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General Introduction

Mark spent three hours taking a selfie. Now he wants to post it on Facebook. In
order to get as much Likes as possible, he decides to edit it. He chooses to use
ImageMagick1 which is a command-line tool for image processing. He tries to modify
the hue of the image and then, disaster! ImageMagick stops responding. The culprit
is a software bug discovered in 2017: the computation of the new floating-point value
of the hue may fail to terminate2.

To the fictional character Mark, that bug is actually not very harmful. His Face-
book fans just need to wait a little bit longer until he manages to retouch his selfie.
However, there were cases in history where termination bugs and incorrect floating-
point computations led to dramatic events. On one hand, a non-expected infinite
loop caused the Microsoft Azure Storage Service to be interrupted for more than ten
hours in 20143. On the other hand, a faulty implementation of the floating-point
division operation ultimately cost $475 million to Intel in 19944.

This thesis was born from these issues: it is concerned with termination analysis
of programs that perform floating-point computations. Though termination analysis
is a topic that has already been intensively studied during the last decades, literature
mainly focused on mathematical programs that perform exact calculations. Notably,
most of the produced work consider programs that handle real numbers, rational
numbers or integers. In comparison and to the author’s knowledge, the case where
floating-point numbers are used instead is only covered in a limited manner. That
may be partly due to the hardness of analyzing floating-point computations. Indeed,
floating-point numbers are non-exact representations of real numbers: tricky rounding
errors are inherent to their manipulation.

This thesis has six chapters. Chapters 1 and 2 are introductions to termination
analysis and floating-point numbers. These two first chapters also serve as literature

1https://www.imagemagick.org/
2https://www.imagemagick.org/discourse-server/viewtopic.php?f=3&t=31506
3https://azure.microsoft.com/fr-fr/blog/update-on-azure-storage-service-interruption/
4http://boole.stanford.edu/pub/anapent.pdf

https://www.imagemagick.org/
https://www.imagemagick.org/discourse-server/viewtopic.php?f=3&t=31506
https://azure.microsoft.com/fr-fr/blog/update-on-azure-storage-service-interruption/
http://boole.stanford.edu/pub/anapent.pdf
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survey. Chapters 3, 4 and 5 present the main contributions of this thesis. These
three chapters discuss approximations to the rationals that eliminate the difficulties
introduced by the rounding errors and that allow the use of some well-known ter-
mination proving techniques. Chapter 6 discusses experimental results. It recounts
how the techniques developed in this thesis apply to real-world programs. A general
conclusion embedding the future directions the author envision ends this work.

Introduction Générale

Marc a pris trois heures pour prendre un selfie. Maintenant, il veut le publier sur
Facebook. Afin d’obtenir autant de Likes que possible, il décide de le retoucher un
peu. Pour cela, il choisit d’utiliser ImageMagick qui est un outil en ligne de commande
pour le traitement d’image. Il essaie de modifier la teinte de l’image et c’est alors le
désastre ! ImageMagick ne répond plus. La cause provient d’un bug logiciel découvert
en 2017 : le calcul de la nouvelle valeur flottante de la teinte peut ne pas terminer.

Pour le personnage fictif Marc, ce bug n’est pas particulièrement nuisible. Ses
fans sur Facebook doivent juste attendre un peu, le temps qu’il parvienne à retoucher
son selfie. Cependant, il existe des cas dans l’histoire où des bugs de terminaison et
des calculs flottants incorrects ont eu des conséquences dramatiques. D’une part, une
boucle infinie imprévue a provoqué l’interruption du service Microsoft Azure Storage
pendant plus de dix heures en 2014. D’autre part, une implémentation défectueuse
de la division flottante a coûté 475 millions de dollars à Intel en 1994.

Cette thèse est née de ces problèmes: elle s’intéresse à l’analyse de terminaison des
programmes qui effectuent des calculs flottants. L’analyse de terminaison est un sujet
qui a déjà été intensivement étudié au cours des dernières décennies. Cependant, la
littérature a principalement étudié des programmes mathématiques qui effectuent des
calculs exacts. Notamment, la plupart des travaux produits étudient des programmes
qui manipulent des nombres réels, des nombres rationnels ou des nombres entiers. En
comparaison de cela et à la connaissance de l’auteur, le cas où les nombres flottants
sont utilisés à la place n’a été qu’assez peu traité. Cela peut être en partie dû
à la difficulté d’analyser les calculs flottants. En effet, les nombres flottants sont
des représentations inexactes des nombres réels: de subtiles erreurs d’arrondis sont
inhérentes à leur manipulation.
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Cette thèse comporte six chapitres. Les chapitres 1 et 2 sont des introductions
à l’analyse de terminaison et aux nombres flottants. Ces deux premiers chapitres
servent également d’état de l’art. Les chapitres 3, 4 et 5 présentent les princi-
pales contributions de la thèse. Ces trois chapitres présentent des approximations
rationelles qui éliminent les difficultés introduites par les erreurs d’arrondis et qui
permettent l’utilisation de techniques d’analyse de terminaison bien connues. Le
chapitre 6 présente les résultats expérimentaux. Il montre comment les techniques
développées dans cette thèse s’appliquent aux programmes du monde réel. Une con-
clusion générale contenant les orientations futures envisagées par l’auteur boucle ce
travail.
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Part I

Basics and Survey
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Chapter 1

Proving Program Termination

Abstract. This chapter is a brief exposition to program termination analysis. The
topic is now more than sixty years of existence during which a vast amount of work
has been conducted. Exhaustivity is far beyond the goal of this chapter. Instead, it
aims at establishing the notions and main results on termination analysis that are
used in this thesis, notably in Chapters 3, 4 and 5. This first chapter also aims at
situating this thesis in the literature by mentioning a few relevant related work.

Résumé. Ce chapitre parle brièvement d’analyse de terminaison de programmes.
C’est un sujet qui existe depuis plus de soixante ans maintenant. Une vaste quantité
de résultats a été produits pendant ce temps. Ce chapitre ne se veut pas être exhaustif.
Il a plutôt pour objectif d’établir les principales notions en analyse de terminaison
qui seront utilisées dans cette thèse, notamment dans les chapitres 3, 4 et 5. Ce
premier chapitre a également pour objectif de situer cette thèse dans la littérature en
mentionnant quelques travaux connexes.

1.1 Introduction

The program termination problem consists in determining whether a given program
will always stop or may execute forever. In contrast to the simplicity of its formula-
tion, the problem has instances that are notoriously hard to solve. A typical example
is the 3x + 1 problem presented Figure 1.1. Traditionally credited to Collatz, this
apparently simple problem started circulating among the mathematical community
by the early 1950s. In those days, all mathematicians at Yale and at the University
of Chicago worked on it but to no avail. Since then the problem was jokingly said to
be a Cold War invention of the Russians meant to slow the progress of mathematics
in the West. Until this day, 3x+ 1 continues to completely baffle mathematicians.
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x = randNat ();
// a random natural number

while (x > 1) {
if (x%2 == 0) // if x is even

x = x/2;
else x = 3*x + 1;

}

Figure 1.1: The 3x+ 1 problem [Lag11]: does this program always
terminate for any possible initial value of x?

Now why do scientists put so much effort in trying to prove termination? Is
that property really important in practice? Apart from the Azure Storage Service
bug presented in the General Introduction, there were other cases where non-expected
infinite loops caused dysfunctions to the Microsoft products. For example, throughout
the day of December 31, 2008, the former portable media player Microsoft Zune
was down due to a termination bug1. For yet another example, the dreaded Blue
Screen of Death that plagued Windows users in the 2000s was sometimes caused by
non-terminating device drivers2. These dysfunctions cost a lot to Microsoft. And
the damages could be even worse: a non-responding software in an aircraft could
ultimately cause human losses. Also, the verification of some program properties can
be reduced to termination checking. That is notably the case of liveness properties
[Urb15, Part IV]. These properties ensure that something desirable happens at least
once or infinitely often during the program execution. For example ensure that any
allocated memory space is eventually freed. Also, checking termination of a program
can provide ways of measuring its time complexity [Ali+10]. Last, termination provers
can even be used to verify. . . biological models [Coo+11]. For example cancer occurs
when some cells continue do divide infinitely because their mechanism of replication
failed to terminate.

The rest of this chapter is organized as follows. Section 1.2 introduces some basic
notions on termination analysis. It also describes the programs we are interested in.
Section 1.3 studies their termination when their set of states is finite. That section
notably raises the need for program approximation, which is the topic of Section 1.4.
Section 1.5 talks about termination of our considered class of programs when their
set of states if infinite. Section 1.6 concludes.

1https://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/
2http://www.zdnet.com/article/why-the-blue-screen-of-death-no-longer-plagues-windows-users/

https://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/
http://www.zdnet.com/article/why-the-blue-screen-of-death-no-longer-plagues-windows-users/
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1.2 Program termination basics

This section introduces some notions and notations related to termination analysis
that are used throughout the thesis.

Definition 1.1 (The Simple Imperative Language (SImpL)). Let SImpL be
the imperative language defined by the following syntax:

stmt ::= X = aexp; (X ∈ X )
| if(bexp){stmt} else{stmt}
| while(bexp){stmt}
| stmt stmt

prog ::= stmt

where X is a set of symbols that represent the program variables. These variables range
over numbers: Z, Q,R or subsets of them (which can be finite). Then aexp denotes
an arithmetic expression that can use variables, numbers and the arithmetic operators
+,−, ∗ and /. Then bexp denotes a boolean expression constructed with arithmetic
expressions on the program variables, relations of strict and large inequalities over
these expressions, boolean values and the logical operators ¬,∧ and ∨.

Also, SImpL possesses functions that return random booleans or random numbers.

Definition 1.2 (Programs in SImpL as transition systems). We formalize a
program P written in the SImpL language as a transition system (S, I,R) where S
is the set of all possible states, I ⊆ S is the set of initial states and R ⊆ S ×S is the
transition relation from a state to its immediate possible successors.

Let the set of program variables be X = {x1 . . . xn}. We denote x the column vector
x = (x1 . . . xn)T . We use primed variables to denote the next value of their unprimed
match after a transition.

Let D be the domain of the variables: xi ∈ D. A state of P is defined by the values
of the program variables at a specific program point: S = L × Dn. The set L is the
finite set of all program points. We use the variable l to indicate the current program
point: it can be viewed as the program counter.
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init x1 = randNat ();
x2 = randNat ();

while while (x1 + x2 > 0) {
if if(randBool ()

& x1 > 0) { Rwsat

x1 = x1 - 1;
x2 = x2 + randNat ();

}
else else x2 = x2 - 1;

} Rwunsat

end

Rwhile = Rwsat ∪Rwunsat

where Rwsat (resp. Rwunsat)
denotes the transition when
the loop condition is satisfied
(resp. unsatisfied)

Rif = Risat ∪Riunsat

which is similar to Rwhile

Figure 1.2: The program balls. Put x1 red balls and x2 white balls
in a bag. Pick a ball randomly. If it is red then replace it by as many
white balls as you want. Else if it is white then just remove it from
the bag. Again, pick a ball randomly and repeat the process. Can we

infinitely keep picking a ball from the bag?

Notation 1.1 (The [. . . ] notation). Let R =
{(

(l, x), (l′, x′)
)
∈ (L ×Dn)2|l =

?∧l′ =?∧c1(x, x′)∧ . . .∧cm(x, x′)
}
where ci are constraints linking x with x′. For the

sake of reading, we simply denote R = [l =?, l′ =?, c1(x, x′), . . . , cm(x, x′)].

Example 1.1 (The program balls). See Figure 1.2. The program variables are
x1, x2 and x3 where x3 serves as a temporary variable for the evaluation of the branch-
ing condition at program point if. The program balls can be formalized as the tran-
sition system Pb = (Sb, Ib,Rb) described in the following.

The set of states is Sb = Lb × D3
b . We choose the set of program points Lb =

{init,while, if,else,end} as shown in Figure 1.2. The domain Db of the program
variables is Db = N.

The set of initial states is Ib = {
(
l, (x1, x2, x3)

)
∈ Lb × N3|l = init}.

The transition relation is Rb =
⋃
i∈Lb Ri where Ri denotes the transition at program

point i. At points where the program may fork, for example for loops and conditional
branchings, we have to consider the different possible paths as shown in Figure 1.2.
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Thus Rb = Rinit ∪Rwhile ∪Rif ∪Relse ∪Rend where:

Rinit =
{((

l, (x1, x2, x3)
)
,
(
l′, (x′1, x

′
2, x
′
3)
))
∈ (Lb × N3)2|l = init ∧ l′ = while

}
shortened Rinit = [l = init, l′ = while] following Notation 1.1.

Rwhile = [l = while, x1 + x2 > 0, l′ = if, x′1 = x1, x
′
2 = x2]

}
Rwsat

∪[l = while,¬(x1 + x2 > 0), l′ = end, x′1 = x1, x
′
2 = x2]

}
Rwunsat

Rif = [l = if, x3 = 1 ∧ x1 > 0, l′ = while, x′1 = x1 − 1, x′2 ≥ x2]
}
Risat

∪[l = if,¬(x3 = 1 ∧ x1 > 0), l′ = else, x′1 = x1, x
′
2 = x2]

}
Riunsat

Relse =[l = else,¬(x3 = 1 ∧ x1 > 0), l′ = while, x′1 = x1, x
′
2 = x2 − 1]

The relation Rend = ∅ can be omitted.

Hypothesis 1.1. In this thesis, we consider that SImpL programs run on a machine
with unbounded memory in the sense that there is always enough free space to store
the values of the variables.

We point out that the termination problem has been intensively studied for differ-
ent formalisms. Notable mentions are termination analysis of logic programs [LSS97]
[MR03], that of term and string rewrite programs [Gie+04][LM08] and that of im-
perative programs [CPR06][SMP10]. These formalisms all have the same expressive
power. For example anything we can compute with the C programming language
can be computed in Prolog and vice versa. Also, programs constructed under these
different formalisms can all ultimately be viewed as transition systems.

Now what does “a program terminates” precisely mean? A common way to char-
acterize termination is through the notion of well-foundedness.

Definition 1.3 (Well-founded relation, well-founded structure and co-well-
foundedness). A Well-Founded (WF) relation ≺ ⊆ S × S is a binary relation with
no infinite decreasing chains, that is with no infinite sequence of elements Si such
that S1 � S2 � · · · � Sn � · · · We say that S equipped with ≺, that we note (S,≺), is
a WF structure. Dually, ≺ is coWell-Founded (cWF) if it has no infinite increasing
chains.

Example 1.2. The structure (N, <) is WF. Indeed we cannot infinitely decrease in
the natural numbers as we will eventually reach 0. For similar reasons the structure
(Q1, <̇) where Q1 = {q ∈ Q|q ≥ 1} and q1 <̇ q2 ⇐⇒ q1 ≤ q2

2 is WF. However the
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structure (Q+, <̇) where where Q+ = {q ∈ Q|q ≥ 0} is not WF. Dually the structures
(N, >) and (Q, >̇) are cWF whereas (Q+, >̇) is not.

Termination Characterization 1.1. A program P = (S, I,R) terminates if and
only if its transition relation restricted to the states that can be reached from the
initial states has no infinite increasing chain. That is if and only if R∩Racc, where
Racc = Sacc×Sacc in which Sacc denotes the set of states that are accessible from the
initial states, is cWF.

The restriction to Racc is because some states may lead to non-termination but
these states only matter if they can be reached from the initial states. Thus to prove
termination of P, we need to determine Racc and prove the cWFness of R∩Racc. As
the determination ofRacc is an additional challenge, we define a notion of termination
that is not conditioned by the initial states.

Definition 1.4 (S-universal termination). We say that a program P = (S, I,R)

S-universally terminates if any possible execution of the program P# = (S,S,R)

terminates. That is if P terminates when started from any possible program point
with any possible value of the variables.

The notion of S-universal termination sligthly differs from the notion of universal
termination encountered in the literature. A program P universally terminates if it
terminates when started from any element of I. Universal termination is also called
unconditional termination or definite termination [Urb15, Definition 4.2.2] while S-
universal termination is also called mortality [Ben15, Definition 1].

The problem that is dual to universal termination is that of existential termination
[SD94, Section 1.3.2] which is also called potential termination [Urb15, Definition
4.2.1]. It consists in finding at least one element of I that ensures termination. A
similar problem is that of conditional termination. It consists in finding the weakest
precondition for termination [BIK14]: we want to find the largest subset of I for
which termination is guaranteed.

For all of these types of termination, as long as the set of initial states I matters
that is I ( S then we need to consider Racc. In this thesis, we are mainly interested
in S-universal termination analysis.

Termination Characterization 1.2 (For S-universal termination). The fol-
lowing statements are equivalent:

(a) The program P = (S,S,R) terminates. (Notice that I = S).
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(b) Its transition relation R is cWF.

(c) One of the k-th power Rk of R is cWF.

(d) Any k-th power Rk of R is cWF.

(e) The transitive closure R+ of R is cWF.

(f) The transitive closure R+ of R is disjunctively cWF, that is it can be written as
a finite disjunction of cWF relations.

(g) There exists a function f from (S,R) to some WF structure (W,≺)3 such that
∀S, S′ ∈ S : SRS′ =⇒ f(S) � f(S′). The function f is called a ranking
function for P.

(h) There exist a k-th power Rk of R and a function f from (S,Rk) to some WF
structure (W,≺) such that ∀S, S′ ∈ S : SRkS′ =⇒ f(S) � f(S′). The function
f is called a slow ranking function for P.

Notice that in Termination Characterization 1.2.g and 1.2.h, the function f and
the WF structure (W,≺) are both existentially quantified. Thus termination tech-
niques based on these formulations have to find both (W,≺) and f . Many techniques
prealably define the WF structure they consider. For example a widely used WF
structure is that of the natural numbers (N, <).

1.3 Termination of finite state programs

Consider the program balls of Example 1.1, Figure 1.2. The variables x1 and x2 are
natural numbers: as such, they can take an infinite number of values: 0, 1, 2, 3 . . .

10100 . . . Let us investigate the case where the variables can only take a finite number
of values. For example this applies when they are machine integers or, as we will see
later, floating-point numbers.

Theorem 1.1 (Decidability of termination of finite state SImpL programs).
Consider a program written in the SImpL language of Definition 1.1. Let it be for-
malized by the transition system P = (S, I,R) as described in Definition 1.2. If S is
finite then termination of P is decidable.

Proof. Consider the finite set of partial executions of length |S| + 1 at most. Then
P terminates if none of these executions goes through a same state twice.

3Or equivalently to some cWF structure (W,�).
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Techniques and tools have been developed from that result. For example [DKL15]
proposes a technique implemented in a tool called Juggernaut4 that decides ter-
mination of any program written in restricted version of C. Instead of just checking
the possible program executions one by one, Juggernaut first expresses termina-
tion through the existence of ranking functions as in Termination Characterization
1.2.g. Then it calls a second-order SAT solver [KL14]. The solver implements various
optimization techniques like Symbolic Bounded Model Checking or Genetic Program-
ming.

Now, can we have a decision algorithm for Theorem 1.1 that is efficient? Indeed
naive brute-force usually takes too much time to be useful in practice. For example
if we simply want to enumerate all of the 264 values that can be taken by a 64 bits
signed integer, and even if we can enumerate 400, 000 million of values per second5,
it would still take us more than 17 months. In this thesis, we call an algorithm to be
efficient when it answers in polynomial time at most. Can we devise algorithms that
decide termination of finite state SImpL programs in polynomial time?

Hypothesis 1.2. In this thesis, we suppose P ( NP .

Theorem 1.2 (Following Theorem 1.1). No algorithm can decide termination of
P in polynomial time.

Proof. Consider the BOOLE programs of [Jon97, Definition 26.0.7]. (Claim 1)
Deciding their termination is PSPACE-complete [Jon97, Corollary 28.1.4]. (Claim
2) The class of BOOLE programs are a subset of that of finite state SImpL programs.
The theorem follows from (Claim 1), (Claim 2) and Hypothesis 1.2.

Theorem 1.2 is a very strong theoretical limitation. It says that any sound and
complete algorithm that tells whether a finite state SImpL program will terminate
is doomed to answer in exponential time at least. If we want to have polynomial
solutions then we have to sacrifice either soundness or completeness.

In this thesis, we ideally want to get always-sound answers in polynomial time.
Thus our only option is to sacrifice completeness. Instead of just answering “Yes”
or “No”, we allow our algorithms to answer “I don’t know”. Then the challenge
consists in returning that third answer as rarely as possible. We keep soundness and
sacrifice completeness through means of abstractions.

4https://github.com/blexim/synth/
5In 2016, an Intel Core i7 6950X processor can perform up to 317, 900 Million Instructions Per

Second at 3.0 GHz.

https://github.com/blexim/synth/
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1.4 Abstractions and termination

When facing a hard problem, we often try to transform it into an easier one. Some-
times the transformations preserve the problem: that is reformulation. Some other
times, they may change it: that is abstraction. Here we refer to abstraction in its
most general sense: over -approximation or under -approximation. In any cases, the
abstraction must be done in a way that allows us to give sound answers for the original
problem. First we start with over-approximations.

Definition 1.5 (Program over-approximation). A program P# = (S#, I#, R#)

is an over-approximation of a program P = (S, I,R) if any execution of P is also an
execution of P#. That is P# over-approximates P if S ⊆ S#, I ⊆ I# and if R# is
such that ∀S, S′ ∈ S : SRS′ =⇒ SR#S′.

Example 1.3. See Figure 1.3.

int x = 10;
while(x > 0) {

x = x - 1;
}

x = randRat ();
while(x >= 0) {

x = randRatLeq(x - 1);
// a random rational number
// less or equal to x - 1

}

Figure 1.3: A simple Java program Ps (left) and an over-
approximation of it to the rationals P#

s (right)

Suppose we want to analyze termination of some rather complex program. We
can consider an over-approximation of it that is easier or quicker to analyze and then
infer termination. Indeed a program and an over-approximation of it are related as
follows in regard to their termination.

Proposition 1.1 (Program over-approximation and termination). Given a
program P and an over-approximation of it P#, if P# S-universally terminates then
so does P.

Proof. Derived from Definition 1.5.

Notice that the use of program over-approximations may introduce incomplete-
ness. Indeed if P# S-universally terminates then we return “Yes P terminates”.
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Otherwise we cannot conclude anything regarding termination of P: we return “I
don’t know whether P terminates”.

In addition to over-approximating P, we can also under-approximate its Space of
Ranking Functions SRF (P). Instead of considering all the possible ranking functions,
we can only consider the ones that are easy or quick to find. That is, instead of con-
sidering SRF (P) we only consider SRF#(P) such that SRF#(P) ⊆ SRF (P). Again
the use of ranking function under-approximations may introduce incompleteness. If
we manage to exhibit ranking functions in SRF#(P) then P terminates: we return
“Yes P terminates”. Otherwise we return “I don’t know whether P terminates”.

Program over-approximation and ranking function under-approximation are re-
lated as follows.

Proposition 1.2 (Program over-approximation and ranking functions). Given
a program P = (S, I,R) and a corresponding over-approximation P# = (S#, I#,R#),
any ranking function for P# restricted to S is also a ranking function for P.

Another way to interpret Proposition 1.2 is to say that program over-approxi-
mation implies ranking functions under-approximation. With respect to the relation
of inclusion ⊆, the bigger the program over-approximation, the smaller the space of
induced ranking functions. This is illustrated in Figure 1.4.

Figure 1.4: A program P, an over-approximation P# of it and their
spaces of ranking functions

Some termination proof techniques over-approximate the program to analyze with
new ones and search the whole space of ranking functions in the over-approximations
[LJB01]. Other techniques analyze the program as is but restrict the study to specific
classes of ranking functions [CSZ13]. Yet other ones use both, for example by per-
forming a ranking functions under-approximation after a program over-approximation
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[PR04a]. The important thing is to remain sound throughout these processes. No-
tably we have to be careful with program under -approximations. Indeed in the con-
text of S-universal termination, they might lead to unsound analysis.

We hope we could show how central are abstractions to termination analysis. A
very general approach for devising termination proof techniques is as follows. First
we delimit the class of programs we want to analyze. Then we choose the Termination
Characterization we will rely on. Then we smartly and soundly abstract. Last we
analyze the obtained abstractions. That is the scheme proposed in [CC12] as a frame-
work of Abstract Interpretation [CC77][CC10]. Then the framework was revised in
[Urb15] with an emphasis on definite, universal termination. Notably, it character-
izes termination as an existence of ranking functions from the program states to the
ordinals less than ωω. The considered abstract domain is that of segmented ranking
functions.

1.5 Termination of infinite state programs

We start by pointing out that the procedure that is sketched in the proof of Theorem
1.1 and that decides termination of finite state SImpL programs cannot be applied
to infinite state SImpL programs. Indeed that procedure basically checks one after
another each possible execution: if the set of state if infinite then the set of possible
executions can be infinite. Question arises: is there another way to decide termination
of infinite state SImpL programs?

Theorem 1.3 (Undecidability of termination of infinite state SImpL pro-
grams, Undecidability of the Halting problem). Consider a program written
in the SImpL language of Definition 1.1. Let it be formalized by the transition system
P = (S, I,R) as described in Definition 1.2. If S is infinite then termination of P is
undecidable.

Proof. SImpL programs can simulate Turing machines. Termination of Turing ma-
chines is undecidable in the general case [Chu36][Tur37][Str65]6.

We emphasize that Theorem 1.3 does not mean we are always unable to prove
termination of infinite state SImpL programs. Instead, it means we are unable to

6Amusingly there is a poem version of the proof: http://www.lel.ed.ac.uk/˜gpullum/loopsnoop.
html

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
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always do so. Differently stated, any algorithm we devise for deciding termination
will always fail for at least one infinite state SImpL program.

Despite Theorem 1.3, working with infinite state programs has its benefits. For
example contrarily to fixed-width machine integers, we do not need to worry about
overflows when handling integers from Z. Also contrarily to floating-point numbers,
we do not need to worry about rounding errors when handling numbers from R. Thus
a way to overcome the difficulties of computing with fixed-width machine numbers is
to consider abstract computations within the infinite sets Z,Q or R.

Until recently, literature mainly focused on termination analysis of programs that
compute within Z,Q or R. We survey some of the techniques that have been produced
in the rest of this section. They can roughly be categorized into two approaches: the
global approach and the local approach [CPR11]. On one hand, the global approach
considers all the possible program executions in one big swipe. It attempts to find a
single termination argument for all of them. On the other hand, the local approach
considers the possible program executions separately. It attempts to find a set of
termination arguments: one termination argument per considered group of program
executions.

More precisely, techniques that use the global approach observe the evolution of
the program after every single transition: they rely on Termination Characterization
1.2.b and 1.2.g7. Those that use the local approach observe the evolution of the
program throughout all the possible successive transitions: they rely on Termination
Characterization 1.2.d, 1.2.e and 1.2.f.

1.5.1 Global approach for proving termination

Given an infinite state SImpL program, we want to find global ranking functions for
it. As their existence is undecidable in the general case due to Theorem 1.3, literature
restricted the question to specific classes of ranking functions for specific classes of
programs.

7Actually we can put in this category any techniques that observe the evolution of the program
after every fixed successive transitions. Indeed they attempt to find single termination arguments
expressed as single slow ranking functions that are valid for all the program executions. They rely
on Termination Characterization 1.2.c and 1.2.h.
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One of the most studied class of abstract programs in the literature is the class
of Simple Loops. With only slight differences, Simple Loops are also called Single-
path Linear-Constraint loops [BG14, Subsection 2.2], Linear Simple Loops [CFM15,
Definition 1] or Linear Arithmetic Simple While loops in [PR04a, Definition 1].

Definition 1.6 (Simple rational (resp. integer) Loops, SLQ (resp. SLZ)).
We call Simple rational (resp. integer) Loop a loop of the form while (Dx ≤

d) do V

(
x

x′

)
≤ v. The column vector x =

(
x1 · · · xn

)T ∈ Qn×1 (resp. Zn×1)

represents the variables at the beginning of an iteration. The primed equivalent x′

represents the variables at the end of an iteration after they have been updated. The
constants D, d, V and v are rational (resp. integer) matrices such that D ∈ Em×n, d ∈
Em×1, V ∈ Et×2n, v ∈ Et×1,m ∈ N, t ∈ N,m > 0, t > 0 for E = Q (resp. E = Z).

Using our formalization of programs as transition systems as in Definition 1.2, a
Simple Loop is a program that has a transition relationR defined by linear constraints
between the program variables. Also it only has a single program point which is
placed at the beginning of the while instruction: all the updates in the body of the
loop are performed simultaneously. Thus the space of possible states S = L × Dn
can be simplified to S = D since |L| = 1. That is for Simple Loops, we can give
no consideration to the program points and define a state only by the values of the
program variables.

Example 1.4. Consider the loop Pl presented in Figure 1.5. The variables range
over the integers. A Simple Loop P#

l that over-approximates Pl can be obtained by
conjuncting polyhedral invariants computed at program points ♣ and ♠. Polyhedral
invariants can be obtained by using for example Abstract Interpretation [CC77].

Unfortunately termination of SLZ was shown to be at least EXPSPACE-hard
[BGM12, Theorem 6.4]. That is we cannot decide existence of ranking functions for
SLZ in polynomial time in the general case. However we can do so for restricted
classes of ranking functions. Then, termination of Simple rational Loops is probably
undecidable. But again, we can decide existence of specific kind of ranking functions
for SLQ in polynomial time.

Definition 1.7 (Linear Ranking Functions (LRF) for Simple Loops). Let P
be a Simple integer (resp. rational) Loop that has the column vector x ∈ Zn×1 (resp.
x ∈ Qn×1) as variables and the binary relation R as transition relation. The linear
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x1 = randInt ();
x2 = randInt ();
while (x1 > 0 & x2 > 0) {
♣ if(randBool ())

x1 = x1 - 1;
else

x2 = x2 - 1;
♠ }

x1 = randInt ();
x2 = randInt ();
while (true) {
♣ x1 ≥ 0 & x2 ≥ 0
♠ x1′ + x2′ ≤ x1 + x2 - 1

}

Figure 1.5: An integer loop Pl (left) and an abstraction of it to a
Simple integer Loop P#

l (right).

function f(x) = cx, where c ∈ Q1×n is a constant row vector, is a LRF for P if
∀x, x′ : xRx′ =⇒ f(x′) ≥ 0 ∧ f(x) ≥ f(x′) + 18.

Example 1.5 (Continuing Example 1.4). The function fl(x1, x2) = x1 + x2

is a LRF for the SLZ P#
l . Indeed it is of linear form and we easily verify that

∀x1, x2, x
′
1, x
′
2 ∈ Z : (x1, x2)R#

l (x′1, x
′
2) =⇒ fl(x1, x2) ≥ 0 ∧ fl(x1, x2) ≥ fl(x′1, x′2) +

1. As P#
l is an over-approximation of Pl then fl is also a LRF for Pl due to Propo-

sition 1.2. Hence Pl terminates9.

The definition of LRF actually varies across the literature depending on the con-
sidered WF structure. Compare for example the WF structure considered in [PR04a,
Theorem 1] with that in [BM13, Definition 2.1] and [BG14, Section 2.3]. Thus LRFs
are sometimes confused with Affine Ranking Functions.

Definition 1.8 (Affine Ranking Functions (ARF) for Simple Loops, fol-
lowing Definition 1.7). The affine function f(x) = cx + d, where c ∈ Q1×n

is a constant row vector and where d is a rational constant, is an ARF for P if
∀x, x′ : xRx′ =⇒ f(x′) ≥ 0 ∧ f(x) ≥ f(x′) + 1.

Existence of ARFs for SLQ is decidable and the decision problem is known to
lay in P [PR04a, Theorem 1]. Then, existence of LRFs for SLZ is decidable and the
decision problem is known to lay in coNP [BG14, Theorem 3.12].

In this thesis, we will mainly consider Simple Loops and ARFs for the global
approach for proving termination. In the remaining paragraphs of this section, we

8 It means f maps the program states to the WF structure (Q+,≺) where Q+ = {q > 0|q ∈ Q}
and q′ ≺ q ⇐⇒ q ≥ q′ + 1.

9Under the condition that Pl always reaches ♠ from ♣. It is the case here but it may have not
been so if there was for example an inner loop placed between these two program points.
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will cite a few results for different classes of programs and different classes of ranking
functions. Our goal is to situate Simple Loops and LRFs in the literature. Also we
aim to show that they are central pieces to many termination analysis techniques as
judged by the number of work that originated from them.

A recent extension of the class of LRFs is the class of Eventual LRFs (ELRF)
[BM13]. An ELRF is a function that becomes a LRF after k ∈ N successive transitions
during which some linear function increases. LRFs are clearly a strict subclass of
ELRFs as a LRF is an ELRF with k = 0. Existence of ELRFs for SLQ is decidable
and the decision problem is known to lay in P [BM13, Theorem 3.16]. Even more
recently, the notion of ELRFs has been extended to the notion of l-depth ELRFs
[LZF16]; additional references for this kind of functions are [LH15][BG17].

Another extension of the class of LRFs is the class of Lexicographic LRFs (LL-
RFs)10. Also an extension of the class of Simple Loops is the class of Multi-path
Linear-Constraint loops (MLC) [BG14, Subsection 2.2]. Existence of LLRFs for ra-
tional MLCs is decidable and the decision problem is known to lay in P [BG14,
Theorem 5.37]. Also, existence of LLRFs for integer MLCs is decidable and the deci-
sion problem is known to lay in coNP [BG14, Theorem 5.24]. Last, in the same way
the class of LRFs can be extended to the class of ELRFs, we can extend the class of
LLRFs to the class of Lexicographic ELRFs [ZLW16].

Another class of programs that generalizes Simple Loops is the class of polyno-
mials [BMS05b][Luc05]. Another class of ranking functions that generalizes the class
of single LLRFs is the class of multi-dimensional affine ranking functions [Ali+10].

1.5.2 Local approach for proving termination

Given an infinite state SImpL program, we want to shift the cWFness analysis of
R to separate cWFness analyses of a set of simpler relations. To achieve that we
use Termination Characterization 1.2.f and show that the transitive closure R+ of
its transition relation is a finite disjunction of cWF relations. That characterization
comes from the Infinite Ramsey Theorem, see Appendix D.

Notice that Termination Characterization 1.2.f can also be used to characterize
S-existential non-termination which is the problem dual to S-universal termination.

10As it is the case for LRFs, the definition of LLRFs also varies across the literature depending
on the considered WF structure. Compare for example the WF structure considered in [BG15,
Definition 1] with that in [BMS05a, Definition 5] and [BG15, Definition 2].
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Indeed if there is one disjunct of R+ that is not cWF then non-terminating execution
exists [PM06][Pay08][PS09].

When using the local approach, two questions arise. First how do we compute
the set of disjuncts that compose R+? Then how do we analyze their cWFness? For
the first question, R+ may not be computable. For the second question, the cWFness
of a relation is undecidable in the general case. However there are special cases for
which we can provide workable answers to these two questions.

Definition 1.9 (Constraint D≺(x, x′) of ≺-decrease). Consider the vector of
program variables x = (x1 . . . xn)T , xi ∈ E where E is a set of numbers, and its value
x′ = (x′1 . . . x

′
n)T after an application of the transition relation. Let (E,≺) be a WF

structure. We say that the constraint D≺(x, x′) is a constraint of ≺-decrease if it is
a (possibly void) conjunction of x′? ≺ x? and x′? � x? where x? ∈ {x1, . . . , xn} and
x′? ∈ {x′1, . . . , x′n}: D≺(x, x′) ≡

(∧
x′? ≺ x?

)
∧
(∧

x′? � x?

)
.

Example 1.6. The list of all possible constraints of ≺-decrease for 2 program vari-
ables are: False, x′1 ≺ x1, x

′
1 � x1, x

′
1 ≺ x2 . . . x

′
1 ≺ x1 ∧ x′1 ≺ x2, x

′
1 ≺ x1 ∧ x′1 �

x2 . . . True. The constraint False denotes an impossible constraint whereas True

results from the void conjunction.

Lemma 1.1. Let P≺ = (S,S,R≺) be a program as specified in Definition 1.2. Let its
transition relation R≺ link the program variables through constraints of ≺-decrease.
Then R+

≺ is computable.

Proof. The relation ≺ is computable in the sense that we can always decide whether
two elements are in relation through ≺. Also the set of all possible constraints of
≺-decrease finite and stable by composition. It remains so even when considering all
the possible constraints on the program points.

Theorem 1.4 (Following Lemma 1.1, [LJB01]). Disjunctive cWFness of R+
≺ is

decidable. That is termination of P≺ is decidable. Each disjunct of R+
≺ is cWF if

and only if those of them that are idempotent all have at least one constraint of strict
self-decrease x′i ≺ xi.

Example 1.7 (Continuing Example 1.1). We want to analyze the cWFness of
Rb. We first abstract it to the relation R<b that only uses decreasing constraints
between the program variables. The considered WF structure is (N, <). We have



1.5. Termination of infinite state programs 21

R<b = R<init ∪R<while ∪R<if ∪R<else where:

R<init =[l = init, l′ = while]

R<while = [l = while, l′ = if, x′1 ≤ x1, x
′
2 ≤ x2]

}
R<wsat

∪[l = while, l′ = end, x′1 ≤ x1, x
′
2 ≤ x2]

}
R<wunsat

R<if = [l = if, l′ = while, x′1 < x1]
}
R<isat

∪[l = if, l′ = else, x′1 ≤ x1, x
′
2 ≤ x2]

}
R<iunsat

R<else =[l = else, l′ = while, x′1 ≤ x1, x
′
2 < x2]

Now we compute the transitive closure R<+

b of R<b . We have R<+

b =
⋃33
i=1 Ti where:

T1 = R<init · · · T33 = [l = else, l′ = else, x′1 < x1]

Last we select among these Ti the ones that are idempotent. There are six of them:

Tidm1 =[l = while, l′ = while, x′1 ≤ x1, x
′
2 < x2]

Tidm2 =[l = while, l′ = while, x′1 < x1]

Tidm3 =[l = if, l′ = if, x′1 ≤ x1, x
′
2 < x2]

Tidm4 =[l = if, l′ = if, x′1 < x1]

Tidm5 =[l = else, l′ = else, x′1 ≤ x, x′2 < x2]

Tidm6 =[l = else, l′ = else, x′1 < x1]

As each of the Tidmj
has a strict self-decrease then each of the Ti is cWF by Theorem

1.4: R<+

b is disjunctively cWF. Thus R<b is cWF by equivalence between Termination
Characterization 1.2.b and 1.2.f. So is Rb by Proposition 1.1. The program balls S-
universally terminates: it terminates when launched from any program point with any
values of the program variables.

The idea of abstracting R to R≺ and then analyzing R+
≺ was first investigated by

[LJB01] under the name of Size-Change (SC) principle. Then [CLS05] generalized the
approach to monotonicity constraints. In this thesis, we will mainly consider these
two frameworks for the local approach for proving termination.

Another line of research on the local approach originated from the concept of
Transition Invariant (TI) [PR04b]. A TI is simply an over-approximation of R+.
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It can be obtained through Transition Predicate Abstraction (TPA) [PR07][PR11]:
we abstract in a iterative manner, and to a set Φ of predefined constraints. This
is in contrast to SC which abstracts only once, and to the precise set of decreasing
constraints.

Notice that R+
≺ of SC is a TI. Indeed it is an over-approximation of R+. Actually

when using TPA, we can fix Φ to a specific set of constraints [HJP10, Definition 25]
so that the TI we get is a subset of the TI we would have got using SC [HJP10,
Lemma 36]. That is we can fix Φ so that TPA can decide termination by SC, and
potentially more [HJP10, Theorem 37]. However the great flexibility of TPA renders
the approach hard to study. Notably the class of programs for which it can decide
termination is broad but vague. Also complexity results are yet to be produced.
That motivates us to stick to the simple but just as powerful framework of SC and
its derivatives.

1.6 Conclusion

The art of proving program termination has come a long way since its beginnings. We
are now able to automatically check termination of reasonably large and non-trivial
programs thanks to refined techniques [SMP10][Coo+13]. They smartly work around
various undecidability and complexity limitations mainly by means of abstractions.
However, progresses have yet to be made for specific points. This is notably the
case for termination analysis of programs that handles fixed-width machine numbers.
Indeed most of the techniques found in the literature consider programs that work
with infinite sets of numbers and that perform error-free computations.

In this thesis, we address termination analysis of programs that manipulate floating-
point numbers. These programs have a finite space of states and perform computa-
tions that are affected by rounding errors. We develop new termination proof tech-
niques or adapt the existing ones in order to analyze them. In Chapter 3, we develop
a new technique that bridges termination analysis of floating-point programs with
termination analysis of rational ones. Then we go deeper by investigating the two
main approaches for proving termination as presented in this chapter. In Chapter 4,
we study the global approach for termination analysis of floating-point programs. In
Chapter 5, we study the local one.
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Chapter 2

Floating-Point Numbers

Abstract. This chapter introduces Floating-Point (FP) numbers which are a widely
used format for representing numbers on machines. One of the first modern machines
known to have implemented FP arithmetic goes back to 19411. Since then, a lot of
work have been conducted regarding the analysis of FP computations. In this chapter
we present the notions on FP numbers that we need throughout the thesis.

Résumé. Ce chapitre présente les nombres flottants. Ce sont des représentations
en machine des nombres réels qui sont largement utilisées. L’une des premières ma-
chines modernes connues pour avoir implémenté l’arithmétique flottante remonte à
1941. Depuis lors, beaucoup de travaux ont été menés concernant la vérification de
calculs flottants. Dans ce chapitre, nous présentons les notions relatives aux nombres
flottants dont nous aurons besoin tout au long du manuscrit.

2.1 Introduction

FP numbers are approximative representations of real numbers. Indeed FP numbers
are stored on a finite and fixed amount of memory: commonly on 32 or 64 bits. Thus
real numbers have to be rounded to fit into the limited available memory.

Most of the time, these rounding errors are so small that many programmers
manipulate FP numbers as if they were manipulating real numbers. For example not
all programmers are aware that the Java constant Math.PI is not the real number
π but only an approximation of it on 64 bits. The fact is these rounding errors can
cause disasters when not handled correctly.

In 1991, an American Patriot missile failed to intercept an incoming Iraqi Scud
missile due to FP rounding errors. That killed 28 soldiers, injured around 100 other

1The Z3 computer [Cer81].
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people and caused millions of dollars of financial loss2. In 1992, a FP bug impacted
the German Parliament makeup3. A party has seated in Parliament though it should
not have if the results of the FP computation were correctly printed. Similarly in
Microsoft Excel 2007, a few FP numbers were not correctly printed4. For example the
formula =850*77.1 printed 100000 instead of 65535. We may think that spreadsheet
errors are not very harmful but they can actually cost millions of dollars5.

The rest of this chapter is organized as follows. Section 2.2 introduces the basics.
Section 2.3 presents Ieee 754 which is a widely used standard for the implementation
of FP computations. Section 2.4 discusses the difficulties encountered when verifying
FP computations. Section 2.5 gives a few properties of FP arithmetic. Section 2.6
concludes.

2.2 Floating-point numbers basics

Consider the two Java programs pDec and pSqrt presented in Figure 2.1. Do they
always terminate for any possible value supplied by the user through the input func-
tion? First let us suppose that we do not use the Java type float but rational or real
numbers. In that case, both programs always terminate. Indeed the variable x of
pDec cannot infinitely be decreased by 1

10 while remaining strictly positive. Similarly
the difference xM − xm in pSqrt cannot infinitely be divided by 2 while remaining
strictly greater than some strictly positive quantity d.

Now let us use the Java type float in pDec and pSqrt : both programs do not
always terminate for any possible input. Indeed pDec terminates if the supplied x is
for example 10 but does not if it is 107. Similarly pSqrt terminates if the supplied d
is for example 10−3 but does not if it is 10−9. To explain these surprising changes of
behaviors, let us give some basic notions on FP numbers.

Definition 2.1 (Fβ,p,emin,emax). A Floating-Point (FP) number x̂ is a particular
rational number defined as x̂ = (−1)sm̂βe where s ∈ {0, 1}, β ∈ N, β ≥ 2, e ∈
Z, e ∈ [emin, emax] and m̂ = m0.m1m2 · · ·mp−1,mi ∈ N, 0 ≤ mi ≤ β − 1 such
that m0 = 0 only if |x̂| < βemin in which case e is set to emin, otherwise m0 6= 0 in
which case e ∈ [emin, emax]. The number β is called radix. The number p is called

2http://www.gao.gov/products/IMTEC-92-26
3http://catless.ncl.ac.uk/Risks/13/37#subj4.1
4https://blogs.office.com/2007/09/25/calculation-issue-update/
5http://ww2.cfo.com/spreadsheets/2014/10/spreadsheet-error-costs-tibco-shareholders-100m/

http://www.gao.gov/products/IMTEC-92-26
http://catless.ncl.ac.uk/Risks/13/37#subj4.1
https://blogs.office.com/2007/09/25/calculation-issue-update/
http://ww2.cfo.com/spreadsheets/2014/10/spreadsheet-error-costs-tibco-shareholders-100m/


2.2. Floating-point numbers basics 25

float x = input ();
while (x > 0) {

x = x - 0.1;
}
(a) Simply decreasing x

float xm = 1, xM = 2;
float d = input (); // d > 0
do {

float x = (xm + xM) / 2;
float hx = x*x - 2;
if (hx < 0) xm = x;
else xM = x;

} while (xM - xm > d);
(b) Computing an interval [xm, xM ] of
length d approximating

√
2 using the

dichotomy method

Figure 2.1: Two Java programs: pDec (left) and pSqrt (right). If the
variables are rationals or reals then both programs always terminate.
However they may not terminate when using the Java type float due

to the rounding errors.

precision. The number m̂ is called significand. To β, p, emin and emax correspond the
set Fβ,p,emin,emax of FP numbers.

We point out that two zeros are defined, depending on the value of s. However for
simplicity, we consider that they both refer to a single, unsigned zero.

Definition 2.2 (Rounding mode, rounding function, overflow). Given a real
number x and the two FP numbers x̂1 and x̂2 that are closest to x and that straddle
it, x̂1 ≤ x ≤ x̂2, the rounding mode defines the choice to make between x̂1 and x̂2

when approximating x.

In the rounding mode to-nearest-ties-to-even, that we shorten to-nearest, we choose
the one that is closest to x. In case of tie, we choose the one that has the last unit
in the significand m̂ even. We denote ζn the corresponding rounding function. In
the rounding mode to-zero we choose the one that is closest to 0 and we denote ζ0

the corresponding rounding function. In the rounding mode to-positive-infinity we
choose the one that is closest to +∞ and we denote ζ+∞ the corresponding rounding
function. In the rounding mode to-negative-infinity we choose the one that is closest
to −∞ and we denote ζ−∞ the corresponding rounding function.

We say that there is an overflow when the real number x to round is of such a large
magnitude that it cannot be represented. Notably for the rounding mode to-nearest,
overflow occurs when |x| > (β − β−p+1

2 )βemax.
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Example 2.1 (The toy FP type myfloat). Consider the toy FP type myfloat

presented in Figure 2.2 and the real number x = 9
√

2 = 12.7 · · · = (−1)01.27 · · · 101.
Using myfloat, x is rounded into x̂ = (−1)01.3 · 101 = 13 if the rounding mode is to-
nearest-(and in case of tie then go to even). It is rounded into x̂ = (−1)01.2 ·101 = 12

if the rounding mode is to-zero.
Now suppose we use myfloat in the programs pDec and pSqrt and that the

rounding mode is to-nearest. If we supply 20 as value of x then pDec does not
terminate since 20 − 0.1 = 19.9 is rounded to 20 itself. Also if we supply 10−3 as
value of d then pSqrt does not terminate since the tightest interval approximating√

2 that we can obtain with myfloat is [1.4, 1.5] which is of length 10−1. Similar
phenomena occur when the Java type float is used.

Now we introduce some terminology.

Definition 2.3 (Correct rounding). Given a rational or real function ?, its FP
match ?©6 and n FP numbers x̂1 . . . x̂n taken as arguments, we say that ?© correctly
rounds ? if ∀x̂1 . . . x̂n : ?©(x̂1 . . . x̂n) = ζ(?(x̂1 . . . x̂n)).

Example 2.2. Using myfloat and with the rounding mode set to to-nearest, the FP
division /© correctly rounds the rational division for the arguments 1 and 3 in that
order if 1 /©3 = ζn(1

3) = ζn(0.333 · · · ) = 0.3. The FP exponential function e© does
not correctly round the real exponential function for the argument 2 if e©2 = 7.2 since
ζn(e2) = ζn(7.389 · · · ) = 7.4.

The precedence of FP functions is the same as that of their rational or real match.
Thus the FP arithmetic operations are performed in the following order: ·©, /©, +©
and −©.

Definition 2.4 (Unit in the Last Place).7 Consider x ∈ R that is rounded into
x̂ ∈ F, x̂ = (−1)sm̂βe. We call Unit in the Last Place (ULP) of x the weight of the
least significant information unit8of m̂: ulp(x) = β−p+1βe. In particular we point out
that ulp(x) = β−p+1βemin = ulp(0) if x̂ is a subnormal.

Example 2.3. Using myfloat, ulp(112) = 10, ulp(10) = 1 and ulp(0.6) = 0.1 =

ulp(0).
6For example we denote / the rational division and /© the FP one.
7The definition of ULP actually varies across the literature [Mul05]. Kahan has his own definition

[Mul05, Definition 1]. So has Harrison and Muller [Mul05, Definition 2]. Then Goldberg uses yet
another definition [Mul05, Definition 3]. These definitions are mostly equivalent except for the cases
when x is around a power of β.

8For example bit if β = 2, trit if β = 3, digit if β = 10.
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Definition 2.5 (β-ade).9 In a radix-β FP system, a β-ade B is an interval of real
numbers such that B =]− βe+1,−βe] or B =]− βemin , βemin [ or B = [βe, βe+1[ with
emin ≤ e ≤ emax. We define the ULP u of B as the ULP of the FP numbers in B:
u = β−p+1βe.

Example 2.4. For myfloat we have seven β-ades: ]− 1000,−100], ]− 100,−10], ]−
10,−1], ]− 1, 1[, [1, 10[, [10, 100[ and [100, 1000[.

Definition 2.6 (Normal numbers, subnormal numbers, smin, nmin, nmax). If
a FP number x̂ is such that |x̂| ≥ βemin then it is called a normal number. Else if x̂ is
such that |x̂| < βemin and x̂ 6= 0 then it is called a subnormal number. Call smin the
smallest positive subnormal, nmin the smallest positive normal and nmax the biggest
positive normal.

Example 2.5. For myfloat smin = β−p+1βemin = 0.1, nmin = βemin = 1 and
nmax = (β − β−p+1)βemax = 990.

0 0.1

smin

step*: 0.1

*difference between two consecutive FP numbers

1

nmin

1.1

step: 0.1

10 11

step: 1

100 110

step: 10

990

nmax

subnormals normals

Figure 2.2: A toy FP type myfloat with β = 10, p = 2, emin = 0
and emax = 2. Symmetry to the origin for the negatives. Call Ft the

corresponding set of FP numbers.

In a normal number, there are no leading zeros in the significand m̂. Instead
leading zeros in m̂ are moved to the exponent. This guarantees the uniqueness of
the representation. For example using myfloat, 7 would be written as (−1)07.0 · 100

instead of (−1)00.7 · 101. Subnormal numbers are numbers where the representation
would result in an exponent that is below the minimum exponent emin. Thus they
are allowed to use leading zeros in m̂. For example using myfloat, 0.7 would be
written as (−1)07.0 · 10−1 if leading zeros in m̂ are not allowed. However since −1 is

9The notion is inspired from that of binade [Kah02][MNR03].
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less than the minimum exponent emin = 0 then 0.7 is written with the exponent set
to emin and with as much leading zeros in m̂ as needed: (−1)00.7 · 100.

#include <fenv.h>
fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV );
void subAndDiv(float a, float b) {

if (a != b) {
float c = 1 / (a - b);

}
}

Figure 2.3: Since the support for subnormals is disabled, this C
function can perform a division by zero. That is the case for example

for a = 2−125 and b = 1.5 · 2−126.

Subnormals provide the guarantee that the result of the FP subtraction of two
different FP numbers is never rounded to zero. For example using myfloat, if sub-
normals are not implemented then the FP subtraction 10 −© 9.7 would result in
ζ(10 − 9.7) = ζ(0.3) = 0 since there is no FP number between 0 and 1. Such be-
havior can cause dangerous effects like division by zero as illustrated in Figure 2.3.
When a FP computation results in a subnormal number, we say that the computation
underflows.

At this point and before continuing, we hope the reader is now able to understand
the following definition of, say, the rounding function to-nearest.

Definition 2.7 (ζn). The rounding function to-nearest ζn is defined as follows:

ζn(x) = [x]ulp(x) (2.1)

where ulp(x) = β−p+1 · βexp(x) (2.2)

and exp(x) =

{
blogβ(|x|)c if |x| ≥ βemin

emin otherwise
(2.3)

and β ≥ 2, p ≥ 2, β ∈ N, p ∈ N, emin ∈ Z

The notation [a]b denotes the multiple of b nearest to a while the notation bac denotes
the greatest integer smaller or equal to a.
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When to use floating-point numbers

We start by giving a few well-known recommendations regarding FP computations.
They are taken from the CERT10 and MISRA11 coding standards.

CERT FLP30-C, NUM09-J. Do not use FP variables as loop counters.
CERT FLP02-C. Do not use FP numbers if accurate computation is required.
MISRA S1244. FP numbers should not be tested for equality.

These recommendations are very wise indeed, particularly for programmers who
are not familiar with FP computations12. However we have to pay attention to not
misinterpret them. Notably we must not be lead into thinking that FP computations
cannot be trusted and have to be avoided as much as possible. There are cases for
which FP numbers are perfectly suitable:

(Case1) Speed is needed. FP computations are extremely fast. If time constraints
take over accuracy constraints then FP numbers might be the ideal solution.
This is illustrated in Figure 2.4 in which we compare Aprational13 and
double.

(Case2) We do not have much memory at our disposal. FP numbers are stored on
a fixed amount of memory. This is in contrast to libraries that manipulate
arbitrarily precise numbers: the more the precision, the more the amount of
memory required.

(Case3) Time, memory and accuracy constraints are equally important. This is the
case for critical systems such as control programs in avionics. Expertise is
required in order to produce results with guaranteed accuracy.

2.3 The Ieee 754 standard

Until the 1980s, each circuit manufacturer had his own implementation of FP arith-
metic. Notably they each devised their own FP types: they chose their own values for
the radix β, the precision p and the range [emin, emax] of the exponent as illustrated
in Figure 2.5(a). Moreover their implementations often did not guarantee correct
rounding. That led to surprising behaviors. For example on some Cray machines,
the FP multiplication by 1 sometimes resulted in an overflow. Also on the IBM 370

10https://www.securecoding.cert.org/
11https://www.misra.org.uk/
12“95% of folks out there are completely clueless about FP,” James Gosling.
13A library for manipulating rational numbers, http://www.apfloat.org/.

https://www.securecoding.cert.org/
https://www.misra.org.uk/
http://www.apfloat.org/
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Aprational t = new Aprational("1");
long start = time ();
t = t.add(new Aprational("1/200"));
long duration = time() - start;
(a) The variable t is exactly computed. How-
ever for the few executions we try, the variable
duration can be as big as 11: we cannot use
Aprational.

double t = 1;
long start = time ();
t = t + 0.005;
long duration = time() - start;
(b) The variable t is not exactly computed.
However for the few executions we try, the
variable duration remains equal to zero: the
FP addition takes less than a millisecond.

Figure 2.4: Investigating ways to implement a Java clock that
starts from 1s and that is to be refreshed every 5 ms. We compare
Aprational and double for the first update of the clock: it must be

done as quickly as possible and in strictly less than 5 ms.

machines, the FP square root of −4 was equal to 2 in Fortran. The rather messy
situation of FP arithmetic back then is depicted in [Kah81].

Machine FP type β p [emin, emax]

Cray 1
single 2 48 [−8192, 8191]
double 2 96 [−8192, 8191]

IBM 3090
single 16 6 [−64, 63]
double 16 14 [−64, 63]
extended 16 28 [−64, 63]

(a) FP types used by the supercomputers Cray 1 (1976)
and IBM 3090 (1985)

FP type β p [emin, emax]

binary32 2 24 [−126, 127]
binary64 2 53 [−1022, 1023]

(b) FP types of the 1985 version of Ieee
754

Figure 2.5: A few FP types across history

In 1985 and under the impulsion of Kahan, the Ieee 754 standard was published
[Ieea]. It gave numerous directives regarding the implementation of FP arithmetic.
The most important ones are given in the following:

(Dir1) FP types. The standard defined two basic FP types: the single precision
type which is encoded on 32 bits, it is also called binary32; and the double
precision type which is encoded on 64 bits, it is also called binary64. The
corresponding values of β, p and [emin, emax] are shown in Figure 2.5(b).
Support for subnormals was required.

(Dir2) FP functions. The standard required the FP arithmetic operations +©, −©,
·©, /© and the FP square root √© to be correctly rounded.

(Dir3) Rounding modes. The standard required support for the four rounding modes
to-nearest, to-zero, to-positive-infinity and to-negative-infinity presented in
Definition 2.2.
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(Dir4a) Exceptions. The standard specifies five kinds of exceptions: Invalid opera-

tion, Division by zero,Overflow, Underflow and Inexact. Invalid
operation is signaled when computing for example the square root of a neg-
ative number. Division by zero is signaled when attempting to divide by
zero. We point out that the standard disinguishes the positive zero +0 from
the negative zero −0. Overflow (resp. Underflow) is signaled when a
computation results in an overflow (resp. underflow). Inexact is signaled
when the result of a computation cannot be exactly represented.

(Dir4b) Silent responses and special values. When the aforementioned exceptions oc-
cur, we can define the response that should be returned by the involved com-
putation. For example we can configure the Invalid operation, Division

by zero and Overflow exceptions such that they cause the computation
to terminate. In particular we can define silent responses that will allow the
computation to smoothly continue. The silent response to Invalid opera-

tion is to produce a special number called Not-a-Number or NaN. The silent
response to Division by zero is to produce the special number +Infinity

or −Infinity depending on the sign of the zero in denominator. The silent
response to Overflow is to also produce an infinity. The silent response to
underflow and Inexact is to round the result.

Then the standard was revised in 2008 [Ieeb]. Ieee 754-2008 is also called Ieee

754-R and is the active version to date. It extends Ieee 754-1985 as follows:

(Dir1+) FP types. The standard now defines decimal FP types which are FP types
with β = 10. Also it defines the quadruple precision type which is encoded
on 128 bits or digits.

(Dir2+) FP functions. The standard now defines a new operator called Fused Multiply-
Add (FMA): ∀x̂1, x̂2, x̂3 : fma(x̂1, x̂2, x̂3) = ζ(x̂1 · x̂2 + x̂3). Notice that in
the general case fma(x̂1, x̂2, x̂3) 6= x̂1 ·©x̂2 +© x̂3. Also the standard now
recommends, yet does not require, correct rounding for a few functions like
ex, ln(x) and sin(x). The complete list of recommended functions can be
found in [Ieeb, Table 9.1].

(Dir3+) Rounding modes. The standard now defines the new rounding mode to-
nearest-ties-away-from-zero. It is similar to the rounding mode to-nearest-
ties-even with the difference that we choose the FP number that has the
biggest absolute value in case of tie.
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Ieee 754-2008 is due to expire next 2018: a revision is targeted soon.

2.4 Pitfalls of verifying floating-point computations

Now the reader might think that the verification of FP computations across different
platforms can be done in a uniform way since the standardization of Ieee 754. No-
tably the reader might think that two platforms that claim to be Ieee 754-compliant
will always produce the same results for the same FP computations. Unfortunately
the behavior of FP computations depends on many things such as the programming
language, the compiler and the physical architecture: a total Ieee 754-compliance
has to take into account all these stages. Moreover there are subtle details on FP com-
putations that are unknown to many programmers and that lead them into incorrect
understanding of their own source code.

Decimal-to-binary conversion. One source of misunderstanding is that pro-
grammers usually think and code in decimal whereas machines compute in binary.
Indeed though decimal FP types have been standardized in Ieee 754-2008, only the
binary ones are currently supported in most systems. Unfortunately the conversion
from radix β = 10 to β = 2 introduces errors. For example the decimal number
x = 0.2 cannot be exactly represented in any binary FP type since its binary expan-
sion 0.00110011 · · · is infinite: using the Ieee 754 binary32 type, the decimal number
that is actually stored is x̂ = 0.199999999254941940307617187514. There are special
cases for which the conversion from a decimal number to a binary FP number is ex-
act [Mat68][Mul+10, Theorem 1]. However in the general case, the obtained binary
conversion has to be rounded. We must keep in mind that the numbers we write in
our source code may not be the numbers used at runtime.

Binary-to-decimal conversion. Notice that the conversion from an internal
binary number to a decimal number is always exact. Indeed a finite binary represen-
tation can be always converted into a finite decimal representation. However many
printing functions do not display the exact decimal conversion. Indeed they are often
required to print a very few number of digits: if the decimal conversion has too many
digits then it is rounded. For example in Java, the sequence of instructions float x

= 0.2f; System.out.print(x); will print 0.2 instead of the lengthy x̂ = 0.199 · · · 75

14That is why the Java equality 0.2f == 0.1999999992549419403076171875f is counter-
intuitively evaluated to true.
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that is actually stored. Thus when debugging FP computations, we must pay atten-
tion as to whether the printed decimal number is indeed the exact conversion of the
internal binary number. Interested readers can refer to [JW04].

Compiler-dependent issues. Recall the Fused Multiply-Add operation that
was standardized since Ieee 754-2008: fma(x̂1, x̂2, x̂3) = ζ(x̂1 · x̂2 + x̂3). Some
processors like IBM PowerPC or Intel/FP Itanium implement it. Now consider for
example the C instruction x = a*b + c*d; in which all the variables are of the type
float. How will that instruction be compiled if FMA is available? Depending on
the compilation options, the compiler may choose not to use FMA and to simply
evaluate the instruction as x = a ·©b +© c ·©d. But it may also choose to use FMA
and to evaluate the instruction as either x = fma(a, b, c ·©d) or as x = fma(c, d, a ·©b).
These three possible evaluations can result in three different values of x, all sound with
respect to C’s semantics. Thus we must keep in mind that the same source code can
be soundly compiled into different binary codes, each behaving differently. Moreover
there is the possibility that the source code is not soundly compiled. Notably the
compiler may unsafely transform FP expressions during optimization processes. To
this date and to our knowledge, the only existing compiler that is formally certified
to be sound is CompCert [Ler09].

Architecture-dependent issues. Then there is another difficulty: the same
source code is compiled differently for different architectures, on which the obtained
binaries can behave differently. One of the most subtle illustration is that of the
double rounding phenomenon. It happens on IA32 architectures such as the Intel
x86 series or the Pentium series. IA32 processors feature a FP Unit (FPU) called
x87. This unit has 80-bit registers that can be associated to the C type long double.
Computation on x87 is as follows. First the intermediate operations are computed
and rounded to 80 bits. Then the final result is rounded to the destination format,
to 64 bits for example. Surprisingly, such double rounding can yield different results
from direct rounding to the destination format. This is illustrated in Figure 2.6.

Language-dependent issues. Let us consider the case of the Java programming
language. To prevent architecture-dependent issues such as double roundings and to
ensure that the FP results will be bit-by-bit accurate across different Java Virtual
Machines, Java introduced the strictfp modifier which can be used on classes, inter-
faces and non-abstract methods15. This modifier requires every intermediate result to

15Schildt, Herbert (2007). Java: A Beginner’s Guide (4 ed.). McGraw-Hill Companies
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a b
c

b
x

Figure 2.6: Consider the Ieee 754 double precision format: a = 1
and b = 1 + 2−52 are two consecutive double. Consider the real
number x = 1 + 2−53 + 2−64. Its correct rounding into a double
should be b. However if computations are first performed in long
then x is first rounded to c which is the nearest long. Then the
rounding of c into a double is a since the mantissa of a is even. More
details can be found in [BN10, Section 2.2][Mon08, Section 3.1.2].

be truncated to 64 bits. Doing so should force the program to adopt strict Ieee-754

round-to-nearest semantics. Then there is another way to control FP computations
at the source code level in Java: through the StrictMath class. Recall that Ieee
754-2008 recommends correct rounding for a few elementary functions like sin or cos.
As it is only recommended but not required, many FPU give results that can be one
or two FP numbers off the correct one. Thus when the Java.Math library call the
FPU’s implementations of elementary functions, it can get incorrectly rounded re-
sults. In contrast to that, the StrictMath class does not use FPU’s implementations
of elementary functions. Instead, it has its own implementations which guarantee
correct rounding. The point is we must pay attention to the actions made at the
source code level that can affect FP computations. Moreover we must be aware that
the constraints we impose at source code level may just be ignored during compila-
tion. For example compilers like GCJ ignore the strictfp modifier. Also the use of
Just-In-Time compilation may add undesirable effects.

Other issues. There are still many subtle causes that affect FP computations.
A lot of them can be found in [Mon08]. These causes are so subtle that [Mul+10,
Section 7.2.6] refers to them as “horror stories”. For example, even the simple act
of printing data can be a trap. Indeed, common sense commands us to think that
printing out a variable cannot change its value. But the fact is it can [Mul+10, C
listing 7.3].

Hypotheses on the behaviors of the FP computations in this thesis

We hope the reader now understands that there are many things to take into account
when verifying FP computations. A sound verification has to take into account many



2.4. Pitfalls of verifying floating-point computations 35

things such as the programming language, the compiler, the architecture and so on.
For example [BN11] develops techniques for verifying FP computations whether the
compiler optimizes while [BN10] takes into account multiple architectures at once.

Hypothesis 2.1. In this thesis, we assume that our FP system respects the following
directives:

(MyDir1) FP types. Our FP types can be freely parameterized. That is β, p
and [emin, emax] can take any values. This allows our results to be
applied not only to programs that use the Ieee 754 FP types, binary or
decimal, but also to programs that use personalized ones like with the
MPFR library [Fou+07]. Subnormals are supported.

(MyDir2) FP functions. We will only use the four FP arithmetic operations
+©, −©, ·© and /©. We assume they all guarantee correct rounding.

(MyDir3) Rounding modes. When not explicited, the considered rounding mode
is to-nearest.

(MyDir4a) Exceptions and termination. We consider that the Invalid
operation, Division by zero and Overflow exceptions
cause the computation to terminate [on an error].

(MyDir4b) Special values. Assuming (MyDir4a), we do not need the special values
NaN and ±Infinity. We consider that we round the result when the
Underflow and Inexact exceptions occur. Also, we consider that
there is only a single, unsigned zero.

(MyDir5) Sound executions. We assume that the semantics of the source code and
that of the executable code are equivalent: when executed, the program
behaves exactly as described by the source code. Notably we assume
that the compiler does not perform unsound optimizations and that the
architecture is not affected by double rounding issues.16

16 In the same way, we also assume that no exotic events, such as over-exposure
to cosmic rays or a moth trapped in the machine, affect the computations. See
https://science.slashdot.org/story/17/02/19/2330251/serious-computer-glitches-can-be-caused-
by-cosmic-rays and http://modernnotion.com/the-first-computer-bug-was-an-actual-bug/.

https://science.slashdot.org/story/17/02/19/2330251/serious-computer-glitches-can-be-caused-by-cosmic-rays
https://science.slashdot.org/story/17/02/19/2330251/serious-computer-glitches-can-be-caused-by-cosmic-rays
http://modernnotion.com/the-first-computer-bug-was-an-actual-bug/
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2.5 A few properties of floating-point computations

Due to the rounding errors that affect the result of each operation, FP arithmetic is
different from real arithmetic. We give a few of its properties in this section.

Property 2.1. FP addition +© and FP multiplication ·© are not always associative.

Proof. Suppose we use myfloat with the rounding mode set to to-nearest. A counter-
example to the associativity of +© is that (100+©3)+©3 = 100 while 100+©(3+© 3) = 110.
Similarly, a counter-example to the associativity of ·© is that (100 ·©0.3) ·© 0.1 = 3

while 100 ·©(0.3 ·©0.1) = 0.

Property 2.2. FP multiplication ·© is not distributive over FP addition +©.

Proof. A counter-example using myfloat with the rounding mode set to to-nearest:
3 ·©(100+©3) 6= 3 ·©100 +© 3 ·©3.

Definition 2.8 (Absorption). Let x̂1 and x̂2 be two FP numbers. If we add x̂1 to
x̂2 and if x̂1 is very big compared to x̂2 then it may occur that the result is rounded
to x̂1 itself: x̂1 +©x̂2 = x̂1. That phenomenon is called absorption.

Example 2.6. Using myfloat with the rounding mode set to to-nearest: 100+©0.1 =

ζn(100.1) = 100.

Definition 2.9 (Catastrophic cancellation). Let x̂1 and x̂2 be two FP numbers.
If we subtract x̂2 to x̂1 and if x̂1 is close to x̂2 then the most significant information
units17 of their respective significand match and cancel each other. Hence if x̂1 and x̂2

are affected by rounding errors then many accurate information units may disappear:
the final result may importantly differ from that we would have obtained using real
arithmetic. That phenomenon is called catastrophic cancellation.

Example 2.7. Consider the expression ∆ = b2 − 4ac taken from the quadratic
formula. If a = 1.3, b = 3.4 and c = 2.2 then ∆ = 0.12. Now suppose we use myfloat
with the rounding mode set to to-nearest: ∆̂ = x̂1 −© x̂2 with x̂1 = 3.4 ·©3.4 = 12 and
x̂2 = 4 ·©1.3 ·©2.2 = (4 ·©1.3) ·©2.2 = 5.2 ·©2.2 = 11. Thus ∆̂ = 12 −© 11 = 1 which is
almost ten times bigger than ∆: catastrophic18 cancellation occurred.

17Bits, trits, digits or whatever depending on the radix β.
18Cancellation is not always catastrophic: it is not always a bad thing. For example a case

of beneficial cancellation can be found in http://introcs.cs.princeton.edu/java/91float/, Creative
Exercises number 18.

http://introcs.cs.princeton.edu/java/91float/
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See Figure 2.7 for illustrations of these properties with Java.

float x = 8388608 ,
y = 0.5f,
z = 3;

boolean
a = (x + y) == x, // true
b = (x + y + z) ==

(x + (y + z)), // false
c = (z * (x + y)) ==

(z*x + z*y)); // false
(a) Absorption phenomenon, non-
associativity of +© and non-distributivity
of ·© over +©

float a = 100,
b = 2048.0007f,
c = 10485.7668f,
d = b*b - 4*a*c;

// gives 0.5 while
// reals approximately
// give 0.147

(b) Catastrophic cancellation phenomenon

Figure 2.7: Two Java programs that illustrate the peculiar proper-
ties of FP arithmetic

Now the reader might think that FP computations are always affected by rounding
errors. Actually there are special cases for which they are not. That is there are
special cases for which the result of a FP computation is equal to the result that would
have been obtained if operations were performed on real numbers. A trivial example
is the FP multiplication and FP division by (−1): in any FP system, x̂ ·©(−1) =

x̂ /©(−1) = −x̂ if x̂ 6= NaN19. There are more sophisticated examples as shown in the
following.

Property 2.3. In a radix-β FP system with an exponent range of [emin, emax], let x̂1

be a FP number that is an integer power of β: x̂1 = (−1)s1βe1. For any FP number
x̂2 = (−1)s2m̂2β

e2, we have x̂2 ·©x̂1 = x̂2 · x̂1 (resp. x̂2 /©x̂1 = x̂2/x̂1) if and only if
e2 + e1 ∈ [emin, emax] (resp. e2 − e1 ∈ [emin, emax]).

Property 2.4 (Sterbenz lemma [Ste74][Mul+10, Lemma 2]). In a radix-β
FP system with subnormal numbers available, if two FP numbers x̂1 and x̂2 are such
that x̂1

2 ≤ x̂2 ≤ x̂1 then x̂1 −© x̂2 = x̂1 − x̂2. The result is valid for the four rounding
modes to-nearest, to-zero, to-positive-infinity and to-negative-infinity.

Property 2.5 (Hauser theorem [Hau96][Mul+10, Theorem 3]). In a radix-β
FP system with any rounding mode, for any FP numbers x̂1 and x̂2 such that x̂1 +© x̂2

is a subnormal number, we have x̂1 +© x̂2 = x̂1 + x̂2.

19The case of NaN has to be excluded since NaN == NaN is False
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Property 2.6 ([Bol15]). In a radix-2, radix-3 and radix-4 FP system with the
rounding mode set to to-nearest-ties-even or to-nearest-ties-away-from-zero, the FP
square root of the FP square of a FP number x̂ is exactly |x̂|. The result is not valid for
any of the three rounding modes to-zero, to-positive-infinity and to-negative-infinity.

Most of the time, results of FP computations are not exact. In such cases, we
can provide bounds for the rounding errors. Notably we can provide bounds for the
absolute and relative errors when rounding a real number.

Definition 2.10 (Machine epsilon ε). In a FP system with the rounding mode set
to to-nearest, we call machine epsilon ε the quantity ε = β−p+1

2 . Machine epsilon is
also called unit roundoff.

Definition 2.11 (Absolute error). The absolute error A (x) of the approximation
of x ∈ R by x̂ = ζ(x) is defined as A (x) = |x− x̂|.

Definition 2.12 (Relative error). The relative error R(x) of the approximation
of x ∈ R by x̂ = ζ(x) is defined as R(x) = |x−x̂|

|x| . The case when x = 0 is particular:
R(0) = 0 since 0 is exactly representable.

Property 2.7 (Bound As for the absolute error of subnormals [Mul+10,
Section 2.2.3]). In a FP system with the rounding mode set to to-nearest, if x ∈ R
is rounded into a subnormal number then A (x) ≤ As,As = εβemin.

Example 2.8 (Continuing Example 2.5). Any real number x ∈ R such that
|x| ≤ nmin, nmin = 1, is approximated by a FP number x̂ which is at a distance of at
most As = 0.1

2 = 0.05 from x.

Property 2.8 (Bound Rn for the relative error of normals [Mul+10, Section
2.2.3]). In a FP system with the rounding mode set to to-nearest, if x ∈ R is rounded
into a normal number then R(x) ≤ Rn such that Rn = ε.

Example 2.9 (Continuing Example 2.5). Any real number x ∈ R such that
|x| > nmin, nmin = 1, is approximated by a FP number x̂ which is at a distance of at
most 100Rn percent of |x| from x with Rn = ε = 0.1

2 = 0.05.

Property 2.9 (Bound Asn for the absolute error of subnormals and nor-
mals). In a FP system with the rounding mode set to to-nearest, if x ∈ R is rounded
into a subnormal or a normal then A (x) ≤ Asn such that Asn = εβemax.
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More details on FP numbers can be found in [Gol91] and [Mul+10]. At this point,
we hope the reader understands the hardness of analyzing FP computations. Due
to the rounding errors that may accumulate and propagate, even simple computa-
tions like that of xn through iterated FP multiplications require efforts to analyze
[GLM15]. It is in that sense that in 2014, Kahan called out for “desperately needed
remedies for the undebuggability of large floating-point computations in science and
engineering20”: analysis of FP computations is a timely topic.

2.6 Conclusion

In this chapter, we have seen the specificities of Floating-Point (FP) arithmetic. FP
arithmetic is different from the traditional real or rational arithmetic. This is due to
the existence of rounding errors. They affect the computations in a way such that the
basic arithmetic properties we are used to are not preserved anymore: FP addition
is not associative, FP multiplication is not distributive over FP addition and so on.

We presented in Chapter 1 a few termination proof techniques. They have been
presented with programs that use mathematical integers, rational numbers or real
numbers. Due to the peculiarity of FP computations, manipulations have to be
performed before we can apply these techniques to programs that work with FP
numbers. Starting next chapter, we enter the core of this thesis: we present ways to
analyze termination of FP computations.

20 https://people.eecs.berkeley.edu/ wkahan/Boulder.pdf

https://people.eecs.berkeley.edu/~wkahan/Boulder.pdf
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Part II

Termination Analysis of
Floating-Point Computations
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Chapter 3

Piecewise Affine Approximations

Some of the results described in this chapter have been the subject of two publica-
tions in international conferences [MMP16b][MMP17]. They are described here in an
harmonized and enhanced manner.

Abstract. In this chapter, we present a way to analyze termination of Floating-Point
(FP) computations. It takes advantage of the already existing work on termination
analysis of rational computations. We translate FP expressions into rational ones by
means of sound approximations. This is done through the use of rational piecewise
affine functions. The approximations we obtain can be ordered in increasing tightness,
with respect to a specific sense that we define. Each of them is optimal with respect to
a specific sense that we also define. Our approach consists in gradually increasing the
tightness of the rational approximation until termination can be proved or disproved.

Résumé. Dans ce chapitre, nous présentons une technique qui permet d’analyser la
terminaison de calculs flottants. Elle tire profit du travail déjà existant sur l’analyse
de terminaison de calculs rationnels. Nous traduisons les expressions flottantes en ex-
pressions rationnelles grâce à des approximations sûres. Cela est fait par l’utilisation
de fonctions affines par morceaux. Les approximations que nous obtenons peuvent
être classées en précision croissante, selon un sens particulier que nous précisons.
Chacune d’elles est optimale, selon un sens particulier que nous précisons également.
Notre approche consiste à augmenter progressivement la précision de l’approximation
rationnelle jusqu’à ce que la terminaison puisse être prouvée ou réfutée.

Prerequisites. This chapter relies on the following notions from previous chapters:

Chapter 1: Termination Analysis
Proposition 1.1: Over-approximation and termination
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Chapter 2: Floating-Point Numbers
Definition 2.1: Fβ,p,emin,emax

Definition 2.3: Correct rounding
Definition 2.4: Unit in the Last Place (ULP)
Definition 2.5: β-ade
Definition 2.6: Normal numbers, subnormal numbers

Smallest positive subnormal smin
Smallest positive normal nmin, biggest positive nmax

Definition 2.7: The rounding function to-nearest ζn
Definition 2.10: Machine epsilon ε
Example 2.1: The toy floating-point type myfloat

Property 2.7: Bound As for the absolute error of subnormals
Property 2.8: Bound Rn for the relative error of normals
Property 2.9: Bound Asn for the absolute error of subnormals and normals
Hypothesis 2.1: Hypotheses on the behaviors of the FP computations

3.1 Introduction

To the best of our knowledge, there is only limited work on termination analysis of
FP computations. One of the first work that addresses the problem is [SS05]. It
analyses termination of logic programs that manipulate FP numbers.

Then techniques were developed to handle the more general case of programs that
manipulate bit-vectors. These techniques are based on Model Checking [BK08]. For
example [Coo+13] presents a few algorithms to generate ranking functions for rela-
tions over machine integers. Notably it presents a template-matching approach which
consists in using SAT-solvers or QBF-solvers to check the existence of ranking func-
tions that have predefined forms. Somewhat similarly, [DKL15] expresses termination
of programs that manipulate bit-vectors in a decidable fragment of second-order logic.
These methods are complete for the problem they consider but they are highly costly.

In contrast to termination analysis of FP computations, that of rational ones has
already produced many techniques. To cite a few, there is the synthesis of Affine
Ranking Functions [PR04a], that of Eventual Linear Ranking Functions [BM13], the
multi-dimensional rankings approach [Ali+10] and the Size-Change principle [LJB01].
The reader can refer to Chapter 1 for further references. Unfortunately application of
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these techniques to termination analysis of FP computations is not straightforward
due to rounding errors.

In this chapter, we develop a new technique that helps addressing that lack of
work. We approximate the rounding function in order to get rid of the difficulties
introduced by the rounding errors. This is done through the use of rational piecewise
affine functions. Thus we transpose termination analysis of FP computations into
termination analysis of rational ones. The novelty of the approach lies in the nature
of the approximations: we use k-Piecewise Affine Approximation functions (k-PAA),
k ∈ N, k > 0. The approximations we get are organized in a way such that if
termination cannot be decided using some k-PAA then we can increase our chances
to do so by increasing k. Also we show that each of our k-PAA is optimal with respect
to some quality measure and some conditions that we define.

This chapter is organized as follows. Section 3.2 presents the notion of k-PAA.
In particular it presents our way of comparing k-PAAs. Section 3.3 pursues with
its application to termination analysis. Section 3.4 presents the afore-mentioned
optimality result. Section 3.5 concludes.

3.2 Pairs of k-piecewise affine approximation functions

Subsection 3.2.1 starts by giving a few well-known approximations of FP functions
and exhibits the notion of k-PAA. Then Subsection 3.2.2 provides ways to measure
and compare their quality. Last Subsection 3.2.3 develops a specific way to increase
the quality of a given k-PAA.

3.2.1 A few well-known approximations

Definition 3.1 (Affine function). A (rational) affine function f of one variable x
is a function such that:

f : Q → Q
x 7→ f(x) = ax+ b, a ∈ Q, b ∈ Q

Property 3.1 (The (µ3, ν3) pair of approximation functions). Consider a FP
system with the rounding mode set to to-nearest. Consider the rational function ?

and its FP equivalent ?© that takes n FP numbers x̂1 . . . x̂n as arguments. If ?©
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correctly rounds ? then we have a pair of affine functions (µ3, ν3) such that µ3(x) ≤
?©(x̂1 . . . x̂n) ≤ ν3(x) where x = ?(x̂1 . . . x̂n) and:

∀x ∈ Q : µ3(x) =


x · (1−Rn) if x ∈ ]nmin, nmax]

x−As if x ∈ [−nmin, nmin]

x · (1 + Rn) if x ∈ [−nmax,−nmin[

ν3(x) =


x · (1 + Rn) if x ∈ ]nmin, nmax]

x+ As if x ∈ [−nmin, nmin]

x · (1−Rn) if x ∈ [−nmax,−nmin[

where As = εβemin and Rn = ε.

Proof. Derived from Definition 2.3, Property 2.7 and Property 2.8.

Property 3.2 (Following Property 3.1, the (µ2, ν2) pair of approximation
functions). We also have µ2(x) ≤ ?©(x̂1 . . . x̂n) ≤ ν2(x) such that:

µ2(x) =

{
x · (1−Rn)−As if x ∈ [0, nmax]

x · (1 + Rn)−As if x ∈ [−nmax, 0[

ν2(x) =

{
x · (1 + Rn) + As if x ∈ [0, nmax]

x · (1−Rn) + As if x ∈ [−nmax, 0[

Proof. From Property 3.2, merge the positive normals with the positive subnormals
and the negative normals with the negative subnormals.

Property 3.3 (Following Property 3.2, the (µ1, ν1) pair of approximation
functions). We also have µ1(x) ≤ ?©(x̂1 . . . x̂n) ≤ ν1(x) such that:

µ1(x) = x−Asn if x ∈ [−nmax, nmax]

ν1(x) = x+ Asn if x ∈ [−nmax, nmax]

where Asn = εβemax.

Proof. Derived from Definition 2.3 and Property 2.9.
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These approximations are for example used in [BMR12][BN11][Min07]. We ap-
proximated FP functions using affine functions defined in three, two and one piece(s).
We generalize the idea to k pieces, k ≥ 1.

Definition 3.2 (Pair of k-Piecewise Affine Approximation functions (k-
PAA)). Consider ζn on some interval I that is partitioned into k intervals I1 . . . Ik.
The pair (µ, ν) is a pair of k-PAA of ζn on I if:

∀x ∈ I : µ(x) ≤ ζn(x) ≤ ν(x)

µ(x) =
{
µi(x) if x ∈ Ii

}
1≤i≤k

ν(x) =
{
νi(x) if x ∈ Ii

}
1≤i≤k

where µi and νi are affine functions.

3.2.2 Comparing approximations

Consider the pairs of k-PAA (µ1, ν1), (µ2, ν2) and (µ3, ν3) presented in Subsection
3.2.1. Question arises: which of them approximates ζn the best? To answer that
question, let us graphically visualize the question. Take for example the FP type
myfloat for which ζn is exactly defined as follows:

ζn : R → Fmyfloat

x 7→ y = x̂ = ζn(x) =



990 985 < x < 995

...

100 99.5 ≤ x ≤ 105

99 98.5 < x < 99.5

98 97.5 ≤ x ≤ 98.5

...

−990 −995 < x < −985

∞ otherwise (this case causes ter-
mination, see Hypothesis 2.1)

(3.1)

The stairs-like function in Figure 3.1 caricatures ζn. The pairs (µ1, ν1), (µ2, ν2) and
(µ3, ν3) are respectively illustrated in Figure 3.1(a), 3.1(b) and 3.1(c). We propose
the following metric to measure their quality.

Definition 3.3 (Quality measure: tightness). Consider the pair of k-PAA (µ, ν)

of ζn on some interval I = [xmin, xmax]. We measure the quality of (µ, ν) by the
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surface of the area enclosed between µ and ν that is by S(µ, ν) =
∫
I

(
µ(x)−ν(x)

)
dx =

Sµ + Sν where Sµ =
∫
I

(
µ(x) − ζn(x)

)
dx and Sν =

∫
I

(
ζn(x) − ν(x)

)
dx. If there is

a pair (µ′, ν ′) such that S(µ′, ν ′) < S(µ, ν) then we say that (µ′, ν ′) is tighter than
(µ, ν), in respect to which we say that (µ′, ν ′) is better than (µ, ν).

x

y

(a) The pair (µ1, ν1) from
Property 3.3

L
x

y

(b) The pair (µ2, ν2) from
Property 3.2 in plain lines.
The pair (µ1, ν1) from Prop-
erty 3.3 in dashed line. See
Appendix B for details on L.
We point out that µ2 and ν2
do not cross at the origin.
They only seem to do so be-
cause of the scale: see Figure
3.1(c) for a zoom in on the
origin.

nmin

x

y

(c) The pair (µ3, ν3) from Prop-
erty 3.1 in plain lines. The
pair (µ2, ν2) from Property 3.2 in
dashed line.

Figure 3.1: A few PAA of ζn. The stairs-like function represents ζn.

Theorem 3.1 (Following Property 3.1, 3.2 and 3.3). We have S(µ3, ν3) <

S(µ2, ν2) that is (µ3, ν3) is a tighter approximation of ζn than (µ2, ν2). Then S(µ2, ν2)

< S(µ1, ν1) that is (µ2, ν2) is tighter than (µ1, ν1) if and only if emax > emin + p.

Proof. See Appendix B.

For the Ieee-754 FP types, the range of the exponent is very big compared to
the precision: emax− emin > p. That is for the Ieee-754 FP types, (µ2, ν2) is tighter
than (µ1, ν1).

Definition 3.4 (Nested pairs). We say that (µ′, ν ′) is nested in (µ, ν) if ∀x :

µ(x) ≤ µ′(x) ∧ ν ′(x) ≤ ν(x) and ∃x : µ(x) < µ′(x) ∨ ν ′(x) < ν(x).

Proposition 3.1. If (µ′, ν ′) is nested in (µ, ν) then (µ′, ν ′) is tighter than (µ, ν).
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Proof. Derived from Definition 3.3 and 3.4.

Theorem 3.2 (Following Property 3.1, 3.2 and 3.3). The pair (µ3, ν3) is nested
in (µ2, ν2). The pair (µ2, ν2) is not nested in (µ1, ν1).

Proof. See Appendix B.

3.2.3 Gradual increase of tightness

Now we propose pairs of k-PAA of which the tightness is controlled when approxi-
mating ζn on some interval I. We increase the tightness by increasing the number of
pieces k. Conversely we decrease the tightness by decreasing k. Basically we attempt
to start from (µ3, ν3) restricted on I. Then we isolate the β-ades in decreasing order
of their ULPs.

Definition 3.5 (β-ade isolation, the Nn operation). Consider (µ, ν) from Defi-
nition 3.2. Let B be a β-ade of ULP u. We say that (µ, ν) isolates the FP numbers
in B if ∃Ii∀x ∈ Ii : Ii = I ∩B1 ∧ µi(x) = x− u

2 ∧ νi(x) = x+ u
2 . We also simply say

that (µ, ν) isolates B.

We denote Nn the operation that makes (µ, ν) isolate the n β-ades in I that have the
greatest ULPs among those that have not been isolated yet. If two β-ades have the
same greatest ULPs, one in the positive numbers and one in the negatives, then Nn

first isolates the positive one.

Algorithm 3.1 (Paa).

Input A FP type F
An interval I = [x̂min, x̂max] where x̂min, x̂max ∈ F
An integer 1 ≤ k ≤ m where m is the number of β-ades B

such that B ∩ I 6= ∅
Output A pair of k-PAA (µ, ν) of ζn on I
Notation (µ, ν)I denotes (µ, ν) restricted on I
Begin

1: If k ≥ 3 Then Return Nn
[
(µ3, ν3)I

]
Where n is such that the obtained result is defined in k pieces

2: If k = 2 Then

1We cannot simply write Ii = B. Indeed by doing so we would fail to isolate the FP numbers
that belong to β-ades B such that B ∩ I 6= ∅ but B 6⊂ I, that is to β-ades B such that B ∩ I 6= B.
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If (µ3, ν3)I is defined in 2 pieces Then Return (µ3, ν3)I

Else If (µ3, ν3)I is defined in 1 piece Then Return N1

[
(µ3, ν3)I

]
Else If (µ3, ν3)I is defined in 3 pieces Then Return (µ2, ν2)I

3: If k = 1 Then Return
(
Opt-µ(F, I),Opt-ν(F, I)

)
Where Opt-µ (resp. Opt-ν) returns
the affine function that best lower (resp. upper) approximates ζn on I,
details will be given in Section 3.4.

End

Example 3.1. See Figure 3.2 and 3.3.

x

y

(a) (µ3, ν3) in plain lines: it
is symmetrical to the origin.
(µ4, ν4) takes (µ3, ν3) and iso-
lates the β-ade of greatest
ULP. There are two candi-
dates: we take the one with
positive FP numbers. Then
we approximate these num-
bers with the dashed lines.

x

y

(b) Following Figure 3.2(a).
(µ5, ν5) takes (µ3, ν3) and iso-
lates the two β-ades of great-
est ULP. We take the two can-
didates. Then we approxi-
mate the FP numbers in them
with the dashed lines.

x

y

(c) Some (µk, νk) such that
every β-ades are isolated as
illustrated by the plain lines.
The dashed lines represents
(µ3, ν3). Symmetry to the
origin for the negatives. No-
tice how the plain lines are
nested in the dashed lines.
The Nn operation is idempo-
tent past this point.

Figure 3.2: Pairs of k-PAA (µk, νk) = Paa
(
F, [−nmax, nmax], k

)

The reason why we attempt to start from (µ3, ν3)I is motivated as follows.

Definition 3.6 ((µ3, ν3)-derived pair). Let (µ, ν) be a k-PAA defined on some
interval I. We say that (µ, ν) is a (µ3, ν3)-derived pair if it was obtained by taking
(µ3, ν3) restricted on I and making it successively isolate the β-ades: ∃n : (µ, ν) =

Nn
[
(µ3, ν3)I

]
.
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µ(x) ν(x) x ∈
k = 1 x− 5 x+ 5 [−990, 990]
k = 2 20

21x− 0.05 22
21x+ 0.05 [0, 990]

22
21x− 0.05 20

21x+ 0.05 [−990, 0[
k = 3 20

21x
22
21x ]10, 990]

x− 0.05 x+ 0.05 [−10, 10]
22
21x

20
21x [−990,−10[

k = 4 x− 5 x+ 5 [100, 990]
20
21x

22
21x ]10, 100]

x− 0.05 x+ 0.05 [−10, 10]
22
21x

20
21x [−990,−10[

Figure 3.3: A few pairs of k-PAA returned by Paa for I = [−nmax,
nmax] when using myfloat

Lemma 3.1. Let (µ, ν)
(
resp. (µ′, ν ′)

)
be a k-PAA (resp. k′-PAA, k′ > k) returned

by Algorithm 3.1. If (µ, ν) is (µ3, ν3)-derived then is (µ′, ν ′) is nested in (µ, ν).

Proof. See Appendix B.

The interest of constructing a k′-PAA that is nested in another k-PAA is moti-
vated in the following section for the case of termination analysis.

3.3 Application to termination analysis

First let us see how to concretely use pairs of k-PAA to abstract a program.

Definition 3.7 (Single Operation Form (SOF)). We say that a program P is in
Single Operation Form if each arithmetic expression in it has one operation at most.
We also say that P is a SOF program. Any program Q can be transformed into a
SOF program QSOF through the use of intermediate variables. We denote Sof the
corresponding transformation function: QSOF = Sof(Q).

Example 3.2 (The Pg program). See Figure 3.4.

A possible way of putting a program in SOF form is to put it in SSA form
[Cyt+91] first, then to split the assignments that involve multiple operations into
multiple assignments that only involve a single operation each.

Definition 3.8 ((µ, ν)-abstraction). Let P be a SOF program that manipulates FP
numbers. Let (µ, ν) be a pair of approximation functions of the rounding function
ζn. We call (µ, ν)-abstraction of P the program P# in which the result of each FP
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myfloat x = randFP ();
// a random FP number
// of myfloat type

y = randFP ();
while(x*y >= 0 & y > -60) {

x = x - 5.5;
y = y + 3.5 + 3.5;
if(x < -100) x = 100;

}

myfloat x = randFP ();
y = randFP(),
c0 = x*y,
t0 = randFP ();

while(c0 >= 0 & y > -60) {
x = x - 5.5;
t0 = y + 3.5;
y = t0 + 3.5;
if(x < -100) x = 100;
c0 = x*y;

}

Figure 3.4: The program Pg (left) and Sof(Pg) (right)

computation t = ?©(x̂1 . . . x̂n) is replaced by the rational constraints µ(x) ≤ t ≤ ν(x)∧
x = ?(x̂1 . . . x̂n). We suppose that the FP operation ?© correctly rounds the rational
one ?. We denote α(µ,ν) the corresponding abstraction function: P# = α(µ,ν)(P).

Example 3.3 (Following Example 3.2). The (µ1, ν1)-abstraction of Sof(Pg) is
illustrated in Figure 3.5.

rational x = randRatBetween (-990,990),
// a random rational number r
// -990 <= r <= 990

y = randRatBetween (-990,990),
c0 = randRatBetween(x*y - 5, x*y + 5);
t0 = randRat ();

while(c0 >= 0 & y > -60) {
x = randRatBetween(x - 10.5, x - 0.5);
t0 = randRatBetween(y - 1.5, y + 8.5);
y = randRatBetween(t0 - 1.5, t0 + 8.5);
if(x < -100) x = 100;
c0 = randRatBetween(x*y - 5, x*y + 5);

}

Figure 3.5: (µ1, ν1)-abstraction of Sof(Pg). We point out that −60
and 100 are exactly represented with myfloat; otherwise they have

to be rounded. We remind that overlows cause termination.
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Now we propose a termination proof technique that gradually increases the tight-
ness of the abstraction it uses. The tighter the abstraction, the bigger its set of
invariants.

Definition 3.9 (Invariant). An invariant of a program P is a property that holds
for any possible execution of P.

Theorem 3.3. Let P be a program. Let (µ, ν) be a k-PAA and (µ′, ν ′) a k′-PAA
such that (µ′, ν ′) is nested in (µ, ν). The set of invariants of P# = α(µ,ν)(P) is a
subset of that of P#′ = α(µ′,ν′)(P).

Proof. Any execution of P#′ is also one of P#.

Corollary 3.1. Let P be a program. Let (µ, ν)
(
resp. (µ′, ν ′)

)
be a k-PAA (resp.

k′-PAA, k′ > k) returned by the Paa algorithm. If (µ, ν) is (µ3, ν3)-derived then the
set of invariants of P# = α(µ,ν)(P) is a subset of that of P#′ = α(µ′,ν′)(P).

Proof. Derived from and Theorem 3.3 and Lemma 3.1.

Algorithm 3.2 (PaaTerm).

Input A program P, a FP type F, an integer kmax ≥ 1

An interval I in which range the results of all computations
I = [−nmin, nmax] by default

Output “Yes” which means that P terminates, can also answer “I don’t know”

Begin

1: PSOF = Sof(P)

2: k = 1

3: While (k ≤ kmax) {
4: (µ, ν) = Paa(F, I, k)

5: P# = α(µ,ν)(PSOF) // Notice that P# only performs rational computations
6: If P# universally terminates Then Return “Yes”

7: Else k ← k + 1

8: }
9: Return “I don’t know”

End

Theorem 3.4. Algorithm 3.2 is sound.
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Proof. The transformation of P into PSOF is just syntaxical: P terminates if and
only if PSOF does. If α(µ,ν)(PSOF) terminates then so does PSOF by Proposition 1.1.

Example 3.4 (Following Example 3.3). Pg always terminates. Indeed for any
initial value x0 and y0 of x and y:

(Inv1) x strictly decreases at each iteration except when it is updated to 100 when
reaching −100. That is x alternately becomes positive and negative.

(Inv2) y strictly increases at each iteration until reaching 100 if −60 ≤ y0 < 100 or
y stays unchanged if y0 ≥ 100. That is y eventually becomes positive.

Following (Inv1) and (Inv2), x will be negative while y will be positive at some point:
the loop condition xy ≥ 0 will be eventually unsatisfied. The evolution of the capturing
of (Inv1) and (Inv2) when analyzing Pg with PaaTerm is shown in Figure 3.6.

k = 1 k = 2 k = 3 k = 4

(Inv1) 3 7 7 3

(Inv2) 7 3 3 3

Figure 3.6: Proving termination of Pg using PaaTerm. (Inv1) and
(Inv2) need to be captured in order to prove terminatin of Pg. We
capture (Inv1) at k = 1 then we lose it at k = 2. This is because
(µ2, ν2) is not nested in (µ1, ν1). Starting from k = 2, any invariant
that is captured remains so due to Corollary 3.1 (and Theorem 3.3
coupled with Theorem 3.2 for the transition from k = 2 to k = 3).

We point out that the results of PaaTerm strongly depend on the interval I
given as input. This is discussed later in Section 6.4.2 Q2. We also point out that
our work is mainly focused on the piecewise-defined abstraction function α(µ,ν). This
is in contrast to the work of Urban [Urb15] who is interested in piecewise-defined
ranking functions.

3.4 The Opt-ν problem

Now consider the problems raised in Algorithm 3.1: those of finding the affine func-
tions that best upper and lower approximate ζn.

Definition 3.10 (Opt-µ, Opt-ν). Opt-ν (resp. Opt-µ) is the problem of find-
ing the affine segment ν(x) (resp. µ(x)), for all x ∈ I, I = [x̂min, x̂max] where
x̂min, x̂max ∈ F that solves the following optimization problem:
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minimize(S)

S =
∫
I

(
ν(x)− ζn(x)

)
dx

(
resp. S =

∫
I

(
ζn(x)− µ(x)

)
dx
)

ζn(x) ≤ ν(x)
(
resp. µ(x) ≤ ζn(x)

)
ν(x) = ax+ b

(
resp. µ(x) = ax+ b

)
a ∈ Q, b ∈ Q, x ∈ R

(3.2)

In the following, we only give the solution for Opt-ν since that for Opt-µ can be
retrieved in a similar manner.

3.4.1 A first solution to Opt-ν

As expressed in Definition 3.10 and considering Definition 2.7, the problem is daunt-
ing. A natural question arises: can we even solve it? To answer that question, notice
that placing a segment above a set of segments can be simplified into placing it above
the two endpoints, left and right, of each of them. Even better, for the particular
case of the set of constant segments that define the rounding function ζn, we just
have to consider the left endpoints. Indeed, the right endpoint of a constant segment
is always below the left endpoint of the next constant segment as shown in Figure
3.7.

Figure 3.7: The Opt-µ problem for the FP type myfloat and the
interval I = [97, 110]: we want to lower the affine segment ν(x) as

much as possible while remaining above the four left endpoints.

This allows us to transform the constraints ζn(x) ≤ ν(x), ν(x) = ax+ b, x ∈ I of
Equation 3.2 into a conjunction of linear inequalities. Suppose for example that we
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want to solve Opt-ν for myfloat and for the interval I = [97, 100]. We transform
the constraint ζn(x) ≤ ν(x), ν(x) = ax+ b, x ∈ [97, 110] as follows:



110 ≤ ν(x) at x = 105

100 ≤ ν(x) at x = 99.5

99 ≤ ν(x) at x = 98.5

98 ≤ ν(x) at x = 97.5

ν(x) = ax+ b

⇐⇒


110 ≤ 105a+ b

100 ≤ 99.5a+ b

99 ≤ 98.5a+ b

98 ≤ 97.5a+ b

It remains to notice that the objective function S to minimize is also a linear
expression of a and b:

S =
1

2
(x2
max − x2

min)a+ (xmax − xmin)b (3.3)

Thus we managed to completely transform the Opt-ν problem into a Linear Pro-
gramming (LP) problem. Continuing our example, Opt-ν is reduced to:

minimize(S)

S = 1345.5a+ 13b

110 ≤ 105a+ b

100 ≤ 99.5a+ b

99 ≤ 98.5a+ b

98 ≤ 97.5a+ b

a, b ∈ Q

(3.4)

which we can solve by using for example the Simplex algorithm: a = 8
5 and b = −58,

that is the optimal ν is ν(x) = 8
5x− 58.

Theorem 3.5. Opt-ν can be reduced into a linear programming problem.

Proof. The linearization process is shown in the preceding three paragraphs.

We know that LP problems can be solved in polynomial time [Kha80]. Does
that mean that the solution we just proposed is efficient? No. Indeed the size of
the LP we obtain can become astronomical. In our illustrative example, for the FP
type myfloat and the interval I = [97, 110], we obtained a LP problem that has
an objective function subject to four constraints. If we had I = [97, 130 ] instead,
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we would have to consider six constraints as there are six left endpoints in that
interval. Actually we need to consider as many constraints as the number of the FP
numbers in I. Thus for the Ieee-754 binary64 format, we may have to consider up to
approximately 264 constraints. Clearly that naive transformation into a LP problem
is not useful in practice.

3.4.2 A second solution to Opt-ν

Now we present an algorithm that solves Opt-ν very efficiently: in constant time
regarding the considered FP type and the interval I. Our solution relies on the
following intermediate result.

Lemma 3.2 (Endpoints lemma). Let g be a real function of x ∈ R defined on
the interval I = [xmin, xmax]. Let ν be an affine upper approximation of g on I:
g(x) ≤ ν(x), x ∈ I. If ν(xmin) = g(xmin) and ν(xmax) = g(xmax) then ν is optimal:∫
I

(
ν(x)− g(x)

)
dx is minimal.

Proof. We reason by contradiction. If ν is placed lower then it will be under g at
least at one point: ν will not be an upper approximation of g. If it is placed higher
then the surface between ν and g will increase: ν will not be optimal.

Figure 3.8: The endpoints lemma. Placing a segment above the
function g(x) on the interval [x1, x3] is equivalent to simply placing it

above the three points Pi = (xi, yi), i ∈ {1, 2, 3}.

Simply put, the endpoints lemma says that if an affine upper approximation
function ν intersects the function g it approximates on two points x1 and x2 then ν
is optimal on the interval [x1, x2]. The use of that lemma is as shown in Figure 3.8.
If we can find a set of such intersecting points for the considered function g then we
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just need to place ν above these points. Using that reasoning we can abstract the
rounding function to-nearest ζn to a set of four points at most.

In the following, consider the euclidian plane on which is drawn the graph of ζn.A
line drawn from a point P1 of the plane to another one P2 forms the segment P1P2.

Algorithm 3.3 (Efficient solution for Opt-ν).

Input I = [x̂min, x̂max] and x̂min, x̂max ∈ F
Output ν solving Opt-ν

Definition We call ULP of an endpoint the ULP of its abscissa
We call IntSeg the operation that takes in parameter a segment

and that returns the interval on which that segment is defined
We call AffSeg the operation that takes in parameter a segment

and that returns the affine function corresponding to it
Begin

1: Determine the four points Pmin, Pi, Pj and Pmax
Pmin, Pmax: consider the two left endpoints [of ζn] at the edges I

Pmin is the one [of abscissa] closest to the origin2

Pmax is the other one
Pi: left endpoint in I closest to the origin and

having an ULP strictly greater than that of Pmin
If such point does not exist Then Pi = Pmin

Pj: left endpoint in I closest to the origin and of same ULP as Pmax
Let pmin, pi, pj , pmax respectively be the abscissas of Pmin, Pi, Pj , Pmax
If pminpi ≤ 0 Then Pi ← Pj

2: Choose the optimal ν
Let pmid be the midpoint of I: pmid = x̂min+x̂max

2

If pmid ∈ IntSeg(PminPi) Then Return ν = AffSeg(PminPi)

Else If pmid ∈ IntSeg(PiPj) Then Return ν = AffSeg(PiPj)

Else If pmid ∈ IntSeg(PjPmax) Then Return ν = AffSeg(PjPmax)

End

Theorem 3.6. Algorithm 3.3 solves Opt-µ in constant time regarding the considered
FP type F and the interval I.

2That is the one with the smallest abscissa in absolute value.



3.4. The Opt-ν problem 57

Proof. For the sake of conciseness, we only give the main arguments of the proof in
the next four paragraphs (§). More details are given in Appendix E.

(§1). Let us call ULP-increasing (left) endpoints the left endpoints where the ULP
increases when going from the origin to the infinities. For example in Figure 3.9(c),
the left endpoint at abscissa 105 is an ULP-increasing endpoint.

(§2). Given two left endpoints P1 and P2, the segment P1P2 remains above ζn for any
of the three following cases: (a) P1 and P2 are of same ULP, (b) P1 and P2 are both
ULP-increasing endpoints, (c) P2 is the first ULP-increasing endpoint after P1 when
leaving the origin.

(§3). The left endpoints Pmin and Pi satisfy case (c). The left endpoints Pi and
Pj satisfy case (b). The left endpoints Pj and Pmax satisfy case (a). Thus by the
endpoints lemma, the segments PminPi, PiPj and PjPmax are optimally placed on
their respective intervals.

(§4). The fact that Pi is merged with Pj if pminpi ≤ 0 is because in that case the
segment PminPj remains above ζn, thus “short-circuiting” PminPi as illustrated on
Figure 3.9(d).

(§5). Now it remains to place ν above these three segments. (Claim 1) The solution
is (the line that corresponds to) one of them. (Claim 2) The segment to choose is the
one that is defined at the midpoint.

To avoid making the text cumbersome, we do not give the algebraic values of the
coordinates of Pmin, Pi, Pj and Pmax. Instead we will graphically illustrate the deter-
mination of these points with a few examples. We just point out that the computation
of these coordinates is similar to the computation of the FP numbers preceding and
following a given FP number. Intuitively we can express the coordinates of the left
(resp. right) endpoint corresponding to a given FP number with the value of the
FP number that precedes (resp. follows) it. Thus in the same way we know how
to compute these straddling FP numbers very easily, see for example the functions
mpfr_nextbelow and mpfr_nextabove of the MPFR library [Fou+07], we know how
to determine Pmin, Pi, Pj and Pmax very efficiently.

Now the illustrative examples. In the following, we consider the FP type myfloat
and we want to find the optimal ν for a given interval I. For the intuition, we will
just say that the ULP of an endpoint is the length of its corresponding constant
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segment. We emphasize though that that definition does not correspond exactly to
the definition used in Algorithm 3.3: it just serves for the intuition.

Example 3.5 (I = [97,110], see Figure 3.9(a)).

1: Determining Pmin, Pmax and Pi

• Pmin, Pmax: the two left endpoints at the edges of I are (97.5, 98) and (105, 110).
The first one is Pmin, the second one is Pmax.

• Pi (intuitive but approximative definition): left endpoint in I closest to the
origin whose corresponding segment is longer than that of Pmin: (105, 110)

• Pj: left endpoint in I closest to the origin and such that its corresponding
segment is of same length as that of Pmax: (105, 110)

In this case, Pi, Pj and Pmax are all the same point.

2: Choosing the optimal ν
We have pmid = 97+110

2 = 103.5 which is such that pmid ∈ IntSeg(PminPi) since
IntSeg(PminPi) = [pmin, pi] = [97.5, 105]. Thus the line (PminPi) optimally approx-
imates ζn on I: ν(x) = 8

5x−58. That is indeed the solution we obtained after solving
the linear programing problem of Equation 3.4.

We point out that the optimal ν we obtain does not correspond to any of the well-
known approximations presented in Section 3.2.1.

Example 3.6 (I = [5,120], see Figure 3.9(b)).

1: Determining Pmin, Pi, Pj and Pmax. See figure.

2: Choosing the optimal ν
We have pmid = 5+120

2 = 62.5 which is such that pmid ∈ IntSeg(PiPj). Thus the line
(PiPj) optimally approximates ζn on I: ν(x) = 22

21x.

We point out that the FP numbers in I are normals and the optimal ν we obtain is the
approximation by relative error as often preferred in the literature for approximating
normals. That is ν(x) = 22

21x =
(
1 +Ron

)
· x where Ron = ε

1+ε is the optimal bound of
the relative errors for normals. This coincides with the results of [JR16].

Example 3.7 (I = [97,130], see Figure 3.9(c)).

1: Determining Pmin, Pi, Pj and Pmax. See figure: in this case, Pi and Pj are the
same point.
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(a) I = [97, 110] (b) I = [5, 120], Pmin = (5.05, 5.1), Pi =
(10.5, 11), Pj = (105, 110), Pmax =
(115, 120). Approximative figure.

(c) I = [97, 130], Pmin = (97.5, 98) (d) I = [ − 130, 15], Pmin = (14.5,
15), Pi = Pj = (−105,−100), Pmax =
(−125,−120). The segment PminPi
is “short-circuited” by the segment
PminPj. Approximative figure.

Figure 3.9: ν for myfloat and a given I

2: Choosing the optimal ν
We have pmid = 97+130

2 = 113.5 which is such that pmid ∈ IntSeg(PjPmax). Thus
the line (PjPmax) optimally approximates ζn on I: ν(x) = x+ 5.

We point out that though the FP numbers in I are normals, our algorithm says that
the best approximation is not the approximation by the relative error as in the case
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of Example 3.6 and as often preferred in the literature. Indeed ν is such that ν(x) =

x +AoI where AoI = ulp(xmax)
2 = 5 is the optimal bound for the absolute error for the

normals in I.

Example 3.8 (I = [−130,15], see Figure 3.9(d)).
1: Determining Pmin, Pi, Pj and Pmax. See figure: in this case, we have pminpi ≤ 0.
Thus Pi is merged with Pj.

2: Choosing the optimal ν
We have pmid = 15−130

2 = −57.5 which is such that pmid ∈ IntSeg(PminPi) since
IntSeg(PminPi) = [pi, pmin] = [−105, 14.5]. Thus the line (PminPi) optimally ap-
proximates ζn on I: ν(x) = 230

239x+ 250
239 .

We point out that there are both normals and subnormals in I. This is to show that
our algorithm handles seamlessly intervals containing normals only, subnormals only
or a mix of both.

3.5 Conclusion

We have presented a new technique for analyzing termination of FP computations.
Our technique consists in approximating the FP expressions by upper and lower
piecewise affine functions. The novelty lies in the quality of the approximations which
can be as tight as needed by increasing or decreasing the number of pieces. Also they
are optimal for the chosen partitioning. In practice, we have to limit the number of
pieces to reasonable values. This renders our approach incomplete: experiments need
to be conducted in order to evaluate its efficiency. This is done in Chapter 6.

In this chapter we focused on developing rational approximations of FP computa-
tions. Then we just left the rest of the job to some termination analyzer for rational
computations. Hence the efficiency of our approach strongly depends on the termina-
tion proof techniques that are implemented: we need to investigate them closely. In
the next two chapters, we will see how to adapt a few well-known termination proof
techniques so that they can handle FP numbers.
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Chapter 4

On the Affine Ranking Problem
for Simple Floating-Point Loops

Some of the results described in this chapter have been the subject of a publication
in an international conference [MMP16a]. They are described here in an harmonized
and enhanced manner.

Abstract. In this chapter, we are interested in detecting Affine Ranking Functions
(ARFs) for Simple floating-point Loops (SLF). We already know that the existence of
these functions can be decided in polynomial time for Simple rational Loops (SLQ).
Here we show that the problem is coNP-hard for SLF. In order to work around that
theoretical limitation, we present an algorithm that remains polynomial by sacrificing
completeness. The algorithm is based on the Podelski-Rybalchenko algorithm and
can synthesize in polynomial time the ARFs it detects. To our knowledge, our work
is the first adaptation of this well-known algorithm to the FP numbers.

Résumé. Dans ce chapitre, nous nous intéressons à la détection de Fonctions de
Rang Affines pour les Boucles Simples flottantes. Nous savons déjà que l’existence
de ces fonctions peut être décidée en temps polynomial pour les Boucles Simples
rationnelles. Ici, nous montrons que le problème est coNP-dur pour les Boucles
Simples flottantes. Afin de contourner cette limitation théorique, nous présentons
un algorithme qui reste polynomial en sacrifiant la complétude. L’algorithme est
basé sur celui de Podelski-Rybalchenko et peut synthétiser en temps polynomial les
Fonctions de Rang Affines qu’il détecte. À notre connaissance, notre travail est la
première adaptation aux nombres flottants de cet algorithme bien connu.
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Prerequisites. This chapter relies on the following notions from previous chapters:
Chapter 1: Termination Analysis

Theorem 1.1: Decidability of termination of finite state programs
Hypothesis 1.2: P ( NP

Proposition 1.2: Program over-approximation and ranking functions
Definition 1.6: SLQ and SLZ

Definition 1.7: LRFs for Simple Loops
Definition 1.8: ARFs for Simple Loops

Chapter 2: FP Numbers
Example 2.1: The toy FP type myfloat

Property 2.9: Bound Asn for the absolute error of subnormals and normals
Hypothesis 2.1: Behaviors of the FP computations

Chapter 3: Piecewise Affine Approximations (PAA)
Property 3.2: The (µ1, ν1) pair of approximation functions
Definition 3.2: Pair of k-PAA
Definition 3.8: (µ, ν)-abstraction

4.1 Introduction

This work is a continuation of a series of connected results concerning Simple Loops.
[Tiw04] first showed that termination of loops of the form while (Ux ≤ u) do x′ =

V x+ v done where the column vector of n variables x ranges over Rn×1 is decidable.
Then [Bra06] showed that the problem is also decidable when x ∈ Qn×1. It remains
so even when x ∈ Zn×1 under the condition that u = 0. Then [BGM12] investigated
the more general case of non-deterministic loops of the form while (Ux ≤ u) do

V

(
x

x′

)
≤ v done. Termination of such loops was proved to be EXPSPACE-hard

when x, x′ ∈ Zn×1 and with the coefficients being rationals. The existence of Linear
Ranking Functions (LRFs) for such loops is however known to be coNP-complete
[Ben13][BG14]. The result applies even when the variables range over a finite set
E ⊂ Z with |E| ≥ 2, like the case of machine integers. Now we want to detect Affine
Ranking Functions when variables are of FP type.

This chapter is organized as follows. Section 4.2 studies AffRF(F) which is the
problem of finding ARFs for SLF. It notably shows that the problem is coNP-hard.
Section 4.3.2 presents our adaptation of the Podelski-Rybalchenko algorithm to the
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FP numbers. It notably provides a sufficient but not necessary condition that ensures
the existence of ARFs. The condition is checkable in polynomial time. The adaptation
is achieved through the use of affine approximations. Section 4.4 concludes.

4.2 The AffRF(F) problem

Definition 4.1 (Simple floating-point Loops (SLF)). Similarly to SLQ and SLZ,

SLF are loops that are described by the set of inequalities A′′ ·©
(
x

x′

)
≤ b in which x

and x′ are column vectors of FP variables. The FP matrix multiplication ·© is similar
to the rational matrix multiplication with the difference that the operations are done
within the set of the FP numbers:

a11 ·©x1 +© a12 ·©x2 +© . . . +© a′1n ·©x′n ≤ b1

a21 ·©x1 +© a22 ·©x2 +© . . . +© a′2n ·©x′n ≤ b2

. . .

am1 ·©x1 +© am2 ·©x2 +© . . . +© a′mn ·©x′n ≤ bm

where aij , xi, x′i and bi are respectively elements of A′′, x, x′ and b. FP multiplications
are performed before FP additions. Since there are no parentheses that indicate the
order in which the FP additions are performed, we consider that they are done from
left to right.

Definition 4.2 (AffRF(F)). AffRF(F) is the problem of finding ARFs for SLF.

Theorem 4.1. AffRF(F) is decidable.

Proof. Recall the proof of Theorem 1.1. In addition to checking non-repeating states
in each partial execution, we also check the existence of ARFs that are valid for all
of them. In the current case, a partial execution ρ = X1X2 . . . Xm is a sequence
of states Xi that satisfy the considered SLF as in Definition 4.1. Now we say that
f(X) = CX + d,C ∈ Q1×n, d ∈ Q, is a valid ARF for ρ if the following system of
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constraints Φρ is satisfiable: 

CX1 + d ≥ 0

CX1 ≥ 1 + CX2

. . .

CXm−1 + d ≥ 0

CXm−1 ≥ 1 + CXm

(4.1)

Φ =
∧

all ρ Φρ is the system of constraints of validity of f for all possible partial
executions. If Φ is satisfiable then the space of all the valid ARFs is described by
f(X) = CX + d. Otherwise there is no valid ARF.

The decision algorithm we proposed is highly costly. Indeed suppose that there
are n variables in the program and that there are N FP numbers that can be taken as
values. Then in the worst case we need to build the system of constraints of validity
from the N2n possible transitions.

Question arises: can we have a more efficient algorithm that solves AffRF(F)?
Notably we would like to know if a polynomial one exists. For that purpose, we rely
on a recent result regarding the complexity of a subset of the problem.

Definition 4.3 (LinRF). LinRF(Z) is the problem of finding LRFs for SLZ. When
variables only range over a finite subset E of Z, we denote LinRF(E) the correspond-
ing problem.

Lemma 4.1 ([BG14, Theorem 3.1]). LinRF(Z) is coNP-hard. Even when vari-
ables range only over a finite subset of Z, the problem remains coNP-hard.

Theorem 4.2. AffRF(F) is coNP-hard.

Proof. We show that there is a subset of AffRF(F) that is coNP-hard. To this end,
we show that there are FP types for which Lemma 4.1 apply.

Consider the finite set ZM ⊂ Z defined as ZM = {z ∈ Z| −M ≤ z ≤ M}. For all
M ∈ N,M > 0, we can construct the FP type FM defined by the parameters β = M ,
p = 1, emin = 0 and emax = 1 for which ZM = FM . Both ZM and FM have the
same elements. Notice that the operations used over the elements of FM , which are
the FP addition and the FP multiplication as shown in Definition 4.1, are exact when
assuming Hypothesis 2.1: ∀x̂1, x̂2 ∈ FM : x̂1 +©x̂2 = x̂1 + x̂2 and x̂1 ·©x̂2 = x̂1 · x̂2.



4.3. A sufficient condition for inferring ARFs in polynomial time 65

Hence ∀M ∈ N,M > 0, LinRF (FM ) = LinRF (ZM ). Since LinRF (ZM ) is coNP-
hard by Lemma 4.1, so is LinRF (FM ). The theorem follows from the fact that
LinRF (FM ) is a subset of AffRF(F) as the class of LRFs is a subset of that of
ARFs.

Corollary 4.1. There is no polynomial algorithm for deciding AffRF(F).

Proof. We assume Hypothesis 1.2. As we already know [Sip97], the coNP class
contains problems that are at least as difficult as the NP class.

Although that theoretical limitation may be discouraging, it is important to point
out that it applies to the problem of finding one general algorithm for all the possible
instances of AffRF(F). There may be special cases for which polynomial decision
algorithms exist. We could also have correct algorithms that are polynomial but not
complete. That is we could have algorithms that detect in polynomial time only some
parts of the space of the existing ARFs.

4.3 A sufficient condition for inferring Affine Ranking
Functions in polynomial time

4.3.1 The Podelski-Rybalchenko algorithm

Our technique is based on the Podelski-Rybalchenko algorithm [PR04a].

Definition 4.4 (Podelski-Rybalchenko-type Ranking Function (PRRF) for
SLQ). Let P be a SLQ that has the column vector x ∈ Qn×1 as variables and the binary
relation R as transition relation. The linear function f(x) = cx, where c ∈ Q1×n is a
constant row vector, is a PRRF for P if ∃δ, δ0∀x, x′ : xRx′ =⇒ f(x′) ≥ δ0 ∧ f(x) ≥
f(x′) + δ where δ, δ0 ∈ Q and δ > 0.

Theorem 4.3 (Podelski-Rybalchenko (PR) algorithm [PR04a]). Given LQ,

a SLQ described by A′′
(
x

x′

)
≤ b such that A′′ ∈ Qm×2n, b ∈ Qm×1 and x, x′ ∈ Qn×1,

let A′′ = (A A′) where A,A′ ∈ Qm×n. A PRRF exists for LQ if and only if there
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exist λ1, λ2 ∈ Q1×m such that: 

λ1, λ2 ≥ 0

λ1A
′ = 0

(λ1 − λ2)A = 0

λ2(A+A′) = 0

λ2b < 0

in which case the space of PRRF is completely described by functions f such that:

f(x) = θx where θ = λ2A
′ and

∀x, x′ :
{
f(x) ≥ δ0 where δ0 = −λ1b

f(x) ≥ f(x′) + δ where δ = −λ2b, δ > 0

Proof. Omitted as there are already various works discussing it in various ways.
Interested readers can find in-depth study of the PR algorithm in [Bag+12]. Notably
it points out the use of Farkas’ Lemma in [Bag+12, Section 5.2].

Example 4.1. Consider the program Pilog37q that has n = 2 variables presented in

Figure 4.1. The loop of Pilog37q can be expressed in the matrix form
(
Aq A′q

)(x
x′

)
≤ b by letting

Aq =



−1 0

0 −1

−1 0

1 0

0 1

0 −1


, A′q =



0 0

0 0

37 0

−37 0

0 −1

0 1


, b =



−37

−1

0

0

−1

1


(4.2)

The corresponding linear system given by PR is satisfiable and the row vectors λ1 =(
λ1

1 λ2
1 λ3

1 λ4
1 λ5

1 λ6
1

)
and λ2 =

(
λ1

2 λ2
2 λ3

2 λ4
2 λ5

2 λ6
2

)
are such that:
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λ1
1 = −λ2

1 + λ4
1 + λ1

2 + λ3
2 − λ4

2

λ2
1 = −λ5

2 + λ6
2

λ3
1 = λ4

1

λ4
1 ≥ 0

λ5
1 ≥ 0

λ6
1 = λ5

1

and



λ1
2 = 36λ3

2 − 36λ4
2

λ2
2 = 0

λ3
2 > 0

0 ≤ λ4
2 < λ3

2

λ5
2 ≥ 0

λ5
2 ≤ λ6

2 < 1332λ3
2 − 1332λ4

2

(4.3)

Thus the space of ranking function for Pilog37q that is detected by PR is described by
f(x1, x2) = θ1x1 + θ2x2 where θ1 > 0 and 0 ≤ θ2 < 36θ1. The function f is such that
∃δ0 > 0, δ > 0∀x1, x2, x

′
1, x
′
2 : f(x′1, x

′
2) ≥ δ0 ∧ f(x′1, x

′
2) + δ ≤ f(x1, x2).

rational x1 = input(), x2 = 1;
while(x1 >= 37 & x2 >=1) {

x1 = x1 / 37;
x2 = x2 + 1;

}

Figure 4.1: A program that computes and stores in x2 the integer
base-37 logarithm of x1, Pilog37q. A similar program with variables

ranging over the integers is studied in [Bag+12].

Theorem 4.4 (PRRF and ARF). PRRF and ARF are equivalent in the sense that
any PRRF can be transformed into an ARF and any ARF can be transformed into a
PRRF.

Proof. Let (Qu,≤v) denote the WF structure such that Qu = {q ∈ Q|q > u} and
q′ ≤δ q ⇐⇒ q′ + v ≤ q. The PRRF fpr = cx defined on the WF structure (Qδ0 ,≤δ)
can be transformed into the ARF fpra = c

δx − −δ0δ defined on the WF structure
(Q0,≤1). Then the ARF fa = φx + ψ defined on the WF structure (Q0,≤1) can be
transformed into the PRRF fapr = φx defined on the WF structure (Q−ψ,≤1).

Example 4.2 (Continuing Example 4.1). The space of ARF for Pilog37q is com-
pletely described by f(x1, x2) = φ1x1 + φ2x2 + ψ where φ1 = 1+φ2

36 , φ2 ≥ 0 and
ψ = −1− φ1 − 2φ2.

Thus every time an ARF exists for a given SLQ, PR does find it in polynomial
time. Moreover PR can synthesize the ARF it detects. Unfortunately PR cannot be
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applied to SLF. Indeed the peculiarities of FP computations render invalid most of
the mathematical results on which PR relies.

4.3.2 A FP version of Podelski-Rybalchenko

To work around Corollary 4.1, we sacrifice completeness in the following FP adapta-
tion of PR.

Theorem 4.5 (General FP version of Podelski-Rybalchenko). Consider the
FP type F which has such parameters and which uses such rounding mode that Asn is

the maximal absolute error. Consider also LF, the SLF described by A′′ ·©
(
x

x′

)
≤ b

such that A′′ ∈ Fm×2n, b ∈ Fm×1 and x, x′ ∈ Fn×1. By letting A′′ = (A A′) where
A,A′ ∈ Fm×n and if no overflow occurs, an ARF exists for LF if there exist λ1, λ2 ∈
Q1×m such that: 

λ1, λ2 ≥ 0

λ1A
′ = 0

(λ1 − λ2)A = 0

λ2(A+A′) = 0

λ2c < 0

where c ∈ Qm×1 and c = b + colvectm((4n − 1)Asn). Here, colvectm(e) denotes the
column vector of m elements, all elements equaling e.

The detected ARF are of the form f(x) = φx + ψ where φ = 1
δλ2A

′ and ψ = 1
δλ1c

where δ = −λ2c.

Proof. Let us call lk the first member of the k-th inequality in LF, that is:

lk = ak1 ·©x1 +© ak2 ·©x2 +© . . . +© a′kn ·©x′n (4.4)

lk ≤ bk (4.5)
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By approximating by below each operation using the µ1 lower approximation function
from Property 2.9, we get an affine lower bound for lk:

(ak1x1 −Asn) +© ak2 ·©x2 +© . . . +© a′kn ·©x′n ≤ lk
ak1x1 +© (ak2x2 −Asn) +© . . . +© a′kn ·©x′n −Asn ≤ lk
(ak1x1 + ak2x2 −Asn) +© . . . +© a′kn ·©x′n − 2Asn ≤ lk

. . .

ak1x1 + ak2x2 + · · ·+ a′knx
′
n − (4n− 1)Asn ≤ lk

(4.6)

Combining Equation 4.5 with 4.6 we get:

ak1x1 + ak2x2 + . . .+ a′knx
′
n − (4n− 1)Asn ≤ lk ≤ bk

ak1x1 + ak2x2 + . . .+ a′knx
′
n ≤ bk + (4n− 1)Asn (4.7)

Hence the FP loop LF described by A′′ ·©
(
x

x′

)
≤ b is approximated by the rational

loop LQ described by A′′
(
x

x′

)
≤ c where c = b+ colvectm((4n− 1)Asn).

It remains to apply Theorem 4.3 and Theorem 4.4 on LQ. If an ARF f is found for
LQ then f is also an ARF for LF by Proposition 1.2.

Example 4.3. Consider the program Pilog37q from Example 4.1. We are interested
in its FP version Pilog37f in which variables are of myfloat type. The rounding mode
is to-nearest.

We have Asn = 5. Thus Pilog37f is approximated by the rational loop P#
ilog37f described

by
(
Af A′f

)(x
x′

)
≤ c such that:

Af = Aq, A
′
f = A′q, c = b+ colvect6(35) = c2 =

(
−2 34 35 35 34 36

)T
(4.8)

By applying Theorem 4.3 and Theorem 4.4, ARF for Pilog37f exist and are of the form
f(x1, x2) = φ1x1 + φ2x2 + ψ such that φ1 ≥ 1 + 36φ2, φ2 ≥ 0 and ψ ≥ −2φ1 + 34φ2.
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We can have a better approximation of Pilog37f by noticing that there are less than
(4n − 1) operations per line. Moreover by only approximating the operations that
are not known to be exactly computed, we get the approximation P#

ilog37f2 described

by
(
Af2 A′f2

)(x
x′

)
≤ c2 such that:

Af2 = Aq, A
′
f2 = A′q, c2 =

(
−37 −1 10 10 4 6

)T
(4.9)

By applying Theorem 4.3 and Theorem 4.4, ARF for Pilog37f2 exist and are of the
form f(x1, x2) = φ1x1+φ2x2+ψ such that φ1 ≥ 37+222φ2

1322 , φ2 ≥ 0 and ψ ≥ −37φ1−φ2.
We can verify that the space of ARF for P#

ilog37f is a strict subset of the space of
ARF for P#

ilog37f2. That is we detect a wider range of ARFs with P#
ilog37f2.

To get even more better approximations, we could also use pairs of k-PAA func-
tions instead of simply affine ones. However it would introduce efficiency issues: the
adaptation would not remain polynomial.

Theorem 4.6 (From a SLF to an exponential number of SLQ). Consider

the FP type F. Consider also the SLF LF described by A′′ ·©
(
x

x′

)
≤ b such that

A′′ ∈ Fm×2n, b ∈ Fm×1 and x, x′ ∈ Fn×1. Consider the pair (µ, ν) of k-PAA. The
(µ, ν)-abstraction of LF is composed of a disjunction of k(4n−1)m SLQ.

Proof. The proof is similar to that for the general FP version of the PR algorithm
(Theorem 4.5). The difference is that when approximating by below one operation,
there are k cases to take into account. Since there are (4n − 1)m operations, the
theorem follows.

Last we focused on the specific case of SLF. Our idea can be extended to the more
general case of single-while programs that only use what we call F-linear expressions.

Definition 4.5 (F-linear expressions). Let Ê be a FP expression. Replace all the
FP operations in Ê by rational operations. If the obtained expression is linear then
we say that Ê is F-linear.

We can show that if we approximate all FP operations in a F-linear expression using
some affine approximation function then we will get linear expressions.
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4.4 Conclusion

We have studied the hardness of termination proofs for Simple Loops when the vari-
ables are of FP type. We have focused on termination inferred from the existence of
ARFs. The problem of deciding the existence of LRFs for SLZ was studied in depth
very recently and was shown to be coNP-complete. To the best of our knowledge, our
work is the first attempt at providing a similar result for FP numbers: the problem of
deciding the existence of ARFs for SLF is coNP-hard. This is a very valuable informa-
tion as it dissuades us from looking for a decision algorithm that is both polynomial
and complete.

To design a polynomial algorithm, we have traded completeness for efficiency. We
have proposed the first adaptation of the Podelski-Rybalchenko algorithm for Simple
FP Loops. This is achieved by means of affine approximations. As we have provided
a sufficient but not necessary condition for inferring termination, experimentations
need to be conducted in order to get a practical evaluation of the approach. This is
left for future work.
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Chapter 5

On the Local Approach for
Floating-Point Computations

Abstract. In this chapter, we are interested in the local approach for analyzing
termination of Floating-Point (FP) computations. Contrarily to the previous chapter
which focused on Affine Ranking Functions (ARFs) for Simple FP Loops, this chapter
considers a wider class of termination arguments for a wider class of programs. We
rely on the Size-Change (SC) principle as well as on its generalization to monotonicity
constraints. To our knowledge, our work is the first one that shows in details how to
use these two well-known approaches when handling FP numbers.

Résumé. Dans ce chapitre, nous nous intéressons à l’approche locale pour analyser
la terminaison des calculs flottants. Contrairement au chapitre précédent qui s’est
concentré sur les Fonctions de Rang Affines pour les Boucles Flottantes Simples, ce
chapitre considère une plus large classe d’arguments de terminaison pour une plus
large classe de programmes. Nous nous basons sur le principe du Size-Change ainsi
que sur sa généralisation aux contraintes de monotonicité. À notre connaissance,
notre travail est le premier qui montre en détail comment utiliser ces deux approches
bien connues lorsque les variables manipulées sont de types flottants.

Prerequisites. This chapter relies on the following notions from previous chapters:
Section 1.5.2: Local approach for proving termination
Definition 1.9: Constraint D≺(x, x′) of ≺-decrease
Definition 1.7: LRFs for SLs
Definition 1.8: ARFs for SLs
Section 2.2: FP numbers basics
Hypothesis 2.1: Hypotheses on the behaviors of the FP computations



5.1. Introduction 73

Section 2.5: A few properties of FP computations
Definition 4.5: F-linear expressions
Definition 3.8: (µ, ν)-abstraction
Notation 1.1: The [. . . ] notation

5.1 Introduction

We start by reminding the general algorithm used for analyzing termination of pro-
grams using the SC approach.

Algorithm 5.1 (SCGen).

Input A program P = (S,S,R)

A WF structure (E,≺)

An abstraction function α≺:
R≺ = α≺(R) is the abstraction of R that links the program variables
through constraints of ≺-decrease

Output “Yes” if R≺ is cWF which implies that P terminates
“No” otherwise

Begin

1: R≺ = α≺(R)

2: R≺+
= Closure(R≺)

=
⋃{

l, x1 . . . xn, l
′, x′1 . . . x

′
n

∣∣l =? ∧ l′ =? ∧D≺i (x, x′)
}︸ ︷︷ ︸

Ti=
[
l=?,l′=?,D≺i (x,x′)

]
using the [. . . ] notation

3: If there is at least one x′j ≺ xj in each idempotent Ti then return “Yes”
Otherwise return “No”

End

This chapter is organized as follows. Section 5.2 shows to use SCGen for the anal-
ysis of FP computations. Section 5.3 extends the idea to monotonicity constraints.
Section 5.4 concludes.
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5.2 Size-change termination of floating-point computa-
tions

The WF structure (E,≺) and the abstraction function α≺ need to be defined when
using SCGen for analyzing FP computations. We respectively do so in Subsection
5.2.1 and 5.2.2. In Subsection 5.2.3, we present a full example.

5.2.1 Building the well-founded structure (E,≺)

SC is often presented with the WF structure (N, <). We investigate the case of (F, <).

Proposition 5.1. The structure (F, <) is WF.

Proof. F is finite and totally ordered by <, under the condition of Section 2.4,
(MyDir3).

Notation 5.1 (Qqmin ,Qqmax). We denote Qqmin = {q ∈ Q|q ≥ qmin} where qmin ∈
Q. We denote Qqmax

= {q ∈ Q|q ≤ qmax} where qmax ∈ Q.

Notation 5.2 (≺δ). We denote ≺δ, δ ∈ Q, the binary relation over Q such that
x1 ≺δ x2 ⇐⇒ x1 ≤ x2 + δ.

Proposition 5.2. The WF structure (Q−nmax ,≺smin) is a sound abstraction of (F, <
): the set of all possible descents in (F, <) is a subset of those in (Q−nmax ,≺smin).

Proof. The smallest distance between two consecutive FP numbers is smin and the
smallest FP number is −nmax. This applies whether or not subnormals are supported.

That is we can use (Q−nmax ,≺smin) instead of (F, <) in SCGen in a sound way:
if SCGen answers “Yes” when called with (Q−nmax ,≺smin) as WF structure then so
does it when called with (F, <).

Now we investigate the cases in which we know the ranges of the computations.
Notably we want to know whether a range analysis might be of any help in our
building of (E,≺).

Proposition 5.3. Suppose that results of all FP computations lay in some range
I = [x̂min, x̂max]. Let u be the smallest ULP of the numbers in I. Then the WF
structure (Qx̂min ,≺u) is a sound abstraction of (F ∩ I,<).

Proof. Similar to that of Proposition 5.2.
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Now we investigate the cases in which we use multiple FP types. Indeed SCGen

requires a single WF structure to perform.

Proposition 5.4. Let F1 and F2 be two FP types. Suppose that (Qq1 ,≺δ1) and
(Qq2 ,≺δ2) respectively are sound abstractions of (F1, <) and (F2, <). Then (F1∪F2, <)

is soundly abstracted by the WF structure (Qmin(−q1,−q2),≺min(δ1,δ2)).

Proof. Similar to that of Proposition 5.2.

Proposition 5.4 can be extended to more that two FP types. This is useful for
analyzing programs that manipulate single precision FP numbers, as well as double
and quadruple precision ones for example. Also machine integers can be viewed as
particular FP types, see proof of Theorem 4.2.

5.2.2 Defining the abstraction function α≺

Definition 5.1 (≺-abstraction). Let E be a constraint that links x = (x1 . . . xn)T

with x′ = (x′1 . . . x
′
n)T . Let Φ be some constraint of ≺-decrease that also links x with

x′. We say that Φ is a ≺-abstraction of E if ∀x, x′ : E =⇒ Φ.

Example 5.1. See Figure 5.1.

False

x′
1 < x2 ∧ x′

2 < x2

x′
1 < x2 ∧ x′

2 ≤ x2

x′
1 ≤ x2 x′

2 ≤ x2

True

x′
1 = x2 − 1 ∧ x′

2 = x2 − 1 . . .. . .

. . .

<-abstraction

Figure 5.1: On the right, the lattice L<
2 of all constraints of <-

decrease organized by =⇒ when x = (x1 x2)T and x is rational. The
most precise <-abstraction of a given constraint linking x with x′ is

the least element of L<
2 that satisfies Definition 5.1.

Proposition 5.5. The most precise <-abstraction, where < is the usual ordering, of
any FP arithmetic expression is computable.

Proof. We can enumerate all the possibles <-abstraction. We can also enumerate
all the possible values of the variables. Then we can simply check the validity of each
<-abstraction for each possible value of the variables.
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However finding the most precise<-abstraction of a general FP expression through
mere brute enumeration is of no use in practice: it would take too much memory and
time. In the following we restrict our study to F-linear expressions.

Algorithm 5.2 (α<FLin).

Input An F-linear expression Ê that links x̂ = (x̂1 . . . x̂n)T with x̂′ = (x̂′1 . . . x̂
′
n)T

Output A <-abstraction Ê< of Ê
Begin

1: Let ÊQ be a (µ, ν)-abstraction of Ê
obtained through the use of some affine approximation functions

2: Return α≺QLin(ÊQ) in which α≺QLin is defined in Algorithm 5.3

End

Algorithm 5.3 (α≺QLin).

Input A linear expression E ≡ c1x1 + · · ·+ cnxn + c′1x
′
1 + · · ·+ c′nx

′
n ≤ b

A WF structure (E,≺) where E refers to Qqmin for some qmin
and ≺ is a shorthand for ≺δ for some δ

Output The most precise ≺-abstraction E≺ of E
Begin

1: Init E≺ ← True

2: For each possible Φ ≡ x′i ≺ xj where ≺ refers to either ≺ or �
If ∀x, x′ : E =⇒ Φ Then E≺ ← E≺ ∧ Φ

3: Return E≺

End

Proposition 5.6. Algorithm α<FLin only requires to check the satisfiability of a poly-
nomial number of linear constraints in order to perform.

Proof. There are 2n2 possible Φ in α≺QLin.

We point out that satisfiability of the formula ∀x, x′ : E =⇒ Φ in α≺QLin is
decidable since theory of linear arithmetic over rationals is decidable. Also, the use
of (µ, ν)-abstraction in α<FLin introduces incompleteness: we might have Ê =⇒ Φ

without having Ê< =⇒ Φ.

5.2.3 Illustrative example

Let us analyze the program pscf presented in Figure 5.2 using the SC approach.
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float x1 = randFp ();
double x2 = 10;
while (x1 > 1 & x2 > 1) {

if(randBool ()) {
x1 = x1 / 2;
x2 = randFp ();

}
else x2 = x2 / 3;

}

Figure 5.2: The program pscf, inspired from that of Figure 1.2.

For simplicity, let us admit that termination of pscf can be decided from the
cWFness of the following transition relation: Rpscf = [x1 > 1, x2 > 1, x′1 = x1 /©f2︸ ︷︷ ︸

Ψ̂1

]∪

[x1 > 1, x2 > 1, x′1 = x1, x
′
2 = x2 /©d3︸ ︷︷ ︸

Ψ̂2

] in which /©f (resp. /©d) refers to the FP divi-

sion performed using the Ieee-754 binary32 (resp. binary64) precision type.

Building the WF structure (E,≺). Let Ff and Fd respectively represent the Ieee-
754 binary32 and binary64 precision type. The smallest subnormal in Ff is sf = 2−149

whereas that of Fd is sd = 2−1074. The biggest normal in Ff is nf = (2 − 2−23)2127

whereas that of Fd is nd = (2 − 2−52)21023. By Proposition 5.2, we can respectively
abstract (Ff , <) and (Fd, <) by (Q−nf ,≺sf ) and (Q−nd ,≺sd). By Proposition 5.4,
we can abstract (Ff ∪ Fd, <) by (Qmin(−nf ,−nd),≺min(sf ,sd)) = (Q−nd ,≺sd).

Abstracting into constraints of ≺-decrease. First we respectively abstract the
F-linear expressions Ψ̂1 and Ψ̂2 by the linear ones Ψ̂l

1 and Ψ̂l
2:

Ψ̂l
1 ≡ x1 > 1 ∧ x2 > 1 ∧ x′1 =

x1

2

Ψ̂l
2 ≡ x1 > 1 ∧ x2 > 1 ∧ x′1 = x1∧

∧ (1−Rdn)
x2

3
≤ x′2 ≤ (1 +Rdn)

x2

3
∧Rdn = 2−53

where Ψ̂l
1 is obtained using Property 2.3 while Ψ̂l

2 is obtained using Property 3.1
combined with a range analysis that says that x2 is always a normal number at the
beginning of each iteration. Now we call α≺QLin on these linear expressions and for the
WF structure (Q−nd ,≺sd). For example all the x′i ≺ sdxj constraints that abstract
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Ψ̂l
2 are listed as follows:

Ψ̂l
2 =⇒ x′1 �sd x1

Ψ̂l
2 =⇒ x′2 �sd x2

Ψ̂l
2 =⇒ x′2 ≺sd x2

Ψ̂l
2 =⇒ True

Thus the most precise constraint of ≺sd-decrease that abstracts Ψ̂l
2 is Φ2 ≡ x′1 �sd

x1 ∧ x′2 �sd x2 ∧ x′2 ≺sd x2 ∧ True ≡ x′1 �sd x1 ∧ x′2 ≺sd x2. Similarly the most
precise constraint of ≺sd-decrease that abstracts Ψ̂l

1 is Φ1 ≡ x′1 ≺sd x1.

SC analysis. It remains to analyze the cWFness of the relation R≺pscf = T = [x′1 ≺sd
x1] ∨ [x′1 �sd x1, x

′
2 ≺sd x2]. Its transitive closure is T + = [x′1 ≺sd x1] ∨ [x′1 �sd

x1, x
′
2 ≺sd x2] ∨ [x′1 ≺sd x1, x

′
2 ≺sd x2]. Since T + is a disjunction of relations that all

have a strict ≺sd-decrease then Rpscf is cWF.

5.3 Monotonicity constraints over floating-point numbers

We could also abstract into constraints of the form xi ≺ x′j instead of x′i ≺ xj in
α≺QLin, Algorithm 5.3.

Proposition 5.7. The structure (F, >) is WF. The WF structure (Qnmax ,�smin)

where �smin is the converse of ≺smin is a sound abstraction of (F, >).

Proof. Similar to that of Proposition 5.2 with noticing that the biggest FP is nmax.

Example 5.2 (Following Section 5.2.3). Suppose we hadRpscf = [x1 < 1000, x2 <

1000, x′1 = x1 ·©f2] ∪ [x1 < 1000, x2 < 1000, x′1 = x1, x
′
2 = x2 ·©d3.5] in which ·©f

(resp. ·©d) refers to the FP multiplication performed using the Ieee-754 binary32
(resp. binary64) precision type.
First the WF structure to consider is (Qnd ,�sd). Then the abstraction into constraints
of �sd-decrease is R≺pscf = T = [x′1 �sd x1] ∨ [x′1 �sd x1, x

′
2 �sd x2]. Its transitive

closure is T + = [x′1 �sd x1] ∨ [x′1 �sd x1, x
′
2 �sd x2] ∨ [x′1 �sd x1, x

′
2 �sd x2]. Since

T + is a disjunction of relations that all have a strict �sd-decrease then Rpscf is cWF.

Then we can mix constraints of ≺-decrease with those of �-decrease. We can
enrich the abstractions even more by considering constraints of the form xi ≺ xj as
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well as x′i ≺ x′j . We get monotonicity constraints, which generalize constraints of
decrease.

Definition 5.2 ((N, <)-monotonicity constraint, [CLS05, Definition 1]). Let
x = (x1 . . . xn)T be a vector of variables, xi ∈ N. The constraint M<(x, x′) is a
constraint of (N, <)-monotonicity if it is a (possibly void) conjunction of either x < y

or x ≤ y where x, y ∈ {x1 . . . xn, x
′
1 . . . x

′
n}.

Definition 5.3 (Balanced (N, <)-monotonicity constraint, [CLS05, Defini-
tion 8]). A (N, <)-monotonicity constraint M<(x, x′) is balanced if

(
M<(x, x′) =⇒

xi < xj
)
⇐⇒

(
M<(x, x′) =⇒ x′i < x′j

)
.

Lemma 5.1 ([CLS05, Theorem 5]). LetM<(x, x′) be a balanced (N, <)-monotoni-
city constraint that is not necessarily idempotent. If there is a ranking function for
M<(x, x′) then there is a LRF for the SLZ described by M<(x, x′).

Now we investigate (F, <)-monotonicity constraints.

Definition 5.4 ((Qqmin ,≺δ)-monotonicity constraint M≺(x, x′), (N, <)-reduc-
tion). Similar to Definition 5.2 except that we use Qqmin for some qmin instead of
N and ≺δ for some δ instead of <. The (N, <)-reduction of M≺(x, x′) is the (N, <)-
monotonicity constraint obtained simply by making the variables live in N and using
< instead of ≺δ.

Proposition 5.8. LetM≺(x, x′) be a (Qqmin ,≺δ)-monotonicity constraint. If there is
a ranking function forM≺(x, x′) then there is a LRF for its balanced (N, <)-reduction.

Proof. (Qqmin ,≺δ) has a sub-order isomorphic to the naturals, namely the set
{qmin + iδ|i ≥ 0}. Thus from the assumption that M≺ has a ranking function, it
follows that the (N, <)-reduction of M also has a ranking function by application
of the isomorphism. Now the conclusion about the balanced constraint is obtained
through Lemma 5.1.

Algorithm 5.4 (MonF).

Input A program P = (S,S,R)

A relation ≺δ that we shorten ≺ and
that is WF on some Qq1 and cWF on some Qq2

(see Notation 5.1)
An abstraction function α♦:
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R♦ = α♦(R) is the abstraction of R that links the program
variables through constraints of ≺-monotonicity

Output “Yes” P terminates
“I don’t know” otherwise

Begin

1: R♦ = α♦(R)

2: R♦+ = Closure(R♦)

=
⋃ Ti where Ti =

[
l =?, l′ =?,M≺i (x, x′)

]
3: For each M≺i (x, x′) of the Ti that have l = l′

Let M<
i (x, x′) be the balanced (N, <)-reduction of M≺i (x, x′)

If M<
i (x, x′) does not admit ARF
Then return “I don’t know”

4: Return “Yes”
End

Theorem 5.1. Algorithm 5.4 is sound.

Proof. The l = l′ test is because if l 6= l′ then Ti is trivially WF/cWF. If each
M≺i (x, x′) admits ARF then R♦ is cWF by Termination Characterization 1.2.f: P
terminates.

Example 5.3. Suppose that we could abstract < on F by ≺δ for some δ that is WF on
Qqmin for some qmin and cWF on Qqmax for some qmax. Consider the monotonicity
constraint M≺ ≡ x1 ≺δ x′2 ∧ x2 �δ x3 ∧ x′3 �δ x′1 in which the variables are such that
qmin ≤ xi ≤ qmax. The balanced (N, <)-reduction of M≺ is M< ≡ x1 < x′2 ∧ x2 ≤
x3∧x′3 < x′1∧x′2 ≤ x′3 ∧ x3 ≤ x1 in which the variables are such that nmin ≤ xi ≤ nmax
for some nmin and nmax in N. See Figure 5.3 for illustration. We can check with PR
that M< admits ARFs, for example f(x1, x2, x3) = −x1 + nmax since it is such that
∀xi, x′i : M< =⇒ f(x1, x2, x3) ≥ f(x′1, x

′
2, x
′
3) + 1 ∧ f(x1, x2, x3) ≥ 0. Thus M≺ has

a ranking function.

We point out that since the set of FP numbers is finite, we can always construct
an abtraction ≺ on Q of < on F that is both WF and cWF. Now we have the intuition
that the test made at step 3 of Algorithm 5.4 is complete for R♦. That is, R♦ is
cWF if and only if each M≺i (x, x′) admits ARF. We believe so because the test of
Proposition 5.8 considers LRFs for a relation ≺ which is WF but not cWF. To make
it complete for the case where ≺ is WF and cWF, we also need to take into account
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b b b

b b b

x1 x2 x3

x′
1 x′

2 x′
3
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+δ

(a) Monotonicity graph of M≺

b b b

b b b

x1 x2 x3

x′
1 x′

2 x′
3

0

0

+1

0

0

(b) Monotonicity graph of the balanced
(N, <)-reduction M< of M≺. The variable
x1 is increased by one through M<.

Figure 5.3: Illustration of Example 5.3

the infinite increasing chains: we believe the extension to ARFs does so. This is yet
to be proven and is left for future work.

5.4 Conclusion

We have shown how to use the SC and the monotonicity constraints frameworks
for the analysis of FP computations. Our work can be seen as part of a series of
connected recent results on these two approaches. Notably [Ben09] considered the
case of constraints over any well-founded domain which was afterwards studied in
depth for the particular case of the integer domain in [Ben11].

About complexity concerns, deciding termination by SC is a PSPACE-complete
when considering (N, <). However a polynomial restriction of SC has already been
developped in [BL07] and has produced very satisfactory practical results. The FP
adaptations of the SC and monotonocity constraints frameworks that we developed
need to be put to the test by practical experiments. This is left for future work.
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Part III

Practical Experiments
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Chapter 6

Practical Experiments

Abstract. In this final chapter, we experiment some of the techniques we developped
in this thesis. Our objective is twofold. First we evaluate the capabilities of current
state-of-the-art termination analyzers regarding Floating-Point (FP) computations.
Then we show that our techniques give good results in practice and that they can hold
their ground against those implemented in currently existing tools. The evaluation
is done on a test suite that we built from source codes of widely used programs. To
our knowledge, our test suite is the first one that is designed for termination analysis
of FP computations.

Résumé. Dans ce dernier chapitre, nous expérimentons certaines des techniques que
nous avons développées dans cette thèse. Notre objectif est double. Tout d’abord,
nous évaluons les performances des analyseurs de terminaison actuels par rapport
aux calculs flottants. Ensuite, nous montrons que nos techniques donnent de bons
résultats dans la pratique et qu’elles tiennent tête à celles mises en œuvre dans les
outils existants. L’évaluation est faite sur une suite de tests que nous avons élaborée à
partir de codes sources de programmes largement utilisés. À notre connaissance, notre
suite de tests est la première dédiée à l’analyse de terminaison de calculs flottants.

Prerequisites. This chapter relies on the following notions from previous chapters:
Definition 1.7: Linear Ranking Functions (LRFs)
Section 2.4: Hypotheses on the behaviors of the FP computations
Algorithm 3.2: PaaTerm
Property 3.2: The (µ2, ν2) pair of approximation functions
Definition 4.5: F-linear expressions
Section 4.3.2: A FP version of Podelski-Rybalchenko
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6.1 Introduction

All the experimentations are conducted on a regular machine and with a timeout as
shown in Figure 6.1.

Machine’s processor Intel Core i5-5200U 2.20GHz
Machine’s RAM 8GB
Time out 300s

Figure 6.1: Parameters of the experimentations

This chapter is organized as follows. Section 6.2 presents the test suite we designed
for termination analysis of FP computations. Section 6.3 shows existing tools handle
it. Section 6.4 presents a research prototype we developped. It implements the
PaaTerm algorithm presented in Chapter 3. Section 6.5 studies termination of a
specific FP computation. The proof is semi-manual. This last section illustrates the
gap that fully automatic termination provers still need to fill in order to analyze
relatively complex FP computations. Section 6.6 concludes.

6.2 The Floops test suite

We want to evaluate the capabilities of the current state-of-the-art termination ana-
lyzers regarding FP computations. We build a test suite for that purpose. Indeed the
author knows of no test suite dedicated to termination analysis of FP computations.
For example TermComp does not consider FP computations yet.

TermComp [Gie+15]. TermComp is an international competition which aims
to evaluate tools for fully-automated termination analysis. It has been organized
annually since 2004. Different programming paradigms are considered: term rewriting
systems, imperative programming, logic programming and functional programming.
The goal is to demonstrate the power of the leading tools in each of these areas. The
Termination Problem Data Base1 (TPDB) is the collection of all the examples used in
the competition. For the time being, there is no entry dedicated to FP computations
in the TPDB.

The Floops test suite2. We want our test suite to be built from already existing
programs. Our aim is to show that termination of FP computations is a practical

1http://termination-portal.org/wiki/TPDB
2https://bitbucket.org/fmaurica/floops/

http://termination-portal.org/wiki/TPDB
https://bitbucket.org/fmaurica/floops/
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problem and concerns a wide variety of software. Also we want our test suite to be
built from publicly available source codes. This leaves anyone free to use it for future
experimentations. For these reasons, we decided to skim the C source codes of the
Ubuntu distribution and we selected the programs presented in Figure 6.2: we call
Floops the obtained test suite. In the process we discovered buggy programs which
we reported to the developers3 4.

Package Description
ubuntu1.c bcache-tools Marsaglia polar method
ubuntu2.c gauche Random number generator
ubuntu3.c ghostscript Round a binary64 number
ubuntu4.c glibc Excerpt of Bessel’s function
ubuntu5.c libpano Rotate equirectangular image
ubuntu6.c maxlib Modulo of a binary64 number
ubuntu7.c maxlib Large-Kolen adaptation model
ubuntu8.c postfix Handle destination delivery failure
ubuntu9.c postfix Handle destination delivery failure
ubuntu10.c bash Integer log10
ubuntu11.c git Newton’s method with binary32 numbers
ubuntu12.c open-vm-tools Newton’s method with binary64 numbers

Figure 6.2: The Floops test suite: a test suite for termination anal-
ysis of FP computations built from the source code of the Ubuntu

distribution.

6.3 State-of-the-art termination analyzers

Now how do current state-of-the-art termination analyzers handle Floops? We inves-
tigated Julia, Juggernaut, 2LS and AProVE. Results are shown in Figure 6.3.

Julia5 [Spo16]. Julia is a commercial tool for static analysis of Java code and Java
bytecode. Julia won the first prize in the Java Bytecode Recursive Contest at Term-
Comp in 2009 and 2010. It uses Abstract Interpretation techniques. Unfortunately

3In the ImageMagick package, http://www.imagemagick.org/discourse-server/viewtopic.php?
t=31506. The promptness with which the developers fixed the bug is noteworthy. ImageMagick
is used on many web servers including those of Facebook: a bug in it can cause dramatic events,
http://www.securityweek.com/facebook-awards-40000-bounty-imagetragick-hack.

4In the GSL library, https://savannah.gnu.org/bugs/?50459.
5https://www.juliasoft.com/

http://www.imagemagick.org/discourse-server/viewtopic.php?t=31506
http://www.imagemagick.org/discourse-server/viewtopic.php?t=31506
http://www.securityweek.com/facebook-awards-40000-bounty-imagetragick-hack
https://savannah.gnu.org/bugs/?50459
https://www.juliasoft.com/
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Julia Juggernaut 2LS AProVE
ubuntu1.c ? 7 3s ? 8s ?
ubuntu2.c ? 7 43s ? 1s ?
ubuntu3.c ? ? TO ? 5s ?
ubuntu4.c ? ? TO ? TO ?
ubuntu5.c ? 3 4s ? 6s ?
ubuntu6.c ? ? TO ? TO ?
ubuntu7.c ? ? TO ? 2s ?
ubuntu8.c ? ? TO ? TO ?
ubuntu9.c ? ? TO ? 4s ?
ubuntu10.c ? 3 6s 3 2s ?
ubuntu11.c ? ? TO ? TO ?
ubuntu12.c ? ? TO ? TO ?

Figure 6.3: 3: always terminates. 7: there is at least one possible
value of the variables that leads to non-termination. ?: can decide

neither 3nor 7. TO: time out after 300s.
Initial ranges of the variables are fixed, to [0, 103] for most of all.

it cannot prove nor disprove termination of any of (Java translations of) Floops’ pro-
grams. According to one of Julia’s scientific consultant, this is because the tool does
not support FP computations yet: for the time being they are simply abstracted into
the greatest element > of the abstract lattice that is taken into consideration.

Juggernaut6 [DKL15]. Juggernaut is a termination prover for C programs. FP
numbers are supported. Juggernaut generates a termination specification from the
source code. Then it calls a second-order SAT solver. The tool is complete: it can
always decide termination of the considered program. The only question is whether
it can do so within the alloted time. Of the 12 programs of Floops, Juggernaut says
that 2 universally terminates and 2 existentially non-terminates.

2LS7 [SK16]. 2LS is a tool for analyzing C programs. It supports termination anal-
ysis of FP computations. 2LS uses a template-based approach. Hence the problem is
reduced to quantifier elimination in first order logic. Of the 12 programs of Floops,
2LS can only decide termination of one. However 2LS times out less often compared
to Juggernaut.

6https://github.com/blexim/synth/
7http://svn.cprover.org/wiki/doku.php?id=2ls_for_program_analysis

https://github.com/blexim/synth/
http://svn.cprover.org/wiki/doku.php?id=2ls_for_program_analysis
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AProVE8 [Gie+17]. AProVE is a system for automated termination and com-
plexity proofs of Term Rewrite Systems (TRS) and derivatives. AProVE also han-
dles several other formalisms such as imperative programs (Java Bytecode and C /
LLVM), functional programs (Haskell 98) and logic programs (Prolog). The power of
AProVE is demonstrated at TermComp where it regularly wins first places in several
categories. Unfortunately AProVE does not provide support for FP numbers for the
time being.

Non-determinism. The first three programs ubuntu1.c, ubuntu2.c and ubuntu3.c
use non-deterministic assignements. They should be treated carefully. Consider for
example ubuntu1.c which is shown in Figure 6.4. The program may or may not
always terminate depending on the semantics of the nondet() function:

(ubuntu1-a) Suppose nondet() to be uniform. Notably suppose that it returns all
possible binary64 numbers when called infinitely many times. Then
ubuntu1.c always terminates. Indeed we will eventually have, say, x = 0

and y = 0 which will unsatisfy the loop condition.
(ubuntu1-b) Suppose nondet() to be not uniform. In particular, suppose that it

always returns some binary64 numbers while never returning other ones
when called infinitely many times. Then ubuntu1.c can fail to terminate.
Indeed we can keep getting, say, x = 1 and y = 1 which always satisfies
the loop condition.

double x, y, s;
do {

x = nondet (); y = nondet ();
s = x * x + y * y;

} while (s >= 1);

Figure 6.4: ubuntu1.c as passed to Juggernaut. The nondet()
function is a function specific to Juggernaut for indicating non-
deterministic values. Juggernaut says that ubuntu1.c can fail to ter-
minate: Juggernaut considers nondet() to be not uniform, see Point

(ubuntu1-b).

8http://aprove.informatik.rwth-aachen.de/

http://aprove.informatik.rwth-aachen.de/
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6.4 The FTerm analyzer

Now we present a tool we developped for analyzing termination of FP computations.
It uses the termination by gradual tightness approach. First in Subsection 6.4.1, we
present a few relevant implementation details. Then in Subsection 6.4.2, we evaluate
the practical efficiency of our tool.

6.4.1 Implementing termination by gradual tightness

FTerm9. We have implemented the PaaTerm algorithm in Java. We call FTerm
our tool. It is as follows:

Input: a single-while program P written in a C-like syntax, see Figure 6.5.
Output: “Yes” P terminates for all possible input or “I don’t know”.
Supported FP types: any FP type of parameters β, p, emin, emax.
Supported rounding mode: to-nearest.

myfloat(2 ,53 , -1022 ,1023) time , x_expected , x_period;
while(x_expected + x_period <= time) {

x_expected = x_expected + x_period;
}
grange(0 <= time <= E15 , 0 <= xexpected <= E15 ,

1 <= xperiod <= E15);

Figure 6.5: The program ubuntu7.c from the Floops test suite
written in FTerm’s input syntax. The considered FP type is defined
through the instruction myfloat(β, p, emin, emax). The instruction
grange(x1 ≤ a1 ≤ b1, . . . , xn ≤ an ≤ bn) indicates the global

range of each variable: xi ∈ [ai, bi].

Internal operations (Binterm, Aprational). The two following points are of
interest regarding the internal operations performed by FTerm:

(Int1) We use Binterm10 [SMP10] to analyze termination of the obtained rational
approximations. Binterm is the analyzer that was used by Julia to win first
prizes at TermComp. It implements the following techniques: synthesis of
LRFs, ELRFs, LLRFs and the monotonicity constraints framework.

9https://bitbucket.org/fmaurica/fterm/
10https://bitbucket.org/fmaurica/binterm/

https://bitbucket.org/fmaurica/fterm/
https://bitbucket.org/fmaurica/binterm/
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(Int2) We use the Aprational library11 for most of the computations. Indeed FTerm
only manipulates rational numbers in order to avoid rounding error problems
and overflow problems.

Exceptional conditions handling. We consider that exceptional conditions such
as overflows or division by zero do not occur. This is an information we can use to
enrich the constraints that define the program to study. For example it gives the
following constraints from the operation t = x /©y: t, x, y ∈ [−nmax, nmax] and y 6= 0.
Another way to interpret this is to say that if an exceptional condition occurs then
the program terminates, since the corresponding constraint has been violated.

Automation level. FTerm is still experimental. Much of PaaTerm is implemented
but there are a few things that remain manual for the time being:

(Man1) We manually provide the global ranges of the variables. That is the ranges
within which the variables lay at any program point at any time. The key-
word grange serves this purpose, see Figure 6.5.

(Man2) We manually indicate known FP properties such as the exactness of the FP
multiplication by a power of β.

These manipulations can be automated as follows for future versions. First (Man1)
can be automated by making FTerm call tools such as Fluctuat to get the ranges.
Then (Man2) can be automated by providing the list of FP properties that we know
and that we want to consider.

6.4.2 Practical evaluation

How does FTerm handle Floops? Of the 12 programs in the benchmark, 8 are single-
while ones that can be analyzed by FTerm. Results are shown in Figure 6.6. We
comment them in a Q&A fashion.
Q1. How efficient is FTerm?
R1. We answer in two parts. First we consider the number of programs of which
termination is decided. Then we consider the overall time the analysis takes to
perform.

(R1-1) FTerm decides termination of 5 of the 8 programs. These 5 programs only
manipulate F-linear expressions: their rational approximations only manipu-
late linear expressions. This is not the case of the 3 remaining programs which

11A library for manipulating rational numbers, http://www.apfloat.org/.

http://www.apfloat.org/
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Without
range analysis With range analysis Number of

Verdict Verdict k
Binterm
time variables

u3.c ? ? 5 TO 3
u4.c ? ? 5 TO 5
u5.c ? 3 4 157s 2
u6.c ? ? 5 TO 4
u7.c ? 3 2 131s 3
u8.c ? 3 1 63s 4
u9.c ? 3 1 65s 4
u10.c ? 3 1 1s 2

Figure 6.6: FTerm results on Floops. See Figure 6.3 for the nota-
tion. The range analysis is done manually for now: see Section 6.4.1,

Automation level (Man1).

manipulate non-F-linear expressions: their rational approximations manipu-
late non-linear expressions. Nevertheless FTerm decides termination of more
programs of Floops than current state-of-the-art tools.

(R1-2) FTerm is slow: it generally answers within minutes or times out. This is
partly due to the fact that the size of the rational approximation exponentially
grows with k. However there is another cause that significantly affect FTerm’s
performance: manipulating big rational numbers can require much space and
thus much time. For example using the binary64, the absolute error for the
subnormals is bounded by As = εβemin = 2−52

2 2−1022 =

1/404804506614621236704990693437834614099113299528284236713

80271605486067913599069378392076740287424899037415572863362

38227796174747715869537340267998814770198430348485531327227

28933815484186432682479535356945490137124014966849385397236

20671129831911268162011302471753910466682923046100506437265

5017292012526615415482186989568.

Q2. How important is the range analysis?
R2. Range analysis is very important: without it FTerm cannot decide anything.
The question that remains and that we leave for future work is: how precise the range
analysis should be so that we get satisfactory results? Indeed on one hand, if it is
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not precise enough then we might not be able to prove termination. On the other
hand, computing very precise ranges might take too much time. See Appendix C for
a discussion on range analysis for FP computations.

6.5 Semi-manual proofs

In this section, we investigate a few of the Floops programs of which termination
could not be decided. We use Mathematica to assist us. First in subsection 6.5.1,
we give a few generalities concerning Mathematica. Then in subsection 6.5.2, we
illustrate its use through concrete examples.

6.5.1 The Mathematica software suite

Mathematica is a proprietary Computer Algebra System developed by Wolfram Re-
search. We interact with Mathematica’s kernel through the Wolfram Language.
Mathematica has a lot of features. Those that are of interest to us and that we
used while writing this thesis are as follows:

(Mat1) Support for symbolic computation.
(Mat2) Solvers for systems of inequalities over integers, real numbers and complex

numbers. Solvers for recurrence relations. Solvers for optimization problems.
(Mat3) Support for arbitrary precision arithmetic and interval arithmetic.
(Mat4) Tools for data and function vizualization.
(Mat5) A language that is easy to learn, an intuitive user interface, a concise docu-

mentation.

The Reduce function. Mathematica’s solvers are very handy for theorem proving.
In particular, Mathematica provides the Reduce function which can solve polynomial
systems, univariate transcendental equations, Diophantine systems and many others.
Reduce can also perform existential and universal quantifier elimination. Reduce
considers variables to be existentially quantified when not explicited. Reduce and
related functions use about 350 pages of Wolfram Language code and 1400 pages of
C code12: this is a suggestion of their richness.

To illustrate the use of Reduce, suppose we want to decide existence of LRFs for
the simple relation Rs =

{
(x, x′) ∈ R2|x′ = x − 1 ∧ x > 0

}
. We have: ∃a∀x, x′ :

12http://reference.wolfram.com/language/tutorial/SomeNotesOnInternalImplementation.html

http://reference.wolfram.com/language/tutorial/SomeNotesOnInternalImplementation.html
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xRsx′ =⇒ ax ≥ ax′ + 1 ∧ ax ≥ 0︸ ︷︷ ︸
Ψ(x,x′,a)

, or equivalently: ∃a¬∃x, x′ : ¬Ψ(x, x′, a). We

check it with Mathematica as follows:
? xRx1 := x1 == x - 1 && x > 0

psi := xRx1 => a*x >= a*x1 + 1 && a*x >= 0
Reduce[Exists[{x, x1}, !psi], Reals]

> a < 1

That is ∃x, x′ : ¬Ψ(x, x′, a) ⇐⇒ a < 1 or ∀x, x′ : Ψ(x, x′, a) ⇐⇒ a ≥ 1. Thus
LRFs exist for Rs and they are completely described by f(x) = ax such that a ≥ 1.

6.5.2 Floating-point implementations of Newton’s method

Let us prove termination of ubuntu11.c and ubuntu12.c which are FP implementa-
tions of Newton’s method for computing an approximation of the square root of a
number. They are shown in Figure 6.7.

float d, x = val;
if (val == 0) return 0;
do {

float y = (x + (float)val/x)/2;
d = (y > x) ? y - x : x - y;
x = y;

} while (d >= 0.5);
(a) ubuntu11.c

double xn , xn1 = x;
if (x == 0.0) return 0.0;
do {

xn = xn1;
xn1 = (xn + x/xn) / 2.0;

} while (fabs(xn1 - xn)>1E-10);

(b) ubuntu12.c

Figure 6.7: Computing an approximation of the square root of a
number using FP versions of Newton’s method.

We recall that Newton showed that
√
t = limn→∞un where (un) is the sequence

over real numbers defined as: u0 = t ∧ un+1 = 1
2

(
un + t

un

)
. In practice we end the

computation when the desired accuracy is reached. That is when |un+1 − un| < θ

for some θ > 0. What ubuntu11.c and ubuntu12.c do is to iteratively compute un
using FP computations. Call (vn) the corresponding sequence over FP numbers:
v0 = t∧ vn+1 =

(
vn +© t /©vn

)
/© 2. Computation terminates when |vn+1 −© vn| < θ.

In the following, we first show how to prove termination of the iterative computation
of (un). Then we do so for (vn).

Termination proof for (un). We are interested in proving the cWF-ness of the
relation Ru =

{
(u, u′) ∈ R2|u′ = 1

2

(
u + t

u

)
∧ |u′ − u| ≥ θ

}
for t > 0 and θ > 0
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given. To that end, we show that Ru cannot be infinitely applied while satisfy-
ing |u′ − u| ≥ θ. Indeed |u′ − u| strictly decreases over successive applications of
Ru: ∃δ∀u, u′, u′′, t, θ : uRuu′ ∧ u′Ruu′′ =⇒ |u′ − u| ≥ |u′′ − u′|+ δ︸ ︷︷ ︸

Ψ(u,u′,u′′,δ,t,θ)

, δ > 0, or equiv-

alently: ∃δ¬∃u, u′, u′′, t, θ : ¬Ψ(u, u′, u′′, δ, t, θ). We check it with Mathematica for
θ = 1

2 for example, as it is the case for ubuntu11.c:

? theta := 1/2
uRu1 := u1 == (u + t/u)/2 && Abs[u1 - u] >= theta
u1Ru2 := u2 == (u1 + t/u1)/2 && Abs[u2 - u1] >= theta
psi := uRu1 && u1Ru2 => Abs[u1 - u] >= Abs[u2 - u1] + delta
Reduce[Exists[{u, u1, u2, t, theta},

!psi && t > 0 && delta > 0], Reals]
> delta > 1/2

Mathematica says that ∃u, u′, u′′, t, θ : ¬Ψ(u, u′, u′′, δ, t, θ) ⇐⇒ δ > 1
2 or ∀u, u′, u′′, t, θ :

Ψ(u, u′, u′′, δ, t, θ) ⇐⇒ δ ≤ 1
2 with δ > 0. That is |u′ − u| is decreased of at least 1

2

after each application of Ru for any given t > 0 and for θ = 1
2 : Ru is cWF.

Termination proof for (vn). Checking termination of the iterative computations of
(vn) is not as straightforward as that of (un) due to rounding errors. This is illustrated
in Figure 6.8(a), 6.8(b) and 6.8(c). Let us find sufficient conditions for termination.
Notably we are interested in finding conditions Φ for which the guard condition is
eventually unsatisfied: Φ =⇒ ∃m : ∆vm < θ where (∆vn) is the sequence defined
as ∆vn = |vn+1 −© vn|. To that end, let us constrain θ to be such that L < θ where
L is an eventual upper bound of ∆vn:

∃m∀m′ : m ≤ m′ =⇒ ∆vm′ ≤ L (6.1)

Indeed if L < θ then eventually ∆vn < θ since eventually ∆vm′ ≤ L.
How to determine L? We resort to abstractions: we approximate (∆vn) by real

sequences of which we know how to compute the bounds. In the following, µ? and ν?

respectively denote lower and upper approximation functions that are to be defined
depending on the desired precision. First we get rid of the FP subtraction in (∆vn):

∀n : ∆vn ≤ ν?

(
|vn+1 − vn|

)
(6.2)

Then we get rid of the FP operations in (vn) in a similar way: by using rational
sequences (w+

n ) and (w−n ) respectively obtained by upper and lower approximating
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(a) When using real computations,
|un+1 − un| where un+1 = f(un)
strictly decreases at each step: ter-
mination is always guaranteed.

(b) When using FP computations,
the function that defines the se-
quence becomes discrete and unin-
tuitive.

(c) Can we be sure that situations
like this never happen when using
FPs?

(d) We abstract the function g,
vn+1 = g(vn), by any function g#

that lays in the gray area.

Figure 6.8: Studying rational and FP versions of Newton’s method
for computing square roots

the operations in (vn).
∀n : w−n ≤ vn ≤ w+

n

w−n = µ?

((
µ?

(
vn + µ?(t/vn)

))
/2

)
w+
n = ν?

((
ν?

(
vn + ν?(t/vn)

))
/2

) (6.3)



6.6. Conclusion 95

as shown in Figure 6.8(d). It follows that |vn+1 − vn| ≤ |w+
n+1 − w−n |. Then from

Equation 6.2, from monotonicity of µ? and ν? and by considering the limits:

∃m∀m′ : m ≤ m′ =⇒ ∆vm′ ≤ ν?

(
|w+
∞ − w−∞|

)︸ ︷︷ ︸
L

(6.4)

where w+
∞ = limn→∞w

+
n and w−∞ = limn→∞w

−
n . We can show that these limits

are finite and that they each are the unique fixpoint of the function that defines
the considered sequence. Now we can compute the range of t for which L < θ, for
example for ubuntu11.c:

? (* Let us use the PAA (mu2,nu2) for example. Definitions in Appendix A. *)
theta := 1/2
L := Nu2[Abs[wn - wp]]
Reduce[
(* FP division by 2 needs not to be approximated: see FP Property 2.3 *)
wn == Mu2[wp + Mu2[t/wp]]/2 &&
wp == Nu2[wn + Nu2[t/wn]]/2 &&
L < theta &&
t > 0 && wp > 0 && wn > 0, {wp, wn}, Reals]

> 0 < t <= #
(* # represents a big real number.
* We do not show its exact value for readability.
* It is such that 7.8e12 <= # < 7.9e12 *)

That is ubuntu11.c terminates for any value of val in ]0, 7.8 · 1012].

We apply the same reasoning to ubuntu12.c. We just need to modify our Mathe-
matica definitions to meet the binary64 format and to set L to 10−10. Mathematica
results are such that ubuntu12.c terminates for any value of x in ]0, 9 · 1010].

We point out that the use of (µ2, ν2) is only an arbitrary choice. It could have
been another pair of PAA. Notably we can use Theorem 3.3 to devise tighter pairs
such that we will obtain potentially bigger initial ranges that lead to termination.

6.6 Conclusion

To our knowledge, we presented the first test suite that is specifically designed for ter-
mination analysis of FP computations. The test suite is built from various programs
in the wild: a few of them had termination bugs due to the peculiarity of FP compu-
tations. This clearly suggests the need for developping tools that can automatically
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prove or disprove their termination. We put current state-of-the-art termination an-
alyzers against our test suite: they were unsuccessful on most of the programs. In
contrast to that, the tool we developed gave better results.

Termination of some programs of the test suite could be proved only by using hu-
man intelligence while that of other ones still remains unkown. The current status of
Floops as studied in this chapter is summarized in Figure 6.9. Successfully analyzing
the whole test suite in a fully automatic way, with reasonable amount of memory and
time, can be a milestone to reach for all the currently existing tools.

Verdict Juggernaut 2LS FTerm Semi-manual
ubuntu1.c 7 7

ubuntu2.c 7 7

ubuntu3.c ?
ubuntu4.c ?
ubuntu5.c 3 3 3

ubuntu6.c ?
ubuntu7.c 3 3

ubuntu8.c 3 3

ubuntu9.c 3 3

ubuntu10.c 3 3 3 3

ubuntu11.c 3 3

ubuntu12.c 3 3

Figure 6.9: Floops’ status following Figure 6.3, 6.6 and Section 6.5.
Note that these results are valid for specific ranges of the variables.
Also see Figure 6.4 for a correct interpretation of Juggernaut’s verdict.
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General Conclusion
We arrive at the end of our exploration of the world of Floating-Point (FP) compu-
tations. It is a peculiar world in which the equality x + 1 = x can be true. This
is due to the existence of rounding errors that render counter-intuitive the behavior
of programs manipulating FP numbers. To prove that these programs actually do
what they are supposed to do, we often need to prove among other things that they
eventually terminate. This thesis developed techniques to this effect.

First in Chapter 3, we devised an algorithm called PaaTerm that approximates
FP computations into the rationals and that gradually increases the tightness of
the approximation until termination can be proved. We also devised an algorithm
called Opt-ν which produces affine approximations that are computable efficiently
and that are optimal in a certain sense. Then in Chapter 4 and 5, we respectively
studied the global and local approach for proving termination of FP computations.
We studied the use of the well-known Podelski-Rybalchenko (PR) algorithm for the
FP case. We also showed in details how to use the Size-Change (SC) approach and
its extension to monotonicity constraints to handle FP numbers. Last in Chapter 6,
we built a test suite called Floops to show that current termination analyzers are yet
to be improved when it comes to FP numbers. We experimentally showed that our
techniques contribute to these improvements. For future work, the following ideas
can be investigated:

(Fut1) On PaaTerm: instead of simply increasing the tightness when termination
cannot be proved, we could also use a counter-example guided approaches
[GMR15]. That is we could check whether the non-terminating executions
in the abstract effectively appear in the concrete, after which we can decide
how to tighten the abstraction. We point out that the core of PaaTerm, an
algorithm called Paa which is the one in charge of the tightening, can be used
to verify properties other than termination: safety properties for example.

(Fut2) On Opt-ν: this algorithm gives an optimal affine bound for the rounding
function. We could investigate how this optimality result could be extended
to specific FP computations. First we could start with basic operations such
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as FP addition. Then we could continue with combinations or sequences of
such basic operations. Also on a more technical note, Opt-ν uses a notion of
surface as quality measure: what about other quality measures, for example
the one used in the well-known Least Square method? It would have the
advantage of punishing the bigs gaps between the rounding function and the
affine bound. On a even more technical note, we showed that when tightening,
the size of the invariants captured in the abstract qualitatively increases in the
sense of the inclusion. Can we think about a quantitative measure? Notably
it would allow to decide whether it is worth increasing the tightness given the
new size of the set of invariants we would obtain comparatively to its current
size.

(Fut3) Following the use of PR and SC for the FP case, a natural question arises:
what about other approaches? For example for the global approach, we could
extend the results we got on Affine Ranking Functions (ARF) to Lexicographic
ARFs. Then for the local approach, we could investigate how to make the
Transition Invariants approach support FP computations.

(Fut4) The future of Floops: the loops in this test suite are relatively simple and yet
they challenge current termination analyzers. Once we obtain satisfactory
results, we can enrich Floops with slightly more complex loops. Then we
can continue so until we will hopefully be able to have a test suite that have
loops with hundreds of FP operations, or even more. The Ubuntu distribution
have such loops: what guarantee do we have for their termination when even
two-lines loops in the ImageMagick package could end in unexpected infinite
executions?

(Fut5) Cleverness and dumbness: back in Section 6.5.2, termination of ubuntu11.c
could not be proven fully automatically: we had to resort to clever observa-
tions. Yet there is a very dumb way to prove it always terminates: execute it
for each possible input and the answer will be obtained before time runs out,
in less than five minutes. In comparison the brute force of Juggernaut is too
complex to answer in the given time. Clearly, combining dumb approaches
with advanced ones can be fruitful, how to do that?

By the time this last paragraph was written, the ImageMagick bug that bothered
the fictional character Marc from the General Introduction has been fixed: he can
now edit his selfies in complete tranquility. Unfortunately we fear that Marc will still
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encounter similar bugs in other software. Far from closing the topic, we would like our
work to be a call for further development of termination analysis of FP computations.

Conclusion Générale

Nous voici à la fin de notre exploration du monde des calculs flottants, un monde
particulier dans lequel l’égalité x + 1 = x peut être vraie. Ceci est dû aux erreurs
d’arrondi qui rendent contre-intuitif le comportement des programmes manipulant les
nombres flottants. Pour prouver que ces programmes font réellement ce qu’ils sont
censés faire, nous devons souvent prouver entre autres choses qu’ils terminent. Cette
thèse a développé des techniques à cet effet.

Tout d’abord dans le Chapitre 3, nous avons conçu un algorithme appelé PaaTerm
qui approxime les calculs flottants dans les rationnels et qui augmente progressive-
ment la précision de l’approximation obtenue jusqu’à ce que la terminaison puisse
être prouvée. Nous avons également conçu un algorithme appelé Opt-ν qui produit
des approximations affines calculables rapidement et optimales selon un certain sens.
Ensuite dans le Chapitre 4 et 5, nous avons respectivement étudié l’approche globale
et locale pour prouver la terminaison de calculs flottants. Nous avons conçu une
version flottante de l’algorithme bien connu de Podelski-Rybalchenko. Nous avons
également montré en détail comment utiliser l’approche Size-Change et son exten-
sion aux contraintes de monotonicité pour traiter les nombres flottants. Enfin dans le
Chapitre 6, nous avons construit une suite de test appelée Floops pour montrer que
les analyseurs de terminaison actuels doivent encore être améliorés en ce qui concerne
les calculs flottants. Nous avons montré expérimentalement que nos techniques con-
tribuent à ces améliorations. Nous invitons le lecteur à se référer à la version anglaise
de ce paragraphe pour connaitre quelques travaux futurs que nous envisageons.

A l’heure où ce dernier paragraphe a été écrit, le bug d’ImageMagick qui a dérangé
le personnage fictif Marc dans l’Introduction Générale a été corrigé : il peut désormais
retoucher ses selfies en toute tranquilité. Malheureusement nous craignons que Marc
puisse encore rencontrer des bugs similaires dans d’autres logiciels. Loin de clore le
sujet, nous souhaiterions que notre travail appelle à un développement ultérieur de
l’analyse de terminaison des calculs flottants.
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Appendices

A Mathematica definitions

Throughout the thesis, we use Mathematica to assist us. A quick overview of its
capabilities is given in Section 6.5.1. Notably we point out that one of its strengths
is the intuitiveness of its syntax. For example the rounding function ζn as defined in
Definition 2.7 is written as follows in Mathematica for the single precision FP type.

? b:=2
p:=24
eM:=127
em:=-126 (* 1 - eM *)
nm:=b^em
Exponent[x_]:=If[Abs[x]>=nm,Floor[Log[b,Abs[x]]],em]
Ulp[x_]:=b^(-p+1)*b^Exponent[x]
ZetaN[x_]:=Round[x,Ulp[x]]

Then the k-PAA (µ1, ν1), (µ2, ν2) and (µ3, ν3) as defined in Property 3.1, 3.2 and 3.3
are written as follows.

? Mu1[x_]:=x-asn
Nu1[x_]:=x+asn
Mu2[x_]:=Piecewise[{{x(1-rn)-as,0<=x<=nM},{x(1+rn)-as,-nM<=x<0}}]
Nu2[x_]:=Piecewise[{{x(1+rn)+as,0<=x<=nM},{x(1-rn)+as,-nM<=x<0}}]
Mu3[x_]:=Piecewise[{{x(1-rn),nm<x<=nM},{x-as,-nm<=x<=nm},{x(1+rn),-nM<=x<-nm}}]
Nu3[x_]:=Piecewise[{{x(1+rn),nm<x<=nM},{x+as,-nm<=x<=nm},{x(1-rn),-nM<=x<-nm}}]
assum:=nm>0&&nM>nm&&rn>0&&as>0&&asn>as&&-nM<=x&&x<=nM

B Proofs of Theorem 3.1, 3.2 and Lemma 3.1

We use Mathematica to assist us. Definitions in Appendice A are assumed. We define
the three quality measures as follows:

? S1:=Integrate[Mu1[x]-Nu1[x],{x,-nM,nM},Assumptions->assum]
S2:=Integrate[Mu2[x]-Nu2[x],{x,-nM,nM},Assumptions->assum]
S3:=Integrate[Mu3[x]-Nu3[x],{x,-nM,nM},Assumptions->assum]
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Theorem 3.1 (Part 1/2). ∀F : S(µ1, ν1) > S(µ2, ν2) ⇐⇒ emax > emin + p

Is (µ2, ν2) always tighter than (µ1, ν1) for any possible FP type F? We ask Mathe-
matica for counter-examples.

? Reduce[S2>=S1&&assum]
> assum&&(-2as+2asn)/rn<=nM

Mathematica says that ∃F : S(µ2, ν2) ≥ S(µ1, ν1) ⇐⇒ nmax ≥ −2As+2Asn
Rn

or
equivalently ∀F : S(µ2, ν2) < S(µ1, ν1) ⇐⇒ nmax <

−2As+2Asn
Rn

. We want to express
that condition in terms of the parameters β, p, emin and emax:

S(µ2, ν2) < S(µ1, ν1) ⇐⇒ (β − β−p+1)βemax <
−2β

−p+1βemin

2 + 2β
−p+1βemax

2
β−p+1

2

⇐⇒ β(βemax − β−p+emax) < 2(βemax − βemin)

⇐⇒ βemax − β−p+emax < βemax − βemin (since β ≥ 2)

⇐⇒ −p+ emax > emin (B.1)

Theorem 3.2 (Part 1/2). ∀(F, x) : (µ3, ν3) is nested in (µ2, ν2)

First we check if ∀(F, x) : µ2(x) ≤ µ3(x) ≤ ν3(x) ≤ ν2(x):
? Reduce[!(Mu2[x]<=Mu3[x]<=Nu3[x]<=Nu2[x])&&assum]
> False

Then we check if ∃x : µ2(x) < µ3(x) ∨ ν3(x) < ν2(x):
? Reduce[(Mu2[x]<Mu3[x]||Nu3[x]<Nu2[x])&&assum]
> True

Theorem 3.2 (Part 2/2). ∃(F, x) : (µ2, ν2) is not nested in (µ1, ν1)

We ask Mathematica for counter-examples.
? Reduce[!(Mu1[x]<=Mu2[x]<=Nu2[x]<=Nu1[x])&&assum]
> assum&&(x<(-asn+as)/rn||x>(asn-as)/rn)

That is ∃(F, x) : ¬
(
µ1(x) ≤ µ2(x) ≤ ν2(x) ≤ ν1(x)

)
⇐⇒

(
x < −Asn+As

Rn
∨ x >

Asn−As
Rn

)
. In terms of the parameters β, p, emin, emax: if x < −L or x > L where

L = βemax − βemin then (µ2, ν2) is not nested in (µ1, ν1). See Figure 3.1(b) for
illustration.
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Theorem 3.1 (Part 2/2).: ∀F : S(µ2, ν2) > S(µ3, ν3)

Follows from Proposition 3.1 and from the fact that (µ2, ν2) is nested in (µ3, ν3) by
Theorem 3.2.

Lemma 3.1: ∀(F, x) : (µk+1, νk+1) obtained through Paa is nested in
(µk, νk) if the subnormals are isolated in (µk, νk)

The problem boils down to proving that on any β-ade B of ULP u, the pair (x +
u
2 , x − u

2 ) is nested in the pair (µ3, ν3). Since these are all affine functions, we just
need to check that ν3 ≤ x− u

2 ≤ x+ u
2 ≤ µ3 at the edges of B.

C Range analysis

The need for range analysis is recurrent throughout the thesis.

Theorem C.1. Consider a program as specified in Definition 1.2. The most precise
ranges in which the program variables lay during all possible executions are com-
putable.
Proof. Similar to that of Theorem 4.1. Recall the proof of Theorem 1.1. In addition
to checking non-repeating states in each partial execution, we also record all the states
that were already visited.

However computing the most precise ranges is extremely space and time consuming
in the general cases. Various abstractions can be used in order to get approximate
ranges in a reasonable amount of time [Min07][GGP09].

D Ramsey theorem and termination analysis

Termination Characterization 1.2.f directly comes from the original Infinite Ramsey
Theorem [Ram30, Theorem A], with a few observations from [BS15, Theorem 2.1].
We show how to retrieve that characterization using a better known version of that
theorem.

Lemma D.1 (Ramsey theorem in terms of graph coloring). Consider a com-
plete simple graph (undirected, with no loop nor multiple edges) over an infinite num-
ber of nodes. Then for any possible edge coloring, there is always an infinite set of
nodes such that all edges between these nodes have the same color.
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Proof. See [Mis12] for a short proof.

Termination Characterization 1.2.f. Consider the program P = (S,S,R). It
terminates if and only if R+ is disjunctively cWF.
Proof. For the ⇒-direction, derived from (the trivial) Termination Characterization
1.2.b-e. For the ⇐-direction, reason by contradiction. Suppose there is an infinite
execution S1S2S3 . . . of P but that R+ is disjunctively cWF: R+ =

⋃ Tk such that
each Tk is cWF. Then color each edge {i, j}, i < j, with a Tk such that SiTkSj. This is
illustrated in Figure D.1. Now by Lemma D.1 there is an infinite complete subgraph
that has all of its edges colored by some same Tk: that particular Tk is not cWF,
contradiction.

b b b b
S1 S2 S3 S4

T1

T1

T2

T2

T3T3
b b b b

Figure D.1: Coloring the edges of a complete graph

A quantitative version of Termination Characterization 1.2.f can be found in [Del16,
Lemma 3.4, Point (3)].

E More details for the proof of Theorem 3.6

(§1). To be precise, an ULP-increasing endpoints Linc is characterized as follows:
Linc =

(
(−1)s(1 + ε)βe, (−1)sβe

)
.(

§2, Case (a)
)
. Similar to Property 2.7 in the sense that subnormals all have the

same ULP.(
§2, Case (b)

)
. First, ULP-increasing endpoints are all located on ν3 of Property

3.1. Then ν3 is convex.(
§2, Case (c)

)
. The endpoints of abscissa between that of P1 and P2, P2 not

included, all have the same ULP u = 2εβe. Thus they are placed under the line (D)

of equation y(x) = x+ u
2 = x+ εβe. Now when including P2, it remains to show that

(P1P2) is above (D).
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(§5, Claim 1). The piecewise function that corresponds to the concatenation of
PminPi, PiPj and PjPmax is concave.
(§5, Claim 2). The objective function S from Equation 3.3 can be also written:

S = (xmax − xmin)

(
xmax+xmin

2 a + b

)
= (xmax − xmin)µ

(
xmax+xmin

2

)
. That is we

just need to minimize µ at the midpoint of I.
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