, Chapitre 2 : Les outils de la fluorescence in vitro et in vivo pour sonder l'(in)efficacité des antibiotiques dans l'éradication des bactéries RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo RESULTATS

, Infections de prothèses vasculaires à S. aureus : apport d'un modèle animal pour évaluer l'efficacité d'antibiotiques sur les biofilms in vivo

, Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S, Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre 4 : Comment la spectroscopie et l'imagerie de fluorescence multimodale contribuent-elles à disséquer l'(in)efficacité des antibiotiques vis-à-vis des biofilms de S. aureus in vitro ? RESULTATS Chapitre, vol.4, pp.1318-1322, 1999.

J. W. Costerton, R. T. Irvin, K. Cheng, and I. W. Sutherland, The Role of Bacterial Surface Structures in Pathogenesis, Crit. Rev. Microbiol, vol.8, pp.303-338, 1981.

M. Otto and . Biofilms, Curr. Top. Microbiol. Immunol, vol.322, pp.207-228, 2008.

T. J. Foster, J. A. Geoghegan, V. K. Ganesh, and M. Höök, Adhesion, Invasion and Evasion: The Many Functions of the Surface Proteins of Staphylococcus Aureus, Nat. Rev. Microbiol, vol.12, pp.49-62, 2014.

Y. G. Chan, H. K. Kim, O. Schneewind, and D. Missiakas, The Capsular Polysaccharide of Staphylococcus Aureus Is Attached to Peptidoglycan by the LytRCpsA-Psr (LCP) Family of Enzymes, J. Biol. Chem, 2014.

A. E. Paharik and A. R. Horswill, The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response, Microbiol. Spectr, p.4, 2016.

P. Speziale, G. Pietrocola, T. J. Foster, and J. A. Geoghegan, Protein-Based Biofilm Matrices in Staphylococci, Front. Cell. Infect. Microbiol, 2014.

Y. F. Dufrêne, Towards Nanomicrobiology Using Atomic Force Microscopy, Nat. Rev. Microbiol, vol.6, pp.674-680, 2008.

D. J. Müller and Y. F. Dufrêne, Atomic Force Microscopy: A Nanoscopic Window on the Cell Surface, Trends Cell Biol, vol.21, pp.461-469, 2011.

L. Meyer, R. Zhou, X. Tang, L. Arpanaei, A. Kingshott et al., Immobilisation of Living Bacteria for AFM Imaging under Physiological Conditions, Ultramicroscopy, vol.110, pp.1349-1357, 2010.

Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-martin et al., Imaging Modes of Atomic Force Microscopy for Application in Molecular and Cell Biology, Nat. Nanotechnol, vol.12, pp.295-307, 2017.

C. Formosa, M. Grare, E. Jauvert, A. Coutable, M. Mourer et al., Regnouf-de-Vains, Nanoscale Analysis of the Effects of Antibiotics and CX1 on a Pseudomonas Aeruginosa Multidrug-Resistant Strain. Sci. Rep, vol.2, 2012.

C. Formosa, M. Herold, C. Vidaillac, R. E. Duval, and E. Dague, Unravelling of a Mechanism of Resistance to Colistin in Klebsiella Pneumoniae Using Atomic Force Microscopy, J. Antimicrob. Chemother, vol.70, pp.2261-2270, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01553126

G. Longo, L. Alonso-sarduy, L. M. Rio, A. Bizzini, A. Trampuz et al., Rapid Detection of Bacterial Resistance to Antibiotics Using AFM Cantilevers as Nanomechanical Sensors, Nat. Nanotechnol, vol.8, pp.522-526, 2013.

G. Longo, L. M. Rio, A. Trampuz, G. Dietler, A. Bizzini et al., ) Longo, G.; Kasas, S. Effects of Antibacterial Agents and Drugs Monitored by Atomic Force Microscopy, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.93, issue.16, pp.230-244, 2013.

M. Scocchi, M. Mardirossian, G. Runti, and M. Benincasa, Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria, Curr. Top. Med. Chem, vol.16, pp.76-88, 2016.

G. Francius, S. Lebeer, D. Alsteens, L. Wildling, H. J. Gruber et al., Detection, Localization, and Conformational Analysis of Single Polysaccharide Molecules on Live Bacteria, ACS Nano, vol.2, pp.1921-1929, 2008.

C. Formosa-dague, C. Feuillie, A. Beaussart, S. Derclaye, S. Kucharíková et al., Chapitre 5 : L'imagerie optique à résolution micro-nanométrique et les méthodes de (bio)chimie permettent d'identifier l'un des facteurs responsables de l'échec de la daptomycine, vol.10, pp.3443-3452, 2016.

M. Chapot-chartier, E. Vinogradov, I. Sadovskaya, G. Andre, M. Mistou et al., Cell Surface of Lactococcus Lactis Is Covered by a Protective Polysaccharide Pellicle, J. Biol. Chem, vol.285, pp.10464-10471, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204236

S. El-kirat-chatel, A. Beaussart, C. D. Boyd, G. A. O'toole, and Y. F. Dufrêne, SingleCell and Single-Molecule Analysis Deciphers the Localization, Adhesion, and Mechanics of the Biofilm Adhesin LapA, ACS Chem. Biol, vol.9, pp.485-494, 2014.

Y. Gilbert, M. Deghorain, L. Wang, B. Xu, P. D. Pollheimer et al., Single-Molecule Force Spectroscopy and Imaging of the Vancomycin/D-Ala-D-Ala Interaction, Nano Lett, vol.7, pp.796-801, 2007.

C. Formosa-dague, P. Speziale, T. J. Foster, J. A. Geoghegan, and Y. F. Dufrêne, ZincDependent Mechanical Properties of Staphylococcus Aureus Biofilm-Forming Surface Protein SasG, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.410-415, 2016.

C. Feuillie, C. Formosa-dague, L. M. Hays, O. Vervaeck, S. Derclaye et al., Molecular Interactions and Inhibition of the Staphylococcal Biofilm-Forming Protein SdrC, Proc. Natl. Acad. Sci, vol.114, pp.3286-3295, 2004.

V. R. Matias and T. J. Beveridge, CryoElectron Microscopy of Cell Division in Staphylococcus Aureus Reveals a MidZone between Nascent Cross Walls, Mol. Microbiol, vol.64, pp.195-206, 2007.

J. M. Monteiro, P. B. Fernandes, F. Vaz, A. R. Pereira, A. C. Tavares et al., Cell Shape Dynamics during the Staphylococcal Cell Cycle. Nat. Commun, vol.6, p.8055, 2015.

C. C. Perry, M. Weatherly, T. Beale, and A. Randriamahefa, Atomic Force Microscopy Study of the Antimicrobial Activity of Aqueous Garlic versus Ampicillin against Escherichia Coli and Staphylococcus Aureus, J. Sci. Food Agric, vol.89, pp.958-964, 2009.

R. M. Humphries, S. Pollett, and G. Sakoulas, A Current Perspective on Daptomycin for the Clinical Microbiologist, Clin. Microbiol. Rev, vol.26, pp.759-780, 2013.

A. Müller, M. Wenzel, H. Strahl, F. Grein, T. N. Saaki et al., Daptomycin Inhibits Cell Envelope Synthesis by Interfering with Fluid Membrane Microdomains, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.7077-7086, 2016.

, Chapitre 5 : L'imagerie optique à résolution micro-nanométrique et les méthodes de (bio)chimie permettent d'identifier l'un des facteurs responsables de l'échec de la daptomycine

, Chapitre 5 : L'imagerie optique à résolution micro-nanométrique et les méthodes de (bio)chimie permettent d'identifier l'un des facteurs responsables de l'échec de la daptomycine References 1. Lowy, F. D. Staphylococcus aureus Infections, N. Engl. J. Med, vol.339, pp.520-532, 1998.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discov, vol.2, pp.114-122, 2003.
DOI : 10.1038/nrd1008

D. Lebeaux, J. Ghigo, and C. Beloin, Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward, Antibiotics. Microbiol. Mol. Biol. Rev, vol.78, pp.510-543, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370744

B. Shopsin, S. V. Kaveri, and J. Bayry, Tackling Difficult Staphylococcus aureus Infections: Antibodies Show the Way, Cell Host Microbe, vol.20, pp.555-557, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398083

R. M. Humphries, S. Pollett, and G. Sakoulas, A Current Perspective on Daptomycin for the Clinical Microbiologist, Clin. Microbiol. Rev, vol.26, pp.759-780, 2013.

M. Mingeot-leclercq and J. Décout, Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides, MedChemComm, vol.7, pp.586-611, 2016.

S. K. Straus and R. E. Hancock, Mode of action of the new antibiotic for Grampositive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides, Biochim. Biophys. Acta BBA-Biomembr, vol.1758, pp.1215-1223, 2006.

A. Muthaiyan, J. A. Silverman, R. K. Jayaswal, and B. J. Wilkinson, Transcriptional Profiling Reveals that Daptomycin Induces the Staphylococcus aureus Cell Wall Stress Stimulon and Genes Responsive to Membrane Depolarization, Antimicrob. Agents Chemother, vol.52, pp.980-990, 2008.

D. Mengin-lecreulx, N. E. Allen, J. N. Hobbs, J. Heijenoort, and . Van, Inhibition of peptidoglycan biosynthesis in Bacillus megaterium by daptomycin, FEMS Microbiol. Lett, vol.69, pp.245-248, 1990.

A. Müller, Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.7077-7086, 2016.

C. T. Mascio, J. D. Alder, and J. A. Silverman, Bactericidal Action of Daptomycin against Stationary-Phase and Nondividing Staphylococcus aureus Cells, Antimicrob. Agents Chemother, vol.51, pp.4255-4260, 2007.

K. C. Lamp, M. J. Rybak, E. M. Bailey, and G. W. Kaatz, In vitro pharmacodynamic effects of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin, Antimicrob. Agents Chemother, vol.36, pp.2709-2714, 1992.

V. G. Fowler, Daptomycin versus Standard Therapy for Bacteremia and Endocarditis Caused by Staphylococcus aureus, N. Engl. J. Med, vol.355, pp.653-665, 2006.

P. G. Mariani, H. S. Sader, and R. N. Jones, Development of decreased susceptibility to daptomycin and vancomycin in a Staphylococcus aureus strain during prolonged therapy, J. Antimicrob. Chemother, vol.58, pp.481-483, 2006.

K. Julian, Characterization of a daptomycin-nonsusceptible vancomycinintermediate Staphylococcus aureus strain in a patient with endocarditis, Antimicrob. Agents Chemother, vol.51, pp.3445-3448, 2007.

K. C. Lamp, L. V. Friedrich, L. Mendezvigo, and R. Russo, Clinical Experience with Daptomycin for the Treatment of Patients with Osteomyelitis, Am. J. Med, vol.120, pp.13-20, 2007.

M. Sharma, K. Riederer, P. Chase, and R. Khatib, High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia, Eur. J. Clin. Microbiol. Infect. Dis, vol.27, pp.433-437, 2008.

D. T. Levy, Successful treatment of a left ventricular assist device infection with daptomycin non-susceptible methicillinresistant Staphylococcus aureus: case report and review of the literature, Transpl. Infect. Dis. Off. J. Transplant. Soc, vol.14, pp.89-96, 2012.

P. A. Moise, Multicenter Evaluation of the Clinical Outcomes of Daptomycin with and without Concomitant ?-Lactams in Patients with Staphylococcus aureus Bacteremia and Mild to Moderate Renal Impairment, Antimicrob. Agents Chemother, vol.57, pp.1192-1200, 2013.

. .. Bone, Infectious Diseases in Clinical Practice, Daptomycin Failures in Prosthetic Joint Infections, p.18, 2017.

, RESULTATS

, Chapitre 5 : L'imagerie optique à résolution micro-nanométrique et les méthodes de (bio)chimie permettent d'identifier l'un des facteurs responsables de l'échec de la daptomycine

S. Stefani, Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: A review of the available evidence, Int. J. Antimicrob. Agents, vol.46, pp.278-289, 2015.

R. A. Seaton, Evaluation of Effectiveness and Safety of High-Dose Daptomycin: Results from Patients Included in the European Cubicin® Outcomes Registry and Experience, Adv. Ther, vol.32, pp.1192-1205, 2015.

T. Jones, Failures in Clinical Treatment of Staphylococcus aureus Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding, Antimicrob. Agents Chemother, vol.52, pp.269-278, 2008.

D. J. Skiest, Treatment failure resulting from resistance of Staphylococcus aureus to daptomycin, J. Clin. Microbiol, vol.44, pp.655-656, 2006.
DOI : 10.1128/jcm.44.2.655-656.2006

URL : https://jcm.asm.org/content/44/2/655.full.pdf

F. Dubois-brissonnet, E. Trotier, and R. Briandet, The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids, Front. Microbiol, vol.7, 2016.
DOI : 10.3389/fmicb.2016.01673

URL : https://hal.archives-ouvertes.fr/hal-01608805

Y. Zhang and C. O. Rock, Membrane lipid homeostasis in bacteria, Nat. Rev. Microbiol, vol.6, pp.222-233, 2008.
DOI : 10.1038/nrmicro1839

T. J. Denich, L. A. Beaudette, H. Lee, and J. T. Trevors, Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes, J. Microbiol. Methods, vol.52, pp.149-182, 2003.

C. Morvan, Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASIItargeted antimicrobials, Nat. Commun, vol.7, 2016.
DOI : 10.1038/ncomms12944

URL : https://hal.archives-ouvertes.fr/pasteur-01385175

R. Boudjemaa, New Insight into Daptomycin Bioavailability and Localization in Staphylococcus aureus Biofilms by Dynamic Fluorescence Imaging, Antimicrob. Agents Chemother, vol.60, pp.4983-4990, 2016.
DOI : 10.1128/aac.00735-16

URL : https://hal.archives-ouvertes.fr/hal-01435012

D. Oubekka, S. Briandet, R. Fontaineaupart, M. Steenkeste, and K. , Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms, Antimicrob. Agents Chemother, vol.56, pp.3349-3358, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000631

L. Cui, Cell Wall Thickening Is a Common Feature of Vancomycin Resistance in Staphylococcus aureus, J. Clin. Microbiol, vol.41, pp.5-14, 2003.

L. Cui, E. Tominaga, H. Neoh, and K. Hiramatsu, Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in VancomycinIntermediate Staphylococcus aureus, Antimicrob. Agents Chemother, vol.50, pp.1079-1082, 2006.
DOI : 10.1128/aac.50.3.1079-1082.2006

URL : https://aac.asm.org/content/50/3/1079.full.pdf

V. R. Matias and T. J. Beveridge, Native Cell Wall Organization Shown by CryoElectron Microscopy Confirms the Existence of a Periplasmic Space in Staphylococcus aureus, J. Bacteriol, vol.188, pp.1011-1021, 2006.

N. Bourg, Direct optical nanoscopy with axially localized detection, Nat. Photonics, vol.9, pp.587-593, 2015.
DOI : 10.1038/nphoton.2015.132

URL : http://arxiv.org/pdf/1410.1563

R. Sauermann, M. Rothenburger, W. Graninger, and C. Joukhadar, Daptomycin: A Review 4 Years after First Approval, Pharmacology, vol.81, pp.79-91, 2008.
DOI : 10.1159/000109868

URL : https://www.karger.com/Article/Pdf/109868

E. Oldfield and X. Feng, ResistanceResistant Antibiotics, Trends Pharmacol. Sci, vol.35, pp.664-674, 2014.

J. Pogliano, N. Pogliano, and J. A. Silverman, Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins, J. Bacteriol, vol.194, pp.4494-4504, 2012.

Y. Chen, T. Sun, Y. Sun, and H. W. Huang, Interaction of Daptomycin with Lipid Bilayers: A Lipid Extracting Effect, Biochemistry (Mosc.), vol.53, pp.5384-5392, 2014.

, Chapitre 5 : L'imagerie optique à résolution micro-nanométrique et les méthodes de (bio)chimie permettent d'identifier l'un des facteurs responsables de l'échec de la daptomycine

J. A. Silverman, N. G. Perlmutter, and H. M. Shapiro, Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus, Antimicrob. Agents Chemother, vol.47, pp.2538-2544, 2003.

S. Brinster, Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens, Nature, vol.458, pp.83-86, 2009.
DOI : 10.1038/nature07772

URL : https://hal.archives-ouvertes.fr/pasteur-00366166

H. E. Saito, J. R. Harp, and E. M. Fozo, Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents, Appl. Environ. Microbiol, vol.80, pp.6527-6538, 2014.

V. Pader, Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids, Nat. Microbiol, vol.2, p.16194, 2016.
DOI : 10.1038/nmicrobiol.2016.194

URL : https://spiral.imperial.ac.uk:8443/bitstream/10044/1/40119/2/942_5_merged_1472728502.pdf

J. G. Kenny, The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications, PLoS ONE, vol.4, 2009.
DOI : 10.1371/journal.pone.0004344

URL : https://doi.org/10.1371/journal.pone.0004344

, Nanocapsules lipidiques comprenant un antibiotique et leurs utilisations en therapie

D. Oubekka, S. Briandet, R. Waharte, F. Fontaine-aupart, M. Steenkeste et al., Image-based fluorescence recovery after photobleaching (FRAP) to dissect vancomycin diffusion-reaction processes in Staphylococcus aureus, ) Proc. SPIE 8087, vol.II, pp.80871-80871, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01601791

N. Olivier, D. Keller, V. S. Rajan, P. Gönczy, and S. Manley, Simple buffers for 3D STORM microscopy, Biomed. Opt. Express, vol.4, pp.885-899, 2013.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nat. Methods, vol.8, pp.1027-1036, 2011.

Y. Lin, Effect of laser intensity on Alexa Fluor 647 photoswitching kinetics, 2015.

S. Van-de-linde, Direct stochastic optical reconstruction microscopy with standard fluorescent probes, Nat. Protoc, vol.6, pp.991-1009, 2011.

, Chapitre 5 : L'imagerie optique à résolution micro-nanométrique et les méthodes de (bio)chimie permettent d'identifier l'un des facteurs responsables de l'échec de la daptomycine

, Chapitre 5 : L'imagerie optique à résolution micro-nanométrique et les méthodes de (bio)chimie permettent d'identifier l'un des facteurs responsables de l'échec de la daptomycine

A. T. Henrici, Studies of Freshwater Bacteria I. A Direct Microscopic Technique, J. Bacteriol, vol.25, pp.277-287, 1933.

C. E. Zobell and E. C. Allen, The Significance of Marine Bacteria in the Fouling of Submerged Surfaces, J. Bacteriol, vol.29, pp.239-251, 1935.

W. F. Mccoy, J. D. Bryers, J. Robbins, and J. W. Costerton, Observations of fouling biofilm formation, Can. J. Microbiol, vol.27, pp.910-917, 1981.

J. W. Costerton, R. T. Irvin, K. Cheng, and I. W. Sutherland, The Role of Bacterial Surface Structures in Pathogenesis, Crit. Rev. Microbiol, vol.8, pp.303-338, 1981.

T. C. Mah and G. A. O'toole, Mechanisms of biofilm resistance to antimicrobial agents, Trends Microbiol, vol.9, pp.34-39, 2001.

N. Høiby, A short history of microbial biofilms and biofilm infections, APMIS, vol.125, pp.272-275, 2017.

R. Locci, G. Peters, and G. Pulverer, Microbial colonization of prosthetic devices. I. Microtopographical characteristics of intravenous catheters as detected by scanning electron microscopy, Zentralbl. Bakteriol. Mikrobiol. Hyg, vol.173, pp.285-292, 1981.

G. D. Christensen, L. M. Baddour, and W. A. Simpson, Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo, Infect. Immun, vol.55, pp.2870-2877, 1987.

T. J. Marrie, J. Nelligan, and J. W. Costerton, A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead, Circulation, vol.66, pp.1339-1341, 1982.

V. Thammavongsa, H. K. Kim, D. Missiakas, and O. Schneewind, Staphylococcal manipulation of host immune responses, Nat. Rev. Microbiol, vol.13, pp.529-543, 2015.

N. K. Archer, Staphylococcus aureus biofilms: properties, regulation, and roles in human disease, Virulence, vol.2, pp.445-459, 2011.

L. Hall-stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: from the Natural environment to infectious diseases, Nat. Rev. Microbiol, vol.2, pp.95-108, 2004.

S. Y. Tong, J. S. Davis, E. Eichenberger, T. L. Holland, and V. G. Fowler, Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management, Clin. Microbiol. Rev, vol.28, pp.603-661, 2015.

D. Lebeaux, J. Ghigo, and C. Beloin, Tolérance des biofilms aux antibiotiques : comprendre pour mieux traiter, J. Anti-Infect, vol.16, pp.112-121, 2014.

G. O'toole, H. B. Kaplan, and R. Kolter, Biofilm formation as microbial development, Annu. Rev. Microbiol, vol.54, pp.49-79, 2000.

M. Kostakioti, M. Hadjifrangiskou, and S. J. Hultgren, Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era, Cold Spring Harb. Perspect. Med, vol.3, 2013.

H. J. Busscher and A. H. Weerkamp, Specific and non-specific interactions in bacterial adhesion to solid substrata, FEMS Microbiol. Lett, vol.46, pp.165-173, 1987.

Y. H. An and R. J. Friedman, Concise review of mechanisms of bacterial adhesion to biomaterial surfaces, J. Biomed. Mater. Res, vol.43, pp.338-348, 1998.

N. P. Boks, H. J. Busscher, H. C. Van-der-mei, and W. Norde, Bond-strengthening in staphylococcal adhesion to hydrophilic and hydrophobic surfaces using atomic force microscopy, Langmuir ACS J. Surf. Colloids, vol.24, pp.12990-12994, 2008.

T. R. Garrett, M. Bhakoo, and Z. Zhang, Bacterial adhesion and biofilms on surfaces, Prog. Nat. Sci, vol.18, pp.1049-1056, 2008.

H. J. Busscher, . Van-der, and H. C. Mei, Physico-Chemical Interactions in Initial Microbial Adhesion and Relevance for Biofilm Formation, Adv. Dent. Res, vol.11, pp.24-32, 1997.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, vol.284, pp.1318-1322, 1999.

T. J. Foster, J. A. Geoghegan, V. K. Ganesh, and M. Höök, Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus, Nat. Rev. Microbiol, vol.12, pp.49-62, 2014.

M. Otto and . Biofilms, Curr. Top. Microbiol. Immunol, vol.322, pp.207-228, 2008.

C. R. Arciola, D. Campoccia, S. Ravaioli, and L. Montanaro, Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects, Front. Cell. Infect. Microbiol, vol.5, 2015.

Y. G. Chan, H. K. Kim, O. Schneewind, and D. Missiakas, The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes, J. Biol. Chem. jbc.M114, vol.567669, 2014.

A. E. Paharik and A. R. Horswill, The Staphylococcal Biofilm: Adhesins, regulation, and host response, Microbiol. Spectr, vol.4, 2016.

C. R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, and J. W. Costerton, Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials, Biomaterials, vol.33, pp.5967-5982, 2012.

D. Mack, The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis, J. Bacteriol, vol.178, pp.175-183, 1996.

I. Lasa and J. R. Penadés, Bap: a family of surface proteins involved in biofilm formation, Res. Microbiol, vol.157, pp.99-107, 2006.

A. Taglialegna, Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals, PLoS Pathog, vol.12, 2016.
DOI : 10.1371/journal.ppat.1005711

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1005711&type=printable

C. Cucarella, Bap, a Staphylococcus aureus surface protein involved in biofilm formation, J. Bacteriol, vol.183, pp.2888-2896, 2001.
DOI : 10.1128/jb.183.9.2888-2896.2001

URL : http://jb.asm.org/content/183/9/2888.full.pdf

O. Hartford, D. Mcdevitt, and T. J. Foster, Matrix-binding proteins of Staphylococcus aureus: functional analysis of mutant and hybrid molecules, Microbiol. Read. Engl, vol.145, pp.2497-2505, 1999.
DOI : 10.1099/00221287-145-9-2497

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/145/9/1452497a.pdf?itemId=/content/journal/micro/10.1099/00221287-145-9-2497&mimeType=pdf&isFastTrackArticle=

E. O'neill, A Novel Staphylococcus aureus Biofilm Phenotype Mediated by the Fibronectin-Binding Proteins, FnBPA and FnBPB, J. Bacteriol, vol.190, pp.3835-3850, 2008.

N. M. Abraham and K. K. Jefferson, Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium, Microbiol. Read. Engl, vol.158, pp.1504-1512, 2012.

H. Flemming and J. Wingender, The biofilm matrix, Nat. Rev. Microbiol, vol.8, pp.623-633, 2010.

S. S. Branda, Å. Vik, L. Friedman, and R. Kolter, Biofilms: the matrix revisited, Trends Microbiol, vol.13, pp.20-26, 2005.

T. Das, P. K. Sharma, H. J. Busscher, H. C. Mei, . Van et al., Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation, Appl. Environ. Microbiol, vol.76, pp.3405-3408, 2010.
DOI : 10.1128/aem.03119-09

URL : http://aem.asm.org/content/76/10/3405.full.pdf

K. Schwartz, M. Ganesan, D. E. Payne, M. J. Solomon, and B. R. Boles, Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms, Mol. Microbiol, vol.99, pp.123-134, 2016.

K. Schwartz, A. K. Syed, R. E. Stephenson, A. H. Rickard, and B. R. Boles, Functional Amyloids Composed of Phenol Soluble Modulins Stabilize Staphylococcus aureus Biofilms, PLoS Pathog, vol.8, p.1002744, 2012.
DOI : 10.1371/journal.ppat.1002744

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1002744&type=printable

G. Y. Cheung, H. Joo, S. S. Chatterjee, and M. Otto, Phenol-soluble modulins-critical determinants of staphylococcal virulence, FEMS Microbiol. Rev, vol.38, pp.698-719, 2014.
DOI : 10.1111/1574-6976.12057

URL : https://academic.oup.com/femsre/article-pdf/38/4/698/18147667/38-4-698.pdf

J. B. Kaplan, Biofilm Dispersal, J. Dent. Res, vol.89, pp.205-218, 2010.

H. Joo and M. Otto, Molecular basis of in-vivo biofilm formation by bacterial pathogens, Chem. Biol, vol.19, pp.1503-1513, 2012.

D. Lebeaux, A. Chauhan, O. Rendueles, and C. Beloin, From in vitro to in vivo Models of Bacterial Biofilm-Related Infections, vol.2, pp.288-356, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01385428

T. Bjarnsholt, The in vivo biofilm, Trends Microbiol, vol.21, pp.466-474, 2013.

P. S. Stewart and M. J. Franklin, Physiological heterogeneity in biofilms, Nat. Rev. Microbiol, vol.6, pp.199-210, 2008.
DOI : 10.1038/nrmicro1838

J. W. Costerton, Biofilms, the customized microniche, J. Bacteriol, vol.176, pp.2137-2142, 1994.
DOI : 10.1128/jb.176.8.2137-2142.1994

URL : http://jb.asm.org/content/176/8/2137.full.pdf

D. De-beer, P. Stoodley, F. Roe, and Z. Lewandowski, Effects of biofilm structures on oxygen distribution and mass transport, Biotechnol. Bioeng, vol.43, pp.1131-1138, 1994.

K. D. Xu, P. S. Stewart, F. Xia, C. T. Huang, and G. A. Mcfeters, Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability, Appl. Environ. Microbiol, vol.64, pp.4035-4039, 1998.

S. A. Rani, Spatial Patterns of DNA Replication, Protein Synthesis, and Oxygen Concentration within Bacterial Biofilms Reveal Diverse Physiological States, J. Bacteriol, vol.189, pp.4223-4233, 2007.

T. K. Wood, S. J. Knabel, and B. W. Kwan, Bacterial Persister Cell Formation and Dormancy, Appl. Environ. Microbiol, vol.79, pp.7116-7121, 2013.

M. Ayrapetyan, T. C. Williams, and J. D. Oliver, Bridging the gap between viable but nonculturable and antibiotic persistent bacteria, Trends Microbiol, vol.23, pp.7-13, 2014.

T. Ramamurthy, A. Ghosh, G. P. Pazhani, and S. Shinoda, Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria. Front, Public Health, vol.2, 2014.

K. Lewis, Persister cells, dormancy and infectious disease, Nat. Rev. Microbiol, vol.5, pp.48-56, 2007.

B. Pascoe, Dormant Cells of Staphylococcus aureus Are Resuscitated by Spent Culture Supernatant, PLoS ONE, vol.9, p.85998, 2014.

K. Lewis, Persister cells and the riddle of biofilm survival, Biochem. Biokhimiia, vol.70, pp.267-274, 2005.

M. Prax and R. Bertram, Metabolic aspects of bacterial persisters, Front. Cell. Infect. Microbiol, vol.4, 2014.

M. Bergkessel, D. W. Basta, and D. K. Newman, The physiology of growth arrest: uniting molecular and environmental microbiology, Nat. Rev. Microbiol, vol.14, pp.549-562, 2016.

S. Pasquaroli, Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms, J. Antimicrob. Chemother, vol.68, pp.1812-1817, 2013.

S. Pasquaroli, Role of Daptomycin in the Induction and Persistence of the Viable but NonCulturable State of, Staphylococcus Aureus Biofilms. Pathogens, vol.3, pp.759-768, 2014.

T. D. Scherr, C. E. Heim, J. M. Morrison, and T. Kielian, Hiding in Plain Sight: Interplay between Staphylococcal Biofilms and Host Immunity. Front. Immunol, vol.5, 2014.

M. L. Hanke and T. Kielian, Deciphering mechanisms of staphylococcal biofilm evasion of host immunity, Front. Cell. Infect. Microbiol, vol.2, p.62, 2012.

T. J. Foster, Immune evasion by staphylococci, Nat. Rev. Microbiol, vol.3, pp.948-958, 2005.

A. N. Spaan, B. G. Surewaard, R. Nijland, and J. A. Van-strijp, Neutrophils versus Staphylococcus aureus: a biological tug of war, Annu. Rev. Microbiol, vol.67, pp.629-650, 2013.

M. Verdrengh and A. Tarkowski, Role of macrophages in Staphylococcus aureus-induced arthritis and sepsis, Arthritis Rheum, vol.43, pp.2276-2282, 2000.

M. Verdrengh and A. Tarkowski, Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus, Infect. Immun, vol.65, pp.2517-2521, 1997.

W. M. Nauseef, How human neutrophils kill and degrade microbes: an integrated view, Immunol. Rev, vol.219, pp.88-102, 2007.

R. Baselga, I. Albizu, and B. Amorena, Staphylococcus aureus capsule and slime as virulence factors in ruminant mastitis. A review, Vet. Microbiol, vol.39, pp.195-204, 1994.

K. O'riordan and J. C. Lee, Staphylococcus aureus Capsular Polysaccharides, Clin. Microbiol. Rev, vol.17, pp.218-234, 2004.

S. R. Clarke, Phenol-Soluble Modulins of Staphylococcus aureus Lure Neutrophils into Battle, Cell Host Microbe, vol.7, pp.423-424, 2010.

M. Fraunholz and B. Sinha, Intracellular staphylococcus aureus: Live-in and let die, Front. Cell. Infect. Microbiol, vol.2, 2012.
DOI : 10.3389/fcimb.2012.00043

URL : https://www.frontiersin.org/articles/10.3389/fcimb.2012.00043/pdf

M. S. Butler, M. A. Blaskovich, and M. A. Cooper, Antibiotics in the clinical pipeline at the end of 2015, J. Antibiot, 2016.

C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley, Survival strategies of infectious biofilms, Trends Microbiol, vol.13, pp.34-40, 2005.

C. Rayner and W. J. Munckhof, Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus, Intern. Med. J, vol.35, pp.3-16, 2005.

O. Ciofu, E. Rojo-molinero, M. D. Macià, and A. Oliver, Antibiotic treatment of biofilm infections, APMIS, vol.125, pp.304-319, 2017.

G. N. Forrest and K. Tamura, Rifampin Combination Therapy for Nonmycobacterial Infections, Clin. Microbiol. Rev, vol.23, pp.14-34, 2010.

N. P. Jørgensen, Rifampicin-containing combinations are superior to combinations of vancomycin, linezolid and daptomycin against Staphylococcus aureus biofilm infection in vivo and in vitro, Pathog. Dis, vol.74, p.19, 2016.

R. J. Fair and Y. Tor, Antibiotics and Bacterial Resistance in the 21st Century, Perspect. Med. Chem, vol.6, pp.25-64, 2014.

C. L. Ventola, The Antibiotic Resistance Crisis, Pharm. Ther, vol.40, pp.277-283, 2015.

J. Davies and D. Davies, Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. MMBR, vol.74, pp.417-433, 2010.

F. D. Lowy, Antimicrobial resistance: the example of Staphylococcus aureus, J Clin Invest, vol.111, pp.1265-1273, 2003.

C. C. Fuda, J. F. Fisher, and S. Mobashery, Beta-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome, Cell. Mol. Life Sci. CMLS, vol.62, pp.2617-2633, 2005.

P. S. Stewart, Antimicrobial Tolerance in Biofilms. Microbiol. Spectr, vol.3, 2015.

A. Brauner, O. Fridman, O. Gefen, and N. Q. Balaban, Distinguishing between resistance, tolerance and persistence to antibiotic treatment, Nat. Rev. Microbiol, vol.14, pp.320-330, 2016.
DOI : 10.1038/nrmicro.2016.34

G. Kahlmeter, European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria, J. Antimicrob. Chemother, vol.52, pp.145-148, 2003.

I. Levin-reisman, Antibiotic tolerance facilitates the evolution of resistance, Science, p.2191, 2017.

H. Wu, C. Moser, H. Wang, N. Høiby, and Z. Song, Strategies for combating bacterial biofilm infections, Int. J. Oral Sci, vol.7, pp.1-7, 2015.
DOI : 10.1038/ijos.2014.65

URL : https://www.nature.com/articles/ijos201465.pdf

D. Lebeaux, J. Ghigo, and C. Beloin, Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward, Antibiotics. Microbiol. Mol. Biol. Rev, vol.78, pp.510-543, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370744

D. Lebeaux, J. Ghigo, and O. Lortholary, Infections related to implanted medical devices: the down-side of medical progress, Rev. Prat, vol.64, pp.617-619, 2014.

D. Lebeaux and J. Ghigo, Management of biofilm-associated infections: what can we expect from recent research on biofilm lifestyles

, Med. Sci. MS, vol.28, pp.727-739, 2012.

M. Bhattacharya, D. J. Wozniak, P. Stoodley, and L. Hall-stoodley, Prevention and treatment of Staphylococcus aureus biofilms, Expert Rev. Anti Infect. Ther, vol.13, pp.1499-1516, 2015.

N. Safdar, J. Handelsman, and D. G. Maki, Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis, Lancet Infect. Dis, vol.4, pp.519-527, 2004.

K. L. Laplante and S. Woodmansee, Activities of Daptomycin and Vancomycin Alone and in Combination with Rifampin and Gentamicin against Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Isolates in an Experimental Model of Endocarditis, Antimicrob. Agents Chemother, vol.53, pp.3880-3886, 2009.

A. Chauhan, D. Lebeaux, J. Ghigo, and C. Beloin, Full and Broad-Spectrum In Vivo Eradication of Catheter-Associated Biofilms Using Gentamicin-EDTA Antibiotic Lock Therapy, Antimicrob. Agents Chemother, vol.56, pp.6310-6318, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01126606

J. L. Del-pozo, Effectiveness of teicoplanin versus vancomycin lock therapy in the treatment of port-related coagulase-negative staphylococci bacteraemia: a prospective case-series analysis, Int. J. Antimicrob. Agents, vol.34, pp.482-485, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00556352

N. Fernandez-hidalgo, Antibiotic-lock therapy for long-term intravascular catheter-related bacteraemia: results of an open, non-comparative study, J. Antimicrob. Chemother, vol.57, pp.1172-1180, 2006.

Y. Qu, T. S. Istivan, A. J. Daley, D. A. Rouch, and M. A. Deighton, Comparison of various antimicrobial agents as catheter lock solutions: preference for ethanol in eradication of coagulase-negative staphylococcal biofilms, J. Med. Microbiol, vol.58, pp.442-450, 2009.

B. J. Rijnders, E. Van-wijngaerden, S. J. Vandecasteele, M. Stas, and W. E. Peetermans, Treatment of long-term intravascular catheter-related bacteraemia with antibiotic lock: randomized, placebo-controlled trial, J. Antimicrob. Chemother, vol.55, pp.90-94, 2005.

K. R. Allison, M. P. Brynildsen, and J. J. Collins, Metabolite-enabled eradication of bacterial persisters by aminoglycosides, Nature, vol.473, pp.216-220, 2011.

N. Barraud, A. Buson, W. Jarolimek, and S. A. Rice, Mannitol Enhances Antibiotic Sensitivity of Persister Bacteria in Pseudomonas aeruginosa Biofilms, PLOS ONE, vol.8, p.84220, 2013.

J. L. Lister and A. R. Horswill, Staphylococcus aureus biofilms: recent developments in biofilm dispersal, Front. Cell. Infect. Microbiol, vol.4, 2014.

B. R. Boles and A. R. Horswill, Staphylococcal biofilm disassembly, Trends Microbiol, vol.19, pp.449-455, 2011.

J. B. Kaplan, C. Ragunath, K. Velliyagounder, D. H. Fine, and N. Ramasubbu, Enzymatic Detachment of Staphylococcus epidermidis Biofilms, Antimicrob. Agents Chemother, vol.48, pp.2633-2636, 2004.

J. B. Kaplan, Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms, J. Bacteriol, vol.186, pp.8213-8220, 2004.

G. Donelli, Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes, Antimicrob. Agents Chemother, vol.51, pp.2733-2740, 2007.

E. E. Mann, Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation, PloS One, vol.4, p.5822, 2009.

J. B. Kaplan, Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci, J. Antibiot. (Tokyo), vol.65, pp.73-77, 2012.

S. Kumar-shukla and T. S. Rao, Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K, J. Antibiot. (Tokyo), vol.66, pp.55-60, 2013.

P. Chaignon, Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition, Appl. Microbiol. Biotechnol, vol.75, pp.125-132, 2007.
DOI : 10.1007/s00253-006-0790-y

J. J. Swartjes, Current Developments in Antimicrobial Surface Coatings for Biomedical Applications, Curr. Med. Chem, vol.22, pp.2116-2129, 2015.
DOI : 10.2174/0929867321666140916121355

Y. Lu, Z. Yue, W. Wang, and Z. Cao, Strategies on designing multifunctional surfaces to prevent biofilm formation, Front. Chem. Sci. Eng, vol.9, pp.324-335, 2015.
DOI : 10.1007/s11705-015-1529-z

J. Li, Hydrophobic Liquid-Infused Porous Polymer Surfaces for Antibacterial Applications, ACS Appl. Mater. Interfaces, vol.5, pp.6704-6711, 2013.
DOI : 10.1021/am401532z

B. J. Privett, Antibacterial fluorinated silica colloid superhydrophobic surfaces, Langmuir ACS J. Surf. Colloids, vol.27, pp.9597-9601, 2011.
DOI : 10.1021/la201801e

URL : http://europepmc.org/articles/pmc3163484?pdf=render

A. K. Epstein, T. Wong, R. A. Belisle, E. M. Boggs, and J. Aizenberg, Liquid-infused structured surfaces with exceptional anti-biofouling performance, Proc. Natl. Acad. Sci, vol.109, pp.13182-13187, 2012.
DOI : 10.1073/pnas.1201973109

URL : http://www.pnas.org/content/109/33/13182.full.pdf

T. Wong, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, vol.477, pp.443-447, 2011.
DOI : 10.1038/nature10447

URL : https://dash.harvard.edu/bitstream/handle/1/27417441/Jasman%20%20Ware%20-%20Bioinspired%20self-repairing%20slippery%20surfaces%20with%20pressure-stable%20omniphobicity.pdf?sequence=1

C. Hu, Micro-/Nanometer Rough Structure of a Superhydrophobic Biodegradable Coating by Electrospraying for Initial Anti-Bioadhesion, Adv. Healthc. Mater, vol.2, pp.1314-1321, 2013.

J. Forsgren, U. Brohede, M. Strømme, and H. Engqvist, Co-loading of bisphosphonates and antibiotics to a biomimetic hydroxyapatite coating, Biotechnol. Lett, vol.33, pp.1265-1268, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00665450

I. Takigami, Two-stage revision surgery for hip prosthesis infection using antibiotic-loaded porous hydroxyapatite blocks, Arch. Orthop. Trauma Surg, vol.130, pp.1221-1226, 2010.
DOI : 10.1007/s00402-009-0991-9

O. Guillaume, X. Garric, J. Lavigne, H. Van-den-berghe, J. Coudane et al., degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro, J. Control. Release Off. J. Control. Release Soc, vol.162, pp.492-501, 2012.

B. Jose, V. Antoci, A. R. Zeiger, E. Wickstrom, and N. J. Hickok, Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus, Chem. Biol, vol.12, pp.1041-1048, 2005.

N. J. Hickok and I. M. Shapiro, Immobilized antibiotics to prevent orthopaedic implant infections, Adv. Drug Deliv. Rev, vol.64, pp.1165-1176, 2012.
DOI : 10.1016/j.addr.2012.03.015

URL : http://europepmc.org/articles/pmc3413739?pdf=render

T. E. Swanson, X. Cheng, and C. Friedrich, Development of chitosan-vancomycin antimicrobial coatings on titanium implants, J. Biomed. Mater. Res. A, vol.97, pp.167-176, 2011.

A. Shukla, J. C. Fang, S. Puranam, and P. T. Hammond, Release of vancomycin from multilayer coated absorbent gelatin sponges, J. Controlled Release, vol.157, pp.64-71, 2012.
DOI : 10.1016/j.jconrel.2011.09.062

T. Ganz, Defensins: antimicrobial peptides of innate immunity, Nat. Rev. Immunol, vol.3, pp.710-720, 2003.
DOI : 10.1038/nri1180

S. A. Onaizi and S. S. Leong, Tethering antimicrobial peptides: current status and potential challenges, Biotechnol. Adv, vol.29, pp.67-74, 2011.
DOI : 10.1016/j.biotechadv.2010.08.012

V. Humblot, The antibacterial activity of Magainin I immobilized onto mixed thiols SelfAssembled Monolayers, Biomaterials, vol.30, pp.3503-3512, 2009.

J. Yala, Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide, Appl. Microbiol. Biotechnol, vol.89, pp.623-634, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602954

K. V. Holmberg, Bio-inspired stable antimicrobial peptide coatings for dental applications, Acta Biomater, vol.9, pp.8224-8231, 2013.

M. Kazemzadeh-narbat, Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections, Biomaterials, vol.34, pp.5969-5977, 2013.

H. Mu, Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria. Sci. Rep, vol.6, p.18877, 2016.

Y. Liu, The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DLlactic-co-glycolic acid)-coated stainless steel, Biomaterials, vol.33, pp.8745-8756, 2012.

K. N. Stevens, The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood, Biomaterials, vol.30, pp.3682-3690, 2009.

J. K. Muraih, A. Pearson, J. Silverman, and M. Palmer, Oligomerization of daptomycin on membranes, Biochim. Biophys. Acta BBA-Biomembr, vol.1808, pp.1154-1160, 2011.

J. K. Muraih, Mode of Action of Daptomycin, a Lipopeptide Antibiotic, 2013.

L. Kailas, Immobilizing live bacteria for AFM imaging of cellular processes, Ultramicroscopy, vol.109, pp.775-780, 2009.

P. Speziale, G. Pietrocola, T. J. Foster, and J. A. Geoghegan, Protein-based biofilm matrices in Staphylococci, Front. Cell. Infect. Microbiol, vol.4, p.171, 2014.

Y. F. Dufrêne, Towards nanomicrobiology using atomic force microscopy, Nat. Rev. Microbiol, vol.6, pp.674-680, 2008.

D. J. Müller and Y. F. Dufrêne, Atomic force microscopy: a nanoscopic window on the cell surface, Trends Cell Biol, vol.21, pp.461-469, 2011.

L. Meyer and R. , Immobilisation of living bacteria for AFM imaging under physiological conditions, Ultramicroscopy, vol.110, pp.1349-1357, 2010.

Y. F. Dufrêne, Imaging modes of atomic force microscopy for application in molecular and cell biology, Nat. Nanotechnol, vol.12, pp.295-307, 2017.

C. Formosa, Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain, Sci. Rep, vol.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01650390

C. Formosa, M. Herold, C. Vidaillac, R. E. Duval, and E. Dague, Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy, J. Antimicrob. Chemother, vol.70, pp.2261-2270, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01553126

G. Longo, Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors, Nat. Nanotechnol, vol.8, pp.522-526, 2013.

G. Longo, Antibiotic-induced modifications of the stiffness of bacterial membranes, J. Microbiol. Methods, vol.93, pp.80-84, 2013.

G. Longo and S. Kasas, Effects of antibacterial agents and drugs monitored by atomic force microscopy, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.6, pp.230-244, 2014.

M. Scocchi, M. Mardirossian, G. Runti, and M. Benincasa, Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria, Curr. Top. Med. Chem, vol.16, pp.76-88, 2016.

G. Francius, Detection, Localization, and Conformational Analysis of Single Polysaccharide Molecules on Live Bacteria, ACS Nano, vol.2, pp.1921-1929, 2008.

C. Formosa-dague, Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin, ACS Nano, vol.10, pp.3443-3452, 2016.

M. Chapot-chartier, Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle, J. Biol. Chem, vol.285, pp.10464-10471, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204236

S. El-kirat-chatel, A. Beaussart, C. D. Boyd, G. A. O'toole, and Y. F. Dufrêne, Single-Cell and Single-Molecule Analysis Deciphers the Localization, Adhesion, and Mechanics of the Biofilm Adhesin LapA, ACS Chem. Biol, vol.9, pp.485-494, 2014.

Y. Gilbert, Single-Molecule Force Spectroscopy and Imaging of the Vancomycin/d-Ala-dAla Interaction, Nano Lett, vol.7, pp.796-801, 2007.

C. Formosa-dague, P. Speziale, T. J. Foster, J. A. Geoghegan, and Y. F. Dufrêne, Zincdependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.410-415, 2016.

C. Feuillie, Molecular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.3738-3743, 2017.

A. Touhami, M. H. Jericho, and T. J. Beveridge, Atomic force microscopy of cell growth and division in Staphylococcus aureus, J. Bacteriol, vol.186, pp.3286-3295, 2004.

V. R. Matias and T. J. Beveridge, Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls, Mol. Microbiol, vol.64, pp.195-206, 2007.

J. M. Monteiro, Cell shape dynamics during the staphylococcal cell cycle, Nat. Commun, vol.6, p.8055, 2015.

C. C. Perry, M. Weatherly, T. Beale, and A. Randriamahefa, Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escherichia coli and Staphylococcus aureus, J. Sci. Food Agric, vol.89, pp.958-964, 2009.

R. M. Humphries, S. Pollett, and G. Sakoulas, A Current Perspective on Daptomycin for the Clinical Microbiologist, Clin. Microbiol. Rev, vol.26, pp.759-780, 2013.

A. Müller, Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.7077-7086, 2016.

F. D. Lowy, Staphylococcus aureus Infections, N. Engl. J. Med, vol.339, pp.520-532, 1998.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discov, vol.2, pp.114-122, 2003.

B. Shopsin, S. V. Kaveri, and J. Bayry, Tackling Difficult Staphylococcus aureus Infections: Antibodies Show the Way, Cell Host Microbe, vol.20, pp.555-557, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398083

M. Mingeot-leclercq and J. Décout, Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides, MedChemComm, vol.7, pp.586-611, 2016.

S. K. Straus and R. E. Hancock, Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides, Biochim. Biophys. Acta BBA-Biomembr, vol.1758, pp.1215-1223, 2006.

A. Muthaiyan, J. A. Silverman, R. K. Jayaswal, and B. J. Wilkinson, Transcriptional Profiling Reveals that Daptomycin Induces the Staphylococcus aureus Cell Wall Stress Stimulon and Genes Responsive to Membrane Depolarization, Antimicrob. Agents Chemother, vol.52, pp.980-990, 2008.

D. Mengin-lecreulx, N. E. Allen, J. N. Hobbs, J. Heijenoort, and . Van, Inhibition of peptidoglycan biosynthesis in Bacillus megaterium by daptomycin, FEMS Microbiol. Lett, vol.69, pp.245-248, 1990.

C. T. Mascio, J. D. Alder, and J. A. Silverman, Bactericidal Action of Daptomycin against Stationary-Phase and Nondividing Staphylococcus aureus Cells, Antimicrob. Agents Chemother, vol.51, pp.4255-4260, 2007.

K. C. Lamp, M. J. Rybak, E. M. Bailey, and G. W. Kaatz, In vitro pharmacodynamic effects of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin, Antimicrob. Agents Chemother, vol.36, pp.2709-2714, 1992.

V. G. Fowler, Daptomycin versus Standard Therapy for Bacteremia and Endocarditis Caused by Staphylococcus aureus, N. Engl. J. Med, vol.355, pp.653-665, 2006.
DOI : 10.1056/nejmoa053783

P. G. Mariani, H. S. Sader, and R. N. Jones, Development of decreased susceptibility to daptomycin and vancomycin in a Staphylococcus aureus strain during prolonged therapy, J. Antimicrob. Chemother, vol.58, pp.481-483, 2006.

K. Julian, Characterization of a daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus strain in a patient with endocarditis, Antimicrob. Agents Chemother, vol.51, pp.3445-3448, 2007.

K. C. Lamp, L. V. Friedrich, L. Mendez-vigo, and R. Russo, Clinical Experience with Daptomycin for the Treatment of Patients with Osteomyelitis, Am. J. Med, vol.120, pp.13-20, 2007.

M. Sharma, K. Riederer, P. Chase, and R. Khatib, High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia, Eur. J. Clin. Microbiol. Infect. Dis, vol.27, pp.433-437, 2008.

D. T. Levy, Successful treatment of a left ventricular assist device infection with daptomycin non-susceptible methicillin-resistant Staphylococcus aureus: case report and review of the literature, Transpl. Infect. Dis. Off. J. Transplant. Soc, vol.14, pp.89-96, 2012.

P. A. Moise, Multicenter Evaluation of the Clinical Outcomes of Daptomycin with and without Concomitant ?-Lactams in Patients with Staphylococcus aureus Bacteremia and Mild to Moderate Renal Impairment, Antimicrob. Agents Chemother, vol.57, pp.1192-1200, 2013.

. .. Bone, Infectious Diseases in Clinical Practice, Daptomycin Failures in Prosthetic Joint Infections, p.18, 2017.

S. Stefani, Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: A review of the available evidence, Int. J. Antimicrob. Agents, vol.46, pp.278-289, 2015.

R. A. Seaton, Evaluation of Effectiveness and Safety of High-Dose Daptomycin: Results from Patients Included in the European Cubicin® Outcomes Registry and Experience, Adv. Ther, vol.32, pp.1192-1205, 2015.

T. Jones, Failures in Clinical Treatment of Staphylococcus aureus Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding, Antimicrob. Agents Chemother, vol.52, pp.269-278, 2008.

D. J. Skiest, Treatment failure resulting from resistance of Staphylococcus aureus to daptomycin, J. Clin. Microbiol, vol.44, pp.655-656, 2006.

F. Dubois-brissonnet, E. Trotier, and R. Briandet, The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids, Front. Microbiol, vol.7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608805

Y. Zhang and C. O. Rock, Membrane lipid homeostasis in bacteria, Nat. Rev. Microbiol, vol.6, pp.222-233, 2008.
DOI : 10.1038/nrmicro1839

T. J. Denich, L. A. Beaudette, H. Lee, and J. T. Trevors, Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes, J. Microbiol. Methods, vol.52, pp.149-182, 2003.
DOI : 10.1016/s0167-7012(02)00155-0

C. Morvan, Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials, Nat. Commun, vol.7, 2016.
DOI : 10.1038/ncomms12944

URL : https://hal.archives-ouvertes.fr/pasteur-01385175

R. Boudjemaa, New Insight into Daptomycin Bioavailability and Localization in Staphylococcus aureus Biofilms by Dynamic Fluorescence Imaging, Antimicrob. Agents Chemother, vol.60, pp.4983-4990, 2016.
DOI : 10.1128/aac.00735-16

URL : https://hal.archives-ouvertes.fr/hal-01435012

D. Oubekka, S. Briandet, R. Fontaine-aupart, M. Steenkeste, and K. , Correlative timeresolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms, Antimicrob. Agents Chemother, vol.56, pp.3349-3358, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000631

L. Cui, Cell Wall Thickening Is a Common Feature of Vancomycin Resistance in Staphylococcus aureus, J. Clin. Microbiol, vol.41, pp.5-14, 2003.

L. Cui, E. Tominaga, H. Neoh, and K. Hiramatsu, Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus, Antimicrob. Agents Chemother, vol.50, pp.1079-1082, 2006.
DOI : 10.1128/aac.50.3.1079-1082.2006

URL : https://aac.asm.org/content/50/3/1079.full.pdf

V. R. Matias and T. J. Beveridge, Native Cell Wall Organization Shown by Cryo-Electron Microscopy Confirms the Existence of a Periplasmic Space in Staphylococcus aureus, J. Bacteriol, vol.188, pp.1011-1021, 2006.

N. Bourg, Direct optical nanoscopy with axially localized detection, Nat. Photonics, vol.9, pp.587-593, 2015.
DOI : 10.1038/nphoton.2015.132

URL : http://arxiv.org/pdf/1410.1563

R. Sauermann, M. Rothenburger, W. Graninger, and C. Joukhadar, Daptomycin: A Review 4 Years after First Approval, Pharmacology, vol.81, pp.79-91, 2008.
DOI : 10.1159/000109868

URL : https://www.karger.com/Article/Pdf/109868

L. Friedman, J. D. Alder, and J. A. Silverman, Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus, Antimicrob. Agents Chemother, vol.50, pp.2137-2145, 2006.
DOI : 10.1128/aac.00039-06

URL : https://aac.asm.org/content/50/6/2137.full.pdf

M. K. Hayden, Development of Daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus, J. Clin. Microbiol, vol.43, pp.5285-5287, 2005.

A. Mangili, I. Bica, D. R. Snydman, and D. H. Hamer, Daptomycin-resistant, methicillinresistant Staphylococcus aureus bacteremia, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.40, pp.1058-1060, 2005.

F. M. Marty, Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis, J. Clin. Microbiol, vol.44, pp.595-597, 2006.

S. Helaine and E. Kugelberg, Bacterial persisters: formation, eradication, and experimental systems, Trends Microbiol, vol.22, pp.417-424, 2014.

E. Oldfield and X. Feng, Resistance-Resistant Antibiotics, Trends Pharmacol. Sci, vol.35, pp.664-674, 2014.
DOI : 10.1016/j.tips.2014.10.007

URL : http://europepmc.org/articles/pmc4314344?pdf=render

Y. Chen, T. Sun, Y. Sun, and H. W. Huang, Interaction of Daptomycin with Lipid Bilayers: A Lipid Extracting Effect, Biochemistry (Mosc.), vol.53, pp.5384-5392, 2014.
DOI : 10.1021/bi500779g

URL : https://doi.org/10.1021/bi500779g

A. Hachmann, Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis, Antimicrob. Agents Chemother, vol.55, pp.4326-4337, 2011.

J. Pogliano, N. Pogliano, and J. A. Silverman, Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins, J. Bacteriol, vol.194, pp.4494-4504, 2012.

J. A. Silverman, N. G. Perlmutter, and H. M. Shapiro, Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus, Antimicrob. Agents Chemother, vol.47, pp.2538-2544, 2003.
DOI : 10.1128/aac.47.8.2538-2544.2003

URL : https://aac.asm.org/content/47/8/2538.full.pdf

S. Brinster, Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens, Nature, vol.458, pp.83-86, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00366166

H. E. Saito, J. R. Harp, and E. M. Fozo, Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents, Appl. Environ. Microbiol, vol.80, pp.6527-6538, 2014.
DOI : 10.1128/aem.02044-14

URL : https://aem.asm.org/content/80/20/6527.full.pdf

, Nanocapsules lipidiques comprenant un antibiotique et leurs utilisations en therapie

D. Oubekka, S. Briandet, R. Waharte, F. Fontaine-aupart, M. Steenkeste et al., Imagebased fluorescence recovery after photobleaching (FRAP) to dissect vancomycin diffusionreaction processes in Staphylococcus aureus, ) Proc. SPIE 8087, vol.II, pp.80871-80871, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01601791

N. Olivier, D. Keller, V. S. Rajan, P. Gönczy, and S. Manley, Simple buffers for 3D STORM microscopy, Biomed. Opt. Express, vol.4, pp.885-899, 2013.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nat. Methods, vol.8, pp.1027-1036, 2011.

Y. Lin, Effect of laser intensity on Alexa Fluor 647 photoswitching kinetics, 2015.

S. Van-de-linde, Direct stochastic optical reconstruction microscopy with standard fluorescent probes, Nat. Protoc, vol.6, pp.991-1009, 2011.

J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, and L. J. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol, vol.13, pp.42-51, 2015.

D. Debabov, Antibiotic resistance: Origins, mechanisms, approaches to counter, Appl. Biochem. Microbiol, vol.49, pp.665-671, 2013.
DOI : 10.1134/s0003683813080024

N. Dhar and J. D. Mckinney, Microbial phenotypic heterogeneity and antibiotic tolerance, Curr. Opin. Microbiol, vol.10, pp.30-38, 2007.
DOI : 10.1016/j.mib.2006.12.007

S. M. Lehar, Novel antibody-antibiotic conjugate eliminates intracellular S. aureus, Nature, vol.527, pp.323-328, 2015.
DOI : 10.1038/nature16057

G. S. Nadzam, C. De-la-cruz, R. S. Greco, and B. Haimovich, Neutrophil Adhesion to Vascular Prosthetic Surfaces Triggers Nonapoptotic Cell Death, Ann. Surg, vol.231, pp.587-599, 2000.
DOI : 10.1097/00000658-200004000-00019

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1421037/pdf

R. Singh, S. Sahore, P. Kaur, A. Rani, and P. Ray, Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain-and antibiotic-specific differences, Pathog. Dis, p.56, 2016.
DOI : 10.1093/femspd/ftw056

URL : https://academic.oup.com/femspd/article-pdf/74/6/ftw056/24190528/ftw056.pdf

B. Cao, Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model, PLoS ONE, vol.11, 2016.

K. K. Jefferson, D. A. Goldmann, and G. B. Pier, Use of Confocal Microscopy To Analyze the Rate of Vancomycin Penetration through Staphylococcus aureus Biofilms, Antimicrob. Agents Chemother, vol.49, pp.2467-2473, 2005.

R. O. Darouiche, Vancomycin Penetration Into Biofilm Covering Infected Prostheses And Effect On Bacteria, J. Infect. Dis, vol.170, pp.720-723, 1994.
DOI : 10.1093/infdis/170.3.720

P. S. Stewart, W. M. Davison, and J. N. Steenbergen, Daptomycin Rapidly Penetrates a Staphylococcus epidermidis Biofilm, Antimicrob. Agents Chemother, vol.53, pp.3505-3507, 2009.
DOI : 10.1128/aac.01728-08

URL : https://aac.asm.org/content/53/8/3505.full.pdf

Z. Zheng and P. S. Stewart, Penetration of Rifampin through Staphylococcus epidermidis Biofilms, Antimicrob. Agents Chemother, vol.46, pp.900-903, 2002.
DOI : 10.1128/aac.46.3.900-903.2002

URL : https://aac.asm.org/content/46/3/900.full.pdf

R. Boudjemaa, F. Dubois-brissonnet, A. Gruss, R. Briandet, M. P. Fontaine-aupart et al., Membrane fatty acid composition runs S. aureus tolerance to daptomycin, 2017.

R. Boudjemaa, C. Marlière, R. Briandet, M. P. Fontaine-aupart, and K. Steenkeste, Real-Time changes of cell surface nanotopography in biofilm genesis, 2017.

C. Cabriel, N. Bourg, R. Boudjemaa, K. Steenkeste, M. Fontaine-aupart et al., Combining axial single molecule localization strategies to enhance 3D imaging of antibiotic in bacteria, Single Molecule Localization Microscopy congress, 2016.

R. Boudjemaa, R. Briandet, M. Revest, J. C. Caillon, J. Fontaine-aupart et al., Staphylococcus aureus adhesion on prosthetic vascular grafts: an in vivo visualization and characterization of antibiotics efficiency, at Biofilms, vol.7, 2016.

P. Thebault, R. Boudjemaa, K. Steenkeste, C. Marlière, and M. Fontaine-aupart, New insight on antibacterial mechanism of immobilized antimicrobial peptides, Biofilms, vol.7, 2016.

R. Boudjemaa, R. Briandet, M. Revest, J. C. Caillon, J. Fontaine-aupart et al., Visualization and quantification of Staphylococcus aureus biofilms inactivation by antibiotics to provide a better understanding of bacterial biofilms tolerance, 2015.

M. Revest, C. Jacqueline, R. Boudjemaa, J. Caillon, K. Steenkeste et al., Comparative efficacy of cloxacillin, vancomycin, daptomycin whether or not combined with rifampin in a mouse model of Staphylococcus aureus vascular material infection, 54 th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 2014.

R. Boudjemaa, M. Revest, J. C. Caillon, J. Briandet, R. Fontaine-aupart et al., Diffusion, Bioavailability and Reactivity of Antibiotics against Staphylococcus aureus Biofilms: a New Approach by Dynamic Fluorescence Imaging

, Mission de doctorant-conseil chez VitaDX, start-up spécialisée dans le diagnostic précoce du cancer de la vessie

, Suivi des cours d'un DU (Diplôme Universitaire) en ingénierie biomédicale : valorisation de la recherche et innovation biomédicale