm=1e� 7L) 47 213 697 1020 1725 2379 2370

Table 6.1: Dataset #1: Accumulated59 Fe in Heme. The radiolabel (transferrin-bound59 Fe)
is added to the medium at t = 0h. The �rst line indicate the time at which cells are collected.

Exposure time (h) 4-7 8-11 16-19 24-27 32-35 42-45 52-55
59Fe in Heme
(cpm=1e� 7L=h) 16 85 348 391 399 481 395

Table 6.2: Dataset #2: The cells are �rst cultured in presence of iron (normal, non-
radioactive, isotope). Then the radiolabel (transferrin-bound59 Fe) is added directly to
the medium, and the culture continues for the period indicated in the �rst line (duration =
3h).

In addition to these datasets we consider a set of constraints to keep the results
biologically viable.

– The quantity of59Fe incorporated in free heme at t=52h is at most 5% of the
59Feincorporated in all forms of heme (free heme and heme in haemoglobin).

– The quantity of59Fe incorporated in free heme at t=52h is at least 0.002% of
the59Feincorporated in all forms of heme (free heme and heme in haemoglobin).

– The concentration of haemoglobin at t=52h is at least 100 molecules/fL.

– The concentration of intracellular labile iron is less than 10 times the con-
centration of haemoglobin (all taken at t=52h).
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Exposure time (h) 0-12 12-24 24-36 36-48
3H-leu in � -major globin
(cpm=1e� 7L=h) 103 255 771 942

Table 6.3: Dataset #3: Incorporation of3 H-leucine in� -major globin. The cells are �rst
cultured in a medium without radiolabel. Then the radiolabel (3H-leucine) is added directly
to the medium, and the culture continues for the period indicated in the �rst line (duration
= 12h).

For the7 kinetic parameters other thank1 and the initial concentration in intra-
cellular ironFe0, we have to resort to a systematic search. It is known from [183]
that theIRP concentration decreases down as differentiation proceeds. Because
IRP activity represses the biosynthesis of protoporphyrin IX, which is inversely
related to internalFe concentration, the rate of heme production increases with
time. To take this into account we consider that parameterk3 is time dependent.
In this �rst study we consider the following polynomial function:k3(t) = ak3 +
(bk3t)4. With this function, the increase is slow during the �rst hours and becomes
steeper in the later stages of differentiation. A linear time dependence was tried,
but it did not provide a good adjustment to the experimental data. In Section 6.1.2
in the following, we propose to revise this parameter as a proof of concept of
our method described in Chapter 3. Therefore, we consider in total8 parameters
related to kinetics. As we start this modelling without any prior knowledge on
the parameter ranges (except physiological bounds), our initial parameter space
where the search is performed is given in Table 6.4: for each unknown quantity we
de�ne a search interval (spanning several orders of magnitudes). In Table 6.4 we
also provide the set of intracellular iron initial conditionsFe0 we consider in our
search.

Variables k2 ak3 bk3

Search intervals [1e� 11; 1e� 02] [1e� 10; 1e� 01] [1e� 10; 1e� 04]

Variables k4 k5 k6

Search intervals [1e� 06; 1e+01 ] [1e� 11; 1e� 02] [1e� 07; 1e+01 ]

Variables k7 k8 Fe0

Search intervals [1e� 09; 1e� 01] [1e� 11; 1e� 01] [6e+03 ; 6e+06 ]

Table 6.4: This table provides the intervals considered for the search for parameters sets
and initial conditions satisfying the experimental results of Tablesfctrl,f rad and 6.1.

In this work we searched for parameters sets satisfying three experimental
datasets. These datasets were obtained through three different experimental pro-
tocols and we simulate them accordingly with three different models. At the time
of this work, we did not consider the formalization of experimental protocol as a
hybrid system: we argue that this formalization would have eased our analysis.
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Parameters Enclosure Units

k2 [1:0e� 10; 5:81e� 9] s� 1

ak3 [3:43e� 9; 1:47e� 8] s� 1

bk3 [6:89e� 7; 7:36e� 7] s� 5
4

k4 [3:82e� 4; 5:16e� 4] s� 1

k5 [2:87e� 6; 1:01e� 5] fL.molecules� 1:s� 1

k6 [3:94e� 4; 5:68e� 4] s� 1

k7 [2:48e� 10; 5:08e� 7] s� 1

k8 [1:01e� 5; 1:49e� 5] s� 1

Fe0 [2:99e+2 ; 6:07e+2 ] atoms/fL

Table 6.5: Results of the search procedure. The second column de�nes the box enclosing
the set of valid points in parameter space. The following columns contains the values for
4 particular solutions. Fe0 is the initial concentration of internal iron (not labelled). The
concentration of external labelled iron (59 Feex ) is 3000atoms/fL, while the concentration
of external ironFeex (not labelled) is4atoms/fL.

Parameters p1 p2 p3 pmean

k2 1:61e� 10 1:22e� 10 6:0e� 10 3:78e� 10

ak3 1:42e� 8 7:70e� 9 9:25e� 9 7:4e� 9

bk3 7:2e� 7 7:13e� 7 7:15e� 7 7:2e� 7

k4 3:95e� 4 4:63e� 4 4:30e� 4 4:47e� 4

k5 5:59e� 6 6:48e� 6 5:71e� 6 7:27e� 6

k6 4:74e� 4 5:10e� 4 4:31e� 4 4:47e� 4

k7 4:46e� 8 2:88e� 10 3:01e� 7 4:97e� 10

k8 1:3e� 5 1:243e� 5 1:17e� 5 1:14e� 5

Fe0 3:10e+2 3:46e+2 3:27e+2 3:21e+2

"1 0.220 0.235 0.239 0.238
"2 0.239 0.228 0.238 0.238
"3 0.225 0.238 0.199 0.200
"mean 0.228 0.234 0.226 0.226

Table 6.6: Results of the search procedure. Columns 2, 3 and 4 provide solutions corre-
sponding to the minimum (within the set of found solutions) of"1, "2, and"3, respectively.
The following column is the one with the lowest average residual"mean= ( "1 + "2 + "3)=3.

However, as these protocols are simple enough, we can still simulate them as se-
quences3 of classical ODE simulations using either the ODE system modelling the
cell without radiolabels (fctrl), the ones modelling the cell in presence of59Fe (f rad)
or 3H (6.1).

3The simulations we perform are conform to the experimental protocol of each particular dataset.
In Section 6.1.2, we use the hybrid systems formalization to improve the analysis.
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The Cartesian product of the parameter intervals (see Table 6.4) de�nes a mul-
tidimensional search box. To perform simulations and search for valid parameter
sets, we draw a large number of random points in that box, and for each parame-
ter point we perform simulations and compare accordingly with each experimental
dataset. In order to sample equally all the orders of magnitude, the sampling is
done on a logarithmic scale. We use the quasi-Monte Carlo method [184] with the
Sobol sequence. For each dataset we quantify the agreement between simulatedy
and experimentalz measured quantities by computing the following residual:

"q =
P

i jy i � zi jP
i zi

; (6.2)

whereq 2 f 1; 2; 3g denotes one of the three studied datasets and the indexi iden-
ti�es the measurements belonging to that dataset #i . For the experiment associated
to the dataset of Table 6.1, we havey = 59H + 4 59Hb . In the context of Table 6.2,
y = ( 59H + 4 59Hb)=3. Finally, the measurement observed in the dataset of Table
6.3 is given byy = (0 :4Gr + 1 :6Hbr )=12.

Each datasetq is associated with a thresholdM q, and we keep as potential
solutions all parameter points which satisfy"q � M q, whereM q. Since we have
3 datasets, we have3 constraints of this type. It is, in general, not possible to
minimize all 3 residuals simultaneously. In order to retain only physiologically
relevant solutions we also add constraints bearing on the concentrations reached at
the end of the differentiation process using the constraints we previously de�ned.
This simple parameter search method is summarized in Algorithm 5. We note that
we can iterate over Algorithm 5 by constructing new smaller parameter spaces over
each previous results of Algorithm 5. Since there is no unique way to combine
several experimental datasets and additional constraints, we present the results as
a set of solutions (a cloud of points in parameter space). The3 thresholdsM q are
chosen equal to0:25 as we want to equally verify all datasets. The box enclosing
the cloud of valid points is given in Table 6.5. These results are given after a search
over35 millions samples (for around48h of computation). This gives an idea of
the spread of the set of solutions. It can be seen that most parameters are rather
well de�ned, exceptk2 andk7. A scatter plot of the cloud of valid points on the
planek4 � k5 is displayed in Figure 6.1 in order to visualize the shape of the cloud
on that projection. Table 6.6 shows 4 solutions we have selected in this set: the
solutionsp1, p2, p3 andpmean which minimizes"1, "2, "3 or "mean = ( "1 + "2 +
"3)=3, respectively. Figure 6.2 displays the evolution of the system with thepmean

values. This last solution is the one which has the lowest average residual"mean

within the solution set. It can be observed that internal iron concentration goes
through a maximum and then decreases to low values. Haemoglobin concentration
increases steadily to a value of about102 molecules/fL. The agreement between
the measurements and the corresponding quantities derived from the simulations
is displayed in Figures 6.3, 6.4, and 6.5 for datasets #1, #2 and #3, respectively.
In each �gure the results obtained with parameter pointsp1, p2, p3, andpmean are
shown.
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Figure 6.1: Projection of the cloud of valid points on the planek4 � k5. The solutionsp1,
p2, p3, pmean are indicated in red.

Algorithm 5 Simple parameter search(K ,M ,E ,nsamples)

1: INPUT: K parameter space considered for search box.
2: INPUT: M = ( M 1; M 2; M 3), threshold considered for the experimentq.
3: INPUT: E = f E1; E2; E3g, 3 piecewise ODE systems modelling the experiments

associated to datasets #1, #2 and #3, respectively.
4: INPUT: nsamples, the number of samples draw in the parameter spaceK .
5: OUTPUT:r , set of samples which satisfy all the error thresholdsM q.

6: S = sobol (K; n samples)
7: r = ;
8: for k 2 S do
9: for q 2 f 1; 2; 3g do

10: y [q] = simulate (Eq; k)
11: "q = evaluate (y [q]; z[q])
12: end for
13: if 8q 2 f 1; 2; 3g; "q � M q then
14: r = r [ k
15: end if
16: end for
17: return r
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Figure 6.2: Evolution of the 4 concentrations computed with the parameter values identi-
�ed as pmean in Table 6.6.

6.1.2 Model revision

Model adjustment. In the previous section, we addressed the problem of re-
�ning the parameters space and �tting multiple datasets on the haemoglobin pro-
duction model. In this section, we apply the model revision method proposed in
Chapter 3 on the haemoglobin production model (f rad) for the protocol [179] corre-
sponding to the dataset #2 in Table 6.2. Using the method de�ned in Chapter 3, we
search for another modelling of the time varying parameterk3(t), which better �t
the dataset #2, while being biologically interpretable. While in the previous section
the experimental protocol was not explicitly formalized as a hybrid system, we will
consider in this section a formulation close to the one proposed in the Chapter 3.
We use the values given in the columnpmeanfrom the Table 6.6 for any parameters
other thank3 .

We recall that the ODEs (fctrl) model the evolution of the haemoglobin pro-
duction in the differentiating erythrocyte cells situated in the bone marrow. In this
section, to stay close to the notations of Chapter 3 we notex1 to x4 the variables
that represent respectively the internal iron in the cellFe, the hemeH , the globin
G, and the haemoglobinHb. The hybrid dynamical systemH models an exper-
imental protocol designed to measure the integration of iron inside heme (H) at
several steps of the cell differentiation. For example, we recall that the data point
at timet = 7 hours in Table 6.9, is obtained through the following procedure: we
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Figure 6.3: Visualization of the match between the measurements and the corresponding
quantities computed from the simulations, for dataset #1. Measurements are represented
by circles and computed quantities by asterisks. The3 parameter pointsp1, p2, p3, and
pmean de�ned above are shown.

�rst start with a control batch of cells, then at timet = 4 hours after the start of
the experiment, the culture medium is perturbed with an injection of measurable
radioactive iron59Fe for a subset of the cells. This perturbation implies the new
ODEs (f rad) modelling the evolution of two interdependent models4 : the model of
non-radioactive haemoglobin production and the model of haemoglobin produc-
tion with radioactive species. Three hours after the perturbation with radioactive
iron, the total radioactive heme is measured, meaning the heme free in the cell and
the one in the radioactive haemoglobin. This measurement is given by the formulas
59H + 4 59Hb.

This hybrid dynamical systemH is close to the one proposed in Chapter 5, and
differs from it on two points: the lack ofStop modes and a number of variables
that changes between two modes. Indeed, in this work we do not model the mea-
surement actions as they are represented in the cost function of the optimization
problem.

We recall in Table 6.9 the observed radioactivity divided by three hours. Fi-
nally, these measurements provide results on the variation during the cell differ-
entiation of the integration of iron in heme, which is associated to the parameter
k3.

4For this reason we keptG andHb present in the ODE system (f rad)
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Figure 6.4: Same as previous for dataset #2.

Figure 6.5: Same as previous for dataset #3.
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Mode ni f i (t; x ; u) Xi Ui

i = 1 5 fctrl (t; x ; u) [0; 4] � [0; 1]4 [0; 1]

i = 2 9 f rad (t; x ; u) [4; 7] � [0; 1]8 [0; 1]

i = 3 5 fctrl (t; x ; u) [7; 8] � [0; 1]4 [0; 1]

i =
...

...
...

...
...

i = 13 5 fctrl (t; x ; u) [45; 52] � [0; 1]4 [0; 1]

i = 14 9 f rad (t; x ; u) [52; 55] � [0; 1]8 [0; 1]

Table 6.7: Dimensions (withxc), vector �elds, domains, and input sets for the controlled
hybrid systemH of the haemoglobin production model.

Mode e = ( i; j ) Se Re

i = 1 (1 ; 2) t == 4
�

I 5;5

O4;4

�

i = 2 (2 ; 3) t == 7
�
I 5;5; O4;4

�

i = 3 (3 ; 4) t == 8
�

I 5;5

O4;4

�

i =
...

...
...

...

i = 13 (13; 14) t == 52
�

I 5;5

O4;4

�

Table 6.8: Transitions, guards, and reset maps of the controlled hybrid systemH.

The controlled hybrid systemH associated to the experiment of dataset #2
studied in Section 6.1.1 is given, in a shortened version, in Tables 6.7 and 6.8.
The ODEs (fctrl) and (f rad) are given in the previous section 6.1.1, and we consider
the parameter set pmean for the values of the parameters other thank3. In the im-
plementation, we also introduce a variablexc modelling time, whose derivative is
equal to1. We recall that we want to search for an optimal controlu(t) minimizing
the distance of the simulated trajectory to the corresponding point in the dataset. In
this particular study, we consideru(t) = k3(t) and we will keep this notation until
further notice.

For numerical reasons, it is necessary to scale the parameters and state vari-
ables, making it easier for the solver to succeed in solving the relaxed problem.
Similarly, to facilitate the numerical optimization we rewrite the control variable
u(t) 2 U = [0 ; 1] asu(t) = � û(t), with � � 1 andû(t) 2 [0; 1=� ]. While the
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scale factor� may take different values depending on the numerical optimization
details, the objective controlu(t) always evolves in[0; 1].

Implementation. Now that we have a valid controlled hybrid system,H , we
solve the optimal control problem with intermediate time points de�ned in (3.20),
using the method from Section 3.2.1 and its implementation in Section 3.2.2. The
experimental measurement is modelled by the functionm(x) = 59H + 4 59Hb =
x6 + 4x8. Thus, we set

H (x(Tj )) := ( x6(Tj ) + 4 x8(Tj ) � 3zj )2;

as we search to minimize the total residual error term:

" total =
X

1� j � nexp

p
H (x(Tj ))

P
1� j � nexp

zj
(6.3)

We recall that the original experimental data points(Tj ; zj ) are given in Table 6.9.

Time (h) 7 11 19 27 35 45 55
Measure ( cpm

1e� 7L�h � 1 ) 16 85 348 391 399 481 395

Table 6.9: Experimental data points(Tj ; zj ) used as references.

Here, the input controlk3(t) = u(t) models some hidden mechanism result-
ing in an evolution of the iron integration ratek3 with the differentiation of the
cells. It should be the same function of time for both the control and the radioac-
tive cells batch. However, as the control generated by Algorithm 1 is piecewise
for each mode, and the fact that our data are on the radioactive species only, the
solution of the optimization problem with only a �nal costH (x(Ti )) is not bal-
anced, having a much stronger control in the modes where the radioactive species
are evolving. A workaround for the balancing problem is the following. We add
a small penalization costc1

i (t) = (0 :01u(t))2 to equilibrate the control wheni
corresponds to a mode with radioactive species, otherwisec1

i (t) = 0 . In a sim-
ilar vein, we add another penalization costc2

i (t) = ( u(Tj ) � u(t))2 to avoid
when the control strongly varies between two iterationsj on the interval[Tj � 1; Tj ]
and j + 1 on [Tj ; Tj +1 ] (with the exception of the �rst iteration). This leads to
hi (t; x(t); u(t)) = c1

i (t)+ c2
i (t). Let us note that, even if these additional costs can

eventually degrade the accuracy of the data �tting, we gain in terms of biological
interpretation of the resulting traces.

Finally, by partitioning the computation in the time domain, we can greatly
reduce the computational cost at each iteration. More technically, since the tran-
sitions of the hybrid systemH are fully determined by the timet, we can pre-
compute the function� : R+ ! I , which associates a mode� (t) to each time
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Figure 6.6: Synthesized optimal control and various approximations that yield a realistic
interpretation.

Figure 6.7: Radio-active variables59 Fe, Gtot in (f rad), as well as, the comparison of the
measurement function results to the dataset #2 (see Table 6.9).
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instantt. Thus, each iterationj of Algorithm 1 can be restrained to the hybrid
sub-systemH j of H , constituted by the modes visited in the interval[Tj � 1; Tj ].

For numerical implementation, the problem on measures is formulated in SPOT-
LESS5, and then we extract the primal solution provided by a primal-dual SDP
solver. To do so, we use the implementation from [94] to generate the dual prob-
lem of (3.17) de�ned in Chapter 3. As an SDP solver we used MOSEK [185]
v.7.1. These tools are used in MATLAB v.9.0 (R2016a). Performance results are
obtained with an Intel Core i7-5600U CPU (2:60GHz) with 16Gb of RAM running
on Debian 8.

Applying Algorithm 1 on theH hybrid system, as described above, we have
to solve7 times the optimization problem (3.17), on2 mode hybrid systems of
respectively5 and9 continuous variables in each mode. We only solve the problem
for a relaxation orderr = 4 , as any higher order would be too memory expensive.
We only synthesize a piecewise constant control, and to avoid oscillation in the
resulting control we forcedu = 0 in Algorithm 1 from Chapter 3. Using this
con�guration, the total time taken by Algorithm 1 is2107s, with1700s spent in the
HOCPprocedure, and390s in theSynth procedure.

In Figure 6.6, the control generated by Algorithm 1 is shown in blue. This
control is piecewise, and clearly divided in two phases: before and aftert equals11
hours. However, the control synthesized is still dif�cult to interpret as a biological
phenomenon. Consequently, we propose three additional �ts of this control to ease
interpretation by using functions closer to biological knowledge. In Table 6.10
one can �nd the total error associated to all the possible controls, as well as the
previous result of Table 6.6. In Figure 6.7, we show a graphical representation of
how closely each function can control the model to reach the desired data points.

Control Type " total

Best"2 in Table 6.6 0:23
Results generated by Algo 10:096

Step function �t 0:12
Piecewise Polynomial �t 0:13

Hill function �t 0:075

Table 6.10: Total error" total associated to each proposed input.

Discussion. In a simulation-based approach, we have to propose for the desired
time varying parameter, a template function to �t the data, e.g. a polynomial of
given degree. If we want to �t a polynomial of higher degree, the simulations have
to be run again multiple times. On the contrary, the proposed approach returns a

5The SPOTLESS implementation was taken fromhttps://github.com/
spot-toolbox/spotless
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control signal, and since the �t to data points is performed a posteriori, there is no
additional computation cost in re�ning the model.

From the form of the experimental data points, an usual hypothesis is that
k3(t) = u(t) should be similar to a jump function, with a low value for the two
�rst points, and a higher one for the following ones. However, even with such
information a good �t is not easily achieved with simulations.

The control generated using Algorithm 1 returns the expected “jump” behaviour
for u(t), and even with a low relaxation degree, the total residual error for the gen-
erated control is9:59% which is much lower than the22:8% from the minimal
value of"2 in Table 6.6.

We �rst �t a step function to the generated control, with a change att = 11.
The associated error of12:24%is still lower than Section 6.1.1, yet being higher
than the generated control mainly due to the second-to-last point.

The second �t is a piecewise polynomial function in two pieces. The �rst piece,
for t 2 [0; 11], is a polynomial of degree2 while the degree of the second, for
t 2 [11; 55], is 4. This proposed input control allows to reproduce more accurately,
than the step function, the third data point. However, its accuracy is worse on the
�rst and two last points. The total error associated to this control is13%, being
overall the worst of the proposed �ts.

Lastly, we �t a Hill function, a function used to model the kinetics of a class
of biochemical reactions and which is a very common way to represent biological
activation processes. The associated total error is7:5%, which is the lowest, taking
advantages from both the step function and the piecewise polynomial function. In
this case, the inaccuracy also mainly comes from the second-to-last point, which
is quite separated from trend of the other experimental points, and may be due to
some experimental problems (no standard deviation results were available). With-
out taking this point into consideration for the error computation the error falls to
3%for the Hill function �t.

On this particular example, this method provided a way to generate a control
satisfying intermediate points without anya priori on a particular form, avoiding
the need for extensive numerical simulations. The generated control is accurate,
and computed in a reasonable time (� 35min), even for a large hybrid system of
14 modes with at most9 continuous variables. Using some �tting functions af-
terwards, it is even possible to re�ne the results and obtain a more interpretable
function for the desired time varying parameters.

Since in this model, the sequence of transitions is known in advance, the use of
[94] to solve (3.11) at each iteration of Algorithm 1 is arguable, as other methods
can handle this problem. If needed Algorithm 1 can easily be adapted with another
method to solve the optimal control problem on hybrid automata. However, Al-
gorithm 1 in its current form does not require any knowledge on the sequence of
transition and can be applied to a larger set of biological models. We can also note
a similar approach to our own in [26]. In this paper, the authors �rst search for
parameter sets satisfying experimental data on an hybrid dynamical system using
particle swarm techniques. Then, they revise the model by searching a parame-
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ter as a time varying function using optimal control technique. While they have
similar objectives, our work differs from theirs in the methods used for both the
parameter �tting and the model revision.

6.2 Mammalian cellular iron homoeostasis (MCIH) model

6.2.1 Context

In this section we apply the set-based analysis method from Chapter 4 on a dis-
cretization of the mammalian cellular iron homoeostasis (MCIH) model previously
characterized in [5]. Using this model as a proof of concept we show that the
method proposed in Chapter 4 can be applied to ensure properties or hypothesis
while taking into account uncertainty on both initial conditions and parameters
(possibly spanning multiple orders of magnitude).

The ODE system proposed in [5] is built to study and represent the mechanism
of iron homoeostasis for a large parameter space. This previous work [5] provides
a method to characterize a large valid parameter space (19 parameters, spanning
several orders of magnitude), by �nding the parameters points which respect a set
of temporal constraints and clustering them in multiple ellipsoids. Here we de�ne
our experiments based on both a discretization of this model and some previous
results from [5].

This model describes the control of the iron concentration inside a cell, thanks
to both an iron storage protein, ferritin, and regulatory proteinsIRP (Iron Regula-
tory Proteins). Moreover, both the transferrin receptor TfR1(which in�uences the
iron input in the cell) and the iron exporting protein FPN1a are in�uenced by the
IRP concentration. Tfsat is the external saturated transferrin concentration, which
is the iron transport protein outside the cell. The concentration of free iron in the
cell that is not stored inside ferritin must be well controlled since too much or too
little of it can have deleterious effects.

In the presence of a stable concentration of iron-loaded transferrin, outside the
cell, the cell system converges to a steady state. When there is no more iron outside
the cell (Tfsat is almost equal to0) the non-ferritin bound iron quickly drops for a
short time, but then increases again at the expense of ferritin iron and stabilizes for
some time (around10hours) after the activation of the regulation mechanism. The
low iron concentration stimulates theIRP activity which itself activates the release
of the iron stored in the ferritin. This supply of iron from the ferritin leads to a
pseudo-steady state for a few hours, until the ferritin concentration is too low to
release enough iron to maintain the equilibrium. If no iron is added to the medium
shortly thereafter, the cell dies.

The model contains5 state variables (Fe, IRP, Ft , TfR1, FPN1a), and 19
parameters. The dynamics are de�ned in the ODE system (6.4).

The work [5] observed that for all the valid parameter points, the value of
FPN1a is almost not in�uenced by the value of the other variables during the ex-
periments, FPN1a being almost constant with this modelling. FPN1a, being the
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iron exporting protein, should quickly decrease with the iron concentrationFe, as
modelled by theIRP dependency. However, the FPN1a concentration stays stable
for all thevalid parameters points.

In this work, we propose to compute the reachable set of FPN1a for the pa-
rameters[kFPN1adeg; kFPN1aprod; kIRP-FPN1a; � Fe� IRP ] taken in the interval given by the
valid parameter points. The computed reachable set must ensure that in presence of
external iron, the system evolves to a steady state, and in absence of external iron,
there is a plateau of at least10hours for the variableFe, followed by a decrease in
iron concentration.

dFt
dt

= kFtprod � kIRP-Ftsig (IRP ; � IRP-Ft; dsig ) � kFtdegFt

dFe
dt

= kFeinputTfsatTfR1 � nFt
dFt
dt

� kFeexportFeFPN1a� kFeconsFe

dIRP
dt

= kIRPprod � kFe-IRPsig (Fe; � Fe-IRP; dsig )IRP � kIRPdegIRP

dFPN1a
dt

= kFPN1aprod � kIRP-FPN1asig (IRP ; � IRP-FPN1a; dsig ) � kFPN1adegFPN1a

dTfR1
dt

= kTfR1prod + kIRP-TfR1IRP � kTfR1degTfR1

(6.4)

wheresig (x; �; d sig ) =
xdsig

xdsig + � dsig
:

The original model of iron homoeostasis (6.4) leads to a huge number of Bern-
stein coef�cients because of the high degree of the sigmoids which are rational
functions. On the other hand, simply lowering the degreedsig can cause signif-
icant errors, compared to the original model. To cope with this dif�culty, each
sigmoid has been approximated by a piecewise function. For a sigmoid function
xdsig =(xdsig + � dsig ) (wherex and� are scalar variables), the associated piecewise
function ofx and� (dsig being a constant6) is:

sig (x; �; d sig ) =

8
>>>>>><

>>>>>>:

0; if x �
(dsig � 2)�

dsig
dsig (x � � )

4�
+

1
2

; if x >
(dsig � 2)�

dsig
andx �

(dsig + 2) �
dsig

1; if x >
(dsig + 2) �

dsig

The new MCIH model contains4 parameterskFPN1adeg, kFPN1aprod, kIRP-FPN1aand
� Fe� IRP taken on large intervals. While the parameterskFPN1adeg, kFPN1aprod, and
kIRP-FPN1aappear linearly in the dynamics,� IRP � FPN1aappears non-linearly. For
this reason, we treat the parameter� IRP � FPN1a as a sixth variable, and thus the
termIRP5=(IRP 5 + � 5

IRP � FPN1a) is not approximated by a piecewise linear func-
tion but its approximation is non-linear (rational function) in� IRP � FPN1a in one
of the pieces. These piecewise approximations lead to a new model where each

6Here we considerdsig = 5 .
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Fe
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5:97e� 9
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1:39e� 8
h4

f 1

f 2

f 3

g1 g2 g3

N1 N2 N3
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Figure 6.8: 9 modes generated by[f 1; f 2; f 3] = [0; 1:25e8 � IRP � 3
4 ; 1] the approx-

imation of sig (IRP ; � IRP � Ft ) and [g1; g2; g3] = [0; 2:74e8 � Fe � 3
4 ; 1] the one of

sig (Fe; � Fe� IRP ). The constraintshi are of the forma � x � c, for exampleh1:
Fe� 2:73e� 9.

sigmoid is substituted by a3-piece approximation. In place of one ODE system,
the dynamics is now hybrid with15 modes7. The9 domains corresponding to the
approximations ofsig (IRP ; � IRP � Ft ) andsig (Fe; � Fe� IRP ) are represented in
Figure 6.8.

6.2.2 Set-based analysis

We recall that our goal is to validate the observations which were obtained in [5]
using numerical simulations, about the regulation of FPN1a. These observations
were made with parameter values chosen such that the system respects some prop-
erties:

– In presence of external iron input (Tfsat 6= 0 ), theFe, Ft , andIRP concen-
trations reached a steady state.

– In absence of external iron input (Tfsat = 0 ), the iron concentration �rst
stabilized on a plateau for at least10h, then decreased to0.

The set-based analysis produces an over-approximation of the reachable set. Be-
cause of accumulated error, this set may grow at each step in every directions.
We thus do not impose strong constraints for the plateau de�nition, and currently
restrict to a qualitative observation. For the same reason and because we are inter-
ested in the question whether the FPN1a concentration strongly decreases during
the Tfsat = 0 phase, we restrict to a qualitative observation on the lower bound
of the reachable set of FPN1a. The reachability analysis of the adapted model
was done using the following method: starting from initial conditions (taken from
[5]) and a corresponding valid parameter setp, these initial conditions are bloated
to a set. The following parameters[kFPN1adeg; kFPN1aprod; kIRP-FPN1a; � IRP-FPN1a] are
extended to cover a few orders of magnitude based on the results of [5]. The con-
sidered initial conditions and parameter space are given in Table 6.11.

From this starting initial set, we �rst let the system evolve to a steady state

7Two sigmoids are onIRP , and one onFe
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Variable Interval Unit

Fe [2:27e� 8 2:28e� 8 ] mol=L
IRP [6:646e� 9 6:647e� 9 ] mol=L
Ft [2:804e� 7 2:805e� 7 ] mol=L
FPN1a [2:35e� 7 3:61e� 7 ] mol=L
TfR1 [9:8e� 8 10:2e� 8 ] mol=L

parameters Value or Interval Unit

kFPN1adeg [1e� 7 1e� 6 ] s� 1

kFPN1aprod [1e� 17 1e� 13 ] mol(L s)� 1

kIRP-FPN1a [1e� 17 1e� 13 ] mol(L s)� 1

� IRP-FPN1a [1e� 8 2:01e� 6 ] mol L� 1

kFe � IRP 5:24e� 5 s� 1

kFe cons 1:56e� 1 s� 1

kFe export 2:191e3 L(mol s)� 1

kFe input 3:65ee� 2 s� 1

kFt deg 2:92e� 5 s� 1

kFt prod 8:93e� 12 mol(L s)� 1

kIRP � Ft 8:71e� 12 mol(L s)� 1

kIRP � TfR1 3:03e� 4 s� 1

kIRP deg 1:5e� 5 s� 1

kIRP prod 4:48e� 13 mol(L s)� 1

kTfR1deg 2:23e� 5 s� 1

kTfR1prod 1:78e� 13 mol (L s)� 1

� Fe � IRP 9:89e� 9 mol L� 1

� IRP � F t 4:56e� 9 mol L� 1

nFt 177:4 �
dsig 5 �

Table 6.11: On the left: set of initial conditions (after the stabilization phase). On the right:
considered parameter space for the reachability analysis.

with Tfsat 6= 0 . This is the mode where the system should be stable. We let the
system stabilize for a few hours. Some results of this stabilization are shown in
Figures 6.9 and 6.10. It is clear that the system evolves towards an invariant set,
and converges. Because this tool does not compute a precise invariant set, we will
take, for the next part of the computation, this over-approximation as the initial set.
The initial set for this part is given in Table 6.11.

In the second part of the analysis we reduce Tfsat to 0: this is the mode where
the external iron is depleted. Then, we simulate32hours (230400iterations using a
�xed time step of0:5seconds) of the iron depleted mode. In Figures 6.11,6.12, and
6.13, we can observe the different phases of the computations in different colors
(blue, red, green, and purple).

– Phase 1 (blue): On the initial state previously computed, we apply the fol-
lowing change: Tfsat drop from 1 to 0. Experimentally this corresponds
to washing the external medium of the cell and replacing it by a medium
without iron. This sudden change of Tfsat leads to the very low iron concen-
tration att near0 (see Figure 6.11). This very low iron concentration triggers
the production ofIRP, which itself activates the release of iron by the fer-
ritin. The iron and theIRP concentrations quickly grow back until both the
IRP and iron are around their respective thresholds� IRP � Ft and� Fe� IRP .
The IRP increase slows down while the iron concentration stabilizes. To
compute precisely this blue part, reachability analysis was done using15
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Figure 6.9: Iron stabilization

Figure 6.10:IRP stabilization

different directions to represent template polyhedral set. The reachability
computation time for the blue part is around2 hours.
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– Phase 2 (red): Because the iron is now in the plateau, we need to ensure
that the analysis is as precise as possible. Thus, we reduce the error by
bisecting the set on the IRP axis, and perform reachability analysis with two
smaller sets instead of one big set. Even with such a method, one can observe
the fast growing accumulated error in the red phase. In the red part, the
system overlaps two partitions of IRP: the one wheresig (IRP ; � IRP � Ft ) is
represented by an af�ne function, and the one wheresig (IRP ; � IRP � Ft ) =
1. Overlapping two partitions increases the error during a short time, leading
to the observed growth of the reachable set in red in Figure 6.11.

– Phase 3 (green): Once the reachable set has completely crossed the border
between the two partitions, andsig (IRP ; � IRP � Ft ) = 1 , the reachable set
quickly contracts, and the iron concentration begins to decrease notably. Re-
ciprocally, theIRP concentration increases trying to compensate the lack
of iron. However at this moment, there is no longer enough ferritin to sup-
ply the cell in iron. The red part and the green part took around3 hours to
compute in total.

– Phase 4 (purple): The iron concentration is not stable in a plateau, but now
decreases to0. To compute this part we did not need as good precision as
before and used a simple box over-approximation, and the computation time
of the purple part is around15minutes.

Figure 6.11: Iron reachable set for Tfsat = 0

The reachability analysis of the system allows us to validate the previous obser-
vation made in [5] using point-based simulations: the regulation term of FPN1a by
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Figure 6.12:IRP reachable set for Tfsat = 0

Figure 6.13: FPN1a reachable set for Tfsat = 0

only IRP in this model and within these parameters intervals is not effective. This
suggests that another actor is needed for the regulation of FPN1a. Indeed, even
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with an initial set for FPN1a, and having the parameters in�uencing FPN1a span-
ning over large intervals (multiple orders of magnitude), the reachability analysis
results show that the model satis�es the expected properties:

1. Fe, IRP, andFt tend to a small invariant set when Tfsat 6= 0 .

2. The iron concentration reaches a “plateau” for at least10hours.

3. After reaching a plateau the iron concentration decreases to0.

4. TheIRP concentration �rst increases quickly then more slowly during the
plateau and then increases quickly again.

However given all those conditions, the FPN1a concentration did not undergo any
notable decrease. Indeed, in Figure 6.13, while the upper bound slowly increases
due to the accumulated error, the lower bound, which is conservative, does not
decrease notably unlike what we could expect.

This analysis shows that if the model ef�ciently represents the regulation of
the iron concentration with theIRP proteins, it does not fully model the FPN1a
regulation, and andIRP is not the main regulating factor in this regime on the
FPN1a concentration.

6.3 Cadmium impact on glucose response model

Context. In this section we present a preliminary analysis of the glucose response
mechanism and its evolution when exposed to cadmium (Cd). This work follows a
thorough experimental study [96] about the effect of low-dose cadmium exposure
on the glucose regulation, and its link to type 2 diabetes. Indeed it was observed
that some populations exposed to low-dose8 of cadmium for a long period devel-
oped type 2 diabetes syndromes [186, 187, 188]. The experiments in [96] are per-
formed on both cultured cells and animals: in this section we study the experiments
on the animals.

Glucose regulation mechanism mainly depends on an hormone called insulin
which trigger the integration of plasma glucose into cells: especially muscles or
adipocytes (fat holding cells). The insulin is produced by the� -cells of the pan-
creas in response to a glucose increase [189, 190]. As we search to link the cad-
mium exposure to type 2 diabetes, it was �rst hypothesized that the cadmium had a
negative effect on insulin production mechanism in the� -cells. However, prelimi-
nary experiments from [96] on cells cultures show not clear results in this sense.

In parallel to the cells cultures, a second set of experiments were performed on
rats. These experiments can be separated in two subsets: the experiments on adults
animals directly exposed to the cadmium, and the experiments on pups (baby rats)
indirectly exposed to the cadmium through the mother placenta before birth, or
milk after birth. The last experiments on pups are summarized in Figure 6.14.

8Compared to usual cadmium toxicity studies.
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During the experiments described in Figure 6.14 multiple oral glucose tolerance
tests (OGTT) were performed. This test consists in measuring the evolution of
plasma glucose concentration during the2 hours following an oral glucose intake.
The tests were performed on the pups at21days after birth, which is the end of the
milk based diet,26 days, and60 days. We �rst propose a preliminary modelling

Figure 6.14: Protocol for indirect exposure of small rats to Cadmium through their mothers.

and parameter analysis of the OGTT results at21, 26and60days. Then, we discuss
of the application of MOEPLA for the a further study of the experiments practised
on the pups.

Parameter study. We �rst propose a model to reproduce the OGTT results ob-
tained by [96] with the protocol described in Figure 6.14. To this aim, we use the
MINMOD model [97], a small ODE model describing the evolution of glucose
concentration after an initial glucose intake. We also refer to [191] for a review of
glucose regulation models, and in particular to [192, 193, 194, 195] for a modelling
of the OGTT. Finally, we highlight the work [196] which contains a very detailed
model of glucose response after a meal. We may want to apply formal methods
or computationally expensive techniques on our model, for this reason we use the
minimal model MINMOD as a starting point.

The model MINMOD from [97] is not designed for OGTT, but for intravenous
glucose tolerance tests (IvGTT). Therefore, we cannot consider that the plasma
glucose is already at its maximum concentration att = 0 , as it is done for IvGTT
studies. Complex OGTT models such as [196] use compartmental modelling to
represent the multiple stages of the digestion, and to obtain the glucose rate of
appearance in plasma after the meal. In �rst approximation we propose a simpler
modelling using directly experimental results measuring the glucose rate of appear-
ance in the winstar rat. From [197, Figure 4] we determine the maximum of the
rate of appearance is obtained� 30min after the meal9. Similarly, the initial value
of the rate of appearance is� 70%of its maximum (see Figure 6.15). This curve

9We consider that the time food spends in stomach is close to zero as the glucose meal is liquid.
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Figure 6.15: Approximation of the plasma glucose rate of appearance.

is modelled by the continuous functionGRA(t):

GRA(t) = K
1

�
p

2�
e

� ( t � � ) 2

2� 2 ;

where� = 30, and � = 60. The value of the parameterK is determined by
the actual quantity of glucose fed to the rats. Let mGlc be the mass of glucose
fed to the rats andVBlood the rat blood volume as given in [198]. Then given an
administrated concentration of glucose mGlc=VBlood , the value ofK is the solution
of the following equation:

Z + 1

0
K

1

�
p

2�
e

� ( t � � ) 2

2� 2 dt =
mGlc

VBlood
:

In presence of glucose, the release of insulin by the� -cells can be separated in two
phases. The �rst phase is the exocytosis of the insulin already present and stored
near to the cellular membrane. The second phase corresponds to the release of
insulin whose production was triggered by the glucose increase. The MINMOD
model correctly simulates the second phase of insulin production, but does not
reproduce satisfactory the �rst phase. To address this problem we add an additional
state variable representing the insulin already present and ready to be released in
the blood circulation. Finally, the adapted MINMOD model is given by (6.5).

_G = � p1(G( t) � Gb) � rCd X( t)G( t) + G RA(t)
_X = � p2X( t) + p3(I( t) � Ib)
_I = � n I( t) + 
 (G( t) � h) t + p4Is(t)

_Is = � p4Is(t)

(6.5)

In the ODE system (6.5),G is the glucose concentration in circulating blood,X the
rate of glucose absorption in muscles and adipocytes due to insulin,I the insulin
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concentration in circulating blood, andIs the insulin concentration stored in the
� -cells and ready to be released.

The experimental results are separated into3 groups: the control group which
was not exposed10 to cadmium, the group Cd1 which shows a medium cadmium
exposure, and the group Cd2 with a high cadmium exposure.

To estimate the goodness of �t of a given simulation compared to the experi-
mental data, we use the root weighted least-square error:

" (k) =
s X

i

Wi (xexp;i � xsimu (t i ; k))2 ; (6.6)

wherek is a parameter set, andxsimu (t; k) its associated simulation of the OGTT.
The weightWi is determined by the equation:

Wi =
1

� 2(
P

i x2
exp;i )

;

where� are the variance to the mean associated to thei -th data point.
The initial condition, and parameters are searched in the intervals proposed

in [97] bloated by one order of magnitude. To ease the parameter search, when
�tting the parameter to the datasets corresponding to group Cd1 and Cd2 we only
consider a few hypotheses on the evolution of the parameters (compared to the one
�tting the control group). At �rst for the experiments at21 days we consider the
following hypotheses:

– Hypothesis 1:Increase or reduction of the insulin sensibility.

– Hypothesis 1.1: rCd varies: this shows the effect of cadmium on
the glucose absorption in the cells. IfrCd < 1 then the system has
developed insulin resistance, otherwise the system is more sensitive to
insulin.

– Hypothesis 1.2: p3 varies: this represents the effect of insulin on the
rate of absorption dynamics.

– Hypothesis 2:n varies: this models an effect on the insulin degradation.

– Hypothesis 3:p2 varies: this affects the degradation of the glucose absorp-
tion rate.

– Hypothesis 4: 
 varies: this modi�es the sensitivity to glucose of the phase
2 of insulin production.

A 21 days, the goodness of �t for each hypothesis and associated to group Cd1
dataset are shown in Table 6.13. The associated best parameter sets are given in
Table 6.14. The initial conditions are given in Table 6.12. The simulation corre-
sponding to the best parameter �ts are shown in Figure 6.16. The goodness of �t

10Except the default food pollution as it is noted in [96].
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Figure 6.16: Simulations of the OGTT at21 days for the control group, Cd1 and Cd2
groups.

associated to the control group data set is0:00512. The best �ts for group Cd1 are
obtained considering the Hypothesis 4: a reduction of glucose sensibility of� -cells
during the phase 2 of insulin production. We consider the same hypothesis when
searching for a parameter �t of group Cd2 dataset: the best solution yields a good-
ness of0:006. After 26 days, we consider an additional hypothesis. Indeed, from

Variable Value Unit

G(0) 110:0 mg/dL
X(0) 0:0 min� 1

I(0) 16:0 nU/dL
Is(0) 5950:0 nU/dL

Table 6.12: Initial condition deter-
mined for the control group at 21
days. These initial conditions are
conserved for the groups Cd1 and
Cd2. Note that 1U = 0.0347mg of
insulin.

Hypothesis Cd1

Hyp 1.1 0:0203
Hyp 1.2 0:0185
Hyp 2 0:0178
Hyp 3 0:0202
Hyp 4 0:0117

Table 6.13: Goodness of �t (6.6) of each
hypothesis applied to group Cd1 dataset
at 21 days.

21 days to26 days the pups went from a milk-based diet to a “normal” food diet.
This change of diet induces important change on the regulation mechanism: this is
observed by an evolution of the parameter set �tting the control group dataset.

– Hypothesis 5:[p2; 
; h; p 4] are all allowed to vary: these parameters are the
ones which differ the most between the �ts of the control group at21 days
and26days.

The goodness of �t for each hypothesis on group Cd1 and Cd2 are given in Ta-
ble 6.16. The associated best parameters sets are given in Table 6.17. The initial
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Parameters Ctrl Cd1 Cd2 Unit

p1 0:01 � � min� 1

Gb 100:0 � � mg/dL
p2 0:56 � � min� 1

p3 0:0142 � � (dL/nU)min� 2

I b 10:0 � � nU/dL
n 5:93 � � min� 1


 0:0625 0:05 0:04 (nU/dL)min� 2

h 90:0 � � mg/dL
p4 0:07 � � min� 1

rCd 1:0 � � N.U.

Table 6.14: Parameters values �tted for the control group as well as the groups Cd1 and
Cd2 at 21 days (considering hypothesis 4).

conditions are given in Table 6.15. The simulation associated to the best �ts are
shown in Figure 6.17. The goodness of �t associated to the control group data
set is0:011. We note that Hypothesis 5 yields the best results, and the associated
parameter values are in-between the values of the control at21 days and26 days.
One interpretation of this hypothesis would be that the cadmium affects the speed
at which the organism adapts itself to a new diet. Finally the parameter set �t-

Variable Value Unit

G(0) 76:0 mg/dL
X(0) 0:0 min� 1

I(0) 34:0 nU/dL
Is(0) 5950:0 nU/dL

Table 6.15: Initial condition determined
for the control group at26 days. These
initial conditions are conserved for the
groups Cd1 and Cd2. Note that 1U =
0.0347mg of insulin.

Hypothesis Cd1 Cd2

Hyp 1.1 0:009 0:012
Hyp 1.2 0:009 0:012
Hyp 2 0:009 0:012
Hyp 3 0:009 0:012
Hyp 4 0:010 0:010
Hyp 5 0:005 0:005

Table 6.16: Goodness of �t (6.6) of
each hypothesis applied to the datasets
of groups Cd1 and Cd2 at26days.

ted to the datasets at60 days are given in Table 6.20. The goodness of �t of the
control group dataset is0:006. As shown in Table 6.19, it is hard to distinguish a
hypothesis for the �t of the dataset at60 days of the group Cd2: all of the tested
one yielded good results, but this is mainly due to the high variance on this dataset.
We introduce an additional hypothesis to better �t the dataset of the group Cd1.

– Hypothesis 6:h varies: this models an in�uence on the threshold to trigger
the phase two of insulin production.
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Figure 6.17: Simulations of the OGTT at26 days for the control group, Cd1 and Cd2
groups.

Parameters Ctrl Cd1 Cd2 Unit

p1 0:01 � � min� 1

Gb 100:0 � � mg/dL
p2 0:50 0:805 0:86 min� 1

p3 0:0312 � � (dL/nU)min� 2

I b 10:0 � � nU/dL
n 5:33 � � min� 1


 0:0165 0:0347 0:0410 (nU/dL)min� 2

h 65:0 85:0 85:0 mg/dL
p4 0:035 0:0585 0:065 min� 1

rCd 1:0 � � N.U.

Table 6.17: Parameter values �tted for the control group as well as the groups Cd1 and
Cd2 at 26 days (considering Hypothesis 5).

Overall, we propose multiple parameter sets associated to each particular experi-
ment. All of these �ts are good and allow us to successfully reproduce the data.
Additionally, we propose possible interpretations on the cadmium impact at each
step of the pups growth.

However, the results are local and only represent one possible valid parameter
set for each experiment. To go further, we need to provide a model of the cadmium
absorption by the pups and we have to make explicit its in�uence on the dynamics
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Variable Value Unit

G(0) 95:0 mg/dL
X(0) 0:0 min� 1

I(0) 34:0 nU/dL
Is(0) 5950:0 nU/dL

Table 6.18: Initial condition determined
for the control group and the groups Cd1
and Cd2 at60days.

Hypothesis Cd1 Cd2

Hyp 1.1 0:008 0:005
Hyp 1.2 0:008 0:005
Hyp 2 0:008 0:005
Hyp 3 0:008 0:005
Hyp 4 0:007 0:005
Hyp 6 0:005 0:005

Table 6.19: Goodness of �t (6.6) of
each hypothesis applied to the datasets
of groups Cd1 and Cd2 at60days.

Parameters Ctrl Cd1 Cd2 Unit

p1 0:01 � � min� 1

Gb 100:0 � � mg/dL
p2 0:55 � � min� 1

p3 0:0205 � 0:0210 (dL/nU)min� 2

I b 10:0 � � nU/dL
n 5:33 � � min� 1


 0:0265 � � (nU/dL)min� 2

h 65:0 73:0 � mg/dL
p4 0:05 � � min� 1

rCd 1:0 � � N.U.

Table 6.20: Parameter values �tted for the control group as well as the groups Cd1 and
Cd2 at 60 days (considering hypothesis 1.2 for Cd2 and hypothesis 6 for Cd1).

to con�rm our hypotheses. Moreover, unless we ensure that there is no other valid
parameter set, our interpretations are just one possible solution.

Future work. In addition to the modelling of the OGTT, we need to model the
cadmium absorption into the mother and pups organs at each step of the protocol.
In the following we propose a simple example of speci�cation for the protocol from
Figure 6.14. From the associated hybrid system we still have to �nd a parametriza-
tion of the cadmium absorption rate.

For a �rst example of speci�cation of the protocol from Figure 6.14, we con-
sider two experimental objects: the motherOmotherand the pupsOpup. We consider
two mechanisms of Cadmium absorption (they may differ for the mother and the
pups):FmotherandFpups. We also note the default parameters space of the mother
K mother, and the one of the pupsK pups.

We remark that the mother and the pup could be merged into one single exper-
imental object. Indeed, in the current formalization described in Chapter 5, we do
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not accept common variables or parameters. As stated in Section 5.3, this is one
of the points we want to address to improve the MOEPLA language in the future.
If we want to make the pups depend of the mother, we currently need to de�ne a
single object including the coupled mechanisms of the mother and the pups. In the
following, we give the sketch of the formalisation with two objects. However, the
approach with one object is similar.

The time is counted in days, and the protocol last at most105days (15weeks).
At t = 0 day, we start with the mother alone:I 0(Omother). After 21 days the
mothers enter in the mating period which leads to pregnancy: this period lasts at
most1 week. In MOEPLA, this can be expressed as a perturbation under the label
L pregnacythat occurs in the time intervalt 2 [21; 28]days:

A k (Omother; L pregnacy; K mother  K pregnant; t 2 [21; 28]) :

Similarly, the pups come into being under this perturbation and we associate a
creation action with the labelL pregnacy:

A create (Opup; L pregnacy; xpup
0 ; t 2 [21; 28]) :

In a similar manner we can de�ne a perturbation on a change of the parameter
space of both the mother and the pups at the birth stage, and the switch to the
normal food. Measurements are performed independently on either the pups (at
time t = 70 days,76 days and105 days) or the mother (att = 39 days and60
days). All these measurements can be expressed in MOEPLA using the action
A meas on either the variables of the objectOmotheror Opup.
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Conclusion

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1 Summary

In this thesis, we addressed three issues in biological systems modelling: model
design, model validation, and model revision. In addition, we investigated three
biological case studies and used them as proof of concept for our different methods.

Model revision. In Chapter 3, we proposed a method to revise a hybrid dynam-
ical system with respect to some observations in form of intermediate time mea-
sures. The method searches for time varying parameters which produce better ap-
proximations of an underlying mechanism, compared to constant parameters. For
this purpose, it uses an algorithm based on the optimal control method for hybrid
systems proposed in [94]. The model revision is achieved without imposing be-
forehand any structure on the sought law, since we consider the case where we do
not possess any additional insight or knowledge.

Set-based simulation. In Chapter 4, we extended the previous work of [83]
for reachability analysis of discrete time polynomial systems with uncertain pa-
rameters. We contributed in this problem an extension of [83] to discrete time
piecewise-rational functions, allowing handling a larger panel of biological appli-
cations. Moreover, we also give a few improvements to speed up the actual reacha-
bility analysis in some particular cases. In addition, we proposed another set-based
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simulation method using the Krivine-Stengle representations. We showed how to
adapt the Krivine-Stengle representation based method for an ef�cient application
to reachability analysis of discrete-time polynomial systems with uncertain param-
eters in box domains.

MOEPLA: Modelling Oriented Experimental Protocol Language. In Chap-
ter 5, we proposed a preliminary work on a language to formally specify an exper-
imental protocol while taking into account a model of a mechanism. In its current
form, the proposed language allows modelling multi-stage evolutions of multiple
experimental objects in parallel, with possible synchronization steps. It also allows
automatic generation of a formal framework using the hybrid automaton formal-
ism. Taking advantage of non-determinism inherent to hybrid automata that can
model uncertainty in biological models, we can either validate a model while tak-
ing into account an existing protocol (with its uncertainties), or verify that a future
protocol (or therapy) will always be correctly executed. We demonstrated the use
of MOEPLA on two experimental protocols associated to the haemoglobin pro-
duction model and the glucose response model, respectively.

Case studies. Finally, in Chapter 6 we described three modelling studies. We �rst
investigated a model of haemoglobin production during the differentiation stages
of the an erythroblast into an erythrocyte (also called red blood cells). In the �rst
part of this study, we used a simple exploratory scheme to perform parameter esti-
mation with respect to multiple experimental data sets. In the second part, we used
this model to demonstrate the applicability of our model revision method. This
model revision with a time varying parameter enabled us to better reproduce a con-
sidered dataset. We also note that from the inferred solution we derived multiple
hypotheses which led to a meaningful biological interpretation of the time varying
parameter as an activation function.

The second case study used the iron homoeostasis model designed in [45]. In
this work, we applied the Bernstein reachability analysis from Chapter 4 to con�rm
a hypothesis formulated in [45] using exhaustive methods for uncertain parameters
and initial sets.

The last case study was a preliminary modelling of a recent study of genera-
tional effect of low dose and chronic Cadmium intake on the metabolism [96]. In
this case study, we proposed a �rst simple model of the oral glucose tolerance test
(OGTT) adapted from a previous glucose response model [97]. We also provided
multiple parameter estimations associated to different data sets.

7.2 Future work

The work described in this thesis still needs improvement on several points, but
also suggests numerous ideas for future work.
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Improvements and implementation. In addition to the theoretical work given
in this thesis, we still need to provide an implementation in a user-friendly toolbox.
The improvements provided in Chapter 4 can be integrated in the latest version of
reachability toolboxsapo [83]. Similarly, the current implementation of sparse
Krivine-Stengle representations must be re-written in a more ef�cient implemen-
tation than the current one inMatlab . The MOEPLA language is still under
development, we need to implement an interface and a parser to check the validity
of experimental protocols and automatically generate their hybrid automaton mod-
els for formal analysis purposes. In addition to the implementation work, we still
need to provide a solution to handle common variables, relative time constraints,
and a more ef�cient hybrid automaton generation.

Occupation measure methods. The theoretical results of Chapter 3 for model
revision can be improved by providing a converging sequence of relaxations for the
optimal control problem with intermediate points instead of using a greedy algo-
rithm. In addition, it has been shown that occupation measure methods [124] allow
computing converging over-approximations of the valid parameter sets. These re-
sults can be extended to our biological problem of �tting parameters with respect
to intermediate time measures.

Non-linear reachability analysis. The work on the Bernstein expansion pro-
vided some ideas for its application for conservative approximations of polyno-
mial lifts. Then, such a method can be used within an algorithm for non-linear
reachability analysis using Carleman linearisation [170]. Another idea is to use
multivariate polynomial interpolation to approximate the image of an initial set by
a trajectory at a �xed time.

Glucose response model. The experimental results of Cadmium effect on the
glucose response are recent, and in this thesis we presented a preliminary modelling
work and parameter estimation of the glucose response model, independently of
the Cadmium. We now need to ensure the robustness and validity of the estimated
parameters using either statistical methods or set-based methods. Additionally, we
still need to consider the whole protocol to design a model of Cadmium integration.
The MOEPLA language will help to formally specify this protocol and generate an
associated model.
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Sanden, and Anǵelique St́ephanou. Towards the design of a patient-speci�c
virtual tumour. Computational and mathematical methods in medicine,
2016, 2016. (Cited on pages 2 and 31.)

135



136 BIBLIOGRAPHY

[9] Garry M Steil, Joseph Murray, Richard N Bergman, and Thomas A
Buchanan. Repeatability of insulin sensitivity and glucose effective-
ness from the minimal model: implications for study design.Diabetes,
43(11):1365–1371, 1994. (Cited on page 2.)
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[78] André Platzer. Differential dynamic logic for verifying parametric hybrid
systems. InTableaux, volume 4548, pages 216–232. Springer, 2007. (Cited
on page 9.)
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Formal methods for modelling and
validation of biological models

Alexandre Rocca
Thesis Directed By Thao Dang and Éric Fanchon

The focus of this thesis is the modelling and analysis of biological systems using formal methods. The
dynamics of biological systems exhibit continuous behaviours but also abrupt changes. Ordinary differ-
ential equations and hybrid dynamical systems are two mathematical formalisms that naturally model
such dynamics.
A crucial aspect of modelling is the determination of valid parameter values that enable to simulate
the behaviour and reproduce experimental data sets. If no valid parameter values are found it becomes
necessary to revise the model. An option is to replace one or several lumped parameters (parameters
which represent a set of processes) by functions of time. In this thesis we �rst study the model revision
problem on hybrid dynamical systems. To this aim we propose a greedy scheme of optimal control
methods based on occupation measures and convex relaxations.
Then, we study how to characterize dynamical properties of a model using set-based simulations and
reachability analysis. For this purpose, we propose two methods: the �rst one, which relies on Bernstein
expansion, is an extension for hybrid dynamical systems of the reachability toolSapo [1], while the
other one uses Krivine-Stengle representations [2] to perform the reachability analysis of polynomial
ODEs. Finally, We also propose a methodology to generate hybrid dynamical systems modelling a class
of experimental protocols.
The proposed methods are applied to different case studies. We �rst propose a model of haemoglobin
production during the differentiation of an erythrocyte in the bone marrow [3]. To develop this model, we
�rst apply the Monte-Carlo based parameters synthesis, followed by the model revision to correctly �t
to the experimental data [4]. We also propose a preliminary study of the effect of low dose Cadmium on
glucose response at different steps of a rat growth. Finally, we apply the reachability analysis techniques
for the validation on large parameters set of the existing iron homoeostasis model [5], [6]. We note
the haemoglobin production process, as well as the glucose response system can be formalised, with
their experimental context, as hybrid dynamical systems. Thus, they serve as proof of concept for the
methodology of biological experimental protocols modelling.

L'objectif de cette th�ese est la mod́elisation et l'́etude de syst�emes biologiques par l'interḿediaire de
méthodes formelles. Les syst�emes biologiques d́emontrent des comportements continues mais sont aussi
susceptibles de montrer des changements abruptes dans leur dynamiques. Leséquations diff́erentielles
ordinaires, ainsi que les syst�emes dynamiques hybrides, sont deux formalismes mathématiques utiliśes
pour mod́eliser clairement de tels comportements.
Un point critique de la mod́elisation de syst�emes biologiques est la recherche des valeurs des param�etres
du mod�ele a�n de reproduire de mani�ere pŕecise un ensemble de données exṕerimentales. Si aucun jeux
de param�etres valides n'est trouvé, il est ńecessaire de réviser le mod�ele. Une possibilit́e est alors de
remplacer un param�etre, ou un ensemble de param�etres, d́e�nissant un processus biologique par une
fonction d́ependante du temps.
Dans le cadre de cette th�ese, nous exposons tout d'abord une méthode pour la ŕevision de mod�eles hy-
brides. Pour cela, nous proposons une approche gloutonne appliquée�a une ḿethode de contrôle optimal
utilisant les mesures d'occupations et la relaxation convexe. Ensuite, nousétudions comment analyser
les propríet́es dynamiques d'un mod�ele �a temps discret en utilisant la simulation ensembliste. Dans cet
objectif, nous proposons deux méthodes baśees sur deux outils mathématiques. La premi�ere ḿethode,
qui se repose sur les polynômes de Bernstein, est une extension aux syst�emes dynamiques hybrides,
de l'outil de calcul ensemblisteSapo [1]. La seconde ḿethode utilise les représentations de Krivine-
Stengle [2] pour permettre l'analyse d'atteignaiblité de syst�emes dynamiques polynomiaux. En�n, nous
proposons aussi une méthodologie pour ǵeńerer des syst�emes dynamiques hybrides modélisant des pro-
tocoles biologiques expérimentaux.
Les ḿethodes pŕećedemment proposées sont appliqúees sur diverśetudes biologiques. Nouśetudions
tout d'abord un mod�ele de la production d'h́emoglobine durant la différentiation deśerythrocytes dans
la moelle [3]. Pour permettre la construction de ce mod�ele, nous avons dans un premier temps géńeŕe un
ensemble de jeux de param�etres valides�a l'aide d'une ḿethode de type Monte-Carlo. Dans un second
temps, nous avons appliqué la ḿethode de ŕevision de mod�ele a�n de reproduire plus préciśement les
donńees exṕerimentales [4]. Nous proposons aussi un mod�ele pŕeliminaire des effets�a faibles doses du
Cadmium sur la ŕeponse du ḿetabolisme�a différenteśetapes de la vie d'un rat. En�n, nous appliquons
les techniques d'analyse ensembliste pour la validation d'hypoth�eses sur un mod�ele d'hoḿeostasie du
fer [6] dans le cas o�u des param�etres varient dans de larges intervalles. Dans cette th�ese, nous mon-
trons aussi que le protocole associé �a l' étude de la production d'hémoglobine, ainsi que le protocole
étudiant l'int́egration du Cadmium durant la vie d'un rat, peuventêtre formaliśes comme des syst�emes
dynamiques hybrides, et servent ainsi de preuves de concepts pour notre méthode de mod́elisation de
protocoles exṕerimentaux.
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