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Résumé

La théorie de Hodge mixte de Deligne fournit des structures supplémentaires sur les groupes
de cohomologie des variétés algébriques complexes. Depuis, des structures de Hodge mixtes ont
été construites sur les groupes d’homotopie rationnels de telles variétés par Morgan et Hain.
Dans cette lignée, nous construisons des structures de Hodge mixtes sur des invariants asso-
ciés aux représentations linéaires des groupes fondamentaux des variétés algébriques complexes
lisses. Le point de départ est la théorie de Goldman et Millson qui relie la théorie des déforma-
tions de telles représentations à la théorie des déformations via les algèbres de Lie différentielles
graduées. Ceci a été relu par P. Eyssidieux et C. Simpson dans le cas des variétés kählériennes
compactes. Dans le cas non compact, et pour des représentations d’image finie, Kapovich et
Millson ont construit seulement des graduations non canoniques.
Pour construire des structures de Hodge mixtes dans le cas non compact et l’unifier avec le
cas compact traité par Eyssidieux-Simpson, nous ré-écrivons la théorie de Goldman-Millson
classique en utilisant des idées plus modernes de la théorie des déformations dérivée et une
construction d’algèbres L∞ due à Fiorenza et Manetti. Notre structure de Hodge mixte provient
alors directement du H0 d’un complexe de Hodge mixte explicite, de façon similaire à la méthode
de Hain pour le groupe fondamental, et dont la fonctorialité apparaît clairement.

Mots-clés Géométrie algébrique complexe, Théorie de Hodge, Groupes fondamentaux,
Variétés des représentations, Théorie des déformations formelles, Algèbres L∞.

Abstract

The mixed Hodge theory of Deligne provides additional structures on the cohomology groups
of complex algebraic varieties. Since then, mixed Hodge structures have been constructed on
the rational homotopy groups of such varieties by Morgan and Hain.
In this vein, we construct mixed Hodge structures on invariants associated to linear represen-
tations of fundamental groups of smooth complex algebraic varieties. The starting point is
the theory of Goldman and Millson that relates the deformation theory of such representa-
tions to the deformation theory via differential graded Lie algebras. This was reviewed by P.
Eyssidieux and C. Simpson in the case of compact Kähler manifolds. In the non-compact case,
and for representations with finite image, Kapovich and Millson constructed only non-canonical
gradings.
In order to construct mixed Hodge structures in the non-compact case and unify it with the
compact case treated by Eyssidieux-Simpson, we re-write the classical Goldman-Millson theory
using more modern ideas from derived deformation theory and a construction of L∞ algebras
due to Fiorenza and Manetti. Our mixed Hodge structure comes then directly from the H0 of
an explicit mixed Hodge complex, in a similar way as the method of Hain for the fundamental
group, and whose functoriality appears clearly.

Keywords Complex algebraic geometry, Hodge theory, Fundamental groups, Representation
varieties, Formal deformation theory, L∞ algebras.
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Introduction (version française)

A Contexte

A.1 Théorie de Hodge
La théorie de Hodge a pour but l’étude des structures additionnelles présentes sur

les invariants topologiques usuels des variétés kählériennes compactes et des variétés
algébriques complexes reflétant leur nature analytique ou algébrique complexe. Le premier
exemple d’interaction entre la topologie algébrique et la structure complexe de telles
variétés a été étudié par Hodge.

Théorème (Hodge). Si X est une variété kählérienne compacte, sa cohomologie à coef-
ficients complexes se décompose en chaque degré n en une somme directe

Hn(X,C) =
⊕

p+q=n
Hp,q

où la conjugaison complexe échange Hp,q(X) et Hq,p(X).

Avec ce théorème on obtient facilement des restrictions sur le topologie possible d’une
variété kählérienne compacte. Par exemple, la décomposition de Hodge en degré 1 im-
plique que la dimension de H1(X,C) est toujours paire. Puisque ce dernier est aussi
égal à

H1(X,C) = Hom(π1(X),C)

on en déduit que Z ne peut jamais être le groupe fondamental π1(X) d’une telle variété
X. La question de décrire tous les groupes qui peuvent apparaître comme groupes fon-
damentaux de variétés kählériennes compactes (resp. de variétés complexes projectives
lisses, resp. de variétés algébriques complexes lisses quasi-projectives) est connue sous le
nom de problème de Serre. Il est toujours largement ouvert, bien que de nombreux types
de restrictions soient connus. La plus simple est que ces groupes doivent être finiment
présentables. Mais pour les variétés non compactes, au delà de la présentabilité finie,
aucune de ces restrictions n’est aussi facile à décrire que pour les variétés compactes.

Cette structure sur la cohomologie a été abstraite en la notion de structure de Hodge.
Depuis, les structures de Hodge ont été reconnues comme un outil utile pour étudier
la topologie des variétés complexes et leurs modules. Nous nous référons aux livres de
Voisin [Voi02] et Peters-Steenbrink [PS08] pour la théorie de Hodge, et à [ABC+96] pour
le problème de Serre.
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A.2 Théorie de Hodge mixte
La notion de structure de Hodge pure a ensuite été généralisée par P. Deligne [Del71a],

[Del71b], [Del74]. Il montre que la cohomologie d’une variété non compacte se comporte
comme une extension itérée de groupes de cohomologie de variétés compactes, provenant
d’une compactification par un diviseur à croisements normaux, et définit ceci comme
étant une structure de Hodge mixte.

Définition (Def. 2.15). Une structure de Hodge mixte sur un espace vectoriel de dimen-
sion finie K sur un sous-corps k ⊂ R est la donnée d’une filtration croissante W de
K appelée la filtration par le poids et d’une filtration décroissante F de KC appelée la
filtration de Hodge telles que pour tout k ∈ Z la partie graduée de poids k

GrWk (K) := WkK/Wk−1K

avec la filtration induite F sur C forme une structure de Hodge pure de poids k, i.e. se
décompose en une somme directe de termes Kp,q pour p + q = k avec la conjugaison
complexe qui échange Kp,q et Kq,p et avec F qui filtre par rapport à p.

Depuis, des structures de Hodge mixtes ont été construites sur beaucoup d’autres
invariants topologiques des variétés algébriques et ont été utilisées pour restreindre leur
topologie. Toutes ces méthodes utilisent la théorie de l’homotopie rationnelle pour ex-
traire des informations sur le type d’homotopie d’une variété à partir de son algèbre de
formes différentielles. Voir le livre de Griffiths-Morgan [GM81] pour ces questions. Pour
travailler sur le corps des rationnels on doit construire une algèbre différentielle graduée
commutative définie sur Q qui calcule l’algèbre de cohomologie à coefficients rationnels
d’une variété donnée. Cela n’est pas facile car sur le complexe de cochaînes singulières
usuel le cup-produit n’est pas commutatif.

Pour des raisons de théorie de Hodge, il est montré par Deligne, Griffiths, Morgan
et Sullivan [DGMS75] que le type d’homotopie réelle d’une variété kählérienne compacte
est assez simple : le groupe fondamental réel est déterminé par l’algèbre de cohomologie.

En combinant ces idées d’homotopie rationnelle et de théorie de Hodge mixte, J.
Morgan [Mor78] a construit des structures de Hodge mixtes sur les groupes d’homotopie
d’une variété algébrique lisse complexe. Ceci peut être utilisé pour exhiber le premier
exemple d’un groupe de présentation finie qui n’est pas le groupe fondamental d’une
variété algébrique, un groupe avec deux générateurs x, y et une relation donnée par un
commutateur itéré

[x, [x, [· · · , [x, y] · · · ]]]

de longueur au moins cinq. Pour un tel commutateur de longueur au moins trois, ceci
n’est pas le groupe fondamental d’une variété kählérienne compacte par [DGMS75]. Ce-
pendant la construction de Morgan n’est pas complètement fonctorielle et a été suivie
d’une correction [Mor86].

Une autre approche a été donnée par R. Hain [Hai87] utilisant la construction d’un
certain complexe de cochaînes dont la cohomologie donne directement et fonctoriellement
les groupes d’homotopie rationnels. Pour construire des structures de Hodge mixtes sur sa
cohomologie, il suffit de construire sur ce complexe une structure de diagramme de Hodge
mixte (voir la section 2.1.2 et la Definition 2.27) et de vérifier les axiomes correspondant.
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Ces méthodes ont aussi été revues par V. Navarro Aznar [Nav87]. Il construit des
diagrammes de Hodge mixtes fonctoriels qui calculent la cohomologie d’une variété al-
gébrique complexe. Ceci doit être associé à des méthodes d’algèbre homotopique pour
comprendre la catégorie homotopique des diagrammes de Hodge mixtes et améliorer la
théorie de Deligne, Morgan et Hain. Voir par exemple le travail de J. Cirici [Cir15] et ses
collaborateurs.

Dans cette lignée, dans cette thèse nous étudions la théorie de Hodge mixte des repré-
sentations linéaires des groupes fondamentaux des variétés kählériennes compactes et des
variétés algébriques.

A.3 La théorie de Goldman et Millson
Fixons une variété complexe X qui est soit kählérienne compacte, soit algébrique lisse.

Dans les deux cas son groupe fondamental est finiment présentable. Fixons un point base
x ∈ X. Soit G un groupe algébrique linéaire sur un sous-corps k ⊂ R d’algèbre de Lie g.

Définition (Sect. 1.1.2 et Thm. 1.26). L’ensemble des représentations de π1(X, x) dans
G(k), i.e. de morphismes de groupes

ρ : π1(X, x) −→ G(k),

a la structure d’ensemble des points sur k d’un schéma affine qu’on note Hom(π1(X, x), G).
On l’appelle la variété des représentations de π1(X, x) dans G. On note Ôρ le complété
de l’anneau local de la variété des représentations en un point ρ.

L’anneau local Ôρ sera l’un de nos principaux objets d’étude. C’est en effet l’espace de
module formel pour les déformations infinitésimales de ρ et son type de singularité décrit
les possibilités de déformer des représentations et d’étendre des déformations données.
Son étude a été faite par Goldman et Millson [GM88] quand X est une variété kählérienne
compacte.

Théorème (Goldman-Millson). Si X est une variété kählérienne compacte et
ρ : π1(X, x)→ G(R) a son image contenue dans un sous-groupe compact alors Ôρ a une
présentation quadratique.

Ceci peut être vu comme une version de [DGMS75] pour les représentations du groupe
fondamental. Le résultat exprime que la variété des représentations a des singularités assez
simples en ρ et donc que le groupe fondamental ne peut pas être trop compliqué.

Décrivons brièvement les méthodes de preuve. À ρ est associé, via la monodromie
de sa représentation adjointe, un système local d’algèbres de Lie de fibre g. L’algèbre
des formes différentielles réelles à valeurs dans ce système local est une algèbre de Lie
différentielle graduée (Definition 1.13) qu’on note L. La construction principale relie le
foncteur des déformations associé à ρ au foncteur des déformations associé à L.

Définition (Def. 1.17). Le foncteur de déformation d’une algèbre de Lie DG L sur
un corps k de caractéristique zéro est le foncteur DefL donnée pour une algèbre locale
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artinienne (A,mA) sur k par le quotient de l’ensemble des éléments de Maurer-Cartan de
L⊗mA

MC(L⊗mA) :=
{
x ∈ L1 ⊗mA

∣∣∣∣ d(x) + 1
2[x, x] = 0

}
par l’action de L0 ⊗mA par transformations de jauge (Definition 1.16).

Le principe fondamental de la théorie des déformations énonce que tout problème
de déformation est contrôlé par une algèbre de Lie DG (i.e. le foncteur de déformation
associé est isomorphe à un foncteur DefL comme ci-dessus) et que deux algèbres de Lie
DG quasi-isomorphes ont des foncteurs de déformation isomorphes. Ceci a été inspiré par
une lettre de Deligne [Del86] aux auteurs.

Dans la situation de Goldman-Millson, par la théorie de Hodge, L est quasi-isomorphe
à une algèbre de Lie DG avec différentielle nulle — cette propriété, appelée formalité, est
la même qu’utilisée dans [DGMS75] — pour laquelle le foncteur de déformation prend
une forme simplifiée et permet de donner une description simple de Ôρ.

Par formalité encore, en utilisant la théorie de Hodge non abélienne, le théorème de
Goldman-Millson a été étendu par C. Simpson [Sim92, § 2] au cas des représentations
complexes semi-simples.

Ensuite, la description de Ôρ pour des cas de représentations de groupes fondamentaux
de variétés algébriques non compactes a été effectuée par Kapovich et Millson [KM98].

Théorème (Kapovich-Millson). Si X est une variété algébrique lisse et
ρ : π1(X, x)→ G(R) est d’image finie, alors Ôρ a une présentation homogène à
poids avec des générateurs de poids 1, 2 et des relations de poids 2, 3, 4.

Ceci est obtenu en étudiant la théorie de Hodge mixte de L : sa cohomologie a une
structure de Hodge mixte avec seuls poids possibles 1, 2 sur H1 et 2, 3, 4 sur H2. Au
lieu d’utiliser la formalité, ils utilisent le travail de Morgan et remplacent L à quasi-
isomorphisme près par une algèbre de Lie DG M portant une structure de Hodge mixte
et étudient les conséquence de la graduation par le poids sur le foncteur de déformation
de M .

Dans leur article, ils obtiennent de nouveaux exemples de groupes de présentation
finie qui ne sont pas des groupes fondamentaux de variétés algébriques complexes lisses,
par une étude complète de leur combinatoire et de leurs représentations finies.

Le travail de Goldman-Millson a été revu par P. Eyssidieux et C. Simpson [ES11] et
interprété en termes de théorie de Hodge mixte. Supposons que ρ soit la monodromie
d’une variation de structure de Hodge (Definition 3.1 et Definition 3.8). A l’intérieur de
Hom(π1(X, x), G) se trouve l’orbite Ωρ de ρ sous l’action de G par conjugaison, qui est
un sous-schéma réduit. Son germe formel en ρ est un schéma formel Ω̂ρ défini par un idéal
j ⊂ Ôρ.

Théorème (Eyssidieux-Simpson). Si X est une variété kählérienne compacte et ρ est la
monodromie d’une variation de structure de Hodge complexe polarisée sur X, alors Ôρ a
une structure de Hodge mixte complexe fonctorielle. La filtration par le poids est indexée
en degré négatifs et est donnée par les puissances de l’idéal j. La partie graduée de poids
zéro est Ôρ/j, l’anneau local formel de Ω̂ρ.
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Dans leur article, ceci est utilisé pour construire des variations de structure de Hodge
mixte intéressantes sur X. C’est aussi un outil important dans la preuve de la conjecture
de Shafarevich [EKPR12] sur les revêtements universels des variétés projectives lisses
dont le groupe fondamental admet une représentation linéaire fidèle. De telles structures
de Hodge mixtes associées à une représentation du groupe fondamental de X ont aussi
été construites par Hain dans [Hai98].

A.4 Théorie des déformations dérivée
L’utilisation des algèbres de Lie DG en théorie des déformations, et la philosophie selon

laquelle en caractéristique zéro, tout problème de déformation est contrôlé par une algèbre
de Lie DG, s’est beaucoup développée depuis le travail original de Goldman-Millson et la
lettre de Deligne. D’une part cela a été appliqué à beaucoup d’autres situations, voir par
exemple les notes de Kontsevich [Kon94]. D’autre part, plusieurs personnes ont construit
une équivalence entre la catégorie des algèbres de Lie DG à quasi-isomorphismes près et
une catégorie à définir des problèmes de déformation. Il faut citer les articles originaux
de Manetti [Man02], Hinich [Hin01], le travail de Pridham [Pri10] qui unifie les deux, le
tout culminant dans sa forme la plus générale dans la théorie de Lurie [Lur11]. Ainsi cette
philosophie est maintenant appelée le théorème de Pridham-Lurie. On se réfère aussi aux
notes de B. Toën [Toë17].

Il est donc très intéressant de relire la théorie originale de Goldman et Millson à l’aide
de ces outils nouveaux et puissants. Le fait particulièrement important pour nous est que
le foncteur de déformation d’une algèbre de Lie DG L est représenté (sous l’hypothèse
que Hn(L) = 0 pour n ≤ 0) par une algèbre locale complète qui est obtenue comme le H0

d’une certain complexe très explicite C (L), fonctoriel, invariant par quasi-isomorphismes.
On l’appelle aussi la construction bar sur L.

Cette construction n’est pas possible à comprendre sans en appeler à la théorie des
déformations dérivée. Cela nécessite au moins d’étendre les foncteurs de déformation
depuis les algèbres artiniennes vers certaines catégories d’anneaux artiniens DG, à valeurs
non plus dans les ensembles mais dans les groupoïdes ou dans les ensembles simpliciaux.
Ces idées apparaissent pour la première fois dans une lettre de Drinfeld [Dri88]. Ces
principes n’étaient pas connus à l’époque du premier travail de Goldman et Millson.
Encore une fois, par formalité, tout ceci se simplifie beaucoup quand on travaille dans le
cas compact mais n’est pas du tout trivial dans le cas général.

De plus, d’autres outils ont été développés pour comprendre la catégorie homoto-
pique des algèbres de Lie DG (c’est à dire la catégorie des algèbres de Lie DG à quasi-
isomorphismes près) : les algèbres L∞. Le bon cadre est la théorie des opérades pour
laquelle on se réfère au livre de Loday-Valette [LV12].

Brièvement, les algèbres L∞ sont des versions affaiblies des algèbres de Lie DG équi-
pées d’opérations supérieures et dans lesquelles l’identité de Jacobi a lieu seulement à
homotopie près donnée par les opérations supérieures, satisfaisant elles-mêmes des lois
de cohérence supérieures. Les algèbres de Lie DG sont exactement les algèbres L∞ avec
les opérations supérieures nulles. Puisque les algèbres L∞ ont naturellement un foncteur
de déformation associé qui étend celui des algèbres de Lie DG et qui est invariant par
quasi-isomorphismes, et puisqu’un quasi-isomorphisme entre algèbres L∞ admet auto-
matiquement un quasi-isomorphisme inverse, ceci forme une catégorie très pratique pour
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étudier la théorie des déformations.
Bien que l’on sache par la théorie très abstraite que tout problème de déformation

est contrôlé par une algèbre de Lie DG, ce qui est compte est de trouver la bonne avec
des bonnes propriétés qui permettent de mieux comprendre le problème de déformation
donné. Puisque les algèbres L∞ sont des objets plus fins, il se peut qu’un problème de
déformation soit contrôlé plus naturellement par une algèbre L∞ que par une algèbre de
Lie DG. Beaucoup d’exemples de problèmes de déformation contrôlés par des algèbres
L∞ ont été étudiés par M. Manetti et ses collaborateurs et on renvoie aux notes [Man04].

B Résultats

B.1 Travail préliminaire
Notre premier travail préliminaire, qui est maintenant un article publié [Lef17], est

reproduit dans l’appendice A.
Ceci concerne des cas particuliers du théorème de Kapovich-Millson où on trouve plus

de restrictions sur les poids possibles sur Ôρ de telle façon qu’il se comporte comme dans
le cas compact, obtenu en analysant la preuve et d’où ces restrictions proviennent.

Théorème A (Thm. A.2). Soit X une variété complexe lisse quasi-projective et soit
ρ : π1(X, x) → G(R) une représentation d’image finie. Supposons que le revêtement fini
Y → X associé au sous-groupe Ker(ρ) ⊂ π1(X, x) ait une compactification lisse Y avec
premier nombre de Betti b1(Y ) = 0. Alors Ôρ a une présentation quadratique.

La motivation principale vient du cas des complémentaires d’arrangements projectifs
d’hyperplans pour la représentation triviale, pour lequel cette notion est connue sous le
nom de 1-formalité, voir [DPS09], [PS09]. Ceci devrait aussi être relié à l’énoncé que la
pureté impliqué la formalité, voir par exemple le travail [Dup15] dont nous n’étions pas
informés.

Dans ce même article on donne aussi des exemples où l’hypothèse du théorème s’ap-
plique pour toutes les représentations finies. On en trouve parmi les familles de variétés
abéliennes, en lien avec les divers résultats de rigidité, et parmi les espaces hermitiens
localement symétriques, en lien avec la propriété (T) de Kazhdan.

B.2 Résultat principal
Notre but principal est d’étendre le résultat d’Eyssidieux-Simpson au cas non compact,

en construisant une structure de Hodge mixte fonctorielle sur Ôρ et en retrouvant le
résultat de Kapovich-Millson.

Ceci amène plusieurs difficultés importantes. D’un côté le travail d’Eyssidieux-
Simpson utilise fortement la géométrie kählérienne, les laplaciens pour les formes dif-
férentielles, la formalité, et est impossible à adapter directement au cas non compact.
De l’autre côté le travail de Kapovich-Millson repose sur la théorie de Morgan qui utilise
des modèles minimaux pour les diagrammes de Hodge mixtes et, même si on pourrait
améliorer la graduation sur Ôρ en une structure de Hodge mixte, celle-ci ne serait pas du
tout fonctorielle et n’aurait pas le bon comportement.
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On doit donc trouver une preuve complètement différente. Au passage, on souhaite
que la structure de Hodge mixte sur Ôρ provienne dans les deux cas directement et
fonctoriellement d’un diagramme de Hodge mixte approprié dont la construction dépende
de la situation géométrique.

Donnons d’abord le résultat. Fixons un corps k qui est soit un sous-corps de R soit
le corps C, nous permettant de parler en même temps des structures de Hodge mixtes
usuelles et des structures de Hodge mixtes complexes. On rappelle que G est un groupe
algébrique linéaire sur k.

Théorème B (Théorème principal). Soit X une variété kählérienne compacte et soit
ρ : π1(X, x) → G(k) la monodromie d’une variation de structure de Hodge polarisée
définie sur k sur X. Alors il y a une structure de Hodge mixte fonctorielle définie sur k
sur Ôρ avec poids négatifs et dont la partie graduée de poids zéro est l’anneau local formel
de l’orbite de ρ.

Si X est une variété complexe lisse quasi-projective et ρ : π1(X, x)→ G(k) est une
représentation d’image finie, alors Ôρ a une structure de Hodge mixte fonctorielle à poids
négatifs. Les poids induits sur l’espace cotangent sont −1,−2.

Pour le moment, il n’est pas prouvé que notre structure de Hodge mixte sur Ôρ dans
le cas compact est la même que celle construite par Eyssidieux-Simpson, bien qu’il y ait
de fortes indications pour : elle se comporte de la même façon, a la même description sur
l’espace cotangent, et la même partie graduée de poids zéro. Dans le cas non compact
on ne retrouve pas complètement le résultat de Kapovich-Millson : la structure de Hodge
mixte sur l’espace cotangent peut être scindée sur C et des éléments de base peuvent être
relevés en des générateurs homogènes à poids de Ôρ, retrouvant ainsi les générateurs de
poids 1, 2, mais jusque là nous ne retrouvons pas les relations homogènes à poids avec
nos méthodes. On aimerait les retrouver d’une façon canonique à partir d’un idéal de
relations portant une structure de Hodge mixte avec les poids 2, 3, 4 et nous sommes
dans l’incapacité d’obtenir ceci.

B.3 Plan de preuve
Indiquons maintenant les théorèmes principaux nécessaires à la preuve. Dans la théorie

de Goldman-Millson l’algèbre de Lie DG contrôlante L est équipée d’une augmentation
εx : L→ g qui est simplement l’évaluation des formes de degré zéro au point base x.
Dans le travail d’Eyssidieux-Simpson est introduit un foncteur de déformation augmenté
(Definition 1.21), qui est une petite variation du foncteur de déformation DefL, et il est
expliqué qu’il s’agit du bon objet à considérer pour contrôler la théorie de déformations
de ρ et pour comprendre son orbite.

Dans le cas compact, L est une algèbre de Lie DG de formes différentielles à coefficients
dans une variation de structure de Hodge, donc par le travail de Zucker [Zuc79] a une
structure de diagramme de Hodge mixte d’algèbres de Lie. Dans la situation de Kapovich-
Millson, L est obtenue à partir de l’algèbre des formes différentielles sur le revêtement fini
correspondant à Ker(ρ), sur lequel la représentation tirée en arrière est triviale. Donc, en
suivant leurs idées et en les ré-écrivant avec les constructions de diagrammes de Hodge
mixtes fonctoriels de Navarro Aznar, on trouve encore un diagramme de Hodge mixte
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d’algèbres de Lie qui est quasi-isomorphe à L. Résumons les structures qu’on obtient par
les situations géométriques.

Théorème C (Chapitre 3). Dans toutes les situations du théorème ci-dessus, la théorie
des déformations de ρ est contrôlée par un diagramme de Hodge mixte augmenté d’al-
gèbres de Lie (Definition 2.33 et Definition 2.37) qui est fonctoriel à quasi-isomorphisme
près.

Puis on souhaite appliquer la construction bar appropriée provenant de la théorie des
déformations dérivée à un tel diagramme L et montrer que ceci définit un diagramme
de Hodge mixte. Ainsi on obtiendra une structure de Hodge mixte fonctorielle sur un
objet qui représente le foncteur de déformation de L, qui par le lemme de Yoneda est
canoniquement isomorphe à Ôρ.

Cependant, malgré nos efforts, nous avons été dans l’incapacité d’accéder à Ôρ en uti-
lisant cette stratégie naïve puisqu’on doit réellement travailler avec L et son augmentation
εx. Les possibilités suivantes sont naturelles :

1. On peut travailler avec L tout entier puis plus tard essayer d’extraire l’information
provenant de l’augmentation. Cependant L n’a pas H0(L) = 0 ce qui signifie que
son foncteur de déformation n’est pas représentable. De plus, la construction bar
ne se comporte pas bien si H0(L) 6= 0 (les éléments de degrés 0 de L produisent
des éléments de degré négatif dans C (L)).

2. On peut travailler avec L′ := Ker(εx) ⊂ L. C’est bien une algèbre de Lie DG
avec H0(L′) = 0. Mais ce n’est plus un diagramme de Hodge mixte, puisque les
axiomes de diagrammes de Hodge mixtes sont très forts et on ne peut pas a priori
y considérer des noyaux.

3. À la place, on peut travailler avec le cône de εx. C’est l’opération naturelle dans
les diagrammes de Hodge mixtes qui remplace le noyau et il a bien H0 = 0, étant
en fait quasi-isomorphe à L′. Cependant ce n’est plus une algèbre de Lie DG.

La solution à ce problème, nous l’avons trouvée en travaillant avec des algèbres L∞. Le
cône d’un morphisme entre algèbres de Lie DG a été étudié par Fiorenza-Manetti [FM07].
Ils montrent que le cône a une structure naturelle d’algèbre L∞ et décrivent le foncteur
de déformation associé. Nous faisons la remarque très simple mais fondamentale (pour
nous) que lorsqu’on l’applique à l’augmentation ε le foncteur de déformation associé
est le même que le foncteur de déformation augmenté introduit indépendamment par
Eyssidieux-Simpson.

Lemme D (Observation fondamentale, Lem. 1.55, combiner avec Thm. 1.54). Le foncteur
de déformation augmenté d’une algèbre de Lie DG augmentée ε : L→ g introduit par
Goldman-Millson et par Eyssidieux-Simpson est le foncteur de déformation associé à une
structure d’algèbre L∞ sur le cône de ε étudiée par Fiorenza-Manetti.

Ceci nous permet de mener à bien notre stratégie de preuve. Les opérations supérieures
d’algèbre L∞ sur le cône ont des formules algébriques très explicites et c’est un calcul
direct de vérifier leur compatibilité avec la structure de diagramme de Hodge mixte. On
appelle diagramme de Hodge mixte d’algèbres L∞ l’objet qui en résulte.

8



Théorème E (Sect. 2.2.1 et Thm. 2.38). Soit ε : L→ g un diagramme de Hodge mixte
augmenté d’algèbres de Lie provenant du Théorème C. Les opérations d’algèbre L∞ de
Fiorenza-Manetti sur le cône C de ε donnent à C la structure de diagramme de Hodge
mixte d’algèbres L∞ (Definition 2.34).

Puis on applique la construction bar (foncteur C ) au sens des algèbres L∞. Ceci donne
naturellement une coalgèbre DG de laquelle on extrait (via son H0 puis en dualisant)
une algèbre locale complète qui, par les principes de théorie des déformations dérivée,
représente le foncteur de déformation de l’algèbre L∞. Donc on doit montrer que C peut
être appliqué au diagramme de Hodge mixte C et qu’on obtient un diagramme de Hodge
mixte de coalgèbres. Ceci est très proche de la construction bar sur des diagrammes
de Hodge mixtes (d’algèbres commutatives, ou de modules sur elles, avec beaucoup de
variations) de Hain, utilisée dans [Hai87] et dans de nombreux autres articles.

Théorème F (Sect. 2.2.2 et Thm. 2.44). Le foncteur C peut être appliqué au diagramme
de Hodge mixte d’algèbres L∞ C du Théorème E et donne un diagramme de Hodge mixte
de coalgèbres.

De ceci, on extrait directement une structure de Hodge mixte sur son H0 qui est
invariante par quasi-isomorphismes. Ceci donne la structure de Hodge mixte fonctorielle
sur Ôρ dans toutes les situations du Théorème B.

B.4 Perspectives
Notre stratégie de preuve a été développée avec l’objectif constant de séparer les

constructions géométriques de diagrammes de Hodge mixtes et la machinerie algébrique
qui nous donne la structure de Hodge mixte. Nous pensons fortement qu’elle nous aidera à
construire une structure de Hodge mixte sur Ôρ dans des cas non compacts plus généraux :
quand ρ est la monodromie d’une variation de structure de Hodge mixte, et même quand
X est singulière. Combiné avec une étude plus approfondie de théorie des groupes, ceci
pourrait aboutir à des nouvelles restrictions sur le problème de Serre.

C Organisation du travail

C.1 Plan
Ce travail est organisé comme suit. On le divise en trois chapitres, chacun formant une

partie de la preuve de notre Théorème B. Puisque le travail préliminaire est indépendant
et est la reproduction d’un article publié, on le place en appendice A. Aussi, on reporte
toutes les constructions géométriques au chapitre 3, développant notre machinerie d’abord
au travers des chapitres 1 et 2.

Donc, le chapitre 1 est centré sur la théorie de Goldman-Millson et la théorie des
déformations mais sans théorie de Hodge. Dans sa première partie on revoit tout le
matériel nécessaire pour comprendre proprement la théorie de Goldman-Millson, du point
de vue classique. La section 1.1.1 est purement algébrique et catégorique. On y introduit
soigneusement le foncteur de déformation augmenté d’une algèbre de Lie DG. Dans la
section 1.1.2 on introduit la variété des représentations et son étude est reliée à des

9



constructions géométriques. Dans la deuxième partie, on expose la théorie des algèbres
L∞ et les théorèmes de théorie des déformations dont on a besoin. Puisque ceci est
technique et puisque nous avons besoin des détails, on dédie toute la section 1.2.1 à
l’introduction des algèbres L∞. Puis dans la section 1.2.2 on décrit la structure d’algèbre
L∞ de Fiorenza-Manetti. Notre unique contribution est la très simple observation du
Lemme D. Enfin dans la section 1.2.3 on étudie plus en détail le foncteur de déformation
d’une algèbre L∞ et on extrait de la littérature le théorème de pro-représentabilité qu’on
veut appliquer.

Puis le chapitre 2 est dédié à la théorie de Hodge. Dans sa première partie on y expose
soigneusement toutes les définitions dont on a besoin : les structures de Hodge mixtes dans
la section 2.1.1, les diagrammes de Hodge mixtes dans la section 2.1.2. À chaque étape
on montre comment ces définitions se comportent si on ne travaille pas seulement avec
des espaces vectoriels mais avec d’autres types d’algèbres. La deuxième partie contient le
cœur de ce travail. Dans la section 2.2.1 on donne la définition de diagramme de Hodge
mixte d’algèbres L∞ et on démontre le Théorème E. Dans la section 2.2.2 on démontre
le Théorème F et on étudie cette construction.

Enfin dans le chapitre 3 on étudie beaucoup de situations géométriques différentes
dans lesquelles on construit des diagrammes de Hodge mixtes augmentés d’algèbres de
Lie contrôlants, démontrant le Théorème C. On sépare le cas compact et non compact.
Dans le cas compact, pour une représentation à valeurs dans une variation de structure de
Hodge réelle, une telle construction est immédiate. Elle sert donc de modèle de preuve et
d’application de notre méthode et est écrite en détail dans la section 3.1.1. Il est ensuite
facile d’adapter la méthode à plusieurs variations de ce cas, ce que nous faisons dans la
section 3.1.2. De même dans le cas non compact, on prend pour modèle détaillé les repré-
sentations réelles, dans la section 3.2.1, et on y ajoute plus tard la structure rationnelle,
section 3.2.2. Pour traiter du cas non compact on expose brièvement la construction de
Navarro Aznar et on l’adapte à nos besoins.

C.2 Conventions et notations
Les variétés que nous étudions sont soit kählériennes compactes (ceci inclut la classe

des variétés algébriques complexes lisses projectives) soit algébriques complexes lisses
quasi-projectives. Elles sont bien entendu connexes. Ceci est le cadre naturel dans lequel
la théorie de Hodge (resp. de Hodge mixte) s’applique le plus directement et où on peut
directement citer la littérature existante.

On note toujours k un corps de caractéristique zéro. Dans les situations géométriques
c’est la plupart du temps Q, R ou C.

On utilise partout l’abréviation DG pour différentiel gradué. Nos espaces vectoriels
DG sur k sont aussi connus sous le nom de complexes de cochaînes. On note toujours la
graduation par un indice en exposant (i.e. V = ⊕

V n) et la différentielle d est de degré
+1 (i.e. d : V n → V n+1).

On utilise le symbole ' pour les isomorphismes et ≈ pour les équivalences faibles
(quasi-isomorphismes entre espaces vectoriels DG, équivalences de catégories ou de fonc-
teurs vers les groupoïdes). Les catégories sont notées avec des lettres grasses, par exemple :
Set, Algk, DG−Vectk.
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Introduction (English version)

A Context

A.1 Hodge theory
Hodge theory is concerned with the study of the additional structures on the usual

topological invariants of compact Kähler manifolds and complex algebraic varieties re-
flecting their complex analytic and algebraic nature. The first example of interaction
between the algebraic topology and the complex structure of such manifolds was studied
by Hodge.

Theorem (Hodge). If X is a compact Kähler manifold, then its cohomology with complex
coefficients decomposes in each degree n as a direct sum

Hn(X,C) =
⊕

p+q=n
Hp,q

with the complex conjugation exchanging Hp,q(X) and Hq,p(X).

From this theorem one obtains easily restrictions on the possible topology of a compact
Kähler manifold. For example, the Hodge decomposition in degree 1 implies that the
dimension of H1(X,C) is always even. Since this also equals

H1(X,C) = Hom(π1(X),C)

then Z can never be the fundamental group π1(X) of such a manifold X. The question
of describing all groups that can appear as fundamental groups of compact Kähler man-
ifolds (resp. smooth complex projective varieties, resp. smooth complex quasi-projective
algebraic varieties) is known as Serre’s problem. It is still widely open, though many
different kinds of restrictions are known. The most simple one is that these groups must
be finitely presentable. But for non-compact varieties, besides finite presentability none
of these restrictions is as easy to describe as the above one for compact varieties.

This structure on the cohomology has been abstracted into the notion of Hodge struc-
ture. Then, Hodge structures have proven to be a useful tool for studying the topology
of complex varieties and their moduli. We refer to the books by Voisin [Voi02] and
Peters-Steenbrink [PS08] for Hodge theory, and to [ABC+96] for Serre’s problem.

A.2 Mixed Hodge theory
The notion of pure Hodge structure was generalized by P. Deligne [Del71a], [Del71b],

[Del74]. He shows that the cohomology groups of a non-compact algebraic variety behave
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like an iterated extension of cohomology groups of compact varieties, coming from of a
compactification by a divisor with normal crossings, and defines this to be a mixed Hodge
structure.

Definition (Def. 2.15). A mixed Hodge structure on a finite-dimensional vector space K
over a subfield k ⊂ R is the data of an increasing filtration W of K called the weight
filtration and a decreasing filtration F of KC called the Hodge filtration such that for each
k ∈ Z the graded part of weight k

GrWk (K) := WkK/Wk−1K

with the induced filtration F over C forms a pure Hodge structure of weight k, i.e.
decomposes as a direct sum of terms Kp,q for p + q = k with the complex conjugation
exchanging Kp,q and Kq,p and with F filtering with respect to p.

Then, mixed Hodge structures have been constructed on many other topological in-
variants of algebraic varieties and used to restrict their topology. All these methods use
rational homotopy theory to extract information about the homotopy type of a variety
from its algebra of differential forms. See the book by Griffiths-Morgan [GM81] for these
questions. To work over the rational numbers one needs to construct a commutative
differential graded algebra defined over Q whose cohomology computes the rational co-
homology algebra of a given variety. This is not easy since on the usual singular cochain
complex the cup-product is not commutative.

For Hodge-theoretical reasons, the real homotopy type of compact Kähler manifolds
is shown to be quite simple by Deligne, Griffiths, Morgan and Sullivan [DGMS75]: the
real fundamental group is determined by the cohomology algebra.

Combining these ideas of rational homotopy and mixed Hodge theory, J. Morgan
[Mor78] constructed mixed Hodge structures on the homotopy groups of a smooth com-
plex algebraic variety. It can be used to exhibit the first example of a finitely presented
group which is not the fundamental group of an algebraic variety, a group with two
generators x, y and one relation given by an iterated commutator

[x, [x, [· · · , [x, y] · · · ]]]

of length at least five. For such a commutator of length at least three, this is not the
fundamental group of a compact Kähler manifold by [DGMS75]. The construction of
Morgan, however, lacks some functoriality and is followed by a correction [Mor86].

Another approach was given by R. Hain [Hai87] using the construction of a certain
cochain complex whose cohomology gives directly and functorially the rational homotopy
groups. To construct mixed Hodge structures on its cohomology, it is enough to give this
complex the structure of a mixed Hodge diagram (see section 2.1.2 and Definition 2.27)
and check the corresponding axioms.

These methods were also reviewed by V. Navarro Aznar [Nav87]. He constructs func-
torial mixed Hodge diagrams computing the cohomology of a complex algebraic variety.
This has to be associated with some methods of homotopical algebra to understand the
homotopy category of mixed Hodge diagrams and improve the theory of Deligne, Morgan
and Hain. See for instance the work of J. Cirici [Cir15] and her collaborators.
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In this vein, in this thesis we study the mixed Hodge theory of linear representations
of fundamental groups of compact Kähler manifolds and algebraic varieties.

A.3 The theory of Goldman and Millson
Let us fix a complex manifold X which is either compact Kähler, either algebraic

smooth. In both cases its fundamental group is finitely presentable. Fix a base point
x ∈ X. Let G be a linear algebraic group over a subfield k ⊂ R with Lie algebra g.

Definition (Sect. 1.1.2 and Thm. 1.26). The set of representations of π1(X, x) into G(k),
i.e. of group morphisms

ρ : π1(X, x) −→ G(k),

has the structure of points over k of an affine scheme that we denote by Hom(π1(X, x), G).
It is called the representation variety of π1(X, x) into G. We denote by Ôρ the complete
local ring of the representation variety at a point ρ.

The local ring Ôρ will be one of the main objects of study. Namely it is the formal
moduli space for infinitesimal deformations of ρ and its singularity type tells about the
possibility of deforming representations and extending given deformations. His study was
done by Goldman and Millson [GM88] when X is a compact Kähler manifold.

Theorem (Goldman-Millson). If X is a compact Kähler manifold and ρ : π1(X, x)→ G(R)
has image contained in a compact subgroup, then Ôρ has a quadratic presentation.

This can be seen as a version of [DGMS75] for representations of the fundamental
group. It states that the representation variety has quite simple singularities at ρ and
thus that the fundamental group cannot be too complicated.

Let us describe briefly the methods of proof. To ρ is associated, via the monodromy of
its adjoint representation, a local system of Lie algebras with fiber g. The algebra of real
differential forms with values in this local system is then a differential graded Lie algebra
(Definition 1.13), that we denote by L. The main construction relates the deformation
functor associated with ρ to the deformation functor associated with L.

Definition (Def. 1.17). The deformation functor of a DG Lie algebra L over a field k of
characteristic zero is the functor DefL given on a local Artin algebra (A,mA) over k as
the quotient of the set of Maurer-Cartan elements of L⊗mA

MC(L⊗mA) :=
{
x ∈ L1 ⊗mA

∣∣∣∣ d(x) + 1
2[x, x] = 0

}
by the action of L0 ⊗mA by gauge transformations (Definition 1.16).

The fundamental principle of deformation theory states that every deformation prob-
lem is controlled by a DG Lie algebra (i.e. the associated deformation functor is isomorphic
to some DefL as above) and that two quasi-isomorphic DG Lie algebras have isomorphic
deformation functors. This was inspired by a letter of Deligne [Del86] to the authors.

So in the situation of Goldman-Millson, by using Hodge theory, L is quasi-isomorphic
to a DG Lie algebra with zero differential — this property, called formality, is the same
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as in [DGMS75] — for which the deformation functor takes a simplified form and allows
us to give a simple description of Ôρ.

By formality again, using non-abelian Hodge theory, the theorem of Goldman-Millson
was extended by C. Simpson [Sim92, § 2] to the case of complex semi-simple representa-
tions.

Later, the description of Ôρ for some cases of representations of fundamental groups
of non-compact algebraic varieties was done by Kapovich and Millson [KM98].

Theorem (Kapovich-Millson). If X is a smooth algebraic variety and ρ : π1(X, x)→ G(R)
has finite image, then Ôρ has a weighted-homogeneous presentation, with generators of
weight 1, 2 and relations of weight 2, 3, 4.

This is obtained by studying the mixed Hodge theory of L: its cohomology has a
mixed Hodge structure with only possible weights 1, 2 on H1 and 2, 3, 4 on H2. Instead
of using formality, they use the work of Morgan and replace L up to quasi-isomorphism
by a DG Lie algebra M having a mixed Hodge structure, and study the consequence of
the grading by weight on the deformation functor of M .

In their article, they obtain new examples of finitely presented groups that are not
fundamental groups of smooth complex algebraic varieties, by a whole study of their
combinatorics and their finite representations.

The work of Goldman-Millson was reviewed by P. Eyssidieux and C. Simpson [ES11]
and interpreted in terms of mixed Hodge theory. Assume that ρ is the mononodromy of a
variation of Hodge structure (Definition 3.1 and Definition 3.8). Inside Hom(π1(X, x), G)
lies the orbit Ωρ of ρ under the action of G by conjugation, which is a reduced subscheme.
Its formal germ at ρ is a formal scheme Ω̂ρ defined by an ideal j ⊂ Ôρ.

Theorem (Eyssidieux-Simpson). If X is a compact Kähler manifold and ρ is the mon-
odromy of a complex polarized variation of Hodge structure over X, then Ôρ has a func-
torial complex mixed Hodge structure. The weight filtration is indexed in non-positive
degree and is given by the powers of the ideal j. The weight zero graded piece is Ôρ/j, the
formal local ring of Ω̂ρ..

In their article, this is used to construct interesting variations of mixed Hodge struc-
tures onX. This is an important tool in the proof of the Shafarevich conjecture [EKPR12]
on the universal cover of smooth projective varieties whose fundamental group admits a
faithful linear representation. Such mixed Hodge structures associated to a representation
of the fundamental group of X where also constructed by Hain in [Hai98].

A.4 Derived deformation theory
The use of DG Lie algebras in deformation theory, and the philosophy according

to which in characteristic zero, every deformation problem is controlled by a DG Lie
algebra, has received many developments since the original work of Goldman-Millson and
the letter of Deligne. On the one hand it has been applied to many other situations, see
for instance the lecture notes of Kontsevich [Kon94]. On the other hand several people
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have constructed an equivalence between the category of DG Lie algebras up to quasi-
isomorphisms and some to-be-defined category of deformation problems. We have to cite
the original articles by Manetti [Man02], Hinich [Hin01], the work of Pridham [Pri10]
that unifies both, all this culminating in the most general form in the theory of Lurie
[Lur11]. Therefore this philosophy is now called the Pridham-Lurie theorem. We refer
also to the survey of B. Toën [Toë17].

It is then very interesting to review the original theory of Goldman and Millson
with these new and powerful tools. Of particular importance for us is the fact that
the deformation functor of a DG Lie algebra L is represented (under the assumption
Hn(L) = 0 for n ≤ 0) by a complete local algebra which is obtained as the H0 of a very
explicit complex C (L), functorial, invariant under quasi-isomorphism. It is also called
the bar construction on L.

This construction is not possible to understand without appealing to derived defor-
mation theory. This requires at least extending deformation functors from Artin algebras
to some category of DG Artin algebras, taking values not any more into sets but into
groupoids or simplicial sets. These ideas appear first in a letter of Drinfeld [Dri88]. These
principles were not known at the time of the first work of Goldman and Millson. Again
by the formality property all this simplifies much when working in the compact case, but
it is not trivial at all in the general case.

Furthermore, other tools have been developed to understand the homotopy category
of DG Lie algebras (that is, the category of DG Lie algebras up to quasi-isomorphisms):
L∞ algebras. The right framework is operad theory, for which we refer to the book by
Loday-Valette [LV12].

Briefly, L∞ algebras are weakened versions of DG Lie algebras equipped with higher
operations in which the Jacobi identity only holds up to homotopy given by the higher
operations, satisfying themselves higher coherence laws. DG Lie algebras are exactly the
L∞ algebras with zero higher operations. Since L∞ algebras naturally have an associ-
ated deformation functor that extends the one of DG Lie algebras and that is invariant
by quasi-isomorphisms, and since a quasi-isomorphism between L∞ algebras automati-
cally admits an inverse quasi-isomorphism, this forms a convenient category for studying
deformation theory.

Though it is known by very abstract theory that every deformation problem is con-
trolled by a DG Lie algebra, what matters is to find the right one with good properties
that allows us to understand better the given deformation problem. Since L∞ algebras
are finer objects, it can happen that a deformation problem is controlled more naturally
by a L∞ algebra than by a DG Lie algebra. Many examples of deformation problems
controlled by L∞ algebras have been studied by M. Manetti and his collaborators and we
refer to the lectures notes [Man04].

B Results

B.1 Preliminary work

Our first preliminary work, which is now a published article [Lef17], is reproduced in
the appendix A.
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It concerns special cases of the theorem of Kapovich-Millson where we find more
restrictions on the possible weights on Ôρ such that it behaves as in the compact case,
obtained by analyzing the proof and where these restrictions come from.

Theorem A (Thm. A.2). Let X be a smooth complex quasi-projective algebraic variety
and let ρ : π1(X, x)→ G(R) be a representation with finite image. Assume that the finite
cover Y → X corresponding to the subgroup Ker(ρ) ⊂ π1(X, x) has a smooth compactifi-
cation Y with first Betti number b1(Y ) = 0. Then Ôρ has a quadratic presentation.

The main motivation comes from the case of complements of projective arrangements
of hyperplanes at the trivial representation, for which this notion was known under the
name of 1-formality, see [DPS09], [PS09]. This should also be related to the statement
that purity implies formality, see for example the work [Dup15] that we were not aware
of.

In this same article we also give examples where the hypothesis of the theorem is
satisfied with respect to every finite representation. We find some among families of
abelian varieties, related to the various rigidity results, and among hermitian locally
symmetric spaces, related to Kazhdan’s property (T).

B.2 Main result
Our main goal is to extend the result of Eyssidieux-Simpson to the non-compact

case, constructing a functorial mixed Hodge structure on Ôρ and recovering the result of
Kapovich-Millson.

This leads to several important difficulties. On one hand the work of Eyssidieux-
Simpson makes strong use of Kähler geometry, laplacians for differential forms, formality,
and is impossible to adapt directly in the non-compact case. On the other hand, the
work of Kapovich-Millson relies on the theory of Morgan using minimal models for mixed
Hodge diagrams and, though the grading on Ôρ could be improved to a mixed Hodge
structure, this would not at all be functorial and well-behaved.

So one has to find a completely different proof. By the way, we want the mixed Hodge
structure on Ôρ to come in both cases directly and functorially from an appropriate mixed
Hodge diagram, whose construction depends on the geometric situation.

Let us state first the result. We fix a field k which is either a subfield of R or the
field C, allowing us to speak both of usual mixed Hodge structures and of complex mixed
Hodge structures, and recall that G is a linear algebraic group over k.

Theorem B (Main theorem). Let X be a compact Kähler manifold and let
ρ : π1(X, x)→ G(k) be the monodromy of a polarized variation of Hodge structure de-
fined over k on X. Then there is a functorial mixed Hodge structure over k on Ôρ with
non-positive weights and whose weight zero graded piece is the formal local ring of the
orbit of ρ.

If X is a smooth complex quasi-projective algebraic variety and ρ : π1(X, x)→ G(k)
is a representation with finite image, then Ôρ has a functorial mixed Hodge structure with
non-positive weights. The induced weights on the cotangent space are −1,−2.

At this time, it is not proved that our mixed Hodge structure on Ôρ in the compact
case is exactly the same as the one constructed by Eyssidieux-Simpson, though there
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are strong indications for: it behaves the same way, has the same description on the
cotangent space, and the same weight zero graded piece. In the non-compact case we
do not recover completely the result of Kapovich-Millson: the mixed Hodge structure on
the cotangent space can be splitted over C and basis elements can be lifted to weighted
homogeneous generators of Ôρ, thus recovering the generators of weight 1, 2, but until
now we do not recover the weighted-homogeneous relations with our methods. We would
like to recover them in some canonical way from an ideal of relations carrying a mixed
Hodge structure with weights 2, 3, 4 and we are unable to get this.

B.3 Plan of proof
Now let us indicate the main theorems needed for the proof. In the theory of Goldman-

Millson the controlling DG Lie algebra L is equipped with an augmentation εx : L→ g
which simply evaluates degree zero forms at the base point x. In the work of Eyssidieux-
Simpson is introduced an augmented deformation functor (Definition 1.21), which is a
slight variation of the usual deformation functor DefL, and it is shown that this is the
right object to consider in order to control the deformation theory of ρ and to understand
its orbit.

In the compact case, L is a DG Lie algebra of differential forms with coefficients in
a variation of Hodge structure, thus by the work of Zucker [Zuc79] it has the structure
of a mixed Hodge diagram of Lie algebras. In the situation of Kapovich-Millson, L is
obtained from the algebra of differential forms on the finite cover corresponding to Ker(ρ),
on which the pulled-back representation is trivial. So, following their ideas and re-writing
them with the functorial construction of mixed Hodge diagrams of Navarro Aznar, we
find again a mixed Hodge diagram of Lie algebras that is quasi-isomorphic to L. We sum
up the structures we get from the geometric situations:

Theorem C (Chapter 3). In all situations of the above theorem, the deformation theory
of ρ is controlled by an augmented mixed Hodge diagram of Lie algebras (Definition 2.33
and Definition 2.37) that is functorial up to quasi-isomorphism.

Then we want to apply the appropriate bar construction coming from derived defor-
mation theory to such a diagram L and show that it defines a mixed Hodge diagram.
This way we will get a functorial mixed Hodge structure on an object representing the
deformation functor of L, which by the Yoneda lemma is canonically isomorphic to Ôρ.

However, despite our efforts, we were not able to access to Ôρ using this naive strategy
since one really needs to work with L together with its augmentation εx. The following
possibilities are the natural ones:

1. One can work with the full L and then later try to extract the information coming
from the augmentation. However, L does not have H0(L) = 0 which means that
its deformation functor is not representable. Also, the bar construction doesn’t
behave so well ifH0(L) 6= 0 (elements of degree 0 in L produce elements of negative
degree in C (L)).

2. One can work with L′ := Ker(εx) ⊂ L. This is a DG Lie algebra which has
H0(L′) = 0. But it is not anymore a mixed Hodge diagram, since the axioms of
mixed Hodge diagrams are very strong and one cannot a priori take kernels.
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3. Instead, one can work with the mapping cone of εx. This is the natural operation
in mixed Hodge diagrams that replaces the kernel and it has H0 = 0, in fact it is
quasi-isomorphic to L′. However, it is not anymore a DG Lie algebra.

The solution to this problem we find by working with L∞ algebras. The mapping
cone of a morphism between DG Lie algebras was studied by Fiorenza-Manetti [FM07].
They show that it carries a natural L∞ algebra structure and describe the associated
deformation functor. We make the very simple but fundamental claim (for us) that when
applied to the augmentation εx the associated deformation functor is the same as the
augmented deformation functor introduced independently by Eyssidieux-Simpson.

Lemma D (Fundamental observation, Lem. 1.55, combine with Thm. 1.54). The aug-
mented deformation functor of an augmented DG Lie algebra ε : L → g introduced by
Goldman-Millson and Eyssidieux-Simpson is the deformation functor associated with the
L∞ algebra structure on the mapping cone of ε studied by Fiorenza-Manetti.

This allows us to carry out our strategy of proof. The higher operations of L∞ on the
mapping cone have very explicit algebraic formulas and it is a direct calculation to check
the compatibility with the structure of mixed Hodge diagram. The resulting object we
call a mixed Hodge diagram of L∞ algebras.

Theorem E (Sect. 2.2.1 and Thm. 2.38). Let ε : L→ g be an augmented mixed Hodge di-
agram of Lie algebras coming from Theorem C. The operations of L∞ algebra of Fiorenza-
Manetti on the mapping cone C of ε give C the structure of mixed Hodge diagram of L∞
algebras (Definition 2.34).

Then we apply the bar construction (functor C ) in the sense of L∞ algebras. This
gives naturally a DG coalgebra from which we extract (via its H0 and then dualize) a
complete local algebra that, by the principles of derived deformation theory, represents
the deformation functor of the L∞ algebra. So we show that C can be applied to the
mixed Hodge diagram C and that we get a mixed Hodge diagram of coalgebras. This is
very close to Hain’s bar construction of mixed Hodge diagrams (of commutative algebras,
or modules over them, with many variations) used in [Hai87] and several other articles.

Theorem F (Sect. 2.2.2 and Thm. 2.44). The functor C can be applied to the mixed
Hodge diagram of L∞ algebras C of Theorem E and gives a mixed Hodge diagram of
coalgebras.

From this, one extracts directly a mixed Hodge structure on its H0 that is invariant
under quasi-isomorphisms. This gives the functorial mixed Hodge structure on Ôρ in all
situations of Theorem B.

B.4 Perspectives
Our strategy of proof was developed with the constant objective of separating the

geometrical construction of mixed Hodge diagrams and the algebraic machinery giving
us mixed Hodge structures. We strongly believe it will help us to construct a mixed
Hodge structure on Ôρ in more general non-compact cases: when ρ is the monodromy of
a variation of mixed Hodge structure, and even when X is singular. Combined with a
deeper study of group theory, this could lead to new restrictions on Serre’s problem.
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C Organization of the work

C.1 Plan
This work is organized as follows. We separate it into three chapters, each forming

pieces of the proof our Theorem B. Since the preliminary work is independent and is
the reproduction of a published article, we put in the appendix A. Also, we postpone all
the geometric constructions to the chapter 3, developing our machinery before through
chapters 1 and 2.

So chapter 1 is centered around Goldman-Millson theory and deformation theory
but without Hodge theory. In its first part we review all the necessary material in
order to understand properly the theory of Goldman-Millson, from a classical point of
view. Section 1.1.1 is purely algebraic and categorical. There we introduce carefully
the augmented deformation functor of a DG Lie algebra. In section 1.1.2 is introduced
the representation variety and its study is related to geometric constructions. In the
second part, we expose the theory of L∞ algebras and the theorems of deformation
theory we need. Since this is technical and since we need the details, we devote the
whole section 1.2.1 to introducing L∞ algebras. Then in section 1.2.2 we describe the L∞
algebra structure of Fiorenza-Manetti. Our only contribution is the simple observation
of Lemma D. Finally in section 1.2.3 we study more in detail the deformation functor
of a L∞ algebra and we extract from the literature the pro-representability theorem we
want to apply.

Then chapter 2 is devoted to Hodge theory. In its first part we expose carefully all
the definitions we need: the mixed Hodge structures in section 2.1.1, the mixed Hodge
diagrams in section 2.1.2. At each step we show how these definitions behave if one works
not only with vector spaces but with other kinds of algebras. The second part contains
the heart of the present work. In section 2.2.1 we give the definition of mixed Hodge
diagram of L∞ algebras and we prove Theorem E. In section 2.2.2 we prove Theorem F
and study this construction.

Finally in chapter 3 we study many different situations in which we construct control-
ling augmented mixed Hodge diagrams of Lie algebras, proving Theorem C. We separate
the compact and the non-compact case. In the compact case, for representations with
values in a real variation of Hodge structure, such a construction is straightforward. So
it serves as a model of proof and of application of our method, and is written down
in detail in section 3.1.1. It is then easy to adapt the method to several variations of
this case, which we do in section 3.1.2. Similarly in the non-compact case, we take as
detailed model the real representations, in section 3.2.1, and later we add the rational
structure, section 3.2.2. To treat the non-compact case we expose briefly the construction
of Navarro Aznar and we adapt it to our needs.

C.2 Conventions and notations
The manifolds we study are either compact Kähler manifolds (this includes the class

of smooth complex projective algebraic varieties) or smooth complex quasi-projective
algebraic varieties. They are of course connected. This is the natural setting in which
Hodge (resp. mixed Hodge) theory applies in the most direct way and where we can
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directly cite the existing literature.
We always denote by k a field of characteristic zero. In geometric situations this is

mostly Q, R or C.
We use everywhere the abbreviation DG for differential graded. Our DG vector spaces

over k are also known under the name of cochain complexes. We always denote the
grading by an upper index (i.e. V = ⊕

V n) and the differential d is of degree +1 (i.e.
d : V n → V n+1).

We use the symbol ' for isomorphisms and ≈ for weak equivalences (quasi-isomor-
phisms between DG vector spaces, equivalences of categories or functors to groupoids).
Categories are denoted with bold letters, for example: Set, Algk, DG−Vectk.

20



Chapter 1

Deformation theory

The first chapter is dedicated to the study of deformation theory. We first expose all
the ingredients we need, then we show how to re-write and improve the classical theory
of Deligne-Goldman-Millson using tools from derived deformation theory: L∞ algebras.
These tools will be combined with mixed Hodge theory in the next chapter.

1.1 Classical deformation theory
This section is an expository section of the theory of Goldman and Millson. It contains

no new result. To understand this theory it is necessary to review first groupoids, Artin
algebras and DG Lie algebras.

1.1.1 Deligne-Goldman-Millson classical setting
The classical deformation theory is formulated in terms of functors from local Artin

algebras to groupoids or sets.

Groupoids

Definition 1.1. A groupoid is a small category G all of whose morphisms are invertible.
We denote by G0 the set of objects and by G1 the set of morphisms. We denote by π0(G)
the set of isomorphism classes of objects of G and, for an object x, by π1(G, x) for the
group of automorphisms of x.

Example 1.2. If X is a topological space, there is a groupoid π≤1(X) (the fundamental
groupoid) with set of objects X and where the morphisms from x to y are given by
homotopy classes of paths

γ : [0, 1] −→ X

such that
γ(0) = x, γ(1) = y.

In this case
π0(π≤1(X)) = π0(X)
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is the set of path-components of X and

π1(π≤1(X), x) = π1(X, x)

is the fundamental group of X based at x. Whence our notations.
Groupoids form a 2-category Gpd (see [Mac88, § XII.3]) and π0 is a functor

π0 : Gpd −→ Set (1.1)

to the category of sets. Let us give one useful construction of groupoids.

Definition 1.3. If a group G acts on the left on a set X, one gets a groupoid [X/G]
called the action groupoid with set of objects

[X/G]0 := X (1.2)

and morphisms
Hom
[X/G]

(x, y) := {g ∈ G | g.x = y} (1.3)

(in this case [X/G]1 = X ×G). Then π0([X/G]) is the quotient set X/G and π1(X, x) is
the stabilizer of x in G.

Definition 1.4 ([GM88, § 3.7]). If a group G acts on a set X, so that there is an action
groupoid [X/G], and G acts on another set Y , we define a new groupoid

[X/G] ./ Y := [X × Y/G]. (1.4)

Lemma 1.5 ([GM88, 3.8]). Let G be a group that acts on a set X, G′ a group that acts
on a set X ′, and let

ϕ : [X/G] −→ [X ′/G′]
be a morphism of action groupoids (i.e. induced by a morphism of groups ψ : G→ G′ and
a ψ-equivariant map X → X ′). Let Y be another set on which G′ acts. Then G also acts
on Y via ψ and there is an induced morphism of groupoids

ϕ ./ Y : [X/G] ./ψ Y −→ [X ′/G′] ./ Y

(where the subscript ψ indicates that G acts on Y via ψ) which is an equivalence if ϕ is.

Local Artin algebras

From now on we work over a fixed field k of characteristic zero. Our algebras are
always assumed to be associative, unital and commutative.

Definition 1.6. A local Artin algebra over k is an algebra A over k, local with maximal
ideal mA, with residue field A/mA = k, and finite-dimensional over k. These form a
category Artk, where the morphisms are morphisms of algebras over k that are required
to preserve the maximal ideals.

Remark 1.7. The finite-dimensionality is a consequence of the artinian condition on A
stating that every descending sequence of ideals stabilizes, see for example [AM69, § 8]
for more details. It then implies that mA is a nilpotent ideal, so A is local complete.
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Example 1.8. The most basic example is

A := k[ε]
(εn) (1.5)

with maximal ideal mA = (ε) and (mA)n = 0.

Definition 1.9. A pro-Artin algebra over k is a complete local algebra R over k such
that all quotients R/(mR)n are local Artin algebras (so R is a projective limit of local
Artin algebras). These form a category ProArtk where morphisms have to preserve the
maximal ideal.

Definition 1.10. The cotangent space to a pro-Artin algebra R is the vector space

mR/(mR)2 (1.6)

over k.

Example 1.11. The most basic examples are the formal power series algebras

k[[X1, . . . , Xr]]. (1.7)

For r = 1 the quotients by the powers of the maximal ideal are precisely the local Artin
algebras of Example 1.8. The cotangent space is the vector space of dimension r spanned
by X1, . . . , Xr.

The category Artk is a full subcategory of ProArtk, which is itself a full subcategory
of the category of complete local algebras with residue field k. Namely in all these three
categories, morphisms are morphisms of algebras that furthermore preserve the maximal
ideal, thus commute with the augmentation to k obtained by quotienting by the maximal
ideal. The difference between complete local algebras and those which are pro-Artin
(both are always assumed to have residue field k) is simply the finite-dimensionality of
the cotangent space, as expressed by the following lemma.

Lemma 1.12. For a complete local algebra R over k, the following conditions are equiv-
alent:

(1) R is pro-Artin.
(2) R is Noetherian.
(3) R/(mR)n is finite-dimensional for all n ≥ 1.
(4) mR/(mR)2 is finite-dimensional.

Proof. Condition (1) is equivalent to (3) almost by definition, and (3) implies (4). Con-
sider the associated graded ring

G(R) :=
⊕
n≥0

(mR)n
(mR)n+1 . (1.8)

Then G(R) is naturally an algebra over R/(mR) = k generated by its component
(mR)/(mR)2. If R is assumed to be Noetherian, then G(R) is also Noetherian ([AM69,
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10.22]) which implies that G(R) is finitely generated as algebra over k ([AM69, 10.7]).
So all terms are finite-dimensional, and using the exact sequence

0 −→ (mR)n
(mR)n+1 −→

R

(mR)n+1 −→
R

(mR)n −→ 0

ends the proof that the condition (2) also implies (3) and (4). Conversely, if mR/(mR)2

is finite-dimensional then G(R) is finitely generated as algebra over k. This implies that
G(R) is Noetherian and then that R is ([AM69, 10.25]). Finally if we assume (4) then
R/(mR)n is again Noetherian, and of dimension zero, so it is Artinian ([AM69, 8.5]) and
this proves that condition (4) implies all the others. Alternatively, the Cohen structure
theorem states that if R is a complete local algebra over k which is Noetherian then R
is a quotient of some formal power series algebra k[[X1, . . . , Xr]], from which we see that
R is pro-Artin with our definition.

DG Lie algebras

We start using DG vector spaces and related kinds of DG algebras. A DG vector
space over k is a vector space V over k with a direct sum decomposition

V =
⊕
n∈Z

V n

and a differential
dnV : V n −→ V n+1

satisfying dn+1
V ◦ dnV = 0. The tensor product of two DG vector spaces V,W is the vector

space V ⊗W with the grading

(V ⊗W )n :=
⊕
i+j=n

V i ⊗W j (1.9)

and the differential

dnV⊗W :=
∑
i+j=n

diV ⊗ idW + (−1)i idV ⊗ djW . (1.10)

The degree of a homogeneous element x is denoted by |x|. There is a canonical isomor-
phism

σV,W : V ⊗W '−→ W ⊗ V
x⊗ y 7−→ (−1)|x|·|y| y ⊗ x. (1.11)

By forgetting the differential, we get the category of graded vector spaces G−Vectk. The
above isomorphism (1.11) plays a crucial role when dealing with graded vector spaces.

Definition 1.13. A DG Lie algebra over k is the data of a DG vector space L together
with a morphism called Lie bracket

[−,−] : L⊗ L −→ L, (1.12)

given by a collection of morphisms

[−,−] : Li ⊗ Lj −→ Li+j, (1.13)
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satisfying the anti-symmetry

[x, y] + (−1)|x|·|y| [y, x] = 0 (1.14)

and the Jacobi identity

(−1)|x|·|z| [x, [y, z]] + (−1)|x|·|y| [y, [z, x]] + (−1)|y|·|z| [z, [x, y]] = 0. (1.15)

The fact that the bracket is a morphism of DG vector spaces automatically implies that
d is a derivation, meaning that

d([x, y]) = [d(x), y] + (−1)|x| [x, d(y)]. (1.16)

This last one is also called Leibniz’ rule. A morphism between DG Lie algebras

f : (L, [−,−]L) −→ (M, [−,−]M)

is given by a morphism f : L→M of DG vector spaces such that

f([x, y]L) = [f(x), f(y)]M . (1.17)

DG Lie algebras over k form a category DG−Liek.

The category of Lie algebras over k in the usual sense, Liek, is a full subcategory of
DG−Liek corresponding to DG Lie algebras concentrated in degree zero.

Definition 1.14. If L is a DG Lie algebra, the set of Maurer-Cartan elements is

MC(L) :=
{
x ∈ L1

∣∣∣∣ d(x) + 1
2 [x, x] = 0

}
. (1.18)

From it we construct the deformation functor associated to a DG Lie algebra L over
k. Let A be a local Artin algebra. Then L⊗mA is a nilpotent DG Lie algebra with the
bracket

[u⊗ a, v ⊗ b] := [u, v]⊗ ab, u, v ∈ L, a, b ∈ mA (1.19)
and the differential

d(u⊗ a) := d(u)⊗ a. (1.20)
Namely the nilpotency means that there is an order r such that all iterated brackets

[x1, [x2, [. . . , [xr−1, xr] . . . ]]]

of elements x1, . . . , xr ∈ L⊗mA vanish; since xi ∈ L⊗mA then the above iterated bracket
is an element in L⊗ (mA)r and vanishes for r such that (mA)r = 0.

Definition 1.15. On L0⊗mA, which is a nilpotent Lie algebra, it is possible to define a
group structure denoted by ∗ using the Baker-Campbell-Hausdorff formula (see [Man04,
§ V.2] for all the details) and we denote this group by

exp(L0 ⊗mA) (1.21)

whose elements are simply denoted by eα, α ∈ L0 ⊗mA.
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The Baker-Campbell-Hausdorff formula starts with

eα ∗ eβ := eα+β+ 1
2 [α,β]+···

so that if [α, β] = 0 then eα ∗ eβ = eβ ∗ eα, and e−α = (eα)−1. Denote by ad(α) the usual
endomorphism of L defined by

ad(α)(x) := [α, x]. (1.22)

Definition 1.16. The gauge action of exp(L0⊗mA) on MC(L⊗mA) is the group action
given by the formula

eα.x := x+ ead(α) − id
ad(α) ([α, x]− d(α)) = x+

+∞∑
i=0

ad(α)i
(i+ 1)! ([α, x]− d(α)) (1.23)

where the right-hand side is obtained by a power series expansion and the sum is finite
because ad(α) is nilpotent.

The infinitesimal generator for this action is

α.x := [α, x]− d(α).

This is a formal version of the infinitesimal action of the gauge group on the space of flat
connections on a principal bundle, namely the formula (1.23) can also be written as

eα.x := eαxe−α − d(eα)e−α

for the appropriate way of expanding into power series. We see that for this construction
it is really important for k to have characteristic zero.

Definition 1.17. Let L be a DG Lie algebra and let A be a local Artin algebra over
k. Define the Deligne-Goldman-Millson groupoid Def(L,A) to be the action groupoid
(Definition 1.3)

Def(L,A) :=
[

MC(L⊗mA)
exp(L0 ⊗mA)

]
(1.24)

and the associated deformation functor (in the sense of [Man99, § 2])

DefL : Artk −→ Set
A 7−→ π0(Def(L,A)) = MC(L⊗mA)

exp(L0⊗mA) .
(1.25)

This is our first example of a deformation functor. We will not need to give a precise
definition of a deformation functor but at the very least a classical deformation functor
should be a functor from Artk to Set, with axioms expressing some compatibility with
the fiber product of local Artin algebras and the surjective morphisms. This can be
extended in several ways, to DG Artin algebras on one side, to groupoids or simplicial
sets on the other side.

Definition 1.18. If a functor F : Artk → Set is isomorphic to DefL for some DG Lie
algebra L, we say that L controls the deformation problem F .
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The fundamental theorem in the classical deformation theory is:

Theorem 1.19 ([GM88, 2.4]). Let ϕ : L ≈−→M be a quasi-isomorphism between DG Lie
algebras over k (i.e. ϕ induces an isomorphism on cohomology). Then there is an induced
equivalence of groupoids

Def(L,A) ≈−→ Def(M,A), A ∈ Artk

inducing an isomorphism of deformation functors

DefL '−→ DefM .

Remark 1.20. The above theorem is stated with a priori non-bounded-below DG Lie
algebras. However in our concrete situations these are non-negatively graded. It is
then enough for ϕ to be a 1-quasi-isomorphism (i.e. ϕ induces an isomorphism on H0,
H1, and is injective on H2). This shows that the deformation theory of L is essentially
controlled by H1(L) and H2(L). However all our arguments will apply without discussing
restrictions on the grading of L.

To deal properly will the Goldman-Millson theory, Eyssidieux and Simpson introduce
the following construction.

Definition 1.21 ([ES11, § 2.1.1]). Given a DG Lie algebra L, an augmentation

ε : L −→ g (1.26)

to a Lie algebra g and a local Artin algebra A, define the augmented Deligne-Goldman-
Millson groupoid Def(L, ε, A) with set of objects

Def(L, ε, A)0 :=
{

(x, eα) ∈ (L1 ⊗mA)× exp(g⊗mA)
∣∣∣∣ d(x) + 1

2 [x, x] = 0
}

(1.27)

and morphisms given by

Hom((x, eα), (y, eβ)) :=
{
λ ∈ L0 ⊗mA

∣∣∣ eλ.x = y, eβ = eα ∗ e−ε(λ)
}
. (1.28)

We denote by DefL,ε the associated deformation functor

DefL,ε : Artk −→ Set
A 7−→ π0(Def(L, ε, A)). (1.29)

Remark 1.22. Using the operation ./ (Definition 1.4) one sees that

Def(L, ε, A) = Def(L,A) ./ exp(g⊗mA)

where the group exp(L0 ⊗mA) acts on exp(g⊗mA) via

eλ.eα := eα ∗ e−ε(λ), eλ ∈ exp(L0 ⊗mA), eα ∈ exp(g⊗mA).

Since in the group exp(g⊗mA) the element e−ε(λ) is the inverse of eε(λ), this is well-defined
as a left action. This is not exactly the same action as in [ES11], but we make this choice
so as to be compatible with the construction developed in section 1.2.2.
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The fundamental theorem has a small variation for the augmented deformation func-
tor.
Lemma 1.23. Let ϕ : L ≈−→ L′ be a quasi-isomorphism of augmented DG Lie algebras
commuting with the augmentations as in the diagram

L

ε
��

ϕ
≈ // L′

ε′
~~

g.

Then ϕ induces and equivalence of groupoids
Def(L, ε, A) ≈−→ Def(L′, ε′, A), A ∈ Artk.

Proof. Writing it with the operation ./ as in Remark 1.22, this is an immediate combi-
nation of the fundamental Theorem 1.19 with the Lemma 1.5.

Pro-representability

Definition 1.24. A functor F : Artk → Set is said to be pro-representable if there is a
pro-Artin algebra R such that F is isomorphic to

A ∈ Artk 7−→ Hom
ProArt

(R,A). (1.30)

We also say that R controls the deformation problem F (indeed such a pro-representable
functor is always a deformation functor).
Theorem 1.25 (Pro-Yoneda Lemma, see [Sch68, § 2], [GM88, 3.1]). If F : Artk → Set
is pro-represented by R, then R is unique up to a unique isomorphism. More precisely, a
morphism of functors on Artk

ϕ : Hom
ProArt

(R,−) −→ F

is determined uniquely by the family of objects
ϕ
(
R� R/(mR)n

)
∈ F

(
R/(mR)n

)
.

It is an isomorphism if and only if there exists a compatible family(
ξn ∈ F (R/(mR)n)

)
n≥0

,

where compatible means that
F
(
R/(mR)p � R/(mR)n

)
(ξp) = ξn, p ≥ n

such that any other compatible family (xn) is obtained via a unique map
f : (ξn) −→ (xn)

as (xn) = F (f)(ξn).
In others words, an algebra that pro-represents a functor is unique up to a unique

isomorphism and one can describe explicitly how, exactly as in the classical Yoneda
lemma, the difference being that A lives in a smaller category than R. But since R is
a projective limit of objects of the category where A lives, the proof is essentially the
same as for the classical Yoneda lemma combined with an induction over the tower of
R/(mR)n.
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1.1.2 Goldman-Millson theory of deformations of representa-
tions of the fundamental group

Let G be a linear algebraic group over k = Q, R or C. We think of G as a representable
functor

G : Algk −→ Grp (1.31)
from the category of algebras over k to the category of groups. We are interested in
studying a group Γ by looking at its representations into G(k), and actually into all
G(A) for varying algebras A over k.

Variety of representations

Theorem 1.26 ([LM85]). For any finitely generated group Γ the functor

Hom(Γ, G) : Algk −→ Set
A 7−→ HomGrp(Γ, G(A)) (1.32)

is represented by an affine scheme of finite type over k. We denote it again by Hom(Γ, G)
(we think of it as a scheme structure on Hom(Γ, G(k))). It is called the representation
variety of Γ into G.

Example 1.27. If Γ is a free group on r generators, then by its universal property

Hom(Γ, G(A)) ' G(A)r

(a map from Γ to G(A) is given by the image of each generator, without relations) so as
schemes

Hom(Γ, G) ' Gr.

More generally, the choice of a presentation of Γ on r generators embeds naturally
Hom(Γ, G) as a closed subscheme of Gr, the relations in Γ being translated into alge-
braic equations in Gr.

Any representation ρ : Γ → G(k) can thus be seen as a point of Hom(Γ, G) over k.
We denote by Ôρ the complete local ring of Hom(Γ, G) at ρ. It is a pro-Artin algebra
whose corresponding pro-representable functor on local Artin algebras over k

Hom(Ôρ,−) : Artk −→ Set
A 7−→ HomProArt(Ôρ, A) (1.33)

is canonically isomorphic to the functor of formal deformations of ρ

Def0(ρ,−) : A 7−→
{
ρ̃ : Γ→ G(A)

∣∣∣ ρ̃ = ρ mod mA

}
. (1.34)

By the pro-Yoneda Lemma 1.25, this is equivalent to saying that there is a universal (or
tautological) representation

ρu : Γ −→ G(Ôρ), (1.35)
equivalently a compatible family of representations

ρun : Γ −→ G(Ôρ/mn), (1.36)
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such that any deformation ρ̃ of ρ over A ∈ Artk is obtained from ρu by a unique map
f : Ôρ → A as

ρ̃ : Γ ρu

−→ G(Ôρ)
f−→ G(A).

Define G0 to be the functor

G0 : Artk −→ Grp
A −→

{
g ∈ G(A)

∣∣∣ g = 1G(k) mod mA

} (1.37)

then G0(A) acts on Def0(ρ,A) by conjugation because if ρ̃ = ρ and g = 1 modulo mA

then
g · ρ̃ · g−1 = ρ mod mA.

This action is functorial in A. If g is the Lie algebra of G then G0(A) has g⊗mA as Lie
algebra and actually one can construct it as

G0(A) = exp(g⊗mA). (1.38)

Definition 1.28. Let A be a local Artin algebra. Define the groupoid of deformations
of ρ over A to be

Def(ρ,A) :=
[
{ρ̃ : Γ→ G(A) | ρ̃ = ρ mod mA}

G0(A)

]
(1.39)

with associated deformation functor

Defρ : Artk −→ Set
A 7−→ π0(Def(ρ,A)) = Def0(ρ,A)

G0(A) .
(1.40)

Goldman-Millson construction

Let now X be a manifold whose fundamental group is finitely presentable. This
hypothesis encompasses both the compact Kähler manifolds and the smooth algebraic
varieties over C. Let x be a base point of X. We are interested in the deformation theory
of representations of π1(X, x). We assume that we work with a fix field either R or C
and we write G for G(k) which is either a real or complex Lie group. Let

ρ : π1(X, x)→ G(k) (1.41)

be a representation. Let g be the Lie algebra of G. Let P → X be the flat principal
G-bundle given by the holonomy of ρ. Recall that concretely P can be constructed as

P := X̃ ×π1(X,x) G (1.42)

where X̃ is the universal cover of X, seen as a principal π1(X, x)-bundle, and π1(X, x)
acts on X̃ on the right and on G by left multiplication via ρ. Let

Ad(P ) := P ×G g = X̃ ×π1(X,x) g (1.43)

be the adjoint bundle (G acts on g via Ad, and so π1(X, x) acts via Ad ◦ρ). Let

L := E •(X,Ad(P )) (1.44)
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be the DG Lie algebra of C∞ differential forms with values in the local system of Lie
algebras Ad(P ). Locally, an element of L is given by a sum ∑

αi ⊗ ui where αi is a
differential form and ui is an element of g. The differential is given by

d(α⊗ u) := d(α)⊗ u (1.45)

(this is because P is a flat bundle) and the Lie bracket is given by

[α⊗ u, β ⊗ v] := (α ∧ β)⊗ [u, v]. (1.46)

As we constructed it, there is a canonical identification of fibers Ad(P )x ' g.
One part of the main theorem of Goldman and Millson can be stated as follows.

Theorem 1.29 ([GM88]). There is a canonical equivalence of functors from local Artin
algebras to groupoids

Def(L,−) ≈−→ Def(ρ,−) (1.47)

given by holonomy.

Sketch of proof. Roughly, a representation ρ of π1(X, x) into G modulo conjugation is
interpreted as a flat principal G-bundle P modulo gauge transformations via the usual
holonomy construction. Recall that connections on P form an affine space over E 1(X,
Ad(P )), and that a flat connection on P defines a differential on L = E •(X,Ad(P )) giving
it the structure of a DG Lie algebra. Then flat connections correspond to solutions of
the Maurer-Cartan equation in L and L0 is the Lie algebra of the gauge group; the
exponential action of L0 is the infinitesimal action of the gauge group. In their article,
Goldman and Millson interpret deformations of ρ into G(A) (which is again a Lie group
over k) as flat A-linear connections on the principal G(A)-bundle P ×G(k) G(A) which
in some sense restrict to the given flat connection on P , and again the conjugation of
deformed representations corresponds to the gauge equivalence of deformed connections.
This gives the equivalence (1.47). Of course it induces an isomorphism between the
deformation functors DefL and Defρ, which are the sets of isomorphism classes of these
groupoids.

However, we are really interested in the functor Def0(ρ,−) (1.34) (which is the set
of objects of the groupoid Def(ρ,−)) on the right side because it is isomorphic to the
pro-representable functor associated with Ôρ (1.33) so it allows us to access, via the pro-
Yoneda Lemma 1.25, to Ôρ itself. This works by replacing the deformation functor of L
by its augmented version, which is some sort of gauge fixing procedure.

For this, let
εx : L = E •(X,Ad(P )) −→ Ad(P )x ' g (1.48)

be the augmentation of L given by evaluating 0-forms at x and higher-degree forms to
zero.

Theorem 1.30 ([GM88]). The equivalence (1.47) induces an isomorphism of functors
from local Artin algebras to sets

DefL,εx

'−→ Def0(ρ,−). (1.49)
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Proof. Given A ∈ Artk, start from the equivalence

Def(L,A) ≈−→ Def(ρ,A) (1.50)

where Def(L,A) is an action groupoid for exp(L0⊗mA), Def(ρ,A) is an action groupoid
for G0(A) = exp(g⊗mA) (see (1.38)), and the morphism

exp(L0 ⊗mA) −→ exp(g⊗mA)

is induced by εx. Then exp(g⊗mA) acts on itself on the left via

eα.eβ := eβ ∗ e−α

(in the exponential group, e−α is the inverse for eα) such that the pull-back of this action
via εx to an action of exp(L0 ⊗mA) on exp(g⊗mA) is precisely the action appearing in
Remark 1.22. One then applies the operation ./ G0(A) (Definition 1.4) to both sides of
the equivalence (1.50) to get by Lemma 1.5 an equivalence

Def(L, εx, A) ≈−→ Def(ρ,A) ./ G0(A). (1.51)

Now check carefully that there is an equivalence of groupoids

Def0(ρ,A) ≈−→ Def(ρ,A) ./ G0(A) (1.52)

where the left-hand side is a set considered as a discrete groupoid (i.e. with only identity
morphisms), sending ρ̃ to (ρ̃, 1G0(A)). Then apply π0 to both sides of 1.51 gives the desired
isomorphism.

Remark 1.31. The whole construction we described is compatible with the change of
coefficients from R to C. If G is defined over R and

ρ : π1(X, x) −→ G(R)

is a real representation, giving us a real DG Lie algebra L, then one can also consider
ρ as a representation into G(C) which has as Lie algebra g ⊗ C. It gives us a complex
principal bundle PC and a complex DG Lie algebra LC which is simply L ⊗ C. On one
side the associated deformation functors are defined on local Artin algebras over R and
allow us to access to Ôρ, and on the other side there are deformation functors on local
Artin algebras over C that allow us to access to Ôρ ⊗ C.

Now we see how to use this theorem to get information and structure on Ôρ. It
amounts to a careful study of L and its augmentation, or by Lemma 1.23 to a DG Lie al-
gebraM which is quasi-isomorphic to L and thus controls the same deformation problem,
and to a study of how the deformation functor of M is pro-represented. Furthermore,
one can try to do Hodge theory by comparing controlling algebras over R and over C,
leading to the Hodge theory of Ôρ.
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1.2 Derived deformation theory
We start introducing much more powerful tools for working with deformation the-

ory. We saw in the preceding section that we have to work with a deformation functor
associated to an augmented DG Lie algebra

ε : L −→ g.

We are going to show that the functor Def(L, ε,−) of Definition 1.21 is in fact the
deformation functor associated with an L∞ algebra, following the article of Fiorenza-
Manetti [FM07].

This L∞ algebra is an algebraic structure on the mapping cone of ε. By the way,
L∞ algebras naturally have a deformation functor which extends the deformation functor
for DG Lie algebras and this has been intensively studied in the literature since the
first examples of deformation problems controlled by DG Lie algebras appeared. From
this literature, we extract a functorial construction of an algebra that pro-represents the
augmented deformation functor and is invariant under quasi-isomorphisms. This is a very
strong result that improves much the classical theory and is an important step to re-write
it.

The main result of this section is the very simple Lemma 1.55 that claims that the
augmented deformation functor defined by Eyssidieux-Simpson was also worked out inde-
pendently by Manetti and put in his very general framework of L∞ algebras and extended
deformation functors. This simple and crucial observation is the main motivation for re-
writing the classical theory with L∞ algebras. Also this L∞ algebra structure is very
explicit and thus will have good compatibility with Hodge theory.

In this whole section k is a fix field of characteristic zero and we work with various
kind of algebras and coalgebras over k.

1.2.1 L∞ algebras
First we need to recall more about graded vector spaces and algebras. L∞ algebras are

better described in terms of codifferentials on conilpotent graded coalgebras. For these
two parts, we refer to the lecture notes of Manetti [Man04, § VIII–IX] and the book of
Loday-Valette [LV12] that are very well written and contain all the technical details.

Coalgebras

Definition 1.32. A DG coalgebra over k is the data of a DG vector space X together
with a morphism called comultiplication

∆ : X −→ X ⊗X. (1.53)

The fact that ∆ is a morphism of DG vector spaces, together with the construction of the
differential on the tensor product (1.10), implies that d is a coderivation meaning that

∆ ◦ d = (d⊗ id + id⊗ d) ◦∆. (1.54)

Since d is of degree 1, if one writes ∆(x) = ∑
ui ⊗ vi for x ∈ X this last equation has to

be written
∆(d(x)) =

∑(
d(ui)⊗ vi + (−1)|ui| ui ⊗ d(vi)

)
. (1.55)
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The coalgebra is said to be coassociative if the bracket satisfies

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ : X −→ X⊗3. (1.56)

A counit is a morphism
ε : X −→ k (1.57)

such that
(id⊗ ε) ◦∆ = (ε⊗ id) ◦∆ = id : X −→ X, (1.58)

in particular it is identified with a morphism of DG coalgebras for the trivial comultipli-
cation on k given by

∆(x) = x⊗ 1 = 1⊗ x (1.59)
and ε commutes with d. The coalgebra X is said to be counital if it is equipped with a
counit. It is cocommutative if the bracket satisfies

σX,X ◦∆ = ∆ (1.60)

where σ is the interchange map (1.11). A morphism of DG coalgebras

f : (X,∆X) −→ (Y,∆Y )

is given by a morphism f : X → Y of DG vector spaces such that

(f ⊗ f) ◦∆X = ∆Y ◦ f. (1.61)

IfX, Y are equipped with counits then we also require f to commute with the counits. Our
coalgebras are always assumed to be coassociative and cocommutative (but not counital)
and these form a category DG−CoAlgk. Forgetting the differential, one gets the full
subcategory of graded coalgebras denoted by G−CoAlgk and forgetting the grading one
gets the full subcategory of coalgebras CoAlgk.

For the moment we work only with graded coalgebras and we will put a differential
later on them.

Definition 1.33. A graded coalgebra X has a canonical filtration over N by sub-graded
coalgebras given by

Xn := Ker
(
∆n : X → X⊗(n+1)

)
(1.62)

where ∆n is the iterated comultiplication defined inductively by

∆n :=
(
id⊗i ⊗∆⊗ id⊗(n−i−1)

)
◦∆n−1 : X −→ X⊗(n+1) (1.63)

independently of i by coassociativity (see [Man04, VIII.10]). The graded coalgebra X is
said to be conilpotent (terminology of [LV12, 1.2.4]) if its canonical filtration is exhaustive,
i.e.

X =
⋃
n≥0

Xn. (1.64)

This condition is also called connected in [Qui69, B.3] and locally nilpotent in [Man04,
VIII.13] (where nilpotent means that the canonical filtration is finite). Up to adding a
counit, this is the same condition as the unital coalgebras in [Hin01, 2.1.1].
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Remark 1.34. We see that this definition doesn’t make sense if X has a counit: by the
axiom (1.58) if ∆(x) = 0 then

(ε⊗ id)(∆(x)) = x = 0.

Our notions for coalgebras are much easier stated when we work without counits. Anyway
one can always add a counit as does Hinich [Hin01, § 2.1], see also [LV12, § 1.2.1]. Let
us describe this procedure: if X is a graded coalgebra with a counit ε, a unit for X is an
element u ∈ X of degree zero such that ∆(u) = u⊗ u and ε(u) = 1. Equivalently, it is
a morphism of graded coalgebras k→ X for the trivial coalgebra structure on k (1.59).
Then there is a canonical decomposition

X = k.u⊕X, X := Ker(ε)

where X is the reduced coalgebra equipped with the reduced coproduct

∆ := ∆− id⊗ u− u⊗ id.

Then X has no unit nor counit. And by the same formulas one can add u to X to
recover X. As is expressed in the next lemma, this is dual to working with augmented
algebras or only with their maximal ideal: to an algebra m without unit, one can consider
A := k⊕m as an algebra with unit 1 ∈ k (which determines in an obvious way how to
extend the multiplication to A) and augmentation the projection to k. Then m is the
corresponding maximal ideal of A. Since we are more used to work with algebras rather
than coalgebras, we choose to work with coalgebras without units but add them to their
dual algebras.

Lemma 1.35. The linear dual

X∗ := Hom
Vect

(X,k) (1.65)

of a conilpotent coalgebra X is the maximal ideal of a complete local algebra.

Proof. First X∗ has a multiplication. Namely the comultiplication

∆ : X −→ X ⊗X

dualizes to a linear map
∆∗ : (X ⊗X)∗ −→ X∗

that one can pre-compose by the canonical map

X∗ ⊗X∗ −→ (X ⊗X)∗
ϕ⊗ ψ 7−→

(
(x, y) 7→ ϕ(x)ψ(y)

) (1.66)

to get a multiplication µ in m := X∗. See [Swe69, § 1.1–1.3]. The axioms of coasso-
ciativity and cocommutativity for (X,∆) tell us respectively that (m, µ) is associative
and commutative. Consider A := k⊕m, with the multiplication induced by µ such that
1 ∈ k is a unit for A. Then m is a maximal ideal of A. The dual of the conilpotency con-
dition tells us precisely that A is complete with respect to m. And then A is necessarily
local.
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But for the moment our interest in conilpotent coalgebras lies also in the fact that
there is an explicit description of the cofree objects. For this we need to describe the
symmetric algebra in the differential graded setting.

Definition 1.36 ([Man04, § VIII.1]). Let S(r) be the symmetric group on r elements.
Given a DG vector space V , homogeneous elements v1, . . . , vr, and a permutation τ ∈
S(r), the Koszul sign

ε(τ ; v1, . . . , vr) (1.67)
is defined to be the sign such that the canonical isomorphism

V1 ⊗ · · · ⊗ Vr
'−→ Vτ(1) ⊗ · · · ⊗ Vτ(r)

(where V1, . . . , Vr are r copies of V ), given by using the isomorphisms (1.11) in any order,
is given by

v1 ⊗ · · · ⊗ vr 7−→ ε(τ ; v1, . . . , vr) vτ(1) ⊗ · · · ⊗ vτ(r). (1.68)
Thus by definition the sign of the transposition of v1 and v2 is

ε(τ ; v1, v2) = (−1)|v1|·|v2|.

We also denote by ε(τ) the signature of τ . By definition if τ is the transposition of v1
and v2 then ε(τ) = −1.

Definition 1.37 ([Man04, VIII.2]). Inside S(r), the set of unshuffles of type (p, q) (for
p+ q = r), denoted by S(p, q), is the set of permutations whose restrictions to

{1, . . . , p}, {p+ 1, . . . , p+ q}

are increasing.

Definition 1.38. Let V be a DG vector space. Denote by V ⊗r its r-th tensor power

V ⊗r := V ⊗ · · · ⊗ V (r ≥ 0). (1.69)

For v ∈ V the element v ⊗ · · · ⊗ v ∈ V ⊗r is denoted by v⊗r. By definition the r-th
symmetric power of V is the quotient of V ⊗r by the ideal generated by elements

v1 ⊗ · · · ⊗ vn − ε(τ ; v1, . . . , vn) vτ(1) ⊗ · · · ⊗ vτ(r), τ ∈ S(r). (1.70)

We denote it by V �r. The symmetric algebra on V is

Sym(V ) :=
⊕
r≥0

V �r (1.71)

and the reduced symmetric algebra is

Sym+(V ) :=
⊕
r≥1

V �r (1.72)

Similarly, the r-th exterior power of V is the quotient of V ⊗r by the ideal generated by
elements

v1 ⊗ · · · ⊗ vn − ε(τ) ε(τ ; v1, . . . , vn) vτ(1) ⊗ · · · ⊗ vτ(r), τ ∈ S(r). (1.73)
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We denote it by V ∧r, and the exterior algebra is

Λ(V ) :=
⊕
r≥0

V ∧r. (1.74)

There is also a reduced exterior algebra Λ+(V ).
For the moment we only need this for graded vector spaces, forgetting the differential.

Definition 1.39. Let V be a graded vector space over k. The cofree conilpotent graded
coalgebra on V is the graded vector space Sym+(V ) turned into a graded coalgebra with
the comultiplication (see [LV12, 1.2.9] and [Man04, VIII.24])

∆(v1 � · · · � vr) :=
r∑
p=0

∑
τ∈S(p,r−p)

ε(τ ; v1, . . . , vr) (vτ(1) � · · · � vτ(p))⊗ (vτ(p+1) � · · · � vτ(r)). (1.75)

This defines a functor

F c
G-CoAlg : G−Vectk −→ G−CoAlgk (1.76)

having the adjunction property

Hom
G−CoAlg

(
X,F c

G-CoAlg(V )
)

= Hom
G−Vect

(X, V ) (1.77)

if X is conilpotent. This last one is the definition of being cofree, which is being a right
adjoint to the forgetful functor from graded coalgebras to DG vector spaces, whereas a
free object corresponds to a left adjoint.

The canonical filtration is simply given by

F c
G-CoAlg(V )n :=

n⊕
r=1

V �r (1.78)

which is clearly respected by the comultiplication.
Remark 1.40. Here it is really important that the object we construct is cofree in the
category of conilpotent DG coalgebras. The general cofree coalgebra exists but is much
harder to describe, see [Swe69, 6.4.1].
Lemma 1.41 ([LV12, 1.2.2]). A coderivation Q on the cofree conilpotent graded coalgebra
on V is uniquely determined by its composition with the projection Sym+(V )→ V , that
is, by a sequence of linear maps of degree 1

qr : V �r −→ V (r ≥ 1). (1.79)

One recovers Q by the formula (see [Man04, VIII.34])

Q(v1 � · · · � vr) =
r∑
p=1

∑
τ∈S(p,r−p)

ε(τ, v1, . . . , vr) qp(vτ(1) � · · · � vτ(p))� vτ(p+1) � · · · � vτ(r). (1.80)

Remark that if V had a differential d, the coderivation Q induced by d only is the
same as the differential of Sym+(V ) induced by the symmetric product of DG vector
spaces.
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L∞ algebras

We are going to apply the preceding formulas, combined with shifts of DG vector
spaces.

Definition 1.42. Let V be a DG vector space over k. Define the r-shift of V to be the
DG vector space V [r] with components

V [r]n := V n+r (1.81)

and differential
dV [r] := (−1)r dV . (1.82)

For r = 1 this is called the suspension of V and for r = −1 the desuspension.

Summing up everything, the definition of L∞ algebra can be given in a very short
way.

Definition 1.43. Let L be a graded vector space over k. A L∞ algebra structure on L is
the data of a codifferential Q on the cofree conilpotent graded coalgebra F c

G-CoAlg(L[1]).

Let us be more explicit. By Lemma 1.41, the codifferential Q is defined uniquely by
a family of linear maps of degree 1

qr : (L[1])�r −→ L[1], r ≥ 1 (1.83)

with all axioms encoded in the condition Q ◦Q = 0. If v ∈ L is of degree n we denote by
v[1] the same element viewed of degree n− 1 in L[1] (since L[1]n−1 = Ln). If k[1] is the
DG vector space with k in degree −1, with its canonical element 1[1], there is a canonical
isomorphism

L⊗ k[1] ∼−→ L[1]
v ⊗ (1[1]) 7−→ (−1)|v| v[1] (1.84)

inducing canonical isomorphisms (see [Man04, § IX.1])

(L⊗ k[1])⊗r ' (L[1])⊗r '−→ L⊗r[r] (1.85)

given by
v1[1]⊗ · · · ⊗ vr[1] 7−→ (−1)

∑r

j=1(r−j)·|vj | (v1 ⊗ · · · ⊗ vr)[r] (1.86)

and in particular isomorphisms for maps

[1] : Hom2−r(L⊗r, L) '−→ Hom1((L[1])⊗r, L[1]) (1.87)

given by

f [1](v1[1]⊗ · · · ⊗ vr[1]) = (−1)r+
∑r

j=1(r−j)·|vj | f(v1 ⊗ · · · ⊗ vr)[1]. (1.88)

This last isomorphism exchanges symmetric and exterior products, inducing

[1] : Hom2−r(L∧r, L) '−→ Hom1((L[1])�r, L[1]). (1.89)

38



Thus, the operations qr can be seen (via desuspension) as anti-symmetric linear maps
of degree 2− r

`r : L∧r −→ L, r ≥ 1 (1.90)
but in this forms the axioms of L∞ algebras are not so easy to write down and involve
some combinatorics (see[Man99, § IX.2]). In degree 1, the relation between q1 and `1 is
simply

q1(v[1]) := −`1(v)[1] (1.91)
and the axiom Q ◦Q = 0 translates into

`1 ◦ `1 = 0 (1.92)

so that (L, `1) can be considered as a DG vector space; we also denote `1 by d. In degree
2, the relation between q2 and `2 is

q2(u[1]� v[1]) := (−1)|u| `2(u ∧ v)[1] (1.93)

and the condition Q ◦Q = 0 becomes

`1(`2(u ∧ v))− `2(`1(u) ∧ v)− (−1)|u| `2(u ∧ `1(v)) = 0 (1.94)

which means that `1 is a derivation for `2. In degree 3 one gets

(−1)|u|·|w| `2(`2(u ∧ v) ∧ w) + (−1)|v|·|w| `2(`2(w ∧ u) ∧ v) + (−1)|u|·|v| `2(`2(v ∧ w) ∧ u)
= (−1)|u|·|w|+1

(
`1 ◦ `3(u ∧ v ∧ w) + `3(`1(u) ∧ v ∧ w)

+ (−1)|u| `3(u ∧ `1(v) ∧ w) + (−1)|u|+|v| `3(u ∧ v ∧ `1(w))
)

(1.95)

and this is the Jacobi identity up to homotopy. If `3 = 0 then `2 is a Lie bracket and we
denote it also by [−,−].

From these conditions, one sees that any DG Lie algebra can be seen as a L∞ algebra
with `1 being the differential and `2 the Lie bracket, and with `r = 0 for r ≥ 3. Conversely,
L∞ algebras with `r = 0 for r ≥ 3 are exactly DG Lie algebras. However L∞ algebras
contain the same information as DG Lie algebras at the level of cohomology.

Proposition 1.44. The cohomology of a L∞ algebra L is a graded Lie algebra.

Proof. On H(L), d = `1 is zero and in (1.95) the defect of `2 to satisfy the Jacobi identity
involves coboundaries and becomes zero in cohomology. Then one forgets the higher
operations and (H(L), [−,−] = `2) is a graded Lie algebra.

Now let us introduce the morphisms.

Definition 1.45. If L,M are L∞ algebras, a (strong) morphism from L to M is a
morphism of graded vector spaces L→M commuting with all the operations `r (r ≥ 1).
It is called a quasi-isomorphism if it induces a quasi-isomorphism

(L, `1) ≈−→ (M, `1). (1.96)

We denote by L∞,k the category of L∞ algebras over k with these morphisms.
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Definition 1.46. If a graded vector space L is equipped with a L∞ algebra structure
(given as either the maps `r or qr) we denote by C (L) the graded coalgebra F c

G-CoAlg(L[1])
equipped with the codifferential Q. The assignment L 7→ C (L) is a functor

C : L∞,k −→ DG−CoAlgk (1.97)

that is also called the bar construction. The canonical filtration of the conilpotent coal-
gebra C (L) is given here by

Cs(L) :=
s⊕
r=1

(L[1])�r (1.98)

and is a filtration by sub-DG coalgebras called the bar filtration.

Remark 1.47. If L is a DG Lie algebra this functor C is the functor considered already
by Quillen [Qui69, § B], see also [Hin01, § 2.2].

The fact that the bar filtration is a filtration by sub-DG coalgebras appears clearly
from the formulas for the coproduct on a cofree coalgebra (1.75) and for the extension of
a codifferential to the whole cofree coalgebra (1.80).
Remark 1.48. The notion of morphism we introduced is called strong morphism. It is
quite clear that such a morphism f induces a morphism of DG coalgebras

C (f) : C (L) −→ C (M)

and it is the strongest notion of morphism one can imagine. A weak morphism or L∞-
morphism (Definition 1.66) from L to M is simply a morphism of DG coalgebras from
C (L) to C (M). We will see in the next section that a quasi-isomorphism of L∞ alge-
bras induces via C a quasi-isomorphism of DG coalgebras, so that this notion of quasi-
isomorphism is also the strongest one.

The following theorem is one of the main theorems of deformation theory with L∞
algebras (compare to the fundamental Theorem 1.19). We will develop it much in sec-
tion 1.2.3.

Theorem 1.49 (See sect. 1.2.3). To any L∞ algebra L over k is associated a deformation
functor

DefL : Artk −→ Set (1.99)
which restricts for DG Lie algebras to the usual Deligne-Goldman-Millson deformation
functor. A quasi-isomorphism of L∞ algebras induces an isomorphism between their
associated deformation functors.

Let us just say for the moment that this deformation functor is a quotient of the
Maurer-Cartan functor, where the Maurer-Cartan equation for x ∈ L1 ⊗mA (A ∈ Artk)
is

0 =
∞∑
r=1

`r(x∧r)
r! .

This is well-defined since `r(x∧r) = 0 for r such that (mA)r = 0. One sees that if L is a
DG Lie algebra then

`1(x) = d(x), `2(x ∧ x) = [x, x], `r≥3 = 0

so that one recovers the usual Maurer-Cartan equation.
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1.2.2 L∞ algebra structure on the mapping cone
Now we use the preceding theory. We will see that L∞ algebras arise naturally when

dealing with augmented DG Lie algebras via their mapping cone. Then we show how one
can re-write the theory of Goldman and Millson with L∞ algebras.

Naive bracket on the mapping cone

Definition 1.50. Let f : V → W be a morphism between DG vector spaces. One con-
structs the mapping cone of f which is the DG vector space Cone(f) with

Cone(f)n := V n+1 ⊕W n (1.100)

and differential
dnCone(f)(x, y) :=

(
− dn+1

V (x), dnW (y)− f(x)
)
. (1.101)

It is sometimes more natural to work with the desuspended mapping cone Cone(f)[−1],
which has

Cone(f)[−1]n = V n ⊕W n−1 (1.102)

and differential
dnCone(f)[−1](x, y) =

(
dnV (x), f(x)− dn−1

W (y)
)
. (1.103)

Lemma 1.51. If f : V → W is a morphism of DG vector spaces, there is a short exact
sequence

0 −→ W −→ Cone(f) −→ V [1] −→ 0 (1.104)

inducing a long exact sequence

· · · −→ Hn(V ) −→ Hn(W ) −→ Hn(Cone(f)) −→ Hn+1(V ) −→ Hn+1(W ) −→ · · ·
(1.105)

and one can replace Hn(Cone(f)) by Hn+1(Cone(f)[−1]).

Consider a morphism ε : L → M between DG Lie algebras. Let C be the desus-
pended mapping cone of ε, Cone(ε)[−1]. Later on we will consider the case where M is
concentrated in degree zero, and we will write M = g[0] where g is a Lie algebra.

Definition 1.52. On C, define the naive bracket to be the bilinear map

[
(x, u), (y, v)

]
:=
(

[x, y], 1
2 [u, ε(y)] + (−1)|x|

2 [ε(x), v]
)

(1.106)

for x, y ∈ L, u, v ∈M .

Lemma 1.53. The naive bracket (1.106) is anti-symmetric and satisfies Leibniz’ rule
with respect to the differential of the desuspended mapping cone.

Proof. For the anti-symmetry write

[
(y, v), (x, u)

]
=
(
−(−1)|y|·|x| [x, y], −(−1)|v|·|x|

2 [ε(x), v]− (−1)|y|+|y|·|u|
2 [u, ε(y)]

)
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and equal it with
−(−1)|x|·|y|

[
(x, u), (y, v)

]
using |u| = |x| − 1 and |v| = |y| − 1. To check Leibniz’ rule, compute

d
[
(x, u), (y, v)

]
=
(

[d(x), y] + (−1)|x| [x, d(y)], [ε(x), ε(y)]

− 1
2 [d(u), ε(y)]− (−1)|u|

2 [u, dε(y)]− (−1)|x|
2 [dε(x), v]− 1

2 [ε(x), d(v)]
)

and verify that it is the same thing as[
d(x, u), (y, v)

]
+ (−1)|x|

[
(x, u), d(y, v)

]
=
[
(d(x), ε(x)− d(u)), (y, v)

]
+ (−1)|x|

[
(x, u), (d(y), ε(y)− d(v))

]
=
(

[d(x), y], 1
2 [ε(x)− d(u), ε(y)] + (−1)|d(x)|

2 [εd(x), v]
)

+ (−1)|x|
(

[x, d(y)], 1
2 [u, εd(y)] + (−1)|x|

2 [ε(x), ε(y)− d(v)]
)

using εd = dε and |d(x)| = |x|+ 1.

However if one tries to check the Jacobi identity by computing the double bracket[
(x, u),

[
(y, v), (z, w)

]]
=(

[x, [y, z]], 1
2 [u, [ε(y), ε(z)]] + (−1)|x|

4 [ε(x), [v, ε(z)]] + (−1)|x|+|y|
4 [ε(x), [ε(y), w]]

)
one sees that it is clearly satisfied in the L part but a priori not in M and thus the naive
bracket may not be a Lie bracket. It will satisfy only the Jacobi identity up to homotopy
and this is the notion of L∞ algebra structure on C.

The construction of Fiorenza-Manetti

Now the main motivation for this section is the following theorem and construction.
Theorem 1.54 ([FM07]). If ε : L → M is a morphism between DG Lie algebras, then
the desuspended mapping cone C of ε has a canonical L∞ algebra structure such that `1 is
the usual differential of C and `2 is the naive bracket (1.106). The associated deformation
functor on Artk is isomorphic to the functor of isomorphism classes of the groupoid with
set of objects (for A ∈ Artk){

(x, eα) ∈ (L1 ⊗mA)× exp(M0 ⊗mA)
∣∣∣∣ d(x) + 1

2[x, x] = 0, eα ∗ ε(x) = 0
}

(1.107)

and morphisms given by

Hom((x, eα), (y, eβ)) :={
(λ, µ) ∈ (L0 ⊗mA)× (M−1 ⊗mA)

∣∣∣ eλ.x = y, eβ = ed(µ) ∗ eα ∗ e−ε(λ)
}
. (1.108)

This L∞ algebra structure is functorial from the category of morphisms between DG Lie
algebras to the category of L∞ algebras with their strong morphisms.
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As promised, the following very simple remark is one of the main motivations for this
thesis.
Lemma 1.55. Applied to an augmentation ε : L→ g to a Lie algebra g, the above de-
formation functor associated with the L∞ algebra structure on the desuspended mapping
cone of ε coincides with the augmented deformation functor DefL,ε of Definition 1.21.
Proof. Apply the theorem with M = g[0]. Then for degree reasons, for x ∈ L1 ⊗ mA

we have ε(x) = 0 and also µ = 0 so ed(µ) is the identity of exp(L0 ⊗ mA). Then we
see immediately that the set of objects (1.27) and (1.107) are the same, and the set of
morphisms (1.28) and (1.108) are also the same.

Let us give one simple application of working with the L∞ algebra structure on the
mapping cone by re-writing our Lemma 1.23.
Lemma 1.56. Let ϕ : L ≈−→ L′ be a quasi-isomorphism of augmented DG Lie algebras
commuting with the augmentations as in the diagram

L

ε
��

ϕ
≈ // L′

ε′
~~

g.

Then ϕ induces a quasi-isomorphism of the mapping cones C,C ′ and an isomorphism of
deformation functors

DefL,ε '−→ DefL,ε′ .
Proof. Write the morphism induced by ϕ between the long exact sequences for the map-
ping cones:

· · · // Hn(L) //

'ϕ

��

Hn(g[0]) //

'id
��

Hn+1(C) //

��

Hn+1(L) //

'ϕ

��

Hn+1(g[0])
'id
��

// · · ·

· · · // Hn(L′) // Hn(g[0]) // Hn+1(C) // Hn+1(L′) // Hn+1(g[0]) // · · ·

By the five lemma, ϕ induces a quasi-isomorphism from C to C ′, and by functoriality
it is a morphism of L∞ algebras. Then quasi-isomorphic L∞ algebras have isomorphic
deformation functors (Theorem 1.49).

Now we want to describe explicitly the higher operations on the mapping cone. Let
us take back our morphism ε : L→M of DG Lie algebras, C the desuspended mapping
cone and C[1] the (usual) mapping cone.
Theorem 1.57 ([FM07, 5.5]). The higher brackets of the L∞ algebra C, given as the
components qr of a codifferential Q on C (C), are given as follows (we write x, y, . . . for
elements of L and u, v, . . . for elements of M). First for the operations q1 and q2:

q1(x, u) = (−d(x), d(u)− ε(x))
q2(x� y) = (−1)|x| [x, y]

q2(u⊗ y) = (−1)|u|+1

2 [u, ε(y)]

q2(u� v) = 0.
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From here we see that q1, or its associated operation `1, corresponds to the differential
of the mapping cone. Via the rule of signs (1.93) q2 and its associated operation `2
correspond to the naive bracket.

For the higher brackets, if r + k ≥ 3 and k 6= 1

qr+k(u1 � · · · � ur ⊗ x1 � · · · � xk) = 0

and for r ≥ 2

qr+1(u1 � · · · � ur ⊗ x) =

− (−1)
∑r

i=1 |ui| Br

r!
∑

τ∈S(r)
ε(τ, u1, . . . , ur) [uτ(1), [uτ(2), . . . , [uτ(r), ε(x)] . . . ]] (1.109)

where the Bn are the Bernouilli numbers ([FM07, 5.4]).

Remark 1.58. In the case M = g[0] is concentrated in degree 0 these relations simplify
but there still remains a priori non-zero higher operations in each order. First

q1(x, u) = (−d(x),−ε(x)).

Then q2(u⊗ y) is zero if y is not of degree 0. Finally the last relation for qr+1 where all
terms ui have degree 0 is zero if x is not of degree 0 and else

qr+1(u1 � · · · � ur ⊗ x) = −Br

r!
∑

τ∈S(r)
ε(τ) [uτ(1), [uτ(2), . . . , [uτ(r), ε(x)] . . . ]].

1.2.3 Deformation functor of a L∞ algebra
This whole section is devoted to explaining the main Theorem 1.49. The deformation

functor of L∞ or DG Lie algebras has been studied a lot in the literature. Furthermore
we want the pro-representability of this functor. Under the assumption that a L∞ algebra
L over k has Hn(L) = 0 for n ≤ 0 we will get that the deformation functor

DefL : Artk −→ Set

is isomorphic to
A 7−→ Hom

CoAlg

(
(mA)∗, H0(C (L))

)
and under some finite-dimensionality hypothesis the dual of H0(C (L)) is the maximal
ideal of a pro-Artin algebra, to which we add a unit to form the algebra k⊕H0(C (L))∗,
and one can dualize to get

A 7−→ Hom
ProArt

(
k⊕H0(C (L))∗, A

)
.

Recalling the pro-Yoneda Lemma 1.25, this says that there is a functorial pro-representing
algebra for DefL.
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Construction of the deformation functor

If L is a L∞ algebra and A is a local Artin algebra with maximal ideal mA, one can
extend the operations `r to L⊗mA simply by the rule

`r((x1 ⊗ a1) ∧ · · · ∧ (xr ⊗ ar)) := `r(x1 ∧ · · · ∧ xr)⊗ (a1 · · · ar) (1.110)

for x1, . . . , xr ∈ L and a1, . . . , ar ∈ mA. If x ∈ L1 ⊗mA then

x∧r = x ∧ · · · ∧ x ∈ Lr ⊗ (mA)r

(the left exponent r is a grading, the right one is a power of the ideal) so that

`r(x∧r) ∈ L2 ⊗ (mA)r

and for r such that (mA)r = 0 then this is zero.

Definition 1.59. Let L be a L∞ algebra over k. Its associated Maurer-Cartan functor
is the functor

MCL : Artk −→ Set (1.111)
defined by

MCL(A) :=
{
x ∈ L1 ⊗mA

∣∣∣∣∣
∞∑
r=1

`r(x∧r)
r! = 0

}
. (1.112)

This sum is in fact finite since `r(x∧r) = 0 if (mA)r = 0.

Lemma 1.60 ([LV12, 13.2.9]). The linear dual X∗ of a conilpotent coalgebra X whose
canonical filtration is finite and by finite-dimensional sub-coalgebras is the maximal ideal
of a local Artin algebra. Conversely if A is a local Artin algebra then the dual (mA)∗ is
such a conilpotent coalgebra.

Proof. Recall Lemma 1.35. Denote by m the dual X∗ of a conilpotent coalgebra X, then
A := k⊕m is a complete local algebra with maximal ideal m. Under the assumption that
the canonical filtration of X is finite, then m is in fact nilpotent, so A is a local Artin
algebra.

Conversely, if A is a local Artin algebra with maximal ideal mA then (mA)∗ is a
coalgebra: the multiplication in A, that we restrict to mA,

mA ⊗mA −→ mA

dualizes to a linear map
(mA)∗ −→ (mA ⊗mA)∗

that one can compose by the inverse of the canonical map (1.66)

(mA)∗ ⊗ (mA)∗ −→ (mA ⊗mA)∗

(which is invertible only if mA is finite-dimensional) to get a comultiplication in (mA)∗.
This comultiplication is coassociative and cocommutative if the multiplication of A sat-
isfies the corresponding dual axioms. And since mA is nilpotent, the canonical filtration
of X is finite.
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The following simple proposition is one important step for considering extended de-
formation functors, from categories of DG Artin algebras to sets or simplicial sets. It
gives a more powerful point of view on the Maurer-Cartan equation.

Proposition 1.61. If L is a L∞ algebra and A is a local Artin algebra then

MCL(A) = Hom
DG−CoAlg

(
(mA)∗,C (L)

)
(1.113)

(by the previous lemma (mA)∗ is a conilpotent coalgebra).

Proof. By the cofree property (adjunction (1.77)), a morphism of graded coalgebras

ϕ : (mA)∗ −→ C (L)

is determined uniquely by a morphism of graded vector spaces

ψ : (mA)∗ −→ L[1]

that one can see as an element x ∈ L1 ⊗ mA. The Maurer-Cartan equation is then
the condition for ϕ to respect the codifferential (see [Man04, § IX.4]) written in terms
of x.

Roughly, the deformation functor of a L∞ algebra is the quotient of the Maurer-
Cartan functor by the homotopy equivalences. However, there is a technical subtle point
in the definition of homotopy equivalence for these Maurer-Cartan elements related to
the fact that the Maurer-Cartan equation is defined only for elements x ∈ L1⊗mA, since
they have `r(x∧r) = 0 for r � 0 and the Maurer-Cartan equation is a finite sum. So we
give first the definition of homotopy equivalence in the case of DG Lie algebras.

Definition 1.62 (See [BG76, § 2]). Denote by Ωk(∆) the simplicial DG algebra of
polynomial differential forms on the standard simplex over k. It has components given
explicitly by

Ωk(∆n) := k[t0, . . . , tn, dt0, . . . , dtn]
(1−∑ ti,

∑
dti)

(1.114)

where ti has degree 0, dti has degree 1 and d(ti) = dti. The 1-dimensional component of
Ωk(∆) is more simply written as k[t, dt], and the tensor product with a DG algebra A is
written A[t, dt]. The two face maps k[t, dt] → k are simply the maps evaluating t to 0
(resp. 1) and dt to 0.

Definition 1.63. Let L be a DG Lie algebra over k and let A be a local Artin algebra.
A homotopy between two elements x, y of MC(L⊗mA) is an element

H ∈ MC
(
L⊗mA ⊗ k[t, dt]

)
(1.115)

such that H|t=0 = x and H|t=1 = y.

This corresponds exactly to the notion of homotopy (or, path) in the simplicial set

MC
(
L⊗mA ⊗ Ωk(∆)

)
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which has for simplices of dimension n

MC
(
L⊗mA ⊗ Ωk(∆n)

)
between the two 0-simplices x and y. See the references [Hov99] and [GJ99] for simplicial
sets and their use in homotopy theory. The important fact is that this recovers the notion
that we wrote first with gauge transformations:

Proposition 1.64 ([Man99, 5.5]). Let L be a DG Lie algebra and let A be a local Artin
algebra. Then two elements of MC(L⊗mA) are homotopic (as above) if and only if they
are gauge equivalent (i.e. equivalent under the gauge action of exp(L0 ⊗mA)).

The formula (1.113) shows that one can extend the functor MCL for L∞ algebras to
the category of DG algebras A augmented over k (such an algebra splits canonically as
A = k⊕mA) that are globally finite-dimensional over k and such that the augmentation
ideal mA is nilpotent; because then (mA)∗ is a conilpotent DG coalgebra. This is one
possible definition of the category of DG Artin algebras. If A is a local Artin algebra,
then A[t, dt] is an increasing union of sub-DG algebras A[t, dt]ε over ε > 0 (see [Man04,
§ IX.5]) that are DG Artin algebras: for ε > 0 and n > 0 denote by Adnεe the sub-DG
algebra of A generated by products of at least dnεe elements of mA and then

A[t, dt]ε := A⊕
⊕
n>0

(
Adnεetn ⊕ Adnεetn−1dt

)
⊂ A[t, dt] (1.116)

and it appears clearly that A[t, dt] is the union of all A[t, dt]ε over ε > 0.

Definition 1.65. Let L be a L∞ algebra over k. Let A be a local Artin algebra. Two
elements x, y of MCL(A) are said to be homotopic if there exists ε > 0 and an element

H ∈ MCL

(
A[t, dt]ε

)
(1.117)

such that H|t=0 = x and H|t=1 = y. The deformation functor DefL of L is the quotient
of MCL by the equivalence relation generated by homotopies.

The Proposition 1.64 proves that this extends the deformation functor for DG Lie
algebras.

Invariance under quasi-isomorphisms

The fact that a quasi-isomorphism of L∞ algebras induces an isomorphism of their
deformation functor is explained in [Man04, IX.22]. We will review this and the notion of
L∞-morphism between L∞ algebras. A good references for this is the chapters 10 and 11
of [LV12]: everything is well-written in the general theory of operads.

Definition 1.66. Let L,M be L∞ algebras. A L∞-morphism from L to M is the data
of a morphism of conilpotent DG coalgebras

f : C (L) −→ C (M). (1.118)
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Such a morphism automatically preserves the canonical filtrations and by the cofree
property (adjunction (1.77)) it can be seen as a collection of linear maps of degree 0

fr[1] : (L[1])�r −→M [1], r ≥ 1 (1.119)

or equivalently by desuspension as linear maps of degree r − 1

fr : L∧r −→M (1.120)

satisfying some relations with the operations `r that are not so easy to write in this form
(see [LV12, 10.2.7]). We write such a morphism

f : L M. (1.121)

The map f1, which is a morphism of DG vector spaces (i.e. of degree 0 and commutes
with d = `1), is called the linear part of f ; equivalently it is f1[1] which commutes with q1.

Remark 1.67. A strong morphism from L to M induces a morphism of DG coalgebras
from C (L) to C (M) so that strong morphisms correspond to L∞-morphisms with fr = 0
for r > 1 (see [Man04, IX.4]), also called linear morphisms.

Definition 1.68. A L∞-morphism f : L  M between L∞ algebras is called a L∞-
quasi-isomorphism if its linear part f1 is a quasi-isomorphism

f1 : (L, `1) ≈−→ (M, `1), (1.122)

equivalently
f1[1] : (L[1], q1) ≈−→ (M [1], q1) (1.123)

is a quasi-isomorphism.

From this description one sees that a L∞-quasi-isomorphism which is induced by a
strong morphism is the same thing as a quasi-isomorphism as in Definition 1.45. Then
one of the main theorems, for which we reproduce a complete proof, is:

Theorem 1.69 ([Man04, IX.9]). A L∞-quasi-isomorphism f : L  M (a fortiori, a
strong quasi-isomorphism) between L∞ algebras induces a quasi-isomorphism of DG coal-
gebras

C (f) : C (L) ≈−→ C (M). (1.124)

The essential tool of the proof, to which we will come back several times, is the
computation of the spectral sequence for the bar filtration.

Theorem 1.70 (Convergence theorem for spectral sequences [LV12, 1.5.1], [God58,
§ I.4.3]). Let V be a DG vector space with a decreasing filtration F • (by sub-DG vec-
tor spaces). Assume that the filtration F is bounded above (i.e. for each n there exists N
such that F pV n = 0 for p ≥ N) and exhaustive (i.e. V n = ⋃

p F
pV n). Then for fixed q

the term Ep,q
0 is zero for p� 0 and for fixed (p, q) the differential dp,qr is zero for r � 0.

There is a canonical isomorphism

Ep,q
∞

'−→ F pHp+q(V )
F p+1Hp+q(V ) . (1.125)

where Ep,q
∞ is the inductive limit of the terms Ep,q

r .
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Concretely, for fixed (p, q), the sequence Ep,q
r may not stabilize but for r big enough

it is obtained only by taking quotients. There are canonical maps

Ep,q
r −→ Ep,q

s , s ≥ r � 0

whose limit defines Ep,q
∞ .

This applies in particular for C (L) with the bar filtration of Definition 1.46 turned
into a decreasing filtration: it is bounded above since the bar filtration is bounded below,
and exhaustive since C (L) is the union of the Cs(L) over s ≥ 1.

Proof of Theorem 1.69. Of course, the statement for L∞-quasi-isomorphisms implies the
one for strong quasi-isomorphisms. So assume that f has components fr and that f1 is a
quasi-isomorphism. Let Cs be the bar filtration By definition the graded pieces are given
by

GrC
s C (L) = Cs(L)

Cs−1(L) = (L[1])�s, s ≥ 1

with differential induced by q1 only. So the induced map between the graded pieces is

GrC
s (f) = (f1[1])�s : (L[1], q1)�s −→ (M [1], q1)�s. (1.126)

By hypothesis
f1[1] : (L[1], q1) ≈−→ (M [1], q1)

is a quasi-isomorphism, and by the Künneth formula

H((L[1], q1)�s) ' (H(L[1], q1))�s

for any s ≥ 1. This follows from the usual Künneth formula for the tensor product and
the fact that the symmetric product is a quotient of the tensor product by a finite group.
So combining these shows that the map GrC

s (f) of (1.126) is a quasi-isomorphism.
Now compute the spectral sequence. By definition (since C is increasing we work

with −s), for all integer q,

CE
−s,q
0 (C (L)) = GrC

s C (L)q

and
CE
−s,q
1 (C (L)) = H−s+q(GrC

s C (L)).
So by the previous analysis there is an isomorphism

CE
−s,q
1 (C (L)) '−→ CE

−s,q
1 (C (M)).

Now we use the Theorem 1.70: this induces an isomorphism at the inductive limit

CE
−s,q
∞ (C (L)) '−→ CE

−s,q
∞ (C (M))

which gives
GrC

s H
−s+q(C (L)) '−→ GrC

s H
−s+q(C (M)), s ≥ 1

from which we deduce, step by step by induction on s (since the bar filtration is bounded
below), an isomorphism

H(C (L)) '−→ H(C (M)).
See also [God58, I.4.3.1] for this argument.
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This has the following important consequence, which is the derived version of the
classical Theorem 1.19. See the cited lectures notes and the original article [Man02]
(Corollary 3.3 combined with section 5) for full proofs.

Theorem 1.71 ([Man04, IX.22]). A L∞-quasi-isomorphism f : L  M between L∞
algebras induces an isomorphism

DefL '−→ DefM

between their associated deformation functors.

Before coming to the pro-representability, let us add another point of view on L∞
algebras. This is called the rectification, and is well-known from the general theory of
DG operads.

Theorem 1.72 ([LV12, 11.4.6]). Any L∞ algebra is L∞-quasi-isomorphic to a DG Lie
algebra.

Remark 1.73. Here we don’t need to precise the direction or zig-zag of morphisms because
L∞-quasi-isomorphisms always admit an inverse ([LV12, 10.4.4]) and being L∞-quasi-
isomorphic is an equivalence relation. So at this point we see that working with L∞
algebras up to L∞-quasi-isomorphisms is much more convenient and flexible than working
with DG Lie algebras up to quasi-isomorphisms. However there is an equivalence of
homotopy categories between these ([LV12, 11.4.8]) expressing the fact that these two
approaches contain the same information from the point of view of deformation theory.
Remark 1.74. This result combined to the main Theorem 1.71 implies that there is another
description of the deformation functor of a L∞ algebra L. Namely take any DG Lie
algebra M which is L∞-quasi-isomorphic to L and define the deformation functor of L to
be DefM (in the classical sense); up to isomorphism this does not depend onM . Actually,
the article of Pridham [Pri10] shows that all these approaches to the deformation functor
of a DG Lie or L∞ algebra are equivalent (see in particular Remark 4.28 therein).

Pro-representability

The pro-representability theorem we use is the one proved by Hinich. This appears
also earlier in the lectures notes of Kontsevich [Kon94].

Theorem 1.75 ([Hin01, § 9.3]). Let L be a DG Lie algebra over k with Hn(L) = 0 for
all n ≤ 0. Then there is a canonical isomorphism

DefL(A) = Hom
CoAlg

(
(mA)∗, H0(C (L))

)
, A ∈ Artk. (1.127)

Remark 1.76. Actually, Hinich works with unital coalgebras. So we extract (1.127) simply
by replacing his A by mA. Conversely, from this formula, one can always add a unit and
a counit to H0(C (L)) as in Remark 1.34. Then write this equality using the Hom set of
unital coalgebras (i.e. requiring morphisms to preserve the units and counits). However
this is easier to do after passing to the dual algebra.

Now we deduce the dualization. This step is, to our knowledge, never treated exactly
as we need in the literature. It will follow from two lemmas.
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Lemma 1.77. The dual X∗ of a conilpotent coalgebra X whose canonical filtration is by
finite-dimensional sub-coalgebras is the maximal ideal of a pro-Artin algebra. Conversely
if R is a pro-Artin algebra then the dual (mR)∗ is a conilpotent coalgebra whose canonical
filtration is by finite-dimensional sub-coalgebras. In particular if X is such a coalgebra
and A is a local Artin algebra then

Hom
CoAlg

((mA)∗, X) = Hom
ProArt

(k⊕X∗, A). (1.128)

Proof. This is just the extension of Lemma 1.60 to infinite filtrations, combined with the
Lemma 1.12. Namely if X is a conilpotent coalgebra, then X∗ is the maximal ideal mR

of a complete local algebra R = k ⊕ mR and the canonical filtration of X is dual to the
powers of mR. When this filtration is by finite-dimensional sub-coalgebras, then R is
pro-Artin. Conversely if R is a pro-Artin algebra then R/(mR)n is a local Artin algebra
for each n, so (mR/(mR)n)∗ is a conilpotent coalgebra which is finite-dimensional, and R∗
is the increasing union of these.

One deduce the equality (1.128) simply by linear algebra. Since mA is finite-dimen-
sional, a morphism of coalgebras

f : (mA)∗ −→ X

factorizes through some finite-dimensional sub-coalgebra of X, that is, through some step
Xn of the canonical filtration. Then by linear algebra for finite-dimensional vector spaces,
f dualizes perfectly to a linear map

f ∗ : X∗n −→ mA

which is a morphism of algebras (without units). Then simply add the units: k⊕X∗ has
unit 1 ∈ k and f can also be seen as a morphism of algebras with units and preserving
the maximal ideals (that is, a morphism of local algebras, a fortiori here a morphism of
local Artin algebras)

f ∗ : k⊕X∗n −→ A.

By definition this constructs a morphism

f ∗ : k⊕X∗ −→ A

in the category of pro-Artin algebras. Going to the reverse direction is also easy: simply
note that a morphism of pro-Artin algebra

g : R −→ A

factorizes though some quotient R/(mR)n since the maximal ideal of A is nilpotent, and
induces a morphism of algebras without units

g : mR/(mR)∗ −→ mA.

Then dualize as above, these algebras being finite-dimensional.
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Remark 1.78. We warn the reader of the following possible confusion. It is known that any
coalgebraX is the colimit of its finite-dimensional sub-coalgebras (this is sometimes called
the fundamental theorem of coalgebras, see [Swe69, § 2.2]) so that the dual algebra X∗
is always a projective limit of finite-dimensional algebras. However in our Definition 1.9
a pro-Artin algebra is a projective limit of local Artin algebras in a very particular way
and that is the difference with the treatment of this duality in the literature.

Lemma 1.79. Let L be a L∞ algebra with Hn(L) = 0 for n ≤ 0 and H1(L) finite-
dimensional. Then the filtration of H0(C (L)) induced by the bar filtration, which is the
canonical filtration turning H0(C (L)) into a conilpotent coalgebra, is by finite-dimensional
sub-coalgebras.

Proof. First C (L) is a conilpotent coalgebra and the bar filtration is its canonical filtra-
tion: the comultiplication of H0(C (L)) is induced by the one of C (L), from which we see
clearly that it is conilpotent and its canonical filtration is induced by the bar filtration.

So, as in the proof of Theorem 1.69, we compute the spectral sequence for the bar
filtration for L. It starts with

GrC
s C (L) = (L[1])�s, s ≥ 1

with the differential induced by `1[1] = q1. By the hypothesis that Hn(L) = 0 for n ≤ 0,
with Hn(L[1]) = Hn+1(L), the Künneth formula simply states here that

H0(GrC
s C (L)) =

⊕
t1+···+ts=0

(
H t1(L[1])� · · · �H ts(L[1])

)
= (H0(L[1]))�s = (H1(L))�s

which is finite-dimensional if H1(L) is. This is also CE
−s,s
1 (C (L)). So we deduce that each

terms CE
−s,s
r (C (L)) as well as CE

−s,s
∞ (C (L)) (defined as in the convergence Theorem 1.70)

are finite-dimensional, being sub-quotients of CE
−s,s
1 (C (L)). And so is GrC

s H
0(C (L)).

Since the bar filtration is bounded below this in turns implies (via an induction on s)
that the induced filtration given by

H0(C (L))s := Im
(
H0(Cs(L))→ H0(C (L))

)
(1.129)

is by finite-dimensional sub-coalgebras.

So we deduce:

Theorem 1.80 (Pro-representability). Let L be a L∞ algebra with Hn(L) = 0 for n ≤ 0
and H1(L) finite-dimensional. Then k ⊕ H0(C (L))∗ is a pro-Artin algebra that pro-
represents DefL. A quasi-isomorphism between such L∞ algebras

f : L ≈−→M

induces an isomorphism between their deformation functors and their pro-representing
objects making commutative the following diagram of isomorphism of functors from Artk
to Set

DefL

f '

��

Hom
(
k⊕H0(C (L))∗,−

)
f'
��

DefM Hom
(
k⊕H0(C (M))∗,−

)
.

(1.130)
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Proof. Combine the preceding theorems. The L∞-quasi-isomorphisms preserve our con-
ditions on cohomology. So one can assume that L is a DG Lie algebra (as in Remark 1.74)
and apply the representability theorem of Hinich 1.75. Then combine the two preceding
lemmas to get that k⊕H0(C (L))∗ is a pro-Artin algebra and that one can dualize to get

DefL(A) = Hom
ProArt

(
k⊕H0(C (L))∗, A

)
, A ∈ Artk. (1.131)

Both sides of this equation are functorial in L and invariant under quasi-isomorphisms.

Remark 1.81. This theorem, though expressed as a theorem in classical deformation
theory, was clearly unknown at the time of the first article of Goldman and Millson
[GM88]. It doesn’t seem possible to understand it without appealing to L∞ algebras
and extending deformation functors to some categories of DG Artin algebras, which
gives the natural interpretation of the Maurer-Cartan elements as in Proposition 1.61.
In [GM90], they proved that there is a complete local algebra that pro-represents the
functor DefL and that is invariant under quasi-isomorphisms, but the construction is
not functorial. It was also known by them, in [KM98, § 14], that this algebra can be
constructed as a quotient of the formal power series on H1(L), which is the tangent space
to the deformation functor DefL ([Man99, § 3.c] for the classical point of view). But in
the form we give, the pro-representability theorem is a great improvement of the theory.

Examples

Let us give simple examples of computation with the functor C .
Example 1.82. Assume that L = g[0] is a Lie algebra, concentrated in degree zero. Then
L[1] is concentrated in degree −1 and

Sym+(L[1]) =
⊕
r≥1

(Λrg)[r].

So C (L) is the usual Chevalley-Eilenberg complex computing the Lie algebra homology
of g (it is in negative degrees with a differential of degree +1, so it really computes
homology) and its dual computes the Lie algebra cohomology.
Example 1.83. Assume that L = V [−1] is a vector space concentrated in degree 1, with
zero bracket and zero differential. Then L[1] = V [0] and

Sym+(L[1]) = Sym+(V )[0]

with zero differential. Its dual, to which we add k, is the algebra of formal power series
on V . This is coherent with the fact that the deformation functor is simply

DefL(A) = V ⊗mA

which is smooth.
Example 1.84. Assume that L has d = 0 and Ln = 0 for n ≤ 0. In this case the
deformation functor is simply given by the Maurer-Cartan equation [x, x] = 0 for x ∈ L1.
Then L[1] is concentrated in non-negative degree and the part of degree 0 of C (L) is
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Sym+(L1). The differential is given by the Lie bracket. So we see that H0(C (L)) is dual
(up to adding k) to the algebra of power series at 0 of the quadratic cone defined by the
Maurer-Cartan equation.

In particular this applies if L is formal, that is, quasi-isomorphic to a DG Lie algebra
with d = 0, and with H0(L) = 0: up to quasi-isomorphism one can assume that L is of
the above form.
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Chapter 2

Hodge theory

In this chapter we combine Hodge theory with the algebraic constructions we described
in the preceding chapter. The geometric situation of Goldman and Millson will not
only give us an augmented DG Lie algebra, to which we associated a L∞ algebra in
section 1.2.2, but actually a more complicated object having both the structures of mixed
Hodge complex and of augmented DG Lie algebra. Since we report all the geometric
constructions to the chapter 3 we deal here only with the algebraic part of these.

So we have to study first mixed Hodge structures and mixed Hodge complexes. These
last ones are more subtle to work with but are for us the essential tools for constructing
mixed Hodge structures. So we need to introduce them and fix our point of view in
section 2.1.

Then section 2.2 contains the heart of the work. There we define and study the
structure of augmented mixed Hodge diagram of Lie algebras. The main results are The-
orem 2.38, stating that from this one obtains a mixed Hodge diagram of L∞ algebras via
the construction of Fiorenza-Manetti, and the Theorem 2.44 saying that one can apply
the functor C (the bar construction) on these and get again a mixed Hodge diagram, this
time of conilpotent DG coalgebras. So its H0 carries a mixed Hodge structure and we
will combine this with the pro-representability Theorem 1.80.

2.1 Mixed Hodge structures and mixed Hodge com-
plexes

We adopt all the notations and classical constructions from the original articles of
Deligne [Del71b] and [Del74] concerning filtrations and Hodge theory. We also refer to
the book of Peters-Steenbrink [PS08]. This first sections contains nothing new except
that we fix some point of view on mixed Hodge complexes.

So let us describe some conventions and notations. All our filtrations are indexed by
Z. The use of upper indices F • will denote a decreasing filtration with its graded parts
Gr•F and lower indices W• correspond to an increasing filtration with graded parts GrW• .
One can always turn an increasing filtration W• into a decreasing one by letting

W k := W−k (2.1)

and thus we will mainly state results involving only one filtration for an increasing filtra-
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tion W . This comes from the fact that in defining mixed Hodge complexes, one complex
carries the weight filtration W and one other carries the two filtrations W,F , thus results
holding for one filtration appear first forW . We say that an element x of a filtered vector
space (K,W•) is of weight k if k is the smallest of the integers i such that x ∈ Wi.

We assume that all our filtrations of vector spaces are finite (WkK = 0 for k � 0 and
WkK = K for k � 0) and filtrations of complexes are biregular (on each component Kn,
the induced filtration is finite) unless we explicitly state that we work with inductive or
projective limits of such objects.

2.1.1 Filtrations and mixed Hodge structures
In this section, if k is a field, L/k a field extension and Kk a vector space over k, we

will always denote by
KL := Kk ⊗k L (2.2)

the extension of scalars of Kk from k to L.
In section 1.1 of [Del71b] it is recalled how to construct naturally filtrations on sub-

objects, quotients, direct sums, tensor products etc. We review briefly what we need.

Filtered and bifiltered DG vector spaces

Definition 2.1. A filtered DG vector space over k is a DG vector space K over k with
an increasing filtration W• by sub-DG vector spaces. This implies that

WkK =
⊕
n

WkK
n (2.3)

and that
d(WkK

n) ⊂ WkK
n+1. (2.4)

A bifiltered DG vector space is a DG vector space K with an increasing filtrationW• and a
decreasing filtration F •, such thatK is filtered forW and for F . WritingWkF

p := Wk∩F p

this implies that
WkF

pK =
⊕
n

WkF
pKn. (2.5)

Morphisms are required to preserve the filtrations. We denote by Fil−DG−Vectk the
category of filtered DG vector spaces and by Fil2−DG−Vectk the category of bifiltered
DG vector spaces over k.

Definition 2.2. Let (K,W•) and (L,W•) be filtered DG vector spaces. The following
linear algebraic constructions have canonical filtrations:

1. The direct sum K ⊕ L with

Wk(K ⊕ L) := (WkK)⊕ (WkL). (2.6)

2. The tensor product K ⊗ L (defined in (1.9)) with

Wk(K ⊗ L) :=
⊕
i+j=k

(WiK)⊗ (WjL). (2.7)

We call it the multiplicative extension of the filtrations on K and on L.

56



3. By the same multiplicative extension rule, the symmetric and exterior powers also
have natural filtrations. Using the direct sum, one gets filtrations on the whole
tensor, symmetric and exterior algebras.

4. The linear dual K∗ which has

(K∗)n := Hom(K−n,k) (2.8)

is filtered with
Wk(K∗) := (W−kK)∗ (2.9)

(so this is more naturally a decreasing filtration if W is increasing).
5. The cohomology H(K) gets an induced filtration

WkH(K) = Im
(
H(WkK)→ H(K)

)
. (2.10)

6. Finally the field k has a trivial filtration with

W−1(k) = 0, W0(k) = k. (2.11)

Of course, all these constructions carry over directly to bifiltered DG vector spaces.

The last operation we will be interested in is the shift. But here there are two ways of
shifting filtrations and when working with bifiltered DG vector spaces we will use both.

Definition 2.3. Given a filtered DG vector space (K,W•) and an integer r, the r-shift
(Definition 1.42) K[r] has an induced filtration given by

Wk(K[r]n) = Wk(Kn+r) ⊂ Kn+r = K[r]n. (2.12)

Similarly, if (K,W•, F •) is bifiltered then K[r] has induced filtrations W,F .

Definition 2.4. Given a filtered DG vector space (K,W•) and an integer r, the r-shift
of W is the filtration W [r] defined by

W [r]kK := Wk−rK. (2.13)

The need for these two shifts is expressed by the following result.

Lemma 2.5. If (K,W•) is a filtered DG vector space then

GrW [r]
k (K[r]) = (GrWk−rK)[r]. (2.14)

Remark 2.6. Because of this, there are two natural choices of induced filtration on K[r].
One is called W and the other one is W [r]. If (K,W•, F •) is bifiltered, then there are
two choices we will use for inducing two filtrations on K[r], denoted by (K[r],W•, F •)
and by (K[r],W [r]•, F •). So we warn the reader that in a bifiltered DG vector space the
two filtrations do not play the same role and the algebraic constructions for bifiltered
DG vector spaces are not all obtained by applying two times the corresponding algebraic
constructions for filtered DG vector spaces, as we will see right now.
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Definition 2.7. Let f : (K,W•) → (L,W•) be a morphism between filtered DG vector
spaces. Its mapping cone Cone(f) (Definition 1.50) is filtered with

Wk Cone(f)n := Wk−1K
n+1 ⊕WkL

n. (2.15)

The desuspended mapping cone Cone(f)[−1] is filtered with

Wk Cone(f)[−1]n := WkK
n ⊕Wk+1L

n−1 (2.16)

which is precisely W [−1] of the filtration W on the mapping cone. If (K,W•, F •) and
(L,W•, F •) are bifiltered and f respects also the filtration F , then the filtration F on the
mapping cone is given by

F p Cone(f)n := F pKn+1 ⊕ F pLn (2.17)

and on the desuspended mapping cone it is simply

F p Cone(f)[−1]n := F pKn ⊕ F pLn−1. (2.18)

Also, for the needs of mixed Hodge theory, Deligne introduces the décalage filtration.

Definition 2.8 ([Del71b, 1.3.3]). Let (K,W•) be a filtered DG vector space. The décalage
filtration of K is the filtration (DecW )• defined by

(DecW )kKn :=
{
x ∈ Wk−nK

n
∣∣∣ dx ∈ Wk−n−1K

n+1
}
. (2.19)

Its main properties are that for the induced filtration on cohomology

(DecW )kHn(K) = Wk−nH
n(K) = W [n]kHn(K) (2.20)

and if K is concentrated in degree zero then DecW = W . For the induced spectral
sequence there is an isomorphism

DecWE
p,q
r

'−→ WE
2p+q,−p
r+1 , r ≥ 1. (2.21)

If a morphism of DG vector spaces f : K → L is a morphism of filtered DG vector
spaces for some given filtrations on K and L we will briefly say that f is compatible with
the filtrations.

Definition 2.9. We introduce the following categories of filtered algebras:
1. If A is a DG algebra with a filtration W as DG vector space, we say that it is a

filtered DG algebra if its multiplication

µ : A⊗ A −→ A

is compatible with the filtrations W ⊗W induced on A ⊗ A and W on A. This
reads concretely as

µ(WkA
n,W`A

m) ⊂ Wk+`A
n+m. (2.22)

If A has a unit one also requires the unit

1A : k −→ A

to be compatible with the trivial filtration on k (2.11).
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2. Similarly if L is a DG Lie algebra with a filtration W as DG vector space, we say
it is a filtered DG Lie algebra if its bracket

[−,−] : L⊗ L −→ L

is compatible with the induced filtrations. This reads as
[WkL

n,W`L
m] ⊂ Wk+`L

n+m. (2.23)

3. If X is a coalgebra with a filtration W as DG vector space, we say it is a filtered
DG coalgebra if its comultiplication

∆ : X −→ X ⊗X

is compatible with the induced filtrations.
4. Finally if L is a L∞ algebra with a filtration W as DG vector space, we say it is

a filtered L∞ algebra if all the operations in r variables of degree 2− r
`r : L∧r −→ L, r ≥ 1

are compatible with the induced filtrations W∧r on L∧r (by the multiplicative rule
as for the tensor product) and W on L (and not W [2− r], see the remark below).

Remark 2.10. Let L be a L∞ algebra with a filtration W as DG vector space. Then
d = `1 can be seen as a morphism of graded vector spaces

d ∈ Hom
G−Vect

(L,L[1]).

However d is not a morphism of filtered graded vector spaces if we put the filtration W [1]
on L[1], namely this would mean

d(WkL
n) ⊂ Wk−1L

n+1

but W is increasing so this has no reason to hold. That is why in the above definition of
filtered L∞ algebra, when `r is of degree 2 − r, we work with the filtration W and not
W [2− r] on the right-hand side.

Filtered quasi-isomorphisms

For a morphism between filtered DG vector spaces the condition of being a filtered
quasi-isomorphism is slightly stronger that the condition of being a quasi-isomorphism
compatible with the filtrations. In the former case one requires the morphism to identify
all the graded pieces via a quasi-isomorphism. This notion behaves much better when
working with mixed Hodge theory and spectral sequences.
Definition 2.11. A morphism of filtered DG vector spaces f : (K,W•)→ (L,W•) is
called a filtered quasi-isomorphism if for each k the induced morphism

GrWk (f) : GrWk (K) −→ GrWk (L) (2.24)
is a quasi-isomorphism. If f : (K,W•, F •)→ (L,W•, F •) is a morphism of bifiltered DG
vector spaces, it is called a bifiltered quasi-isomorphism if for all k and p the induced
morphism

GrWk GrpF (f) : GrWk GrpF (K) −→ GrWk GrpF (L) (2.25)
is a quasi-isomorphism.
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Remark 2.12. By the Zassenhauss lemma ([Del71b, 1.2.1]) the two graded pieces GrWk GrpF
and GrpF GrkW are canonically isomorphic and one can invert them in the equation (2.25).

Lemma 2.13. A filtered quasi-isomorphism as well as a bifiltered quasi-isomorphism is
in particular a quasi-isomorphism.

Proof. Do it first for the filtered case. Such a morphism f : K → L induces by definition
an isomorphism at the first page of the spectral sequence for W :

WE1(f) : WE1(K) '−→ WE1(L).

Since the filtrations are biregular, these spectral sequences converge, in the sense that for
fixed (k, n) the terms Ek,n

r stabilize with r. So f induces an isomorphism

WE∞(f) : WE∞(K) '−→ WE∞(L)

and in each degree n, f induces an isomorphism between the finitely many graded pieces

GrWk (Hn(K)) ∼−→ GrWk (Hn(L)).

Then an induction on k concludes that Hn(f) is an isomorphism: when W is a one-step
filtration (such that there is only one non-zero graded piece) this is trivial and when it is
two-step this is the three lemma.

The filtered case implies immediately the bifiltered case by treating one filtration at
a time.

Mixed Hodge structures

Definition 2.14. A (pure) Hodge structure of weight k over the field k ⊂ R is the data
of a finite-dimensional vector space Kk over k and a decreasing filtration F • of KC called
the Hodge filtration such that F and its conjugate filtration F (defined with respect to
the real structure coming from Kk) are k-opposed, which means that if we define

Kp,q := F pKC ∩ F
q
KC (2.26)

then
Kp,q = Kq,p (2.27)

and
F pKC =

⊕
r≥p

Kr,q (Kp,q = 0 if p+ q 6= r). (2.28)

This implies then that F q
KC = ⊕

s≥qK
p,s.

Definition 2.15. A mixed Hodge structure over k is the data of a finite-dimensional
vector space Kk over k with an increasing filtration W• called the weight filtration and a
decreasing filtration F • on KC called the Hodge filtration such that for each k the graded
piece (

GrWk (Kk), GrWk (Kk)⊗ C = GrW⊗Ck (KC), F •
)

(2.29)

(with the induced filtration F on GrWk (KC)) forms a pure Hodge structure of weight k.
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We will soon relax notations and simply write (K,W,F ) or (Kk, KC,W, F ) for such a
mixed Hodge structure. The category of mixed Hodge structures is an abelian category
with a tensor product. The morphisms are simply required to be induced by a morphism
over k and to be compatible with both filtrations W,F .
Proposition 2.16. If K,L are mixed Hodge structures, then all the algebraic operations
described in Definition 2.2 applied to K,L seen as DG vector spaces concentrated in degree
zero give again mixed Hodge structures.

In particular, this gives automatically rise to the notion of algebra carrying a mixed
Hodge structure. This is very similar to the filtered version of Definition 2.9 but concen-
trated in degree zero.
Definition 2.17. If A is an algebra (associative, commutative) with a mixed Hodge
structure and such that the multiplication is a morphism of mixed Hodge structures,
we say that A is an algebra with a mixed Hodge structure. If A has a unit 1 we also
require the morphism k→ A to be a morphism of mixed Hodge structures, for the trivial
mixed Hodge structure (of pure weight zero) on K := k with KC = C and Kp,q = 0 if
(p, q) 6= (0, 0).

Similarly if g is a Lie algebra with a mixed Hodge structure such that the Lie bracket
is a morphism of mixed Hodge structures, we say that g is a Lie algebra with a mixed
Hodge structure. And if X is a coalgebra (coassociative, cocommutative) with a mixed
Hodge structure such that the comultiplication is a morphism of mixed Hodge structures,
we say that X is a coalgebra with a mixed Hodge structure.

A mixed Hodge structure on K defines (in several ways) a bigrading of KC.
Definition 2.18 ([PS08, 3.4]). Let K be a mixed Hodge structure. Let Kp,q be the
(p, q)-component of GrWp+q(K). Define the subspace of KC

Ip,q := F p ∩Wp+q ∩

F q ∩Wp+q ∩
∑
j≥2

(
F
q−j+1 ∩Wp+q−j

) . (2.30)

Then this defines a bigrading
KC =

⊕
p,q

Ip,q (2.31)

such that the canonical projection KC → GrWp+q(KC) induces an isomorphism
Ip,q ' Kp,q. (2.32)

We call it the Deligne splitting. It is functorial and compatible with duals and tensor
products.

Finally we describe a notion that will be used only in the geometrical constructions.
Definition 2.19. If (K,F ) is a Hodge structure of weight k, a polarization for K is a
k-bilinear form

Q : K ⊗K −→ k
which is is symmetric if k is even, anti-symmetric if k is odd, and on KC satisfies the two
Riemann bilinear relations:

1. Q(Kp,q, Kr,s) = 0 if (p, q) 6= (r, s),
2. ip−qQ(v, v̄) > 0 for 0 6= v ∈ Kp,q.
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2.1.2 Mixed Hodge complexes
The notion of mixed Hodge complex is much more subtle that the one of mixed Hodge

structure. From our point of view, this comes from the fact that the various pieces of a
mixed Hodge complex live naturally in a filtered derived category. This last one is not
easy to describe since the category of filtered DG vector spaces is not an abelian category.

So we prefer to fix the chain of filtered quasi-isomorphisms relating the various pieces.
For this we adopt the point of view of Cirici in [Cir15] and [CG16].

In this section, contrary to the convention adopted in the previous section, if k is a
field and L/k is a field extension then Kk and KL are different vector spaces, respectively
over k and over L. Then we will be interested in some comparison morphisms or quasi-
isomorphisms between Kk ⊗k L and KL. In the geometric constructions these part have
very different origins.

Diagrams of filtered DG vector spaces

In a first step we work only with diagrams of filtered DG vector spaces. This is a
more flexible category than the category of mixed Hodge complexes, for which one has
to check additional non-trivial axioms.

So denote by Cat the category of all categories. We fix a finite category I of zig-zag
type of length s, that is,

I =
{

0 −→ 1←− · · · −→ s− 1←− s
}
. (2.33)

We call it our index category. For a functor C : I → Cat, we write Ci for the category C(i)
and for a morphism u : i→ j we write u∗ for C(u) and we call it a comparison functor.

Definition 2.20 ([Cir15, 4.1]). Given a functor C : I → Cat, the category of diagrams
associated with C is the category denoted by ΓC with:

— Objects given by families
K = (Ki, ϕu)

indexed by i ∈ I and u : i→ j where Ki is an object of Ci and

ϕu : u∗(Ki) −→ Kj

is a morphism in Cj called a comparison morphism.
— Morphisms

f : K = (Ki, ϕu) −→ L = (Li, ψu)
given by families of morphisms

f = (fi : Ki → Li)

in Ci such that for all u : i→ j in I the diagram

u∗(Ki)
u∗(fi)

//

ϕu

��

u∗(Li)
ψu

��

Kj fj

// Lj

(2.34)

commutes in Cj.
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We see that this is the natural definition for a family of objects parametrized by I
belonging to possibly different categories, with some given functors u∗ to compare the
different categories.

Now again, for doing Hodge theory, consider for k a subfield of R.

Definition 2.21. Let the functor Vk : I → Cat be defined as follows:

0
v

��

� // Fil−DG−Vectk

v∗
��

1 � // Fil−DG−VectC

...

OO

��

...

id

OO

id
��

s− 1 � // Fil−DG−VectC

s

w

OO

� // Fil2−DG−VectC

w∗

OO

(2.35)

where the comparison functor

v∗(Kk,W ) := (Kk,W )⊗k C (2.36)

is the extension of scalars from k to C and

w∗(KC,WC, F ) := (KC,WC) (2.37)

forgets the filtration F . The other comparison functors are identities. The category of
objects ΓVk for this diagram is called the category of diagrams of filtered DG vector spaces
over k.

When writing a general object of ΓVk we will always write (Kk,W ) for K0 and
(KC,W, F ) for Ks. Then Ki will denote any of the components of K, which always
has the filtration W .

Definition 2.22. A morphism f between diagrams of filtered DG vector spaces
K = (Ki), L = (Li) is a morphism in the category ΓVk between K and L, thus is given
by its components

fi : Ki −→ Li

commuting with the comparison morphisms. We say that f is a quasi-isomorphism if
each component fi is a filtered quasi-isomorphism and the last component fC (between
KC and LC which carry two filtrations) is a bifiltered quasi-isomorphism.

Linear algebraic constructions on filtered DG vector spaces that commute with the
extension of scalars can be carried out directly to diagrams of filtered DG vector spaces.
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Definition 2.23. If K = (Ki), L = (Li) are diagrams of filtered DG vector spaces, then
all linear algebraic constructions described in Definition 2.2 and Definition 2.3 can be
done level-wise and give again diagrams of filtered DG vector spaces. In particular, the
direct sum K ⊕ L has components

(K ⊕ L)i := Ki ⊕ Li, (2.38)

the tensor product K ⊗ L has components

(K ⊗ L)i := Ki ⊗ Li, (2.39)

the dual has components
(K∗)i := (Ki)∗, (2.40)

the cohomology H(L) has components

(H(K))i := H(Ki) (2.41)

and the r-shift K[r] (for r ∈ Z) has components

(K[r])i := Ki[r] (2.42)

all with their naturally induced filtrations.

And there is another way of shiftings the complexes and filtrations (Remark 2.6).

Definition 2.24. If K = (Ki) is a diagram of filtered DG vector spaces and r ∈ Z, we
denote by (K[r],W [r], F ) the diagram of filtered DG vector spaces with components

(K[r],W [r])i := (Ki[r],W [r]) (2.43)

and with
(K[r],W [r], F )C := (KC[r],W [r], F ). (2.44)

Because of these constructions, our favorite kind of algebras can also be defined in-
ternally to the category of diagrams of filtered DG vector spaces.

Definition 2.25. A diagram of filtered DG algebras is a diagram of filtered DG vector
spaces where all the involved components have an algebra structure whose multiplication
is compatible with the filtrations (as in Definition 2.9) and the comparison morphisms
are morphisms of algebras. Similarly one defines diagrams of filtered DG Lie algebras,
diagrams of filtered L∞ algebras and diagrams of filtered DG coalgebras.

Finally the last construction we will use is the mapping cone.

Definition 2.26 (See [PS08, 3.22]). Let f = (fi : Ki → Li) be a morphism of diagrams
of filtered DG vector spaces. The mapping cone of f is the diagram of filtered DG vector
spaces Cone(f) given by the mapping cones of the fi with their filtrations induced as in
Definition 2.7.
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Mixed Hodge complexes

In the point of view we adopted, a mixed Hodge complex is given by additional
axioms on a diagram of filtered DG vector spaces. Then the main theorem of Deligne
states that the cohomology of such a diagram, whose various pieces are identified via
quasi-isomorphisms, carries a mixed Hodge structure. So for us this is just a list of
axioms to be checked in order to get an induced mixed Hodge structure on cohomology.

We still work with diagrams over a fixed index category I (2.33) and with a field
k ⊂ R.

Definition 2.27 (Compare [Del74, 8.1.5], [Cir15, 4.4], [Nav87, § 7.4]). A mixed Hodge
complex (over the field k, of shape given by the index category I) is a diagram of filtered
DG vector spaces K = (Ki, ϕu) over k satisfying the additional conditions:

1. All the DG vector spacesKi are bounded below complexes (i.e.Kn
i = 0 for n� 0).

2. All comparison morphisms ϕu are filtered quasi-isomorphisms. This implies that
the cohomologies Hn(Ki) are identified and Hn(Kk) gives a k-structure (a fortiori,
a real structure) on Hn(KC).

3. For all n ∈ Z, Hn(K) is finite-dimensional.
4. For all k ∈ Z, the differential of GrWk (KC) is strictly compatible with the filtration
F .

5. For all n ∈ Z and all k ∈ Z, the filtration F induced on Hn(GrWk (KC)) and the
form Hn(GrWk (Kk)) over k are part of a pure Hodge structure of weight k+n over
k on Hn(GrWk (K)).

This forms a full subcategory of ΓVk.

Example 2.28. If (K,W,F ) is a mixed Hodge structure, one can see K as a mixed Hodge
complex concentrated in degree 0. The comparison morphisms are simply the isomor-
phism KC ' Kk ⊗ C. Conversely, if K is a mixed Hodge complex all of whose compo-
nents are concentrated in degree 0 then all components Ki are finite-dimensional, the
comparison morphisms ϕu identify them (compatibly with the filtrations) and K can be
considered as a mixed Hodge structure.

The main theorem of Deligne is:

Theorem 2.29 (Deligne [Del74, 8.1.9]). If K is a mixed Hodge complex over k, then
Hn(K) endowed with the k-structure coming from Hn(Kk), the induced filtration F , and
the shift W [n] of the induced filtration W (alternatively, H(K) with DecW of Defini-
tion 2.8), is a mixed Hodge structure. The spectral sequence for F degenerates at E1 and
the spectral sequence for W degenerates at E2.

The category of mixed Hodge complexes is much more rigid than the one of mixed
Hodge structures and there are only a limited number of algebraic operations that one
can perform on them. But for us it will be enough to have the direct sum, the tensor
product, and the mapping cone.

Proposition 2.30. Let K,L be two mixed Hodge complexes. The direct sum K ⊕ L is
again a mixed Hodge complex and on cohomology

Hn(K ⊕ L) ' Hn(K)⊕Hn(L) (2.45)
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as mixed Hodge structures. Similarly ([Del74, 8.1.24], [PS08, 3.20]) the tensor product
K ⊗ L is a mixed Hodge complex and on cohomology, via the Künneth formula,

Hn(K ⊗ L) '
⊕
i+j=n

H i(K)⊗Hj(L) (2.46)

as mixed Hodge structures (since K,L are bounded below complexes there is no infinite
sum involved here).
Lemma 2.31. If (K,W,F ) is a mixed Hodge complex then (K[r],W [r], F ) is again a
mixed Hodge complex.
Proof. By Lemma 2.5, in each component i, GrW [r]

k (Ki[r]) = (GrWk−rKi)[r] so that

Hn(GrW [r]
k (Ki[r])) = Hn+r(GrWk−r(Ki)).

By the axiom 5 of mixed Hodge complexes for (K,W,F ), gluing these terms for varying
i gives a pure Hodge structure of weight k + n. And this checks this same axiom for
(K[r],W [r], F ). The other axioms are then clearly satisfied.
Proposition 2.32 ([PS08, 3.22]). The mapping cone described in Definition 2.26 of a
morphism f : K → L between mixed Hodge complexes is a mixed Hodge complex. For
completeness, recall that it is given by the filtrations W on the component i

Wk Cone(f)ni := Wk−1K
n+1
i ⊕WkL

n
i (2.47)

and on the component C carrying the filtration F it is given by

F p Cone(f)nC := F pKn+1
C ⊕ F pLnC. (2.48)

For the desuspended mapping cone, which is (Cone(f)[−1],W [−1], F ), the structure of
mixed Hodge complex is given by

Wk(Cone(f)[−1])ni := WkK
n
i ⊕Wk+1L

n−1
i (2.49)

and
F p(Cone(f)[−1])nC := F pKn

C ⊕ F pLn−1
C . (2.50)

On cohomology the long exact sequence for the mapping cone

· · · −→ Hn(K) −→ Hn(L) −→ Hn(Cone(f)) −→ Hn+1(K) −→ Hn+1(L) −→ · · ·
(2.51)

(where one can replace Hn(Cone(f)) by Hn+1(Cone(f)[−1])) becomes a long exact se-
quence of mixed Hodge structures.

Remark that the suspension (K[1],W [1], F ) we described above (r = 1) is in particular
the mapping cone of K → 0.

Finally, our various kinds of DG algebras or coalgebras can also be defined internally
to mixed Hodge complexes. In this situation, following the original terminology of Morgan
[Mor78, 3.5], we call them mixed Hodge diagrams.
Definition 2.33. We define a mixed Hodge diagrams of algebras to be a diagram of
filtered DG algebras which is also a mixed Hodge complex (for its underlying structure of
diagram of filtered DG vector spaces). Similarly, one defines mixed Hodge diagrams of Lie
algebras, mixed Hodge diagrams of L∞ algebras and mixed Hodge diagrams of coalgebras.

These will be the main objects of study in the next section.
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2.2 Mixed Hodge diagrams
Now we use all the definitions and constructions of the previous section together

and relate them with the chapter 1. Our ultimate goal is to show, first that given a
morphism of mixed Hodge diagrams of Lie algebras one gets a mixed Hodge diagram of
L∞ algebras L by the construction of Fiorenza-Manetti of section 1.2.2, then that the
functor C applied to L gives a mixed Hodge diagram of coalgebras so as to define a
mixed Hodge structure on H0(C (L)), with which as in section 1.2.3 we will get a mixed
Hodge structure on a pro-Artin algebra pro-representing the deformation functor of L.
We naturally separate these into two sections.

All our mixed Hodge complexes are indexed over a fixed category I (2.33) and defined
over a field k ⊂ R.

2.2.1 Augmented mixed Hodge diagrams of Lie algebras and
mixed Hodge diagrams of L∞ algebras

First for completeness, let us write the full definition of mixed Hodge diagrams for
Lie algebras and for L∞ algebras. These are the objects we will work with.

Definition 2.34. A diagram of filtered L∞ algebras is a diagram of filtered DG vector
spaces L = (Li, ϕu) such that all the Li have a L∞ algebra structure which is compatible
with the filtrations. For the operations in r variables of degree 2− r

`r : L∧r −→ L

in the component Li one requires the compatibility with W

`r ((Wk1L
n1
i ) ∧ · · · ∧ (WkrL

nr
i )) ⊂ Wk1+···+krL

n1+···+nr+2−r
i (2.52)

and in the component LC, carrying the filtration F , one requires

`r ((F p1Ln1
C ) ∧ · · · ∧ (F prLnr

C )) ⊂ F p1+···+prLn1+···+nr+2−r
C . (2.53)

Furthermore the comparison morphisms ϕu are required to be strong morphisms of L∞
algebras (Definition 1.45) respecting the filtrations. A mixed Hodge diagram of L∞ al-
gebras is a diagram of filtered L∞ algebras that is also a mixed Hodge complex for the
underlying structure of diagram of filtered DG vector spaces given by d = `1. If we
restrict to DG Lie algebras by assuming `r = 0 for r > 2 in every component, then one
gets diagrams of filtered DG Lie algebras and mixed Hodge diagrams of Lie algebras.

One of the results that we immediately get with this definition is:

Proposition 2.35. If L is a mixed Hodge diagram of L∞ algebras (a fortiori, of Lie
algebras) then on the cohomology H(L), which has the structure of a diagram of filtered
graded Lie algebras (Proposition 1.44) and each term Hn(L) has a mixed Hodge structure
for the induced filtrations DecW,F (Theorem 2.29), the induced Lie bracket is a morphism
of mixed Hodge structures.
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Proof. By passing to cohomology we forget all the operations `r for r 6= 2 and `2 becomes
a Lie bracket [−,−]. The statement that the Lie bracket respects F is clear because the
condition

`2 ((F pLnC) ∧ (F qLC)m) ⊂ F p+qLn+m
C

directly induces on cohomology

[F pHn(LC), F qHm(LC)] ⊂ F p+qHn+m(LC).

ForW , in any of the components Li, one has to be more careful. Take cohomology classes

[u] ∈ (DecW )kHn(Li), [v] ∈ (DecW )`Hm(Li).

Then [u] comes from an element u ∈ Wk−nL
n
i , and [v] comes from v ∈ W`−mL

m
i . So

`2(u ∧ v) ∈ W(k−n)+(`−m)L
n+m
i

and this corresponds to

[[u], [v]] ∈ (DecW )k+`H
n+m(Li).

This proves that the Lie bracket is a morphism of mixed Hodge structures.

Recall also the notion of morphism. It is obviously obtained by our general definition
of morphisms of diagrams of filtered DG vector spaces 2.22 and the definition of strong
morphisms for L∞ algebras 1.45.

Definition 2.36. A morphism f between mixed Hodge diagrams of L∞ algebras L,M
is given by a collection of morphisms

fi : Li −→Mi (2.54)

that are at the same time strong morphisms of L∞ algebras and morphisms of diagrams
of filtered DG vector spaces. It is said to be a quasi-isomorphism if each fi is a filtered
quasi-isomorphism and fC is a bifiltered quasi-isomorphism.

The structure we will get from the geometric situation is:

Definition 2.37. An augmented mixed Hodge diagram of Lie algebras is the data of a
mixed Hodge diagram of Lie algebras L and a Lie algebra g carrying a mixed Hodge
structure, seen as a mixed Hodge diagram of Lie algebras over I as in Example 2.28,
together with a morphism

ε : L −→ g (2.55)

of mixed Hodge diagrams of Lie algebras.

Now we can state and prove the main theorem of this section. It claims the compati-
bility between the formation of the mapping cone of mixed Hodge complexes and the L∞
algebra structure of Fiorenza-Manetti.
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Theorem 2.38. Let ε : L→ g be an augmented mixed Hodge diagram of Lie algebras.
Assume that in each of the components Li the filtration W has only non-negative weights
(i.e. WkLi = 0 for k < 0) and that the mixed Hodge structure on g is pure of weight zero.
Then the desuspended mapping cone C of ε with its L∞ algebra structure described in
section 1.2.2 is a mixed Hodge diagram of L∞ algebras.

Proof. It is practical to consider g as a mixed Hodge diagram of Lie algebras concentrated
in degree 0. So we will write terms gni that are zero for n 6= 0. The structure of mixed
Hodge complex on C is recalled in Proposition 2.32 (with C = Cone(ε)[−1]), the axioms
to be checked are in Definition 2.34 and the operations of L∞ algebra of C are described
in Theorem 1.57. It is clear that these operations commute with the change of coefficients
from k to C so the difficult part is to check the compatibility with the filtrations.

Let Q be the codifferential on the cofree coalgebra on C[1] which gives the structure of
L∞ algebra to C, with its components qr (r ≥ 1), and `r are the corresponding operations
on C. Up to signs and shifts of gradings, the operations qr and `r are given by the same
algebraic formulas.

First check the compatibility for W in some component Ci.
For `1, which is the differential of the desuspended mapping cone: take (x, u) ∈ WkC

n
i ,

so that x ∈ WkL
n
i and u ∈ Wk+1g

n−1
i . Then we know that

`1(x, u) = (d(x), ε(x)− d(u))

(actually d = 0 on gi). But d(x) ∈ WkL
n+1
i , ε(x) ∈ Wkg

n
i ⊂ Wk+1g

n
i and d(u) ∈ Wk+1g

n
i .

So one sees that
`1(x, u) ∈ WkC

n+1
i .

For `2: take (x, u) ∈ WkC
n
i , (y, v) ∈ W`C

m
i , so that x ∈ WkL

n
i , u ∈ Wk+1g

n−1
i ,

y ∈ W`L
m
i , v ∈ W`+1g

m−1
i . We want to show that

`2((x, u) ∧ (y, v)) ∈ Wk+`C
n+m
i .

For the part `2(x ∧ y) this is given (up to sign) by [x, y], and it is in Wk+`L
n+m
i . For

`2(u ⊗ y) this is given up to sign by [u, ε(y)] which is in W(k+1)+`g
(n−1)+m
i . This proves

the compatibility for `2.
Now for the higher operations `r with r ≥ 3 there is only one compatibility in the

relation (1.109) to check, and up to sign this is just an iterated bracket. So take r elements

(xj, uj) ∈ Wkj
C
nj

i , j = 1, . . . , r

so that xj ∈ Wkj
Lnj and uj ∈ Wkj+1g

nj−1. When computing `r((x1, u1) ∧ · · · ∧ (xr, ur)),
the only nonzero part is when we multiply only one of the xj with the others uj; call it
xs. Since gi is concentrated in degree 0, this is zero if all u are not of degree 0 or if xs is
not of degree 0. So we can assume ns = 0 and nj = 1 for j 6= s. Then for the iterated
bracket, and for a permutation {t1, . . . , tr−1} of {1, . . . , ŝ, . . . , r},

[ut1 , [ut2 , . . . , [utr−1 , ε(xs)] . . . ]] ∈ W(kt1+1)+···+(ktr−1+1)+ksg
(nt1−1)+···+(ntr−1−1)+ns

i

= Wk1+···+kr+(r−1)g
n1+···+nr−r+1
i = Wk1+···+kr+r−1(gi). (2.56)
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One would like

`r((x1, u1) ∧ · · · ∧ (xr, ur)) ∈ Wk1+···+krC
n1+···+nr+2−r
i = Wk1+···+krC

1
i

so that the iterated bracket in (2.56) would land in Wk1+···+kr+1(gi). But if we assume
that gi has pure weight zero and since r ≥ 3, the condition

Wk1+···+kr+r−1(gi) ⊂ Wk1+···+kr+1(gi) ⊂ gi

is realized by an equality as soon as k1 + · · · + kr + 1 ≥ 0. So, under the assumption
that Li has only non-negative weights, one can reduce the compatibility checking to
k1, . . . , kr ≥ 0 and this equality is realized.

The condition to check for F on CC is much easier because there is no shift in the
filtration. One sees directly that (x, u) ∈ F pCn

C means x ∈ F pLnC, u ∈ F pgn−1
C , so that

d(x) ∈ F pLn+1
C , ε(x) ∈ F pgnC and d(u) ∈ F pgnC so

`1(x, u) ∈ F pCn+1
C .

For `2 then (x, u) ∈ F pCn
C, (y, v) ∈ F qCm

C means that x ∈ F pLnC, u ∈ F pgn−1
C , y ∈ F qLmC ,

v ∈ F qgm−1
C . So

`2((x, u) ∧ (y, v)) =
(

[x, y], 1
2 [u, ε(y)] + (−1)|x|

2 [ε(x), v]
)

∈ F p+qLn+m
C ⊕ F p+qgn+m−1

C = F p+qCn+m
C .

Finally for the higher operations, take again (xj, uj) ∈ F pjC
nj

C so that xj ∈ F pjL
nj

C and
uj ∈ F pjg

nj−1
C . Again, select one element xs and consider a permutation {t1, . . . , tr−1} of

{1, . . . , ŝ, . . . , r}. Then

[ut1 , [ut2 , . . . , [utr−1 , ε(xs)] . . . ]] ∈ F pt1+···+ptr−1+psg
(nt1−1)+···+(ntr−1−1)+ns

C

= F p1+···+prgn1+···+nr−r+1
C . (2.57)

This checks directly that

`r((x1, u1) ∧ · · · ∧ (xr, ur)) ∈ F p1+···+prCn1+···+nr+2−r
C .

We see also that this construction is perfectly functorial. Furthermore we have the
analogue of Lemma 1.56 for mixed Hodge diagrams:

Lemma 2.39 (Compare with Lem. 1.56). Let ϕ : L ≈−→ L′ be a quasi-isomorphism of
augmented mixed Hodge diagrams of Lie algebras over the same Lie algebra g with a
mixed Hodge structure, satisfying both the hypothesis of Theorem 2.38. Then the induced
morphism ψ : C → C ′ between the desuspended mapping cones is a quasi-isomorphism of
mixed Hodge diagrams of L∞ algebras.
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Proof. By the functoriality of the L∞ algebra structure on the mapping cone, it is already
clear that ψ is a morphism of mixed Hodge diagrams of L∞ algebras. We only have to
show that it is a quasi-isomorphism. But in the component i, ϕ induces by definition a
quasi-isomorphism

GrWk (ϕi) : GrWk (Li) ≈−→ GrWk (L′i)
augmented over g. So the same argument as in the cited lemma, using the induced
morphism between the long exact sequences for the mapping cones of the augmentations,
shows that there is a quasi-isomorphism

GrWk (ψi) : GrWk (Ci) ≈−→ GrWk (C ′i).

This proves that ψi is a filtered quasi-isomorphism. And similarly by applying GrWk GrpF
one proves that ψC is a bifiltered quasi-isomorphism.

Remark 2.40. The proof of Theorem 2.38 shows actually the more general result that
for any morphism ε : L → M between diagrams of filtered DG Lie algebras (a fortiori,
between mixed Hodge diagrams of Lie algebras), without restrictive hypothesis on M ,
then on the mapping cone C the operations `1, `2 (that is, the differential and the naive
bracket of Definition 1.52) respect the filtrations of C. The operations `r for r ≥ 3 respect
the filtration F of CC and respect W up to some shift of r − 2:

`r(Wk1C
n1
i ∧ · · · ∧WkrC

nr
i ) ⊂ W(k1+1)+···+(kr+1)−1M

(n1−1)+···+(nr−1)+1
i

= Wk1+···+kr+r−1M
n1+···+nr−r+1
i ⊂ W(k1+···+kr)+(r−2)C

(n1+···+nr)+(2−r)
i . (2.58)

This should land in Wk1+···+krC
(n1+···+nr)+(2−r)
i if one wanted `r to respect perfectly the

filtration W .

2.2.2 Bar construction on mixed Hodge diagrams
If L is a mixed Hodge diagram of L∞ algebras, one can consider the construction C on

L. It is simply defined as the construction C on each component of L, with the induced
filtrations from linear algebraic operations. Since C preserves quasi-isomorphisms, C (L)
will be a diagram of filtered DG coalgebras related by filtered quasi-isomorphisms. So
when applying H0 the various parts related by quasi-isomorphisms will be identified. Our
goal is to construct a mixed Hodge structure on H0(C (L)). For this, we prove that C (L)
is a mixed Hodge diagram of coalgebras. Our theory will be very close to what Hain does
in [Hai87, § 3] for the bar construction on commutative DG algebras and we adopt his
terminology of bar filtration. Let us be more precise.

Let L be a L∞ algebra. Recall from Definition 1.46 that C (L), which is a conilpo-
tent DG coalgebra (coassociative, cocommutative, but without counit nor unit) has an
increasing filtration by sub-DG coalgebras given by

Cs(L) :=
s⊕
r=1

(L[1])�r, s ≥ 1 (2.59)

called the bar filtration and that C (L) is the inductive limit (or, increasing union over
s) of the terms Cs(L). Recall also (Theorem 1.69 and its proof) that C sends quasi-
isomorphisms of L∞ algebras to quasi-isomorphisms of DG coalgebras. Of course such a
morphism is compatible with the bar filtration.
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Since the beginning of section 2.1 we took the precaution of working only with bireg-
ular filtrations. A filtration of a L∞ algebra L will induce a filtration on C (L), by the
simple combination of the induced filtrations on symmetric powers and on direct sums,
but this may not be biregular. However if we work with Cs(L), obtained from L by
a finite number of symmetric powers, and if L is a bounded-below complex, then this
will be biregular. Then we will consider C (L) as the inductive limit of the Cs(L) in the
category of filtered DG coalgebras.

Definition 2.41. Let (L,W ) be a filtered L∞ algebra. The filtration induced by W on
C (L), via W [1] on L[1] and then (W [1])�r on (L[1])�r, is called the bar-weight filtration.
We denote it by CW .

The bar-weight filtration can be seen as a convolution of the weight filtration and the
bar filtration (2.59). If (L,W,F ) is bifiltered, F induces simply a filtration F on L[1] and
then F�r on (L[1])�r, and we simply denote by F the induced filtration on C (L).

Proposition 2.42. Let L be a diagram of filtered L∞ algebras. Assume that in each
component i, Li is a bounded-below complex. Then for any s ≥ 1, Cs(L) is a diagram
of filtered DG coalgebras for the bar-weight filtration and C (L) is an inductive limit of
diagrams of filtered DG coalgebras.

Proof. Fix a component Li of L. First work withW . As CW is induced byW [1] on Li[1]
and then by multiplicative extension, and seeing the algebraic formula for the coproduct
of the cofree coalgebra (Definition 1.39), it is clear that CW is compatible with the
graded coalgebra structure and gives C (L) the structure of an inductive limit of filtered
graded coalgebra. Then we have to show that the codifferential Q of Cs(Li) respects the
filtration, and it is enough to check it for its components qr : (L[1])�r → L[1] (r ≥ 1)
because of the explicit formula for recovering Q from its components in Lemma 1.41.

So take r elements

xj[1] ∈ W [1]kj
Li[1]nj , j = 1, . . . , r

which means xj ∈ Wkj−1L
nj+1
i . Then

qr(x1[1]� · · · � xr[1]) = ±`r(x1 ∧ · · · ∧ xr) ∈ W(k1−1)+···+(kr−1)L
(n1+1)+···+(nr+1)+(2−r)
i

⊂ Wk1+···+kr−1L
n1+···+nr+2
i = W [1]k1+···+krLi[1]n1+···+nr+1. (2.60)

Then check the compatibility for F on LC. This is easier, since it is induced directly by
F (and not F [1]). Take r elements

xj[1] ∈ F pjLC[1]nj , j = 1, . . . , r

which means xj ∈ F pjL
nj+1
C and then directly

qr(x1[1]� · · · � xr[1]) = ±`r(x1 ∧ · · · ∧ xr) ∈ F p1+···+prL
(n1+1)+···+(nr+1)+(2−r)
C

= F p1+···+prLn1+···+nr+2
C = F p1+···+prLC[1]n1+···+nr+1.
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Remark 2.43. The above proposition is true more generally if L is a diagram of filtered
L∞ algebras whose higher operations shift the weight filtration as in Remark 2.40. In
this case, for r ≥ 3, the operation `r satisfies

`r(Wk1L
n1
i ∧ · · · ∧WkrC

nr
i ) ⊂ W(k1+···+kr)+(r−2)L

(n1+···+nr)+(2−r)
i

and in equation (2.60) of the preceding proof qr satisfies

qr(x1[1]�· · ·�xr[1]) = ±`r(x1∧· · ·∧xr) ∈ W(k1−1)+···+(kr−1)+(r−2)L
(n1+1)+···+(nr+1)+(2−r)
i

= Wk1+···+kr+2L
n1+···+nr+2
i ⊂ Wk1+···+kr+1L

n1+···+nr+2
i = W [1]k1+···+krLi[1]n1+···+nr+1.

(2.61)

We arrive finally at our main goal. For this we follow closely the method of Hain
[Hai87, § 3] for commutative DG algebras, re-writing it for L∞ algebras. See also [PS08,
§ 8.7].

Theorem 2.44. Let L be a mixed Hodge diagram of L∞ algebras. Assume that each
component Li is non-negatively graded (Lni = 0 for n < 0) and that H0(L) = 0. Then
Cs(L) is a mixed Hodge diagram of coalgebras for any s ≥ 1 and C (L) is an inductive
limit of mixed Hodge diagrams of coalgebras.

Proof. The main statement to prove is that Cs(L) is a mixed Hodge complex and for this
we need to check the axioms of Definition 2.27. We already know that it is a diagram
of filtered DG coalgebras and then C (L) will obviously be an inductive limit in the
category of mixed Hodge diagrams of coalgebras. So we fix s ≥ 1 and we fix temporarily
a component Li.

Since we took the precaution of working with inductive limits, Cs(Li) is a bounded-
below complex because it is obtained by a finite number of symmetric powers and because
the induced filtration W is biregular. This is the axiom 1.

The Lemma 1.79 and its proof almost check the axiom 3. Namely Hn(Li) is finite-
dimensional for all n so we see from the cited proof that for the spectral sequence for C

CE
−s,n+s
1 = Hn((Li[1])�s) =⇒ CE

−s,n+s
∞ = GrC

s H
n(C (Li)).

By the Künneth formula and since Li is bounded below, Hn((Li[1])�s) is finite-dimensio-
nal. So at infinity the term GrC

s H
n(C (Li)) is also finite-dimensional and on Hn(C (Li))

the induced bar filtration is by finite-dimensional sub-vector spaces.
To check the other axioms we need to compute the first pages of the spectral sequence

for the bar-weight filtration. Since W and CW are decreasing filtrations, we work with
−k instead of k. We denote by Cs(Li)m the component of total degree m in Cs(Li). Then
by definition of the spectral sequence

CWE
−k,q
0 (Cs(Li)) = GrCW

k Cs(Li)−k+q.

Since

CWk(Li[1])�r =
⊕

k1+···+ks=k
W [1]k1Li[1]� · · · �W [1]ksLi[1]

=
⊕

k1+···+kr=k−r
Wk1Li[1]� · · · �WksLi[1]
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it follows that

GrCW
k Cs(Li)−k+q =

s⊕
r=1

GrWk−r((Li[1])�r)−k+q =
s⊕
r=1

GrWk−r(L∧ri )−k+q+r.

So we recognize

CWE
−k,q
0 (Cs(Li)) =

s⊕
r=1

WE
−k+r,q
0 (L∧ri ). (2.62)

The differential d0 on CWE
−k,•
0 (Cr(Li)) is induced by the codifferential Q := ∑

qr of
C (Li). Crucial here is the equation (2.60) appearing in the preceding proof, which shows
that qr is zero on GrCW

k C (Li) for all r ≥ 2. Thus d0 is only induced by q1, which is
up to sign d[1], and it is the sum of the d0’s appearing on the right side of (2.62). But
by Proposition 2.30 L∧r is a mixed Hodge complex and this right side is a direct sum of
terms WE0 of mixed Hodge complexes.

This computation allows us to check the axioms 2 and 4 for mixed Hodge complexes.
Let

ϕu : (Li,W ) ≈−→ (Lj,W )
be some comparison morphism between the two components Li, Lj, which by hypothesis
is a filtered quasi-isomorphism. By the Künneth formula (combined with the fact that
we work with bounded-below complexes) ϕu induces a filtered quasi-isomorphism

((Li)∧r,W∧r) ≈−→ ((Lj)∧r,W∧r)

so it induces an isomorphism

WE
−k+r,q
0 (L∧ri ) '−→ WE

−k+r,q
0 (L∧rj ).

So equation (2.62) tells us precisely that ϕu induces a filtered quasi-isomorphism

(Cs(Li),CW ) ≈−→ (Cs(Lj),CW )

and this is the axiom 2.
The axiom 4 has to be checked in the component over C carrying also the filtration

F . By this axiom for L∧rC the differential of WE−k+r,•
0 (L∧rC ) is strictly compatible with

the induced filtration F , so from equation (2.62) the differential of CWE
k,•
0 (Cr(LC)) is the

direct sum of these and is also strictly compatible with F .
To check the last axiom we compute the spectral sequence at the page E1. By defini-

tion
CWE

−k,q
1 (Cs(Li)) = H−k+q(GrCW

k Cs(Li))
where the cohomology is computed with respect to d0. Then using (2.62)

H−k+q(GrCW
k Cs(Li)) =

s⊕
r=1

H−k+q(GrWk−r(L∧ri )•+r) =
s⊕
r=1

WE
−k+r,q
1 (L∧ri ).

So, put together,

CWE
−k,q
1 (Cs(Li)) =

s⊕
r=1

WE
−k+r,q
1 (L∧ri ). (2.63)
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Since L∧r is a mixed Hodge complex, in equation (2.63) the terms on the right side

WE
−k+r,q
1 (L∧ri ) = H−k+r+q(GrWk−r L∧ri )

glue to, when varying i, a pure Hodge structure of weight q. So does their direct sum
and this proves that the terms

CWE
−k,q
1 (Cs(Li)) = H−k+q(GrCW

k Cs(Li))

define a pure Hodge structure of weight q. This checks the last axiom 5.

We see that this construction is functorial. Furthermore we have the analogue of
Theorem 1.69.

Lemma 2.45 (Compare with Thm. 1.69). Let ϕ : L ≈−→ L′ be a quasi-isomorphism of
mixed Hodge diagrams of L∞ algebras satisfying both the hypothesis of Theorem 2.44.
Then the induced morphism C (ϕ) is a quasi-isomorphism of mixed Hodge diagrams of
coalgebras.

Proof. By the functoriality and explicit nature of the bar construction, it is already
clear that C (ϕ) is a morphism of diagrams of filtered DG coalgebras, compatible with
the bar filtration. Then, following the proof of the preceding theorem, we see that in the
component i and in equation (2.63) the hypothesis tells us that ϕi induces an isomorphism
on the right-hand side, so it induces an isomorphism on the left-hand side. Similarly for
the bifiltered part we repeat the arguments replacing LC by GrpF (LC).

Corollary 2.46. Under the hypothesis of Theorem 2.44, the sub-coalgebras of H0(C (L))
given by the canonical filtration carry a compatible mixed Hodge structure (Defini-
tion 2.17). The dual H0(C (L))∗, to which we add a unit with its trivial mixed Hodge
structure to form a pro-Artin algebra R, is a projective limit of local Artin algebras
R/(mR)s carrying a mixed Hodge structure. A quasi-isomorphism ϕ : L ≈−→ L′ between
such mixed Hodge diagrams of L∞ algebras induces an isomorphism R

'−→ R′ between
the corresponding algebras with their mixed Hodge structure.

Proof. In Lemma 1.79 we proved that the canonical filtration of H0(C (L)) is induced by
the bar filtration. So our main Theorem 2.44 proves that these sub-coalgebras, which
are given by the image of H0(Cs(L)) in H0(C (L)) where Cs(L) is a mixed Hodge com-
plex, have mixed Hodge structures. We see, from the various compatibilities with the
filtrations, that this mixed Hodge structure is compatible with the coalgebra structure.
In Lemma 1.77 we explained how the inductive limit of the H0(Cs(L)) is dual to the
projective limit of the H0(Cs(L))∗, and the dual algebra of a coalgebra carries a natural
mixed Hodge structure compatible with the multiplication. The base field k has a trivial
mixed Hodge structure. So one can form the pro-Artin algebra

R := k⊕H0(C (L))∗

and it is a projective limit of the R/(mR)s, dual to k ⊕ H0(Cs(L)), which are Artin
algebras with a compatible mixed Hodge structure (alternatively, mR/(mR)s is dual to
H0(Cs(L))).

This is clearly functorial in L and the statement for quasi-isomorphisms follows di-
rectly from Lemma 2.45.
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Chapter 3

Geometry

In the next sections we present several different geometric situations concerning a com-
plex manifold X and a representation ρ of its fundamental group into a linear algebraic
group G. In each of them we construct an appropriate augmented mixed Hodge diagram
of Lie algebras that controls the deformation problem as in the classical Goldman-Millson
theory. Then the machinery we developed in the two preceding chapters gives us directly
and functorially a mixed Hodge structure on the complete local ring Ôρ of the represen-
tation variety Hom(π1(X, x), G) at ρ. The section 3.1.1 has all details written and serves
as a model of the construction. The core of the method is resumed in Theorem 3.3. The
other sections present variations of this situation, in which we emphasize the construction
of a mixed Hodge diagram.

We will always use the letter E to refer to C∞ differential forms, Ω for holomorphic
differential forms and A for analytic differential forms.

3.1 Compact case
The case where X is a compact Kähler manifold is much easier to deal with because

the usual algebra of C∞ differential forms on X already forms a mixed Hodge complex.
The complex of differential forms with coefficients in a variation of Hodge structure is
also known to form a mixed Hodge complex by the work of Deligne-Zucker. So one can
directly study this case and apply for the first time our method. Recall that smooth
complex projective algebraic varieties are examples of compact Kähler manifolds.

3.1.1 Representations with values in a real variation of Hodge
structure

Let X be a compact Kähler manifold.

Main construction

Definition 3.1. A real polarized variation of Hodge structure of weight k on X is the
data of a local system of finite-dimensional real vector spaces V on X with a decreasing
filtration of the associated holomorphic vector bundle by holomorphic sub-vector bundles
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F• ⊂ V ⊗OX , (3.1)

a flat bilinear map
Q : V ⊗ V −→ R, (3.2)

and a flat connection
∇ : V ⊗OX −→ V ⊗ Ω1

X (3.3)

such that at each point x ∈ X the data

(Vx,F•x , Qx) (3.4)

forms a polarized Hodge structure of weight k (Definition 2.14 and Definition 2.19).
Furthermore ∇ is required to satisfy Griffiths’ transversality:

∇(Fp) ⊂ Fp−1 ⊗ Ω1
X . (3.5)

So let x be a base point of X. Let

ρ : π1(X, x) −→ GL(Vx) (3.6)

be a representation which is the monodromy of a real polarized variation of Hodge struc-
ture (V,F•,∇, Q) of weight k on X. The local system Ad(ρ) associated to ρ is now
End(V ), which by the usual linear algebraic constructions is a polarized variation of
Hodge structure of weight 0. Explicitly

Fp End(V ⊗OX) =
{
f : V ⊗OX → V ⊗OX

∣∣∣ f(F•) ⊂ F•+p
}
. (3.7)

One constructs a real mixed Hodge diagram as follows. Let

LR := E •(X,End(V )) (3.8)

and
LC := E •(X,End(V ⊗ C)). (3.9)

One defines a filtration W which is the trivial one (everything has weight 0) and a
filtration F on LC by

F pLnC :=
⊕
r+s≥p

E r,n−r(X,F s End(V )). (3.10)

It has a conjugate filtration

F
q
LnC :=

⊕
r+s≥q

E n−r,r(X,F s End(V )). (3.11)

There is a DG Lie algebra structure as usual: locally, differential forms in L are sums of
terms α⊗ u where α is a differential form on X and u is a section of End(V ) and the Lie
bracket is

[α⊗ u, β ⊗ v] := (α ∧ β)⊗ [u, v] (3.12)
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where α∧β is the usual exterior product of differential forms and [u, v] is the Lie bracket
in End(V ).

Then we define an augmentation εx from (LR, LC,W, F ) to the mixed Hodge diagram
of Lie algebras formed by the Hodge structure on the Lie algebra g := End(Vx) with

gC = End(Vx ⊗ C) = End(Vx)⊗ C (3.13)

and the Hodge filtration is simply F • = F•x . It is given by

εx : L −→ g
ω ∈ L0 7−→ ω(x)
ω ∈ L>0 7−→ 0.

(3.14)

Theorem 3.2. The data
(LR, LC,W, F ) (3.15)

forms a real mixed Hodge diagram of Lie algebras. Together with εx : L→ g this is an
augmented mixed Hodge diagram of Lie algebras satisfying the hypothesis of Theorem 2.38.

More formally it is a diagram over the index category

I =
{

0 −→ 1←− 2
}

with
L0 = (LR,W ), L1 = (LC,W ), L2 = (LC,W, F )

and the comparison morphisms are the obvious ones.

Proof. The fact that L is a real mixed Hodge complex is essentially the classical Hodge
theory with values in a variation of Hodge structure, proved by Deligne and written
by Zucker [Zuc79]. The condition that the differential be strictly compatible with F is
known to be equivalent to the degeneration at E1 of the F -spectral sequence and the last
non-trivial axiom (axiom 5) requires Hk(L) to carry a pure Hodge structure of weight k.
Both of these statements are consequences of the Kähler identities for differential forms
with twisted coefficients and this is explained in § 2 of loc. cit. We still have to check that
the Lie bracket is compatible with the filtrations and this is clear by the formula (3.12)
since both the wedge product of differential forms and the Lie bracket on End(V ) are
compatible with the filtration F .

By definition of the filtration F • on gC, εx clearly preserves F . Then it is clear that εx
is a morphism of mixed Hodge complexes and then that it preserves the Lie brackets.

So we apply for the first time the method we developed.

Theorem 3.3. If X is a compact Kähler manifold and ρ is the monodromy of a real
polarized variation of Hodge structure on X, then there is a mixed Hodge structure on the
complete local ring Ôρ of the representation variety Hom(π1(X, x), GL(Vx)) at ρ which is
functorial in X, x, ρ.
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Proof. Over both fields R and C, L and its augmentation control the deformation theory
of ρ. This is the main theorem of Goldman-Millson (Theorem 1.30) and, combined with
Remark 1.31 (change of base field), we say that the functor of deformations of ρ is
controlled by the augmented mixed Hodge diagram of Lie algebras L. By Lemma 1.55,
this deformation functor is associated with the L∞ algebra structure on the desuspended
mapping cone C of εx.

We need to check that H0(C) = 0. By definition of the cone, a closed element of C0

is given by a C∞ section ω of End(V ) such that d(ω) = 0, so that ω is locally constant,
and such that ω(x) = 0. So ω = 0 globally.

Then the deformation functor of ρ is pro-represented by a pro-Artin algebra that we
denote by R as in Theorem 1.80. By the pro-Yoneda lemma (Theorem 1.25) this R is
canonically isomorphic to Ôρ. Again all this construction commutes with the change of
base field so we work with C as mixed Hodge diagram. The augmented mixed Hodge
diagram of Lie algebras we just have defined satisfies the hypothesis of our Theorem 2.38.
So C is a mixed Hodge diagram of L∞ algebras. Then we apply the main Theorem 2.44
(or its Corollary 2.46) to get a mixed Hodge structure on the pro-Artin algebra R, which
as we said is canonically isomorphic to Ôρ (as pro-Artin algebra, so that each quotients
by powers of the maximal ideals are isomorphic). And this induces the mixed Hodge
structure on Ôρ.

By definition each quotient Ôρ/mn carries a mixed Hodge structure (in the usual
sense, finite-dimensional) and each map Ôρ/mn+1 → Ôρ/mn is a morphism of mixed
Hodge structures. The cotangent space m/m2 also carries a mixed Hodge structure.

Description of this mixed Hodge structure

For the moment it is not proved that this mixed Hodge structure is the same as in
[ES11] though there are strong indications for it. However describing the cotangent space
(Definition 1.10) is easily tractable via the spectral sequence for the bar-weight filtration.

So let us describe the weight filtration. The first obvious thing is that it has non-
positive weights because we work with coalgebras with non-negative weights and then we
dualize (Definition 2.2.4).

The group π1(X, x) acts on Hom(π1(X, x), GL(Vx)) via ρ by conjugation. This action
is algebraic. The orbit of ρ for this action has an induced reduced subscheme structure
denoted by Ωρ. Its germ at ρ is a formal scheme Ω̂ρ that is defined by an ideal j ⊂ Ôρ. The
quotient Ôρ/j is the algebra of formal functions of Ω̂ρ. In [ES11, § 2.2.2] it is explained
that Ôρ/j is canonically isomorphic to the algebra of formal functions of the vector space
g/ε(H0(L)) at 0.

Proposition 3.4. On the cotangent space to Ôρ the only weights of the induced mixed
Hodge structure are −1, 0. The weight 0 part is (g/ε(H0(L)))∗ and the weight −1 part is
(H1(L))∗. On Ôρ the weight 0 part is Ôρ/j.

Proof. We relax the notations, writing L, ε, . . . for any of the components of the mixed
Hodge diagram. Let C be the desuspended mapping cone of ε. To access to the cotangent
space to Ôρ we use the spectral sequence for the bar-weight filtration that we computed
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in the proof of Theorem 2.44 and in particular the equation (2.63). There, replacing L
(which was an L∞ algebra) by our C, we proved that

CWE
−k,q
1 (Cs(C)) =

s⊕
r=1

H−k+r+q(GrWk−r C∧r). (3.16)

Letting s = 1 corresponds to computing the coalgebra which is dual to the cotangent
space to Ôρ. The bar-weight filtration is the natural weight filtration on C (C) and since
Ôρ is obtained by an H0, on which the construction Dec (Definition 2.8) doesn’t shift the
filtration, this is also (up to duality) the natural weight filtration of Ôρ. Furthermore by
the Theorem 2.29 of Deligne this spectral sequence degenerates at E2. Recall that the
weight filtration on C has WkC

n = WkL
n for n 6= 1 and

WkC
1 = WkL

1 ⊕Wk+1g.

So GrW0 (Cn) = Ln, GrW−1(C1) = g and all other terms GrWk (Cn) vanish. The page E1 of
the spectral sequence looks like this

q
... ...

2 H2(L) 0
1 H1(L) 0
0 H0(L) g

−1 0 −k

(3.17)

with the differential d1 going to the right and all outside terms, except on the column
−k = −1, are zero. So d1 has only one non-zero component which is exactly

ε : H0(L) −→ g.

Thus on H0(C1(C)) there are only two weight graded pieces, with

GrCW
0 H0(C1(C)) = g/ε(H0(L)), GrCW

1 H0(C1(C)) = H1(L).

Going to the dual, these give the two weight graded pieces on the cotangent space to Ôρ
as claimed.

Then we explain how Ôρ contains the ideal j defining the orbit of ρ in weight zero.
First observe that the inclusion H0(L) ⊂ L induces a morphism

Cone
(
ε : H0(L)→ g

)
[−1] −→ Cone

(
ε : L→ g

)
[−1] = C. (3.18)

Let D the desuspended mapping cone on the left-hand side with its L∞ algebra structure.
Then the map (3.18) induces an embedding

C (D) −→ C (C)

and gives by applying the pro-representability Theorem 1.80 a dual morphism

Ôρ −→ B := k⊕H0(C (D))∗. (3.19)
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We are going to show that this defines the ideal j by computing B. First D is the DG
vector space with D0 = H0(L), D1 = g and the only non-zero differential given by ε.
This admits a morphism to the DG vector space E concentrated in degree 1

degree −1 0 1 2

D : · · · // 0 // H0(L) ε //

��

g //

��

0 // · · ·

E : · · · // 0 // 0 // g/ε(H0(L)) // 0 // · · ·

(3.20)

which is a quasi-isomorphism. One can see it as a morphism of desuspended mapping
cones induced by the morphisms from the central commutative square of (3.20). So

H0(C (D)) = H0(C (E)).

But the L∞ algebra structure of Fiorenza-Manetti on

E = g/ε(H0(L))[−1] = Cone
(
0→ g/ε(H0(L))

)
[−1]

is trivial, with all operations `r for r ≥ 1 (including the differential and the Lie bracket)
being zero. Since this is concentrated in degree 1 (see also Example 1.83) it is straight-
forward to compute that

H0(C (E)) = Sym+(g/ε(H0(L))) = H0(C (D))

and that
B = k⊕H0(C (D))∗ = (Sym(g/ε(H0(L))))∗

which is the algebra of formal power series at 0 on the vector space g/ε(H0(L)). The
kernel of the map (3.19) is then the ideal j and this map is a morphism of mixed Hodge
structures, where B has pure weight 0. Using the strictness of the weight filtration for
morphisms of mixed Hodge structures, this proves that B is also GrW0 (Ôρ).

3.1.2 Variations
There are many possible variations of the hypothesis of our main theorem, concerning

the field of definition of the mixed Hodge structure and the group in which we look
at representations. In each of theses cases the variations are in the definitions and the
constructions of the mixed Hodge diagrams. The description of the mixed Hodge structure
in Proposition 3.4 holds in a similar way. So we will write the proofs much more briefly.

The first possible variation is to work with a subgroup G of GL(Vx). For example,
one can take G to be the Zariski closure of the image of ρ in GL(Vx).

Proposition 3.5. Let G be a real linear algebraic group. Let ρ : π1(X, x)→ G(R) be a
representation which is the monodromy of a real polarized variation of Hodge structure
on X. Then there is a functorial mixed Hodge structure on the local ring Ôρ of the
representation variety Hom(π1(X, x), G) at ρ.
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Proof. Re-write the proof of Theorem 3.3 by replacing GL(Vx) by G and End(Vx) by the
Lie algebra g of G. Then again one gets L that is an augmented mixed Hodge diagram
of Lie algebras over g.

The second possible variation is working with complex mixed Hodge structures. We
define them only now since these are not “mixed Hodge structures over C” in the naive
sense and if we would have taken this into account the redaction of the whole chapter 2
would have been much heavier.

Definition 3.6 ([ES11, 1.1]). A complex Hodge structure of weight k is the data of a
finite-dimensional vector space K over C with two filtrations F,G that are k-opposed.

A polarization of the complex mixed Hodge structure K is the data of a hermitian
form Q on K such that for the direct sum decomposition

K =
⊕
p+q=k

Kp,q, Kp,q := F pK ∩Gq
K (3.21)

are satisfied the conditions:
1. Q(Kp,q, Kr,s) = 0 if (p, q) 6= (r, s),
2. (−1)p+kQ is definite positive on Kp,q.
A complex mixed Hodge structure is the data of a finite-dimensional vector space K

over C with two decreasing filtrations F,G and an increasing filtration W such that each
graded part GrWk (K) with its induced filtrations F,G is a complex Hodge structure of
weight k.

For example if K is a mixed Hodge structure over k then K⊗C is canonically a mixed
Hodge structure over C with G being the conjugate filtration of F . It is polarized if K
is.

Definition 3.7. A complex mixed Hodge complex is the data of a DG vector space K
over C equipped with an increasing filtration W and two decreasing filtrations F,G such
that:

1. K is a bounded-below complex.
2. For all n ∈ Z, Hn(K) is finite-dimensional.
3. For all k ∈ Z, the differential of GrWk (K) is strictly compatible with the two

filtrations F,G.
4. For all n ∈ Z and all k ∈ Z, the filtrations F,G induced on Hn(GrWk (K)) define a

complex Hodge structure of weight k + n.

Each term of the cohomology of such a complex carries a canonical complex mixed
Hodge structure.

Definition 3.8 ([ES11, 1.8]). A complex polarized variation of Hodge structure of weight
k on X is the data of a local system of finite-dimensional complex vector spaces V
on X with a decreasing filtration of the associated holomorphic vector bundle by sub-
holomorphic bundles

F• ⊂ V ⊗OX (3.22)
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and a decreasing filtration of the associated anti-holomorphic vector bundle by anti-holo-
morphic sub-vector bundles

G• ⊂ V ⊗OX , (3.23)

with a flat connection
∇ = ∇1,0 +∇0,1 (3.24)

such that

∇1,0 : V ⊗OX −→ V ⊗ Ω1
X , (3.25)

∇0,1 : V ⊗OX −→ V ⊗ Ω1
X , (3.26)

a flat hermitian form
Q : V ⊗ V −→ C (3.27)

such at at each point x ∈ X the data

(Vx,Fx,Gx, Qx) (3.28)

forms a complex Hodge structure of weight k, and furthermore Griffiths’ transversality

∇1,0(Fp) ⊂ Fp−1 ⊗ Ω1
X , (3.29)

∇0,1(Gq) ⊂ Gq−1 ⊗ Ω1
X , (3.30)

is satisfied.

Finally, one can state the most general result:

Proposition 3.9. Let G be a complex linear algebraic group. Let ρ : π1(X, x) → G(C)
be a representation which is the monodromy of a complex polarized variation of Hodge
structure on X. Then there is a functorial complex mixed Hodge structure on the local
ring Ôρ of the representation variety Hom(π1(X, x), G) at ρ.

Proof. Re-write everything with complex mixed Hodge structures and complex mixed
Hodge complexes.

The last possible addition to the main theorem is to show that the mixed Hodge
structure on Ôρ is defined over a subfield k ⊂ R if the variation of Hodge structure is.

Definition 3.10. The polarized variation of Hodge structure (V,F•, Q,∇) over X is said
to be defined over k (where k is a subfield of R) if V is a local system of finite-dimensional
vector spaces over k, Q is defined over k, and at each point x ∈ X the data (Vx,F•x , Qx)
forms a polarized Hodge structure over k.

Proposition 3.11 (See sect. 3.2.2). In Theorem 3.3, assume that the variation of Hodge
structure is defined over k. Then the mixed Hodge structure on Ôρ is defined over k.

This we will prove in the next section dealing with the non-compact case since it
introduces the necessary DG algebra over k computing the cohomology of X that serves
as the component over k of a mixed Hodge diagram.
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3.2 Non-compact case
In the case where X is non-compact, the construction of an appropriate mixed Hodge

diagram that computes the cohomology of X is already more difficult than in the compact
case. Furthermore this construction depends on the choice of a compactification by a
divisor with normal crossings and one has to be careful when studying the functoriality
of this mixed Hodge diagram.

3.2.1 Real representations with finite image
Let X be a smooth quasi-projective algebraic variety over C. Let x be a base point

of X. Let G be a linear algebraic group over R with Lie algebra g. Let

ρ : π1(X, x) −→ G(R) (3.31)

be a representation and assume that ρ has finite image. Under these hypothesis we want to
construct an appropriate augmented mixed Hodge diagram of Lie algebras controlling the
deformation theory of ρ. The construction of such an object is already done by Kapovich-
Millson and entirely contained in [KM98, § 14–15], also reviewed as an essential tool in
the sections A.2.2 and A.3.1 of the preliminary work reproduced in the appendix A. So
we could invoke it and we would already get a mixed Hodge structure on Ôρ by the
method of Theorem 3.3. However the functoriality of such a construction is not so clear:
it uses the method of Morgan [Mor78, § 2–3] which involves many choices to construct a
mixed Hodge diagram and then the quasi-isomorphisms to compare the resulting diagrams
commute only up to homotopy. So we shall better re-write this using the construction of
mixed Hodge diagrams of Navarro Aznar [Nav87] which is totally functorial on varieties
with a given compactification.

Before entering the construction, let us explain the strategy and fix some notations.
Let the group

Φ := π1(X, x)
Ker(ρ) ' ρ(π1(X, x)). (3.32)

To Ker(ρ) ⊂ π1(X, x) corresponds a finite étale Galois cover Y → X with automorphism
group Φ that acts simply transitively on the fibers, and equipped with a fixed base point
y ∈ Y over x. It is known that Y is automatically a smooth quasi-projective algebraic
variety. The flat principal bundle P induced by the holonomy of ρ is trivial when pulled-
back to Y , as well as its adjoint bundle Ad(P ). So the DG Lie algebra of Goldman-Millson
is (over both R and C)

L := E •(X,Ad(P )) = (E •(Y, π∗Ad(P )))Φ = (E •(Y )⊗ g)Φ (3.33)

(where the exponent Φ denotes the invariants by the action of Φ). In order to construct
a mixed Hodge diagram that is quasi-isomorphic to this we want to find a mixed Hodge
diagram for Y equipped with an action of Φ, then tensor it with g, then take the invariants
by Φ.

For the augmentation, since there is a canonical identification of fibers Ad(P )x ' g
one can define an augmentation

εx : E •(X,Ad(P )) −→ g (3.34)
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exactly as in the compact case (3.14) by evaluating degree zero forms at x and higher
degree forms to zero. This augmentation can be lifted equivariantly to Y : εx comes from
the augmentation

ηx : E •(Y )⊗ g −→ g (3.35)

defined by
ηx(ω ⊗ u) := 1

|Φ|
∑
g∈Φ

εy(g.(ω ⊗ u)) (3.36)

where εy simply evaluates forms with values in g at y. Observe the notations: εy depends
on y but in the definition of ηx we sum over the whole (finite) fiber of π over x so ηx
depends only on x. Then we see that ηx induces εx when restricted to the equivariant
forms (E •(Y )⊗ g)Φ.

The construction of mixed Hodge diagrams of Navarro Aznar

Let Y be a smooth quasi-projective algebraic variety. We start by choosing a smooth
compactification

j : Y ↪→ Y (3.37)

such that the complement
D := Y \ Y (3.38)

is a divisor with simple normal crossings, all whose components are smooth. From this
situation, Navarro Aznar constructs a functorial real mixed Hodge diagram that we will
denote by MHD(Y ,D)R as follows.

The first step is to construct sheaves on Y whose cohomology will compute the co-
homology of Y . These sheaves are called the logarithmic Dolbeaut complexes ([Nav87,
§ 8]) and are constructed from analytic differentials forms on Y , to which we refer by the
letter A .

The part over R that carries the filtration W is denoted by A •
Y

(logD)R. It is a sheaf
of real filtered DG algebras. Locally near a point y ∈ Y , there are local coordinates
z1, . . . , zN such that D has equation z1 · · · zr = 0, meaning that there are r components
of D crossing at y. Then A •

Y
(logD)R is the sub-sheaf of j∗A •

Y,R locally generated by the
sections

Re
(
dzi
zi

)
, Im

(
dzi
zi

)
, ln(|zi|), 1 ≤ i ≤ r (3.39)

and
Re(dzi), Im(dzi), r + 1 ≤ i ≤ N. (3.40)

The filtration W is defined such that the sections in (3.39) have weight 1 and those
in (3.40) have weight 0, extended multiplicatively.

The part over C is a sheaf of bidifferential bigraded algebras (i.e. admitting a bigrading
and a differential that is a sum of two differentials of degrees respectively (1, 0) and (0, 1))
denoted by A •,•

Y
(logD)C and carries two filtrations W,F . Locally, it is the sub-sheaf of

j∗A
•,•
Y,C generated by the sections

dzi
zi
,

dz̄i
z̄i
, ln(|zi|), 1 ≤ i ≤ r (3.41)
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and
dzi, dz̄i, r + 1 ≤ i ≤ N. (3.42)

The filtration W is defined such that the sections in (3.41) have weight 1 and those
in (3.42) have weight 0. The filtration F is defined as usual: sections in F p have at least
p terms dz. There is a canonical isomorphism

A •
Y

(logD)R ⊗ C '−→ A •
Y

(logD)C (3.43)

where in the right-hand side we consider the associated sheaf of (simple) DG algebras.
Now there are various filtered quasi-isomorphisms relating the Dolbeaut complex to

other complexes that are well-known to compute the cohomology of Y by sheaf theory
or Hodge theory. There is a bifiltered quasi-isomorphism

(Ω•
Y

(logD),W, F ) ≈−→ (A •
Y

(logD)C,W, F ). (3.44)

that compares the Dolbeaut complex over C with the complex of holomorphic forms with
logarithmic poles along D. This last one computes the cohomology of Y with complex
coefficients via the inclusion

Ω•
Y

(logD) ↪→ j∗E
•
Y,C (3.45)

which is a quasi-isomorphism (see for example [Voi02, § 8.2.3]), and the filtrationsW,F in-
duced on the cohomology are simply induced by the filtrations of the logarithmic complex.
Similarly, there is a (longer !) fixed functorial chain of filtered quasi-isomorphisms show-
ing that the real Dolbeaut complex computes the cohomology of Y with real coefficients
and induces the filtration W over R. Together with the canonical isomorphism (3.43)
this induces a real structure on the cohomology with complex coefficients.

We sum up this situation by the following statement.

Theorem 3.12 ([Nav87, § 8]). The Dolbeaut complex computes the cohomology of Y
over R and C, with the induced filtrations W,F , via a fixed chain of canonical filtered
quasi-isomorphisms.

The second step is to construct functorial resolutions for these sheaves that will also
have a structure of mixed Hodge diagram of algebras. Let F • be a sheaf of DG algebras
on Y over the field k of characteristic zero. The Thom-Whitney resolution associates to
F • a DG algebra over k whose cohomology computes the sheaf cohomology of F by the
following sequence of operations:

1. First consider the Godement resolution F • → G as a strictly cosimplicial sheaf of
DG algebras, see [God58, § II.4.3 and Appendice].

2. Then take the global sections of G over Y . One gets a strictly cosimplicial DG
algebra Γ(Y ,G ).

3. To Γ(Y ,G ) apply the Thom-Whitney simple functor [Nav87, § 2]. It is obtained
by first tensoring with the simplicial algebra of polynomial differential forms on
the simplex Ωk(∆) of Definition 1.62, which gives an algebra with components
naturally indexed by four integers that is simplicial in one of them, cosimplicial
in another, and a bidifferential bigraded algebra in the last two indices. Then
consider the end of this simplicial-cosimplicial object, which is a bidifferential
bigraded algebras (this eliminates the simplicial-cosimplicial dependency), and
take the associated simple DG algebra.
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The composition of these operations is denoted by RTWΓ(Y ,F •). If F • has filtra-
tions then RTWΓ(Y ,F •) has induced filtrations and a filtered quasi-isomorphism between
sheaves induces a filtered quasi-isomorphism between their Thom-Whitney resolutions.
Furthermore the Thom-Whitney resolution commutes with the change of coefficients (at
least for fields). So it can be used to construct mixed Hodge diagrams:

Theorem 3.13 ([Nav87, 8.15]). The data

RTWΓ
(
Y , (A •

Y
(logD)R,W )

)
, RTWΓ

(
Y , (A •

Y
(logD)C,W, F )

)
, (3.46)

defines a real mixed Hodge diagram of algebras that computes canonically the cohomology
of Y with its mixed Hodge structure. It is functorial in the pair (Y ,D). We denote it by
MHD(Y ,D)R.

Equivariant mixed Hodge diagram

Take back our variety X with a representation ρ of its fundamental group with finite
image and the cover π : Y → X with Galois group Φ. Compactify X ↪→ X by a
divisor with normal crossings DX := X \X whose components are smooth, into a smooth
projective varietyX, using the classical theorem of Hironaka. By the theorem of Sumihiro
on equivariant completion [Sum74], it is possible to compactify Y ↪→ Y

′ so that the action
of Φ extends to Y ′. And then by the work of Bierstone-Milman on canonical resolutions
of singularities [BM97, § 13] one can construct a resolution of singularities Y → Y

′ to
which the action of Φ lifts. The smooth normal crossing divisor D := Y \ Y lives above
DX and π extends to a finite morphism

π : Y −→ X (3.47)

ramified over DX and invariant under the action of Φ. We sum up this situation in the
diagram

Φ yY �
�

//

π

��

Y

π
��

x Φ

X �
�

// X

(3.48)

and we call this an equivariant compactification of π : Y → X. Actually, X plays no role
to define Y .

Then we can introduce the mixed Hodge diagram MHD(Y ,D)R of Theorem 3.13 that
computes the cohomology of Y . To go from the cohomology of Y to that of X we use
the following simple lemma. If a group Φ acts on a DG vector space V we denote by V Φ

the sub-DG vector space of invariants by Φ.

Lemma 3.14. Let V be a DG vector space over a field k of characteristic zero and let
Φ be a finite group that acts on V . Then on cohomology

H(V Φ) = H(V )Φ. (3.49)

As a consequence, if
ψ : V ≈−→ W
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is a Φ-equivariant quasi-isomorphism between DG vector spaces on which Φ acts, then
the induced morphism

ψΦ : V Φ ≈−→ WΦ (3.50)
is again a quasi-isomorphism.

Proof. An element in Hn(V )Φ is given by a closed element v ∈ V n such that for all g ∈ Φ
there exists an element βg ∈ V n−1 with g.v = v+ d(βg). Of course there is a natural map

ϕ : Hn(V Φ) −→ Hn(V )Φ

induced by sending a closed element v of V n such that g.v = v for all g ∈ Φ to an element
of Hn(V )Φ (taking βg = 0). And there is a cross-section to ϕ: if v ∈ Hn(V )Φ, take

w := 1
|Φ|

∑
g∈Φ

g.v = v + d

 1
|Φ|

∑
g∈Φ

d(βg)


then g.w = w for all g ∈ Φ, so w defines a cohomology class in Hn(V Φ) that is sent by ϕ
to v. This proves that ϕ is an isomorphism.

Since the group Φ acts on (Y ,D), it acts on all objects that are functorially attached to
it. In particular it acts on the whole mixed Hodge diagram MHD(Y ,D)R (by morphisms
of mixed Hodge diagrams) and one can define the invariant diagram MHD(Y ,D)Φ

R by
taking the invariants in each component.

Lemma 3.15. The invariant diagram MHD(Y ,D)Φ
R is again a mixed Hodge diagram and

it computes canonically the cohomology of X with its mixed Hodge structure.

Proof. Lemma 3.14 allows us to check all the axioms of mixed Hodge diagrams of Def-
inition 2.27. Note that Φ automatically acts on the cohomology of such a diagram by
morphisms of mixed Hodge structures, so the invariant cohomology is again a mixed
Hodge structure.

Then Lemma 3.14 again, combined with the chain of canonical quasi-isomorphisms
described for the Theorem 3.12 relating the Dolbeaut complex to other canonical and
functorial complexes computing the cohomology of Y , shows that MHD(Y ,D)Φ

R computes
the cohomology of X: for example it is related canonically to the algebra E •(Y,C) via the
maps (3.44) and (3.45) and the algebra of invariants under Φ of E •(Y,C) is E •(X,C).

The controlling mixed Hodge diagram of augmented Lie algebras

Equation (3.33) and the related remarks explain how to get the controlling DG algebra
of Goldman-Millson in this situation. Consider the diagram of DG Lie algebras

M :=
(

MHD(Y ,D)R ⊗ g
)Φ

(3.51)

(in the component over the field k, we tensor by gk over k then take the invariants where
Φ acts on both the DG algebra over k and gk).

Lemma 3.16. This M is a mixed Hodge diagram of Lie algebras that is canonically
quasi-isomorphic to the DG Lie algebra L of Goldman-Millson controlling the deformation
theory of ρ.
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Proof. First do it on Y , on which π∗Ad(P ) is trivial and there is no action of Φ. Then the
cohomology functors, as well as the functor Gr, commute with the operation of tensoring
with g. So it is easy to see that M is a mixed Hodge diagram of Lie algebras. And by
arguments similar to the proof of Lemma 3.15 this M is related by a canonical chain
of quasi-isomorphisms to the DG Lie algebra of Goldman-Millson, which is simply here
E •(Y, g) (over R as well as over C). For this we simply have to tensor by g the whole
chain of quasi-isomorphisms relating MHD(Y ,D)R to E •(Y ).

Now on X, the controlling DG Lie algebra of Goldman-Millson is exactly

L = E •(X,Ad(P )) = (E •(Y )⊗ g)Φ. (3.52)

So by arguments similar to the proof of Lemma 3.15, using the Lemma 3.14, we see that
when we take the invariants by Φ, M is quasi-isomorphic to L. By the fundamental
Theorem 1.19 one can use M to control the deformation theory of ρ.

Remark 3.17. We see from the proof that a quasi-isomorphism ϕ between two such mixed
Hodge diagrams associated with two equivariant compactifications Y , Y ′, with ϕ equivari-
ant with respect to Φ, induces a quasi-isomorphismM

≈−→M ′ between the corresponding
mixed Hodge diagrams of Lie algebras.

The last step is to identify the augmentation εx, via its lift ηx to Y , but at the level
of M . Roughly the argument is that on a manifold Y the evaluation of differential forms
with values in k at a point y comes from the purely topological and sheaf-theoretical data
of the canonical morphism of sheaves from the constant sheaf kY to the sheaf concentrated
on y with stalk k denoted by ky. In some sense it evaluates sections of kY at y. Since
different resolutions of kY , that compute the cohomology of Y with coefficients in k,
are always quasi-isomorphic by usual arguments of homological algebra, and since ky
is already flasque so its resolution is essentially k itself, then to each such resolutions
corresponds a canonical evaluation morphism to k.

So our augmentation of M is obtained by several elementary steps. Recall that x is
the base point of X and y is the base point of Y over x. Let k be the field R or C. Let
ky be the sheaf on Y supported on y with stalk k at y. There is a natural augmentation
seen as a morphism of sheaves

µy : A •
Y

(logD)k −→ ky (3.53)

that, as usual, evaluates forms of degree zero at y. By the functoriality of the Thom-
Whitney construction, this induces a morphism

RTW (µy) : RTWΓ
(
Y ,A •

Y
(logD)k

)
−→ RTWΓ(Y ,ky). (3.54)

The left-hand side is a component of the mixed Hodge diagram MHD(Y ,D)R. The right-
hand side is simply the field k. Namely the sheaf ky is flasque so its Godement resolution
is simply ky. Then the set of global sections is the field k, seen as a cosimplicial DG
algebra. And the Thom-Whitney construction just gives k.

From this one defines an augmentation

νx : RTWΓ
(
Y ,A •

Y
(logD)k

)
⊗ g −→ g (3.55)
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as (compare with (3.36))

νx(ω ⊗ u) := 1
|Φ|

∑
g∈Φ

(RTW(µy)⊗ idg)(g.(ω ⊗ u)). (3.56)

When restricted to the invariants by Φ, this induces an augmentation (still denoted by νx)

νx : M =
(

MHD(Y ,D)R ⊗ g
)Φ
−→ g. (3.57)

Lemma 3.18. Via the canonical chain of quasi-isomorphisms relating M to L, this νx
corresponds to the augmentation εx of (3.34).

By this we mean that the whole canonical chain of quasi-isomorphisms relating M
to L has augmentations to g, commuting with the quasi-isomorphisms, and relating νx
to εx.

Proof. First do it on Y , without the action of Φ. Then εy is also induced by the augmen-
tation at the level of sheaves

E •Y,k −→ ky
then by taking global sections and tensoring with g. This augmentation commutes with
the chain of quasi-isomorphisms relating E •Y to A •

Y
(logD), via the intermediate augmen-

tation of Ω•
Y

(logD) which is defined by the same obvious way, evaluating degree zero
holomorphic forms at y (important is the fact that y is in Y and not on D). This is
enough to prove the claim on Y , since then it is easy to tensor all the chain of augmented
quasi-isomorphisms by g.

One goes from Y to X by simply comparing the formulas (3.56) and (3.36), from
which we see by construction that νx corresponds to the augmentation that we denoted
by ηx, and then by going to the invariants under Φ we see that νx on M corresponds to
εx on L.

Conclusion

Putting everything together, we get a mixed Hodge structure on Ôρ which is a priori
functorial in the whole data of X, x, ρ, Y, y, Y . But Y, y are obtained functorially from
X, x, ρ and different choices for Y will lead to quasi-isomorphic mixed Hodge diagrams,
as in the classical case where the mixed Hodge structure of Deligne on the cohomology
of a variety is independent of the choice of a compactification. Such quasi-isomorphic
augmented mixed Hodge diagrams of Lie algebras will lead to the same mixed Hodge
structure on Ôρ.

So our main theorem in the non-compact case is:

Theorem 3.19. The data of M in (3.51) and νx in (3.57) forms an augmented mixed
Hodge diagram of Lie algebras that controls the deformation theory of ρ. From this there
is a mixed Hodge structure on Ôρ that is functorial in X, x, ρ.

Proof. Combining our Lemma 3.16 with our Lemma 3.18 shows the first part of the state-
ment. Then the mixed Hodge structure on Ôρ is constructed as in our model Theorem 3.3.
By construction it is functorial in the data of X, x, ρ, Y, y, Y .
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Now check the functoriality. As we said Y, y are obtained functorially from the data of
X, x, ρ. This is part of the usual Galois correspondence between covering spaces of (X, x)
and subgroups of π1(X, x). Since the augmentation depends only on these on not on the
compactification, then by combining Lemma 2.39, Lemma 2.45 and Corollary 2.46 we
have to show the independence of the controlling mixed Hodge diagram of Lie algebras
M on the compactifications, up to quasi-isomorphisms, and the functoriality of this. And
for this, by Remark 3.17, we are reduced to studying the independence of MHD(Y ,D)R
on the compactifications and the functoriality of this up to quasi-isomorphism. This is
well-known already in the work of Navarro Aznar but we have to be careful with the
equivariance condition on compactifications.

So as a first step we prove the independence on Y . We start with X, x, Y, y fixed.
One can also fix a compactification X that plays anyway no role in the construction. Let
Y
′
, Y
′′ be two equivariant compactifications of Y . As in [Del71b, 3.2.II.C] we look for a

third compactification Y which dominates both, i.e. with two morphisms of pairs

(Y ,D)
j′

zz

j′′

%%

(Y ′, D′) (Y ′′, D′′).

(3.58)

This Y can be obtained as a resolution of singularities of the closure of the image of the
diagonal embedding of Y into Y ′ × Y ′′. But by invoking again the combination of the
theorem of Sumihiro on equivariant completion combined with the theorem of Bierstone-
Milman on canonical resolutions of singularities, one can find such an Y to which the
action of Φ lifts. So in the diagram (3.58) the compactification Y dominates the two
others as equivariant compactifications. Then j′ and j′′ both induce quasi-isomorphisms
of mixed Hodge diagrams.

As we said, by tensoring with g and taking the invariants, they also induce quasi-
isomorphisms of the corresponding controlling mixed Hodge diagrams of Lie algebras M ,
M ′, M ′′, augmented over g, and then lead to the same mixed Hodge structure on Ôρ.

Then we prove the functoriality. A morphism

f : (X1, x1, ρ1) −→ (X2, x2, ρ2),

meaning that we require f(x1) = x2 and the commutativity of

π1(X1, x1) f∗
//

ρ1
&&

π1(X2, x2)

ρ2
xx

G(R),

induces a morphism
Φ1 yY1

h //

π1
��

Y2

π2
��

x Φ2

X1 f
// X2
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compatibly with the base points and equivariant with respect to Φ1, that acts on Y1 and
on Y2 via the induced morphism of groups

ϕ : Φ1 → Φ2.

Then we can upgrade this to a morphism of equivariant compactifications: start with
such compactifications Y 1, Y 2 and consider the graph Γh of h seen as a subset

Γh ⊂ Y1 × Y2 ⊂ Y 1 × Y 2.

By construction, Γh is Φ1-invariant, where Φ1 acts diagonally. So is its Zariski closure.
This defines a morphism Y 1 → Y2 which is ϕ-equivariant. Such a morphism induces a
morphism of mixed Hodge diagrams

MHD(Y2, D2)R −→ MHD(Y1, D1)R

and then a morphism of mixed Hodge diagrams of Lie algebras M2 → M1 augmented
over g. So the canonically induced morphism

Ôρ1 −→ Ôρ2

is a morphism of mixed Hodge structures.

Description of this mixed Hodge structure

Again it is clear that the mixed Hodge structure we constructed on Ôρ has non-
positive weights and we can describe its cotangent space via the spectral sequence for the
bar-weight filtration. The proof of Proposition 3.4 applies in the same way to show that
that the graded piece of weight zero of Ôρ is isomorphic to the algebra of formal power
series on g/ε(H0(L)) at 0 and there are two additional pieces, of weight −1 and −2.
However in the case of finite representations ε is surjective so the only weights are −1, 2.
So via the functorial Deligne splitting (Definition 2.18) Ôρ has a grading (as complete
local ring) with generators of weight 1, 2.

Proposition 3.20. The mixed Hodge structure on Ôρ has weights only −1 and −2 on its
cotangent space. Thus the grading of Ôρ obtained via the Deligne splitting has generators
of weight 1, 2.

Proof. Take back the proof of Proposition 3.4. Denote simply by ε : L→ g a controlling
augmented mixed Hodge diagram of Lie algebras and by C its desuspended mapping
cone. Re-write the spectral sequence for the cotangent space (s = 1 in (3.16))

CWE
−k,q
1 (C1(C)) = H−k+1+q(GrWk−1C). (3.59)

By definition Ln has weights only between 0 and n. The page E1 of the spectral sequence
is now

q
... ... ...

2 H1(GrW1 L) H2(GrW0 L) 0
1 0 H1(GrW0 L) 0
0 0 H0(L) g

−2 −1 0 −k

(3.60)
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from which we see that on H0(C1(C)) there are a priori three graded pieces, of weight
0, 1, 2. The part of weight zero is as in the compact case

GrCW
0 H0(C1(C)) = g/ε(H0(L)).

But for representations with finite image ε is surjective on H0(L). Namely it is trivially
surjective at the level of the finite cover Y and an element ω in g can be lifted to Y and
moreover, by an averaging procedure as in Lemma 3.14, can be lifted as an equivariant
element and then descends to X. So there is no graded part of weight zero.

By passing to the dual, on the cotangent space the only weights of the mixed Hodge
structure are −1,−2. And then by the Deligne splitting on can see the grading of Ôρ
over C to be generated in weights 1, 2.

Via this spectral sequence we understand well where these weights come from. We
can also recover some form of Theorem A.2.

Proposition 3.21. If the mixed Hodge structure on H1(Y ) is pure of weight 2 (equiva-
lently, if b1(Y ) = 0) then the mixed Hodge structure on the tangent space to Ôρ is pure
of weight −2. The induced grading on Ôρ has generators of pure weight 2.

Proof. As is explained through chapter A, under this condition H1(L) also has pure
weight 2. In the above spectral sequence (3.60) the term H1(GrW0 L) vanishes. And then
the only weight on H0(C1(C)), which is dual to the cotangent space, is 2.

3.2.2 Variations
As in the compact case, there are several variations we can work out from the main

Theorem 3.19. We keep the same notations and hypothesis as in the preceding section.
The first one is that when we drop the part over R of the mixed Hodge diagram

MHD(Y ,D)R one gets a complex mixed Hodge diagram and we denote it by MHD(Y ,D)C.

Proposition 3.22. Assume that G and ρ are defined over C. Then Ôρ has a functorial
complex mixed Hodge structure.

Proof. In this case g is defined over C. Re-write everything with the complex mixed
Hodge diagram MHD(Y ,D)C. The controlling mixed Hodge diagram of Lie algebras is

M :=
(

MHD(Y ,D)C ⊗ g
)Φ

where the tensor product is over C.

The second one, that until now we didn’t do in the compact case, is to show that the
mixed Hodge structure of Ôρ is defined over a subfield k ⊂ R if G and ρ are. For this we
review a little bit more of the theory of Navarro Aznar, who constructs a mixed Hodge
diagram MHD(Y ,D)k to compute the mixed Hodge structure over k on the cohomology
of Y .

For any sheaf of DG algebras F • over k on Y and for a continuous map j : Y → Z
of topological spaces, the Thom-Whitney direct image is the sheaf of DG algebras on Z
defined by the successive operations:
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1. Consider the Godement resolution F • → G .
2. Apply the functor j∗ to G . This is a strictly cosimplicial sheaf of DG algebras on
Z.

3. Then apply the Thom-Whitney simple functor for sheaves to f∗G .
The resulting sheaf is denoted by RTWj∗F •. Its cohomology computes canonically the
derived direct image.

If we apply this to j : Y ↪→ Y , and if kY is the constant sheaf k on Y , then

RTWΓ(Y ,RTWj∗kY ) (3.61)

is the part over k of the mixed Hodge diagram MHD(Y ,D)k. It is equipped with the
canonical filtration [Nav87, § 6.16]. Its tensor product with R, which is

RTWΓ(Y ,RTWj∗RY ), (3.62)

is related by a fixed canonical chain of filtered quasi-isomorphisms to the real Dolbeaut
complex. So it induces the structure over k on the cohomology of Y and defines the
filtration W over k. All this is of course defined at least over Q and obtained over k by
change of coefficients.

Proposition 3.23. Assume that G and ρ are defined over a subfield k ⊂ R. Then the
mixed Hodge structure of Ôρ is defined over k.

Proof. Re-write everything with the mixed Hodge diagram MHD(Y ,D)k. The controlling
mixed Hodge diagram of Lie algebras is

M :=
(

MHD(Y ,D)k ⊗ g
)Φ

where, since g is defined over k, the tensor product is taken over k in the component
over k.

The augmentation is obtained from the natural map kY → ky and thus is also defined
over k. So this defines an augmented mixed Hodge diagram of Lie algebras over k and
constructs on Ôρ a mixed Hodge structure over k.

With these ideas we can come back to the compact case and define mixed Hodge
structures over k. Let X be a compact Kähler manifold. Then in [Nav87, § 6–7] Navarro
Aznar proves that a mixed Hodge diagram for computing the cohomology and the Hodge
structure of X over k is given by the algebra RTWΓ(X,kX), in addition to the usual
algebras of differential forms E •(X,R) and E •(X,C).

Then we can complete the proof of Proposition 3.11. Recall that in this case ρ is the
monodromy of a variation of Hodge structure defined over k, so that V is a local system
of finite-dimensional vector spaces over k.

Proof of Proposition 3.11. Let L be the sheaf of sections of End(V ). It is a local system
of finite-dimensional Lie algebras over k. Then RTWΓ(X,L) is a DG Lie algebra over k
(the construction described in [Nav87, § 3] for commutative algebras works as well for Lie
algebras). So we use it as the part over k of the mixed Hodge diagram of Lie algebras L
of Theorem 3.2. The augmentation at x comes from the canonical morphism of sheaves

L −→ Lx
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where the right-hand side is the sheaf supported at x with stalk the Lie algebra End(Vx),
and with RTWΓ(X,Lx) = End(Vx).
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Appendix A

A criterion for quadraticity of a
representation of the fundamental
group of an algebraic variety

This is a reproduction of the published article [Lef17], with only few typesetting and
notational changes for coherence.

Important however is the reference [Eys16], which is an essential part in the proof of
Theorem A.14 and was cited as “personal communication” and “work in preparation”,
that has now appeared.

Let us comment briefly: in section A.3.2 we claimed that we constructed a minimal
model in the sense of Lie algebras. Since then we worked out this theory and found
that this G is not minimal; namely a minimal model should at least be free as graded
Lie algebra and obtained in a similar way to Sullivan’s construction of minimal models
[Sul77] for commutative DG algebras by an inductive limit of elementary extensions. Such
a minimal model is then a cofibrant replacement for an appropriate model structure on
the category DG−Liek and this is very well-known to homotopy theorists, though not
written in such a concrete way in the literature. The most recent work in this direction
is [CR16] which treats many other operads at the same time.

Also, our main result could be related to a series of statements purity implies formality
(see [Dup15]), that we were not aware of.

A.1 Introduction
Many restrictions are known on the question of whether a given finitely presented

group Γ can be obtained as the fundamental group of a compact Kähler manifold, and
some restrictions are known for smooth complex algebraic varieties. See [ABC+96] for an
introduction to these questions. One way to study these groups is via their representations
into a linear algebraic group G over R: there exists a scheme Hom(Γ, G) parametrizing
such representations ρ (see section A.2.1) and it is sometimes possible to describe ρ as a
singularity in Hom(Γ, G), up to analytic isomorphism (see section A.2.1).

The first known theorem in this direction is obtained by Goldman and Millson in
[GM88].
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Theorem A.1 (Goldman-Millson). Let X be a compact Kähler manifold and Γ its fun-
damental group. Let ρ : Γ→ G(R) be a representation with image contained in a compact
subgroup of G(R). Then (Hom(Γ, G), ρ) is a quadratic singularity.

We will need to review this theory in section A.2.1. We exhibit a criterion under which
the same conclusion holds that is inspired by the case of arrangements of hyperplanes.
It is known that when ρ is the trivial representation of the fundamental group of the
complement of an arrangement of hyperplanes, or of the complement of a projective
algebraic curve, then ρ is a quadratic singularity in Hom(Γ, G). This is related to the
notion of 1-formality developed in the work of Dimca, Papadima and Suciu, see [DPS09],
[PS09]. Our main result proved in section A.3.2 is:
Theorem A.2. Let X be a smooth complex quasi-projective variety and Γ its fundamental
group. Let ρ : Γ→ G(R) be a representation with finite image. Corresponding to Ker(ρ)
there is a finite étale Galois cover Y → X. Assume that Y has a smooth compactification
Y with first Betti number b1(Y ) = 0. Then (Hom(Γ, G), ρ) is a quadratic singularity.

To pass from the case of Kähler manifolds to that of algebraic varieties (we restrict
ourself to quasi-projective ones), we must study mixed Hodge theory and use the older
results of Deligne [Del71b] and Morgan [Mor78], reviewed in section A.2.2. Our theorem
is obtained by reviewing the ideas of Kapovich and Millson in [KM98], who proved:
Theorem A.3 (Kapovich-Millson). Let X be a smooth complex algebraic variety and Γ
its fundamental group. Let ρ : Γ→ G(R) be a representation with finite image. Then
(Hom(Γ, G), ρ) is a weighted homogeneous singularity with generators of weight 1, 2 and
relations of weight 2, 3, 4.

In section A.4 we look for new examples to apply our theorem. We are first motivated
by the case of arrangements of lines and some special representations. One case that has
been studied, starting from the work of Hironaka [Hir93], is the abelian covers of the
complex projective plane branched over an arrangement of lines, whose compactifications
are called Hirzebruch surfaces. There exists some inequalities on their first Betti number
and we use them in section A.4.1 to find the cases where our theorem applies.

We next study other classes of examples where we can apply our criterion with respect
to all representations with finite image. We say a smooth quasi-projective variety X has
property (P) (see Definition A.15) if for all finite Galois cover Y → X there is a smooth
compactification Y of Y such that b1(Y ) = 0; and then any representation of π1(X) with
finite image satisfies the hypothesis of our main theorem. We show that this class of
varieties is stable by taking products, by taking a C∗-principal bundle over a base that
satisfies (P) (Theorem A.18), and by taking some families of abelian varieties over a base
that satisfies (P) (section A.4.2). Finally, related to famous rigidity results, we treat the
case of hermitian locally symmetric spaces in section A.4.2.

A.2 Preliminaries

A.2.1 Review of Goldman-Millson theory
We first give a review of [GM88]. We fix a field k of characteristic zero, usually k = R

or C. Our schemes will always be of finite type over k.
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Representation variety

Let Γ be a finitely presented group and let G be a linear algebraic group over k. There
exists an affine scheme over k, denoted by Hom(Γ, G), that represents the functor from
k-algebras to sets

A 7−→ Hom(Γ, G(A))
(f : A→ B) 7−→

(
f∗ : Hom(Γ, G(A))→ Hom(Γ, G(B))

)
.

(A.1)

It is called the representation variety (it is in general not a variety, but a scheme). Thus,
giving a representation ρ : Γ→ G(k) is the same as giving a k-point of Hom(Γ, G). When
doing topology we just write G for G(R).

Analytic germs

Given a scheme S and a k-rational point s, the isomorphism class of the complete
local ring ÔS,s is referred to as the analytic germ of S at s. That is, two germs (S1, s1) and
(S2, s2) are said to be analytically isomorphic if their complete local rings are isomorphic.

A weighted homogeneous cone is an affine scheme defined by equations of the form
Pj(X1, . . . , Xn) = 0 in kn where the variables Xi have given weights wi and the polyno-
mials Pj are homogeneous of degree dj > 0 with respect to the weights wi (a monomial
Xα1

1 . . . Xαn
n is of weighted degree w1α1 + · · ·+wnαn). We say that wi are the weights of

the generators and dj are the weights of the relations. The cone is said to be quadratic
if the Xi have weight 1 and all the relations have weight 2. We say that an analytic
germ (S, s) is a weighted homogeneous singularity with given weights (for example, is a
quadratic singularity) if it is analytically isomorphic to a weighted homogeneous cone
with these given weights.

Lemma A.4. A germ (S, s) is a weighted homogeneous singularity over R if and only if
it is over C, with the same weights.

Proof. Of course a weighted homogeneous cone over R can be complexified to a cone over
C with the same weights. In the other direction, given the equations Pj(X1, . . . , Xn) over
C, replace the variables Xi by their real and imaginary parts xi, yi and give the same
weight wi to the two new variables. Then expand the relations Pj(x1 + iy1, . . . , xn + iyn)
= 0, separate real and imaginary part, and this gives two equations both with the same
weighted homogeneous degree dj.

We denote by Artk the category of Artin local k-algebras. An element A in Artk has
a unique maximal ideal which we always denote by m, has residue field k and is of finite
dimension over k. This implies that m is a nilpotent ideal, and this gives a natural map
A→ k which is reduction modulo m. An analytic germ (S, s) defines a functor of Artin
rings

FS,s : Artk −→ Set
A 7−→ Hom(ÔS,s, A). (A.2)

Such a functor is called pro-representable.

Theorem A.5 ([GM88, 3.1]). Two germs (S1, s1) and (S2, s2) are analytically isomorphic
if and only if the associated pro-representable functors FS1,s1, FS2,s2 are isomorphic.
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Thus, in order to study the analytic germ of a representation ρ in the representation
variety we only have to study its pro-representable functor, which is also the functor

Artk −→ Set
A 7−→

{
ρ̃ ∈ Hom(Γ, G(A))

∣∣∣ ρ̃ = ρ mod m
} (A.3)

interpreted as the functor of deformations of ρ over Artk; and the type of analytic
singularity corresponds to the obstruction theory for deformations of ρ.

Differential graded Lie algebras

Let L be a differential graded Lie algebra. It has a grading L = ⊕i≥0L
i, a bracket

[−,−] with [Li, Lj] ⊂ Li+j, and a derivation d of degree 1 satisfying the usual identities
in the graded sense, see [GM88] and see also [Man99]. The basic example is: take a
differential graded algebra A commutative in the graded sense (for example the De Rham
algebra of a smooth manifold) and a Lie algebra g and consider the tensor product A⊗ g
with bracket

[α⊗ u, β ⊗ v] := (α ∧ β)⊗ [u, v] (A.4)

and differential
d(α⊗ u) := (dα)⊗ u. (A.5)

For such an L, L0 is a usual Lie algebra and for an Artin local k-algebra A, L0⊗m is a
nilpotent Lie algebra on which we can define a group structure via the Baker-Campbell-
Hausdorff formula. This group is denoted by exp(L0 ⊗m).

Recall that a groupoid is a small category C in which all arrows are invertible. An
example is provided by the so-called action groupoid: let a group H act on a set E, take
the set of objects to be Obj C := E and the arrows x → y are the h ∈ H such that
h.x = y. We denote by Iso C the set of isomorphism classes of C ; in the case of an action
groupoid this is just the usual quotient E/H.

We define a functor A 7→ C (L,A) from Artk to groupoids, called the Deligne-
Goldman-Millson functor : the set of objects is

Obj C (L,A) :=
{
η ∈ L1 ⊗m

∣∣∣∣ dη + 1
2[η, η] = 0

}
(A.6)

(this one is called the Maurer-Cartan equation) and the arrows of the groupoid are given
by the action of the group exp(L0 ⊗m) by

exp(α).η := η +
∞∑
n=0

(ad(α))n
(n+ 1)! ([α, η]− dα). (A.7)

We then have a functor A 7→ Iso C (L,A) from Artk to sets.
Given a scheme S over k and a k-rational point s, we say that L controls the germ

(S, s) if the functor A 7→ C (L,A) is isomorphic to the functor FS,s.
Recall that if L and L′ are two differential graded Lie algebras, a morphism ϕ : L→ L′

is said to be a 1-quasi-isomorphism if it induces an isomorphism on the cohomology groups
H0, H1 and an injection on H2. The algebras L, L′ are said to be 1-quasi-isomorphic if
there is a sequence of 1-quasi-isomorphisms connecting them.
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Theorem A.6 ([GM88, 2.4]). If L and L′ are two differential graded Lie algebras and
ϕ : L→ L′ is a 1-quasi-isomorphism, then the germs controlled by L and L′ are analyti-
cally isomorphic.

Thus to understand an analytic germ (S, s) it suffices to understand the functor
A 7→ Iso C (L,A) for some controlling Lie algebra L up to 1-quasi-isomorphism.
Remark A.7. If L0 = 0 then this functor is equal to A 7→ Obj C (L,A). If furthermore
L1 is finite-dimensional this is exactly the pro-representable functor associated to the
analytic germ at 0 of the Maurer-Cartan equation dη + 1

2 [η, η] = 0 for η ∈ L1.

Main construction

We explain the main construction to relate theses objects. Let X be a real manifold, x
a base point, Γ its fundamental group and G a linear algebraic group over R. Let g be the
Lie algebra of G. Let ρ : Γ→ G(R) be a representation. Let P be the principal bundle
obtained by the left monodromy action of Γ on G via ρ. If X̃ is a universal covering space
for X, on which we make Γ act on the left, then

P := X̃ ×Γ G = (X̃ ×G)/Γ (A.8)

where Γ acts diagonally. The groupG acts on its Lie algebra via the adjoint representation
Ad and Γ acts on g by Ad ◦ρ. We denote by Ad(P ) the adjoint bundle

Ad(P ) := P ×G g = X̃ ×Γ g (A.9)

and it comes with a flat connection such that the algebra of differential forms with value
in Ad(P ), denoted by E •(X,Ad(P )), has the structure of a differential graded Lie algebra.

Given the base point x we define an augmentation ε : E •(X,Ad(P ))→ g by evaluating
degree 0 forms at x and sending the others to zero. We put E •(X,Ad(P ))0 := Ker(ε).

Theorem A.8 ([GM88, 6.8]). The differential graded Lie algebra E •(X,Ad(P ))0 controls
the analytic germ (Hom(Γ, G), ρ).

It is then proven in [GM88, § 7] that when X is a compact Kähler manifold, E •(X,
Ad(P ))0 is quasi-isomorphic (over C) to a differential graded Lie algebra with zero dif-
ferential and this implies that the analytic germ controlled by it is quadratic.

A.2.2 Mixed Hodge theory and rational homotopy
Next we give a short review of [Del71b] and [Mor78]. See also [PS08].

Hodge structures

Given a finite-dimensional vector space V over R, a Hodge structure of weight n over
V is the data of a decreasing (finite) filtration F of VC := V ⊗ C and a decomposition
in bigraded parts VC = ⊕

i+j=n V
i,j, where F p(VC) = ⊕

i≥p V
i,j, with V j,i = V i,j. A

mixed Hodge structure on V is the data of an increasing (finite) filtrationW , a decreasing
filtration F of VC, such that F induces on GrWn (V ) a Hodge structure of weight n, for all
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n; so GrWn (VC) = ⊕
i+j=n V

i,j with V j,i = V i,j modulo Wn−1(VC). The category of mixed
Hodge structures is abelian (this is not trivial, see [Del71b, 1.2.10]).

Given a mixed Hodge structure on V , there is one preferred way of splitting VC = ⊕
Ai,j

such that Wn(VC) = ⊕
i+j≤nA

i,j, F p(VC) = ⊕
i≥pA

i,j and then V i,j becomes naturally
isomorphic with Ai,j. We call it the Deligne splitting, see [Mor78, 1.9]

Hodge structures on cohomology groups

Suppose that X is a smooth complex quasi-projective variety. We denote by X a
smooth compactification such that D := X \ X is a divisor with normal crossings. By
Deligne [Del71b], the cohomology groups ofX are equipped with a mixed Hodge structure
which is independent of the choice of X. On Hn(X) the nonzero graded parts for W are
of weight between n and 2n and GrWn Hn(X) = Hn(X).

In our case of interest, we will have a finite étale Galois cover Y → X and we are
interested in the condition b1(Y ) = 0. Remark that since b1 is a birational invariant, it is
enough to have for Y a smooth compactification, not necessarily by a divisor with normal
crossings.

The condition b1(Y ) = 0 is equivalent to one of the following:
1. H1(Y ,Q) = 0.
2. π1(Y )ab if finite.
3. q(Y ) = 0, where q := dimH0(Y ,Ω1

Y
) is the irregularity.

4. The mixed Hodge structure on H1(Y ) is pure of weight 2.
There is also one characterization that will motivate our section A.4.2.

Lemma A.9. Let X be a smooth quasi-projective variety. Then b1(X) = 0 if and only
if there is no nonconstant holomorphic map f : X → A to an abelian variety A.

Proof. Recall that X has an Albanese variety, which is an abelian variety Alb with a map
alb : X → Alb through which every map to an abelian variety factors. Its dimension is
exactly q(X) = b1(X)/2 and as soon as this is strictly positive then f is nonconstant and
its image generates Alb.

If b1(X) > 0 then alb restricts to a map f : X → Alb. Conversely given a nonconstant
map f : X → A then first f extends to X (see [BL04, § 4, 9.4]), then factors through alb
and so Alb must be of positive dimension.

Rational homotopy theory

We explain very briefly the ideas we need. We refer to [GM81] and [Mor78].
Let A• be a (commutative) differential graded algebra over a field k = R or C: this

means that A has a grading A = ⊕i≥0A
i, a multiplication ∧ : Ai ⊗ Aj → Ai+j with

α ∧ β = (−1)ijβ ∧ α if α ∈ Ai, β ∈ Aj, and a derivation of degree 1 with d(α ∧ β) =
dα ∧ β + (−1)iα ∧ dβ. We denote by A+ := ⊕

i>0A
i.

There is a notion of 1-minimal algebra but we won’t need the details. Briefly it means
that A is obtained as an increasing union of elementary extensions, with in addition
A0 = k and d is decomposable which means d(A) ⊂ A+ ∧ A+.
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A 1-minimal model for A is a 1-minimal differential algebra N with a morphism
ν : N → A which is a 1-quasi-isomorphism. See [GM81] and [Mor78] for more statements
about existence and unicity. Remark that if ν : N → A is a 1-minimal model over R
then νC : NC → AC is a 1-minimal model over C.

Hodge structures on minimal models

We recall the work of Morgan [Mor78]. The goal is to put mixed Hodge structures
on several rational homotopy invariants of algebraic varieties, however we only need to
study the 1-minimal model.

Let X be a smooth complex quasi-projective variety admitting a compactification X
by a divisor with normal crossings D. We denote as always by E •(X,R) the algebra of
real-valued differential forms on X, and by E •

X
(logD) the algebra of C∞ complex-valued

forms on X with logarithmic poles along D, with its filtration W by the order of poles.
There is a canonical map E •

X
(logD) ↪→ E •(X,C) that is a quasi-isomorphism.

In addition, Morgan constructs a real algebra E•C∞(X) (see [Mor78, § 2] for details),
with a filtration W similar to the weight filtration on EX(logD), and constructs a quasi-
isomorphism EC∞(X)⊗ C→ EX(logD) that respects W . Now let A := EC∞(X). Recall
the Dec-weight filtration defined by

DecWi(An) = {x ∈ Wi−n(A) | dx ∈ Wi−n−1(An+1)} (A.10)

such that for the spectral sequence

WE
p,q
r = DecWE

−q,p+2q
r−1 (A.11)

and on cohomology
DecWiH

n(A) = Wi−nH
n(A). (A.12)

Morgan proves that A has a real minimal model ν : N → A with a filtration W such
that ν respects the filtrations (N ,W )→ (A,DecW ); of course by transitivity (NC,W )
is a also a filtered (complex) minimal model for (EX(logD),W ).

Over C, the weight filtration on NC splits and we will denote by lower indices the
grading by the weight, that is compatible with the grading of N as differential graded
algebra. So NC = ⊕

i≥0 Ni, with d : Ni → Ni and Ni ∧Nj ⊂ Ni+j. The grading has the
following properties:

1. Via the 1-quasi-isomorphism ν, the grading by weight on Hn(NC) coincide with
the grading induced on Hn(X,C) by the Deligne splitting of its mixed Hodge
structure.

2. For n = 1 the only possible weights induced are 1, 2 and for n = 2 they are 2, 3, 4.
3. Each component N j

i is of finite dimension.
4. N0 = C and N 0 = C.
5. d(N 1

1 ) = 0 (if x ∈ N 1
1 then as d is decomposable, dx = ∑

αi ∧ βi ∈ N 2
1 , so for

each i we must have αi ∈ N 1
1 and βi ∈ N 1

0 or the other way around; but N0 = C
concentrated in degree 0 so N 1

0 = 0).
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A.3 Equivariant constructions and proof of the main
theorem

Now we rewrite section A.2.1, taking into account a finite covering space and equiv-
ariance, as needed in [KM98, § 15]. From now on we fix the objects we introduce: X is
a smooth complex quasi-projective variety with a base point x and fundamental group
Γ. We fix a linear algebraic group G over R with Lie algebra g and a representation
ρ : Γ→ G(R) with finite image. We introduce the finite group Φ := Γ/Ker(ρ) ' ρ(Γ).

A.3.1 Covering spaces
Covering spaces and compactifications

To Ker(ρ) corresponds a finite étale Galois cover π : Y → X with automorphism
group Φ that acts simply transitively and with a base-point y over x. The cover Y can
be taken to be algebraic by [Gro03, XII.5.1] and it will be quasi-projective by [Gro61,
5.3.4]. By [Sum74, 3], it is possible to compactify Y into a variety (possibly singular) Y ′

such that the action of Φ extends to Y ′, which is there called an equivariant completion.
In [BM97] there is a construction of a canonical resolution of singularities Y → Y

′ on
which the action of Φ lifts (section 13 therein). We also compactify smoothly X to X.

Now, π is a finite cover Y → X ramified over X \ X which is equivariant. We call
this construction an equivariant compactification and this is summarized in the following
diagram:

Φ yY �
�

//

π

��

Y

π
��

x Φ

X �
�

// X.

(A.13)

Bundles and augmentations

We construct the bundle Ad(P ) taking into account the augmentation.
First fix some notations: if E is a flat bundle, there is a twisted algebra of differential

forms with values in E denoted by E •(X,E). If E is globally trivial this is just E •(X)⊗E
where we write E •(X) for E •(X,R). Given a group Φ acting on an algebra A (which can
be graded, commutative, Lie, etc, and the action must respect this structure) we always
denote by AΦ the sub-algebra of invariants by Φ. Given an augmentation of A, we always
denote by A0 the kernel of the augmentation.

Introduce the trivial bundle Q := Y × G and its adjoint bundle Ad(Q) := Y × g.
Recall that Φ acts on Y with Y/Φ = X; on G (via ρ) and on g (via Ad ◦ρ); and also on
E •(Y ) with E •(Y )Φ = E •(X). It also acts naturally on products and tensor products.

So: we have P = Q/Φ and Ad(P ) = Ad(Q)/Φ, and for the twisted version

E •(X,Ad(P )) = (E •(Y,Ad(P ′)))Φ = (E •(Y )⊗ g)Φ. (A.14)

We want to lift the augmentation β : E •(X)→ R, which is the evaluation of 0-forms
at x, to Y . We let

βY (f) := 1
|Φ|

∑
γ∈Φ

(γ.f)(y) (A.15)
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for f ∈ E 0(Y ). Thus we sum over all of π−1(x). Then naturally

E •(X)0 = (E •(Y )Φ)0 = (E •(Y )0)Φ (A.16)

(the first two augmentations are with respect to β, the last one to βY ) and we can write
it E •(Y )Φ

0 .
In the same way we want to lift ε : E •(X,Ad(P ))→ g to E •(Y )⊗ g. Put

εY (f ⊗ u) := 1
|Φ|

∑
γ∈Φ

(γ.(f ⊗ u))(y). (A.17)

Then naturally

E •(X,Ad(P ))0 = ((E •(Y )⊗ g)Φ)0 = ((E •(Y )⊗ g)0)Φ = (E •(Y )0 ⊗ g)Φ (A.18)

and we can denote all this by (E •(Y )⊗ g)Φ
0 .

Observe that all theses constructions extend naturally to C.

Lemma A.10 (See [GM88, 5.12]). The four augmentations defined above are surjective.
This implies that H0(E •(X,R)0) = 0 and

H0(E •(X,Ad(P ))0) = 0. (A.19)

Cohomology

We just give an elementary property relating cohomology and the action of a finite
group, that will be used often.

Lemma A.11. Let A• be a differential graded commutative algebra (or Lie algebra) over
a field of characteristic zero. Let Φ be a finite group acting on A•. Then on cohomology

H•(AΦ) = (H•(A))Φ. (A.20)

As a consequence, if A and A′ are differential graded algebras (or Lie algebras) with a
finite group Φ acting on both, if ψ : A→ A′ a 1-quasi-isomorphism commuting with the
actions, then ψ induces a 1-quasi-isomorphism ψΦ : AΦ → A′Φ.

Equivariant minimal model

We refer to [KM98, § 15] for this technical part. We denote by A• the algebra E•C∞(Y )
with its filtration W . It is shown that Φ acts on (A•,W ) and (A•)Φ is then quasi-
isomorphic to E•C∞(X). It is shown how to construct a 1-minimal model ν : N → A with
a filtration W and an action of Φ which commutes with ν; and ν respects the filtration
DecW on A. So (Lemma A.11) N Φ is a 1-minimal model for AΦ = E•C∞(X).

Also, by transitivity and over C, NC is a 1-minimal model for E (Y,C) and N Φ
C is a

1-minimal model for E (X,C). The filtration W on NC splits and Φ commutes with the
splitting.
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A.3.2 Minimal model for a Lie algebra
We are now able to describe an explicit differential graded Lie algebra which controls

the germ of ρ in Hom(Γ, G), and which comes with a grading by weight. Everything is
done in [KM98, § 15].

The minimal model

Consider G := N ⊗g and put ν⊗ id : G → A⊗g. Then G is a differential graded Lie
algebra with a differential d decomposable, and ν ⊗ id is a 1-quasi-isomorphism. We call
G a 1-minimal model in the sense of Lie algebras. We do not give a precise definition for
this notion: it seems possible to rework all the theory of Sullivan minimal models in the
context of differential graded Lie algebras. However what matters here are the properties
of this algebra G .

The grading by weight on NC induces one on GC with the properties that:
1. GC = ⊕

i≥0 Gi.
2. Each G j

i is finite dimensional.
3. [Gi,Gj] ⊂ Gi+j.
4. d(Gi) ⊂ Gi, so the cohomology is also graded.
5. G0 = gC and G 0

C = gC.
6. The only non-zero induced weights on Hn(GC) are 1, 2 for n = 1 and 2, 3, 4 for
n = 2.

The group Φ acts on both factors of G and preserve the grading on GC. Put M := G Φ,
so that MC has a bigrading with the same properties; by transitivity MC is 1-quasi-
isomorphic to E •(X,Ad(P )C).

Augmentation

Recall the augmentations β, ε, βY , εY , extend them over C. It is easy to pull them
back respectively to AC, AC⊗ g, (AC)Φ, (AC⊗ g)Φ and then to NC, GC, N Φ

C , G Φ
C all in a

compatible way: NC,0 (warning with the notations, this is the kernel of the augmentation
and N0 is the degree zero graded part by weight on NC) is then 1-quasi-isomorphic to
E (Y,C)0 such that (NC,0)Φ = (N Φ

C )0 and GC,0 is 1-quasi-isomorphic to E (X,Ad(P )C)0
such that (GC,0)Φ = (G Φ

C )0; and we denote this last one by L .
Recall that when constructing a minimal model N → A, N 0 is sent isomorphically

to H0(A). Combining this with Lemma A.10, and with the various compatibilities of the
augmentations, we see that L 0 = 0. Furthermore L0 = 0.

A.3.3 The controlling Lie algebra and proof of the main theo-
rem

The controlling Lie algebra

By Theorem A.6 and Remark A.7, the analytic germ of ρ in Hom(Γ, G) is isomorphic
(over C) to the one at 0 in L 1 of the equation dη + 1

2 [η, η] = 0. So L is the controlling
Lie algebra to our problem.
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We can simplify it as in [KM98, § 15]. Put I := L 1
4 ⊕d(L 1

4 )⊕⊕i≥5 Li, observe that
it is and ideal in L (in the sense of differential graded Lie algebras with an additional
grading by weight, that is: bigraded homogeneous, stable by d, and stable by Lie bracket
with L ) such that the projection L → Q := L /I is a 1-quasi-isomorphism. This Q is
simpler to study because it has all the properties of GC above and in addition Qi = 0 for
i ≥ 5 and Q1

4 = 0.

Proof of the main theorem

Theorem A.12. If we assume that the compactification Y has b1(Y )=0, then the differ-
ential graded Lie algebra Q above controls a quadratic germ.

Proof. By hypothesis H1(Y ) is a pure Hodge structure of weight 2. Looking carefully at
our 1-quasi-isomorphisms that preserve filtrations by weight and gradings over C, we see
that on H1(Ni) the only nonzero induced weight is for i = 2. This special property is
also true for GC because

H•(Gi) = H•(Ni)⊗ g

and also for GC,0 because

H•(Gi,0) = H•((Ni ⊗ g)0) = H•(Ni,0 ⊗ g) = H•(Ni,0)⊗ g

and NC,0 is a subcomplex of NC, so all restrictions apply to it.
This restriction on weights holds for L because the action of Φ preserves the grading

and
H•(Li) = H•((Gi,0)Φ) = (H•(GC,0))Φ,

and by the 1-quasi-isomorphism it holds for Q.
Now look at the equation dη + 1

2 [η, η] = 0 in Q2, for η ∈ Q1. By construction
Q1 = Q1

1⊕Q1
2⊕Q1

3 (and Q1
0 = 0). By our hypothesis H1(Q1) = 0, which is Ker(d : Q1

1 →
Q2

1)/d(Q0
1). Combined with the fact that d(Q1

1) = 0 and Q1
0 = 0 we have Q1

1 = 0.
So, decompose η = η2 + η3 where ηi is of weight i. The equation on η becomes (we

truncate parts of weight ≥ 5)

dη2 = 0
dη3 = 0

1
2[η2, η2] = 0.

Since we have H1(Q3) = 0 and dη3 = 0, η3 must be exact. But a primitive must be in
Q0

3, which is 0. So we can eliminate the equation dη3 = 0. Since dη2 = 0, we can just
assume η2 is in the linear subspace Z1

2 := Ker(d) ∩Q1
2 and it remains only the equation

1
2[η2, η2] = 0, η2 ∈ Z1

2 (A.21)

which is weighted homogeneous, with the generator η2 of weight 2 and the relation of
weight 4. But we can divide the degrees by two and this is isomorphic to a weighted ho-
mogeneous cone with generators of weight 1 and relations of weight 2, that is, a quadratic
cone.
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A.4 Examples
We now investigate several situations where we can apply our main theorem.

A.4.1 Abelian coverings of line arrangements
Motivated by the case of the trivial representation, the first example is to take for

X the complement of an arrangement of hyperplanes in some complex projective space.
We reduce to the case of the projective plane, thus we denote by L a finite union of lines
in P2(C) and by X its complement. A smooth compactification of X is obtained as a
blow-up of P2(C) at the points of intersection with multiplicity at least 3 so has clearly
b1(X) = 0.

There is a special class of coverings of P2(C) branched over L that has already been
studied: the Hirzebruch surfaces. The definition appears first in [Hir83], and a study of
the Betti numbers was done in [Hir93]. See also [Suc01] for a survey of these results.

For each integer N > 0, we define XN(L) to be the covering of X corresponding to
the morphism π1(X) → H1(X,Z) → H1(X,Z/NZ). It is known that if n is the number
of lines of the arrangement then H1(X,Z) is free of rank n − 1, so XN(L) is a Galois
cover of degree Nn−1. It extends to a branched covering X̂N(L) over L; X̂N(L) is a
normal algebraic surface. We define the Hirzebruch surface associated to L, which we
denote MN(L), to be a minimal desingularization of X̂N (see [Hir93] for more details).
There are various formulas for computing the Betti number b1(MN(L)) and we will refer
to Tayama [Tay00].

Theorem A.13 ([Tay00, 1.2]). Define the function

b(N, n) := (N − 1)
(

(n− 2)Nn−2 − 2
n−3∑
k=0

Nk

)
. (A.22)

It is b1(MN(On)) where On is an arrangement made of n lines passing through a common
point. Let mr be the number of points of multiplicity r of L. Let β(L) be the number of
braid sub-arrangements of L. Then

b1(MN(L)) ≥
∑
r≥3

mrb(N, r) + β(L)b(N, 3). (A.23)

Furthermore the following conditions are equivalent:
1. L is a general position line arrangement.
2. b1(MN(L)) = 0 for any N ≥ 2.
3. b1(MN(L)) = 0 for some N ≥ 3.

From this we deduce easily one necessary condition to b1(MN(L)) = 0 and in fact
there is a converse.

Theorem A.14. We have b1(MN(L)) = 0 if and only if
— Either L is a general position line arrangement, and N is any integer.
— Either N = 2 and L has at most triple points.
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Proof. The case of general position is already treated in Tayama’s theorem. Now suppose
that L is not in general position and b1(MN(L)) = 0. Then N = 2. As b(3, 2) = 0 and
b(3, r) > 0 if r > 3 it follows from the inequality (A.23) that we must have mr = 0 for
r > 3, that is L contains at most triple points.

For the converse, one can show ([Eys16, 2.5]) that if L has at most triple points and
N = 2 then MN(L) is simply connected. So b1(MN(L)) = 0.

A.4.2 Criterion with respect to all finite representations
As we have seen the case of arrangements is quite limited. But we have other sources of

interesting examples where we can apply our theorem with respect to all representations
with finite image.

Definition A.15. A smooth complex quasi-projective variety X is said to have property
(P) if for all normal subgroup of finite index H ⊂ π1(X), the corresponding finite étale
Galois cover π : Y → X has a (smooth) compactification Y with b1(Y ) = 0.

We will study this property and give two interesting classes of examples.

Construction of varieties with property (P)

It is easy to see that if X is a smooth projective variety with π1(X) finite, then X
has property (P). Indeed a finite cover Y a smooth projective variety corresponding to
H ⊂ π1(H) is automatically a smooth projective variety and recall that π1(Y ) = H.
Conversely it is known (by work of J.-P. Serre) that every finite group is the fundamental
group of some smooth projective variety. It is also clear that if X satisfies (P), then any
finite étale Galois cover of X satisfies (P).
Example A.16. The variety C∗ has property (P).

Proof. It is known that every n-sheeted cover of C∗ is of the form C∗ → C∗, z 7→ zn.
This can be compactified in a ramified cover P1 → P1 over {0,∞} and b1(P1) = 0.

So with the next theorem we will easily see that for every finitely generated abelian
group G, there is a smooth quasi-projective variety X with π1(X) ' G which has prop-
erty (P).

Theorem A.17. If X1 and X2 satisfy (P), then X1 ×X2 satisfies (P).

Proof. Denote by Γi := π1(Xi) (i = 1, 2). Let H ⊂ Γ1 × Γ2 be a normal subgroup of
finite index. Put Ui := H ∩Γi. Then Ui is a normal subgroup of finite index in Γi. So the
Galois cover Y for H lies under the finite Galois cover corresponding to U1×U2, which is
obtained as a product cover Y1×Y2, and we have a sequence of finite étale Galois covers

Y1 × Y2 −→ Y −→ X1 ×X2. (A.24)

Taking compactifications this gives two ramified covers Y1 × Y2 → Y and Y → X1 ×X2
where we take for each the corresponding equivariant compactifications. Since we are
only interested in b1, that does not depend on the choice of the smooth compactification,
we can compute b1(Y1 × Y2) = b1(Y1×Y2) (both are a smooth compactification of Y1×Y2)
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but by property (P) we have b1(Y 1) = b1(Y 2) = 0 and so b1(Y1 × Y2) = 0. Now if we
had b1(Y ) > 0, there would be holomorphic one-forms on Y which could be pulled-back
injectively to Y1 × Y2, which is not possible. So b1(Y ) = 0.

We also have a twisted version, which may allow to construct new examples.

Theorem A.18. If X satisfies (P), then any (algebraic) principal C∗-bundle P over X
satisfies (P).

Proof. First we show that a finite étale Galois cover of P is a bundle Q with fiber C∗
over some finite étale Galois cover π : Y → X. Let τ : Q → P be such a cover, with
H := τ∗π1(Q) ⊂ π1(P ) a normal subgroup of finite index. Since p : P → X is a bundle,
the induced map p∗ : π1(P ) → π1(X) is surjective, so p∗(H) is a normal subgroup of
finite index in π1(X). This corresponds to a finite étale Galois cover π : Y → X with
π∗π1(Y ) = p∗H:

Q τ //

q

��

P

p

��

Y π
// X.

(A.25)

Now by construction (p◦τ)∗π1(Q) = π∗π1(Y ) which means there is a lifting of p◦τ : Q→
X to a map q : Q→ Y . All theses spaces and maps can be taken to be algebraic and Q
is a bundle whose general fiber is a finite cover of C∗, that is C∗: we can see this by first
looking at π∗P , which is a principal C∗-bundle over Y , then the induced map Q→ π∗P
over Y which is finite étale.

Now we want to apply Lemma A.9. Let A be an abelian variety and f : Q → A.
Restricted to each fiber, f is a map C∗ → A. By rigidity it extends to P1(C), but a map
P1(C) → A is constant. So f is constant on each fiber and thus is determined by its
restriction to Y . But since X satisfies (P) this one is constant so f is globally constant,
which proves b1(Q) = 0.

Families of complex tori

Our motivation for studying complex tori is the use of Lemma A.9 and the various
rigidity lemmas for abelian varieties and families.

Let X be a smooth quasi-projective variety. We would like to prove, using these
lemmas, that if E → X is a family of abelian varieties over a base that satisfies (P), then
E satisfies (P). To deduce that b1(E) = 0 it will be enough to show that a map E → A
to an abelian variety A is constant along fibers, so descends to X, and by hypothesis
b1(X) = 0. Of course the family must not contain a constant factor, else the fundamental
group would contain a Z2r summand. However there is some technical difficulty coming
from the fact that a finite cover of a family of abelian varieties may not be a family
of abelian varieties, because of the lack of a zero section. Thus we have to work with
complex tori, by which we mean a projective variety isomorphic as variety to a complex
torus but without specifying an origin.

Definition A.19. A family of complex tori is a smooth quasi-projective variety E with
a smooth projective morphism T → X such that all fibers are isomorphic to complex
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tori, without specifying an origin. By a family of abelian varieties we mean the data of
a family of complex tori E → X with a section, called the zero section.

When E → X is a family of abelian varieties, then there are global maps E×E → E
(addition) and E → E (inverse) over X. Many definitions and results from abelian
varieties carry over directly to families. A morphism of families of abelian varieties must
preserve the zero section. An isogeny is a surjective morphism with finite fibers. A
factor of E → X is a sub-family F such that there is another sub-family G with addition
F ×G→ E being an isomorphism.

Definition A.20. A family of abelian varieties E → X is called almost constant if it
becomes constant after a finite étale base change.

To each family T → X of complex tori, we can attach a family of abelian varieties
E → X such that for the associated sheaves of holomorphic sections, E acts on T (in each
fiber this is the action by translation) and T is a torsor under E. An idea to construct
it is that from a complex torus Tx without origin, one can recover an abelian variety Ex
as Aut(Tx)0 which acts on Tx making it a torsor. Wee see then that a family of complex
tori is isomorphic (over X) to its associated family of abelian varieties if and only if it
has a section. See [Cam85, Lemme 2] for related questions.

Theorem A.21. Suppose that X satisfies (P) and let T → X be a family of complex tori.
Let E → X be the associated family of abelian varieties. Assume that, up to isogeny, E
has no non-trivial almost constant factor. Then T has property (P).

Proof. First, exactly as in the case of principal C∗-bundles, a finite étale Galois cover of
T is a projective and smooth morphism R → Y over some finite étale Galois cover Y
of X, whose general fiber is a finite cover of a complex torus, that is R is a family of
complex tori:

R τ //

q
��

T

p
��

Y π
// X.

(A.26)

We want to apply Lemma A.9. Let A be an abelian variety and f : R → A. Let F be
the associated family of abelian varieties to R. On each fiber we have a map of varieties
f : Ry → A, which, by rigidity, is the composition of a translation in Ry and a morphism
of abelian varieties. In this way f induces a map on F and a morphism of families of
abelian varieties g : F → A × Y , then an injective morphism F/Ker(g) ↪→ A × Y .
By rigidity (see [Mil08, 16.3]) this implies that F/Ker(g) is a constant family. But by
Poincaré’s reducibility theorem for families, it is possible to find a family G over Y such
that addition Ker(g) × G → F is an isogeny, and F/Ker(g) is isogenous to G. There is
an induced map F → π∗E over Y such that G projects to a constant factor of π∗E. This
corresponds to an almost constant factor of E over X. But by our hypothesis there is
no non-trivial such factor, thus G is trivial which means g is constant (as morphism of
families), therefore f is constant so b1(R) = 0.
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Symmetric spaces

Our motivation comes now from rigidity theorems for hermitian locally symmetric
spaces and for lattices in Lie groups, which translate into the vanishing of the first Betti
number.

Theorem A.22. Let Ω = G/K be an irreducible hermitian symmetric space of noncom-
pact type, where G is a simple Lie group of rank greater than 2, K is a maximal compact
subgroup, and let Γ ⊂ G be a torsion-free lattice. Then X := Γ \ Ω has property (P).

Proof. First it is known that Ω is simply connected and that X is a smooth quasi-
projective variety, see the Baily-Borel compactification (for example [BJ06]). A finite
étale Galois cover Y of X is a quotient Γ′ \ Ω where Γ′ ⊂ Γ has finite index, so Γ′ is still
a torsion-free lattice in G and is the fundamental group of Y . Under our hypothesis it is
known by the results of Kazhdan (see [BdV08, p. 12]) that G has property (T), and so
do Γ, Γ′. This implies that b1(Γ′) = 0 and this is also b1(Y ).

In case X (and Y ) is compact, we are done. Else we take any smooth compactifica-
tion Y (which may not be the Baily-Borel compactification since this one is usually not
smooth) and the natural morphism Γ′ = π1(Y )→ π1(Y ) is surjective. This implies that
π1(Y )ab is finite and so b1(Y ) = 0.
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