, Etude 1 : Characterisation of Pattern Recognition Receptors (PRR) expression and functionality in liver primary cells and derived cell lines

, Mickaël Lesurtel, vol.5

U. Inserm and C. R. Center-of-lyon, Université de Lyon 1 (UCBL1), CNRS UMR_5286

, Service de chirurgie viscérale et endocrinienne, hospices civils de Lyon, centre hospitalier Lyon

. Hopital-de-la-croix-rousse,

, Etude 2 : Direct antiviral properties of TLR ligands against HBV replication in immuno-competent hepatocytes

J. Lucifora-1, *. , M. Bonnin-1, *. , and L. Aillot, Floriane Fusil 2 , Sarah Maadadi 1 , Laura Dimier 1 , Maud Michelet 1 , Océane Floriot 1 , Anaïs Ollivier 2 , Michel Rivoire 3 , Malika AitGoughoulte 4, François-Loïc Cosset, vol.1

U. Inserm and C. R. Center-of-lyon, CNRS UMR_5286

, Etude 3 : Interaction between Toll-Like Receptor 9-CpG Oligodeoxynucleotides and Hepatitis B Virus Virions Leads to Entry Inhibition in Hepatocytes and Reduction of Alpha Interferon Production by Plasmacytoid Dendritic Cells

L. Aillot, M. Bonnin, and M. Ait-goughoulte,

S. Maadadi, L. Dimier, M. Subic, C. Scholtes, I. Najera,-c-fabien-zoulim et al.,

, Hospices Civils de Lyon (HCL)

F. Heymann and F. Tacke, Immunology in the liver from homeostasis to disease, Nat. Rev. Gastroenterol. Hepatol, vol.13, p.88110, 2016.

D. G. Doherty, Immunity, tolerance and autoimmunity in the liver: A comprehensive review

, J. Autoimmun, vol.66, p.6075, 2016.

G. Dranoff, Cytokines in cancer pathogenesis and cancer therapy, Nat. Rev. Cancer, vol.4, p.1122, 2004.
DOI : 10.1038/nrc1252

I. N. Crispe, Liver antigen-presenting cells, J. Hepatol, vol.54, p.357365, 2011.
DOI : 10.1016/j.jhep.2010.10.005

URL : https://doi.org/10.1016/j.jhep.2010.10.005

Y. Koyama and D. A. Brenner, Liver inflammation and fibrosis, J. Clin. Invest, vol.127, p.5564, 2017.

U. Protzer, M. K. Maini, and P. A. Knolle, Living in the liver: hepatic infections, Nat. Rev. Immunol, vol.12, p.201213, 2012.

K. Hünniger and O. Kurzai, Phagocytes as central players in the defence against invasive fungal infection, Semin. Cell Dev. Biol, 2018.

C. L. Scott, Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells, Nat. Commun, vol.7, p.10321, 2016.
DOI : 10.1038/ncomms10321

URL : https://www.nature.com/articles/ncomms10321.pdf

C. Zannetti, Characterization of the Inflammasome in Human Kupffer Cells in Response to Synthetic Agonists and Pathogens, J. Immunol, vol.197, p.356367, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01796202

B. Mcdonald and P. Kubes, Innate Immune Cell Trafficking and Function During Sterile Inflammation of the Liver, Gastroenterology, vol.151, p.10871095, 2016.

S. Tripathi, A. Verma, E. Kim, M. R. White, and K. L. Hartshorn, LL-37 modulates human neutrophil responses to influenza A virus, J. Leukoc. Biol, vol.96, p.931938

B. N. Porto and R. T. Stein, Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing?, Front. Immunol, vol.7, 2016.

R. Xu, H. Huang, Z. Zhang, and F. Wang, The role of neutrophils in the development of liver diseases, Cell. Mol. Immunol, vol.11, p.224231, 2014.

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nat. Rev. Immunol, vol.13, p.159175, 2013.
DOI : 10.1038/nri3399

X. Hou, R. Zhou, H. Wei, R. Sun, and Z. Tian, NKG2Dretinoic acid early inducible-1 recognition between natural killer cells and kupffer cells in a novel murine natural killer celldependent fulminant hepatitis, Hepatology, vol.49, p.940949

H. Peng and Z. Tian, Re-examining the origin and function of liver-resident NK cells, Trends Immunol, vol.36, p.293299, 2015.

R. M. Steinman and Z. A. Cohn, IDENTIFICATION OF A NOVEL CELL TYPE IN PERIPHERAL LYMPHOID ORGANS OF MICE, J. Exp. Med, vol.137, p.11421162, 1973.

R. M. Steinman and Z. A. Cohn, IDENTIFICATION OF A NOVEL CELL TYPE IN PERIPHERAL LYMPHOID ORGANS OF MICE, J. Exp. Med, vol.139, p.380397, 1974.

M. Durand and E. Segura, The Known Unknowns of the Human Dendritic Cell Network, Front. Immunol, vol.6, 2015.

E. Segura, M. Durand, and S. Amigorena, Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organresident dendritic cells, J. Exp. Med, vol.210, p.10351047, 2013.

E. Segura and S. Amigorena, Cross-presentation by human dendritic cell subsets, Immunol. Lett, vol.158, p.7378, 2014.

E. Segura and S. Amigorena, Chapter One-Cross-Presentation in Mouse and Human Dendritic Cells, Advances in Immunology, vol.127, p.131, 2015.

E. Aa, . Van-der, L. Laar, . Van-de, H. L. Janssen et al., BDCA3 expression is associated with high IFN-production by CD34+-derived dendritic cells generated in the presence of GM-CSF, IL-4, and/or TGF, Semin. Cell Dev. Biol, vol.45, p.3948, 2015.

,. Vu-manh, N. Bertho, A. Hosmalin, I. Schwartz-cornil, and M. Dalod, Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions, Front. Immunol, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01170364

A. Villani, Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science, vol.356, p.4573, 2017.

M. Collin and V. Bigley, Human dendritic cell subsets: an update, Immunology, vol.154, p.320

S. P. Sittig, A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets, Mediators of Inflammation, 2016.

S. R. Holdsworth and P. Gan, Cytokines: Names and Numbers You Should Care About, Clin. J. Am. Soc. Nephrol, vol.10, p.22432254, 2015.

A. Villani, Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science, vol.356, p.4573, 2017.

P. See, Mapping the human DC lineage through the integration of high-dimensional techniques, Science, vol.356, p.3009, 2017.

C. Aspord, C. Leloup, S. Reche, and J. Plumas, pDCs efficiently process synthetic long peptides to induce functional virus-and tumour-specific T-cell responses, Eur. J. Immunol, vol.44, p.28802892

S. G. Alculumbre, Diversification of human plasmacytoid predendritic cells in response to a single stimulus, Nat. Immunol, p.1, 2017.

A. Riva and S. Chokshi, Immune checkpoint receptors: homeostatic regulators of immunity

, Hepatol. Int, vol.114, 2018.

R. Silva, The PD-1:PD-L1 immune inhibitory checkpoint in Helicobacter pylori infection and gastric cancer: a comprehensive review and future perspectives, Rev. Port. Cardiol, 2016.

S. L. Topalian, C. G. Drake, and D. M. Pardoll, Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy, Cancer Cell, vol.27, p.182, 2015.

M. Samson, D. Lakomy, S. Audia, and B. Bonnotte, Les lymphocytes TH17 : différenciation, phénotype, fonctions, et implications en pathologie et thérapeutique humaine, Rev. Médecine Interne, vol.32, p.292301, 2011.

L. Martínez-lostao, A. Anel, and J. Pardo, How Do Cytotoxic Lymphocytes Kill Cancer Cells?, Clin. Cancer Res, vol.21, p.50475056, 2015.

D. I. Godfrey, D. G. Pellicci, and M. J. Smyth, The Elusive NKT Cell Antigen-Is the Search Over?, Science, vol.306, p.16871689, 2004.

L. Mori, M. Lepore, and G. D. Libero, The Immunology of CD1-and MR1-Restricted T Cells

, Annu. Rev. Immunol, vol.34, p.479510, 2016.

O. Lantz and F. Legoux, MAIT cells: an historical and evolutionary perspective, Immunol. Cell Biol, vol.12, p.249261, 2018.
DOI : 10.1111/imcb.1034

L. L. Bourhis, Antimicrobial activity of mucosal-associated invariant T cells, Nat. Immunol, vol.11, p.701708, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550333

B. Van-wilgenburg, MAIT cells are activated during human viral infections, Nat. Commun, vol.7, 2016.

M. D. Cooper, The early history of B cells, Nat. Rev. Immunol, vol.15, p.191197, 2015.

J. Charles-a-janeway, P. Travers, M. Walport, and M. J. Shlomchik, The structure of a typical antibody molecule. Immunobiol. Immune Syst. Health Dis, 2001.

S. Luangsay, Expression and functionality of Toll-and RIG-like receptors in HepaRG cells, J. Hepatol, vol.63, p.10771085, 2015.

I. N. Crispe, C. Mehrfeld, S. Zenner, M. Kornek, and V. Lukacs-kornek, The Contribution of NonProfessional Antigen-Presenting Cells to Immunity and Tolerance in the, Liver. Front. Immunol, vol.3, p.5162, 2003.

T. Tsuchida and S. L. Friedman, Mechanisms of hepatic stellate cell activation, Nat. Rev. Gastroenterol. Hepatol, vol.14, p.397411, 2017.

J. S. Troeger, Deactivation of Hepatic Stellate Cells During Liver Fibrosis Resolution in Mice, Gastroenterology, vol.143, pp.1073-1083, 2012.

T. Kisseleva, Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis, Proc. Natl. Acad. Sci, vol.109, p.94489453, 2012.

B. Lemaitre, E. Nicolas, L. Michaut, J. Reichhart, and J. A. Hoffmann, The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults, Cell, vol.86, p.973983, 1996.

S. Pandey, T. Kawai, and S. Akira, Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors, Cold Spring Harb. Perspect. Biol, vol.7, p.183, 2015.
DOI : 10.1101/cshperspect.a016246

URL : http://cshperspectives.cshlp.org/content/7/1/a016246.full.pdf

J. Chow, K. M. Franz, and J. C. Kagan, PRRs are watching you: Localization of innate sensing and signaling regulators, Virology, vol.479480, p.104109, 2015.

N. Marr and S. E. Turvey, Role of human TLR4 in respiratory syncytial virus-induced NF-B activation, viral entry and replication, Innate Immun, vol.18, p.856865, 2012.

L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of double-stranded RNA and activation of NF-B by Toll-like receptor 3, Nature, vol.413, p.732738, 2001.

F. Heil, The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily, Eur. J. Immunol, vol.33, p.29872997

J. M. Lund, Recognition of single-stranded RNA viruses by Toll-like receptor 7, Proc. Natl. Acad. Sci, vol.101, p.55985603, 2004.

S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. R. Sousa, Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA, Science, vol.303, p.15291531, 2004.

L. Alexopoulou, B. Desnues, and O. Demaria, Le récepteur Toll-like 8-Un TLR pas comme les autres. médecine/sciences, vol.28, p.96102, 2012.
DOI : 10.1051/medsci/2012281023

URL : https://www.medecinesciences.org/articles/medsci/pdf/2012/01/medsci2012281p96.pdf

B. Desnues, TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice, Proc. Natl. Acad. Sci, vol.111, p.14971502, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02022450

K. Pelka, The Chaperone UNC93B1 Regulates Toll-like Receptor Stability Independently of Endosomal TLR Transport, Immunity, vol.48, pp.911-922, 2018.

H. Oshiumi, T. Kouwaki, and T. Seya, Accessory Factors of Cytoplasmic Viral RNA Sensors Required for Antiviral Innate Immune Response, Front. Immunol, vol.7, 2016.

Y. Loo and M. Gale, Immune Signaling by RIG-I-like Receptors, Immunity, vol.34, p.680692, 2011.

C. Nanhua, RNA sensors of the innate immune system and their detection of pathogens, IUBMB Life, vol.69, p.297304, 2017.

A. M. Kell and M. Gale, RIG-I in RNA virus recognition, Virology, vol.479480, p.110121, 2015.

A. Zevini, D. Olagnier, and J. Hiscott, Cross-Talk between the Cytoplasmic RIG-I and STING Sensing Pathways, Trends Immunol, vol.38, p.194205, 2017.

A. Bridgeman, Viruses transfer the antiviral second messenger cGAMP between cells, Science, vol.349, p.12281232, 2015.

M. Gentili, Transmission of innate immune signaling by packaging of cGAMP in viral particles, Science, vol.349, p.12321236, 2015.

J. W. Schoggins, Viruses carry antiviral cargo, Science, vol.349, p.11661167, 2015.

C. Zheng, Evasion of Cytosolic DNA-Stimulated Innate Immune Responses by Herpes Simplex Virus 1, J. Virol, vol.92, pp.99-116, 2018.

A. Dempsey and A. G. Bowie, Innate Immune Recognition of DNA: a recent history, Virology, vol.0, p.146152, 2015.

T. A. Kufer, G. Nigro, and P. J. Sansonetti, Multifaceted Functions of NOD-Like Receptor Proteins in Myeloid Cells at the Intersection of Innate and Adaptive Immunity, Microbiol. Spectr, vol.4, 2016.

C. L. Evavold and J. C. Kagan, How Inflammasomes Inform Adaptive Immunity, J. Mol. Biol, vol.430, p.217237, 2018.

P. J. Baker, Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition, Physiol. Rev, vol.97, p.11651209, 2017.

S. Mayer, M. Raulf, and B. Lepenies, C-type lectins: their network and roles in pathogen recognition and immunity, Histochem. Cell Biol, vol.147, p.223237, 2017.

R. D. Cummings, R. P. Mcever, . C-type, and . Lectins, Essentials of Glycobiology, 2015.

S. Mayer, M. Raulf, and B. Lepenies, C-type lectins: their network and roles in pathogen recognition and immunity, Histochem. Cell Biol, vol.147, p.223237, 2017.

F. Zhang, S. Ren, Y. Zuo, D. Dc-sign, and L. , Int. Rev. Immunol, vol.33, p.5466, 2014.

E. E. Bates, APCs Express DCIR, a Novel C-Type Lectin Surface Receptor Containing an Immunoreceptor Tyrosine-Based Inhibitory Motif, J. Immunol, vol.163, p.19731983, 1999.

F. Meyer-wentrup, Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-production, Blood, vol.111, p.42454253, 2008.

I. M. Dambuza and G. D. Brown, C-type lectins in immunity: recent developments, Curr. Opin. Immunol, vol.32, p.2127, 2015.

J. T. Monteiro and B. Lepenies, Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity, Viruses, vol.9, p.59, 2017.

J. Tang, G. Lin, W. Y. Langdon, L. Tao, and . Zhang, J. Regulation of C-Type Lectin ReceptorMediated Antifungal Immunity. Front. Immunol, vol.9, 2018.

J. Florentin, HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells, Blood, vol.120, p.45444551, 2012.

I. Hirsch, V. Janovec, R. Stranska, and N. Bendriss-vermare, Cross Talk between Inhibitory Immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells, Front. Immunol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01789674

W. Touw, C. Van-der, H. Pan, P. Chen, and S. , LILRB receptor-mediated regulation of myeloid cell maturation and function, Cancer Immunol. Immunother, vol.66, p.10791087, 2017.

B. Rosental, Proliferating Cell Nuclear Antigen Is a Novel Inhibitory Ligand for the Natural Cytotoxicity Receptor NKp44, J. Immunol, vol.187, p.56935702, 2011.

M. Bao and Y. Liu, Regulation of TLR7/9 signaling in plasmacytoid dendritic cells, Protein Cell, vol.4, p.4052, 2013.

V. Janovec, The MEK1/2-ERK Pathway Inhibits Type I IFN Production in Plasmacytoid Dendritic Cells, Front. Immunol, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01772995

A. Pellerin, dy inhibits plasmacytoid dendritic cell EMBO Mol. Med, vol.7, p.464476, 2015.

I. Striz, E. Brabcova, L. Kolesar, and A. Sekerkova, Cytokine networking of innate immunity cells: a potential target of therapy, Clin. Sci, vol.126, p.593612, 2014.

B. Rehermann, Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells, Nat. Med, vol.19, p.859868, 2013.

S. V. Schmidt, A. C. Nino-castro, and J. L. Schultze, Regulatory dendritic cells: there is more than just immune activation, Front. Immunol, vol.3, 2012.

D. S. Dane, C. H. Cameron, M. Briggs, -. Virus, and . Hepatitis, The Lancet, vol.295, p.695698, 1970.

S. Locarnini, M. Littlejohn, M. N. Aziz, and L. Yuen, Possible origins and evolution of the hepatitis B virus (HBV), Semin. Cancer Biol, vol.23, p.561575, 2013.

B. Mühlemann, Ancient hepatitis B viruses from the Bronze Age to the Medieval period, Nature, vol.557, p.418423, 2018.

T. A. Landers, H. B. Greenberg, and W. S. Robinson, 101. hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles, Proc. Natl. Acad. Sci. U. S. A, vol.23, p.4601, 1975.

P. D. Garcia, J. H. Ou, W. J. Rutter, and P. Walter, Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm, J. Cell Biol, vol.106, p.10931104, 1988.

L. Ludgate, Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation, J. Virol, vol.90, p.58305844, 2016.

Y. Wei, C. Neuveut, P. Tiollais, and M. Buendia, Molecular biology of the hepatitis B virus and role of the X gene, Pathol. Biol, vol.58, p.267272, 2010.

J. Lucifora, Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection, J. Hepatol, vol.55, p.9961003, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00850162

A. Decorsière, Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor, Nature, vol.531, p.386380, 2016.

C. M. Murphy, Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication, Cell Rep, vol.16, p.28462854, 2016.

P. Gripon, J. Le-seyec, S. Rumin, and C. Guguen-guillouzo, Myristylation of the Hepatitis B Virus Large Surface Protein Is Essential for Viral Infectivity, Virology, vol.213, p.292299, 1995.

S. D. Falco, N-terminal myristylation of HBV preS1 domain enhances receptor recognition, J. Pept. Res, vol.57, p.390400

D. Glebe and S. Urban, Viral and cellular determinants involved in hepadnaviral entry, World J. Gastroenterol, vol.13, p.2238, 2007.

P. Soussan, In vivo expression of a new hepatitis B virus protein encoded by a spliced RNA, J. Clin. Invest, vol.105, p.5560, 2000.

M. Duriez, Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity, J. Hepatol, vol.67, p.687699, 2017.

R. Patient, C. Hourioux, and P. Roingeard, Morphogenesis of hepatitis B virus and its subviral envelope particles, Cell. Microbiol, vol.11, p.15611570
URL : https://hal.archives-ouvertes.fr/inserm-00422971

Z. S. Valaydon and S. A. Locarnini, The virological aspects of hepatitis B, Best Pract. Res. Clin. Gastroenterol, vol.31, p.257264, 2017.

A. Cooper and Y. Shaul, Clathrin-mediated Endocytosis and Lysosomal Cleavage of Hepatitis B Virus Capsid-like Core Particles, J. Biol. Chem, vol.281, p.1656316569, 2006.

E. K. Butler, HBV serum DNA and RNA levels in nucleos(t)ide analogue-treated or untreated patients during chronic and acute infection. Hepatology 0, 117. Lampertico, P. et al. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection, J. Hepatol, vol.67, p.370398, 2017.

L. S. Tang, E. Covert, E. Wilson, and S. Kottilil, Chronic Hepatitis B Infection: A Review, JAMA, vol.319, p.18021813, 2018.

H. Yan, Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus, vol.1, p.49, 2012.

M. Levrero and J. Zucman-rossi, Mechanisms of HBV-induced hepatocellular carcinoma, J. Hepatol, vol.64, pp.84-101, 2016.

E. Raffetti, G. Fattovich, and F. Donato, Incidence of hepatocellular carcinoma in untreated subjects with chronic hepatitis B: a systematic review and meta-analysis, Liver Int, vol.36, p.12391251

A. Suslov, T. Boldanova, X. Wang, S. Wieland, and M. H. Heim, Hepatitis B Virus Does Not Interfere With Innate Immune Responses in the Human Liver, Gastroenterology, vol.154, p.17781790, 2018.

E. Zhang and M. Lu, Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection, Med. Microbiol. Immunol. (Berl.), vol.204, p.1120, 2015.

S. Luangsay, Early inhibition of hepatocyte innate responses by hepatitis B virus, J. Hepatol, vol.63, p.13141322, 2015.

J. Martinet, Altered Functions of Plasmacytoid Dendritic Cells and Reduced Cytolytic Activity of Natural Killer Cells in Patients With Chronic HBV Infection, Gastroenterology, vol.143, pp.1586-1596, 2012.

A. M. Woltman, M. L. Op-den-brouw, P. J. Biesta, C. C. Shi, and H. L. Janssen, Hepatitis B Virus Lacks Immune Activating Capacity, but Actively Inhibits Plasmacytoid Dendritic Cell Function, PLoS ONE, vol.6, 2011.
DOI : 10.1371/journal.pone.0015324

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0015324&type=printable

Y. Xu, HBsAg inhibits TLR9-mediated activation and IFN-production in plasmacytoid dendritic cells, Mol. Immunol, vol.46, p.26402646, 2009.

S. Faure-dupuy, J. Lucifora, and D. Durantel, Interplay between the Hepatitis B Virus and Innate Immunity: From an Understanding to the Development of Therapeutic Concepts, Viruses, vol.9, p.95, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01517106

S. Sato, The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus, Immunity, vol.42, p.123132, 2015.

E. R. Verrier, Hepatitis B Virus Surface Antigen Activates Myeloid Dendritic Cells via a Soluble CD14-Dependent Mechanism, Hepatology, vol.0, p.61876199, 2016.

F. Lebossé, Intrahepatic innate immune response pathways are downregulated in untreated chronic hepatitis B, J. Hepatol, vol.66, p.897909, 2017.

I. E. Vincent, Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells, PLoS ONE, vol.6, 2011.
DOI : 10.1371/journal.pone.0026315

URL : https://doi.org/10.1371/journal.pone.0026315

E. Aa, . Van-der, S. I. Buschow, P. J. Biesta, H. L. Janssen et al., The Effect of Chronic Hepatitis B Virus Infection on BDCA3+ Dendritic Cell Frequency and Function, PLOS ONE, vol.11, p.161235, 2016.

L. J. Pallett, Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells, Nat. Med, vol.21, p.591600, 2015.

N. Isorce, Antiviral activity of various interferons and pro-inflammatory cytokines in non-transformed cultured hepatocytes infected with hepatitis B virus, Antiviral Res, vol.130, p.3645, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01797274

J. Publicover, An OX40/OX40L interaction directs successful immunity to hepatitis B virus, Sci. Transl. Med, vol.10, p.5766, 2018.
DOI : 10.1126/scitranslmed.aah5766

URL : http://stm.sciencemag.org/content/scitransmed/10/433/eaah5766.full.pdf

A. Bertoletti and N. L. Bert, Immunotherapy for Chronic Hepatitis B Virus Infection

C. Ferrari, HBV and the immune response, Liver Int, vol.35, p.121128

B. Testoni, D. Durantel, and F. Zoulim, Novel targets for hepatitis B virus therapy, Liver Int, vol.37, p.3339
DOI : 10.1111/liv.13307

URL : https://hal.archives-ouvertes.fr/hal-01795708

H. J. Alter, B. S. Blumberg, and . Furthe, Blood, vol.27, p.297309, 1966.

P. Maupas, P. Coursaget, A. Goudeau, J. Drucker, P. Bagros et al., The Lancet, vol.307, p.13671370, 1976.

, jsessionid=8510AEA7FF7FA68E70D3D42830D050A7?sequence=1. (Accessed, p.1, 2017.

M. Dusséaux, Viral Load Affects the Immune Response to HBV in Mice With Humanized Immune System and Liver, Gastroenterology, vol.153, p.9, 2017.

J. Lucifora, Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA, Science, vol.343, p.12211228, 2014.
DOI : 10.1126/science.1243462

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309542

J. Lucifora and U. Protzer, Attacking hepatitis B virus cccDNA The holy grail to hepatitis B cure, J. Hepatol, vol.64, pp.41-48, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01812699

P. Gripon, I. Cannie, and S. Urban, Efficient Inhibition of Hepatitis B Virus Infection by Acylated Peptides Derived from the Large Viral Surface Protein, J. Virol, vol.79, p.16131622, 2005.

T. Volz, The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus, J. Hepatol, vol.58, p.861867, 2013.

M. Lütgehetmann, Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation, Hepatology, vol.55, p.685694

A. Zlotnick, Core protein: A pleiotropic keystone in the HBV lifecycle, Antiviral Res, vol.121, p.8293, 2015.

Y. Guo, Y. Li, J. Zhao, J. Zhang, and Z. Yan, HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state, Epigenetics, vol.6, p.720726, 2011.

Y. Guo, Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions, BMC Genomics, vol.13, p.563, 2012.

V. Soriano, P. Barreiro, L. Benitez, J. M. Peña, C. Mendoza et al., New antivirals for the treatment of chronic hepatitis B, Expert Opin. Investig. Drugs, vol.26, p.843851, 2017.

J. M. Berke, Capsid Assembly Modulators Have a Dual Mechanism of Action in Primary Human Hepatocytes Infected with Hepatitis B Virus, Antimicrob. Agents Chemother, vol.61, pp.560-577, 2017.

K. Klumpp, Efficacy of NVR 3-778, Alone and In Combination With Pegylated Interferon, vs Entecavir In uPA/SCID Mice With Humanized Livers and HBV Infection, Gastroenterology, vol.154, pp.652-662, 2018.

A. Vaillant, Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection, Antiviral Res, vol.133, p.3240, 2016.

M. Al-mahtab, M. Bazinet, and A. Vaillant, Safety and Efficacy of Nucleic Acid Polymers in Monotherapy and Combined with Immunotherapy in Treatment-Naive Bangladeshi Patients with HBeAg+ Chronic Hepatitis B Infection, PLOS ONE, vol.11, p.156667, 2016.

N. Isorce, J. Lucifora, F. Zoulim, and D. Durantel, Immune-modulators to combat hepatitis B virus infection: From IFN-to novel investigational immunotherapeutic strategies, Antiviral Res, vol.122, p.6981, 2015.

C. Niu, Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism, J. Hepatol, vol.68, p.922931, 2018.

K. Agarwal, Safety and Efficacy of Vesatolimod (GS-9620) in Patients with Chronic Hepatitis B Who Are Not Currently on Antiviral Treatment, J. Viral Hepat, p.0

E. J. Gane, The oral toll-like receptor-7 agonist GS-9620 in patients with chronic hepatitis B virus infection, J. Hepatol, vol.63, p.320328, 2015.

C. Boni, TLR7 Agonist Increases Responses of Hepatitis B VirusSpecific T Cells and Natural Killer Cells in Patients With Chronic Hepatitis B Treated With Nucleos(T)Ide Analogues, Gastroenterology, vol.154, pp.1764-1777, 2018.

B. Bengsch and R. Thimme, For whom the interferons toll TLR7 mediated boosting of innate and adaptive immunity against chronic HBV infection, J. Hepatol, vol.68, p.883886, 2018.

I. N. Crispe and R. H. Pierce, Killer T cells find meaningful encounters through iMATEs, Nat. Immunol, vol.14, p.533534, 2013.

L. Huang, Intrahepatic myeloid-cell aggregates enable local proliferation of CD8 + T cells and successful immunotherapy against chronic viral liver infection, Nat. Immunol, vol.14, p.574583, 2013.

P. A. Knolle, J. Böttcher, and L. Huang, The role of hepatic immune regulation in systemic immunity to viral infection, Med. Microbiol. Immunol. (Berl.), vol.204, p.2127, 2015.

F. Guo, STING Agonists Induce an Innate Antiviral Immune Response against Hepatitis B Virus, Antimicrob. Agents Chemother, vol.59, p.12731281, 2015.
DOI : 10.1128/aac.04321-14

URL : https://aac.asm.org/content/59/2/1273.full.pdf

K. E. Korolowicz, Antiviral Efficacy and Host Innate Immunity Associated with SB 9200 Treatment in the Woodchuck Model of Chronic Hepatitis B, PLOS ONE, vol.11, p.161313, 2016.

C. Trumpfheller, Dendritic cell-targeted protein vaccines: a novel approach to induce Tcell immunity, J. Intern. Med, vol.271, p.183192
DOI : 10.1111/j.1365-2796.2011.02496.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2796.2011.02496.x

M. Jinek, A Programmable Dual-RNAGuided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.337, p.816821, 2012.
DOI : 10.1126/science.1225829

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286148

E. M. Kennedy, Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease, Virology, vol.476, p.196205, 2015.

V. Ramanan, CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus, Sci. Rep, vol.5, p.10833, 2015.
DOI : 10.1038/srep10833

URL : https://www.nature.com/articles/srep10833.pdf

C. Seeger and J. A. Sohn, Targeting Hepatitis B Virus With CRISPR/Cas9, Mol. Ther. Nucleic Acids, vol.3, p.216, 2014.
DOI : 10.1038/mtna.2014.68

URL : https://doi.org/10.1038/mtna.2014.68

Y. Liu, Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus, Antiviral Res, vol.152, p.5867, 2018.
DOI : 10.1016/j.antiviral.2018.02.011

M. Hösel, Hepatitis B virus infection enhances susceptibility toward adeno-associated viral vector transduction in vitro and in vivo, Hepatology, vol.59, p.21102120

C. Jiang, A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo, Cell Res, vol.27, p.440443, 2017.

, @@@@@@@@@@@@@@@@ immunotherapy for human cancer. Science, vol.359, p.13611365, 2018.

K. Krebs, Cells Expressing a Chimeric Antigen Receptor That Binds Hepatitis B Virus Envelope Proteins Control Virus Replication in Mice, Gastroenterology, vol.145, p.456465, 2013.

R. L. Kruse, HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice, Cytotherapy, vol.20, p.697705, 2018.

M. Rao, D. Valentini, E. Dodoo, A. Zumla, and M. Maeurer, Anti-PD-1/PD-L1 therapy for infectious diseases: learning from the cancer paradigm, Int. J. Infect. Dis, vol.56, p.221228, 2017.

D. Durantel, New treatments to reach functional cure: Virological approaches, Best Pract. Res. Clin. Gastroenterol, vol.31, p.329336, 2017.

D. Durantel and F. Zoulim, New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus, J. Hepatol, vol.64, pp.117-131, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01792616

M. Syedbasha and A. Egli, Interferon Lambda: Modulating Immunity in Infectious Diseases, Front. Immunol, vol.8, 2017.

S. Dion, M. Bourgine, O. Godon, F. Levillayer, and M. Michel, Adeno-Associated VirusMediated Gene Transfer Leads to Persistent Hepatitis B Virus Replication in Mice Expressing HLA-A2 and HLA-DR1 Molecules, J. Virol, vol.87, p.55545563, 2013.

J. Lucifora, Detection of the hepatitis B virus (HBV) covalently-closed-circular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector, Antiviral Res, vol.145, p.1419, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01953660

H. Thomas, Viral hepatitis: OX40 signalling mediates effective HBV immune responses, Nature Reviews Gastroenterology & Hepatology, 2018.
DOI : 10.1038/nrgastro.2018.31

, Annexe Annexe 1 : Interference of Hepatitis B Virus (HBV) with liver macrophage function promotes hepatocyte infection

, Judith Fresquet, vol.1

U. Inserm and C. R. Center-of-lyon,

I. U1032, Lyon, France 4 Novira therapeutics, Centre Léon Bérard (CLB)