J. R. Warner, The economics of ribosome biosynthesis in yeast, Trends Biochem Sci, vol.24, pp.437-477, 1999.

A. K. Henras, J. Soudet, and M. Gérus, The post-transcriptional steps of eukaryotic ribosome biogenesis, Cell Mol Life Sci, vol.65, pp.2334-59, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00309051

A. K. Henras, C. Plisson-chastang, O. 'donohue, and M. , An overview of pre-ribosomal RNA processing in eukaryotes, Wiley Interdiscip Rev RNA, vol.6, pp.225-267, 2015.

S. Lebaron, C. Schneider, R. W. Nues, and . Van, Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits, Nat Struct Mol Biol, vol.19, pp.744-53, 2012.

B. S. Strunk, M. N. Novak, and C. L. Young, A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits, Cell, vol.150, pp.111-132, 2012.

C. Wade, K. A. Shea, and R. V. Jensen, EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis, Mol Cell Biol, vol.21, pp.8638-50, 2001.

C. H. Wade, M. A. Umbarger, and M. A. Mcalear, The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes, Yeast Chichester Engl, vol.23, pp.293-306, 2006.

P. Jorgensen, I. Rupes, and J. R. Sharom, A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size, Genes Dev, vol.18, pp.2491-505, 2004.

X. Cai, L. Gao, and L. Teng, Runx1 Deficiency Decreases Ribosome Biogenesis and Confers Stress Resistance to Hematopoietic Stem and Progenitor Cells, Cell Stem Cell, vol.17, pp.165-77, 2015.

V. Iadevaia, R. Liu, and C. G. Proud, mTORC1 signaling controls multiple steps in ribosome biogenesis, Semin Cell Dev Biol, vol.36, pp.113-133, 2014.

. Riggelen-j-van, A. Yetil, and D. W. Felsher, MYC as a regulator of ribosome biogenesis and protein synthesis, Nat Rev Cancer, vol.10, pp.301-310, 2010.

L. Montanaro, D. Treré, M. Derenzini, R. Nucleolus, and C. , Am J Pathol, vol.173, pp.301-311, 2008.

M. Lin, C. Fukukawa, and J. Park, Involvement of G-patch domain containing 2 overexpression in breast carcinogenesis, Cancer Sci, vol.100, pp.1443-50, 2009.

D. Bai, J. Zhang, and T. Li, The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth, Nat Commun, vol.7, p.12310, 2016.

K. Liu, H. Chen, and S. Wang, High Expression of RIOK2 and NOB1 Predict Human Non-small Cell Lung Cancer Outcomes, Sci Rep, vol.6, p.28666, 2016.

D. Ruggero, S. Grisendi, and F. Piazza, Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification, Science, vol.299, pp.259-62, 2003.

D. G. Pestov, Z. Strezoska, and L. F. Lau, Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition, Mol Cell Biol, vol.21, pp.4246-55, 2001.

A. Amsterdam, K. C. Sadler, and K. Lai, Many ribosomal protein genes are cancer genes in zebrafish, PLoS Biol, vol.2, p.139, 2004.

X. Zhou, W. J. Liao, and J. M. Liao, Ribosomal proteins: functions beyond the ribosome, J Mol Cell Biol, vol.7, pp.92-104, 2015.

S. Yadavilli, L. D. Mayo, and M. Higgins, Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain, DNA Repair, vol.8, pp.1215-1239, 2009.

X. Zhang, W. Wang, and H. Wang, Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop, Oncogene, vol.32, pp.2782-91, 2013.

V. Marechal, B. Elenbaas, and J. Piette, The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes, Mol Cell Biol, vol.14, pp.7414-7434, 1994.

J. Zheng, Y. Lang, and Q. Zhang, Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation, Genes Dev, vol.29, pp.1524-1558, 2015.

S. Fumagalli, V. V. Ivanenkov, and T. Teng, Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint, Genes Dev, vol.26, pp.1028-1068, 2012.

M. S. Lindström, J. A. Deisenroth, and C. , Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation, Mol Cell Biol, vol.27, pp.1056-68, 2007.

E. Nicolas, P. Parisot, and C. Pinto-monteiro, Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress, Nat Commun, vol.7, p.11390, 2016.

J. Zhang, P. Harnpicharnchai, and J. Jakovljevic, Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes, Genes Dev, vol.21, pp.2580-92, 2007.
DOI : 10.1101/gad.1569307

URL : http://genesdev.cshlp.org/content/21/20/2580.full.pdf

K. E. Sloan, M. T. Bohnsack, and N. J. Watkins, The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress, Cell Rep, vol.5, pp.237-284, 2013.

G. Donati, S. Peddigari, and C. A. Mercer, 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint, Cell Rep, vol.4, pp.87-98, 2013.

. Tirés-À-part-s.-lebaron-references, P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen et al., Phenix: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr D Biol Crystallogr, vol.66, pp.213-221, 2010.

J. Armistead, S. Khatkar, B. Meyer, B. L. Mark, N. Patel et al., Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome, Am J Hum Genet, vol.84, pp.728-739, 2009.

. Madru,

, GENES & DEVELOPMENT

N. Asano, K. Kato, A. Nakamura, K. Komoda, I. Tanaka et al., Structural and functional analysis of the Rpf2-Rrs1 complex in ribosome biogenesis, Nucleic Acids Res, vol.43, pp.4746-4757, 2015.

J. Baßler, H. Paternoga, I. Holdermann, M. Thoms, S. Granneman et al., A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation, J Cell Biol, vol.207, pp.481-498, 2014.

G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, and W. Paciorek, Generation, representation and flow of phase information in structure determination: recent developments in and around Sharp 2.0, Acta Crystallogr D Biol Crystallogr, vol.59, pp.2023-2030, 2003.

V. Bugner, A. Tecza, S. Gessert, and M. Kühl, Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis, Development, vol.138, pp.2369-2378, 2011.

F. R. Calviño, S. Kharde, A. Ori, A. Hendricks, K. Wild et al., Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site, Nat Commun, vol.6, p.6510, 2015.

M. Ciganda and N. Williams, Eukaryotic 5S rRNA biogenesis, Wiley Interdiscip Rev RNA, vol.2, pp.523-533, 2011.

G. David and J. Perez, Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline, J Appl Crystallogr, vol.42, pp.892-900, 2009.

G. Donati, S. Peddigari, C. A. Mercer, and G. Thomas, 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint, Cell Rep, vol.4, pp.87-98, 2013.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2126-2132, 2004.

G. Evrard, F. Mareuil, F. Bontems, C. Sizun, and J. Perez, DADIMODO: a program for refining the structure of multidomain proteins and complexes against small-angle scattering data and NMR-derived restraints, J Appl Crystallogr, vol.44, pp.1264-1271, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656474

C. Furtado, C. G. Regis-da-silva, P. Silva, D. G. Franco, G. R. Macedo et al., Schistosoma mansoni: the IMP4 gene is involved in DNA repair/tolerance after treatment with alkylating agent methyl methane sulfonate, Exp Parasitol, vol.116, pp.25-34, 2007.

M. Gamalinda, U. Ohmayer, J. Jakovljevic, B. Kumcuoglu, J. Woolford et al., A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains, Genes Dev, vol.28, pp.198-210, 2014.

A. E. Gambe, S. Matsunaga, H. Takata, R. Ono-maniwa, A. Baba et al., A nucleolar protein RRS1 contributes to chromosome congression, FEBS Lett, vol.583, pp.1951-1956, 2009.

T. Gérczei and C. C. Correll, Imp3p and Imp4p mediate formation of essential U3-precursor rRNA (pre-rRNA) duplexes, possibly to recruit the small subunit processome to the prerRNA, Proc Natl Acad Sci, vol.101, pp.15301-15306, 2004.

S. Granneman, G. Kudla, E. Petfalski, and D. Tollervey, Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs, Proc Natl Acad Sci, vol.106, pp.9613-9618, 2009.

S. Granneman, E. Petfalski, and D. Tollervey, A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease, EMBO J, vol.30, pp.4006-4019, 2011.

W. Kabsch, XDS. Acta Crystallogr D Biol Crystallogr, vol.66, pp.125-132, 2010.

E. Knight and J. E. Darnell, Distribution of 5 s RNA in HeLa cells, J Mol Biol, vol.28, pp.491-502, 1967.

E. Layat, A. V. Probst, and S. Tourmente, Structure, function and regulation of transcription factor IIIA: from Xenopus to Arabidopsis, Biochim Biophys Acta, vol.1829, pp.274-282, 2013.

S. Lebaron, C. Froment, M. Fromont-racine, J. Rain, B. Monsarrat et al., The splicing ATPase prp43p is a component of multiple preribosomal particles, Mol Cell Biol, vol.25, pp.9269-9282, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022326

S. Lebaron, C. Schneider, R. W. Van-nues, A. Swiatkowska, D. Walsh et al., Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits, Nat Struct Mol Biol, vol.19, pp.744-753, 2012.

B. M. Lee, J. Xu, B. K. Clarkson, M. A. Martinez-yamout, H. J. Dyson et al., Induced fit and 'lock and key' recognition of 5S RNA by zinc fingers of transcription factor IIIA, J Mol Biol, vol.357, pp.275-291, 2006.

C. Leidig, M. Thoms, I. Holdermann, B. Bradatsch, O. Berninghausen et al., 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle, Nat Commun, vol.5, p.3491, 2014.

A. G. Leslie and H. R. Powell, Processing diffraction data with Mosflm, Evolving methods for macromolecular crystallography (ed. Read R, Sussman JL), pp.41-51, 2007.

Y. Liu, Y. He, J. A. Tikunov, A. P. Zhou, L. Tollini et al., Ribosomal proteinMdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation, Proc Natl Acad Sci, vol.111, pp.2414-2422, 2014.

J. Loc'h, M. Blaud, S. Réty, S. Lebaron, P. Deschamps et al., RNA mimicry by the Fap7 adenylate kinase in ribosome biogenesis, PLoS Biol, vol.12, p.1001860, 2014.

M. S. Longtine, A. Mckenzie, D. J. Demarini, N. G. Shah, A. Wach et al., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast, vol.14, pp.953-961, 1998.

D. Lu, A. Searles, M. Klug, and A. , Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition, Nature, vol.426, pp.96-100, 2003.

Y. Matsuo, S. Granneman, M. Thoms, R. Manikas, D. Tollervey et al., Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export, Nature, vol.505, pp.112-116, 2014.

P. L. Miliani-de-marval and Y. Zhang, The RP-Mdm2-p53 pathway and tumorigenesis, Oncotarget, vol.2, pp.234-238, 2011.

A. Narla and B. L. Ebert, Translational medicine: ribosomopathies, Blood, vol.118, pp.4300-4301, 2011.

C. L. Ng, D. Waterman, E. V. Koonin, A. A. Antson, and M. Ortiz-lombardía, Crystal structure of Mil (Mth680): internal duplication and similarity between the Imp4/Brix domain and the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases, EMBO Rep, vol.6, pp.140-146, 2005.

M. Parisien and F. Major, The MC-sold and MC-sym pipeline infers RNA structure from sequence data, Nature, vol.452, pp.51-55, 2008.

P. Pernot, A. Round, R. Barrett, D. Maria-antolinos, A. Gobbo et al.,

, Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution, J Synchrotron Radiat, vol.20, pp.660-664

, GENES & DEVELOPMENT, p.1445

M. V. Petoukhov, D. Franke, A. V. Shkumatov, G. Tria, A. G. Kikhney et al., New developments in the ATSAS program package for small-angle scattering data analysis, J Appl Crystallogr, vol.45, pp.342-350, 2012.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J Comput Chem, vol.25, pp.1605-1612, 2004.
DOI : 10.1002/jcc.20084

URL : http://www.cgl.ucsf.edu/home/tef/pubs/chimera.pdf

C. A. Rohl, C. Strauss, K. Misura, and D. Baker, Protein structure prediction using Rosetta, Methods Enzymol, vol.383, pp.66-93, 2004.
DOI : 10.1016/s0076-6879(04)83004-0

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J Mol Biol, vol.234, pp.779-815, 1993.

M. Sasaki, K. Kawahara, M. Nishio, K. Mimori, R. Kogo et al., Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11, Nat Med, vol.17, pp.944-951, 2011.

M. Shen and A. Sali, Statistical potential for assessment and prediction of protein structures, Protein Sci, vol.15, pp.2507-2524, 2006.
DOI : 10.1110/ps.062416606

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1110/ps.062416606

K. E. Sloan, M. T. Bohnsack, and N. J. Watkins, The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress, Cell Rep, vol.5, pp.237-247, 2013.
DOI : 10.1016/j.celrep.2013.08.049

URL : https://doi.org/10.1016/j.celrep.2013.08.049

S. B. Sondalle and S. J. Baserga, Human diseases of the SSU processome, Biochim Biophys Acta, vol.1842, pp.758-764, 2014.

J. A. Steitz, C. Berg, J. P. Hendrick, L. Branche-chabot, H. Metspalu et al., A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells, J Cell Biol, vol.106, pp.545-556, 1988.

B. S. Strunk, M. N. Novak, C. L. Young, and K. Karbstein, A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits, Cell, vol.150, pp.111-121, 2012.
DOI : 10.1016/j.cell.2012.04.044

URL : https://doi.org/10.1016/j.cell.2012.04.044

L. G. Trabuco, E. Villa, M. K. Frank, J. Schulten, and K. , Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics, Structure, vol.16, pp.673-683, 2008.
DOI : 10.1142/9789813234864_0044

C. Ulbrich, M. Diepholz, J. Baßler, D. Kressler, B. Pertschy et al., Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits, Cell, vol.138, pp.911-922, 2009.

S. Webb, R. D. Hector, G. Kudla, and S. Granneman, PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast, Genome Biol, vol.15, p.8, 2014.

K. A. Wehner and S. J. Baserga, The ?70-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis, Mol Cell, vol.9, pp.329-339, 2002.

J. Zhang, P. Harnpicharnchai, J. Jakovljevic, L. Tang, Y. Guo et al., Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes, Genes Dev, vol.21, pp.2580-2592, 2007.
DOI : 10.1101/gad.1569307

URL : http://genesdev.cshlp.org/content/21/20/2580.full.pdf

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX : a comprehensive Pythonbased system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.66, pp.213-221, 2010.
DOI : 10.1107/97809553602060000865

URL : https://cloudfront.escholarship.org/dist/prd/content/qt8jg141tk/qt8jg141tk.pdf?t=p5cbtr

P. V. Afonine, R. W. Grosse-kunstleve, N. Echols, J. J. Headd, N. W. Moriarty et al., Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallogr. D Biol. Crystallogr, vol.68, pp.352-367, 2012.
DOI : 10.1107/s0907444912001308

URL : http://journals.iucr.org/d/issues/2012/04/00/ba5180/ba5180.pdf

B. Albert, I. Léger-silvestre, C. Normand, M. K. Ostermaier, J. Pérez-fernández et al., RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle, J. Cell Biol, vol.192, pp.277-293, 2011.
DOI : 10.1083/jcb.201006040

URL : https://hal.archives-ouvertes.fr/hal-00667459

D. Ammons, J. Rampersad, and G. E. Fox, 5S rRNA gene deletions cause an unexpectedly high fitness loss in Escherichia coli, Nucleic Acids Res, vol.27, pp.637-642, 1999.
DOI : 10.1093/nar/27.2.637

URL : https://academic.oup.com/nar/article-pdf/27/2/637/6273672/27-2-637.pdf

O. Anczuków, A. Z. Rosenberg, M. Akerman, S. Das, L. Zhan et al., The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation, Nat. Struct. Mol. Biol, vol.19, pp.220-228, 2012.

E. Appella, A. , and C. W. , Post-translational modifications and activation of p53 by genotoxic stresses, Eur. J. Biochem, vol.268, pp.2764-2772, 2001.

N. Asano, K. Kato, A. Nakamura, K. Komoda, I. Tanaka et al., Structural and functional analysis of the Rpf2-Rrs1 complex in ribosome biogenesis, Nucleic Acids Res, vol.43, pp.4746-4757, 2015.

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, The complete atomic structure of the large ribosomal subunit at 2.4 A resolution, Science, vol.289, pp.905-920, 2000.

Y. Barak, T. Juven, R. Haffner, O. , and M. , mdm2 expression is induced by wild type p53 activity, EMBO J, vol.12, pp.461-468, 1993.
DOI : 10.1002/j.1460-2075.1993.tb05678.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1460-2075.1993.tb05678.x

C. Barrio-garcia, M. Thoms, D. Flemming, L. Kater, O. Berninghausen et al., Architecture of the Rix1-Rea1 checkpoint machinery during pre-60Sribosome remodeling, Nat. Struct. Mol. Biol, vol.23, pp.37-44, 2016.

J. Bassler, P. Grandi, O. Gadal, T. Lessmann, E. Petfalski et al., Identification of a 60S preribosomal particle that is closely linked to nuclear export, Mol. Cell, vol.8, pp.517-529, 2001.

J. Bassler, M. Kallas, B. Pertschy, C. Ulbrich, M. Thoms et al., The AAAATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly, Mol. Cell, vol.38, pp.712-721, 2010.

T. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, L. et al., iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.271-281, 2011.

F. Beckouet, S. Labarre-mariotte, B. Albert, Y. Imazawa, M. Werner et al., Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription, Mol. Cell. Biol, vol.28, pp.1596-1605, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00309037

M. Beltrame and D. Tollervey, Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis, EMBO J, vol.14, pp.4350-4356, 1995.

A. Ben-shem, L. Jenner, G. Yusupova, Y. , and M. , Crystal structure of the eukaryotic ribosome, Science, vol.330, pp.1203-1209, 2010.

C. Betzel, S. Lorenz, J. P. Fürste, R. Bald, M. Zhang et al., Crystal structure of domain A of Thermus flavus 5S rRNA and the contribution of water molecules to its structure, FEBS Lett, vol.351, pp.159-164, 1994.

F. Bleichert, S. Granneman, Y. N. Osheim, A. L. Beyer, and S. J. Baserga, The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.9464-9469, 2006.

M. T. Bohnsack, M. Kos, and D. Tollervey, Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase, EMBO Rep, vol.9, pp.1230-1236, 2008.

K. S. Bose and R. H. Sarma, Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution, Biochem. Biophys. Res. Commun, vol.66, pp.1173-1179, 1975.

K. Burger, B. Mühl, T. Harasim, M. Rohrmoser, A. Malamoussi et al., Chemotherapeutic drugs inhibit ribosome biogenesis at various levels, J. Biol. Chem, vol.285, pp.12416-12425, 2010.
DOI : 10.1074/jbc.m109.074211

URL : http://www.jbc.org/content/285/16/12416.full.pdf

S. Bursac, M. C. Brdovcak, M. Pfannkuchen, I. Orsolic, L. Golomb et al., Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress, Proceedings of the National Academy of Sciences, vol.109, pp.20467-20472, 2012.

E. Calo, R. A. Flynn, L. Martin, R. C. Spitale, H. Y. Chang et al., RNA helicase DDX21 coordinates transcription and ribosomal RNA processing, Nature, vol.518, pp.249-253, 2015.
DOI : 10.1038/nature13923

URL : http://europepmc.org/articles/pmc4827702?pdf=render

F. R. Calviño, S. Kharde, A. Ori, A. Hendricks, K. Wild et al., Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site, Nature Communications, vol.6, p.6510, 2015.

M. Cannon and E. G. Richards, Electrophoresis in polyacrylamide gels of different "soluble" ribonucleic acid preparations from Escherichia coli, Biochem. J, vol.103, pp.23-25, 1967.

M. Chaker-margot, J. Barandun, M. Hunziker, K. , and S. , Architecture of the yeast small subunit processome, Science, vol.355, 2017.

J. M. Challice and J. Segall, Transcription of the 5 S rRNA gene of Saccharomyces cerevisiae requires a promoter element at +1 and a 14-base pair internal control region, J. Biol. Chem, vol.264, 1989.

X. Chen and S. L. Wolin, The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity, J. Mol. Med, vol.82, pp.232-239, 2004.

C. S. Chow, K. M. Hartmann, S. L. Rawlings, P. W. Huber, and J. K. Barton, Delineation of structural domains in eukaryotic 5S rRNA with a rhodium probe, Biochemistry, vol.31, pp.3534-3542, 1992.

A. Claude, The constitution of protoplasm, Science, vol.97, pp.451-456, 1943.

K. R. Clemens, X. Liao, V. Wolf, P. E. Wright, and J. M. Gottesfeld, Definition of the binding sites of individual zinc fingers in the transcription factor IIIA-5S RNA gene complex, Proc. Natl. Acad. Sci. U.S.A, vol.89, pp.10822-10826, 1992.

D. G. Comb and N. Sarkar, The binding of 5s ribosomal ribonucleic acid to ribosomal subunits, J. Mol. Biol, vol.25, pp.317-330, 1967.

D. G. Comb, N. Sarkar, J. Devallet, and C. J. Pinzino, Properties of transfer-like RNA associated with ribosome, J. Mol. Biol, vol.12, pp.509-513, 1965.

K. Cowtan, The Buccaneer software for automated model building. 1. Tracing protein chains, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.1002-1011, 2006.

K. Cowtan, Recent developments in classical density modification, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.470-478, 2010.

M. Dai, L. , and H. , Inhibition of MDM2-mediated p53 Ubiquitination and Degradation by Ribosomal Protein L5, Journal of Biological Chemistry, vol.279, pp.44475-44482, 2004.

R. Dammann, R. Lucchini, T. Koller, and J. M. Sogo, Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae, Nucleic Acids Res, vol.21, pp.2331-2338, 1993.

S. Das, O. Anczuków, M. Akerman, and A. R. Krainer, Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC, Cell Rep, vol.1, pp.110-117, 2012.

S. Del-rio, S. R. Menezes, and D. R. Setzer, The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA, J. Mol. Biol, vol.233, pp.567-579, 1993.

F. Dimaio, N. Echols, J. J. Headd, T. C. Terwilliger, P. D. Adams et al., Improved low-resolution crystallographic refinement with Phenix and Rosetta, Nat. Methods, vol.10, pp.1102-1104, 2013.

F. Dohme and K. H. Nierhaus, Role of 5S RNA in assembly and function of the 50S subunit from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A, vol.73, pp.2221-2225, 1976.

G. Donati, S. Peddigari, C. Mercer, T. , and G. , 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint, Cell Reports, vol.4, pp.87-98, 2013.

D. Drygin, A. Lin, J. Bliesath, C. B. Ho, S. E. O'brien et al., Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth, Cancer Res, vol.71, pp.1418-1430, 2011.

D. Elson, A ribonucleic acid particle released from ribosomes by salt, Biochim. Biophys. Acta, vol.53, pp.232-234, 1961.

C. Engel, J. Plitzko, and P. Cramer, RNA polymerase I-Rrn3 complex at 4.8 Å resolution, Nat Commun, vol.7, p.12129, 2016.

D. R. Engelke and J. M. Gottesfeld, Chromosomal footprinting of transcriptionally active and inactive oocyte-type 5S RNA genes of Xenopus laevis, Nucleic Acids Res, vol.18, pp.6031-6037, 1990.
DOI : 10.1093/nar/18.20.6031

URL : http://europepmc.org/articles/pmc332401?pdf=render

A. W. Faber, M. Van-dijk, H. A. Raué, and J. C. Vos, Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3'-end processing of 5.8S rRNA in Saccharomyces cerevisiae, RNA, vol.8, pp.1095-1101, 2002.

A. Fatica, M. Oeffinger, M. Dlaki?, and D. Tollervey, Nob1p is required for cleavage of the 3' end of 18S rRNA, Mol. Cell. Biol, vol.23, pp.1798-1807, 2003.

Z. A. Felton-edkins, J. A. Fairley, E. L. Graham, I. M. Johnston, R. J. White et al., The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB, EMBO J, vol.22, pp.2422-2432, 2003.
DOI : 10.1093/emboj/cdg240

URL : http://emboj.embopress.org/content/embojnl/22/10/2422.full.pdf

B. G. Forget and S. M. Weissman, Nucleotide sequence of KB cell 5S RNA, Science, vol.158, pp.1695-1699, 1967.
DOI : 10.1126/science.158.3809.1695

O. I. Fregoso, S. Das, M. Akerman, and A. R. Krainer, Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence, Mol. Cell, vol.50, pp.56-66, 2013.
DOI : 10.1016/j.molcel.2013.02.001

URL : https://doi.org/10.1016/j.molcel.2013.02.001

S. French, W. , and K. , On the treatment of negative intensity observations, Acta Crystallographica Section A, vol.34, pp.517-525, 1978.
DOI : 10.1107/s0567739478001114

J. L. Fuentes, K. Datta, S. M. Sullivan, A. Walker, and J. R. Maddock, In vivo functional characterization of the Saccharomyces cerevisiae 60S biogenesis GTPase Nog1, Mol. Genet. Genomics, vol.278, pp.105-123, 2007.

S. Fumagalli, V. V. Ivanenkov, T. Teng, T. , and G. , Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint, Genes & Development, vol.26, pp.1028-1040, 2012.

O. Gadal, D. Strauss, J. Kessl, B. Trumpower, D. Tollervey et al., Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequencecontaining factor, Nmd3p, that associates with the large subunit protein Rpl10p, Mol. Cell. Biol, vol.21, pp.3405-3415, 2001.

K. Galani, T. A. Nissan, E. Petfalski, D. Tollervey, and E. Hurt, Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits, J. Biol. Chem, vol.279, pp.55411-55418, 2004.

M. Gartmann, M. Blau, J. Armache, T. Mielke, M. Topf et al., Mechanism of eIF6-mediated inhibition of ribosomal subunit joining, J. Biol. Chem, vol.285, pp.14848-14851, 2010.

T. H. Geerlings, J. C. Vos, and H. A. Raué, The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'->3' exonucleases, RNA, vol.6, pp.1698-1703, 2000.

S. R. Geiger, K. Lorenzen, A. Schreieck, P. Hanecker, D. Kostrewa et al., RNA Polymerase I Contains a TFIIF-Related DNA-Binding Subcomplex, Molecular Cell, vol.39, pp.583-594, 2010.
DOI : 10.1016/j.molcel.2010.07.028

URL : https://doi.org/10.1016/j.molcel.2010.07.028

T. Gérczei and C. C. Correll, Imp3p and Imp4p mediate formation of essential U3precursor rRNA (pre-rRNA) duplexes, possibly to recruit the small subunit processome to the pre-rRNA, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.15301-15306, 2004.

T. Gérczei, B. N. Shah, A. J. Manzo, N. G. Walter, and C. C. Correll, RNA chaperones stimulate formation and yield of the U3 snoRNA-Pre-rRNA duplexes needed for eukaryotic ribosome biogenesis, J. Mol. Biol, vol.390, pp.991-1006, 2009.

N. Gomez-roman, Z. A. Felton-edkins, N. S. Kenneth, S. J. Goodfellow, D. Athineos et al., Activation by c-Myc of transcription by RNA polymerases I, II and III, Biochem. Soc. Symp, pp.141-154, 2006.

S. Granneman, J. E. Gallagher, J. Vogelzangs, W. Horstman, W. J. Van-venrooij et al., The human Imp3 and Imp4 proteins form a ternary complex with hMpp10, which only interacts with the U3 snoRNA in 60-80S ribonucleoprotein complexes, Nucleic Acids Res, vol.31, pp.1877-1887, 2003.

I. Grummt, Wisely chosen paths-regulation of rRNA synthesis: delivered on 30, FEBS J, vol.277, pp.4626-4639, 2010.
DOI : 10.1111/j.1742-4658.2010.07892.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07892.x/pdf

Y. Han, C. Yan, T. H. Nguyen, A. J. Jackobel, I. Ivanov et al., Structural mechanism of ATP-independent transcription initiation by RNA polymerase I, 2017.
DOI : 10.7554/elife.27414

URL : https://cdn.elifesciences.org/articles/27414/elife-27414-v2.pdf

K. M. Hannan, R. D. Hannan, S. D. Smith, L. S. Jefferson, M. Lun et al., , 2000.

, Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1, Oncogene, vol.19, pp.4988-4999

K. M. Hannan, Y. Brandenburger, A. Jenkins, K. Sharkey, A. Cavanaugh et al., mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxyterminal activation domain of the nucleolar transcription factor UBF, Mol. Cell. Biol, vol.23, pp.8862-8877, 2003.

R. D. Hannan, D. Drygin, and R. B. Pearson, Targeting RNA polymerase I transcription and the nucleolus for cancer therapy, Expert Opin. Ther. Targets, vol.17, pp.873-878, 2013.

J. J. Havel, Z. Li, D. Cheng, J. Peng, and H. Fu, Nuclear PRAS40 couples the Akt/ mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway, Oncogene, vol.34, pp.1487-1498, 2015.

J. Hayes, T. D. Tullius, and A. P. Wolffe, A protein-protein interaction is essential for stable complex formation on a 5 S RNA gene, J. Biol. Chem, vol.264, pp.6009-6012, 1989.

W. A. Held, S. Mizushima, and M. Nomura, Reconstitution of Escherichia coli 30 S ribosomal subunits from purified molecular components, J. Biol. Chem, vol.248, pp.5720-5730, 1973.

M. Helm, H. Brulé, R. Giegé, and C. Florentz, More mistakes by T7 RNA polymerase at the 5' ends of in vitro-transcribed RNAs, RNA, vol.5, pp.618-621, 1999.

A. K. Henras, J. Soudet, M. Gérus, S. Lebaron, M. Caizergues-ferrer et al., The post-transcriptional steps of eukaryotic ribosome biogenesis, Cell. Mol. Life Sci, vol.65, pp.2334-2359, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00309051

A. K. Henras, C. Plisson-chastang, M. O'donohue, A. Chakraborty, and P. Gleizes, An overview of pre-ribosomal RNA processing in eukaryotes, Wiley Interdiscip Rev RNA, vol.6, pp.225-242, 2015.

Y. Henry, H. Wood, J. P. Morrissey, E. Petfalski, S. Kearsey et al., The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site, EMBO J, vol.13, pp.2452-2463, 1994.

T. Hierlmeier, J. Merl, M. Sauert, J. Perez-fernandez, P. Schultz et al., Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae, Nucleic Acids Research, vol.41, pp.1191-1210, 2013.

N. Hiraishi, Y. Ishida, and M. Nagahama, AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74, Biochem. Biophys. Res. Commun, vol.467, pp.534-540, 2015.

J. H. Ho, G. Kallstrom, J. , and A. W. , Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit, J. Cell Biol, vol.151, pp.1057-1066, 2000.

B. M. Honda and R. G. Roeder, Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation, Cell, vol.22, pp.119-126, 1980.

R. Honda, Y. , and H. , Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase, Oncogene, vol.19, pp.1473-1476, 2000.

C. Horigome, T. Okada, K. Shimazu, S. M. Gasser, and K. Mizuta, Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres, The EMBO Journal, vol.30, pp.3799-3811, 2011.

H. F. Horn and K. H. Vousden, Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway, Oncogene, vol.27, pp.5774-5784, 2008.

D. M. Horn, S. L. Mason, and K. Karbstein, Rcl1 protein, a novel nuclease for 18 S ribosomal RNA production, J. Biol. Chem, vol.286, pp.34082-34087, 2011.

L. Howell and D. Smith, Normal probability analysis, Journal of Applied Crystallography, vol.25, pp.81-86, 1992.

P. W. Huber, J. P. Rife, M. , and P. B. , The structure of helix III in Xenopus oocyte 5 S rRNA: an RNA stem containing a two-nucleotide bulge, J. Mol. Biol, vol.312, pp.823-832, 2001.

M. Hunziker, J. Barandun, E. Petfalski, D. Tan, C. Delan-forino et al., UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly, Nat Commun, vol.7, p.12090, 2016.

M. G. Iacovella, C. Golfieri, L. F. Massari, S. Busnelli, C. Pagliuca et al., Rio1 promotes rDNA stability and downregulates RNA polymerase I to ensure rDNA segregation, Nat Commun, vol.6, p.6643, 2015.

V. Iadevaia, R. Liu, and C. G. Proud, mTORC1 signaling controls multiple steps in ribosome biogenesis, Semin. Cell Dev. Biol, vol.36, pp.113-120, 2014.

M. W. Jackson and S. J. Berberich, MdmX protects p53 from Mdm2-mediated degradation, Mol. Cell. Biol, vol.20, pp.1001-1007, 2000.

H. S. Jones, J. Kawauchi, P. Braglia, C. M. Alen, N. A. Kent et al., RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA, Nature Structural & Molecular Biology, vol.14, pp.123-130, 2007.

W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

L. Kappel, M. Loibl, G. Zisser, I. Klein, G. Fruhmann et al., Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation, J. Cell Biol, vol.199, pp.771-782, 2012.

P. A. Karplus and K. Diederichs, Linking Crystallographic Model and Data Quality, Science, vol.336, pp.1030-1033, 2012.
DOI : 10.1126/science.1218231

URL : http://europepmc.org/articles/pmc3457925?pdf=render

K. Kasahara, Y. Ohyama, and T. Kokubo, Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region, Nucleic Acids Res, vol.39, pp.4136-4150, 2011.

E. B. Keller, P. C. Zamecnik, and R. B. Loftfield, The role of microsomes in the incorporation of amino acids into proteins, J. Histochem. Cytochem, vol.2, pp.378-386, 1954.

S. Kharde, F. R. Calviño, A. Gumiero, K. Wild, and I. Sinning, The structure of Rpf2Rrs1 explains its role in ribosome biogenesis, Nucleic Acids Res, vol.43, pp.7083-7095, 2015.

N. Kholod, K. Vassilenko, M. Shlyapnikov, V. Ksenzenko, and L. Kisselev, Preparation of active tRNA gene transcripts devoid of 3'-extended products and dimers, Nucleic Acids Res, vol.26, pp.2500-2501, 1998.

S. Kishore and S. Stamm, The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C, Science, vol.311, pp.230-232, 2006.

T. Kobayashi, D. J. Heck, M. Nomura, and T. Horiuchi, Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I, Genes Dev, vol.12, pp.3821-3830, 1998.

A. P. Korepanov, G. M. Gongadze, M. B. Garber, D. L. Court, and M. G. Bubunenko, Importance of the 5 S rRNA-binding ribosomal proteins for cell viability and translation in Escherichia coli, J. Mol. Biol, vol.366, pp.1199-1208, 2007.

M. Kos and D. Tollervey, Yeast pre-rRNA processing and modification occur cotranscriptionally, Mol. Cell, vol.37, pp.809-820, 2010.

K. S. Kovacina, G. Y. Park, S. S. Bae, A. W. Guzzetta, E. Schaefer et al., Identification of a proline-rich Akt substrate as a 14-3-3 binding partner, J. Biol. Chem, vol.278, pp.10189-10194, 2003.

O. Kovalevskiy, R. A. Nicholls, and G. N. Murshudov, Automated refinement of macromolecular structures at low resolution using prior information, Acta Crystallographica Section D Structural Biology, vol.72, pp.1149-1161, 2016.

D. Kressler, D. Roser, B. Pertschy, and E. Hurt, The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles, J. Cell Biol, vol.181, pp.935-944, 2008.

D. Kressler, G. Bange, Y. Ogawa, G. Stjepanovic, B. Bradatsch et al., Synchronizing nuclear import of ribosomal proteins with ribosome assembly, Science, vol.338, pp.666-671, 2012.

N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo et al., Global landscape of protein complexes in the yeast Saccharomyces cerevisiae, Nature, vol.440, pp.637-643, 2006.

C. Kuhn, S. R. Geiger, S. Baumli, M. Gartmann, J. Gerber et al., Functional architecture of RNA polymerase I, Cell, vol.131, pp.1260-1272, 2007.

D. Lafontaine, J. Vandenhaute, and D. Tollervey, The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast, Genes Dev, vol.9, pp.2470-2481, 1995.

Y. W. Lam, A. I. Lamond, M. Mann, and J. S. Andersen, Analysis of Nucleolar Protein Dynamics Reveals the Nuclear Degradation of Ribosomal Proteins, Current Biology, vol.17, pp.749-760, 2007.

Y. R. Lapik, J. M. Misra, L. F. Lau, and D. G. Pestov, Restricting conformational flexibility of the switch II region creates a dominant-inhibitory phenotype in Obg GTPase Nog1, Mol. Cell. Biol, vol.27, pp.7735-7744, 2007.

S. Lebaron, C. Froment, M. Fromont-racine, J. Rain, B. Monsarrat et al., The Splicing ATPase Prp43p Is a Component of Multiple Preribosomal Particles, Molecular and Cellular Biology, vol.25, pp.9269-9282, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022326

S. Lebaron, C. Schneider, R. W. Van-nues, A. Swiatkowska, D. Walsh et al., Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits, Nat. Struct. Mol. Biol, vol.19, pp.744-753, 2012.

S. Lebaron, Å. Segerstolpe, S. L. French, T. Dudnakova, F. De-lima-alves et al., Rrp5 Binding at Multiple Sites Coordinates Pre-rRNA Processing and Assembly, Molecular Cell, vol.52, pp.707-719, 2013.

C. Leidig, M. Thoms, I. Holdermann, B. Bradatsch, O. Berninghausen et al., 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle, vol.5, p.3491, 2014.

M. Li and W. Gu, A critical role for noncoding 5S rRNA in regulating Mdmx stability, Mol. Cell, vol.43, pp.1023-1032, 2011.

X. Liang, Q. Liu, and M. J. Fournier, Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing, RNA, vol.15, pp.1716-1728, 2009.

L. Lindahl, R. H. Archer, and J. M. Zengel, A new rRNA processing mutant of Saccharomyces cerevisiae, Nucleic Acids Res, vol.20, pp.295-301, 1992.

M. A. Lohrum, R. L. Ludwig, M. H. Kubbutat, M. Hanlon, and K. H. Vousden, Regulation of HDM2 activity by the ribosomal protein L11, Cancer Cell, vol.3, pp.577-587, 2003.

J. C. Long and J. F. Caceres, The SR protein family of splicing factors: master regulators of gene expression, Biochem. J, vol.417, pp.15-27, 2009.

S. Lorenz, M. Perbandt, C. Lippmann, K. Moore, L. J. Delucas et al., Crystallization of engineered Thermus flavus 5S rRNA under earth and microgravity conditions, Acta Crystallogr. D Biol. Crystallogr, vol.56, pp.498-500, 2000.

D. Lu, M. A. Searles, and A. Klug, Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition, Nature, vol.426, pp.96-100, 2003.

K. R. Luehrsen and G. E. Fox, Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA, Proc. Natl. Acad. Sci. U.S.A, vol.78, pp.2150-2154, 1981.

R. Manikas, E. Thomson, M. Thoms, and E. Hurt, The K +-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation, Nucleic Acids Res, vol.44, pp.1800-1812, 2016.

R. J. Maraia and R. V. Intine, Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function, Mol. Cell. Biol, vol.21, pp.367-379, 2001.

V. Marechal, B. Elenbaas, J. Piette, J. Nicolas, and A. J. Levine, The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes, Molecular and Cellular Biology, vol.14, pp.7414-7420, 1994.
DOI : 10.1128/mcb.14.11.7414

URL : https://mcb.asm.org/content/14/11/7414.full.pdf

J. Marniemi and M. G. Parkki, Radiochemical assay of glutathione S-epoxide transferase and its enhancement by phenobarbital in rat liver in vivo, Biochem. Pharmacol, vol.24, pp.1569-1572, 1975.

Y. Matsuo, S. Granneman, M. Thoms, R. Manikas, D. Tollervey et al., , 2014.

, Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export, Nature, vol.505, pp.112-116

C. Mayer, G. , and I. , Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases, Oncogene, vol.25, pp.6384-6391, 2006.
DOI : 10.1038/sj.onc.1209883

URL : https://www.nature.com/articles/1209883.pdf

C. Mayer, J. Zhao, X. Yuan, G. , and I. , mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability, Genes Dev, vol.18, pp.423-434, 2004.

A. J. Mccoy, Solving structures of protein complexes by molecular replacement with Phaser, Acta Crystallogr. D Biol. Crystallogr, vol.63, pp.32-41, 2007.

K. Merz, M. Hondele, H. Goetze, K. Gmelch, U. Stoeckl et al., Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules, Genes Dev, vol.22, pp.1190-1204, 2008.

C. I. Michel, C. L. Holley, B. S. Scruggs, R. Sidhu, R. T. Brookheart et al., Small Nucleolar RNAs U32a, U33, and U35a Are Critical Mediators of Metabolic Stress, Cell Metabolism, vol.14, pp.33-44, 2011.
DOI : 10.1016/j.cmet.2011.04.009

URL : https://doi.org/10.1016/j.cmet.2011.04.009

G. Michlewski, J. R. Sanford, C. , and J. F. , The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1, Mol. Cell, vol.30, pp.179-189, 2008.

P. Milkereit and H. Tschochner, A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription, EMBO J, vol.17, pp.3692-3703, 1998.

O. L. Miller and B. R. Beatty, Visualization of nucleolar genes, Science, vol.164, pp.955-957, 1969.
DOI : 10.1126/science.164.3882.955

J. F. Milligan, D. R. Groebe, G. W. Witherell, and O. C. Uhlenbeck, Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates, Nucleic Acids Res, vol.15, pp.8783-8798, 1987.
DOI : 10.1093/nar/15.21.8783

URL : http://europepmc.org/articles/pmc306405?pdf=render

M. Miyazaki, Studies on the nucleotide sequence of pseudouridine-containing 5S RNA from Saccharomyces cerevisiae, J. Biochem, vol.75, pp.1407-1410, 1974.

L. Montanaro, D. Treré, and M. Derenzini, Nucleolus, ribosomes, and cancer, Am. J. Pathol, vol.173, pp.301-310, 2008.
DOI : 10.2353/ajpath.2008.070752

URL : http://europepmc.org/articles/pmc2475768?pdf=render

H. Moradi, I. Simoff, G. Bartish, N. , and O. , Functional features of the C-terminal region of yeast ribosomal protein L5, Mol. Genet. Genomics, vol.280, pp.337-350, 2008.

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr. D Biol. Crystallogr, vol.53, pp.240-255, 1997.

M. Nagahama, T. Yamazoe, Y. Hara, K. Tani, A. Tsuji et al., The AAAATPase NVL2 is a component of pre-ribosomal particles that interacts with the DExD/H-box RNA helicase DOB1, Biochem. Biophys. Res. Commun, vol.346, pp.1075-1082, 2006.

A. Narla and B. L. Ebert, Ribosomopathies: human disorders of ribosome dysfunction, Blood, vol.115, pp.3196-3205, 2010.
DOI : 10.1182/blood-2009-10-178129

URL : http://www.bloodjournal.org/content/115/16/3196.full.pdf

C. L. Ng, D. Waterman, E. V. Koonin, A. A. Antson, and M. Ortiz-lombardía, Crystal structure of Mil (Mth680): internal duplication and similarity between the Imp4/Brix domain and the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases, EMBO Reports, vol.6, pp.140-146, 2005.

R. T. Nolte, R. M. Conlin, S. C. Harrison, and R. S. Brown, Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.2938-2943, 1998.

C. A. O'brien and S. L. Wolin, A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors, Genes Dev, vol.8, pp.2891-2903, 1994.

M. Oeffinger, D. Zenklusen, A. Ferguson, K. E. Wei, A. El-hage et al., Rrp17p is a eukaryotic exonuclease required for 5' end processing of Pre-60S ribosomal RNA, Mol. Cell, vol.36, pp.768-781, 2009.

Y. Ogawara, S. Kishishita, T. Obata, Y. Isazawa, T. Suzuki et al., Akt enhances Mdm2-mediated ubiquitination and degradation of p53, J. Biol. Chem, vol.277, pp.21843-21850, 2002.

M. K. Ogilvie and J. S. Hanas, Molecular biology of vertebrate transcription factor IIIA: cloning and characterization of TFIIIA from channel catfish oocytes, Gene, vol.203, pp.103-112, 1997.

M. Ono, K. Yamada, F. Avolio, M. S. Scott, S. Van-koningsbruggen et al., Analysis of human small nucleolar RNAs (snoRNA) and the development of snoRNA modulator of gene expression vectors, Mol. Biol. Cell, vol.21, pp.1569-1584, 2010.

G. E. Palade, A small particulate component of the cytoplasm, J Biophys Biochem Cytol, vol.1, pp.59-68, 1955.

H. R. Pelham and D. D. Brown, A specific transcription factor that can bind either the 5S RNA gene or 5S RNA, Proc. Natl. Acad. Sci. U.S.A, vol.77, pp.4170-4174, 1980.

K. Peltonen, L. Colis, H. Liu, S. Jäämaa, Z. Zhang et al., Small molecule BMH-compounds that inhibit RNA polymerase I and cause nucleolar stress, Mol. Cancer Ther, vol.13, pp.2537-2546, 2014.

B. Pertschy, C. Saveanu, G. Zisser, A. Lebreton, M. Tengg et al., Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1, Mol. Cell. Biol, vol.27, p.163, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01350677

. Bibliographie-pe-sa,

B. Pertschy, C. Schneider, M. Gnädig, T. Schäfer, D. Tollervey et al., RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1, J. Biol. Chem, vol.284, pp.35079-35091, 2009.

T. Pieler, M. Digweed, M. Bartsch, and V. A. Erdmann, Comparative structural analysis of cytoplasmic and chloroplastic 5S rRNA from spinach, Nucleic Acids Res, vol.11, pp.591-604, 1983.

T. Pieler, M. Digweed, and V. A. Erdmann, RNA structural dynamics: pre-melting and melting transitions in E. coli 5S rRNA, J. Biomol. Struct. Dyn, vol.3, pp.495-514, 1985.

T. Pieler, J. Hamm, and R. G. Roeder, The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing, Cell, vol.48, pp.91-100, 1987.

M. Pilsl, C. Crucifix, G. Papai, F. Krupp, R. Steinbauer et al., Structure of the initiation-competent RNA polymerase I and its implication for transcription, Nature Communications, vol.7, p.12126, 2016.

R. H. Pittman, M. T. Andrews, and D. R. Setzer, A feedback loop coupling 5 S rRNA synthesis to accumulation of a ribosomal protein, J. Biol. Chem, vol.274, pp.33198-33201, 1999.

J. A. Pleiss, M. L. Derrick, and O. C. Uhlenbeck, T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates, RNA, vol.4, pp.1313-1317, 1998.

J. Quin, K. T. Chan, J. R. Devlin, D. P. Cameron, J. Diesch et al., Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling, Oncotarget, vol.7, pp.49800-49818, 2016.

J. Van-riggelen, A. Yetil, and D. W. Felsher, MYC as a regulator of ribosome biogenesis and protein synthesis, Nat. Rev. Cancer, vol.10, pp.301-309, 2010.

M. Rodríguez-mateos, J. J. García-gómez, R. Francisco-velilla, M. Remacha, J. De-la-cruz et al., Role and dynamics of the ribosomal protein P0 and its related transacting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae, Nucleic Acids Res, vol.37, pp.7519-7532, 2009.

R. Rosset and R. Monier, A propos de la présence d'acide ribonucléique de faible poids moléculaire dans les ribosomes d'Escherichia coli, Biochimica et Biophysica Acta (BBA)Specialized Section on Nucleic Acids and Related Subjects, vol.68, pp.653-656, 1963.

M. P. Rout, G. Blobel, A. , and J. D. , A distinct nuclear import pathway used by ribosomal proteins, Cell, vol.89, pp.715-725, 1997.

D. Rudra and J. R. Warner, What better measure than ribosome synthesis? Genes Dev, vol.18, pp.2431-2436, 2004.
DOI : 10.1101/gad.1256704

URL : http://genesdev.cshlp.org/content/18/20/2431.full.pdf

D. Ruggero, Revisiting the nucleolus: from marker to dynamic integrator of cancer signaling, Sci Signal, vol.5, p.38, 2012.

A. Sarkar, M. Pech, M. Thoms, R. Beckmann, and E. Hurt, Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit, Nat. Struct. Mol. Biol, vol.23, pp.1074-1082, 2016.

M. Sasaki, K. Kawahara, M. Nishio, K. Mimori, R. Kogo et al., Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11, Nat. Med, vol.17, pp.944-951, 2011.

C. Saveanu, A. Namane, P. Gleizes, A. Lebreton, J. Rousselle et al., Sequential Protein Association with Nascent 60S Ribosomal Particles, Molecular and Cellular Biology, vol.23, pp.4449-4460, 2003.
DOI : 10.1128/mcb.23.13.4449-4460.2003

URL : https://hal.archives-ouvertes.fr/hal-01350680

S. Schillewaert, L. Wacheul, F. Lhomme, and D. L. Lafontaine, The evolutionarily conserved protein Las1 is required for pre-rRNA processing at both ends of ITS2, Mol. Cell. Biol, vol.32, pp.430-444, 2012.

M. E. Schmitt, C. , and D. A. , Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.13, pp.7935-7941, 1993.

A. Schmoldt, H. F. Benthe, and G. Haberland, Digitoxin metabolism by rat liver microsomes, Biochem. Pharmacol, vol.24, pp.1639-1641, 1975.
DOI : 10.1016/0006-2952(75)90094-5

URL : https://serval.unil.ch/resource/serval:BIB_EE7D4CC5FB04.P001/REF.pdf

B. S. Schuwirth, M. A. Borovinskaya, C. W. Hau, W. Zhang, A. Vila-sanjurjo et al., Structures of the bacterial ribosome at 3.5 A resolution, Science, vol.310, pp.827-834, 2005.

J. B. Share, Review of drug treatment for Down's syndrome persons, Am J Ment Defic, vol.80, pp.388-393, 1976.

K. Sloan, M. Bohnsack, and N. Watkins, The 5S RNP Couples p53 Homeostasis to Ribosome Biogenesis and Nucleolar Stress, Cell Reports, vol.5, pp.237-247, 2013.

K. C. Smith, Studies on the amino acid acceptor RNA in washed liver microsomes, Biochemistry, vol.1, pp.866-874, 1962.

B. Sneath, C. Vary, G. Pavlakis, and J. Vournakis, Secondary structure of Tetrahymena thermophilia 5S ribosomal RNA as revealed by enzymatic digestion and microdensitometric analysis, Nucleic Acids Res, vol.14, pp.1365-1378, 1986.

C. M. Spahn, M. G. Gomez-lorenzo, R. A. Grassucci, R. Jørgensen, G. R. Andersen et al., Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation, EMBO J, vol.23, pp.1008-1019, 2004.

L. Srivastava, Y. R. Lapik, M. Wang, and D. G. Pestov, Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28S rRNA by promoting the release of U8 snoRNA, Mol. Cell. Biol, vol.30, pp.2947-2956, 2010.

J. E. Stefano, Purified lupus antigen La recognizes an oligouridylate stretch common to the 3' termini of RNA polymerase III transcripts, Cell, vol.36, pp.145-154, 1984.

V. Y. Stefanovsky, G. Pelletier, R. Hannan, T. Gagnon-kugler, L. I. Rothblum et al., An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF, Mol. Cell, vol.8, pp.1063-1073, 2001.

V. Y. Stefanovsky, F. Langlois, D. Bazett-jones, G. Pelletier, M. et al., ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF, Biochemistry, vol.45, pp.3626-3634, 2006.

J. A. Steitz, C. Berg, J. P. Hendrick, L. Branche-chabot, H. Metspalu et al., A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells, J. Cell Biol, vol.106, pp.545-556, 1988.

B. S. Strunk, M. N. Novak, C. L. Young, and K. Karbstein, A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits, Cell, vol.150, pp.111-121, 2012.

D. M. Stults, M. W. Killen, H. H. Pierce, P. , and A. J. , Genomic architecture and inheritance of human ribosomal RNA gene clusters, Genome Res, vol.18, pp.13-18, 2008.

Q. Sun, X. Zhu, J. Qi, W. An, P. Lan et al., , 2017.

L. Tafforeau, C. Zorbas, J. Langhendries, S. Mullineux, V. Stamatopoulou et al., The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors, Mol. Cell, vol.51, pp.539-551, 2013.

J. Talkish, J. Zhang, J. Jakovljevic, E. W. Horsey, and J. L. Woolford, Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae, Nucleic Acids Research, vol.40, pp.8646-8661, 2012.

P. Tessarz, H. Santos-rosa, S. C. Robson, K. B. Sylvestersen, C. J. Nelson et al., Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification, Nature, vol.505, pp.564-568, 2014.

M. Thiry and D. L. Lafontaine, Birth of a nucleolus: the evolution of nucleolar compartments, Trends Cell Biol, vol.15, pp.194-199, 2005.

M. Thoms, E. Thomson, J. Baßler, M. Gnädig, S. Griesel et al., The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins, Cell, vol.162, pp.1029-1038, 2015.

E. Thomson and D. Tollervey, Nop53p is required for late 60S ribosome subunit maturation and nuclear export in yeast, RNA, vol.11, pp.1215-1224, 2005.

E. Thomson and D. Tollervey, The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.30, pp.976-984, 2010.

S. M. De-toledo, E. I. Azzam, W. K. Dahlberg, T. B. Gooding, and J. B. Little, ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-independent manner in normal and tumor human cells exposed to ionizing radiation, Oncogene, vol.19, pp.6185-6193, 2000.

M. Toussaint, G. Levasseur, M. Tremblay, M. Paquette, C. et al., Psoralen photocrosslinking, a tool to study the chromatin structure of RNA polymerase I-transcribed ribosomal genes, Biochem. Cell Biol, vol.83, pp.449-459, 2005.

J. Trapman, J. Retèl, and R. J. Planta, Ribosomal precursor particles from yeast, Exp. Cell Res, vol.90, pp.95-104, 1975.
DOI : 10.1016/0014-4827(75)90361-4

S. A. Udem and J. R. Warner, The cytoplasmic maturation of a ribosomal precursor ribonucleic acid in yeast, J. Biol. Chem, vol.248, pp.1412-1416, 1973.

C. Ulbrich, M. Diepholz, J. Bassler, D. Kressler, B. Pertschy et al., Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits, Cell, vol.138, pp.911-922, 2009.

J. Venema and D. Tollervey, Processing of pre-ribosomal RNA in Saccharomyces cerevisiae, Yeast, vol.11, pp.1629-1650, 1995.

C. Vonrhein, E. Blanc, P. Roversi, and G. Bricogne, Automated structure solution with autoSHARP, Methods Mol. Biol, vol.364, pp.215-230, 2007.

A. Van-hoof, P. Lennertz, P. , and R. , Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast, EMBO J, vol.19, pp.1357-1365, 2000.

H. H. Wai, L. Vu, M. Oakes, and M. Nomura, Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo, Nucleic Acids Res, vol.28, pp.3524-3534, 2000.

K. Wan, Y. Yabuki, and K. Mizuta, Roles of Ebp2 and ribosomal protein L36 in ribosome biogenesis in Saccharomyces cerevisiae, Current Genetics, vol.61, pp.31-41, 2015.

J. R. Warner, The economics of ribosome biosynthesis in yeast, Trends Biochem. Sci, vol.24, pp.437-440, 1999.

P. L. Weaver, C. Sun, C. , and T. H. , Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3, Mol. Cell. Biol, vol.17, pp.1354-1365, 1997.

K. A. Wehner and S. J. Baserga, The sigma(70)-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis, Mol. Cell, vol.9, pp.329-339, 2002.

G. R. Wells, F. Weichmann, D. Colvin, K. E. Sloan, G. Kudla et al., The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans, Nucleic Acids Res, vol.44, pp.5399-5409, 2016.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.235-242, 2011.

J. L. Woolford and S. J. Baserga, Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae, Genetics, vol.195, pp.643-681, 2013.

S. Wu, B. Tutuncuoglu, K. Yan, H. Brown, Y. Zhang et al., Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes, Nature, vol.534, pp.133-137, 2016.

X. Wu, J. H. Bayle, D. Olson, and A. J. Levine, The p53-mdm-2 autoregulatory feedback loop, Genes Dev, vol.7, pp.1126-1132, 1993.

Y. Xing, R. Yao, Y. Zhang, C. Guo, S. Jiang et al., SLERT Regulates DDX21 Rings Associated with Pol I Transcription, Cell, vol.169, pp.664-678, 2017.

Y. Xiong and M. Sundaralingam, Two crystal forms of helix II of Xenopus laevis 5S rRNA with a cytosine bulge, RNA, vol.6, pp.1316-1324, 2000.

W. Yao, D. Roser, A. Köhler, B. Bradatsch, J. Bassler et al., Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2, Mol. Cell, vol.26, pp.51-62, 2007.

W. Yao, M. Lutzmann, and E. Hurt, A versatile interaction platform on the Mex67-Mtr2 receptor creates an overlap between mRNA and ribosome export, EMBO J, vol.27, pp.6-16, 2008.

Y. Yoshikatsu, Y. Ishida, H. Sudo, K. Yuasa, A. Tsuji et al., NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing, Biochem. Biophys. Res. Commun, vol.464, pp.780-786, 2015.

Y. T. Yu and T. W. Nilsen, Sequence requirements for maturation of the 5' terminus of human 18 S rRNA in vitro, J. Biol. Chem, vol.267, pp.9264-9268, 1992.

W. Zhai, C. , and L. , Repression of RNA polymerase I transcription by the tumor suppressor p53, Mol. Cell. Biol, vol.20, pp.5930-5938, 2000.

J. Zhang, P. Harnpicharnchai, J. Jakovljevic, L. Tang, Y. Guo et al., Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes, Genes & Development, vol.21, pp.2580-2592, 2007.
DOI : 10.1101/gad.1569307

URL : http://genesdev.cshlp.org/content/21/20/2580.full.pdf

J. Zheng, Y. Lang, Q. Zhang, D. Cui, H. Sun et al., Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation, Genes & Development, vol.29, pp.1524-1534, 2015.

C. Zorbas, E. Nicolas, L. Wacheul, E. Huvelle, V. Heurgué-hamard et al., The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis, Mol. Biol. Cell, vol.26, p.167, 2015.

, Chez l'Homme, la production des deux sous-unités ribosomiques débute dans le nucléole par la synthèse par l'ARN polymérase I d'un long transcrit contenant les séquences des ARN ribosomiques 5.8S, 18S et 25S, qui s'associe de manière co-transcriptionnelle à des protéines ribosomiques et à des facteurs d'assemblage. Le quatrième ARN ribosomique, l'ARNr 5S est transcrit séparément par l'ARN polymérase III, et s'associe avec les protéines ribosomiques Rpl5 et Rpl11 en dehors du ribosome. Ce sous-complexe, appelé particule 5S, est ensuite intégré au sein de la grande sous-unité. La particule 5S est également impliquée dans le contrôle de la prolifération cellulaire. En effet, en cas de dé-régulation de la biogenèse du ribosome, RÉSUMÉ La biogenèse des ribosomes est un processus complexe qui implique la production et l'assemblage de 4 ARN et d'environ 80 protéines

, Ces protéines assurent deux fonctions distinctes : elles sont requises pour l'association de la particule 5S avec la sous-unité pré-60S, et stimulent la transcription des ARNr par l'ARN polymérase I. Elles sont donc impliquées dans deux événements fondamentaux qui conditionnent les capacités de prolifération cellulaire, L'objectif principal de ma thèse est d'étudier le rôle des facteurs d'assemblage Rpf2 et Rrs1 dans la biogenèse du ribosome