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UN RÉSUMÉ DE LA THÈSE DE 

 

Rami Alkhatib     for              Doctor of Philosophy 

 

 

Titre de la thèse: Analyse, classification et modélisation de la locomotion 

humaine : application a des signaux GRF sur une population âgée 

 

La marche est définie par des séquences de gestes cycliques et répétées. Il a été déjà 

montré que la vitesse et la variabilité de ces séquences peuvent révéler des aptitudes ou des 

défaillances motrices. L’originalité de ce travail est alors d’analyser et de caractériser les 

foulées de sujets âgés à partir des signaux de pression issus de semelles instrumentées lors 

de la marche, au moyen d’outils de traitement du signal. Une étude préliminaire, sur les 

signaux de pression générés lors de la marche, nous a permis de mettre en évidence le 

caractère cyclo-stationnaire de ces signaux. Ces paramètres sont testées sur une population 

de 47 sujets. 

Tout d'abord, nous avons commencé par un prétraitement des signaux et nous avons 

montré dans la première de cette thèse que le filtrage peut éliminer une partie vitale du 

signal. C’est pourquoi un filtre adaptatif basé sur la décomposition en mode  empirique a 

été conçu. Les points de retournement ont été filtrés ensuite en utilisant une technique 

temps-fréquence appelée «synochronosqueezing». Nous avons également montré que le 

contenu des signaux de force de marche est fortement affecté par des paramètres 
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inquantifiables tels que les tâches cognitives qui les rendent difficiles à normaliser. C’est 

pourquoi les paramètres extraits de nos signaux sont tous dérivées par une comparaison 

inter-sujet. Par exemple, nous a assimilé la différence dans la répartition de poids entre les 

pieds. Il est également recommandé dans ce travail de choisir le centre des capteurs plutôt 

que de compter sur la somme des forces issues du réseau de capteurs pour la classification. 

Ensuite, on a montré que l’hypothèse de la marche équilibrée et déséquilibrée peut 

améliorer les résultats de la classification. Le potentiel de cette hypothèse est montré à 

l'aide de la répartition du poids ainsi que le produit de l'âge × vitesse dans le premier 

classificateur et la corrélation dans le second classificateur. Une simulation de la série 

temporelle de VGRF basé sur une version modifiée du modèle de Markov non stationnaire, 

du premier ordre est ensuite dérivée. Ce modèle prédit les allures chez les sujets normaux et 

suffisamment pour les allures des sujets de Parkinson. 

On a trouvé que les trois modes: temps, fréquence et espace sont très utiles pour l’analyse 

des signaux de force, c’est pourquoi l’analyse de facteurs parallèles est introduite comme 

étant une méthode de tenseur qui peut être utilisée dans la future.    
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AN ABSTRACT OF THE THESIS OF 

          

Rami Alkhatib     for              Doctor of Philosophy 

 
Title of Thesis: Human Locomotion Analysis, Classification and Modeling of Normal 

and Pathological Vertical Ground Reaction Force Signals in Elderly 

 

Walking is defined as sequences of repetitive cyclic gestures. It was already shown 

that the speed and the variability of these sequences can reveal abilities or motorskill 

failures. The originality of this work is to analyze and characterize the steps of elderly 

persons by using pressure signals. In a preliminary study, we showed that pressure signals 

are characterized by cyclostationarity. In this study, we intend to exploit the non-

stationarity of the signals in a search for new indicators that can help in gait signal 

classification between normal and Parkinson subjects in the elderly population. These 

parameters are tested on a population of 47 subjects.  

First, we started with preprocessing the vertical ground reaction force (VGRF) 

signals and showed in this first part of the thesis that filtering can remove a vital part of the 

signal. That is why an adaptive filter based on empirical mode decomposition (EMD) was 

built. Turning points are filtered using synochronosqueezing of time-frequency 

representations of the signal. We also showed that the content of gait force signals is highly 

affected by unquantifiable parameter such as cognitive tasks which make them hard to be 

normalized. That is why features being extracted are derived from inter-subject 
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comparison. For example we equated the difference in the load distribution between feet. It 

is also recommended in this work to choose the mid-sensor rather than relying on 

summation of forces from array of sensors for classification purposes.  

A hypothesis of balanced and unbalanced gait is verified to be potential in 

improving the classification accuracy. The power of this hypothesis is shown by using the 

load distribution and Age×Speed in the first classifier and the correlation in the second 

classifier.  A time series simulation of VGRF based on a modified version of nonstationary-

Markov model of first order is derived. This model successfully predict gaits in normal 

subjects and fairly did in Parkinson’s gait.  

We found out that the three modes: time, frequency and space are helpful in 

analyzing force signals that is why parallel factor analysis is introduced as a tensor method 

to be used in a future work. 
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General Introduction  

 

Why and how do we move? For thousands of years we have been thinking about such 

question. Still we do not have a very clear idea about the motor act itself. Movement ecology is 

then developed by biologists to come up with explanations about how limbs move in seconds and 

how the body dynamic per minutes in addition to the locations being traveled per day. Such a study 

involves the participation of engineers to explain motion, cognitive scientists to handle navigation, 

neuroscientist and so on. Newton’s law states that acceleration are a cause of forces being applied 

against environment. Those forces are carried by appendages, limbs,… However, these 

appendages have to travel with body at the time they asserting forces and transmitting forces from 

ground to body. As a result definitely there will be oscillation. And if this is the case, they must 

oscillate in a very tight coordination. This requires a very complicated feedback loops to be 

understood by engineers and biologists. In other words, enough intelligence is built into our 

muscles. They function as motors and even as brakes and certainly as springs.  What if this 

intelligence is baked into the whole body?  

Understanding human locomotion will inspire us in building robotic passively walking 

toys, develop a Prosthetics leg exoskeleton robot, improve athletic performance, identification of 

people for security purposes, diagnose specific pathologies, researching new rehabilitative tools in 

the treatment of mobility-limiting conditions, motion planning and control problems for under 

actuated robots and many more.  

https://www.coursera.org/learn/robotics-mobility/lecture/wNtWr/1-1-1-why-and-how-do-animals-move
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Our first objective as presented in this thesis is to differentiate normal human gait from 

abnormal gait, particularly in aged people. This would enhance the ability to figure out gait 

parameters that could lead to falling if they are subjected to alteration. We will focus only on one 

kinematic parameter which is by examining the amount of VGRF produced by each foot contacting 

the ground. To achieve our goals, statistical analysis and modeling are being conducted.  There 

have been numerous studies involving research and development, for detecting falls exhibited by 

the elderly. Studying and exploiting the nonstationary properties of vertical ground reaction 

provide an insight into the neural function and the neural control of walking which would be altered 

by changes associated with aging and the presence of certain diseases. 

This thesis is structured as follows: 

Chapter 1 provides a definition of human gait bounded to bipedal locomotion. Then 

biomechanics point of view is presented to inspire our research thinking. Gait analysis techniques 

are collected as the state of the art of biometrics, stride interval, ground reaction forces and 

pressures. Since preprocessing is a fundamental step in any signal contaminated with noise, 

filtering and normalizing techniques are expressed. Moreover, an intuition for classification 

techniques is presented to classify normal from pathological gaits. Finally, fall risk assessments 

and their prediction and detection are introduced before we offered our research motivation and 

objectives. 

Chapter 2 delivers data transformation techniques like Fourier transform, wavelet 

transform and others are presented. Then synchrosqueezing of time- frequency transformations is 

expressed with its advantages. In addition, receiver operator characteristic is explained as one of 



 

 

 

3 

 

 

 

the feature selection techniques. Some of the classification methods used in this thesis are 

explained. One mathematical modelling technique of the signal is also presented to enhance our 

understanding of the signal. We end with general definitions that would enrich our empathetic of 

the reminder of this work. 

Chapter 3 provides an intuition of how synchrosqueezing of time-frequency transforms 

enriches the detection of non-stationarity evidenced with higher resolution behavior and in 

particular augments signal separation. Most importantly, the effect of cognitive task on gait is 

clearly pointed out in the context of signal preprocessing. It is also beneficial to extract frequency 

content of signals certainly the instantaneous frequencies and study their properties in both walking 

conditions (usual walking and walking while examining cognitive tasks) to inspect if there is a 

difference in both normal and Parkinson subject.  

Various sensory network architectures were designed to capture the most of the 

biomechanics of walking and running in subjects. In fact, sensor distribution in such designs is 

crucial and should be delicately treated, knowing that we have continuously varying centers of 

pressure (COP). That being observed that the sensor located at the inner arch of the sole of the foot 

(i.e. at mid foot) holds the most relevant information needed for better classification between 

balanced and unbalanced gait in comparison to other sensor positions, this contradicts the 

traditional research that only focuses on the summation of the array of signals. It forms a 

foundation in manufacturing the insole data acquisition system. Then a classification between 

normal and Parkinson is implemented based on hypothesis of balanced and unbalanced gaits which 

are ultimately verified. 
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Chapter 4 mainly focuses on the main statistical component and basis in Gait-GRF 

analysis. The ultimate objective is to identify model of VGRF in addition to generate and forecast 

one step ahead VGRF. In fact, a time series simulation of VGRF based on a modified version of 

nonstationary-Markov model of first order is exposed. An estimate of a normal and Parkinson gait 

is conducted to spot out a difference between them. 

Chapter 5 is a concluding chapter. In this chapter, we emphasize future perspectives in gait 

analysis. In fact by using multiway analysis mainly parallel factor analysis (PARAFAC), we can 

verify easily the previous results and deliver more insight about the dataset. Moreover, a 

comparison between normal and Parkinson is being presented on time, space and frequency modes 

of PARAFAC.  The feasibility of classification using PARAFAC is just introduced.  

To conclude, we end up with a summary of the overall results for each path of study, before 

presenting the research perspectives associated with this work. 
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CHAPTER 1 

LITERATURE REVIEW 

Human locomotor system is a complex and higher level of cognitive functioning and 

dynamical system [1], a rule for time evolution on state space [2]. Very often, state of dynamical 

systems is described in terms of variables by a set of differential equations. The objective behind 

this mathematical model is to predict future states giving the past and the present states or to 

diagnose the past states that led to the present state or in contrary to provide theory for this physical 

phenomenon [3]. However, gait analysis, the study of locomotion, can be considered to be high 

stochastic so that the person walk with minimum energy expenditure and then the sequence of 

observations could infer some features. In addition, time series analysis and its transforms and 

distributions forms superior to mathematical modeling since we are starting from experimental 

data. Therefore, is it possible to identify people based on the analysis of their walking gait and thus 

to predict falls in elderly? 

1.1 Definition of Human Locomotion 

Human gait is a manner or style of walking and a suited medical term to describe human 

locomotion [4]. Walking gait defined as sequences of repetitive cyclic gestures as it consists of 

both periodic movement of each foot from one position of support to a next position of support. In 

addition, support of body is done by sufficient ground reaction forces applied through the feet [5]. 

This bipedal locomotion is enhanced by different parts of body like bones, muscle, nervous system 

and others. Consequently, each limb contributes to braking and propulsive forces, to maintain 
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balance, as well as they contribute to the forward velocity and to vertical support forces of body 

[6] .Therefore, any defect in one of those parts may lead to a pathological gait. However, those 

patients still be able to correct their gait before unexpected fall occurring. In the other hand, 

physiology alteration and disability including cardiovascular changes and mental health [7] such 

that problems in cortical processing of information as in dementia could also result in falling [1].  

In addition, gait can be affected by a function of many other variables such as aging [8], weight, 

disease that can deteriorate the correlation in stride interval [9], injuries, skeletal structure, 

muscular activity, limb lengths, bone structures, etc… [10]. 

Usual walking cycle shown in Fig.1.1 is made up of three main phases: 

- Stance Phase: The foot is on contact with the ground (60 % of gait cycle) 

o Heel Strike (HS) 

o Foot Flat (FF) 

o Mid-stance (MS) 

o Heel off (HO) 

o Toe off (TO) 

- Swing Phase: The other foot is in air and thus not in touch with ground (40 

% of gait cycle). 

- Double support: Both foot are in contact with ground (12 % of gait cycle) 

 



 

 

 

7 

 

 

 

 

Figure 1.1. Phases of walking cycle 

 

1.2 Biomechanics point of view 

Human gait is a legged mobile type of motion where the dynamics and energy management 

is a main concern. First, those will enable the human body to direct the ground reaction forces (a 

specific force as it is a force per mass) to outcome a forward movement or redirect them to jump 

up or even to lead subject to fall and so on. That is why we are interested in the timing, amplitude 

of forces and the coordination of leg patterns that will definitely give a variety of VGRF signals. 

Such a variety will give different styles of locomotion.   Second, through our legs we can feel the 

environment and this is so called proprioception. For instance, when we in a stance phase the body 

need to be in a given posture not to burn any more energy by exerting extra forces on the ground 

[1]. During push off, the foot pushes against ground and the GRF pushes back against foot. If 

insufficient traction occur by creating a virtual pin joint, a foot will slide back ward. This can only 

be achieved by sensing forces of the ground through legs and hips to get balanced and efficient 

foot to ground contact. However, we must spend energy to get into our ends.  Specific power that 

result on how to move energy from one form into another can be thought as the speed at which a 

GRF can be sustained resulting in a stable energetic display called basins. For illustration, basins 

of attraction places energy at its lowest states.  



 

 

 

8 

 

 

 

In biomechanics, we look at the behavioral components by modeling the human walking 

by so called templates to give a simplest model that describes the target behavior and then embed 

them into a higher dimensional physical system so called anchor. In addition, we also focus on 

physical components that’s corresponds to the materials and their compliance properties, structures 

and energy needed by our actuator muscles. For instance, walking can be thought as a vaulting 

over inverted pendulum executing compass gait as shown in Fig. 1.2[1]: 

 

Figure 1.2 Standard conceptual models of legged locomotion. The inverted pendulum is a 

standard model for walking. The model-predicted stance dynamics (red lines) fit experimental 

data (black traces recorded from human treadmill walking). Horizontal and vertical ground 

reaction force (GRF) normalized to body weight (bw). 

Therefore human walking results from complex dynamical interactions between the subject whom 

is made up of complex multi-link mechanism and environment [12].  In above model, it is clear 

that part of mechanical energy is pertained from one stride to the nest stride. Then the massless 

model can be derived as in equation (1.1) based on D’Alembert principle: 
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The center of mass is denoted by “com” and has the coordinates (Xcom,Ycom). The dynamic equation 

is then given by equation (1.2): 

 sin
L

g


                                                    (1.2) 

During foot collision as shown in Fig.1.3, the angular momentum around the point of collision at 

time just before the next foot collides with the ground is )2cos()()( 2    tmltL  . 

 

Figure1.3: Angular momentum is conserved around the point of impact 

The angular momentum at the same point immediately after the collision is 

)()( 2   tmltL                                             (1.3) 

Assuming angular momentum is conserved, this collision causes an instantaneous loss of velocity: 

)2cos()()(    tt                                             (1.4) 
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Different models being adopter to understand how the foot impact the ground in addition to 

understand how humans walk. Fig.1.4 is another way of analysis. However, we will not dive too 

much in this domain throughout this thesis and we can will handle this in a future work. 

 

Figure 1.4: Limit cycle trajectory for kneed walker 

1.3 Gait Analysis 

Gait analysis used in many applications including the improvement of sports techniques 

and performance, assisting disabilities by improving rehabilitation program, the planning and 

assessment of surgical outcomes, and the recognition of gaits due to falls-risk in the elderly [13]. 

Human locomotors system is a dynamical system, a rule for time evolution on state space 

[14]. Very often, state of dynamical systems is described in terms of variables by a set of 

differential equations. The objective behind this mathematical object is to predict future states 

giving the past and the present states or to diagnosing the past sates that led to the present state or 

in contrary to provide theory for this physical phenomenon [15]. However, gait analysis can be 

considered to be high stochastic where the sequence of observations could infer some features. 
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Human body requires a continuous contact with the ground during walking and thus GRF 

formed as reflections of various forces that the entire body examine during gait. VGRF holds the 

major amplitude and thus has been a topic of interest for many scientists certainly when dealing 

with its peak value [16]. They are highly correlated to bone growth and strength [17]. Their profile 

is also proved to examine gait mechanics of powered exoskeleton-assisted walking and reflections 

to the amount of loading given that subjects are of different level of assist and with different 

weights and cadences [18]. In addition, VGRFs capture various parameters with no need to 

measure them. For instance,  The peak vertical ground reaction force shows a linear relationship 

with drop height [16].Furthermore, they are used in diagnosing the effectiveness of surgeries at 

knee and hip, neuromuscular impairments like in Parkinson’s disease, analyses of injury risk, 

assessment of falling risk, biomechanics and so on [14]. 

Human walking is produced based on all information acquired from the environment that 

would affect the walking pattern. With the help of the central nervous system, humans will fit their 

walk to maximize their stability. Understanding the internal forces inside human body are not 

limited to rehabilitation, prosthesis design, biomechanics, robotics modelling, sports [16] and 

others, but exceed to cover sensor validation when it comes to real implementation of gait system. 

However those forces are hardly measurable [19]. An alternative was to use external forces that 

are readily observable (experimental data) that serves as an input for musculoskeletal modelling 

(computer based simulation) to estimate those in vivo forces. This is the potential of inverse 

dynamic analysis. Having then the VGRF mathematically modelled introduces some inconsistency 

stemmed from the boundary conditions. 
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It was proven that each person has a specific and unique gait pattern [11]. It has been used 

in biometrics as gait information acquired to identify individuals, differentiating between normal 

and patient subjects, orthoses and prostheses devices for rehabilitation, and assessing fall risk 

among subjects as this study concerns, where elderly are our apprehension. Gait analysis can be 

done using different techniques. For example, gait variability considered as a quantifiable feature 

of walking in clinically relevant syndromes, such as falling, frailty, and neuro-degenerative disease 

[7]. Moreover, biometrics, stride interval, ground reaction force (GRF), pressure which is our focus 

are used in gait analysis. Other forces like gravitational force, muscular force and forces of 

momentum considered also forces of gait. Such biomechanical parameters and others like heel 

velocity and cadence could give a great insight into gait analysis.  

1.3.1 Biometrics 

In biometrics (the recognition of people by their physiological or behavioral 

characteristics), person’s walking can be recognized from the non- stationary in the distribution 

of 2D image features relationships over time which are represented as points in a space of 

probability functions (SoPF) using standard pattern recognition techniques such as the 

principle component analysis (PCA) that is applied over probability functions [20]. As gait is 

considered a behavioral biometric, dynamic features extracted from different parts of the body 

can be perceived from a distance without personal contact [10]. 
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1.3.2 Stride Interval 

Studying stride interval data can also be used in analysis of human locomotion [7]. One 

of the techniques used is recurrent plots and recurrent quantification. The main advantage of 

the recurrence plots over another widely used techniques as for example Fourier analysis, is 

that they preserve both temporal and spatial dependence in the time series. Their analysis 

shows that the gait maturation data are mixed of high dimensional deterministic and stochastic 

process with maturation signals become more stochastic. The gait analysis of 

neurodegenerative diseased people show high stride interval with low speed and increased 

instability. According to a study, patterns in the recurrence plot of stride interval variability 

differentiate healthy from diseased, young from old [21].  It’s also shown that normal gait 

exhibits long range correlation in stride interval and its deterioration implies an aging or 

disease [22].  However, it’s worth mentioning that subjects who underwent a Physical 

Rehabilitation Program (PRP) for four consecutive weeks, the coefficient of variation (CV) 

improved in Parkinson disease (PD) and remained constant and smaller for control one. 

Unfortunately, there was no statistically significant difference between groups [23]. The 

dynamics of gait examine alterations in the fractal pattern with healthy aged [7]. 

Some other result based on wavelet denoising based on Inertial Measurement Unit 

(IMU) that measure both gravitational acceleration vector and acceleration due to body 

movement. This lead to two factors of gait and postural characteristics: double-support time 

and postural transition times. And their variation in elderly indicates instability [24].  
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1.3.3 GRF and Pressure 

As mentioned, GRF provides significant information in differentiating between normal 

walking and pathologic gait [25]. Accordingly, disorder in gait implies that a subject is patient. 

Pathological gait is then can be used for clinical purposes.  GRF is generated initially by a 

nerve impulse in central nervous system [5]. GRF is a “reflection of the total mass-times- 

acceleration product of all body segments and therefore represents the total of all net muscle 

and gravitational force actions at each instant of time over the stance phase”[26 ,27]. This 

force can be measured in 3-D, three axis as shown in Fig.1.5 [28]: mediolateral (𝐹𝑥) , anterior-

posterior force component ( 𝐹𝑧) in the sagittal plane, and longitudinal (𝐹𝑦) [29].  

 

Figure 1.5. Forces during the stance phase 

The vertical ( 𝐹𝑦)  GRF has a characteristic double hump. The first hump appears at 

heel contact, showing a rapid rise to a value in excess of body weight as full weight bearing 

takes place and the body's downward velocity is being arrested. Then, as the knee flexes during 

midstance, the plate is partially unloaded and Fz drops below body weight. At push-off the 

plantar flexors are active, causing a second force peak greater than body weight, which 
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demonstrates that the body's center of mass is being accelerated upwards to increase its upward 

velocity. Finally the weight drops to zero as the opposite limb takes up the body weight. 

Therefore, the vertical component of GRF which is our concern can be classified into M-

shaped and non-M-shaped. This classification is correlated with both gait parameters and 

functional performance as the pain component of the Japan Orhopaedic Association (JOA) 

score [30]. In addition, the type of foot contact with the ground could also affect the shape of 

VGRF. Knowing that, VGRF has no significant differences between the left and right foot 

during walking and not affected by the sex of normal subjects [30]. Unfortunately, the vertical 

load curve has been found to be unreliable as a clinical measure [31]. In contrary, vertical GRF 

has been shown to be reliable and repeatable feature of gait [30]. Cyclostationary modeling of 

GRF signal where it’s periodically varying statistics and its contribution to PSD (Power 

Spectrum Density) is used to characterize the gait and running assessment where during 

locomotion, parameters vary from step to step. The PSD analysis of GRF signal indicates the 

presence of periodic part and the presence of resonance frequency. The cyclic spectra before 

and after fatigue shows that the amplitude of the spectral correlation density (SCD) is more 

after fatigue which is due to the tiredness of the runner. Therefore step fluctuation signal 

increases after fatigue i.e. the frequency of the step become more random [32]. In addition, the 

first two principal component coefficients of GRF are used to differentiate between normal 

and patient with lower limb fracture and how the later coefficients moves toward the normal 

region after the linear separator with a rehabilitation treatment [33]. A further study proposed 

a score to quantify the abnormality of gait where two, four and six PCCs were used to obtain 

the standard distance (D) and using the six sigma have the best accuracy of 96.1%. The study 
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shows that D decreased for that fracture group after rehabilitation (FGA). In addition, FG 

subjects had positive PCC while control group (CG) subjects presented negative values [34]. 

GRF measured during a run on a treadmill is also used to characterize the runner’s step and its 

analysis is based on cyclostationary to model signals with periodically varying 

statistics, instead of assuming it statistically stationary signal features [32].  Separation results 

of GRF signal using Blind Source Separation (BSS) as to separate multiple sources mixed 

through an unknown mixing system using spatial diversity which is given by system outputs 

offers good results in separation of the contribution of each leg [35].  Some results also shows 

that the frequency components difference of the GRF may not significantly recorded. For 

instance, t-tests were used to examine the frequency content of all three components of the 

ground reaction force in patients with Essential Tremor (ET) and PD and results are not 

significantly different from each other [6]. It also revealed no significant difference in the 

vertical GRF between young and elderly females. Where a significantly higher frequency 

content in elderly compared with young females in the anterior–posterior direction [36]. 

However, one can reduce the effect of determinants by taking one component of the force. For 

illustration, aging differences were not detected in vertical direction of GRF using the 

frequency domain analysis in both elderly and young [36]. The maximum peak value in vertical 

GRF is observed to be high in parkinsons group and was not observed in healthy. In addition, 

a trouble in damping down vertical axis perturbation occurs in PD subjects [29].  

Pressure can also be used in the gait analysis and therefore to detect falls in elderly that 

may cause serious injuries. The center of pressure is shown to be the neuromuscular response 
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to imbalances of the body's center of gravity. The comparison between left and right leg during 

normal gait cycle shows a high similarity [31].  

1.4 Preprocessing 

Before using data for any purpose, preprocessing must be performed on the data to 

remove any undesirable characteristics that were produced during acquisition. For instance, 

normalization and filtering of the signals are being pointed out in the scope of others work. 

1.4.1 Normalization 

If one variable is to be normalized to another variable, it is important to understand the 

relation between them [37]. For instance correlation coefficients are normalized to fall between 

zero and one which makes them insensitive to the variations in the gain of the data acquisition 

process. However, in our case, the variable scales are similar and therefore one can use covariance 

instead to compare between two variables. In a large number of studies, Division normalization of 

GRF data were successful. Such kind of normalization occurs through dividing the data by 

parameters like body weight (BW) [25], [27], [38], [39] body mass [29], body weight x height 

(BWH), and body weight x leg length (BWL) [34].  Others investigate the power curve 

normalization, and offset normalization on peak GRF to normalize data at all variables 

[40].  Power curve and offset normalization, however, were effective at normalizing all variables, 

“therefore, when attempting to normalize GRF and joint moments, perhaps nonlinear or offset 

methods should be implemented” [40]. In another study that takes running into consideration 

shows that normalizing peak forces by linearly scaling to body weight is not an appropriate 
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method. It also has been documented that normalizing VGRF signals through dividing by body 

weight to the power (𝐵𝑊𝛼), where 𝛼 is the exponent of the best fit power curve equation, 

effectively eliminates the influence of the body weight on the data set [37].  In contrast one could 

also found that GRFs were normalized to body weight (BW) and % stance phase [38]. And as the 

GRF is normalized by body height in some studies, a different constraint is also normalized by the 

same parameter, for instance the distance parameters of stride length and step width were 

normalized for the height of the subject [30]. In addition, the distribution of number of falls, DST, 

CV step length and CV stride time variables were also found to be normalized using log 

transformations [41]. 

Normalizing VGRF by the mass is not an accurate practice since the body will be moving 

in the three directions making it difficult to compute the mass that contributes to the vertical force. 

The 26 bones that are forming the foot will act as a rigid lever and termed as supination. However 

this is possible during the stance phase where all body is most likely be supported by a single foot 

but still need more investigation. Nonetheless, since the viscoelastic properties of the shoe affect 

the load rate [29],   diseases that reduces level chemical mediator production by neurons that are 

essential on movement coordination [42], and other parameters like age and height as shown in 

Fig.1.6 includes examples of variable that could interfere in gait ground reaction force.  

Many others are complicated enough to be estimated in a quantifiable way like when 

having emotional and psychological case.  
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Figure 1.6: Example of Gait Variables 

That is why normalization is a topic that needs accurate dealing that help in avoiding us 

from handling data in a wrong way and therefore result in erroneous interpretations. Some 

questions that rises: Is there a need for normalization? Why? When? And How? In addition to 

what appropriate elucidation restrictions one should follow. It is enough to remember that during 

heel contact the body weight begins to shift into stance limb. 

1.4.2 Filtering 

Filtering removes any unwanted disturbance in any signal GRF data. For instance, the 

presence of noise can totally mask the true information in data. In addition, it’s significant to 

eliminate sources of variation on the measured VGRF like the influence of mediolateral and 

anterior-posterior variations.  

Butterworth low pass filter of second order with 20 Hz cut-off frequency is used to 

smoothen GRF data because during walking on treadmill, white noise existed due to vibrations 

and motion artifact [27]. Fourth-order low-pass Butterworth filter with a cutoff frequency of 100 

Hz used to smooth the data before analysis in another study [37]. In addition, further study used 
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GRF data after being filtered at 50 Hz with a second order low pass Butterworth filter [21]. The 

vertical GRF is low passed filtered with a cut-off frequency 15 Hz to reduce measurement noise 

according to another article [29]. While other studies consider the reservation GRF data as being 

filtered using a 7 point moving average [38]. GRF data were also filtered with a cutoff frequency 

of 75 Hz [21]. However, in another study GRF data were filtered using a low-pass filter with 50 

Hz cutoff frequency [23]. In a further study, 13-point moving average low-pass filter with a cut-

off frequency of 33.3Hz was used to filter the GRF data [43]. Moreover, GRFs were low-pass 

filtered using a fourth-order, zero-lag Butterworth filter with a 20 Hz cutoff frequency in 

alternative study[39]. A second order Butterworth filter with a 6 Hz cut-off frequency is being 

used in a different study [44].  However, it was recorded that the frequency content of ground 

reaction during walking for both vertical and lateral components to be less than 9 Hz. While in 

running the vertical is less than 10 Hz and for the lateral component was at frequencies less than 

17 Hz [44]. In order to eliminate noise and not affecting the data, a fourth order low passed 

Butterworth nonrecursive filter with 25 Hz cutoff frequency is chosen to be 25 Hz at the former 

study [44]. Such kind of filtering without relying on a given basis may remove components of the 

actual movements [45]. 

Antonsson’s database composed of two categories, runners and walkers. He studied 30 foot 

contacts from 12 subjects. By applying FFT spectral power analysis of these force records, 99% 

of the integrated power content of VGRF signals below 9 Hz. For running, 99% of the integrated 

power content of the VGRF signals was at frequencies less than 10 Hz [27, 38]. Furthermore, the 

amplitudes above 10 Hz are recorded to be less than 5 % of the fundamental frequency. 2 % above 
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20 Hz and all amplitudes more than 1 % are delimited below 50 Hz. 99.5 % frequency in VGRF 

is recorded to be 6.39±2.31 Hz in Parkinson subjects. The median frequency is found 0.45±0.09 

Hz and the bandwidth is said to be 1.23±0.29 Hz. A difference is found in frequency content when 

compared to healthy subjects [39]. After averaging the VGRF signals of PD subjects, the power 

of high frequency is lower and the first and second peak’s amplitude are lower than normal subjects 

with a delayed occurrence of the first peak. The average power is between 0.5 Hz and 1.5 Hz is 

logged in PD [29]. 

These results helped in the process of selecting the appropriate filter that is the fourth order 

Butterworth filter with a 25Hz cutoff frequency. This filter appeared to eliminate 99% of the noise 

while retaining all of the important components of the signal [38]. Another research done in the 

University of Nebrashka Omaha has discussed the effect of multiple sclerosis on the frequency 

content in VGRF during walking by applying Fourier transform on the signals. Wurdeman et al. 

results showed that patients with multiple sclerosis had significantly lower than 99.5% frequency 

(P= 0.006) and median frequency (P<0.001) in the vertical ground reaction force. The lower 

frequency content suggests lesser vertical oscillation of the center of gravity [40]. Analysis of the 

frequency content may potentially serve to provide earlier diagnostic assessment of this 

debilitating disease [40].  

Likewise, frequency content of various body movement is recorded to be less than 20 Hz 

where 99% of the FFT spectrum is contained below 15Hz in walking signals [40]. However as a 

majority of the signal existed below 10 Hz as shown by Simon et al, at the heel contact a peak  

appeared with frequency content of 10-75 Hz. Giakis and Baltzopoulos indicated that 95 % of 
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signal’s amplitude is within the first 15 harmonics up to 20.27 Hz [30]. Vertical GRF impact peak 

is assumed within 8-50 Hz given that it will visually absent in time domain for forefoot running 

and a suggestion of an overlap between impact and active peak frequencies do exist [35]. 

Moreover, the standards for testing prosthetic components required for ankle-foot in order to study 

the fatigue process are by applying alternating forces within 0.5-3Hz as given by the international 

organization for standardization [36]. 

1.5 Classification 

Many studies examined the exceptional ability of humans to develop internal models of 

environmental dynamics by learning different motor tasks. Those models related to walking could 

be updated by providing unexpected environmental force perturbations [40]. Studies show that one 

limb is responsible for transferring and supporting body weight while the contralateral limb is 

responsible for providing propulsion. For instance, the limb dominance shows a great impact on 

VGRF and COP [47]. Symmetrical foot loading patterns are recorded in normal gait. It is found 

that Mediolateral (Fx) and vertical (Fz) forces have no significant difference. This asymmetry 

becomes significant in pathological gait at fast walking [48].  

Numerous variables interfere in gait ground reaction force such as age and height. The 

viscoelastic properties of the shoe is another parameter that affect the load rate [49]. Diseases that 

reduce level chemical mediator production by neurons are also examples that mark movement 

coordination [42]. Many of them are complicated enough to be estimated in a quantifiable way 

like when having emotional and psychological cases.  
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The preferred walking speed of many humans is around 1.4 m/s. This forms a sign of 

independence and mobility [50]. The speed selection in elderly tends to be slow. This is a usual 

prominent characteristic in Parkinson subjects caused by degeneration of central nervous system 

and decrease in ability to control the locomotors system. Gait variability is shown to increase with 

slower walking speed in addition to age. However, elderly with gait disability have a tendency to 

walk more slowly to improve their dynamic stability regardless of increasing gait variability that 

is known to increase risk of falling [51].  Walking speed could minimize metabolic energy costs 

which is associated to aerobic capacity that is correlated with aging [52]. Furthermore, there is a 

need to distinguish the effect of walking speed from the effect of age on gait variability. In trunk 

roll angle, Age × Speed displays a crucial interaction. Research results indicate that variations in 

gait variability occur in healthy normal aging [53]. Likewise, the foot clearance is too small in 

elderly. This could be reflected by the COP variation underneath the foot. Certainly, patients with 

idiopathic Parkinson Disease (PD) have gait disturbance marked by postural instability, slow 

walking in addition to shuffling and a difficulty in initiating steps [54]. Such disturbance could 

lead subject to lose stability and fall. Consequently, Gait variability in addition to other factors 

associated with aging is correlated to risk of falling in elderly [53]. Injuries in elderly, due to falling 

have turned out to be very serious with the increase in the life expectancy and aging in population 

[55].  

On the other hand, one of the studies shows that the first two principal component 

coefficients of GRF can be used to differentiate between normal and patient with lower limb 

fracture and indicate how the later coefficients moves toward the normal region after the linear 
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separator with a rehabilitation treatment [25]. A further study proposed a score to quantify the 

abnormality of gait where two, four and six principle component coefficients (PCCs) were used to 

obtain the standard distance (D) and using the six have the best accuracy of 96.1%. The study 

shows that D decreased for that fracture group after rehabilitation (FGA). In addition, fracture 

group subjects had positive PCCs while control group subjects presented negative values [1]. 

An artificial neural network (ANN) has been used successfully used to diagnosis correctly 

10 out of 10 PD patients and 9 out of 10 healthy subjects [37]. The average power between 0.5 Hz 

and 1.5 Hz and between 1.5 and 20 Hz in addition to swing phase , first and second peak magnitude 

normalized by body weight, time of first peak, and DFA scaling exponent α for the left and right 

foot are used as features for ANN. The total accuracy is recorded to be 95%. Fourier transform 

coefficients served as inputs as stated in a review article [29] into ANN with one hidden layer and 

achieved also 95% accuracy in distinguishing pathological gait from normal one.  Kohonen maps 

is also used for clustering locomotion kinetic characteristics in normal and Parkinson’s disease 

based on the following features: Mean Coefficient of Variation, Mean Sum of Variation, Mean 

Max and Mean Standard deviation of the VGRF. A sensitivity and specificity of 94.44% and 

88.23% respectively are being recorded [42]. On another study, applying Principal component 

analysis to Spatial-Temporal Image of Plantar pressure that includes both temporal and spatial 

information among the change of plantar pressure during heel to toe motion, yields a classification 

of accuracy of 91.73% by applying support vector machine using the weights on each principal 

components [56].  
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1.6 Falls risk assessment, prediction, and detection 

Fall by definition is “an event whereby an individual comes to rest on the ground or another 

lower level with or without the loss of consciousness” [57].  A kind of fall is proceeded by missteps 

which is defined near falls but if no sufficient recovery mechanisms are activated, a fall will result 

due to loss of balance [58]. Note that the mentioned is one type that reveal an etiology of fall. Most 

falls occur during whole-body movement like walking.  It can be analyzed from two perspectives: 

kinematics to know the motion and position of different joints and/or kinetics by studying the force 

that cause the motion. Therefore, dynamic stability and its control mechanism during walking are 

crucial to understand falling. It is known that greater variability indicates greater instability. That’s 

why there is a need for accurate gait analysis that provide with specific risk factors for falls that 

improve diagnosis and better understand risk of falling [1]. Occasionally, Psychophysical, 

Biomechanical, Tribology, and Epidemiology of falls in the Elderly are not introduced in complete 

details. For occurrence, dementia-related gait changes could be used to diagnosis the risk of falling 

in dementia and pre-dementia stage [1].  Subjects with Alzheimer’s disease tend to walk in a slower 

speed and therefore support time increase and decrease in stride length [1].  Furthermore, elderly 

tend to move slower but this will not ensure the risk of fall because younger people could also 

move slowly. Though, elderly usually exhibit significantly faster horizontal heel contact velocity 

but shorter step length and slower transitional acceleration of the whole body center-of-mass 

(COM) than younger. This affect initiation of slip-induced falls [59]. That is why when heel 

contact occur, the heel sliding velocity should decrease to a certain level. The major cause of falling 

among elderly is reported when trying to avoid an obstacle [60].  The faster a step is executed 
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during perturbations increases the chance of preventing a fall from occurring and this clinically 

viewed from the parameter “foot contact time” among the step execution parameters (Initiation 

Phase, Preparation Phase, Swing phase, Foot off time, Foot contact time ) extracted  from GRF 

[61]. Study findings show an increase in mediolateral sway in narrow base stance in older faller 

individuals. Also, static two-point discrimination (TPD) seems to be weakened in elderly fallers. 

This could be used as an indicator of falling risk [62]. For aged individuals who fell more than 

once during 12 month exhibited linear association between double support phase besides to step 

length variability  and increased risk of multiple falls [41, 63]. Multiple falls can be predicted from 

gait dysfunction in cognitive impaired older adults and is mediated largely by sensorimotor 

function and to a lesser extent by neurophysiological function [41]. One study demonstrates the 

deficit of co-existing sensory like poor vision and hearing form a key to increase risk of falling 

[64]. In another study, Lyapunov exponents directly quantify how the neuromuscular system 

responds to local perturbations and this should have a study to investigate if it has a relationship 

with a risk of fall [49]. In the other side, developing a model for detection of balance impairment 

and estimation of the falls risk in the elderly using Support Vector Machines (SVM) based on 

wavelet multiscale analysis of minimum foot clearance (MFC) as a gait variable [8]. Again, the 

postural perturbations combined with a cognitive task shows that older influenced more than young 

during quiet standing [65]. Therefore regaining postural stability is highly perturbed by a 

secondary task during obstacle clearance which increase the risk of falling because of the inability 

to recover from slips and trips during gait. This can be explained by the inability to effectively 

allocate attention to balance under multi-task conditions with poor executive function mainly in 

elderly [61, 66]. For illustration, when aged participants asked to count  aloud backward from 50 
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associated with walking , this task was strongly linked with falls and this characterize a new way 

to predict falls among elderly [67]. A measurement of standing balance termed “Functional Reach 

(FR) test” can predict falls in elderly people [30].  Furthermore, Berg Balance Test (BBS) and 

Timed Get Up and Go (TUG) can be used to assess balance and gait function, however they don’t 

indicate any significant statistical difference between elderly fallers and non-fallers. In contrary, 

adding cognitive load to the Voluntary can identify elderly individual at risk of falls [68].  In order 

to discriminate fallers from non-fallers, fractal scaling index of gait is useful [7]. 

Given that there is still no worldwide consensus on the definition of falling, some research 

documented falling to be approximately one in three people over the age 65 [57].  Elderly are the 

most rapidly increasing proportion of the society [65]. Reported falls in older adults shows 40-

60% of falls lead to injuries and this cost social and economic apprehensions [57]. For instance, it 

can cause considerable mortality, morbidity, reducing functioning and home nursing [69]. That’s 

why a fall with its psychological impact can increase the self-restrictions of activities and therefore 

a decrease in quality of life [68]. Table 1.1 explains the common fall risk factors [57]. 

 Intrinsic Extrinsic 

 

 

Non-modifiable 

Age, Gender  

History of previous Falls  

Acute or Chronic medical problems 

(e.g. Parkinson’s, osteoporosis, 

cardiovascular disease)  

Neurological function 

Environment outside of home  

(e.g. uneven paving, ice) 
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Modifiable 

Gait, Balance, Mobility levels,  

Lower extremity joint function  

Lower extremity muscle strength  

Cardiovascular status (e.g. blood 

pressure, heart rate and rhythm)  

Visual Acuity  

Self-efficacy, and Fear of Falling 

Poly-pharmacy  

Footwear  

Home Environment (e.g. loose rugs, 

steps) 

Table 1.1: Common falls risk factors 

 

1.7 Research Motivation 

 

Figure 1.7. Falls injury pyramid 

In this section, we will present the key motivation points of our research and can be summarized 

as follows: 

 Falls are a leading cause of serious injury and death among elderly people over 65. For 

instance, the falls injury pyramid in European Union  (EU) for those people is reported as 

in Fig. 1.7 [70].  



 

 

 

29 

 

 

 

The fatal falls reported over the years 2010-2012 by EU-member states to the WHO-office 

for the European Region is shown in Table 1.2. The mean age in France standardized 

incidence rate (IR) per 100.000 persons with age of 65 and older (IR 65+) is reported to be 

45.85 [28]. 

 

Table 1.2: fatal falls in numbers 
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 First cause of accidental death, third cause of chronic disability, and the fifth most 

common cause of death [71- 72]. 

 In France, the yearly number of falls is approximately 2.7 million[73] 

 One person in three over the age of 65 will fall on average once a year, and from the age 

of 80 this ratio rises to one in two. [73] 

 - Every year in France, nearly 400,000 seniors are an accidental fall.  

 - Nearly 12,000 people die. 

  - The number of fractures of the femoral neck in France each year is estimated to 

be 50,000 [74].  

 70% of all fatal falls occur at home [73].  

 After a fall, the risk of falling again in the same year is multiplied by 20. fallers develop 

phobia of falling again 

 The risk of falling increases with age. Each year, falls affect:  

 35% of those aged 65 to 79 people;  

 45% of people 80 to 89 years;  

 55% of people over 90 years. 

 The costs of falls is 
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- 25 billion Euros each year in the EU 

- $19.2 billion in the US in 2006 [75]. 

- More than £4.6 million a day in UK [76] 

1.8 Research Objective 

As mentioned previously, human gait is considered complicated dynamical system and 

their analyses based on observable data contaminated by noise. Therefore, improper methods can 

lead to wrong outcomes. Fourier transform can be effectively applied to stationary signals and 

make little sense when applied to non-stationary [78].  Even wavelet has been applied widely to 

non-stationary signals, it is still has its limitations like the limited length of wavelet base function 

and therefor energy leakage, adjustable window, outcome with a fixed scale and others [78].  It is 

become more essential to use or to develop methods that can extract essential components. In fact, 

previous studies put the data under certain limitations for example by some filtering which usually 

force the gait data to be stable and linear. However, this is not the case. Most of the experimental 

data certainly gait data should be criticized to be non-stationary and nonlinear. This will avoid us 

from handling the data in artificial way by going into linear analysis of these nonlinear and non-

stationary signals. Merely, methods of non-stationary can be employed to emphasize the real 

changes in the gait time series data signals. 
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CHAPTER 2 

METHODOLOGY & TECHNIQUES 

This chapter will introduce the main techniques being used to come up with the analysis 

throughout this work. This chapter starts with the database description being used. Then some data 

transformation techniques are introduced as a try to get more deep understanding of gait signals. 

Finally, some definitions are introduced as a basis for the upcoming chapters.  

2.1 Gait Data Description 

VGRF in Newton as a function of time are extracted from 8 sensors (Ultraflex Computer 

Duyno Graphy, Infotronic Inc.) underneath each of the right and left foot.  They were captured 

from 29 patients with idiopathic PD (disease stage was 2–3 on the Hoehn and Yahr scale, mean 

age: 66.3 years; 63% men), and 18 healthy controls (mean age: 66.3 years; 55% men). Subjects 

provided written informed consent prior to performing the experiment. 

Eight sensors were placed underneath each of the subject’s feet to collect VGRF while each 

subject walked at his/her usual back and forth for two minutes at their self-selected pace level 

ground without any secondary task in a well-lit, obstacle free, 25-m long, 2-m wide corridor. the 

sensors location inside the insole as lying approximately at the following (X, Y) coordinates 

measured as a person is comfortably standing with both legs parallel to each other are shown in 

Fig.2.1. The origin (0, 0) is located between the legs and the person is facing towards the positive 

side of the Y axis. The sampling rate is 100 Hz. Fig.2.2 displays a sample of the data captured by 
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the array of the eight sensors in addition to their summation. It displays a sample of the data for 

both Normal and Parkinson gaits. This database has been drawn from physionet gait database [54]. 

 

Figure 2.1: Sensor’s position as distributed underneath both feet. 

Figure 2.2: Sample of VGRF data captured by the eight sensors underneath the left foot. 

The red curve represents the resulting signal of their summation. The first row 

corresponds to normal gait and second raw corresponds to Parkinson gait subject  
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2.2 Data Transformation Techniques 

Signal is a physical quantity that we can measure such as gait VGRF. However, the latter 

is a composition of non- stationary signals that require a deep understanding of their instantaneous 

amplitude, phase and frequency. From this, one can model its stationary and non- stationary part 

and approximate the noise. In addition, one can practice such features for inter-subject 

classification of the VGRF signals such as between normal and pathological gait. Moreover, one 

could also concentrate in intra-subject classification like between usual gait and gait associated 

with cognitive tasks for the same subject. 

2.2.1 Fourier Transform 

A periodic signal has a property of )
2

()(
T

t
XtX


  where T is the period of the signal and 

2 exist as indication of repetition of trigonometric functions. Even “t” her stands for time, it can 

also be generalized to cover spatial repetition. Fourier stated that such repetitive complex functions 

could be decomposed into an infinite series made up of cosine and sine terms then by equation 

(2.1) we can examine the frequency domain analysis [79]. 

tkkk

NN

k
k tfbtfaatX   





)]2sin()2cos([)(
2

,
2

1

1
0          (2.1) 

Where t=1, 2….N 

N

k
fk  , )(

2

1
...1 oddN

N
k 


 , )(

2
...1 evenN

N
k   



 

 

 

35 

 

 

 

𝜀𝑡 is the residual and K stands for the Kth harmonic of the fundamental frequency (1/N) and 

N is the number of observations. Then coefficients ak and bk can computed up to k=N/2 as in 

equation (2.2): 
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                                    (2.2)

 

And M is maximum lag given by 0.25N. 

This a good indication that degree of dependence and other computations are highly 

dependent on the sample size. 

Then the amount of variance per interval of frequency is given by spectral density in 

equation (2.3): 

Mkba
N
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)( 22                                                         (2.3) 

However it is better to have the power spectrum, a smoother diagram given by equation 

(2.4): 
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And m is mean function of process X(t). 

Lag window (λj) can be estimated using Tukey window as indicated in equation (2.5): 

)]
2

cos(21[
2

1

M
j


                                                                 (2.5)

 

Certainly, this is not the only decomposition. Fourier transforms has its own limitations 

and her we can summarize some of them: 

- Cannot not provide simultaneous time and frequency localization. 

- The power spectrum derived from Fourier, there is a duplication of frequency coefficients. 

Thus only N/2 points are unique.  This is called the Nyquist sampling theorem 

- Not very useful for analyzing time-variant, non-stationary signals. 

- Not appropriate for representing discontinuities or sharp corners (i.e., requires a large 

number of Fourier components to represent discontinuities). 

- An artificial effect is created by the finite sampling time T in which the value of the 

frequency coefficients “leaks” into adjacent coefficient positions. This means you get a reduced 

value of the wanted coefficient and contamination of adjacent coefficients. 

-A sample time must be picked to ensure that all the frequencies in time signal resolved in 

the resulting bandwidth of the frequency coefficients. This is difficult certainly when the signal is 

not well understood beforehand. That is why filtering is done before Fourier transform to remove 
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unwanted frequencies otherwise signal aliasing or unwanted higher frequencies fold back into 

spectrum in unwanted places. 

2.2.2 Time-Frequency Transforms  

Fourier transform (FT) is used to examine the frequency content of the signal while short 

time Fourier transform (STFT), wavelet transform, Hilbert transform and many others provide the 

time-frequency representation of the signal [28]. Depending on the type of analysis and 

assumptions made, a transform is used. Table 2.1 shows a comparison between some different 

techniques used in processing VGRF signals. 

 

Table 2.1: Comparison between various techniques used to analyze our VGRF signals  

In order to comprehend the frequency content of the VGRF signals over time, both STFT 

and WT can serve a good foundation. 

 

 

 Fourier STFT Wavelet HHT 

Basis A priori A priori A priori Adaptive 

Frequency Convolution: 

global, 

uncertainty 

Convolution: regional, 

uncertainty 

Convolution: regional, 

uncertainty 

Differentiation: local, 

certainty 

Presentation Energy-frequency Energy-time-frequency Energy-time-frequency Energy-time-frequency 

Nonlinear No No No Yes 

Nonstationary No Yes Yes Yes 

Based on  

theoretical 

yes yes yes No (Empirical)  
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2.2.2.a Short Time Fourier Transform (STFT) 

The STFT or Gabor transform, ),( tw
s

G  is a Fourier-related transform used to determine 

the sinusoidal frequency and phase content of local sections of a signal as it changes over time. It 

is done by segmenting the signal into narrow time intervals (i.e., narrow enough to be considered 

stationary) and take the FT of each segment. Then each FT provides the spectral information of a 

separate time-slice of the signal and thus it provides simultaneous time and frequency information. 

It is defined as in equation (2.6) of signal s (t) [79]:    




 du
uiw

etugustw
s

G h)()(),(         (2.6) 

where s (t) is the signal of interest, g (u) is the windowed function (e.g. a rectangular 

window)  of size L, “t” stands for time and “wh” is the digital harmonic frequency in radian defined 

by equation (2.7), and N is the total number of harmonics. Frequency and respectively [79].  

1,2,1,0,
2

 Nh
N

h
wh 


       (2.7) 

In this thesis the Gaussian window is being a topic of interest given by equation (2.8) since 

the signal shape is Gaussian. 0
f  is the resolution frequency that specifies the spread of Gaussian 

window in both time and frequency: 

https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
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Since the Window should be narrow enough to ensure that the portion of the signal falling 

within the window is stationary, this do not offer good localization in the frequency domain. That 

is why wavelets in which a use of multiple window sizes compromises a good solution. 

2.2.2.b Wavelet Transform (WT) 

WT offers effective time-frequency representation of signals. It is based on a short duration 

wavelet of a specific center frequency. It is defined by ),( tw
s

W  as in equation (2.9): 

                 
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W )(*)(),(         (2.9) 

“a” is the scale and )(* u  is the chosen wavelet function and is given in equation (2.10) as 

lognormal analogous to Gaussian in STFT [79]: 

                  
2/2)log

0
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)(* ff
ef





        (2.10) 

The * is the complex conjugate symbol.  It is crucial to mention that time and frequency 

resolutions are must be paid attention in short time Fourier transform (STFT) and wavelet 

transform (WT). In addition, when comparing signals of the same type but from different groups 

like normal and pathological gait signals, those techniques hardly provide an insight to the main 

difference.  Synchrosqueezing is raised up as a better resolution in both domains and will be 

explained later in this chapter. 
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       2.2.2.c Hilbert-Haung Transformation 

Hilbert-Haung transformation is an empirical algorithm that is convenient on nonstationary 

and nonlinear time series data. It is a combination of both Empirical Mode Decomposition (EMD) 

and Hilbert Spectral Analysis (HAS):  

1) Empirical Mode Decomposition (EMD) 

A self-adaptive method applied for non-stationary and nonlinear signal-processing, EMD 

is proposed by Haung et al [78]. Empirical unlike other transforms which relies on theory, EMD 

derived from observation or experiment in time domain. Mode stands for a particular form or 

variety. Decomposition because it generates a set of finite time series basic parts called Intrinsic 

Mode Functions (IMF) resulted from the separation of the original signal. Those IMFs include 

different frequency bands, with different frequency component, ranging from high to low. It’s 

intrinsic because they naturally derived from the raw signal itself based upon the local time scale 

of the signal. That’s why EMD is adaptive. The technique can be summarized as follows [80]: 

- Identify all local extreme (maxima and minima) then interpolate between minima 

(maxima) ending up with upper and lower envelops curve [Xmin(t),  Xmax(t)] 
   that encompasses 

the whole data set. 

- Subtract the mean of the two envelops from the raw signal to obtain new function: 
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- Use the above sifting techniques frequently to minimize the mean to approach zero. The 

stopping criterion is given by: 
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 T is the whole time period      (2.10)  

- The number of extrema and zero crossing are equal or differ at most by one. 

- The original signal X(t) can be reconstructed using the following equation 
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)()()(         (2.11)      

This results on a set of IMFs with a certain frequency range and the last IMF is the residue 

Rn(t). The IMFs are arranged from higher frequency components into lower one. The residue 

represents the trend (i.e. the time-varying mean) of the raw signal and which characterized by 

being monotonic or having one extreme i.e. not having periodic behavior.  

The method can be summarized by the following flow chart as shown in Fig.2.3: 
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Figure 2.3. Flowchart of Empirical Mode Decomposition algorithm  

2) Hilbert Spectral Analysis (HSA) 

HAS is an energy-frequency-time representation which enables to obtain the time evolution 

of the instantaneous frequency of each IMF.  

The Hilbert Transform y(t) of the raw signal x(t) is given by: 
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Where PV is the Cauchy principle value. 

The analytic signal associated to x(t) which forms the complex trace is given by: 

)(
)()()()(

ti
etatiytxtz


       (2.13) 

 “i” stands for a rotation of the complex number counterclockwise (CCW) by 90°. 

The amplitude:  

            a(t) = √x2(t) + y2(t)        (2.14) 

𝑒−𝑖𝜃(𝑡) is the complex number or the tip of phasor then the phase (radians/sec) can be derived as 

shown in equation (2.15):       

             𝜃(𝑡) = 𝑡𝑎𝑛−1 (
𝑦(𝑡)

𝑥(𝑡)
) = 2𝜋𝑓0𝑡       (2.15) 

Where 𝑓0 corresponds to cycles/sec or Hertz. Take 𝑓0=3Hz, then the point will rotate 3 times per 

second counterclockwise around the circle in the complex plane. 

Therefore  𝑍(𝑓) in frequency domain is single sided Fourier transform and therefore: 

              𝑍(𝑓) = 0             𝑓𝑜𝑟    𝑓 < 0              (2.16) 

              𝑍(𝑓) = 𝑍(0)      𝑓𝑜𝑟    𝑓 = 0                    (2.17) 

  𝑍(𝑓) = 2𝑍(𝑓)      𝑓𝑜𝑟    𝑓 > 0         (2.18) 

a(t) is the amplitude and θ(t) is the phase.  

The instantaneous angle speed:          𝑤(𝑡) =
𝑑𝜃(𝑡)

𝑑𝑡
                                                       (2.19) 

The instantaneous frequency (IF):      𝑤(𝑡) =
1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
                                (2.20) 
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From equation (2.20), the local derivative of the phase defines the frequency resolution.  

IF is defined as the rate of change of the phase angle at time t of the analytic version of the signal 

with no need for long wave to characterize it. 

It is worthy then to plot time-frequency graph where 𝑎(𝑡) and 𝑤(𝑡) are time-dependent. 

Then the original signal can be expressed in terms of a Fourier-like expansion as a function of 

instantaneous amplitude and frequency       

𝑥(𝑡) = 𝑟𝑒𝑎𝑙 ∑ 𝑎𝑗(𝑡)𝑒𝑖 ∫ 𝑤𝑗(𝜏)𝑑𝜏𝑛
𝑗=1        (2.21) 

𝑥(𝑡) = 𝑟𝑒𝑎𝑙 ∑ 𝑎𝑗𝑒𝑖𝑤𝑗𝑡𝑛
𝑗=1         (2.22) 

The Hilbert spectrum, H(t,w) is thus obtained by the time-frequency representation of the 

amplitude representing  a measure of energy contribution for each frequency and time. That’s why 

Hilbert spectrum is useful for determining the frequencies covered by each IMF preserving the 

instants in which they occurred. 

Formerly the marginal spectrum can be obtained with different point of views: 

- Marginal time and this is when integrating the signal 𝐻(𝑡, 𝑤) with respect to frequency to 

obtain distribution in time domain i.e. marginal time 

ℎ(𝑡) = ∫ 𝐻(𝑡, 𝑤)𝑑𝑤
𝑁

0
         (2.23) 

- Marginal frequency when integrating with respect to time to obtain frequency distribution 

and this is given by: 

ℎ(𝑤) = ∫ 𝐻(𝑤, 𝑡)
𝑁

0
𝑑𝑡        (2.24) 

Where N is the total data length. This is useful in providing measure of the total 

amplitude/energy contribution from each frequency. 
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2.3 Synchrosqueezing of Time-Frequency Transform 

As we mentioned, STFT and the WT form the fundamental approaches to simultaneously 

decompose a signal into time and frequency components.  “synchrosqueezing transform” (SST) is 

an extension of the wavelet transform incorporating elements of EMD , however it has a theoretical 

foundation, and frequency reallocation techniques by combining all time-frequency (TF) 

coefficients corresponding to same instantaneous frequencies into one SST coefficient. SST is also 

an adaptive and invertible transform that improves the readability of a wavelet-based time-

frequency map using frequency reassignment by condensing the spectrum along the frequency axis 

[81]. 

Starting from equations (2.6) and (2.9) the instantaneous frequency can be computed by 

equations (2.25) and (2.26) respectively: 
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Nowadays, it’s become casual to get the synchrosqueezed STFT (Vs) and synchrosqueezed 

WT (Ts) as in equation (2.27) and (2.28): 
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Then it would be simple to show that the signal can be reconstructed by equation (2.29): 
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Most importantly, it is possible to reconstruct the component's parameters using time 

frequency representation (TFR) values at the ridge points denoted as ridge reconstruction. The 

ridge reconstruction formulas are for STFT, WT, SSTFT, SWT are shown in equations (2.30), 

(2.31), (2.32) and (2.33) respectively: 
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)],),((arg[)(),()( ttwVttwtv psp                                (2.32) 

)],),((arg[)(),()( ttwTttwtv psp                                (2.33) 

To sum up, synchrosqueezing improves the “readability” of the TFR, providing a more 

visually appealing picture. 

2.4 Modelling 

Modelling of signals is used to represent the given signal with some model parameters. The 

objective of modelling can be used for signal compression, prediction of behavior of a time series 

from past values alone, reconstruction and understanding of the physical system. There are 

different model classes. We will consider her the Autoregressive moving average model (ARMA) 

in brief for it importance. The General equations are summarized as follows for autoregressive 

(AR) and moving average (MA) separately [84]. 
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A) AR(p): tptpttt exxxx    ...2211  

The autoregressive model states that there is a linear dependence of the 

output variable on its own previous values and on a stochastic term. The model is 

in the form of a stochastic difference equation. p ....1  are parameters of the model 

and te is white noise. The order (p) of an autoregression is the number of 

immediately preceding values in the series that are used to predict the value at the 

present time. So, the preceding model is a first-order autoregression, written as 

AR(1). 

B) MA(q): qtqtttt eeeex    ...2211  

Moving-average (MA) model of order “q” is another time series analysis 

method. q ....1 are the parameters of the model. qtt ee ...  are white noise error 

terms. The model indicates a linear regression of the current value of series 

against current previous and current white noise error terms. The error terms 

are mutually independent and generated from the same distribution. For 

instance, the normal distribution with zero mean and fixed variance is used. 

C) ARMA(p,q): qtqttptpttt eeexxxx    ..... 112211  

Autoregressive–moving-average (ARMA) models is a combination of the 

previous two models. From equations above, the model main concern is the 

persistence, or autocorrelation, in a time series. 

https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Normal_distribution


 

 

 

48 

 

 

 

2.5 Feature Selection techniques : Receiver Operating Characteristic  

In order to develop robust classifiers and learning models, a subset of features must be 

carefully selected. Receiver operating characteristic (ROC) curve compares sensitivity or true 

positive rate (TPR) against the fall-out (1-specificity) or false positive rate (FPR) to exemplify the 

performance of binary classifier. Therefore it can serve a direct evaluation of feature by plotting 

equation (2.25) versus (2.26) [82]. 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)        (2.25) 

𝑇𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)        (2.26) 

Where T refers to true whenever the prediction matches the actual situation. Therefore, TP 

is true positive, TN is true negative and FP is false positive. Thus, with 95% confidence interval, 

the area under the curve (AUC) will reflect the accuracy on how well a feature could well separate 

normal gait from Parkinson’s gait. The following scores could be used to evaluate the accuracy: 

0.9-1:  Excellent 

0.8-0.9: Good 

0.7-0.8: Fair 

0.6-0.7: Poor 

0.5-0.6: Fail 

If AUC=1 refers to a perfect discrimination and has a ROC curve that passes through the 

upper left corner i.e. 100% sensitivity and 100% specificity with no overlap in the two 

distributions.  

Consequently, ROC curves are constructed by simply ranking the population according to 

their test result.  This means that the area under the ROC curve does not reflect the shapes of the 

https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/True_positive_rate
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underlying populations (i.e. normal or not normal) and it is non parametric.  This means that the 

AUC is a useful parameter regardless of the distribution of the underlying populations.  It also 

means that AUC can be used even when a test result does not give an accurate number – as long 

as one can rank the results and construct the curve. 

2.6 Classification Techniques 

In order to map every new observation into it is own category a classifier is needed. The 

objective is to introduce a learning algorithm having the ability to classify two different groups 

based on certain chosen features. Therefore, the algorithm has the ability to draw certain decision 

boundary between both groups. This will give the capacity to predict new introduced subjects to 

which group they fall by observing on which side of the decision boundary they drop.  

Various classifiers serve this goal such as logistic regression, Decision Tree, Naive 

Bayesian, boosting, Artificial Neural Network, K Nearest Neighbors, Support Vector Machine. A 

good classification system should have the following characteristics: 

 Use all information available. 

 Make few classification errors. 

 Minimize the negative consequences of making classification errors. 

2.6.1 logistic regression Classification 

For instance logistic regression Classification is based on the choice of hypothesis function 

which is chosen to be nonlinear function [83]. If θ is the weight then it is given by equation: 

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Artificial_Neural_Network
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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g is the sigmoid function and fitted as a threshold function: 
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The cost least mean square function in logistic regression to make h(x) close to y is given 

by: 
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),( )()( ii yx  is the i-th training example and m is the number of training examples. In order to 

optimize the cost function J (θ) with parameters θ, Newton's method serves the ability to minimize 

this function. The update rule for Newton's method is emphasized by equation (2.30):  

JH
tt

 
 1)()1(

         (2.30) 

The gradient and Hessian (H) matrix are given by: 
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The decision boundary is defined as the line: 

5.0)();|1(  xTgxyP          (2.32) 

And this corresponds to 

0xT            (2.33) 
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2.6.2 Principle component analysis (PCA) 

PCA is an orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal components. The 

first principal component has the largest possible variance, and each succeeding component in turn 

has the highest variance possible under the constraint that it is orthogonal to the preceding 

components. The resulting vectors are an uncorrelated orthogonal basis set. The principal 

components are orthogonal because they are the eigenvectors of the covariance matrix, which is 

symmetric. PCA is sensitive to the relative scaling of the original variables [83]. 

Given the centered data {x1… xm}, then the principal vectors are computed by equations 

(2.34) representing 1st PCA vector and (2.35) represents kth PCA vector: 
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We maximize the variance of projection of x.  
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Figure 2.5. Maximizing the variance of the projection in the residual subspace 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Orthogonal
https://en.wikipedia.org/wiki/Orthogonal_basis_set
https://en.wikipedia.org/wiki/Eigenvector
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Symmetric_matrix#Real_symmetric_matrices
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2.6.3 Discriminant analysis 

Discriminant analysis (both for discrimination and classification) is a statistical technique 

to organize and optimize: 

 the description of differences among objects that belong to different groups or 

classes, and 

 the assignment of objects of unknown class to existing classes. 

Discriminant analysis (DA) is based on Bayes’ Rule and likelihood that yields a posterior 

probability as in equation (2.36) [83]: 
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2
kz is the squared Mahalanobis distance from the data vector x to the kth group mean. pi = 

P(ci), the probability of a subject to be in group ci . i={Normal, Parkinson} . f (x | πi ) is the 

conditional probability density function. Then classifying an observed subject’s gait to whether a 

subject have a balanced or unbalanced gait, given the hypothesize is true, by which pi f (x | ci ) is 

highest. 

If the covariance matrix determinants are equal then the decision boundary is a line: 
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If the covariance matrix determinants are not equal then the decision boundary is quadratic 

function: 
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Then the decision boundary fall when the ratio 
2)(c2)c|(

1)(c1)c|(





Pp

Pp

X

X
  is equal one. If the 

ratio is greater than one then the subject drops into the first class; otherwise the subject’s gait fall 

under the second class. 



 

 

 

54 

 

 

 

Comparing DA with PCA yields that DA has X and Y variables, whereas in PCA there is 

only one set of variables. In addition, DA has predetermined groups. However, both use the 

concept of creating new variables that are linear combinations of the original ones. 

2.6.4 k-Nearest Neighbors Algorithm (K-NN) 

K-NN is a non-parametric method used for classification and regression. The input 

consists of the k closest training examples in the feature space. The output depends on whether k-

NN is used for classification or regression [83].  

K-NN classification divides data into a test set and a training set. For each row of the test 

set, the K nearest (in Euclidean distance) training set objects are found, and the classification is 

determined by majority vote with ties broken at random. If there are ties for the Kth nearest vector, 

all candidates are included in the vote. In order to measure the distance Euclidean: 

2
)(

2
 

j

i
j

x
j

xxx                                               (2.40) 

Fig.2.6 shows a flowchart that summarizes the algorithm of K- nearest neighbors. 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Feature_space
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Figure 2.6. Flowchart for the K-NN 

2.7 General Definitions 
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- A signal is said to be stationary (time-invariant spectra) if the local statistics do not change 

with time over the entire duration of the signal. That is why the probability density function 

does not depend on the definition of the time origin. Thus, a periodic signal is a stationary 

signal, but a transient signal that occurs locally in a long time domain is not stationary and 

therefore is said to be time-varying spectra. As to bond our definition, throughout this wok, 

we will limit the definition of stationarity to the change in the frequency content of the 

signal over time. If a DC-frequency is obtained then the signal is said to be stationary. 

Otherwise non-stationarity of signal is assumed. The only way to examine the later signals 

is by time varying spectrum. Fig.2.7 highlights this idea where time varying characteristics 

of the VGRF signal is shown. 

 

Figure 2.7: the first row plot is for stationary signal and the rest corresponds to non-

stationary signal 

Fig.2.7 shows how the VGRF signal varying in its nature (amplitude, frequency, phase), 

that is why we can set it as a transient signal which is a class of non-stationary signals.   
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Different methods are adopted for nonstationary data processing and here are some:  

Evolutionary spectrum, Spectrogram, Wigner-Ville distribution, Wavelets analysis, Empirical 

orthogonal function expansion (EOF), Smoothed moving average, Trend least-squares estimation 

and many others. 
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CHAPTER 3 

ANALYSIS & CLASSIFICATION OF VGRF SIGNALS 

In this chapter, the analysis and manipulations of the GRF data will be carried out to give 

an insight about the VGRF signals themselves. This would help in extracting significant features 

and specific information that help in predicting or even preventing falls in elderly. First we have 

proved the best sensors among other sensors that best can be used for classification purposes. We 

have also treated the total VGRF signals issued from the array of sensors as various studies in the 

literature commit to use it. 

 Pressure distribution underneath the foot has been a topic of interest for assessing falls in 

elderly and certain pathology like Parkinson’s disease. In this chapter, we performed spatial and 

time signal analysis over VGRF signals. This was done to classify gaits between balanced and 

unbalanced. The synchronization of consecutive gait steps in elderly subjects in both normal and 

Parkinson was analyzed. This helped us in building a classifier that work well in the classification 

of both groups. 

3.1 Filtering 

While standing at rest, the VGRF is the only one existing .However at the time of heel-

strike that separates the swing phase from the stance phase in addition to the toe-off, the vertical 

force is no longer vertical, it tilts over to produce shear force. When the foot hits the ground as 

termed heel strike, the VGRF associated with tangential forces slanted from GRF vector 

component parallel to the ground acting backwards. It is formed by an exchanging of frictional 
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forces with ground that leads to a brake impulse and therefore the body slow down. This prevent 

foot sliding forward along the ground. Fig. 3.1 shows the horizontal component affecting the 

vertical ground reaction force contaminated by noise. However, the dynamic characteristics of gait 

reaction forces are usually exploited by filtering as shown in Fig.3.2. Filtering at 25 Hz is useful 

for certain data while it is not applicable for another subjects as in Fig.3.2. Given that the foot will 

act also as a shock absorber as to disperse the force of the body during landing. The GRF vector 

is illustrated by a black arrow on Fig.3.1 during contact, midstance and propulsive phase. 

 
 Figure 3.1: Vertical GRF vector during Gait Cycle 

Likewise, during toe-off there will be an appearance of propulsive impulse to stimulate 

motion due to tilting of the force over forwards. This helps accelerating the body. 
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Figure 3.2: Ground Reaction Force filtering by second order Butterworth filter of 25 Hz shows a 

vital part being attenuated colored in red 

 Knowing that concavity upward horizontal and normal forces indicate brake impulse 

which is followed by deceleration motion while concavity downward signifies propulsive impulse 

followed by acceleration motion. This specify an important coefficient to consider which named 

static friction. Static friction is defined as the ratio of the magnitude of the horizontal frictional 

force to the normal force. This coefficient could yield when slippage could occurs.  Knowing that, 

part of this noise reflect the speed horizontal speed of the foot during the touchdown of the heel 

with the ground.  
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Figure 3.3: During Heel strike, the measured VGRF consist of horizontal frictional component 

Using Fig.3.3 and by Pythagoras theorem the measured ground reaction force is given by 

equation (3.1): 

𝐹𝑚
2 = 𝐹𝑣

2 +  𝐹ℎ
2                                   (3.1) 

Then      tan 𝛽 =
𝐹𝑣 

𝐹𝑚
              (3.2) 

Where 

 𝐹𝑚 : The measured ground reaction force 

𝐹𝑣 : The vertical component of ground reaction force, load 

 𝐹ℎ: The horizontal frictional component exerted by each surface on the other. 

𝛽: The angle indicating the direction of the measured GRF 

This horizontal friction is considered as non-fundamental force but is a result from 

intermolecular and interatomic kinetic dry friction between ground and foot which make it 

complicate to be calculated and considered as highly stochastic. This energy that examined as 

frictional forces by subject is lost as heat. An empirical law termed as Coulomb's Law of Friction 

can approximate this model by equation (3.3): 

Fv 

Fh 



 

 

 

62 

 

 

 

𝐹ℎ ≤ µ𝐹𝑣                         (3.3) 

Where, µ is the dimensionless coefficient of friction. It can be defined from equation (3.3) 

as the ratio of the force of friction between foot and ground and the pressing normal force. 

To sum up, and by newton’s law the force is given by: F=ma where “m” is the mass of the 

parts contributed to this force, and “a” is the acceleration. Since a frictional backward force exist, 

this suggest definitely the existence of backward acceleration as a braking action on the body, 

slowing it down. 

 

Figure 3.4: loading response and the push-off are circled. 



 

 

 

63 

 

 

 

From Fig.3.4, at instant just prior to the collision of the heel with ground i.e. as it start to 

touches the ground the normal force is in negative due to the fact that a forward directed force 

termed as “claw back” due to initial parameters [37] and in addition  the skeletal system act as a 

shock absorber. At those moments slippage is occurring and shown by the small red peak and this 

indicate the existence of force with direction of motion. However, this pronation activate 

information record by the lower central nervous system through sensory neurons that registered in 

central nervous system which in turns activate the muscles contraction to prevent the forefoot from 

slapping down and therefore generate forces and moments at synovial joints to invoke the 

movement regulated by rigid links. Fig.3.4 can be used for illustration. The last exert ground 

reaction force which followed by a decreasing in magnitude of the horizontal component as shown 

in Fig.3.3 to serve a friction in the opposite direction of motion preventing the subject from slipping 

and therefore falling. As a result, at the period of absorption shown in Fig.3.4 indicates that the 

horizontal and frictional force are equal in magnitude but in opposite directions where still there 

is no movement. This can be verified by newton’s third law that states that for every action i.e. 

force there is an equal and opposite reaction i.e. counter force. 

As a summary, in this thesis instead of using a fixed filtering bandwidth of frequencies 

over all gait VGRF signals (x[n]), we have developed an adaptive filter using the EMD technique 

as shown in Fig.3.5. 
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Figure 3.5: Adaptive filter 

Then we choose to remove certain intrinsic mode functions (example is shown in Table 

3.1) according to their weighted energy and preferred number of intrinsic mode function. 

Channel Zero Crossings Extrema Counts Mean Freq. [Hz] Power (%) 

IMF_h1 7050 4056 29.09068 0.045846 

IMF_h2 2506 1676 10.34326 0.354629 

IMF_h3 736 472 3.04068 9.128521 

IMF_h4 494 316 2.042248 4.668593 

IMF_h5 229 114 0.948923 84.29544 

IMF_h6 158 86 0.655995 1.052419 

IMF_h7 75 40 0.313557 0.241007 

IMF_h8 35 18 0.148527 0.089646 

IMF_h9 18 10 0.078389 0.041991 

IMF_h10 10 6 0.045383 0.008957 

IMF_h11 2 4 0.012377 0.031212 

IMF_h12 3 1 0.016503 0.041738 

IMF_residual 0 1 0.004126  

Table 3.1: Intrinsic mode function characteristics 
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An example of EMD applied to a data from a control subject is shown in Fig.3.6. The first 

subplot represents the raw signal. Fig. 3.6 illustrates the idea that the first IMF captures the largest 

frequency components. The second IMF has a lower oscillation and so on to reach a trend with the 

lowest component as shown in the last row of Fig.3.6. Therefore EMD acts as an adaptive filter to 

extract the components present in the signal. It’s worthy therefore to mention that the first IMF 

extracts most of noise present in signal. 

 

 

Figure 3.6. The first raw is the original signal. Seven IMFs plus the trend 

are plotted 

As a result, it is better to filter the signal at a mean frequency of 29.09 Hz instead of filtering 

it by 25 Hz second order Butterworth filter and losing crucial part of the signal. This filtering could 
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be at 28 Hz on another gait if it represents the mean frequency of the highest oscillations. This is 

because we have assumed in this case that noise exist in the IMF1. Fig.3.5 therefore indicates that 

EMD is applied to the signal then a choice of the number of intrinsic mode functions that must be 

removed from signal must be made. This would remove same number of oscillations between 

different gait subjects but not necessary the same frequency content.  

The foot- ground contact part of the VGRF time series signal are then extracted forming 

steps. Some steps are being eliminated when their statistical properties form outlier in the vast of 

other segmented step signal, mainly this is done by computing the mean and standard deviation. 

For instance the black segment of VGRF shown in Fig.3.7 forms an outlier. Those are so called 

turning points. 

 
Figure 3.7: Segments colored in black are being omitted 
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3.1.1 Synchrosqueezing Characterize Non-Stationary Signals 

Synchrosqueezing of time-frequency representation is being used to spot its power in non-

stationary signal analysis and classification. It is has been used to when signal components are not 

well separated in STFT, WT and empirical mode decomposition (EMD). It also gives a more 

readability of the frequency spectrum. In order to have more concentrated time –frequency 

representation, the algorithm of synchrosqueezing of STFT or WT will be convenient to be used 

by joining all coefficients having same instantaneous frequency into one coefficient [2]. Keeping 

in mind it is nonlinear transformation of time- frequency (TF) method. It is an alternative to 

empirical mode decomposition (EMD) that fits the analysis of a time-varying spectrum. From the 

modulus of TF representation, one can evaluate the instantaneous frequency.  This technique 

helped in developing an accurate detection of outliers within such time series signal like when 

subjects encounter turning points during walking.  This is needed also to track the instantaneous 

frequency with respect to time to have better understanding of the signal [45]. 

In order to show the power of synchrosqueezing on analyzing non-stationary signal, we 

will consider the signal generated using equation (3.4): 

TtttwA

tttwA

TttwAtx






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)...
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3
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11
cos(

2

0)...
11

cos(
1

)(







         (3.4) 

x(t) as shown in equation (3.4) is stationary either in 10 tt  or Ttt 1 . The spectral is 

fixed with respect to time within those two intervals. However this is not true when considering 

the whole interval Tt 0 . In this later whole interval, the signal is made up of stationary 

component ( )cos( 111 twA ) and non-stationary part ( )cos()cos( 223112   twAtwA ).  
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Time-frequency representation is powerful for non-stationary analysis [45], however, they 

don’t infer enough knowledge for the correct analysis when the non-stationary signal is made up 

of multiple closed frequencies. For illustration and simplicity, assume the amplitudes are

1321  AAA and the phases are assumed to be 0321   . The angular frequencies are 

given as 21 w , 3.122  w and 4.123  w . 

Performing STFT and synchrosqueezed STFT on x(t) yields Fig.3.8 and Fig.3.9 

respectively. One can investigate the main difference in the two time-frequency representation of 

the signal. The STFT vaguely provides the frequency content of the signal and do not show the 

two representations of the signal. 

 
Figure 3.8. STFT and its time averaged applied on the assumed signal x(t) 

STFT Amplitude- x(t): assumed signal
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Figure 3.9. Synchrosqueezed STFT and its time averaged applied on the assumed signal x(t) 

 

Performing synchrosqueezing on the STFT of Fig.3.8 leads to Fig.3.9 that detects the three 

components of the signal and suggest its capability in emphasizing the point of change in 

frequency. It is also clear that such frequencies do not appear in the spectrogram clearly while the 

three peaks are well recognized in synchrosqueezed STFT. VGRF is assumed to be governed by 

equation (3.8), then one can detrend the DC-frequency component ( stVGRF ) and the remaining 

match with the frequency content of non-stationary part ( nstVGRF ) in addition to noise ( )(t ). The 

late can be reduced by using the appropriate filtering techniques.    

)(t
nst

VGRF
st

VGRFVGRF         (3.8) 

This suggests the power of synchrosqueezing in non-stationary signal analysis and would 

be helpful in separating the active and impact peaks in VGRF, differentiate the effect of heel-

strike, mid-stance and propulsion on gait and many others as mentioned by figuring out the outliers 

in the signal 

Synchrosqueezed STFT Amplitude- x(t): assumed signal
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3.1.2 Turning Points Filtering 

The divergence of instantaneous frequency marked as turning points when subject reaches 

the end of the walking line and then the subject is asked to turn come back. Those must be treated 

separately for comparison between normal and Parkinson. They are outliers in a typical study. 

Knowing that turning while walking is highly associated to falls in elderly [53]. 

Fig.3.10 indicates ellipses at certain instant of times. When recording the signals, subjects 

were asked to walk at their own pace for two minutes. Those ellipses are obtained when the subject 

reaches an end point and then asked / required to turn around. Such turning points as shown in the 

figure will alter the frequency content of the signals and therefore the analysis. The frequency at 

those instants scatters from 0.6 to 0.9 Hz. That’s why it is become important to reconstruct those 

part. Otherwise, different segments of the signal must be treated separately. 

The divergence in the frequency content from its rigid form introduces instantaneous 

change in frequency content.  In order to relate this phenomena to the real experiment, those are 

obtained at turning points in the experiment as the subjects are asked to move without any 

secondary task in a well-lit 25-m long corridor. Such change suggest either to consider those events 

as outliers or they should be investigated separately in cases of classification between normal and 

pathological gait.  
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Figure 3.10: synchrosqueezed short time Fourier transform 

 

3.1.3 Effect of Dual Task on Gait : Instances where Normalization Fails 

Dual task induced a significant increase sway parameters variability in both control and 

Parkinson subjects [55]. In this part, two sets of measurements for VGRF derived from six elderly 

normal control subjects and six elderly patients with Parkinson are used due to database 

limitations. Participants then walked and performed a second task: serial 7 subtractions. The effect 

of dual task gait training is pointed out by comparing gait properties before and after training. It 

improves balance and gait abilities of chronic stroke patients [37]. Furthermore, another study 

shows the rhythmic walk is not affected by cognitive tasks in healthy subjects and have an 
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influence on pathological gaits [85]. In addition, during specific dual task the gait speed decreased 

(p <.001) and swing time variability increased (p <.001) [43].  

To sum up, a bunch of literature directly pointed out some features that would be affected 

as a result of adding cognitive task during walking. However, a need for deep analysis of main 

properties (like instantaneous frequency) of gait changes while performing a dual task as this part 

will focus on. In addition, VGRF consist of close frequency components contaminated by noise. 

Such signals are time varying frequency and amplitude. However, major stationary component is 

dominating the VGRF signals that masks the detection of such non-stationary components that 

would give the most relevant difference between two signals.  

Fig.3.11 shows two main important phenomena. A shift in the frequency and this is 

explained by change in the speed of subjects performing a certain task while walking. The second 

fact is a change in the amplitude in the time averaged synchrosqueezed STFT while performing 

dual task. This is due to divergence of the power from certain frequency component into other 

frequencies. Therefore, it would be beneficial to extract the instantaneous frequencies and track 

their variation.  
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Figure 3.11: Time Averaged Synchrosqueezed STFT 

 

In order to summarize the ability of synchrosqueezing in revealing valuable info about the 

gait, Fig.3.12 is obtained for the total ground reaction force so we can generalize the following 

differences: 

- Fluctuation in the instantaneous frequency as a function of time 

- Some components disappear 

- A shift in the frequency content is obtained 

- The power is relatively different 

As a result, one important recommendation is pointed out: dual task while walking affect 

the gait in a tremendous way in all subjects whether normal or Parkinson. The shift in the value of 
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the frequencies is due of the voluntary or automatic movement during dual task. This is revealed 

by hypokinetic. Hypokinetic disorders usually appeared in Parkinson subjects’ gait. 

 

Figure 3.12: Synchrosqueezed STFT for total VGR signal extracted from the gait of Parkinson 

subject on both walking conditions 

That is why filtering and normalization must be given specific attention. While we perform 

gait pathological assessment, it is hard to normalize signals from cognitive tasks or even when it 

comes to physiological or other situations. Therefore, significant content of the signal will be 

altered. That is why the adaptive filtering model best fit in such cases. Keeping in mind it is always 

to go over the frequency content of the signal.  In addition, normalizing VGRF from parameters 

like cognitive tasks for comparison purposes among subjects became problematic.  In order to 

overcome this debate, we focused mostly on this thesis on inter subject – VGRF comparison. This 
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is done by comparing VGRF from right and left foot of the same subject in addition to comparing 

two consecutive steps with each other from the same foot.  

3.2 Treating the Total VGRF 

A new method for analyzing human gait is based on Hilbert Haung Transform ( HHT) 

which is doing well in non-stationary and nonlinear analysis. The proposal is based on the Hilbert 

spectrum of raw signal to show relation between gait pressure and frequency. Results indicate an 

inversely proportional relationship. Usual human gait analysis like Fourier transform is conducted 

to get the different spectral components of the signal. However, to detect the occurrence of fall or 

walking abnormality, a need for a more advanced analysis to take into account the instantaneous 

and therefore quick lateral changes in the raw gait signal observed over small time windows.  Such 

instantaneous features like frequency, magnitude, and phase are observed from the complex trace 

/ analytic signal given by Hilbert transform. The ground reaction force is observed and the results 

shows variation of the first IMF by getting the number of zero crossing and standard deviation as 

a good indicators to distinguish normal subjects from those who are patients with idiopathic PD.  

3.2.1 Indications from Hilbert spectrum applied to the raw signal 

Fig.3.13 shows the Hilbert spectrum of the original VGRF. The U-shaped pattern 

characterizes all Hilbert spectrum plots of subjects in time frequency evolution as shown 

in the considered example in Fig.3.13 for a normal subject. If the instant just after heel 

contact with the ground is taken, indicated by a middle dotted black line in Fig.3.13, VGRF 

exerted by the subject starts to increase. 
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Figure 3.13: Hilbert spectrum of the VGRF for a normal subject. 

 

The frequency as shown in Hilbert spectrum is at high and starts to decrease as the 

foot becomes plantar with ground.  From the color bar, the amplitude of frequency starts 

from minimum and starts gradually increasing as inferred by time interval 1l  . When the 

foot is in plantar position with ground, the force is at maximum while the frequency is at 

minimum, however, its magnitude is at maximum suggesting the long time and this can be 
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inferred 2l . As the force decreases during the toe-off, the frequency starts to increase. As a 

result the maximum frequencies exist at the heel strike and toe-off during gait. In addition, 

this suggests that the frequency opposes the change which produces it as a trying to retain 

the body in balance and therefore of not falling [13]. Hilbert Spectrum of both normal and 

Parkinson subject indicate difference in frequency pattern distribution [13] and this is 

clearly shown at different mean frequencies represented by IMFs 

3.2.2 Normal and Parkinson 

The Hilbert spectrum of gait signals in Fig.3.14 and Fig.3.15 corresponds for 

normal and patient with idiopathic Parkinson disease respectively. The GRF is at minimum 

as shown in Fig.3.14 by arrow at moment of heel-strike.   

 

 

 

 

 

 

 

 

 

This indicates that the frequency of the signal is high at heel-strike and at the toe-

off and also suggests that the frequency opposes the change which produces it as a trying 

to retain the body in balance and not falling. Fig.3.14 and 3.15 also show the control 

 

Figure 3.14:  Hilbert spectrum of the raw signal 

corresponding for a control subject 

 

Figure 3.15: Hilbert spectrum of the raw signal 

corresponding for patient with idiopathic PD   

Heel Strike 

Heel Strike 
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subjects have higher frequency at instants of heel-strike and toe-off than those in the 

patient. Thus, the information in the first IMFs extracted from ensemble empirical mode 

decomposition (EEMD) important for analysis.  

3.2.3 IMf General property 

Plotting the number of zero crossing versus average instantaneous frequency for 

each IMF including all subjects shows the same linear relationship and is given by equation 

(3.10) after a linear fitting is done as shown in Fig.3.16 where IMF2 is deliberated. 

Mean Frequency=0.0041(zero crossing + 1)        (3.10) 

As a result using both features couldn’t affect classification performance but can 

computationally expensive. Accordingly, either Mean frequency or zero crossing could be 

used.  

A set of intrinsic mode functions are generated using the sum of the 8 sensor outputs 

of the left foot. 18 control subjects and patients with idiopathic PD are considered. The 

counting number of IMFs is shown in table 3.2. 
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Figure 3.16: Mean frequency V.S. Zero Crossing for IMF2 of all 47 subjects. 

 

 

# of IMFs 

 

12 IMFs 

 

13 IMFs 

 

14 IMFs 

 

15 IMFs 

Control (%) 16.66 72.22 11.11 0 

(%) Patients 35.7143 25 32.1429 7.1429 

Table 3.2: The percentage of certain number of IMFs present in raw signal 

From Table 3.2, there is a clear indication 72% from control subject have 13 IMFs 

while 25% of Patients are recorded to have 13 IMFs. This suggests that a certain frequency 

band is either added or omitted from the signal. Later in this document, this will indicate 

that frequency is related to pressure evolution  and therefore the elderly is either having a 

certain frequency band more than usual to control and balance his/her walking, and this 

could be voluntary. A less IMF indicates that elderly is walking on his usual and a decrease 

of reaction time and this suggests a more body shiver and the patient is subjected to the 

risk of falling.   
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Again, the weakness of EMD in our case can be summarized as follows: for the 

closed envelopes that formed using cubic spline and at a height away from zero, there will 

be a combination of frequencies rather than a clean IMF signal. This is called mode mixing. 

3.2.4 Zero Crossing effect of each IMF on  training accuracy 

In each step, one of the IMFs features are omitted and then its effect on the training 

accuracy can be formed. Table 3.3 presents the result. For instance, in row 1 where none 

of the IMFs is gone is able to classify 95.7% of the examples in the training set correctly. 

In row 7, the IMF6 is excluded and the training accuracy decreased to 76.6%. As the table 

indicates, excluding IMF5 and IMF13 from the training set has no effect in the training 

accuracy. Knowing that IMF5 is recorded to have the highest energy percentage compared 

to the total energy of the original signal in all subjects, except for Residue as shown in 

Table 3.4. IMF13 forms the trend of the signal and all subject therefore have the same mean 

instantaneous frequency for IMF13. All other IMFs will affect the training accuracy 

specifically IMF3, IMF11 and IMF6 were the most important one since they encounter low 

training accuracy in their absence.    
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Table 3.3. Omitted IMF effect on training accuracy 

i-th IMF 
Omitted 

Training 
Accuracy 

i-th IMF 
Omitted 

Training 
Accuracy 

None is omitted 95.744681= 2 
out 47 subjects 
classified 
incorrectly 

7 91.489362 

1 93.617021 8 91.489362 

2 93.617021 9 93.617021 

3 89.361702 10 91.489362 

4 91.489362 11 89.361702 

5 95.744681 12 91.489362 

6 76.595745 13 95.744681 

 

Table 3.3. Energy percentage compared to the total energy of the original signal, except for 

Residue 

 Normal Parkinson 

Mean Stdv Mean Stdv 

IMF_h1 

IMF_h2 

IMF_h3 

IMF_h4 

IMF_h5 

IMF_h6 

IMF_h7 

IMF_h8 

IMF_h9 

IMF_h10 

IMF_h11 

IMF_h12 

 

0.075 

0.442 

9.723 

6.451 

80.03 

2.704 

0.252 

0.099 

0.067 

0.048 

0.065 

0.044 

 

0.05 

0.212 

4.493 

3.771 

6.201 

2.18 

0.122 

0.046 

0.03 

0.034 

0.154 

0.07 

  

0.061 

0.246 

5.872 

10.05 

81.93 

1.345 

0.18 

0.088 

0.059 

0.058 

0.063 

0.051 

 

0.058 

0.193 

3.899 

9.051 

10.47 

1.923 

0.126 

0.058 

0.051 

0.065 

0.082 

0.112 
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3.3 Frequency Content Analysis 

The aim of this section is to investigate more on the main fundamental frequency content 

of gait VGRF. In addition, a comparison between normal and Parkinson subjects in terms of their 

frequency is developed. 

3.3.1 System’s Frequency Nonlinearity 

A linear system in frequency is achieved when the net amplitude frequency (Afreq) 

of the summed signal (total VGRF) is equal to the sum of the amplitude frequencies 

produced by each sensor’s signal.  More clearly this is emphasized in equation (3.9) where 

“i” is the senor number: 

 )()(  i
VGRFAfreq

i
VGRFAfreq           (3.9) 

 
Figure 3.17: The power of frequency content present in tVGRF and the summed amplitude is 

different from the summation of frequencies for sensor’s VGRF.  
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However, this is not the case on gait VGRF. Fig.3.17 emphasizes clearly the 

difference between the frequency content of the total VGRF (tVGRF) and the summation 

of frequencies of the array of 8 sensor’s VGRF. The most fact is that the second peak 

becomes of lower amplitude compared to the third peak in tVGRF. This suggests the 

Heterodyne phenomena around ~ 1.63 Hz. In addition, the even harmonics are most likely 

to be affected.  

3.3.2 Frequency content  

Up to our knowledge, the marginal level of frequency in the gait VGRF is noted to 

be less than 20 Hz [42]. Consequently, our focus will not exceed the 20 Hz for the reason 

that STFT confirms no valuable power frequency content revealed for frequency above 15 

Hz. Fig.3.18 displays up to 5Hz for graph clarity in addition that concentrated power 

frequency content is located at this region. 

First, all sensors contain the same frequency content with a relatively small 

different amplitudes as shown in Fig.3.19 within the same person, this is found in all 

subjects and can be explained as a tend to maintain coherence in gait at least during 

experimenting for small duration. This also quantifies that participants are walking on free 

obstacle level ground! 
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Figure 3.18: STFT plot and upper plot is time averaged STFT 

 

Figure 3.19: Amplitude of time averaged STFT amplitude for all 8 sensor 

underneath right foot for a normal subject. The strikes corresponds to frequency 

tVGRF. 

 

Again, the main major frequency content is at a lower values. That’s why WT is 

better used to tell more about the principal frequency components of gait VGRF. The first 

three peaks revealed a 94 % power from the whole spectrum. That’s why they are 

considered. 
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Table 3.4 demonstrate the first three fundamental peaks that cover the most power 

of the frequency content. The first peak is in the range of ~ 0.5658 – 1.1182 Hz for almost 

98 % of subjects. It is approximately 2.0276 Hz for the second peak on average and 2.7108 

Hz for the third peak. 

TABLE 3.4:  FREQUENCY CONTENT 

 Normal (mean ± std) Parkinson (mean ± std) 

Peak 

# 
Frequency range (Hz) 

Peak 

value 
Frequency range(Hz)  

Peak 

value 

1st   0.9154 ±  0.0676  ~0.22 0.8985 ± 0.1109 ~0.24 

2nd  
1.8347 ± 0.1292 

~0.09

8 
2.1473 ± 0.7278 

~0.07

3 

3rd  
2.9458 ± 0.8859 

~0.05

9 
2.5650 ± 0.7220 

~0.04

5 

 

3.3.3 Difference between Normal and Parkinson 

 

Figure 3.20: Amplitude of time averaged short time Fourier transform - Gaussian 
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Figure 3.21: Amplitude of time averaged wavelet transform – Lognorm 

 

The first peak covers the most important part of active part of the VGRF signal as 

shown in Fig.3.20. One research demonstrate at a cutoff frequency of 3 Hz leads to 

imperfect separation of both active and impact peaks [86]. While it is not that such 

frequencies don’t exist in Parkinson subjects as frequency tends to increase (i.e. the more 

they correspond to the impact peak), but the peaks and the valleys tend to be much more 

muted. That justifies the damping oscillations of the decomposed impact curve [86], on 

other words the result of spectral decomposition of VGRF. The lack of such peaks can be 

related to the stiffness or rigidity of limbs and consequently the postural instability that 

most Parkinson subjects will encounter. Nonetheless, Parkinson’s restricted step length 

reduces their walking speed and number of steps per minute [87].  In order to discriminate 

the low frequencies (that usually forms the identity / main characteristics of the signal) 
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between normal and Parkinson more clearly, the wavelet transform is used to provide 

higher temporal resolution for high frequencies as shown in Fig.3.21.  

As a result, the first peak suggests the active curve and the second is due to impact 

peak. The latter is at higher amplitude in normal subjects. Table 3.4 shows a coefficient of 

variation in the second peak of 7.04 % among normal subjects while it is 33.89 % among 

Parkinson.  This totally agrees with the results of [88] that emphasize higher power at 

higher frequency in normal gait compared to a Parkinson gait. The latter shows smaller 

peak heights in the VGRF at heel contact and toe-off phases of gait. Such an impact peak 

becomes harder to be observed at advanced stages of disorder where steps of Parkinson 

characterized by shuffling steps.  

3.4 Analysis of Sensor’s Array  

As the dataset is made up of 8 electrodes underneath each foot, it’s hard to visualize and 

then analyze them in the absence of theoretical background.  

Dimensionality reduction is the key. A hypercube is made up of matrices like the one in 

equation (3.11) at different time lags. 

Mc(𝜏) =

[

𝐶[𝐿1𝑅1]𝜏 𝐶[𝐿1𝑅2]𝜏  ⋯  𝐶[𝐿1𝑅8]𝜏

𝐶[𝐿2𝑅1]𝜏                                               
⋮                 ⋱                   ⋮

𝐶[𝐿8𝑅1]𝜏                    ⋯  𝐶[𝐿8𝑅8]𝜏

] = 

      (3.11) 

 
 

- 𝐿𝑖 is i-th left signal and  𝑅𝑗 is the j-th right foot signal 
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- 𝜏  is the time shift or lag between signals ; 0≤ 𝜏 ≤ 𝑁 − 1 

- “CLR” :the covariance sequence given as the mean-removed cross-correlation sequence   

𝐶𝐿𝑅(𝜏) = 𝑅𝐿𝑅(𝜏) − 𝜇𝐿𝜇𝑅  

𝐾𝐿𝑅(𝜏) = 𝐸{𝐿𝑡𝑅𝑡−𝜏} 

- 𝜇  is the mean and E is the expectation and K is cross-correlation and therefore cross-

covariance can be computed using (4.3): 

𝐶[𝐿𝑖𝑅𝑗]
𝜏

=  
1

𝑁−1
∑ 𝐿𝑖(𝑡)𝑅𝑗(𝑡 − 𝜏) − 𝐿𝑖̅

𝑁
𝑡=1 𝑅𝑗̅            (3.12) 

   0 ≤ 𝜏 ≤ 𝑁 − 1     𝑖, 𝑗 ∈ [1 8] 

Each covariance matrix allows us to characterize the direction of the greatest variance in 

our data. This is so called principal component analysis (PCA) used to reduce the dimensionality 

of the data by selecting directions along which our data has the largest variance. Finding such 

eigenvectors have the property of not rotating when multiplied by the covariance matrix. Then 

eigenvectors (e) having largest eigenvalues (𝝀) corresponds to our principal components that will 

give a new dimensions of our data.  

 𝑀𝑐(𝜏). 𝑒 = 𝜆. 𝑒      (3.13) 

The eigenvalues are obtained by solving equation (3.14). Fig.3.22 shows eigenvalues of 

the 8 principal components for normal subject. 

 [det (𝑀𝑐(𝜏) − 𝜆. 𝑒) = 0]       𝑎𝑡 𝑎 𝑔𝑖𝑣𝑒𝑛 𝜏      (3.14) 
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Figure 3.22: Eigenvalue versus its component number for Left foot sensors in a normal subject 

 

The first principal component has variance (eigenvalue) 6.6677. The first three principal 

components accounts for 84.46 % of the total variance. The first four counts for 94%. This is a 

good indicator that most of the data structure can be captured in three or four underlying 

dimensions. The remaining principal components account for a very small proportion of the 

variability and are probably unimportant. 

The same analysis is performed to obtain the eigenvalues for all 16 sensors. Then the 

maximum eigenvalues is plotted against different time lags as shown in Fig.3.23. The smooth 

decrease that forms the trend forms a non-stationarity relation among sensor’s data.  
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Figure 3.23: Maximum Eigenvalues being computed at different time lags for left sensor to right 

foot sensors (Red), left sensor to Left foot sensors (Blue), and black indicates when computed for 

all sensors as one matrix. 

However, a seasonality that described by the repeated patterns are observed after certain 

period lags around 60 points (100 Hz sampling frequency). Knowing that when the covariance 

didn’t attain zero value, this specify that the randomness situation no longer available. In 

consequence, the VGRF signal are a mixture of stationary and non-stationarity sources. They are 

stationary from macroscopic point of view but microscopically they are non-stationary. The latter 

is of lower power component as Fig.3.23 illustrates. 

3.5 Sensor Selection 

However, still many studies consider the sensor location to measure the Ground reaction 

force either at both toe and heel or usually by analyzing the total force from sensors underneath 

each foot [13]. Though, a need to investigate more exploration of choosing the correct position of 

a sensor or set of sensors in the insole becomes crucial. This is for the reason that some features 
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are used for classification and better work when they are extracted from sensors data at a given 

location. Then features being used widely in the literature are passed into a KNN classifier. 

ROC curve is then used to evaluate each feature for all sensors. This could contribute to 

other research conducting in the goal of anticipating the risk of falling among people and especially 

among elderly [14].  

3.5.1 Features Used 

In this part, simple features were extracted after the data being pre-processed. Then 

their performance was tested. The features used here are used from literature, we found 23 

features. In this section the 11 most relevant features were retained. A list of the commonly 

wide used features are shown below [1], [13], [15], and [37]: 

 Mean: Signal averaging 

 Median: numerical value separating the higher half of a data from the lower half. 

 standard deviation: measures the amount of variation or dispersion from the average 

 range: the difference between the maximum and minimum values 

 Interquartile range: robust estimate for the spread of the data being equal to 

the difference between the upper and lower quartiles IQR = Q3 − Q1. 

 95% percentiles of the distribution of the signal. A percentile (or a centile) is a measure 

used in statistics indicating the value below which a given percentage of observations in 

a group of observations fall. 

 Skewness: measure of lack of symmetry 
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 Kurtosis: measure of whether the data are peaked or flat relative to a normal distribution. 

 Power of the signal 

 Mean power frequency 

 Magnitude of peak frequency 

3.5.2 Testing: Features Evaluation by ROC 

As too many statistical features could be extracted and evaluated in time domain 

analysis and frequency domain, in this section one feature is used to demonstrate the 

evaluation. However this is done for all features among all sensors for the 47 subjects. For 

instance the skewness is chosen since it has been used widely in various studies related to 

VGRF [13] and has demonstrated its capability in distinguishing normal and Parkinson’s 

disease person. 

Once again when AUC = 1, this refers to a perfect discrimination and has a ROC 

curve that passes through the upper left corner i.e. 100% sensitivity and 100% specificity 

with no overlap in the two distributions. Fig.3.24 shows a plot of the ROC curve for 

skewness feature tested over sensor 5 in the right foot among normal and Parkinson. Each 

point on the ROC curve represents the sensitivity and specificity pair corresponding to a 

particular decision threshold. The diagonal line dividing the ROC space is also called line 

of no-discrimination in which a point on this line corresponds to a completely guess. When 

points are above the diagonal, this indicates a good classification results and on the other 
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side points below this line indicate a poor predictors. Therefore the distance from the 

random guess line is the best indicator of how much predictive power a method has. 

 

Figure 3.24: Skewness ability in discrimination between Normal and Parkinson Gait 

using ROC curve. 

The evaluation of skewness shows the following: 

ACC 85.1064 

MCC 0.6822 

Sensitivity 0.8966 

Specificity 0.7778 

Area Under Curve 0.902 
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Using the above listed data, 0.9 as area under the curve indicates an excellent 

performance of skewness in discriminating normal from Parkinson using VGRF from 

sensor 5. 

The results of ROC evaluation among all the 47 subjects are shown in Table 3.5 for 

each sensor.  

Table 3.5. ROC evaluation of skewness among all sensors. 

 

ROC-AUC 

Sensor # in Foot Left Foot Right Foot 

1 0.645594 0.655172 

2 0.609195 0.637931 

3 0.609195 0.613027 

4 0.701149 0.676245 

5 0.904215 0.842912 

6 0.787356 0.764368 

7 0.850575 0.808429 

8 0.62069 0.703065 

VGRF corresponds to summation of the 8 sensors 0.605364 0.611111 

 

Analyzing Table 3.5 indicates that unlike other studies similar to [13] that consider 

total summation of force signals from all sensors as the most important, however, its clearly 

shown that sensor 5 is the most important sensor (AUC = 0.9) to consider in building 

acquisition system to acquire data for analyses. Fig 3.25 shows the ROC curve of the total 

ground reaction force from sensors of the right foot. The sensitivity is recorded to be 0.6552 
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while the specificity is 0.5556. This yield AUC = 0.5460 which refers a fail level of 

accuracy in classification. 

 

Figure 3.25. Skewness is extracted from the total force from sensors located under the 

right foot and its performance in binary classification is evaluated using ROC curve 

This conclusion is generalized as the same procedure is applied over the rest of the 

features chosen in this study. If expanding data is needed, then adding sensor 7 and 6 

corresponds as main sensors also to be considered for classification as shown in Fig.3.26. 
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Figure 3.26: The most important locations to acquire data for Gait analysis. 

 

Not to add, the average of the strides of the 2 classes corresponding to the 120 

seconds of walking is also considered. As a result, each series of strides are represented by 

their average. Next, 3 features were extracted: the amplitude of the first peak, that is, the 

peak that corresponds to the heel contact (in case of total force), time to the first peak, stride 

time. The ROC evaluation also infers a better accuracy for sensor 5 com- pared to other 

sensors. 

3.5.3 Verification 

In order to verify results, the features are passed through a chosen classifier, k-

nearest neighbors (KNN) in this case. As mentioned, KNN is not used to test its power in 
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classification, but to test the power of sensor 5 in a given classifier. Ten subjects from each 

class are chosen as training and the rest are tested by the classifier. 

In this study, this is done in two ways. First, select one sensor among all subjects 

and then choose two features randomly and iterate between them. The feature chosen will 

have a high score from ROC evaluation and then feed them to KNN-classifier one example 

is shown in Fig.3.27. In a second case of study, fix the feature and iterate a number of 

sensors among the KNN classifier. The results of KNN classifier indicate an accuracy of 

around 83% on average in most cases where sensor five exist. Other sensor shows a 

relatively smaller value. While the total force when used shows an accuracy of around 15% 

smaller than sensor five. 

 

 

 

 

 

Figure 3.27. Skewness and Median Frequency are extracted from signals of sensor 5 in 

mid-foot. 

 

3.5.4 A simple feature of the mid-sensor 

The mean and the standard deviation of the segments of each step is computed and 

then they are plotted versus each other for mid-sensor signals.  Fig.3.28 clearly shows that 

those statistics vary from one step into another. In our case the mean and standard deviation 

are highly correlated. Furthermore, such a change in the mean that ranges from 32 to 77 
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and a standard deviation that ranges from 70 to 135 is a clear indicator that the signal is 

non-stationary.  

 
Figure 3.28: Standard deviation versus mean for an abnormal subject upon midsensor located 

in the right foot. 

 

3.6 Classification Methodology 

Vertical Ground Reaction Forces (VGRF) are reflection of the net forces exerted by human 

body on ground while walking. In this section, instead of summing VGRFs collected from various 

sensors underneath the foot as others do, they are treated separately. Therefore, the equivalent 

force will be on Center of Pressure (COP), i.e. at the centroid of the distributed load.  

Starting from arguments that most falls in older adults are a result of variability in gait 

pattern, this study focuses on kinetic parameters: VGRFs and COP. As mentioned, VGRFs reflect 
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the resultant of forces encountered by external (gravitational) and internal (muscle) forces in 

addition to the feet-ground interaction forces (spring-damper model). Likewise, focusing on 

VGRFs decreases the effect of environmental interferences like friction on the wellful gait. The 

speed and age are also used in this analysis. This analysis constitutes setting up a nonlinear decision 

boundary between balanced and unbalanced gaits through two related hypothesized lemmas. Then 

the unbalanced gaits are excluded from the next step of the analysis. These unbalanced gaits are 

certainly considered abnormal due to their high gait variability measured by their load of 

distribution and speed times age. The remaining balanced gaits that include both normal and 

Parkinson subjects are taken into another classifier using a simple correlation feature.  In fact, this 

would be very beneficial during real time implementation that will end up with a portable device. 

This analysis is helpful in evaluation of a rehabilitation program. It may turn out dropping injuries 

by enhancing fall prevention on the elderly in particular those affected by Parkinson.  

3.7 Observations and methods  

3.7.1 Center of pressure path 

Center of pressure (COP) is a kinetic parameter that represents VGRF’s point of 

application. Therefore, it can be used to track the transfer of weight to asses balance. The 

instantaneous location of COP was deliberated as a weighted average of the measured 

VGRF values for each sensor by means of equations (3.13) and (3.14):  

 𝑋𝑐𝑜𝑝 =
∑ 𝑉𝐺𝑅𝐹𝑖𝑋𝑖

𝑛
𝑖

∑ 𝑉𝐺𝑅𝐹𝑖
𝑛
𝑖

 (3.13) 

  𝑌𝑐𝑜𝑝 =
∑ 𝑉𝐺𝑅𝐹𝑖𝑌𝑖

𝑛
𝑖

∑ 𝑉𝐺𝑅𝐹𝑖
𝑛
𝑖

 (3.14) 



 

 

 

100 

 

 

 

(𝑋𝑐𝑜𝑝, 𝑌𝑐𝑜𝑝) are coordinates corresponding to the instantaneous place of the center 

of pressure . (𝑋𝑖 , 𝑌𝑖) represents the location of sensor (i).  𝑉𝐺𝑅𝐹𝑖 is the force obtained from 

sensor (i) and n is the total number of sensors. 

 

Figure 3.29: Path of COP over 30 consecutive steps underneath the right foot for two Parkinson 

gait subjects. The right columns represent their mean and their standard deviations 

 

Fig. 3.29 signify the path of COP underneath the right foot for two Parkinson gait 

subjects. Getting the mean of the different paths of COP over the x and y-coordinates 

followed by their standard deviation shows a variation in the mean of 49.5576 and 54.1533 

over the x and y-coordinates respectively for the first subject (first row). While the mean 

on the second subject varies in the range of 25.6551 and 46.6175 for x and y-coordinates 

respectively. Working out the ensemble variation and then their standard deviation over 

the x-coordinate is recorded to be 69.4985 on the first subject higher than the second subject 

of 53.4931. This shows the path of COP in the first subject deviates highly compared to 
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the second subject. This difference is not observed over the normal group subjects. Fig.3.30 

is an illustration. 

 

 

Figure 3.30. Path of COP over 30 consecutive steps underneath 

the right foot for a Normal gait subject. The right column 

represent their mean (in blue) and their standard deviations 

 

Formulating whatsoever is declared forms a good indicator that certain Parkinson 

subjects have the ability to synchronize their steps for diverse reasons (rehabilitation, short 

time experimentation (2 min), medication, level of pathology…). Such gait variability in 

the same group would lead comprehensive assortment of statistical discrepancy making it 

challenging to find fairly common properties between subjects. Taking 18 normal and 18 

Parkinson subjects yields a mean of 58±15 and 61±15 (mean±std) respectively. Testing the 

null hypothesis that the pairwise difference between normal subjects and Parkinson 
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subjects has a mean equal to zero shows (h=0, p=0.7). This directs t-test not to reject the 

null hypothesis with 5% significance level. This is one of the real facts that the difference 

between the two groups will be masked as a subset of one group share same properties of 

the other group. 

3.7.2 Load Distribution 

The above observations in the gait variability within the same group of subjects and 

their overlapping in their characteristics, guide to have more or less rules in advance to 

perform any statistical interpretation of signals. This is because external factors could mask 

the real datum of signal being premeditated. The following two hypothesized lemmas: 

Lemma 1: The axis of body balance is highly related to distribution of loads by 

subjects during switching of the feet. This axis appears clearly when walking in a straight 

line and passes through center of gravity. This center changes location in case of imbalance 

due to a certain disease. 

Lemma1 outline Lemma2: 

Lemma 2: The movement of feet is uniform when walking due to the distribution 

of loads between the feet.  Therefore, imbalance is due to irregular distribution of loads 

between the feet.  In a simpler way, pressure distribution between feet differs when a 

subject is affected with disease like Parkinson.  This is more obvious in diseased subjects 

where their metabolic system is affected.  

Setting up Lemma2 articulate the following hypothesis: 
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Hypothesis: Normal Gait must be balanced. However, balanced gait doesn’t 

indicate normal gait subject. 

The stemmed hypothesis points out that if a healthy gait subject is considered, then 

this subject must have a balanced bearing between feet. While if the subject is affected by 

a disease like Parkinson this disease replicated on his gait. It may appears as unbalanced 

gait, however this is not always the case. Parkinson subjects could be placed into 

rehabilitation program or get beforehand some medication prior to the experiment. This 

would mark the gait performance during the experiment and it would appear as balanced 

way of walking. That’s why and before undertaking any statistical analysis, it’s really 

become an essential task to differentiate Parkinson subjects as having balanced and 

imbalanced gait. Again, normal subjects are definitely considered to have balanced gaits. 

In this manner, Parkinson subjects are split to end up with a subset that for sure comprise 

Parkinson syndrome and the rest are driven into supplemental examination. In fact, 

reducing the dataset would be very beneficial as all statistical parameter will not be 

deviated and affected by parameters of subjects that we are guaranteed to partake irregular 

posture.   

Since a classification is required on a first step, it is more than enough to train a 

classifier that draws a boundary for balanced gaits. It is mainly affected by the bunch of 

normal gait subjects as we have a conditional hypothesis.   

The flowchart of the tracked technique is illustrated in Fig.3.31. 
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Figure 3.31: Flowchart of gait classification 

 

Fig.3.32 emphasize the load distribution for a four gait subjects. Two from each 

group are presented. Comparing the distribution of loads between right and left foot shows 

that normal subjects admits a comprehensible scattering between feet. This result is 

inspected in some Parkinson subjects (left bottom diagram) while others have a totally 

different patterns of distribution between feet (right end map).  
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Figure 3.32: Load Distribution underneath both feet in Normal and Parkinson Gaits 

 

The Euclidean distance to each sensor weighted by its consistent energy is then 

computed by equation (3.15): 

 22
i

y
i

x
ii

  (3.15) 

i is the load distribution at sensor (i), E is the equivalent averaged energy 

normalized to other total sensors energy, xi and yi are the coordinates of  sensor (i). Then 

testing variation on i  obtained from right whether it corresponds to variation on left foot 

or not is implemented by Pearson correlation coefficient (r) as in equation (3.16). 

https://www.google.com.lb/search?biw=1366&bih=643&q=find+euclidean+distance&spell=1&sa=X&ved=0ahUKEwia_cGj8rXKAhVJvRoKHeu3DHsQvwUIHCgA
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3.7.3 Speed and age 

 

 
Figure 3.33: Scatter plot with two marginal histograms to envision the association between 

Speed (m/sec) and Age (years). 

 

Fig.3.33 designate no significant correlation between speed and age in both normal (r= -

0.4513) and Parkinson group (r= -0.1064) with a significant difference between the two groups.  

Based on reference [53], Age × Speed forms an important parameter in the corresponding study. 

For case in point, having 18 normal and 18 Parkinson subjects yields a difference in speed [54] as 

shown in the box plot of Fig.3.34. 
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Figure 3.34:  Box plots of Speed in Normal and Parkinson Gait. 

 

The difference between the medians of the normal and Parkinson gait is around 0.33 m/sec. 

The medians are different with a confidence of 95% and this is indicated by notches in the box 

plot as they don’t overlap. 

3.7.4 Correlation 

Some noticeable features are obtained in a previous work [28, 29]. For instance finding the 

correlation between the VGRF obtained from the sensor located in the inner sole of both right and 

left foot in addition to the correlation for the sensor just above this sensor (i.e. sensors 5 and 7 as 

allocated in Fig.1.1) yields the scatter plot shown in Fig.3.35. 
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Figure 3.35. Scatter plot of correlations between right and left foot 
at sensors 5 and 7. A comparison between Normal and Parkinson 

Gait (all dataset). 

 

The correlation between right and left foot sensors is computed using the Pearson 

correlation as in equation (3.17): 

   




]2)(2][2)(2[

))(()(

llnrrn

lrrln
corr

 (3.17) 

 

The number of sample is designated by n, r and l represent right and left foot VGRF. 

Fig.3.33 designates that VGRF in Parkinson gait has a high correlation and therefore the 

foot stay in contact with ground until the other foot turn out to be flat with ground. The 

negative sign is due to a decrease in VGRF (lifting ground to swing phase) in one foot and 

the increase in the other foot (striking ground to a stance phase). The correlation is 

relatively lower in normal subjects. 
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3.8 Investigation and results 

Thirteen subjects from each normal and Parkinson groups are randomly. That is to say 26 

out of 47 subjects are considered for training and the rest are used for testing. As mentioned above, 

Age × Speed in addition to load distribution between right and left foot could be used as prominent 

features in first classifier. Such features form a boundary between balanced and unbalanced gaits. 

Their scatter plot is exposed in Fig.3.36.  

 

 

Figure 3.36: Box plots of Speed in Normal and Parkinson Gait. 

 

The normal gait can be used to build the kernel of balanced gait while unbalanced are 

assumed to have unusual gait. In this case unbalanced corresponds for Parkinson gait according to 

the hypothesis. Since the covariance in the two groups is varying, then it is better to use some 

quadratic function rather than using a linear one. This boundary must have a closed-form solution 
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and have no hyper parameters to tune. That’s why quadratic discriminant analysis are best fit for 

our situation for classification and discrimination.  

 Therefore, we stick to the fact that normal and Parkinson groups have a heterogeneous 

variance-covariance matrices:  Σ normal ≠ Σ Parkinson 

This is also clear from the scatter in Fig.3.36. The decision boundary formed between 

balanced and unbalanced gait is presented in Fig.3.37 where the log of the ratio of equation (2.39) 

is equal to zero. 

 

Figure 3.37: Decision boundary between balanced and 

unbalanced gait. 
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A testing dataset will serve as new observations and verified on the assembled clusters to 

evaluate this method in classification. The testing part will serve a trustworthy and unbiased 

estimate of classification error. 

  

Figure 3.38 Illustration for test set with respect to decision 
boundary obtained. 

 

The assessment of the classifier can be summarized using Fig.3.38 by adding the test set to 

the scatter of Fig.3.37. It is better analyzed using the matching matrix on Table 3.6 

 Table 3.6: Balanced vs. Unbalanced Gait- Subjects 

   Prediction 

  Balanced unbalanced 

 

Subjects      

Normal 18 0 

Parkinson 8 21 
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As indicated in Table 3.6, all normal subjects have balanced gait while Parkinson subjects 

could have balanced or unbalanced gait. The latter could be a result of tactically improving their 

gait stability certainly during the experiment. In order to be more generous, Parkinson subjects 

near the boundary and tending to be normal will considered for the second classifier. Therefore 10 

out of 29 Parkinson subjects will be considered to have balanced gait. For the moment, a cluster 

of subjects having common properties and characteristic of walking denoted as balanced gait is 

formed. It is made up of both normal and Parkinson gaits. Subsequently, the overlapping between 

normal and Parkinson gaits diminish after the first classifier being used. Now, the load 

distributions between the two feet are similar. 

In this part, the 10 obtained balanced Parkinson gait and 10 randomly chosen normal gait 

will be taken into consideration.  Five from each group will be used as training and the rest for 

testing. Only the correlation out of many features is being tested to show the power of the previous 

methodology in simplifying investigation and discrimination of Parkinson and normal subjects. 

For simplicity the linear discriminant analysis as presented in equation 8 will be used given that 

the variance in both group is approximately similar and this is exposed in Fig.3.39. 
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Figure 3.39: Decision boundary between the two groups of 
balanced gait based on correlation between right and left foot at 

sensors 5 and 7. 

 

Fig.3.39 entitles a true classification of 90% with a 100% accuracy. A more featured result 

will be obtained in case of nonlinear decision boundary. The overall classification is beyond 95%.  

3.9 Discussion and future work 

The goal of this chapter is to shape preferences for gait analysis captivating into account 

the parameter that could affect our statistical analysis. In this chapter we highlighted the removing 

of turning points in the signal by synchrosqueezing. In addition, certain parameters like cognitive 

tasks could affect the content of gait signals and difficult then to be normalized. That is why we 

moved from intra-subject into inter-subject comparison to come up with relevant features. We 

highlighted the importance of the mid sensor in classification. This chapter also focused on the 

COP path difference in both right and left foot which led us to set a hypothesis that is verified by 

the load distribution. In order to avoid ourselves from examining certain thresholds, discriminant 
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analysis is used for discrimination and classification. Certain parameters like speed and age are 

used.  The obtained results indicate that there is a great variety between Parkinson gait subjects 

and the result leads to take only the balanced gaits out of them. Then a new dataset is formed of 

balanced gaits made up of both normal and Parkinson gait. The overlapping is no longer exist and 

this is verified by a correlation feature of VGRF, in precise those obtained on the midfoot. This 

designates that normal subjects don’t focus too much on the mid of the foot while switching the 

foot-ground contact in the course of walking. Nonetheless, this is not obtained for the case of 

Parkinson gait in which double support is a major feature in their postural stability.  This agrees 

with other research that point out patients tend to decrease their double support as a designate 

preparation to transfer weight properly while stepping [89]. 

The decision tree is then formed as shown in Fig.3.40: 
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Figure 3.40: Decision tree for the used algorithm.  

 

Following this method of analysis forms a good approach before handling the signal 

themselves directly like in [28, 29]. In this manner the results are better and easily achieved rather 

than using cutting-edge algorithms like BFT, BPANN, k-NN, SVM with Ln kernel, SVM with 

Polykernel and SVM with Rbf kernel that yields a classification rate of 66.43%, 89.97%, 87.00%, 

88.47%,86.80% and 87.53% respectively [90], in addition to various other techniques like Self-

Organizing Map [21].  

Based on Fig.3.28 (second row) and Fig.3.29, both normal and Parkinson subjects share 

same property in terms of synchronizing their steps, it is remarked that curvatures of COP’s Paths 

are different. In Parkinson, the radius of curvature is observed to be smaller than the normal 

subject. A geometry point of view would be useful in differentiating Parkinson and normal subject. 
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Using the load distributions figures, they could form a gait signature for each subject which 

is recorded to be unique to each person. Fig.3.41 illustrates this point. To increase the resolution 

of the signature more sensors must be add underneath each foot.  

 

Figure 3.41: Gait Signature. 
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CHAPTER 4 

MODELLING OF VGRF  

 

Calibration and validation form an important strategy in signal modelling. In this chapter 

we used historical recordings of gait observed during experiment. Such past VGRF signals will be 

used to forecast of how such gait signals will look like in the near future.  

4.1 INTRODUCTION 

First the term failure should be defined. It is defined as nonperformance of something due, 

required, or expected. Then the reliability (when failure would occur), resiliency (how much 

algorithm through such features can recover from failure), and vulnerability (the effect of failure) 

in coming out with the correct predictions. Such uncertainties in the analysis outcomes are due to 

the fact that the gait is totally affected by many other factors like the mode of the person, tiredness, 

age, height, dual task ….  

VGRF are modelled exponentially in terms of predefined loading height [16]. However, 

modelling VGRF mathematically in which parameters are updated based on historical values is 

introduced as an alternative method. This would help in avoiding in estimating new parameters. It 

has been tested and validated.  The first half samples of observations are used for parameter 

estimation and the other half are used for validation. Markov Model is being updated to better fit 

the ground reaction force signals. An estimate of one step signal a head is conducted and the 

percentage of error is computed. It was found that the model better estimate the normal gait and 
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hard to fit different posture segments of Parkinson gait. The ultimate goal is to have a healthy and 

safe walk to prevent falls among elderly both with normal and patient gait by means of predicting 

one step ahead. Thus, if the real time measured signal don’t follow the path of the estimated data, 

this could form an indicator of certain perturbation in gait and would serve as an alert.  

This model doesn’t cover in one equation both distinctive phases of gait: stance and swing. 

In fact, a switch control system is proposed that switches between the two phases of gait that 

corresponds to the real practiced segment during walking. This chapter focuses on the stance 

phase.  

4.2 Analysis and Motivation 

VGRF signal is used as part of kinetic analysis as a vertical net summation of all forces 

during walking observed over time. 

Assumption: VGRF denoted Xt is made up of deterministic (future data predicted from past 

values) denoted Dt and stochastic (future data can be predicted in statistical probabilistic terms) 

denoted St. This is given in equation (4.1). 

Xt = Dt+ St          (4.1) 

In this part, we will apply modelling techniques on a chosen sensor signal that is located 

under the heel of the left foot. Then we will generalize the model to all other sensors and try to 

figure out their relation. Fig.4.1 shows a sample of this signal: 
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Figure 4.1: Sample of VGRF 

 

Fig.4.1 indicated some repetitive and cyclic behavior and therefore correlate with each 

other. Correlogram describes the signal inertia and shows the persistence in the same state from 

one heel strike into another. It is given by equation (4.2): 
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Figure 4.2: Correlogram of VGRF 

 

The correlogram in Fig.4.2 dies down in a sinusoidal format indicating an attendance of 

periodicity within the heel VGRF signal. Most of the correlations are statistically significant falling 

outside the 95% confidence interval.  

 

Figure 4.3: PACF of VGRF 
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The partial autocorrelation function (PACF) shown in Fig.4.3 which seeks the correlation 

between two values in series excluding their linear dependence on other values in the whole series. 

It specifies significant values at lag=1 and lag=2 associated with a slow decay in the ACF. This 

designate an autoregressive process AR (2) of order two. 

4.3 VGRF Analysis for Normal Subject 

The autocorrelation function (ACF) of VGRF for a normal subject gait articulates a slow 

decay as revealed from Fig.4.4. This indicates a long memory [92]. In addition, plotting the partial 

autocorrelation function (PACF) demonstrates the non-stationarity phenomena of the signal. This 

non-stationarity is of integration order 2 because the PACF value at lag two recorded to be one in 

absolute value. This proposes the existence of stochastic trend of order 2. 

 However, this range of dependence is not fixed throughout the different steps of the same 

signal. It would be interesting to investigate more on its range of variation. 

 
Figure 4.4:  Sample and Partial Autocorrelation for a Normal subject. 
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4.4 VGRF Analysis for Parkinson Subject 

 Strong autocorrelation exposed in the ACF for Parkinson subjects don’t die quickly over 

long range of observations compared to normal subjects. This is a good indicator of the non-

stationarity of the signals in general. In particular, ACF recognized a longer memory in the gait 

signals of Parkinson subjects given the autocorrelation value in its minimum around 60 time lag 

as shown in Fig.4.5. Whereas it is documented to be in the range of 50 lag corresponding to normal 

gait as obtained in Fig.4.4. The PACF also indicates the non-stationarity of integration order 2. 

 

Figure 4.5: Sample and Partial Autocorrelation for a Parkinson subject. 

Knowing that performing the difference transformation over the original data signals two 

consecutive times, no longer memory is then will be available as shown in Fig.4.6. However the 

non-stationarity of integration of order 1 will be available at the first difference. 
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Figure 4.6. Sample and Partial Autocorrelation for VGRF signal differenced two times. 

 

Fig.4.7 indicates the power spectrum after removing the mean to see the other fluctuations 

in signal: 

 
Figure 4.7: Sample and Partial Autocorrelation for VGRF signal differenced two times. 
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The power spectrum indicates a periodicity around 0.81 Hz then around 1.66 Hz and so on. 

This approve results indicated by the correlogram by dividing sampling frequency (100 Hz) by the 

time lag of the peaks. Therefore a regularity in the heel strike pattern during walking is registered 

mainly every 1.23 seconds. However, there is a need to test for significance of periodicity. 

4.5 Modelling Insight into One Stride  

In this section, the mid sensor is taken into consideration [16]. Fig.4.8 and Fig.4.9 display 

an interesting linear relationship between 𝑦𝑡−1 and 𝑦𝑡. Knowing that the degree of linearity 

decreases as the time lag (𝜏) to the future values increases (𝑦𝑡+𝜏). In addition, the slope of the 

regressor starts to diverge from one in both increasing and decreasing phases of the foot step, 

where the slope  from the “heel strike” to the moment where the foot becomes flat starts to decrease 

and the slope for “foot flat to toe off” starts to increase. This leads to elliptical shape in the whole 

data.   
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Figure 4.8: Linearity in the plot of current values versus past values in VGRF’s data for 

midsensor on a single step. In this case the difference is one time lag. Given ( 𝑦 = 𝑦𝑡) and 

(𝑥 = 𝑦𝑡−1) in equations. 

 

In this model, a deterministic trend can be obtained as a function of time. The model is 

given by the simplest first order autoregressive (AR (p=1)) model as in equation (4.8) where the 

future value is regressed on the current value: 

 𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝛼 + 𝜀𝑡      (4.8) 

 

Where  0 ≤ 𝑦𝑡 ≤ 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑎𝑥 is the maximum value that can be reached. It is related to 

the weight [86] in addition to the way a person walks (step starts by heel contact, toe contact or 

shuffling). This can be easily determined from a previous step and forms a parameter to the model.  

The slope is shown to be (𝛽 = 1) for both increasing and decreasing phases of the step. However, 
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the intercept 𝛼 can be obtained either from a trained previous step or from the first few values i.e. 

local model is obtained as recent observations are used. The error term is important and forms the 

residual and its model is purely indeterministic as to be handled later. From Fig.4.6 the model for 

both phases are given as in equation (4.9): 

 {
𝑦𝑡 = 1𝑦𝑡−1 − 0.85 + 𝜀1𝑡

𝑦𝑡 = 1𝑦𝑡−1 + 0.89 + 𝜀2𝑡
    0 ≤ 𝑦𝑡 ≤ 22      (4.9) 

 

Figure 4.9: Linearity in the plot of current values versus past values in VGRF’s data for 

midsensor given the 2 min signal. 

 

4.6 Periodizing VGRF Signals 

On-off controller simply drives the acquisition of VGRF during walking from fully closed 

to fully open depending on the location of the foot. In other words, when the foot hits the ground 

entering the stance phase then VGRFs signal do exist.  The acquired data will be saved into an 
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array with preliminary fixed size ending up with a matrix of stance phases. Its size is controlled by 

the preliminary defined stance interval depending on the sampling rate. This would eliminate any 

difference in the stride interval between subjects stemmed from their difference in height, weight, 

gender and so on. The signal then have fixed time periods (i.e. the time from one heel strike into 

the successive heel strike is fixed). That’s why the VGRF signals are divided as shown in Fig.4.10.  

 
Figure 4.10: Step Isolation of VGRF stance phases at the heel. They are saved over 89 samples 

equivalent to 0.89 seconds. 

 

The matrix of stance phases are reshaped into 1D array vector for analysis. Such fixing of 

sampling points interval for stance phase of the gait would definitely change frequency content 

analysis. Certainly, they will exist at different harmonics of the saved interval as shown in Fig.4.11: 
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Figure 4.11. Power Spectrum of the new generated signal. 

 

The Autocorrelation Function (ACF) of the altered signal indicates a very slow decay over 

lags and thus the signal becomes more non-stationary. This is inherited from the periodicity being 

added to the signal. Fig.4.12 is an illustration of the ACF. 

 
Figure 4.12: Sample Autocorrelation Function 
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Differencing the new signal by two consecutive times as an intention to remove 

periodicities signifies the interval chosen by implementing Partial Autocorrelation Function 

(PACF) as shown in Fig.4.13. It agree with the predefined interval of 89 lags: 

 
Figure 4.13: Partial Autocorrelation Function 

4.7 Time series Comparison 

Fig.4.14 indicates that the extracted stance phases from a normal subject VGRFs gait 

delivered by the heel sensor at the left foot preserves some fixed magnitude. This similarly remark 

them to be below the sample 20 and therefore below the 0.2 sec. while the Parkinson subject admits 

some variations certainly in the amplitude of various steps, this can be observed from the peaks in 

Fig.4.15. Furthermore the peaks are within the samples of 20 and above. Such a difference give an 

intuition of two important different properties: the change in the VGRF amplitude from one step 

into another admitted by Parkinson gait, and a change in time interval to reach maximum amplitude 

as an evidence to a change in the slope and those the stance phases are longer in Parkinson gait.  

89 89 
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Figure 4.14: Stance phases being isolated from VGRF extracted from the heel sensor underneath 

the left foot of a normal gait subject and their contour plot 

 

 
Figure 4.15: Stance phases being isolated from VGRF extracted from the heel sensor underneath 

the left foot of a Parkinson gait subject and their contour plot 
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4.8 Periodogram Comparison 

Now fixing the size to 160 samples by zero- padding the step signals as to have a size of 

160. 160 is chosen as a guarantee that neither of subjects will have stance interval beyond the 1.6 

sec during walking after an investigation is done over all the database. This definitely will create 

an artificial fundamental frequency of ff, = 0.625 Hz in its periodogram indicating that the cyclic 

existence of the impulse starting of the gait stance phase. Furthermore a harmonics periodic of the 

fundamental will also be created (2 ff, 3 ff, 4 ff,...). To enhance the outcomes of the comparison, 

each step extracted from VGRF is normalized by Euclidean norm of the same step signal. This is 

given in equation (4.10).  

||𝑥||2 =  √∑ ||𝑥[𝑛]||2𝑁−1
𝑛=0        (4.10) 

 

Excluding the first harmonic, the amplitude of the power spectrum in Normal subjects is 

higher than a Parkinson subject as indicated in Fig.4.16, this is a good indicator that slope of VGRF 

measured at a certain sensor during the moments of contacting the ground is steeper than the one 

known by a Parkinson.  

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
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Figure 4.16: Power Spectrum for both altered signals of Normal and Parkinson gait subject 

4.9 Hypothesis 

Hypothesis: One stance VGRFs gait is directly affected by the very neighbor steps and up 

to a certain interval (i.e. number of steps).  

The above hypothesis doesn’t indicate whether one step affect the whole style of walking 

but definitely get capture some characteristics of the previous step and affect the step gait a head. 

The accumulation of errors between two steps that are far away from each other contribute also in 

gait variability. This means that certain parameters are needed to be adjusted continuously while 

generating the upcoming signals. To realize this hypothesis in practice, a model will be chosen 

then the parameters are fit into equation to achieve the minimum error between actual and 

simulated data. Then, modelling vertical ground reaction force signals based on historical data can 

reproduce and forecast the gait signals for a short period of time.  
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4.10 First order Markov model  

A. Stationary 

Suppose the future step values to be predicted are generated by the following 1st order 

Markov Model that is stationary with respect to mean, variance in addition to auto-correlation of 

first lag, this is indicated by equation (4.11). 

  𝑋𝑗+1 =  µ𝑥 + 𝜌1(𝑋𝑗 − µ𝑥 ) + 𝑡𝑗+1𝜎𝑥√1 − 𝜌1
2      (4.11) 

 

Where tj+1 stands for the standard normal variable (∼ N (0, 1)) which is a series generated 

randomly with zero mean and unity variance. µx, σx and ρ1 are the mean, standard deviation and 

first lag autocorrelation respectively.  

B. Non-Stationary 

The same model will be generalized for nonstationary process as indicated in equation 

(4.12). 

 𝑋𝑖,𝑗+1 =  µ𝑗+1 + 𝜌𝑗
𝜎𝑗+1

𝜎𝑗
(𝑋𝑖𝑗 − µ𝑗 ) + 𝑡𝑖,𝑗+1𝜎𝑗+1√1 − 𝜌𝑗

2     (4.12) 

Where i is the number of stance phase of gait step, ρj is serial correlation between the jth 

moment of a stance phase and j+1th moment of the same stance phase. Once again the standard 

variable series is given by ti, j+1 ∼ N(0, 1).   

As we proved previously, VGRF signals are non-stationary certainly in the variance and in 

the mean.  

4.11 First order Markov model of VGRF with non-stationarity 
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The initial guess of parameter values in gait VGRF are taken to be zero and this makes 

sense in the real gait that every stance phase is followed by a swing phase where there is no contact 

with the ground and therefore the VGRF measured must be zero. 

 
Figure 4.17: Data generated by markov-Model V.S. Raw Experimental Data  

 

The coefficient of multiple determination (R-square) is a good choice for testing the model 

as the outcome of the square of the correlation between actual values and predicted values, would 

indicate a proportion of variance that is accounted by the model. This can be articulated in equation 

(4.13). 

  𝑅2 =
∑ 𝑤𝑖(𝑦̂𝑖−𝑦̅)2𝑛

𝑖=1

∑ 𝑤𝑖(𝑦𝑖−𝑦̅)2𝑛
𝑖=1

       (4.13) 

 

Where 𝑦̂𝑖 is the fitted values and 𝑦̅ represents the mean. Finding 𝑅2 for the model in 

Fig.4.17 for a normal gait subject yields a value of 0.9143 and this means that the fit explains 

91.43% of the total variation in the data about the average. 
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4.12 Modified First order Markov model of VGRF with non-stationarity 

The first step in modifying the model, is by changing the cross-correlation between 

moments of consecutive steps into autocorrelation of the previous step moments only. Then as the 

above model is restricted to certain random values and falls under a standard normal distribution, 

it can best be adjusted by replacing it with the error term ending up with equation (4.14). 

 𝑋𝑖,𝑗+1 =  µ𝑗+1 + 𝜌𝑗
𝜎𝑗+1

𝜎𝑗
(𝑋𝑖𝑗 − µ𝑗 ) + (1 − 𝑅2)𝜎𝑗+1√1 − 𝜌𝑗

2    (4.14) 

 

 
Figure 4.18: Data generated by the modified Markov-Model V.S. Raw Experimental Data 

An acceptable data modelling as shown in Fig.4.18 is then reached using the new proposed 

model. The percentage of fitting increased to reach 99.76% on average. This result is generalized 

to cover all other sensors with variable percent of error but still are highly acceptable.  A summary 

of the algorithm is expressed in Fig.4.19.  
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Figure 4.19. Algorithm for Modified Markov Model  

 

4.13 Prediction of one step ahead in “Normal” & Parkinson” 

After assessing time domain statistical properties of the Vertical Ground Reaction Force 

(VGRF) during moderate-pace walking, the aim is then eventually to create a reliable 

mathematical model of VGRF for normal and abnormal cases and that what have achieved so far. 

Predicting a one-step signal ahead in normal and Parkinson using the above model yields an 

important difference between them. The proposed model is able to predict in normal subjects better 

than the Parkinson subjects as shown in the Fig.4. 20. 
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Figure 4.20: Forecasting Normal and Parkinson Gaits. 

 

Fig.4.20 shows a 95.62 percentage of fit in the predicted normal gait signals while the 

model experienced a hard moments in having an appropriate prediction in Parkinson gait where 

the fit is around 58%. This can be justified by the previous observation in Fig.4.8 where the gait 

signals in Parkinson experience great variability. 

4.14 DISCUSSION & CONCLUSION 

First, the stride interval variability affect the signal analysis certainly its frequency content. 

Second, Steeper slope of VGRF measured from normal than from Parkinson. Third, the incidence 

of a stochastic deterministic level function is shown by the non-stationarity in mean and variance. 

In other words heteroskedasticity appeared in the walking gait VGRF signals. Fourth, the cross 

correlation between sensors suggest a model as the sum of certain deterministic (stationary and 

non-stationarity) [91] and stochastic (fluctuation) signals. Most importantly, the rate of decay of 



 

 

 

138 

 

 

 

the autocorrelation part forms an indicator of the memory type (range of dependence) that forms 

an indicator to whether the gait is normal or abnormal. In addition, focusing on those non-

stationary signals by starting with stochastic trend stationary processes as assumed model, wherein 

the process has stationary behavior around such trend. This time series modeling will yield the 

advantage of Generalized Autoregressive Conditional Heteroskedasticity (GARCH). 

Autoregressive Moving Average (ARMA (5, 5)) linear model is conducted on VGRF [93]. 

However this technique is fit for stationary time series signals and therefore periodicities are not 

desirable. It is worthy that VGRF are assumed to be cyclostationary [32] and nonstationary as on 

this chapter.  Furthermore, the several combination of orders must be conducted then the best 

model will be chosen based on verification tests like Maximum likelihood rule. In another research 

the linear and polynomial regression models are being used and tested by Normalized Root Mean 

Square Error. However, the linear model didn’t capture the peak forces and the polynomial didn’t 

capture the dynamic patterns in force profiles. In order to increase estimation accuracy, the writer 

suggests to have different fitting methods for better explaining of the unique patterns in force 

profiles, and thus [94]. Another work on modelling VGRFs signals is introduced by the fourth 

order polynomial with additional two parameters. However, this technique requires the location of 

the local maxima in the actual VGRF data [95]. Therefore, the model will capture a huge error 

when both feet are in contact with the ground (i.e. no aerial phase). That is why, building models 

based on historical data is helpful specifically when it comes also to the type of foot: normal, low, 

and high-arch foot [91]. Research shows that this would affect the pattern of VGRF [96] making 

it difficult to have a common model generalized over different human gaits. This chapter presented 
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a novel modelling technique of VGRF signals that overcome the stated problems and preserves 

the fact being nonstationary. The technique is summarized on a modified first order Markov model 

based on nonstationary characteristics. It has been evaluated on normal gait signal and proved its 

potential in having a good prediction.  However, it is hardly estimated the Parkinson gaits which 

suggests a higher order must be implemented. As a future work, the model will be verified over 

all sensors by finding a unique multi-sensor array model. On the other hand, the model generated 

should take into consideration the time quantization of the gait and thus the stride interval and also 

adopt the lognormal model into the proposed model based on the mentioned observation.  
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CHAPTER 5 

GENERAL CONCLUSION AND 

PERSPECTIVES 

In this chapter, we will wrap up this thesis with main results being obtained from the 

previous work. Previous chapters treated VGRF in time, frequency and space separately or in 

combination of two. Frequency- spatial characteristics will be easily obtained using multiway 

analysis like parallel factor analysis (PARAFAC) that contribute in identifying Parkinson elderly 

gait.  Multiway modelling of human VGRF is not engaged yet. This analysis requires different 

measurements underneath the foot.  

5.1 Summary: The Main Results of this Research 

A strict relation between the frequency content of the signal and the way a subject moves is 

recorded. The frequency of the signal is shown to be high at heel-strike and at the toe-off. In 

addition, the frequency opposes the change of VGRF which produces it as a trying to retain the 

body in balance and not falling. In control subjects, higher frequency at instants of heel-strike and 

toe-off compared to patients is registered. However, the frequency content as a whole in Parkinson 

gait subjects tends to increase (i.e. the more they correspond to the impact peak), but the peaks and 

the valleys tend to be much more muted. Furthermore, we proved that traditional filters like 

Butterworth filter can eliminate a vital part of the signal’s content. New adaptive filtering model 

is being proposed based on EMD.  On the other hand, we have focused on eliminating turning 

points in the gait signals that impact their content by synchrosqueezing the time frequency 
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representation. Synchrosqueezing helped in spotting Active and Passive peaks in the gait signal. 

This would help in signal separation. In addition, as normalization and filtering are handled from 

statistical point of view, we showed that there could be other non-quantifiable parameters that one 

should take them into consideration when handling signals from different subjects. As many other 

parameters, cognitive task are hard to be filtered or normalized. We suggest in such cases to come 

up with features based on inter-subject analysis. For instance, the variation in the COP and energy 

distribution difference from one stride into another stride are used as features.   

The total VGRF from array of sensors is widely used in literature. In our work we proved 

that the first four principal components, derived from PCA applied into the array of signals derived 

from different locations underneath both feet, counts for 94% of the total variance in VGRF 

signals. This is a good indicator that most of the data structure can be captured in three or four 

underlying dimensions. However, more attention to which sensor is chosen must be made to 

enhance analysis. This is especially recommended when building an acquisition system. This study 

shows the sensor located at the inner arch of the insole of the foot (i.e. at the mid foot) near the 

axis of the center of body holds the most pertinent information for classification. This could help 

more in using such sensor location to model walking with a 3D-link dynamics as one foot is in 

contact with ground while the other is in swing phase. This mid-sensor helped us with simple 

statics (mean and standard deviation) to prove that the signal is nonstationary.  

Certain Parkinson subjects have the ability to synchronize their steps while experimenting 

and this is detected by variation in the COP. This will mislead us in building classifiers as their 

gait looks pretty like a normal subject. We proved that the movement of feet is uniform when 
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walking due to the distribution of loads between the feet.  Therefore, imbalance is due to irregular 

distribution of loads between the feet.  In a simpler way, pressure distribution between feet differs 

when a subject is affected with disease like Parkinson.  This is more obvious in diseased subjects 

where their metabolic system is affected. In addition, the center of pressure variation between 

different gait steps was a good indicator of the type of gait. A decision tree for the used algorithm 

is developed and proved to work well. For instance, unbalanced gait corresponds to pathological 

subjects. However, balanced gait could be relevant to normal or pathological subjects. 

Differentiating between pathological subjects and normal subjects when they both exhibit balanced 

gait become easier due to the verified hypothesis that is derived from analysis of the database. 

Removing the unbalanced gait, allows the use of simple features like correlation to differentiate 

between normal subjects and Parkinson subjects. With linear models a classification of 90% with 

a 100% accuracy is achieved. A 100 % classification with quadratic discriminant analysis can be 

achieved. However, we didn’t point out such a result in this thesis as the goal is to increase the 

database size and then we can generalize this conclusion. Then a gait signature is introduced. We 

recommended to increase the array of sensors to improve this signature. 

This bipedal locomotion is an evoked response sensitive to the initial conditions of the 

nonlinear dynamical stimuli signals or perturbations which make them very difficult to predict 

within short intervals of time into future. A novel model technique is introduced using a modified 

version of Nonstationary first order markov model. Results show that this model best predict 

normal gait subject with 95.6% and fairly do in Parkinson gaits with 58 %. 

5.2 Introduction to the Future Work: 
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We have proven that summing signals stemmed from all sensors is not a good practice. It’s 

better to treat them as a single entity. Thus, dynamical changes of VGRF underneath both feet 

must be processed in time, frequency, and space. VGRF signals are captured in time domain, 

Synchrosqueezing of short time Fourier transform is then obtained for each sensor location to build 

three-way Time-Frequency-Space VGRF tensor (TFS-VGRF). A good separation of the three 

main events during gait is attained. A comparison between normal and Parkinson gait is then 

conducted. The results will be tested on experimental database obtained from 600 elderly 

participants walked at their self-selected normal speed.  The database is obtained collaboratively 

as a teamwork between Laboratory of Signal Analysis and Industrial Processes (LASPI) and the 

University Hospital Center (CHU) of Saint-Étienne. However, a more innovative approach is to 

be followed using tensor methods. 

Multi-way analysis techniques keep the structure of the multidimensional data dimensions. 

They are so called tensor methods formed of different tools like Tucker decomposition, Parallel 

factor analysis (PARAFAC) and Incrementalization. The objective is then to decompose arrays 

into set of loadings and scores which provide a condensed description way of data.  Multi-way 

methods provides more adequate, robust and interpretable models than other models like given by 

PCA. However, PARAFAC is still a special case of Tucker3 which is a case in 2-way PCA as 

shown in Fig.5.1 below. However, this specificity of PARAFAC put it under bounded constraints 

even it requires fewer degree of freedom.  
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Figure 5.1: PARAFAC a special case of 2-way PCA 

 

PARAFAC (also known tensor rank decomposition or canonical polyadic decomposition 

(CPD)) method attempts to decompose a three-way data into a set of trilinear terms (the product 

of three significantly smaller matrices) and a residual array:  

     

EzyxD
P

p
ppp  

1                                                                                                             (5.1) 

 

𝑑𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑝𝑏𝑗𝑝𝑐𝑘𝑝 + 𝑒𝑖𝑗𝑘
𝑃
𝑝=1         (5.2) 

 

Where i = 1… I;  j = 1… J;  k = 1… K 
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dijk stands for the point of ith sensor at the jth variable on the time mode and at 

the kth variable on the frequency mode. The variability that not included in the model is denoted 

by residual eijk. Small “p” represents the number of the PARAFAC component. Each PARAFAC 

component will end up with I a-scores: one for each sensor, J b-values: one for each time and K c-

values: one for each frequency. 

The general PARAFAC is based on the alternating least squares (ALS) algorithm and can 

be summarized as follows: 

 

 

 

 

 

 
 

In this part, both set of 8 signals from both right and left foot will be considered. 

 Ttxtxtxx )()...(),( 1621  

Each variable in x is made up of 12000 observations sampled at 100 Hz.  
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5.3 PARAFAC Outcomes: 

Footedness is important in studies of hemisphere lateralization. Studies work on 

development of scale for measuring foot preference.   We have 16 data set captured from 16 sensors 

each 8 are distributed underneath each foot. PARAFAC has one strong feature to answer some 

important questions that highly would benefit in gait analysis, classification and prediction. Now 

the data are arranged into five locations underneath the foot as segmented in Fig.5.2: 

 
Figure 5.2: Foot being segmented into 5 locations  

 

In this manner one can understand the type of foot strike: Rear foot strike (heel strike): 

landing on the heel, Midfoot Strike: simultaneous landing on both heel and ball of the foot, fore 

foot strike: landing on the ball of the foot. In addition to know the footedness of certain subject, 

i.e. the preference of a particular foot. It has been known that general population are right-

footedness [98].  Such tests required too many analysis and laboratory work. For instance, Leg 
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preference is hypothesized to be dependent on the nature of the required test to be performed [98].  

Anteroposterior floor oscillations are being used to test foot dominance to achieve postural stability 

and this done at various frequencies [99]. Other researchers consider the handedness and 

footedness are correlated, but it has been shown that they are partially correlated and footedness 

must be considered as a standalone variable [100]. 

 
Figure 5.3: PARAFAC Model of a randomly chosen subject. Mode#1, 2 and 3 reflect the 

footedness, time domain signal and the type of foot strike respectively. 

 

The mid-sensors are averaged to get VGRF distributed over 5 locations in both right and 

left feet. Performing PARAFAC analysis over the right and left foot as one dimension and the 5 

sensors as another dimension in addition to VGRF over time in the third dimension end up with 

Fig.5.3 after choosing only one component. In this way one can capture the most important 

loadings and scores dedicated over both feet and sensors distribution. Fig.5.3 clearly indicate in 

the mode#1 that this subject is left-footed and mode # 3 indicate that this subject is loyal to rear 

foot strike. This agrees with VGRF signal obtained in mode#3 which is positively skewed.  
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Performing for another subject the PARAFAC model as shown in Fig.5.4 indicate that the gait of 

this subject is right-footed with a midfoot foot strike.    

 
Figure 5.4: PARAFAC Model of a randomly chosen subject. Mode#1, 2 and 3 reflect the 

footedness, time domain signal and the type of foot strike respectively. 

 

We have assumed that two patterns must be obtained one for the left and the other for the 

right foot. A third pattern will be capturing the overlapping in gait data while walking. However, 

there should be consistency when considering sensors locations underfoot. That’s why, As we 

believe that averaging is also is not a good practice between the mid sensors because of the 

difference in the location and the foot structure, we will handle the heel and toe as one set of 

sensors and the sensors is between as another set. Considering the same subject in Fig.5.3 but now 

with two components gives Fig.5.5 with PARAFAC. Mode#3 convey the fact that this subject is 

with rear foot strike. However, Mode#1 shows two components with opposite slanted lines. 

Examining VGRF components obtained in Mode #3 shows that part of the second component is 

highly correlated with the first component while the other portion is negatively correlated. Adding 

other component lead all the components to be correlated and therefore no additional information 
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can be captured. So when dealing with VGRF from different sensors underneath both feet, the first 

component is enough to summarize the most important information in both feet.  

 
Figure 5.5: PARAFAC Model for the same gait obtained in Fig.5.3 but only with the heel and toe 

sensors. 

 

 

Figure 5.6: PARAFAC Model for the same gait obtained in Fig.5.3 but only with the heel and toe 

sensors 
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Now considering the sensors locations 2, 3 and 5 yields the PARAFAC model in Fig.5.6. 

It indicates that after the heel get in contact with the ground the foot strikes at location 5.  

In summary, PARAFAC provided important information concerning the footedness and 

the type of foot strike of a certain subject. At least it classify subjects with commonalities before 

further analysis. Most importantly as gait forces are captured from multi-sensor system, 

PARAFAC had provided a summarized information with only one component. It is therefore 

useful in analysis of variance.  

5.4 PARAFAC Summarizes Information from Multi-Sensors : 

We have proved previously that all sensors underneath the foot share most of obvious 

information. For instance the fundamental frequency is the same underneath all locations of the 

same foot and this is also similar to the contrary foot. However, Parkinson subjects could have 

some variability between right and left feet. As a result, 3 components will be chosen. One 

component corresponds to most variability captured from left foot, the other is from the right foot 

and one component represent the overlapping between the two feet. Fig.5.7 indicate the three-way 

PARAFAC procedure being implemented. 
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Figure 5.7: PARAFAC Model for the all sensors underneath both feet. 

Now, all 5 locations VGRF signals underneath both foot are summarized in three 

components on each domain. For instance, Fig.5.8 illustrates this point: 

 
Figure 5.8: First component after conducting the PARAFAC Model for the all sensors 

underneath both feet. 
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A superficial analysis will be provided here and we will not dwell too much into details. 

This is because a more deep interpretations must be conducted. 

5.4.1 Space Mode 

The loadings for underneath different feet locations is shown in Fig.5.9 for both 

normal and Parkinson. The left graphs indicate both real and imaginary part while the right 

graph indicate only the real part over locations indicated in Fig.5.2.In the normal subject 

there is an indication that there is no need to three components. This is because the right 

and left foot load distributions are the same. This has been verified on the previous chapter. 

However, three components obtained in the Parkinson subject do indicate a difference 

between the obtained three components in this mode of loadings.  
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a.  

b.  

Figure 5.9: Loadings Under both Feet for a normal subject (a) and Parkinson subject (b) 

 

5.4.2 Time Mode 

Three components obtained as a summary of forces in both feet is shown in Fig.5.10.  
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Figure 5.10: VGRF component both Feet for a normal subject (a) and Parkinson subject (b) 

5.4.3 Frequency Mode 

A summary in frequency domain is also obtained as in Fig.5.11. Variations in the 

frequency content is spotted to be higher in Parkinson gait than normal gait.  

a

. 

b
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Figure 5.11: Loadings Under both Feet for a normal subject (a) and Parkinson subject (b) 

5.5 PARAFAC Classify both Normal and Parkinson : 

Conducting the PARAFAC model on both subjects over the synchrosqueezed STFT shows 

two components that are different from each other. In Fig.5.12 the model in conducted over all 

a

. 

b

. 
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foot locations and Fig.5.13 is a result only of model conducted under the inner arch of left foot. 

This is done to give a much more clear view of this difference: 

 

Figure 5.12: PARAFAC Model conducted on both normal and Parkinson subject over all foot 

locations. 
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Figure 5.13: PARAFAC Model conducted on both normal and Parkinson subject under the inner 

arch of the left foot. 

 

5.6 Discussion : 

PARAFAC seems to be a good tool if used appropriately. More attention must be given to 

the number of components being used. Then it is important to find a tool to spot which component 

correspond to which situation. For instance it is important to differentiate components corresponds 

to left or right foot, or components that reflect Parkinson or normal gait... and so on. Most 

importantly, this three-way analysis provide an overall point of view to all traditional domain of 

analysis. It summarizes them and give the most relevant information. 



 

 

 

158 

 

 

 

REFERENCES 

[1]  O. Beauchet, G. Allali, G. Berrut, C. Hommet, V. Dubost and F. Assal, "Gait analysis in demented 

subjects: Interests and perspectives," Neuropsychiatr Dis Treat., vol. 4(1), no. PMCID: 

PMC2515920, p. 155–160, 2008 February.  

[2]  C. Basdogan and F. M. Amirouche, "Nonlinear Dynamics of Human Locomotion: From the 

Perspective of Dynamical Systems Theory," in Engineering Systems Design and Analysis 

Conference, 1996.  

[3]  M. Sobotka, "Hybrid Dynamical System Methods for Legged Robot Locomotion with Variable 

Ground Contact. Ph.D. thesis," Institute of Automatic Control Engineering, Technische Universit¨at 

M¨unchen, 2007. 

[4]  R. L. Williams II, "Engineering Biomechanics of Human Motion," in NotesBook Supplement for 

ME 4670 / BME 5670, Ohio University , Dr. Bob Productions, 2014 .  

[5]  C. L. Vaughan, B. L. Davis and J. C. O’Connor, Dynamics of human gait, second edition, Cape 

Town, South Africa: Kiboho publishers, 2009.  

[6]  J. W. Skinner, R. Roemmich, S. Amano, E. Stegemoller, L. Altmann and H. C. J, " FREQUENCY 

DOMAIN ANALYSIS OF GROUND REACTION FORCE DOES NOT DIFFERENTIATE 

BETWEEN HYPERKINETIC AND HYPOKINETIC MOVEMENT DISORDERS," University of 

Florida, Gainesville, FL, USA, 2012. 

[7]  J. M. Hausdorff, "Gait variability: methods, modeling and meaning," Journal of NeuroEngineering 

and Rehabilitation, no. doi:10.1186/1743-0003-2-19, pp. 2-19, 20 Jul 2005.  

[8]  A. H. Khandokerl, D. Lai, R. K. Begg and M. Palaniswamil, "A Wavelet-Based Approach for 

Screening Falls Risk in the Elderly using Support Vector Machines," ee.unimelb.edu.au. 

2Biomechanics Unit, Centre forAgeing, Rehabilitation, Exercise andSport, Victoria University, 

VIC8001, Australia, 2006. 

[9]  D. H. Gates and J. B. Dingwell, "PERIPHERAL NEUROPATHY DOES NOT ALTER THE 

FRACTAL DYNAMICS OF GAIT STRIDE INTERVALS," University of Texas, Austin, TX, 

USA, 2006. 



 

 

 

159 

 

 

 

[10]  T. Amin and D. Hatzinakos, "Determinants in Human Gait Recognition," Journal of Information 

Security, vol. Scientific Research, no. http://dx.doi.org/10.4236/jis.2012.32009 , pp. 77-85, February 

20, 2012.  

[11] S. Ramamoorthy and B. J. Kuipers, "Qualitative Hybrid Control of Dynamic Bipedal Walking," in 

Robotics Proceedings, MIT Press, Cambridge, Massachusetts, 2007, 2007. 

[12] V. Ergović, "Models and methods for locomotion analysis of lower limbs," IBM Croatia, 

Miramarska 23, 10000 Zagreb, [Online]. Available: 

http://www.fer.unizg.hr/_download/repository/ergovic_KDI.pdf. 

[13] A. I. Bazin and M. S. Nixon, "Probabilistic combination of static and dynamic gait features for 

verification," School of Electronic and Computer Science, University of Southampton, SO17 1BJ, 

UK, 2005. 

[14] D. S. Bloswick and D. B. Chaffin, "AN ERGONOMIC ANALYSIS OF THE LADDER 

CLIMBING ACTIVITY," International Journal of Industrial Ergonomics, Elsevier, vol. 6, pp. 17-

27, 1990. 

[15] M. Jeffry. F. Research, "Gait in Parkinson's Disease," National Institutes of Health, National 

Parkinson Foundation, and the Parkinson's Disease Foundation , 2005. [Online]. Available: 

http://www.physionet.org/. 

[16] W. Niu, T. Feng, C. Jiang and M. Zhang, "Peak Vertical Ground Reaction Force during Two-Leg 

Landing: A Systematic Review and Mathematical Modeling," BioMed Research International, 

Hindawi, vol. 2010, p. 10 pages, 2014. 

[17] A. Pouliot-Laforte, L.-N. Veilleux, F. Rauch and M. Lemay, "Validity of an accelerometer as a 

vertical ground reaction force measuring device in healthy children and adolescents and in children 

and adolescents with osteogenesis imperfecta type I," J Musculoskelet Neuronal Interact , vol. 14, 

no. 2, pp. 155-161, 2014. 

[18] S. Boozari, A. A. Jamshidi, M. Ali Sanjari and H. Jafari, "Effect of Functional Fatigue on Vertical 

Ground-Reaction Force in Individuals With Flat Feet," Journal of Sport Rehabilitation, Human 

Kinetics, Inc., vol. 22, pp. 177-183, 2013. 

[19] Chau, T. (2001). A review of analytical techniques of gait data. Part2: neural network and wavelet 

methods. Elsevier- Gait and Posture, 102-120. 



 

 

 

160 

 

 

 

[20] 

 

I. R. Vega and S. Sarkar, "Experiments on Gait Analysis by Exploiting Nonstationarity in the 

Distribution of Feature Relationships," Computer Science and Engineering Department, University 

of South Florida, Tampa, FL, 2002. 

[21] K. Šušmáková, "Nonlinear statistical analysis of human gait dynamics, msc thesis," faculty of 

mathematics, physics and informatics , Comenius University ,Bratislava ,Department of Biophysics 

and Chemical Physics , 2003. 

[22] P. Terrier and O. Dériaz, "Kinematic variability, fractal dynamics and local," journal of 

neuroengineering and rehabilitation, no. BioMed Central, pp. 8-12, 2011. 

[23] M. F. del Olmo and J. Cudeiro, "Temporal variability of gait in Parkinson disease: effects of a 

rehabilitation programme based on rhythmic sound cues," Elsevier , Parkinsonism and Related 

disorders, no. Neroscience and Motor control group (Neurocon), Department de Medicina-INEF-

Galicina, Universidad se A Coruna, 15006 A coruna, pp. 25-33, 2005. 

[24] T. E. Lockhart, R. Soangra, J. Zhang and X. Wu, "Wavelet based automated postural event detection 

and activity classification with single IMU ( TEMPO)," Biomed Sci Instrum, PMCID: 

PMC3755105, vol. 49, p. 224–233, 2013. 

[25] S. WINIARSKI and A. R. KUCHARSKA, "Estimated ground reaction force in normal and 

pathological gait," Acta of Bioengineering and Biomechanics, vol. 11, January 19th, 2009. 

[26] D.A. Winter, "Biomechanics and Motor control of Human Gait: Normal, Elderly and Pathological,", 

Journal of Biomechanics, Vol. 25, No.8, p.949. Waterloo, Ontario, 1991. 

[27] H. Yu and T. S. Gyan, "Towards a Methodology for the Differential Analysis in Human 

Locomotion: A Pilot Study on the Participation of Individuals with Multiple Sclerosis," Scientific 

Research, vol. 5, pp. 20-26, October 2012. 

[28] D. Sanderson, "school of human kinetics biomechanics 1," the university of british columbia, 2004. 

[Online]. Available: faculty.educ.ubc.ca/sanderson/courses/HKIN151/Impulse/constant.htm. 

[Accessed 2016]. 

[29] T. Minamisawa, H. Sawahata, K. Takakura and T. Yamaguchi, "Characteristics of temporal 

fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease," Gait & 

Posture, vol. 35, no. 2, pp. 308-311, February 2012. 

[30] T. Takahashi, K. Ishida, D. Hirose, Y. Nagano, K. Okumiya, M. Nishinaga, Y. Doi and H. 

Yamamoto, "vertical ground reaction force shape is associated with gait parameters, timed up and 

go, and functional reach in elderly females," J Rehabil Med, vol. 36, p. 42–45, 2004. 



 

 

 

161 

 

 

 

[31] T. Marasović, M. Cecić and V. Zanchi, "Analysis and Interpretation of Ground Reaction Forces in 

Normal Gait," Biomechanics and Control Systems Faculty of Electrical Engineering, Mechanical 

Engineering and Naval Architecture University of Split Ruđera Boškovića bb, 2009 . 

[32]  K.Sabri, M.ElBadaoui, F.Guillet, A.Belli, G.Millet and J.Morin, "Cyclostationary Modeling of 

Ground Reaction Force Signals," France, Saint etaine ,Signal Processing 90(4):1146-1152, April 

2010. 

[33]  M. AM, M. EF, A. MC and N. J., "Principal component analysis of vertical ground reaction force: 

a powerful method to discriminate normal and abnormal gait and assess treatment.," PubMed - 

indexed for MEDLINE, 2006. 

[34]  A. Muniz and J. Nadal, "Application of principal component analysis in vertical ground reaction 

force to discriminate normal and abnormal gait," ELSEViER, vol. 29, no. 1, p. 31–35, January 2009.  

[35]  K. Sabri, M. E. Badaoui and F. Guillet, " Blind Separation of Ground Reaction Force Signals, 

LASPI, Universit´e Jean Monnet," Applied Mathematical Sciences, vol. 6, no. 53, p. 2605–2624, 

2012.  

[36]  N. Sterqiou, G. Giakas, J. E. Byrne a and V. Pomeroy, "Frequency domain characteristics of ground 

reaction forces during walking of young and elderly females," Clinical Biomechanics, vol. 17, p. 

615–617, July 2002.  

[37] J. T. Worobets and D. J. stefanyshyn, "Normalizing vertical ground reaction force peals to body 

weight in heel-toe running," Human performance Laboratory, Faculty of Kinesiology, University of 

Calgary, 1990. 

[38] K. Fournier, K. Radonovich, M. Tillman and J. Chow, "GROUND REACTION FORCES DURING 

THE STANCE PHASE OF GAIT OF YOUNG AUTISTIC CHILDREN," University of Florida, 

Gainesville, FL, USA, 2006 . 

[39] B. Raja, R. Neptune R and S. Kautz A, "Quantifiable patterns of limb loading and unloading during 

hemiparetic gait: Relation to kinetic and kinematic parameters," JRRD, vol. 49, no. 9, p. 1293–1304, 

2012. 

[40] J. W. Wannop, J. T. Worobets and D. J. Stefanyshyn, "Normalization of Ground Reaction Forces, 

Joint Moments, and Free Moments in Human Locomotion," Journal of Applied Biomechanics, vol. 

28, pp. 665-676, 2012. 

https://www.researchgate.net/journal/0165-1684_Signal_Processing


 

 

 

162 

 

 

 

[41] M. E. Taylor, M. M. Ketels, K. Delbaere, S. R. Lord, A. S. Mikolaizak and J. C. T. Close, "Gait 

impairment and falls in cognitively impaired older adults: an explanatory model of sensorimotor and 

neuropsychological mediators," Age and Ageing , vol. 41, p. 665–669, 2012. 

[42] M. Dubey, A. Wadhwani and S. Wadhwani, "Gait Based Vertical Ground Reaction Force Analysis 

for Parkinson’s Disease Diagnosis Using Self Organizing Map," International journal of Advanced 

Biological and Biomedical Research , vol. 1, no. 2322 - 4827, pp. 624-636, 2013. 

[43] B. Kluitenberg, S. Bredeweg W Bredeweg, S. Zijlstra, W. Zijlstra and I. Buist, "Comparison of 

vertical ground reaction forces during overground and treadmill running. A validation study," 

Kluitenberg et al. BMC Musculoskeletal Disorders , 2012. 

[44] R. Kram, T. M. Griffin, J. M. Donelan and Y. Hui Chang, "Force treadmill for measuring vertical 

and horizontal ground reaction forces," Journal of Applied Physiolog, vol. 85, pp. 764-769, 1998. 

[45] A. v. d. Borget and J. d. Koning, "ON OPTIMAL FILTERING FOR INVERSE DYNAMICS 

ANALYSIS," in Proceedings of the IXth Biennial Conference of the Canadian Society for 

Biomechanics, Vancouver, 1996. 

[46] F. Mawase, T. Haizler, S. Bar-Haim and A. Karniel, "Kinetic adaptation during locomotion on a 

split belt treadmill," J Neurophysiol, vol. 109, no. 10.1152, p. 2216 –2227, 2013. 

[47] Y. Wang and K. Watanabe, "Limb Dominance Related to the Variability and Symmetry of the 

Vertical Ground Reaction Force and Center of Pressure," Journal of Applied Biomechanics, vol. 28, 

pp. 473-478, 2012. 

[48] J. Perttunen, "Foot Loading in Normal and Pathological Walking," Studies in Sport, Physical 

Education and Health, ISSN 0356-1070; 83, University of Jyväskylä, 2002, 86 p. , 2002. 

[49] T. Khajah and G. Hou, "Parameter identification for vertical ground reaction forces on feet while 

running," International Sports Engineering Association, Springer Link , vol. 18, no. 4, pp. 217-226, 

19 July 2015. 

[50] Browning, R. C., Baker, E. A., Herron, J. A. and Kram, R. "Effects of obesity and sex on the 

energetic cost and preferred speed of walking". Journal of Applied Physiology 100(2), p. 390–

398. doi:10.1152/japplphysiol.00767.2005, 2006. 

[51] J. Dingwell and L. Marin, "Kinematic variability and local dynamic stability of upper body motions 

when walking at different speeds." Journal of Biomechanics, vol. 39, no. 3, p. 444–452, 2006. 

http://jap.physiology.org/content/100/2/390.full
http://jap.physiology.org/content/100/2/390.full
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1152%2Fjapplphysiol.00767.2005


 

 

 

163 

 

 

 

[52] Malatesta, D., Simar, D., Dauvilliers, Y., Candau, R., Saad, H., Préfaut, C. and Caillaud, C. "Aerobic 

determinants of the decline in preferred walking speed in healthy, active 65- and 80-year-

olds". European Journal of Physiology 447 (6): 915–921.doi:10.1007/s00424-003-1212-

y. PMID 14666424, 2004. 

[53] H. Kang and J. Dingwell, "Separating the effects of age and walking speed on gait variability.," Gait 

Posture, 2008 May;27(4):572-7. Epub 2007 Sep 4. 

[54] J. M. Hausdorff, M. E. Cudkowicz, R. Firtion, F. Y. Wei and A. L. Goldberger, "Gait Variability 

and Basal Ganglia Disorders: Stride-to-S tride Variations of Gait Cycle Timing in Parkinson's 

Disease and Huntington's Disease," Movement Disorders , vol. 13, no. 3, pp. 428-437, 1998. 

[55] D. A. Winter, "Human balance and posture control during standing and walking," Gait&Posture, 

vol. 3, pp. 193-214, 1995. 

[56] J. HS, H. J, Y. WJ, J. B and P. KS, "Classification of Parkinson gait and normal gait using Spatial-

Temporal Image of Plantar pressure.," IEEE Eng Med Biol Soc. 4672-5. doi: 

10.1109/IEMBS.2008.4650255., 2008. 

[57] R. A. Kenny, C. N. Scanaill and M. McGrath, "Falls Prevention in the Home: Challenges for New 

Technologies," Trinity College , Intel, reland, 2012. 

[58] T. Iluz, E. Gazit, T. Herman, E. Sprecher, M. Brozgol, N. Giladi, A. Mirelman and J. M. Hausdorff, 

"Automated detection of missteps during community ambulation in patients with Parkinson's 

disease: a new approach for quantifying fall risk in the community setting," Journal of 

NeuroEngineering and Rehabilitation , pp. 11-48, 3 April 2014. 

[59]  T. E. Lockhart, J. C. Woldstad and J. L. Smith, "Effects of age-related gait changes on the 

biomechanics of slips and falls," Ergonomics , vol. 46, no. 12, p. 1136–1160, 2003.  

[60]  J. B. Casebolt, S. Yoon, S. Shin and Y.-H. Kwon, "biomechanical comparison of elderly gait during 

elevation changes," Texas Woman's University, Denton, TX, USA,2006. 

[61]  I. Melzer, I. Shtilman and N. Rosenblatt, "Reliability of voluntary step execution behavior under 

single and dual task conditions," Journal of NeuroEngineering and Rehabilitation, Vols. 4-16, 29 

May 2007.  

[62]  M. N. BENJUYA and J. KAPLANSKI, "Postural stability in the elderly: a comparison between 

fallers and non-fallers," Age and Ageing , vol. 33, p. 602–607, 2004.  

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%2Fs00424-003-1212-y
https://dx.doi.org/10.1007%2Fs00424-003-1212-y
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/14666424


 

 

 

164 

 

 

 

[63]  M. L. Callisaya, L. Blizzard, M. D. Schmidt, K. L. Martin, J. L. Mcginley, L. M. Sanders and V. K. 

SRikanth, "Gait, gait variability and the risk of multiple incident falls in older people: a population-

based study," Age and Ageing , vol. 40, p. 481–487, 2011.  

[64] J. KULMALA, A. VILJANEN, S. SIPILA, S. PAJALA, O. PARSSINEN, M. KAUPPINEN, J. 

KAPRIO and T. RANTANEN, "Poor vision accompanied with other sensory impairments as a 

predictor of falls in older women," Age and Ageing , vol. 38, p. 162–167 , 2009. 

[65] J. H. Challis, S. L. Winter and D. Quig, "postural stability in the young and elderly as a consequence 

of perturbations," Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State 

University, University Park, PA, USA, 2006 . 

[66] K.-C. Siu, V. Lugade, L.-S. Chou, P. v. Donkelaar and M. Woollacott, "secondary task effect on gait 

stability during obstacle clearance in older adults," Department of Human Physiology, University of 

Oregon, Eugene, Oregon, U.S.A, 2006 . 

[67]  O. BEAUCHET, V. DUBOST, G. ALLALI, R. GONTHIER, R. HERMANN and R. W. 

KRESSIG2, "Faster counting while walking’ as a predictor of falls in older adults," Age and Ageing 

, vol. 36, p. 418–423 , 9 March 2007.  

[68]  I. Melzer, I. Kurz1, D. Shahar, M. Levi and L. Oddsson, "Application of the voluntary step execution 

test to identify elderly fallers," Age and Ageing , vol. 36, p. 532–537, 2007.  

[69] L. Z. Rubenstein and K. R. Josephson, " Falls and Their Prevention in Elderly People: What Does 

the Evidence Show?," Med Clin N Am , vol. 90, p. 807–824, 2006. 

[70] S. Turner, R. Kisser and W. Rogmans, "Falls among older adults in the EU-28: Key facts from the 

available statistics," EuroSafe: Eurpean Assosciation for injury prevention and saftey promotion, 

Amsterdam , Amsterdam , 2015. 

[71] A. M.Spellbring, Assessing elderly patients at high risk for falls: A reliability study. J Nurs Care 

Quality 6(3):30-35, 1992. 

[72] Murray CJL, Lopez AD, editors. The global burden of disease. Boston: The Harvard School of 

Public Health; p. 201–46; 1996. 

[73] P.Jérôme , French National Health at Home center (CNR Santé à Domicile et Autonomie). 

http://www.cnr-sante.fr/2012/10/technologies-de-detection-de-chute-des-personnes-

agees/?PHPSESSID=d5fmmts2cp14c3q2v26uduk6i4,2012 



 

 

 

165 

 

 

 

[74] Le Figaro France, "The falls in the elderly are common and cause serious complications", 

http://sante.lefigaro.fr/mieux-etre/accident/chutes-personnes-agees/quels-chiffres 

[75]  JA .Stevens , PS .Corso , EA .Finkelstein , TR. Miller : The costs of fatal and non-fatal falls among 

older adults. Stevens JA, Corso PS, Finkelstein EA, Miller Inj Prev. Oct;12(5):290-5, 2006. 

[76] K.Jane, Falls among elderly 'cost NHS &pound;4.6m a day' , Independent, 

http://www.independent.co.uk/life-style/health-and-families/health-news/falls-among-elderly-cost-

nhs-pound46m-a-day-2006411.html, Monday 21 June 2010.  

[78] C. Junsheng, Y. Dejie and Y. Yu, "Research on the Intrinsic mode function (IMF) criterion in EMD 

method," Hunan University, 2006. 

[79] D. Iatsenko, P. V. E. McClintock and A. Stefanovska, "Linear and synchrosqueezed time-frequency 

representations revisited. Part I: Overview, standards of use, related issues and algorithms.," in 

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK, arXiv:1310.7215v2, 25 

May 2014. 

[80] S. D. Stearns and D. . R. Hush, Digital Signal Processing with Examples in MATLAB®, Second 

Edition, Boca Raton, Florida 33431: CRC Press LCC, 2002. 

[81] R. H. Herrera, J. Han and M. Van der Baan, "Applications of the synchrosqueezing transform in 

seismic time-frequency analysis," GEOPHYSICS, vol. 79, no. 11, p. V55–V64, MAY-JUNE 2014. 

[82] M. S. Pepe, "Estimation and comparison of receiver operating characteristic curves," The Stata 

Journal, vol. 9, no. 1, p. 1–16, 2009. 

[83] Ng .Andrew, Machine Learning, Stanford University, Course code CS229. Available at http://cs229. 

stanford.edu, Spring 2016. 

[84] Lecture notes on forecasting by Robert Nau at Fuqua School of Business Duke University, Available 

at: http://people.duke.edu/~rnau/Slides_on_ARIMA_models--Robert_Nau.pdf 

[85] D. Powell W, B. Long, C. Milner E and S. Zhang, "Effects of Vertical Loading on Arch 

Characteristics and Intersegmental Foot Motions," Journal of Applied Biomechanics, vol. 28, no. 

2012 Human Kinetics, Inc., pp. 165-173, 2012. 

[86] Alkhatib, R., Diab, M., Moslem, B., Corbier, C., & ElBadaoui, M. “Classification of Ground 

Reaction Forces Based on Non Stationary Analysis”, Proceedings of the International Conference 

on Computer Vision and Image Analysis, IEEE ICCVIA 2015, pp. 1-4 , Soussa, Tunisia, Jan. 2015 

http://sante.lefigaro.fr/mieux-etre/accident/chutes-personnes-agees/quels-chiffres
http://sante.lefigaro.fr/mieux-etre/accident/chutes-personnes-agees/quels-chiffres
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stevens%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=17018668
http://www.ncbi.nlm.nih.gov/pubmed/?term=Corso%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=17018668
http://www.ncbi.nlm.nih.gov/pubmed/?term=Finkelstein%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=17018668
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20TR%5BAuthor%5D&cauthor=true&cauthor_uid=17018668
http://www.independent.co.uk/author/by-jane-kirby
http://www.independent.co.uk/life-style/health-and-families/health-news/falls-among-elderly-cost-nhs-pound46m-a-day-2006411.html
http://www.independent.co.uk/life-style/health-and-families/health-news/falls-among-elderly-cost-nhs-pound46m-a-day-2006411.html
http://www.independent.co.uk/life-style/health-and-families/health-news/falls-among-elderly-cost-nhs-pound46m-a-day-2006411.html


 

 

 

166 

 

 

 

[87] C. Laughton and I. McClay, "Ground reaction force variables as predictors of lower extremity shock 

in forefoot and rearfoot strike patterns," in asbweb.org, 2000. 

[88] J. Hunter P, R. Marshall N and P. McNair J, "Relationships Between Ground Reaction Force Impulse 

and Kinematicsof Sprint-Running Acceleration," JOURNAL OF APPLIED BIOMECHANICS, vol. 

21, no. 2005 Human Kinetics Publishers, Inc., pp. 31-43, 2005 . 

[89] M. Tramontano, S. Bonnì, C. A. Martino, F. Marchetti, C. Caltagirone, G. Koch and A. Peppe, 

"Blindfolded Balance Training in patients with Parkinson Disease: a sensory-motor strategy to 

improve the gait.," BioMed Research International, 2015 , Article ID 716042, 8 pages, 2015. 

[90] H. N. Chia Min Lim, T. Tzen Vun Yap and C. Ching Ho, "Gait Analysis and Classification on 

Subjects with Parkinson's Disease," Jurnal Teknologi (Sciences & Engineering), vol. 72:1, no. 

eISSN 2180-3722, pp. 1-6, 2015 . 

[91] D. B. Fineberg, P. Asselin, N. Y. Harel, I. Agranova-Breyter, S. D. Kornfeld, W. A. Bauman and A. 

M. Spungen, "Vertical ground reaction force-based analysis of powered exoskeleton-assisted 

walking in persons with motor-complete paraplegia," J Spinal Cord Med. , vol. 36, no. 4, p. 313–

321, 2013 . 

[92] R. Alkhatib, C. Corbier,  M. El Badawi, B. Moslem, M. Diab,”Sensor’s Ground Reaction Force 

Behaviour for Both Normal and Parkinson Subjects - a Qualitative Study”, 37th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Societ. Mico-Milan Conference 

Center – Milan, Italy, August 25-29 2015. 

[93] J. Garza-Ulloa, "Sensor Validation using Linear Regression for Error Detection between prediction 

data behavior and acquired data applied on sensing vertical Ground Reaction Forces on Human Gait 

Analysis.," International Test and Evaluation Association (ITEA) White Sands Missile Range, pp. 

24-27 , 2012. 

[94] S. Lee and T. J. Armstrong, "CPWR Final Report," in Field Tool for On-Site Biomechanical 

Analysis During Ladder Climbing, University of Michigan , The Center for Construction Research 

and Training, 2014, pp. 13-14.I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange 

anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 

271–350. 

[95] T.Anthony, E.W.Roshana, "Biomecahnics of Running and Walking, Issue 43 of Dolciani 

Mathematical Expositions," in Mathematics and Sports, contibutor:Mathematical Association of 

America, MAA, 2010, 2010, p. 324. 



 

 

 

167 

 

 

 

[96] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical 

media and plastic substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 

1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982]. 

[97] N. A. Krasnegor, D. M. Rumbaugh and R. L. Schiefelbusch, "Biological and Behavioral 

Determinants of Language Development," ISBN 978-1-317-78389-3, Psychology Press., 2014, p. 

p. 182. 

[98] J. Velotta, J. Weyer, A. Ramirez, J. Winstead and R. Bahamonde, "RELATIONSHIP BETWEEN 

LEG DOMINANCE TESTS AND TYPE OF TASK," Portuguese Journal of Sport 

Sciences,Biomechanics in Sports, vol. 29, no. 11 , pp. 1035-1038, 2011. 

[99] T. Kiyota and K. Fujiwara, "Dominant side in single-leg stance stability during floor 

oscillations at various frequencies," Journal of Physiological Anthropology , vol. 33, no. 25, 

pp. 2-9, 2014. 

[100] J. Chapman, L. Chapman and J. Allbn, "The Measurment of Foot Preference," Pergamon 

Jounals: Neuropsychologia , vol. 25, no. 3, pp. 579-584, 1987. 

  

  

  

  

  

 

 

 

 

 

 

 



 

 

 

168 

 

 

 

LIST OF PUBLICATIONS 

JOURNALS: 

IN PROGRESS:  R.Alkhatib, M.Diab, C.Corbier,  M.El Badawi, B.Moslem "Simplified gait analysis and classification 
for early detection of Parkinson" ,  Physiological Measurement, IOP Science, submitted Article reference: PMEA-
101332 

R.Alkhatib, M.Diab, C.Corbier,  M.El Badawi "Prediction of Human Gait - Vertical Ground Reaction Force ", 
International Journal of Enhanced Research in Science Technology & Engineering, Vol. 5 Issue 2, Pp. 206-216, 

ISSN: 2319-7463, February-2016. http://www.erpublications.com/ 
 

R.Alkhatib, M.Diab, B.Moslem, M.El Badawi, C.Corbier,” gait - ground reaction force sensors selection based on roc 
curve evaluation”, The 4th Int'l Conf. on Signal and Image Processing (CSIP 2015Mar.).  Paper ID: 
CSIP2015Mar_80008, Scientific Research Publishing (SRP) , "Journal of Computer and Communications" 
(ISSN:2327-5219), California (US), article acceptance: 2014-12-28, Vol. 3, 13-19, 2015. 
 

INTERNATIONAL CONFERENCES: 

M.Diab, R.Alkhatib, B.Moslem ,C.Corbier,  M.El Badawi, “Synchrosqueezing Characterize Non-Stationary Signals: 
Application on Gait-Vertical Ground Reaction Force”, Global Summit on Computer and Information Technology 
(GSCIT’2016), IEEE. Sousse, TUNISIA, 16-18-July, 2016, Accepted Article. 

K.Hiba, M.Diab, B.Moslem ,R.Alkhatib, C.Corbier,  M.El Badawi, “Frequency Content Analysis of  Gait -Vertical 
Ground Reaction Force”, Third International Conference On Advances In Biomedical Engineering (ICABME15), IEEE. 
EMB, Doctoral School of Sciences and Technology (EDST) and the Faculty of Engineering Lebanese University (LU), 
Hadat-Beirut, Lebanon, September 16-18, 2015. 

R.Alkhatib, C.Corbier,  M.El Badawi, B.Moslem, M.Diab,”Sensor’s Ground Reaction Force Behaviour for Both 
Normal and Parkinson Subjects- a Qualitative Study”, 37th Annual International Conference of the IEEE Engineering 
in Medicine and Biology Societ. Mico-Milan Conference Center – Milan, Italy, August 25-29 2015. 

Rami Alkhatib, Mohamad Diab, Bassam Moslem, Christophe Corbier, Mohamed El Badaoui. “Classification of Ground 
Reaction Forces Based on Non Stationary Analysis”, Proceedings of the International Conference on Computer Vision 
and Image Analysis, IEEE ICCVIA 2015, pp. 1-4 , Soussa, Tunisia, Jan. 2015. 

http://www.erpublications.com/


 

 

 

169 

 

 

 

 

NATIONAL CONFERENCES: 

R. Alkhatib, M. El Badawi, C. Corbier, B. Moslem, M. Diab, “Gait-Ground Reaction Force Signals- Balancing 
Parameters”, 21st LAAS International Science Conference, pp. 95-98, Beirut, Lebanon, April 2015. 

 R.Alkhatib, M.Diab, B.Moslem, M.El Badawi, C.Corbier, “Non Stationary Analysis of Gait-Ground Reaction Force 
Signals”, LAAS20, International Science Conference, pp. 56-59, Beirut, Lebanon, March 2014. 

 

 

 

 

 
 
 


