, Mineralocorticoid Receptor Contributes to Coronary and Left Ventricular Dysfunction After Myocardial Infarction, Hypertension, vol.67, pp.717-723, 2016.

C. Latouche, E. Moghrabi, S. Messaoudi, S. , N. Dinh-cat et al., Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system, Hypertension, vol.59, pp.966-972, 2012.

A. Tarjus, E. Martinez-martinez, C. Amador, C. Latouche, E. Moghrabi et al., Neutrophil Gelatinase-Associated Lipocalin, a Novel Mineralocorticoid Biotarget, vol.66, pp.158-166, 2015.

A. Gilet, F. Zou, M. Boumenir, J. P. Frippiat, S. N. Thornton et al., Aldosterone up-regulates MMP-9 and MMP-9/NGAL expression in human neutrophils through p38, ERK1/2 and PI3K pathways, Exp Cell Res, vol.331, pp.152-163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01481923

D. R. Flower, A. C. North, and C. E. Sansom, The lipocalin protein family: structural and sequence overview, Biochim Biophys Acta, vol.1482, pp.9-24, 2000.

J. Grzyb, D. Latowski, and K. Strzalka, Lipocalins-a family portrait, J Plant Physiol, vol.163, pp.895-915, 2006.
DOI : 10.1016/j.jplph.2005.12.007

O. Huttin, P. Y. Marie, M. Benichou, E. Bozec, S. Lemoine et al., Temporal deformation pattern in acute and late phases of ST-elevation myocardial infarction: incremental value of longitudinal post-systolic strain to assess myocardial viability, Clin Res Cardiol, vol.105, pp.815-826, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01760503

K. Helanova, S. Littnerova, P. Kubena, E. Ganovska, M. Pavlusova et al.,

J. and P. J. , Prognostic impact of neutrophil gelatinase-associated lipocalin and B-type natriuretic in patients with ST-elevation myocardial infarction treated by primary PCI: a prospective observational cohort study, BMJ Open, vol.5, p.6872, 2015.

A. Sahinarslan, S. A. Kocaman, D. Bas, A. Akyel, U. Ercin et al., Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease, Coron Artery Dis, vol.22, pp.333-338, 2011.
DOI : 10.1097/mca.0b013e3283472a71

T. Zografos, A. Haliassos, S. Korovesis, E. Giazitzoglou, E. Voridis et al., Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease

, Am J Cardiol, vol.104, pp.917-920, 2009.

, SUPPLEMENTAL REFERENCES

O. Huttin, P. Y. Marie, M. Benichou, E. Bozec, S. Lemoine et al.,

N. , M. E. Duarte, K. Beaumont, M. Rossignol, P. Girerd et al., Temporal deformation pattern in acute and late phases of ST-elevation myocardial infarction: incremental value of longitudinal post-systolic strain to assess myocardial viability, Clin Res Cardiol, vol.105, pp.815-826, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01760503

S. Banquet, E. Gomez, L. Nicol, F. Edwards-levy, J. P. Henry et al.,

B. Dautreaux, F. Lallemand, F. Bauer, Y. Cao, C. Thuillez et al.,

, Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure, Circulation, vol.124, pp.1059-1069, 2011.

A. Tarjus, E. Martinez-martinez, C. Amador, C. Latouche, E. Moghrabi et al.,

T. W. , F. R. Farman, N. Rossignol, P. Zannad, F. Lopez-andres et al., Neutrophil Gelatinase-Associated Lipocalin, a Novel Mineralocorticoid Biotarget, Mediates Vascular Profibrotic Effects of Mineralocorticoids, Hypertension, vol.66, pp.158-166, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01755057

E. Martinez-martinez, L. Calvier, A. Fernandez-celis, E. Rousseau, R. Jurado-lopez et al., Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension, Hypertension, vol.66, pp.767-775, 2015.

, Neutrophil Gelatinase-Associated Lipocalin from immune cells in aldosterone-induced cardiorenal remodeling and inflammation

M. Buonafine, E. Msc, and . Phd,

, Soumaya El Moghrabi 1 PhD, vol.3

I. , Navarrabiomed (Miguel Servet Foundation, issue.3

. Pamplona, ;. Spain, N. , and F. De-médecine, Tel: +33144278106 Fax: +3314427642 E-mail: frederic.jaisser@inserm.fr ONLINE SUPPLEMENT Neutrophil Gelatinase-Associated Lipocalin from immune cells in aldosterone-induced cardiorenal inflammation and remodeling, vol.75006

M. Buonafine, E. Msc, and . Phd,

, Soumaya El Moghrabi 1 PhD, vol.3

I. and T. Jaisser, Instituto de Investigación Sanitaria de Navarra (IdiSNA)

. Inserm, Clinical Investigation Centre 1433, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT

, Short title: NGAL from immune cells in mineralocorticoid-induced cardiorenal injury Corresponding author

. F. Dr, I. Jaisser, and . U1138, Tel: +33144278106 Fax: +3314427642 E-mail: frederic.jaisser@inserm.fr REFERENCES 1. Rogerson FM, Fuller PJ. Mineralocorticoid action, vol.75006, pp.61-73, 2000.

M. Briet and E. L. Schiffrin, Aldosterone: effects on the kidney and cardiovascular system

, Nat Rev Nephrol, vol.6, pp.261-273, 2010.

V. Cachofeiro, M. Miana, N. De-las-heras, B. Martín-fernández, and S. Ballesteros,

J. Fernández-tresguerres and V. Lahera, Aldosterone and the vascular system, J Steroid Biochem Mol Biol, vol.109, pp.331-335, 2008.

C. Latouche, E. Moghrabi, S. Messaoudi, S. , N. Dinh-cat et al.,

D. Alvarez-de-la-rosa, C. Perret, L. Andrés, N. Rossignol, P. Zannad et al.,

F. , Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system, Hypertension, vol.59, pp.966-972, 2012.

K. M. Schmidt-ott, K. Mori, J. Y. Li, A. Kalandadze, D. J. Cohen et al.,

, Dual Action of Neutrophil Gelatinase-Associated Lipocalin, J Am Soc Nephrol, vol.18, pp.407-413, 2007.

F. Liu, H. Yang, H. Chen, M. Zhang, and Q. Ma, High expression of neutrophil gelatinaseassociated lipocalin (NGAL) in the kidney proximal tubules of diabetic rats, Adv Med Sci, vol.60, pp.133-138, 2015.

N. Hamzic, A. Blomqvist, and C. Nilsberth, Immune-Induced Expression of Lipocalin-2 in

, Cyclooxygenase-2 and the Febrile Response, Brain Endothelial Cells: Relationship with Interleukin, vol.6, pp.271-280, 2013.

W. Eilenberg, S. Stojkovic, A. Piechota-polanczyk, C. Kaun, S. Rauscher et al.,

M. Klinger, J. Wojta, C. Neumayer, I. Huk, and S. Demyanets, Neutrophil Gelatinase-Associated Lipocalin (NGAL) is Associated with Symptomatic Carotid Atherosclerosis and Drives Proinflammatory State In Vitro, Eur J Vasc Endovasc Surg, vol.51, pp.623-631, 2016.

L. Kjeldsen, A. H. Johnsen, H. Sengelov, and N. Borregaard, Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase, J Biol Chem, vol.268, pp.10425-10432, 1993.

T. H. Flo, K. D. Smith, S. Sato, D. J. Rodriguez, M. A. Holmes et al.,

A. , Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron, Nature, vol.432, pp.917-921, 2004.

M. Floderer, M. Prchal-murphy, and C. Vizzardelli, Dendritic Cell-Secreted Lipocalin2

C. Induces and . Apoptosis, Contributes to T-Cell Priming and Leads to a TH1 Phenotype, PLoS ONE, vol.9, p.101881, 2014.

P. Devarajan, Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury, Biomark Med, vol.4, pp.265-280, 2010.

V. M. Van-deursen, K. Damman, A. A. Voors, M. H. Van-der-wal, and T. Jaarsma,

D. J. Veldhuisen and H. L. Hillege, Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure, Circ Heart Fail, vol.7, pp.35-42, 2014.

G. Wu, H. Li, Q. Fang, S. Jiang, L. Zhang et al., Elevated circulating lipocalin-2 levels independently predict incident cardiovascular events in men in a population-based cohort, Arterioscler Thromb Vasc Biol, 2014.

A. Tarjus, E. Martínez-martínez, C. Amador, C. Latouche, E. Moghrabi et al.,

T. W. Mak, R. Fay, N. Farman, and P. Rossignol,

. Lipocalin, Novel Mineralocorticoid Biotarget, Mediates Vascular Profibrotic Effects of Mineralocorticoids, Hypertension, vol.66, pp.158-166, 2015.

J. D. Imig and M. J. Ryan, Immune and Inflammatory Role in Renal Disease

, , 2013.

F. Montecucco, L. Liberale, A. Bonaventura, A. Vecchiè, F. Dallegri et al., The Role of Inflammation in Cardiovascular Outcome, Curr Atheroscler Rep, vol.19, 2017.

N. C. Bene, P. Alcaide, H. H. Wortis, and I. Z. Jaffe, Mineralocorticoid receptors in immune cells: Emerging role in cardiovascular disease, Steroids, vol.91, pp.38-45, 2014.

M. Han, Y. Li, M. Liu, Y. Li, and B. Cong, Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat, BMC Nephrol, vol.13, p.25, 2012.

J. P. Ip, A. L. Noçon, M. J. Hofer, S. L. Lim, M. Müller et al., Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration, J Neuroinflammation, vol.8, issue.1, 2011.

R. Shashidharamurthy, D. Machiah, J. D. Aitken, K. Putty, G. Srinivasan et al., Differential Role of Lipocalin 2 During Immune Complex-Mediated Acute and Chronic Inflammation in Mice: Lipocalin 2 During Immune Complex-Mediated Inflammation, Arthritis Rheum, vol.65, pp.1064-1073, 2013.

T. Rubinstein, M. Pitashny, and C. Putterman, The novel role of neutrophil gelatinase-B associated lipocalin (NGAL)/Lipocalin-2 as a biomarker for lupus nephritis, Autoimmun Rev, vol.7, pp.229-234, 2008.

S. Chakraborty, S. Kaur, S. Guha, and S. K. Batra, The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer, Biochim Biophys Acta BBA-Rev Cancer, vol.1826, pp.129-169, 2012.

A. Viau, K. El-karoui, D. Laouari, M. Burtin, C. Nguyen et al.,

T. W. Mak, B. Knebelmann, G. Friedlander, J. Barasch, and F. Terzi, Lipocalin 2 is essential for chronic kidney disease progression in mice and humans, J Clin Invest, vol.120, pp.4065-4076, 2010.

K. El-karoui, A. Viau, O. Dellis, A. Bagattin, C. Nguyen et al.,

M. , H. L. Mollet, G. Druilhe, A. Antignac, C. Knebelmann et al.,

M. Gallazzini and F. Terzi, Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2, Nat Commun, vol.7, p.10330, 2016.

K. Helanova, J. Spinar, and J. Parenica, Diagnostic and Prognostic Utility of Neutrophil

, Gelatinase-Associated Lipocalin (NGAL) in Patients with Cardiovascular Diseases-Review

, Kidney Blood Press Res, vol.39, pp.623-629, 2014.

A. Yndestad, L. Landrø, T. Ueland, C. P. Dahl, T. H. Flo et al.,

C. Husberg, G. Christensen, K. Dickstein, J. Kjekshus, E. Øie et al., Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure, Eur Heart J, vol.30, pp.1229-1236, 2009.

B. Yang, P. Fan, A. Xu, K. S. Lam, T. Berger et al.,

P. M. Vanhoutte, Improved functional recovery to I/R injury in hearts from lipocalin-2 deficiency mice: restoration of mitochondrial function and phospholipids remodeling, Am J Transl Res, 2012.

C. Tarín, C. E. Fernandez-garcia, E. Burillo, C. Pastor-vargas, and P. Llamas-granda,

B. Castejón, P. Ramos-mozo, M. M. Torres-fonseca, T. Berger, T. W. Mak et al., Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice, Cardiovasc Res, vol.111, pp.262-273, 2016.

A. Hemdahl, Expression of Neutrophil Gelatinase-Associated Lipocalin in

M. Atherosclerosis and . Infarction, Arterioscler Thromb Vasc Biol, vol.26, pp.136-142, 2006.

H. K. Sung, Y. K. Chan, M. Han, J. Jahng, E. Song et al.,

G. Sweeney, Lipocalin-2 (NGAL) Attenuates Autophagy to Exacerbate Cardiac Apoptosis Induced by Myocardial Ischemia: LIPOCALIN-2, AUTOPHAGY AND CELL DEATH, J Cell Physiol, 2017.

L. Cheng, H. Xing, X. Mao, L. Li, X. Li et al., Lipocalin-2 Promotes M1 Macrophages Polarization in a Mouse Cardiac Ischaemia-Reperfusion Injury Model, Scand J Immunol, vol.81, pp.31-38, 2015.

D. G. Harrison, T. J. Guzik, H. E. Lob, M. S. Madhur, P. J. Marvar et al., Inflammation, Immunity, and Hypertension. Hypertension, vol.57, pp.132-140, 2011.

E. L. Schiffrin, The Immune System: Role in Hypertension, Can J Cardiol, vol.29, pp.543-548, 2013.

R. M. Mortensen, Immune Cell Modulation of Cardiac Remodeling, Circulation, vol.125, pp.1597-1600, 2012.

A. J. Rickard, J. Morgan, G. Tesch, J. W. Funder, P. J. Fuller et al., Deletion of

, Mineralocorticoid Receptors From Macrophages Protects Against Deoxycorticosterone/SaltInduced Cardiac Fibrosis and Increased Blood Pressure, Hypertension, vol.54, pp.537-543, 2009.

X. N. Sun, C. Li, Y. Liu, L. Du, M. Zeng et al.,

D. Zhou, L. Lu, L. Shen, Z. Yi, Y. Du et al., Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon Gamma, Circ Res, 2017.

C. A. Amador, V. Barrientos, J. Peña, A. A. Herrada, M. González et al.,

R. Alzamora, F. Figueroa, A. M. Kalergis, and L. Michea, Spironolactone decreases DOCA-saltinduced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertens Dallas Tex, vol.63, pp.797-803, 1979.

K. Mori, H. T. Lee, D. Rapoport, I. R. Drexler, K. Foster et al.,

X. , L. J. Weiss, S. Mishra, J. Cheema, F. H. Markowitz et al.,

M. Kunis, C. , D. 'agati, V. Devarajan, P. Barasch et al., Endocytic delivery of lipocalin-siderophoreiron complex rescues the kidney from ischemia-reperfusion injury, J Clin Invest, vol.115, pp.610-621, 2005.

F. Aigner, H. T. Maier, H. G. Schwelberger, E. A. Wallnöfer, A. Amberger et al.,

T. Mak, T. W. Maglione, M. Margreiter, R. Schneeberger, S. Troppmair et al., Lipocalin-2 Regulates the Inflammatory Response During Ischemia and Reperfusion of the Transplanted Heart, Am J Transplant, vol.7, pp.779-788, 2007.

S. Sickinger, H. Maier, S. König, N. Vallant, M. Kofler et al.,

M. Hermann, P. Obrist, S. Schneeberger, R. Margreiter, J. Troppmair et al.,

, Lipocalin-2 as mediator of chemokine expression and granulocyte infiltration during ischemia and reperfusion, Transpl Int, vol.26, pp.761-769, 2013.

A. Schroll, K. Eller, C. Feistritzer, M. Nairz, T. Sonnweber et al.,

I. Theurl and G. Weiss, Lipocalin-2 ameliorates granulocyte functionality: Innate immunity, Eur J Immunol, vol.42, pp.3346-3357, 2012.

A. Gilet, F. Zou, M. Boumenir, J. Frippiat, S. N. Thornton et al.,

, Aldosterone up-regulates MMP-9 and MMP-9/NGAL expression in human neutrophils through p38, ERK1/2 and PI3K pathways, Exp Cell Res, vol.331, pp.152-163, 2015.

J. Mishra, Amelioration of Ischemic Acute Renal Injury by Neutrophil GelatinaseAssociated Lipocalin, J Am Soc Nephrol, vol.15, pp.3073-3082, 2004.

D. Fan, A. Takawale, J. Lee, and Z. Kassiri, Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease, Fibrogenesis Tissue Repair, vol.5, p.15, 2012.

, Aldosterone System in Renal and Cardiovascular Disease and the Effects of its Pharmacological Blockade, J Diabetes Metab

A. Benigni, P. Cassis, and G. Remuzzi, Angiotensin II revisited: new roles in inflammation, immunology and aging: Angiotensin II in inflammation, immunology, aging, EMBO Mol Med, vol.2, pp.247-257, 2010.

A. Lother, M. Moser, and C. Bode, Mineralocorticoids in the Heart and Vasculature: New Insights for Old Hormones, vol.55, pp.289-312, 2015.

C. E. Gomez-sanchez, M. Y. Zhou, and E. N. Cozza, Corticosteroid synthesis in the central nervous system, Endocr Res, vol.22, pp.463-470, 1996.

Y. Takeda, I. Miyamori, and T. Yoneda, Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin, J Clin Endocrinol Metab, vol.81, pp.2797-2800, 1996.

J. W. Funder, The Nongenomic Actions of Aldosterone, Endocr Rev, vol.26, pp.313-321, 2005.

C. Grossmann and M. Gekle, New aspects of rapid aldosterone signaling, Mol Cell Endocrinol, vol.308, pp.53-62, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00499115

I. Mazak, Aldosterone Potentiates Angiotensin II-Induced Signaling in Vascular Smooth Muscle Cells, Circulation, vol.109, pp.2792-2800, 2004.

S. Viengchareun, L. Menuet, D. Martinerie, and L. , The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology, Nucl Recept Signal, vol.5, p.12, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00193515

N. Farman and M. Rafestin-oblin, Multiple aspects of mineralocorticoid selectivity, Am J Physiol-Ren Physiol, vol.280, pp.181-192, 2001.

S. Messaoudi, B. Gravez, and A. Tarjus, , 2013.

, Cardiomyocyte Mineralocorticoid Receptor In VivoNovelty and Significance. Hypertension, vol.61, pp.361-367

M. Lombes, S. Kenouch, and A. Souque, The mineralocorticoid receptor discriminates aldosterone from glucocorticoids independently of the 11 beta-hydroxysteroid dehydrogenase, Endocrinology, vol.135, pp.834-840, 1994.

C. Hellal-levy, J. Fagart, A. Souque, and M. Rafestin-oblin, Mechanistic aspects of mineralocorticoid receptor activation, Kidney Int, vol.57, pp.1250-1255, 2000.

T. Trapp and F. Holsboer, Heterodimerization between mineralocorticoid and glucocorticoid receptors increases the functional diversity of corticosteroid action, Trends Pharmacol Sci, vol.17, pp.145-149, 1996.

M. Nagase and T. Fujita, Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease, Nat Rev Nephrol, vol.9, pp.153-176, 2010.

D. Zhang, A. Cat, A. Soukaseum, and C. , Cross-Talk Between Mineralocorticoid and Angiotensin II Signaling for Cardiac Remodeling, Hypertension, vol.52, pp.1060-1067, 2008.

G. Jain, R. C. Campbell, and D. G. Warnock, Networking Between Systemic Angiotensin II and Cardiac Mineralocorticoid Receptors, Clin J Am Soc Nephrol, vol.4, pp.1016-1018, 2008.

Y. Rautureau, P. Paradis, E. Schiffrin, I. Hernández-díaz, T. Giraldez et al., The Mineralocorticoid Receptor Is a Constitutive Nuclear Factor in Cardiomyocytes due to Hyperactive Nuclear Localization Signals, Endocrinology, vol.21, pp.3888-3899, 2010.

R. Jiménez-canino, F. Lorenzo-díaz, and F. Jaisser, Histone Deacetylase 6Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity, Endocrinology, vol.157, pp.2515-2532, 2016.

H. Garty and L. G. Palmer, Epithelial sodium channels: function, structure, and regulation, Physiol Rev, vol.77, pp.359-396, 1997.
DOI : 10.1152/physrev.1997.77.2.359

P. Jeggle, C. Callies, and A. Tarjus, Epithelial sodium channel stiffens the vascular endothelium in vitro and in Liddle mice, Hypertens Dallas Tex, vol.61, pp.1053-1059, 1979.

D. G. Warnock, K. Kusche-vihrog, and A. Tarjus, Blood pressure and amiloridesensitive sodium channels in vascular and renal cells, Nat Rev Nephrol, vol.10, pp.146-157, 2014.
DOI : 10.1038/nrneph.2013.275

URL : http://europepmc.org/articles/pmc4137491?pdf=render

B. F. Palmer, Regulation of Potassium Homeostasis, Clin J Am Soc Nephrol, vol.10, 2015.

H. M. Wadei and S. C. Textor, The role of the kidney in regulating arterial blood pressure, Nat Rev Nephrol, vol.8, pp.602-609, 2012.

S. Messaoudi, F. Azibani, C. Delcayre, and F. Jaisser, Aldosterone, mineralocorticoid receptor, and heart failure, Mol Cell Endocrinol, vol.350, pp.266-272, 2012.
DOI : 10.1016/j.mce.2011.06.038

A. P. Mcgraw, A. Mccurley, I. R. Preston, and I. Z. Jaffe, Mineralocorticoid Receptors in Vascular Disease: Connecting Molecular Pathways to Clinical Implications, Curr Atheroscler Rep, 2013.

S. Shibata, K. Ishizawa, and S. Uchida, Mineralocorticoid receptor as a therapeutic target in chronic kidney disease and hypertension, Hypertens. Res, 2016.

A. Feraco, A. Armani, and C. Mammi, Role of mineralocorticoid receptor and renin-angiotensin-aldosterone system in adipocyte dysfunction and obesity, J Steroid Biochem Mol Biol, vol.137, pp.99-106, 2013.

M. Zhao, I. Célérier, and E. Bousquet, Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy, J Clin Invest, vol.122, pp.2672-2679, 2012.
DOI : 10.1172/jci61427

URL : http://www.jci.org/articles/view/61427/files/pdf

Y. Sainte-marie, A. Toulon, and R. Paus, Targeted Skin Overexpression of the Mineralocorticoid Receptor in Mice Causes Epidermal Atrophy, Premature Skin Barrier Formation, Eye Abnormalities, and Alopecia, Am J Pathol, vol.171, pp.846-860, 2007.

B. Pitt, F. Zannad, and W. J. Remme, The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators, N Engl J Med, vol.341, pp.709-717, 1999.

P. Kolkhof and S. A. Borden, Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics, Mol Cell Endocrinol, vol.350, pp.310-317, 2012.

B. Pitt, W. Remme, and F. Zannad, Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction, N Engl J Med, vol.348, pp.1309-1321, 2003.

F. Zannad, J. Mcmurray, and H. Krum, Eplerenone in patients with systolic heart failure and mild symptoms, N Engl J Med, vol.364, pp.11-21, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01742988

P. Rossignol, D. Dobre, and J. Mcmurray, Incidence, Determinants, and Prognostic Significance of Hyperkalemia and Worsening Renal Function in Patients With Heart Failure Receiving the Mineralocorticoid Receptor Antagonist Eplerenone or Placebo in Addition to, Optimal Medical Therapy. Circ Heart Fail, vol.7, pp.51-58, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01739545

J. Bauersachs, The ARTS of third-generation mineralocorticoid receptor antagonists: achieving cardiovascular benefit with minimized renal side effects?, Eur Heart J, vol.34, pp.2426-2428, 2013.

L. M. Ruilope and J. Tamargo, Renin-angiotensin system blockade: Finerenone, 2017.
DOI : 10.1016/j.nephro.2017.02.003

, Néphrologie Thérapeutique, vol.13, pp.47-53

C. G. Brilla, Aldosterone and myocardial fibrosis in heart failure, Herz, vol.25, pp.299-306, 2000.

C. G. Brilla, B. Maisch, and K. T. Weber, Renin-angiotensin system and myocardial collagen matrix remodeling in hypertensive heart disease: in vivo and in vitro studies on collagen matrix regulation, Clin Investig, vol.71, pp.35-41, 1993.

C. G. Brilla and K. T. Weber, Mineralocorticoid excess, dietary sodium, and myocardial fibrosis, J Lab Clin Med, vol.120, pp.893-901, 1992.

G. M. Kuster, Mineralocorticoid Receptor Inhibition Ameliorates the Transition to Myocardial Failure and Decreases Oxidative Stress and Inflammation in Mice With Chronic Pressure Overload, Circulation, vol.111, pp.420-427, 2005.

P. Galuppo, J. Bauersachs, A. Gueret, N. Harouki, and J. Favre, Mineralocorticoid receptor activation in myocardial infarction and failure: recent advances: MR ACTIVATION IN CARDIAC ISCHAEMIA AND FAILURE, Vascular Smooth Muscle Mineralocorticoid Receptor Contributes to Coronary and Left Ventricular Dysfunction After Myocardial InfarctionNovelty and Significance, vol.42, pp.717-723, 2012.

D. Wang, Y. Liu, Y. , and X. , Elevated cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure: beneficial effects of mineralocorticoid receptor blocker, AJP Regul Integr Comp Physiol, vol.10, pp.67-73, 2004.

B. Pitt, M. A. Pfeffer, and S. F. Assmann, Spironolactone for Heart Failure with Preserved Ejection Fraction, N Engl J Med, vol.370, pp.1383-1392, 2014.

M. A. Pfeffer, B. Claggett, and S. F. Assmann, Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation CIRCULATIONAHA-114, 2014.

F. Beygui, J. Labbé, and G. Cayla, Early mineralocorticoid receptor blockade in primary percutaneous coronary intervention for ST-elevation myocardial infarction is associated with a reduction of life-threatening ventricular arrhythmia, Int J Cardiol, vol.167, pp.73-79, 2013.

G. Montalescot, B. Pitt, and E. Lopez-de-sa, Early eplerenone treatment in patients with acute ST-elevation myocardial infarction without heart failure: The Randomized Double-Blind Reminder Study, Hypertension, vol.35, pp.286-290, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01738642

G. Güder, F. Hammer, and T. Deutschbein, Prognostic Value of Aldosterone and Cortisol in Patients Hospitalized for Acutely Decompensated Chronic Heart Failure With and Without Mineralocorticoid Receptor Antagonism, J Card Fail, vol.21, pp.208-216, 2015.

G. Guder, J. Bauersachs, and S. Frantz, Complementary and Incremental Mortality Risk Prediction by Cortisol and Aldosterone in Chronic Heart Failure, Circulation, vol.115, pp.1754-1761, 2007.

M. Ambroisine, J. Favre, and P. Oliviero, Aldosterone-Induced Coronary Dysfunction in Transgenic Mice Involves the Calcium-Activated Potassium (BKCa) Channels of Vascular Smooth Muscle Cells, Circulation, vol.116, pp.2435-2443, 2007.

A. Garnier, Cardiac Specific Increase in Aldosterone Production Induces Coronary Dysfunction in Aldosterone Synthase-Transgenic Mice, Circulation, vol.110, pp.1819-1825, 2004.

F. Azibani, Y. Devaux, and G. Coutance, Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice, PLoS ONE, vol.7, p.38197, 2012.

F. Azibani, L. Benard, and S. Schlossarek, Aldosterone inhibits antifibrotic factors in mouse hypertensive heart, Hypertension, vol.59, pp.1179-1187, 2012.

A. Fiebeler, W. B. Lea, E. S. Kwak, and J. M. Luther, Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt, Circulation, vol.111, pp.936-944, 2005.

N. Lalevee, M. Rebsamen, and S. Barrerelemaire, Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes, Cardiovasc Res, vol.67, pp.216-224, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00117252

M. F. Rossier, S. Lenglet, and L. Vetterli, Mineralocorticoid Modulation of Cardiac Ryanodine Receptor Activity Is Associated With Downregulation of FK506-Binding Proteins, Conditional Mineralocorticoid Receptor Expression in the Heart Leads to Life-Threatening Arrhythmias, vol.52, pp.3025-3033, 2005.

D. Mello and W. C. , Beneficial effect of eplerenone on cardiac remodelling and electrical properties of the failing heart, J Renin Angiotensin Aldosterone Syst, vol.7, pp.40-46, 2006.

J. Qu, F. M. Volpicelli, and L. I. Garcia, Gap Junction Remodeling and Spironolactone-Dependent Reverse Remodeling in the Hypertrophied Heart, Circ Res, vol.104, pp.365-371, 2009.

M. Stein, M. Boulaksil, and J. A. Jansen, Reduction of fibrosis-related arrhythmias by chronic renin-angiotensin-aldosterone system inhibitors in an aged mouse model, AJP Heart Circ Physiol, vol.299, pp.310-321, 2010.

D. Lavall, C. Selzer, and P. Schuster, The Mineralocorticoid Receptor Promotes Fibrotic Remodeling in Atrial Fibrillation, J Biol Chem, vol.289, pp.6656-6668, 2014.
DOI : 10.1074/jbc.m113.519256

URL : http://www.jbc.org/content/289/10/6656.full.pdf

S. Kimura, M. Ito, and M. Tomita, Role of mineralocorticoid receptor on atrial structural remodeling and inducibility of atrial fibrillation in hypertensive rats, Hypertens Res, vol.34, pp.584-591, 2011.

T. Dartsch, R. Fischer, and A. Gapelyuk, Aldosterone induces electrical remodeling independent of hypertension, Int J Cardiol, vol.164, pp.170-178, 2013.

P. A. Deshmukh, S. R. Bellary, and F. T. Schwender, Spironolactone prevents the inducibility of ventricular tachyarrhythmia in rats with aldosteronism, J Cardiovasc Pharmacol, vol.58, pp.487-491, 2011.

P. Milliez, X. Girerd, and P. Plouin, Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism, J Am Coll Cardiol, vol.45, pp.1243-1248, 2005.

A. Goette, P. Hoffmanns, and W. Enayati, Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation, Am J Cardiol, vol.88, pp.906-909, 2001.

C. Tsai, F. Chiang, and C. Tseng, , 2010.

, Mineralocorticoid Receptor in Human Atrial Fibrillation and a Cellular Model of Atrial Fibrillation, J Am Coll Cardiol, vol.55

P. De-an, L. Li, and X. Zhi-yun, Increased Expression of Mineralocorticoid Receptor and 11?-Hydroxysteroid Dehydrogenase Type 2 in Human Atria During Atrial Fibrillation, Clin Cardiol, vol.33, pp.23-29, 2010.

Y. Chung, Y. , Y. Wu, and C. , Spironolactone is associated with reduced risk of new-onset atrial fibrillation in patients receiving renal replacement therapy, Int J Cardiol, vol.202, pp.962-966, 2016.

V. Simopoulos, G. Tagarakis, and A. Hatziefthimiou, Effectiveness of aldosterone antagonists for preventing atrial fibrillation after cardiac surgery in patients with systolic heart failure: a retrospective study, Clin Res Cardiol, vol.104, pp.31-37, 2015.

R. S. Williams, J. A. Dimas, and V. , Effect of Spironolactone on Patients With Atrial Fibrillation and Structural Heart Disease, Clin Cardiol, vol.34, pp.415-419, 2011.

J. Wei, J. Ni, and D. Huang, The Effect of Aldosterone Antagonists for, 2010.

, Ventricular Arrhythmia: A Meta-Analysis, Clin Cardiol, vol.33, pp.572-577

H. Adel, A. Taye, and M. Khalifa, Spironolactone improves endothelial dysfunction in streptozotocin-induced diabetic rats, Naunyn Schmiedebergs Arch Pharmacol, vol.387, pp.1187-1197, 2014.

N. Schafer, C. Lohmann, and S. Winnik, Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity, Eur Heart J, vol.34, pp.3515-3524, 2013.

C. L. Sartorio, D. Fraccarollo, and P. Galuppo, Mineralocorticoid Receptor Blockade Improves Vasomotor Dysfunction and Vascular Oxidative Stress Early After Myocardial Infarction, Hypertension, vol.50, pp.919-925, 2007.

P. Lacolley, Increased Carotid Wall Elastic Modulus and Fibronectin in, 2002.

, Circulation, vol.106, pp.2848-2853

N. Fujimura, K. Noma, and T. Hata, Mineralocorticoid Receptor Blocker Eplerenone Improves Endothelial Function and Inhibits Rho-Associated Kinase Activity in Patients With Hypertension, Clin Pharmacol Ther, vol.91, pp.289-297, 2012.

E. Gross, M. Rothstein, S. Dombek, H. Juknis, L. Shavit et al., Aldosterone blockade and the mineralocorticoid receptor in the management of chronic kidney disease: current concepts and emerging treatment paradigms, Clin J Am Soc Nephrol CJASN, vol.46, pp.1380-1387, 2005.

R. Garg, A. D. Rao, and M. Baimas-george, Mineralocorticoid Receptor Blockade Improves Coronary Microvascular Function in Individuals With Type 2 Diabetes, Diabetes, vol.64, pp.236-242, 2015.

L. A. Bienvenu, M. E. Reichelt, L. Delbridge, and M. J. Young, Mineralocorticoid receptors and the heart, multiple cell types and multiple mechanisms: a focus on the cardiomyocyte, Clin Sci, vol.125, pp.409-421, 2013.

A. Lother, S. Berger, and R. Gilsbach, Ablation of Mineralocorticoid Receptors in Myocytes But Not in Fibroblasts Preserves Cardiac Function, Hypertension, vol.57, pp.746-754, 2011.

A. J. Rickard, J. Morgan, and L. A. Bienvenu, Cardiomyocyte Mineralocorticoid Receptors Are Essential for Deoxycorticosterone/Salt-Mediated Inflammation and Cardiac FibrosisNovelty and Significance, Hypertension, vol.60, pp.1443-1450, 2012.

D. Fraccarollo, S. Berger, and P. Galuppo, Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction, Circulation CIRCULATIONAHA, p.110, 2011.

A. Mccurley, P. W. Pires, and S. B. Bender, Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors, Nat Med, vol.18, pp.1429-1433, 2012.

G. Galmiche, A. Pizard, and A. Gueret, Smooth Muscle Cell Mineralocorticoid Receptors Are Mandatory for Aldosterone-Salt to Induce Vascular Stiffness, 96. Cat AND, vol.63, pp.2454-2463, 2010.

A. J. Rickard, J. Morgan, and S. Chrissobolis, Endothelial Cell Mineralocorticoid Receptors Regulate Deoxycorticosterone/Salt-Mediated Cardiac Remodeling and Vascular Reactivity But Not Blood PressureNovelty and Significance, Hypertension, vol.63, pp.1033-1040, 2014.

J. W. Conn, R. F. Knopf, and R. M. Nesbit, CLINICAL CHARACTERISTICS OF PRIMARY ALDOSTERONISM FROM AN ANALYSIS OF 145 CASES, Am J Surg, vol.107, pp.159-172, 1964.

E. L. Greene, S. Kren, and T. H. Hostetter, Role of aldosterone in the remnant kidney model in the rat, J Clin Invest, vol.98, p.1063, 1996.

N. Kobayashi, K. Hara, and A. Tojo, Eplerenone Shows Renoprotective Effect by Reducing LOX-1-Mediated Adhesion Molecule, PKC-MAPK-p90RSK, and Rho-Kinase Pathway, Hypertension, vol.45, pp.538-544, 2005.

A. Chrysostomou and G. Becker, Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease, N Engl J Med, vol.345, pp.925-926, 2001.

M. Gullulu, I. Akdag, and S. Kahvecioglu, Aldosterone Blockage in, 2006.

, Proliferative Glomerulonephritis Prevents Not Only Fibrosis, but Proliferation as Well, Ren Fail, vol.28, pp.509-514

Z. Y. Quan, M. Walser, and G. S. Hill, Adrenalectomy ameliorates ablative nephropathy in the rat independently of corticosterone maintenance level, Kidney Int, vol.41, pp.326-333, 1992.

S. Bianchi, R. Bigazzi, and V. M. Campese, Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease, Kidney Int, vol.70, pp.2116-2123, 2006.

A. S. Bomback, A. V. Kshirsagar, M. A. Amamoo, and P. J. Klemmer, Change in Proteinuria After Adding Aldosterone Blockers to ACE Inhibitors or Angiotensin Receptor Blockers in CKD: A Systematic Review, Am J Kidney Dis, vol.51, pp.199-211, 2008.

Y. Furumatsu, Y. Nagasawa, and K. Tomida, Effect of renin-angiotensinaldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker, Hypertens Res, vol.31, pp.59-67, 2008.

A. Sato, K. Hayashi, and T. Saruta, Antiproteinuric effects of mineralocorticoid receptor blockade in patients with chronic renal disease, Am J Hypertens, vol.18, pp.44-49, 2005.

L. Tylicki, P. Rutkowski, and M. Renke, Triple Pharmacological Blockade of the Renin-Angiotensin-Aldosterone System in Nondiabetic CKD: An Open-Label Crossover Randomized Controlled Trial, Am J Kidney Dis, vol.52, pp.486-493, 2008.

F. Nakhoul, E. Khankin, and A. Yaccob, Eplerenone potentiates the antiproteinuric effects of enalapril in experimental nephrotic syndrome, AJP Ren Physiol, vol.294, pp.628-637, 2008.

S. U. Monrad, P. D. Killen, and M. R. Anderson, The role of aldosterone blockade in murine lupus nephritis, Arthritis Res Ther, vol.10, p.5, 2008.

J. C. Aldigier, Regression of Existing Glomerulosclerosis by Inhibition of Aldosterone, J Am Soc Nephrol, vol.16, pp.3306-3314, 2005.

T. Chun, P. N. Chander, and J. Kim, Aldosterone, but not angiotensin II, increases profibrotic factors in kidney of adrenalectomized stroke-prone spontaneously hypertensive rats, Am J Physiol-Endocrinol Metab, vol.295, pp.305-312, 2008.

R. Rocha, A. E. Rudolph, and G. E. Frierdich, Aldosterone induces a vascular inflammatory phenotype in the rat heart, Am J Physiol-Heart Circ Physiol, vol.283, 2002.

R. Rocha, C. T. Stier, and I. Kifor, Aldosterone: a mediator of myocardial necrosis and renal arteriopathy 1, Endocrinology, vol.141, pp.3871-3878, 2000.

A. Whaley-connell, J. Habibi, and Y. Wei, Mineralocorticoid receptor antagonism attenuates glomerular filtration barrier remodeling in the transgenic Ren2 rat, Am J Physiol-Ren Physiol, vol.296, 2009.

M. Taira, H. Toba, and M. Murakami, Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats, Eur J Pharmacol, vol.589, pp.264-271, 2008.
DOI : 10.1016/j.ejphar.2008.06.019

C. Guo, V. Ricchiuti, and B. Q. Lian, Mineralocorticoid Receptor Blockade Reverses Obesity-Related Changes in Expression of Adiponectin, Peroxisome ProliferatorActivated Receptor-, and Proinflammatory Adipokines, Circulation, vol.117, pp.2253-2261, 2008.

G. Fujisawa, K. Okada, and S. Muto, Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats, Kidney Int, vol.66, pp.1493-1502, 2004.

J. Yuan, R. Jia, and Y. Bao, Beneficial effects of spironolactone on glomerular injury in streptozotocin-induced diabetic rats, J Renin-Angiotensin-Aldosterone Syst JRAAS, vol.8, p.118, 2007.

S. Han, Spironolactone Prevents Diabetic Nephropathy through an AntiInflammatory Mechanism in Type 2 Diabetic Rats, J Am Soc Nephrol, vol.17, pp.1362-1372, 2006.

S. Lee, J. Park, and W. Lee, Lipocalin-2 Is an Autocrine Mediator of, 2009.

R. Astrocytosis, ;. Nishiyama, A. Yao, L. Fan, and Y. , Involvement of Aldosterone and Mineralocorticoid Receptors in Rat Mesangial Cell Proliferation and Deformability, Hypertension, vol.29, pp.710-716, 2005.

A. Sato, K. Hayashi, M. Naruse, and T. Saruta, Effectiveness of Aldosterone Blockade in Patients With Diabetic Nephropathy, Hypertension, vol.41, pp.64-68, 2003.

K. J. Schjoedt, K. Rossing, and T. R. Juhl, Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy, Kidney Int, vol.70, pp.536-542, 2006.

K. J. Schjoedt, K. Rossing, and T. R. Juhl, Beneficial impact of spironolactone in diabetic nephropathy, Kidney Int, vol.68, pp.2829-2836, 2005.

J. Barrera-chimal, R. Pérez-villalva, and R. Rodríguez-romo, Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury, Kidney Int, vol.83, pp.93-103, 2013.

L. Lattenist, S. M. Lechner, and S. Messaoudi, Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Protects Against Acute Kidney Injury-Mediated Chronic Kidney Disease: Role of Oxidative Stress, Hypertens Dallas Tex, vol.69, pp.870-878, 1979.

J. M. Mejia-vilet, V. Ramirez, and C. Cruz, Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone, AJP Ren Physiol, vol.293, pp.78-86, 2007.

K. Sanchez-pozos, J. Barrera-chimal, and J. Garzon-muvdi, Recovery from ischemic acute kidney injury by spironolactone administration, Nephrol Dial Transplant, vol.27, pp.3160-3169, 2012.

J. Barrera-chimal, G. André-grégoire, and A. Nguyen-dinh-cat, Benefit of Mineralocorticoid Receptor Antagonism in AKI: Role of Vascular Smooth Muscle Rac1, J Am Soc Nephrol, vol.28, pp.1216-1226, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01832953

J. Barrera-chimal, R. Pérez-villalva, and J. A. Ortega, Mild ischemic Injury Leads to Long-Term Alterations in the Kidney: Amelioration by Spironolactone Administration, Int J Biol Sci, vol.11, pp.892-900, 2015.

N. A. Bobadilla and G. Gamba, New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone, AJP Ren Physiol, vol.293, pp.2-9, 2007.

J. M. Perez-rojas, Renocortical mRNA expression of vasoactive factors during spironolactone protective effect in chronic cyclosporine nephrotoxicity, AJP Ren Physiol, vol.289, 2005.

I. Feria, I. Pichardo, and P. Juárez, Therapeutic benefit of spironolactone in experimental chronic cyclosporine A nephrotoxicity, Kidney Int, vol.63, pp.43-52, 2003.

J. Perez-rojas, J. A. Blanco, and C. Cruz, Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity, AJP Ren Physiol, vol.292, pp.131-139, 2006.

F. Waanders, H. Rienstra, and M. W. Boer, Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats, AJP Ren Physiol, vol.296, pp.1072-1079, 2009.

C. A. Amador, J. Bertocchio, and G. Andre-gregoire, Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration, Kidney Int, vol.89, pp.354-362, 2016.

T. Yoshikawa and Y. Naito, What is oxidative stress?, Jpn Med Assoc J, vol.45, pp.271-276, 2002.

N. Queisser and N. Schupp, Aldosterone, oxidative stress, and NF-?B activation in hypertension-related cardiovascular and renal diseases, Free Radic Biol Med, vol.53, pp.314-327, 2012.

M. A. Bayorh, A. Rollins-hairston, and J. Adiyiah, Eplerenone suppresses aldosterone/ salt-induced expression of NOX-4, J Renin Angiotensin Aldosterone Syst, vol.12, pp.195-201, 2011.

N. J. Brown, Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis, Nat Rev Nephrol, vol.9, pp.459-469, 2013.

F. Iwashima, T. Yoshimoto, and I. Minami, Aldosterone Induces Superoxide Generation via Rac1 Activation in Endothelial Cells, Endocrinology, vol.149, pp.1009-1014, 2008.

N. Schupp, N. Queisser, and M. Wolf, Aldosterone Causes DNA Strand Breaks and Chromosomal Damage in Renal Cells, Which are Prevented by Mineralocorticoid Receptor Antagonists, Horm Metab Res, vol.42, pp.458-465, 2010.

J. Barrera-chimal, S. Prince, and F. Fadel, , 2016.

, Endothelin B Receptor is Responsible for the Benefit of a Nonsteroidal Mineralocorticoid Receptor Antagonist in Renal Ischemia, J Am Soc Nephrol JASN, vol.27, pp.398-404

M. K. Rude, T. Duhaney, and G. M. Kuster, Aldosterone Stimulates Matrix Metalloproteinases and Reactive Oxygen Species in Adult Rat Ventricular Cardiomyocytes, Hypertension, vol.46, pp.555-561, 2005.

L. Michea, A. Villagran, and A. Urzua, Mineralocorticoid Receptor Antagonism Attenuates Cardiac Hypertrophy and Prevents Oxidative Stress in Uremic Rats, Hypertension, vol.52, pp.295-300, 2008.

M. Nagase, N. Ayuzawa, and W. Kawarazaki, Oxidative Stress Causes Mineralocorticoid Receptor Activation in Rat Cardiomyocytes: Role of Small GTPase Rac1, Hypertension, vol.59, pp.500-506, 2012.

T. A. Wynn and T. R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat Med, vol.18, pp.1028-1040, 2012.

T. Wynn, Cellular and molecular mechanisms of fibrosis, J Pathol, vol.214, pp.199-210, 2008.

L. A. Borthwick, T. A. Wynn, and A. J. Fisher, Cytokine mediated tissue fibrosis, Biochim Biophys Acta BBA-Mol Basis Dis, vol.1832, 2013.

J. Bauersachs, F. Jaisser, and R. Toto, Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases, Hypertension, vol.65, pp.257-263, 2015.

R. Dooley, B. J. Harvey, and W. Thomas, The regulation of cell growth and survival by aldosterone, Front Biosci Landmark Ed, vol.16, pp.440-457, 2011.

V. Robert, N. Van-thiem, and S. L. Cheav, Increased cardiac types I and III collagen mRNAs in aldosterone-salt hypertension, Hypertension, vol.24, pp.30-36, 1994.

W. Thomas, R. Dooley, and B. J. Harvey, Aldosterone as a renal growth factor, Steroids, vol.75, pp.550-554, 2010.

M. J. Young and A. J. Rickard, Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis, Mol Cell Endocrinol, vol.350, pp.248-255, 2012.

A. M. Marney and N. J. Brown, Aldosterone and end-organ damage, Clin Sci, vol.113, pp.267-278, 2007.

D. Fraccarollo, P. Galuppo, and S. Schraut, Immediate Mineralocorticoid Receptor Blockade Improves Myocardial Infarct Healing by Modulation of the Inflammatory Response, Hypertension, vol.51, pp.905-914, 2008.

Q. Wang, Chronic hyperaldosteronism in a transgenic mouse model fails to induce cardiac remodeling and fibrosis under a normal-salt diet, AJP Ren Physiol, vol.286, pp.1178-1184, 2004.

L. Calvier, E. Martinez-martinez, and M. Miana, The Impact of Galectin-3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01758739

, Inhibition on Aldosterone-Induced Cardiac and Renal Injuries, JACC Heart Fail, vol.3, pp.59-67

W. Iraqi, P. Rossignol, and M. Angioi, Extracellular Cardiac Matrix Biomarkers in Patients With Acute Myocardial Infarction Complicated by Left Ventricular Dysfunction and Heart Failure: Insights From the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) Study, Circulation, vol.119, pp.2471-2479, 2009.

K. Wong, S. Wong, and S. Mcswiggan, Myocardial fibrosis and QTc are reduced following treatment with spironolactone or amiloride in stroke survivors: A randomised placebo-controlled cross-over trial, Int J Cardiol, vol.168, pp.5229-5233, 2013.

M. Pizarro, N. Solís, and P. Quintero, Beneficial effects of mineralocorticoid receptor blockade in experimental non-alcoholic steatohepatitis, Liver Int, vol.35, pp.2129-2138, 2015.

B. A. Maron, W. M. Oldham, and S. Y. Chan, Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis, Circulation, vol.130, pp.168-179, 2014.

T. F. Mitts, S. Bunda, Y. Wang, and A. Hinek, Aldosterone and mineralocorticoid receptor antagonists modulate elastin and collagen deposition in human skin, J Invest Dermatol, vol.130, pp.2396-2406, 2010.

R. M. Mortensen, Immune Cell Modulation of Cardiac Remodeling, Circulation, vol.125, pp.1597-1600, 2012.

E. L. Schiffrin, The Immune System: Role in Hypertension, Can J Cardiol, vol.29, pp.543-548, 2013.

S. Ueha, F. Shand, and K. Matsushima, Cellular and Molecular Mechanisms of Chronic Inflammation-Associated Organ Fibrosis. Front Immunol, 2012.

O. M. Akchurin and F. Kaskel, Update on Inflammation in Chronic Kidney Disease, Blood Purif, vol.39, pp.84-92, 2015.

S. Epelman, P. P. Liu, and D. L. Mann, Role of innate and adaptive immune mechanisms in cardiac injury and repair, Nat Rev Immunol, vol.15, pp.117-129, 2015.

J. D. Imig and M. J. Ryan, Immune and Inflammatory Role in Renal Disease, Compr Physiol, 2013.

D. M. Silverstein, Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease, Pediatr Nephrol, vol.24, pp.1445-1452, 2009.

K. C. Gilbert and N. J. Brown, Aldosterone and inflammation, Curr Opin Endocrinol Diabetes Obes, vol.17, p.199, 2010.
DOI : 10.1097/med.0b013e3283391989

URL : http://europepmc.org/articles/pmc4079531?pdf=render

N. C. Bene, P. Alcaide, H. H. Wortis, and I. Z. Jaffe, Mineralocorticoid receptors in immune cells: Emerging role in cardiovascular disease, Steroids, vol.91, pp.38-45, 2014.

A. A. Herrada, C. Campino, and C. A. Amador, Aldosterone as a modulator of immunity: implications in the organ damage, J Hypertens, vol.29, pp.1684-1692, 2011.

A. A. Herrada, F. J. Contreras, and N. P. Marini, , 2010.

, Autoimmune Damage by Enhancing Th17-Mediated Immunity, J Immunol, vol.184, pp.191-202

R. A. Frieler, H. Meng, and S. Z. Duan, Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia, Stroke, vol.42, pp.179-185, 2011.

B. Martín-fernández, A. Rubio-navarro, and I. Cortegano, Aldosterone Induces Renal Fibrosis and Inflammatory M1-Macrophage Subtype via Mineralocorticoid Receptor in Rats, PLOS ONE, vol.11, 2016.

M. G. Usher, S. Z. Duan, and C. Y. Ivaschenko, Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice, J Clin Invest, vol.120, pp.3350-3364, 2010.

Z. Shen, X. Chen, and X. Sun, Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Atherosclerosis by Affecting Foam Cell Formation and Efferocytosis, J Biol Chem, vol.292, pp.925-935, 2017.

A. J. Rickard, J. Morgan, and G. Tesch, Deletion of Mineralocorticoid Receptors From Macrophages Protects Against Deoxycorticosterone/Salt-Induced Cardiac Fibrosis and Increased Blood Pressure, Hypertension, vol.54, pp.537-543, 2009.

J. Z. Shen, J. Morgan, and G. H. Tesch, Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages, Endocrinology, vol.157, pp.3213-3223, 2016.

C. Li, Y. Y. Zhang, and R. A. Frieler, Myeloid Mineralocorticoid Receptor Deficiency Inhibits Aortic Constriction-Induced Cardiac Hypertrophy in Mice, PLoS ONE, vol.9, p.110950, 2014.

L. L. Huang, D. J. Nikolic-paterson, and Y. Han, Myeloid Mineralocorticoid Receptor Activation Contributes to Progressive Kidney Disease, J Am Soc Nephrol JASN, vol.25, pp.2231-2240, 2014.

C. Li, X. Sun, and M. Zeng, Mineralocorticoid Receptor Deficiency in T Cells Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction Through Modulating T-Cell Activation, 2017.

X. N. Sun, C. Li, and Y. Liu, Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon Gamma, Circ Res CIRCRESAHA, 2017.

C. A. Amador, V. Barrientos, and J. Peña, Spironolactone decreases DOCA-saltinduced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes, Hypertens Dallas Tex, vol.63, pp.797-803, 1979.

D. G. Harrison, T. J. Guzik, and H. E. Lob, Inflammation, Immunity, and Hypertension. Hypertension, vol.57, pp.132-140, 2011.

D. G. Harrison, A. Vinh, H. Lob, and M. S. Madhur, Role of the adaptive immune system in hypertension, Curr Opin Pharmacol, vol.10, pp.203-207, 2010.

N. Lopez-andres, B. Martin-fernandez, and P. Rossignol, A role for cardiotrophin-1 in myocardial remodeling induced by aldosterone, AJP Heart Circ Physiol, vol.301, pp.2372-2382, 2011.

N. López-andrés, C. Iñigo, and I. Gallego, Aldosterone Induces Cardiotrophin-1 Expression in HL-1 Adult Cardiomyocytes, Endocrinology, vol.149, pp.4970-4978, 2008.

C. Latouche, E. Moghrabi, S. Messaoudi, and S. , Neutrophil gelatinaseassociated lipocalin is a novel mineralocorticoid target in the cardiovascular system, Hypertension, vol.59, pp.966-972, 2012.

P. Devarajan, Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury, Biomark Med, vol.4, pp.265-280, 2010.

S. Chakraborty, S. Kaur, S. Guha, and S. K. Batra, The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer, Biochim Biophys Acta BBA-Rev Cancer, vol.1826, pp.129-169, 2012.

D. N. Cruz, S. Gaiao, and A. Maisel, Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: a systematic review, Clin Chem Lab Med CCLM, 2012.

D. R. Flower, Beyond the superfamily: the lipocalin receptors, Biochim Biophys Acta BBA-Protein Struct Mol Enzymol, vol.1482, pp.327-336, 2000.

S. Candido, R. Maestro, and J. Polesel, Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer, Oncotarget, vol.5, p.1576, 2014.

D. H. Goetz, The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition, Mol Cell, vol.10, pp.1033-1043, 2002.

L. Yan, N. Borregaard, L. Kjeldsen, and M. A. Moses, The High Molecular Weight Urinary Matrix Metalloproteinase (MMP) Activity Is a Complex of Gelatinase B/MMP-9 and Neutrophil Gelatinase-associated Lipocalin (NGAL): MODULATION OF MMP-9 ACTIVITY BY NGAL, J Biol Chem, vol.276, pp.37258-37265, 2001.

Q. Chen, J. M. Yang, and F. , Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling, Mediators Inflamm, vol.2013, pp.1-14, 2013.

Z. S. Galis and J. J. Khatri, Matrix metalloproteinases in vascular remodeling and atherogenesis, Circ Res, vol.90, pp.251-262, 2002.

K. Grzela, M. Litwiniuk, W. Zagorska, and T. Grzela, Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: the Role of Matrix Metalloproteinase-9, Arch Immunol Ther Exp (Warsz), vol.64, pp.47-55, 2016.

G. V. Halade, Y. Jin, and M. L. Lindsey, Matrix metalloproteinase (MMP)-9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation, Pharmacol Ther, vol.139, pp.32-40, 2013.

A. Yabluchanskiy, Y. Ma, and R. P. Iyer, Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease, Physiology, vol.28, pp.391-403, 2013.

S. Triebel, J. Blaser, H. Reinke, and H. Tschesche, A 25[thinsp]kDa alpha 2microglobulin-related protein is a component of the 125[thinsp]kDa form of human gelatinase, FEBS Lett, vol.314, pp.386-388, 1992.

D. Bu, A. Hemdahl, and A. Gabrielsen, Induction of Neutrophil GelatinaseAssociated Lipocalin in Vascular Injury via Activation of Nuclear Factor-?B, Am J Pathol, vol.169, pp.2245-2253, 2006.

A. Hemdahl and A. G. , Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction, Arterioscler Thromb Vasc Biol, vol.26, pp.136-178, 2006.

X. Leng, T. Ding, and H. Lin, Inhibition of Lipocalin 2 Impairs Breast Tumorigenesis and Metastasis, Cancer Res, vol.69, pp.8579-8584, 2009.

X. Xiao, B. S. Yeoh, and M. Vijay-kumar, Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation, Annu Rev Nutr, 2017.

L. Kjeldsen, J. B. Cowland, and N. Borregaard, Human neutrophil gelatinaseassociated lipocalin and homologous proteins in rat and mouse, Biochim Biophys Acta, vol.1482, pp.272-283, 2000.

L. Kjeldsen, D. F. Bainton, H. Sengeløv, and N. Borregaard, Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils, Blood, vol.83, pp.799-807, 1994.

L. Kjeldsen, A. H. Johnsen, H. Sengelov, and N. Borregaard, Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase, J Biol Chem, vol.268, pp.10425-10432, 1993.

F. Liu, H. Yang, and H. Chen, High expression of neutrophil gelatinaseassociated lipocalin (NGAL) in the kidney proximal tubules of diabetic rats, Adv Med Sci, vol.60, pp.133-138, 2015.

N. Hamzic, A. Blomqvist, and C. Nilsberth, Immune-Induced Expression of Lipocalin-2 in Brain Endothelial Cells: Relationship with Interleukin-6, Cyclooxygenase-2 and the Febrile Response, J Neuroendocrinol, vol.25, pp.271-280, 2013.

E. Borkham-kamphorst, F. Drews, and R. Weiskirchen, Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1? through nuclear factor-?B activation: LCN2 induction in acute and chronic experimental liver injury, Liver Int, vol.31, pp.656-665, 2011.

W. Eilenberg, S. Stojkovic, and A. Piechota-polanczyk, Neutrophil GelatinaseAssociated Lipocalin (NGAL) is Associated with Symptomatic Carotid Atherosclerosis and Drives Pro-inflammatory State In Vitro, Eur J Vasc Endovasc Surg, vol.51, pp.623-631, 2016.

P. Naudé, U. Eisel, and H. C. Comijs, Neutrophil gelatinase-associated lipocalin: A novel inflammatory marker associated with late-life depression, J Psychosom Res, vol.75, pp.444-450, 2013.

T. H. Flo, K. D. Smith, and S. Sato, Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron, Nature, vol.432, pp.917-921, 2004.

M. Floderer, M. Prchal-murphy, and C. Vizzardelli, Dendritic Cell-Secreted Lipocalin2 Induces CD8+ T-Cell Apoptosis, Contributes to T-Cell Priming and Leads to a TH1 Phenotype, PLoS ONE, vol.9, p.101881, 2014.

D. Grande, A. Giuffrida, C. Carpinteri, and G. , Neutrophil gelatinase-associated lipocalin: a novel biomarker for the early diagnosis of acute kidney injury in the emergency department, Eur Rev Med Pharmacol Sci, vol.13, pp.197-200, 2009.

C. R. Parikh and P. Devarajan, New biomarkers of acute kidney injury, Crit Care Med, vol.36, pp.159-165, 2008.

L. Axelsson, M. Bergenfeldt, and K. Ohlsson, Studies of the release and turnover of a human neutrophil lipocalin, Scand J Clin Lab Invest, vol.55, pp.577-588, 1995.

K. Mori, H. T. Lee, and D. Rapoport, Endocytic delivery of lipocalinsiderophore-iron complex rescues the kidney from ischemia-reperfusion injury, J Clin Invest, vol.115, pp.610-621, 2005.

F. Aigner, H. T. Maier, and H. G. Schwelberger, Lipocalin-2 Regulates the Inflammatory Response During Ischemia and Reperfusion of the Transplanted Heart, Am J Transplant, vol.7, pp.779-788, 2007.

T. Berger, A. Togawa, and G. S. Duncan, Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury, Proc Natl Acad Sci U S A, vol.103, pp.1834-1839, 2006.

G. Bao, M. Clifton, and T. M. Hoette, Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex, Nat Chem Biol, vol.6, pp.602-609, 2010.

L. R. Devireddy, C. Gazin, X. Zhu, and M. R. Green, A Cell-Surface Receptor for Lipocalin 24p3 Selectively Mediates Apoptosis and Iron Uptake, Cell, vol.123, pp.1293-1305, 2005.

Y. Wang, M. Wu, and R. Al-rousan, Iron-Induced Cardiac Damage: Role of Apoptosis and Deferasirox Intervention, J Pharmacol Exp Ther, vol.336, pp.56-63, 2011.

J. Kim, The Role of Iron Metabolism in Lung Inflammation and Injury, J Allergy Ther, 2012.

M. Chen, Z. I. Cabantchik, and S. Chan, Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade, PLoS ONE, vol.9, p.112915, 2014.

P. Whittaker, F. A. Hines, M. G. Robl, and V. C. Dunkel, Histopathological Evaluation of Liver, Pancreas, Spleen, and Heart from Iron-Overloaded Sprague-Dawley Rats* 1, 2, Toxicol Pathol, vol.24, pp.558-563, 1996.

A. Schroll, K. Eller, and C. Feistritzer, Lipocalin-2 ameliorates granulocyte functionality: Innate immunity, Eur J Immunol, vol.42, pp.3346-3357, 2012.

S. Shao, T. Cao, and J. L. , Increased Lipocalin-2 Contributes to the Pathogenesis of Psoriasis by Modulating Neutrophil Chemotaxis and Cytokine Secretion, J Invest Dermatol, vol.136, pp.1418-1428, 2016.

G. Ding, J. Fang, and S. Tong, Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer: LCN2/ERK/SLUG Axis Promotes PCa Aggression, The Prostate, vol.75, pp.957-968, 2015.

Z. Du, B. Wu, and Y. Xie, Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop, Biochim Biophys Acta BBA-Mol Cell Res, vol.1853, pp.2240-2250, 2015.

L. Leung, N. Radulovich, and C. Zhu, Lipocalin2 Promotes Invasion, Tumorigenicity and Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma, PLoS ONE, vol.7, p.46677, 2012.

S. Mir, J. L. Craven, and R. J. , Neutrophil Gelatinase-associated Lipocalin (NGAL) Expression Is Dependent on the Tumor-associated Sigma-2 Receptor S2R Pgrmc1, J Biol Chem, vol.287, pp.14494-14501, 2012.

R. Mongre, S. Sodhi, and N. Sharma, Epigenetic induction of epithelial to mesenchymal transition by LCN2 mediates metastasis and tumorigenesis, which is abrogated by NF-?B inhibitor BRM270 in a xenograft model of lung adenocarcinoma, Int J Oncol, 2015.

J. Yang, B. Mcneish, C. Butterfield, and M. A. Moses, Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer, FASEB J, vol.27, pp.45-50, 2013.

J. Yang, D. R. Bielenberg, and S. J. Rodig, Lipocalin 2 promotes breast cancer progression, Proc Natl Acad Sci U S A, vol.106, pp.3913-3918, 2009.

K. M. Schmidt-ott, K. Mori, and J. Y. Li, Dual Action of Neutrophil GelatinaseAssociated Lipocalin, J Am Soc Nephrol, vol.18, pp.407-413, 2007.

J. A. Gwira, F. Wei, and S. Ishibe, Expression of Neutrophil Gelatinaseassociated Lipocalin Regulates Epithelial Morphogenesis in Vitro, J Biol Chem, vol.280, pp.7875-7882, 2005.

G. Wang, N. Ma, and L. Meng, Activation of the phosphatidylinositol 3kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation, Mol Cell Biochem, vol.410, pp.207-213, 2015.

A. Iannetti, F. Pacifico, and R. Acquaviva, The neutrophil gelatinase-associated lipocalin (NGAL), a NF-?B-regulated gene, is a survival factor for thyroid neoplastic cells, Proc Natl Acad Sci, vol.105, pp.14058-14063, 2008.

S. Koh and K. Lee, HGF mediated upregulation of lipocalin 2 regulates MMP9 through nuclear factor-?B activation, Oncol Rep, 2015.

L. Ding, H. Hanawa, and Y. Ota, Lipocalin-2/Neutrophil Gelatinase-B Associated Lipocalin Is Strongly Induced in Hearts of Rats With Autoimmune Myocarditis and in Human Myocarditis, Circ J, vol.74, pp.523-530, 2010.

C. Langelueddecke, E. Roussa, and R. A. Fenton, Lipocalin-2 (24p3/Neutrophil Gelatinase-associated Lipocalin (NGAL)) Receptor Is Expressed in Distal Nephron and Mediates Protein Endocytosis, J Biol Chem, vol.287, pp.159-169, 2012.

E. Dizin, U. Hasler, and S. Nlandu-khodo, Albuminuria induces a proinflammatory and profibrotic response in cortical collecting ducts via the 24p3 receptor, AJP Ren Physiol, vol.305, pp.1053-1063, 2013.

S. K. Moestrup and P. J. Verroust, Megalin-and Cubilin-Mediated Endocytosis of Protein-Bound Vitamins, Lipids, and Hormones in Polarized Epithelia, Annu Rev Nutr, vol.21, pp.407-428, 2001.

A. Van-dijk, R. A. Vermond, and P. Krijnen, Intravenous clusterin administration reduces myocardial infarct size in rats: CLUSTERIN ADMINISTRATION REDUCES INFARCT SIZE, Eur J Clin Invest, vol.40, pp.893-902, 2010.

K. Miharada, T. Hiroyama, and K. Sudo, Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells, J Cell Physiol, vol.215, pp.526-537, 2008.

A. Saito, S. Pietromonaco, A. Loo, and M. G. Farquhar, Complete cloning and sequencing of rat gp330/" megalin," a distinctive member of the low density lipoprotein receptor gene family, Proc Natl Acad Sci, vol.91, pp.9725-9729, 1994.

J. R. Leheste, B. Rolinski, and H. Vorum, Megalin knockout mice as an animal model of low molecular weight proteinuria, Am J Pathol, vol.155, issue.10, pp.65238-65246, 1999.

V. Hvidberg, C. Jacobsen, and R. K. Strong, The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake, FEBS Lett, vol.579, pp.773-777, 2005.

P. Kümpers, C. Hafer, and A. Lukasz, Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement therapy predicts survival in critically ill patients with acute kidney injury, Crit Care, vol.14, p.9, 2010.

S. Lindberg, J. S. Jensen, and S. Hoffmann, Plasma Neutrophil GelatinaseAssociated Lipocalin Reflects Both Inflammation and Kidney Function in Patients with Myocardial Infarction, Cardiorenal Med, vol.6, pp.180-190, 2016.

P. Naudé, P. Mommersteeg, and L. Gouweleeuw, NGAL and other markers of inflammation as competitive or complementary markers for depressive symptom dimensions in heart failure, World J Biol Psychiatry, vol.16, pp.536-541, 2015.

K. A. Oikonomou, A. N. Kapsoritakis, and C. Theodoridou, Neutrophil gelatinaseassociated lipocalin (NGAL) in inflammatory bowel disease: association with pathophysiology of inflammation, established markers, and disease activity, J Gastroenterol, vol.47, pp.519-530, 2012.

I. P. Yigit, H. Celiker, and A. Dogukan, Can serum NGAL levels be used as an inflammation marker on hemodialysis patients with permanent catheter?, Ren Fail, vol.37, pp.77-82, 2015.

M. Han, Y. Li, and M. Liu, Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat, BMC Nephrol, vol.13, p.25, 2012.

J. P. Ip, A. L. Noçon, and M. J. Hofer, Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration, J Neuroinflammation, vol.8, p.1, 2011.

J. Zhang, Y. Wu, and Y. Zhang, The Role of Lipocalin 2 in the Regulation of Inflammation in Adipocytes and Macrophages, Mol Endocrinol, vol.22, pp.1416-1426, 2008.

M. L. Bonnemaison, E. S. Marks, and E. I. Boesen, Interleukin-1? as a driver of renal NGAL production, Cytokine, vol.91, pp.38-43, 2017.

S. Chang, D. Kim, and S. Ko, Induction mechanism of lipocalin-2 expression by co-stimulation with interleukin-1? and interferon-? in RINm5F beta-cells, 2013.

, Biochem Biophys Res Commun, vol.434, pp.577-583

J. B. Cowland, O. E. Sorensen, M. Sehested, and N. Borregaard, Neutrophil GelatinaseAssociated Lipocalin Is Up-Regulated in Human Epithelial Cells by IL-1 , but Not by TNF, J Immunol, vol.171, pp.6630-6639, 2003.

G. Sommer, S. Weise, and S. Kralisch, Lipocalin-2 is induced by interleukin-1? in murine adipocytes in vitro, J Cell Biochem, vol.106, pp.103-108, 2009.

A. Yndestad, L. Landrø, and T. Ueland, Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure, Eur Heart J, vol.30, pp.1229-1236, 2009.

Y. Zhang, R. Foncea, and J. A. Deis, Lipocalin 2 Expression and Secretion Is Highly Regulated by Metabolic Stress, Cytokines, and Nutrients in Adipocytes, PLoS ONE, vol.9, p.96997, 2014.

F. Shen, Z. Hu, J. Goswami, and S. L. Gaffen, Identification of Common Transcriptional Regulatory Elements in Interleukin-17 Target Genes, J Biol Chem, vol.281, pp.24138-24148, 2006.

P. Zhao, C. M. Elks, and J. M. Stephens, The Induction of Lipocalin-2 Protein Expression in Vivo and in Vitro, J Biol Chem, vol.289, pp.5960-5969, 2014.

P. Naudé, C. Nyakas, and L. E. Eiden, Lipocalin 2: Novel component of proinflammatory signaling in Alzheimer's disease, FASEB J, vol.26, pp.2811-2823, 2012.

J. B. Cowland and N. Borregaard, Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans, Genomics, vol.45, pp.17-23, 1997.

G. Fritsche, M. Nairz, and S. J. Libby, Slc11a1 (Nramp1) impairs growth of Salmonella enterica serovar typhimurium in macrophages via stimulation of lipocalin-2 expression, J Leukoc Biol, vol.92, pp.353-359, 2012.

J. R. Karlsen, N. Borregaard, and J. B. Cowland, Induction of Neutrophil Gelatinaseassociated Lipocalin Expression by Co-stimulation with Interleukin-17 and Tumor Necrosis Factor-Is Controlled by I B-but neither by C/EBP-nor C/EBP, J Biol Chem, vol.285, pp.14088-14100, 2010.

S. Li, V. S. Hawthorne, and C. L. Neal, Upregulation of Neutrophil GelatinaseAssociated Lipocalin by ErbB2 through Nuclear Factor-B Activation, Cancer Res, vol.69, pp.9163-9168, 2009.
DOI : 10.1158/0008-5472.can-09-2483

URL : http://cancerres.aacrjournals.org/content/canres/69/24/9163.full.pdf

N. R. Mahadevan, J. Rodvold, and G. Almanza, ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-?B-dependent manner, BMC Cancer, vol.11, p.229, 2011.
DOI : 10.1186/1471-2407-11-229

URL : http://doi.org/10.1186/1471-2407-11-229

H. Lin, C. Liao, and Y. Lee, Lipocalin-2-induced cytokine production enhances endometrial carcinoma cell survival and migration, Int J Biol Sci, vol.7, p.74, 2011.
DOI : 10.7150/ijbs.7.74

URL : http://www.ijbs.com/v07p0074.pdf

L. Cheng, H. Xing, and X. Mao, Lipocalin-2 Promotes M1 Macrophages Polarization in a Mouse Cardiac Ischaemia-Reperfusion Injury Model, Scand J Immunol, vol.81, pp.31-38, 2015.
DOI : 10.1111/sji.12245

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/sji.12245

M. Pitashny, N. Schwartz, and X. Qing, Urinary lipocalin-2 is associated with renal disease activity in human lupus nephritis, Arthritis Rheum, vol.56, pp.1894-1903, 2007.
DOI : 10.1002/art.22594

URL : http://onlinelibrary.wiley.com/doi/10.1002/art.22594/pdf

R. Shashidharamurthy, D. Machiah, and J. D. Aitken, Differential Role of Lipocalin 2 During Immune Complex-Mediated Acute and Chronic Inflammation in Mice: Lipocalin 2 During Immune Complex-Mediated Inflammation, Arthritis Rheum, vol.65, pp.1064-1073, 2013.

J. Mishra, Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury, J Am Soc Nephrol, vol.14, pp.2534-2543, 2003.

K. M. Schmidt-ott, K. Mori, and A. Kalandadze, Neutrophil gelatinaseassociated lipocalin-mediated iron traffic in kidney epithelia, Curr Opin Nephrol Hypertens, vol.15, pp.442-449, 2006.

J. Mishra, C. Dent, and R. Tarabishi, Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery, The Lancet, vol.365, pp.1231-1238, 2005.
DOI : 10.1016/s0140-6736(05)74811-x

D. Bolignano, G. Coppolino, and A. Lacquaniti, Pathological and Prognostic Value of Urinary Neutrophil Gelatinase-Associated Lipocalin in Macroproteinuric Patients with Worsening Renal Function, Kidney Blood Press Res, vol.31, pp.274-279, 2008.
DOI : 10.1159/000151665

H. Ding, Y. He, and K. Li, Urinary neutrophil gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy, Clin Immunol, vol.123, pp.227-234, 2007.
DOI : 10.1016/j.clim.2007.01.010

N. Paragas, A. Qiu, and Q. Zhang, The Ngal reporter mouse detects the response of the kidney to injury in real time, Nat Med, vol.17, pp.216-222, 2011.

J. Kanda, K. Mori, and H. Kawabata, An AKI biomarker lipocalin 2 in the blood derives from the kidney in renal injury but from neutrophils in normal and infected conditions, Clin Exp Nephrol, vol.19, pp.99-106, 2015.

J. Mishra, Amelioration of Ischemic Acute Renal Injury by Neutrophil Gelatinase-Associated Lipocalin, J Am Soc Nephrol, vol.15, pp.3073-3082, 2004.
DOI : 10.1097/01.asn.0000145013.44578.45

URL : https://jasn.asnjournals.org/content/15/12/3073.full.pdf

R. D. Pawar, M. Pitashny, and S. Gindea, Neutrophil gelatinase-associated lipocalin is instrumental in the pathogenesis of antibody-mediated nephritis in mice, Arthritis Rheum, vol.64, pp.1620-1631, 2012.

A. Viau, K. El-karoui, and D. Laouari, Lipocalin 2 is essential for chronic kidney disease progression in mice and humans, J Clin Invest, vol.120, pp.4065-4076, 2010.
DOI : 10.1172/jci42004

URL : http://www.jci.org/articles/view/42004/files/pdf

E. K. Choi, H. Jung, and K. H. Kwak, Inhibition of Oxidative Stress in Renal Ischemia-Reperfusion Injury, Anesth Analg, vol.124, pp.204-213, 2017.

D. A. Ferenbach, D. C. Kluth, and J. Hughes, Hemeoxygenase-1 and Renal IschaemiaReperfusion Injury, Nephron Exp Nephrol, vol.115, pp.33-37, 2010.
DOI : 10.1159/000313828

URL : https://www.pure.ed.ac.uk/ws/files/8172101/Ferenbach_et_al_2010.pdf

H. T. Sponsel, A. C. Alfrey, and W. S. Hammond, Effect of iron on renal tubular epithelial cells, Kidney Int, vol.50, pp.436-444, 1996.
DOI : 10.1038/ki.1996.334

URL : https://doi.org/10.1038/ki.1996.334

R. A. Zager and K. Burkhart, Myoglobin toxicity in proximal human kidney cells: Roles of Fe, Ca2+, H2O2, and terminal mitochondrial electron transport, Kidney Int, vol.51, pp.728-738, 1997.

R. M. Bernardi, L. Constantino, and R. A. Machado, N-acetylcysteine and deferrioxamine protects against acute renal failure induced by ischemia/reperfusion in rats, Rev Bras Ter Intensiva, vol.24, pp.219-223, 2012.

B. De-vries, S. J. Walter, V. Bonsdorff, and L. , Reduction of circulating redoxactive iron by apotransferrin protects against renal ischemia-reperfusion injury, Transplantation, vol.77, pp.669-675, 2004.

M. I. Ashraf, H. G. Schwelberger, and K. A. Brendel, Exogenous Lipocalin, vol.2, 2016.

, Ameliorates Acute Rejection in a Mouse Model of Renal Transplantation, Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg, vol.16, pp.808-820

M. Jung, A. Sola, and J. Hughes, Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2, Kidney Int, vol.81, pp.969-982, 2012.

R. Guiteras, A. Sola, and M. Flaquer, Macrophage Overexpressing NGAL Ameliorated Kidney Fibrosis in the UUO Mice Model, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.42, pp.1945-1960, 2017.

Y. Wu, T. Su, and L. Yang, Urinary neutrophil gelatinase-associated lipocalin: A potential biomarker for predicting rapid progression of drug-induced chronic tubulointerstitial nephritis, Am J Med Sci, vol.339, pp.537-542, 2010.

T. L. Nickolas, C. S. Forster, and M. E. Sise, NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease, Kidney Int, vol.82, pp.718-722, 2012.

F. Zeng, A. B. Singh, and R. C. Harris, The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology, Exp Cell Res, vol.315, pp.602-610, 2009.

K. Damman, D. J. Van-veldhuisen, and G. Navis, Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure, Eur J Heart Fail, vol.10, pp.997-1000, 2008.

K. Shrestha, A. G. Borowski, and R. W. Troughton, Association Between Systemic Neutrophil Gelatinase-Associated Lipocalin and Anemia, Relative Hypochromia, and Inflammation in Chronic Systolic Heart Failure: NGAL and anemia in chronic heart failure, Congest Heart Fail, vol.18, pp.239-244, 2012.

A. Sahinarslan, S. A. Kocaman, and D. Bas, Plasma neutrophil gelatinaseassociated lipocalin levels in acute myocardial infarction and stable coronary artery disease, Coron Artery Dis, vol.22, pp.333-338, 2011.

A. Mortara, M. Bonadies, and S. Mazzetti, Neutrophil gelatinase-associated lipocalin predicts worsening of renal function in acute heart failure: methodological and clinical issues, J Cardiovasc Med Hagerstown Md, vol.14, pp.629-634, 2013.

D. Bolignano, G. Basile, and P. Parisi, Increased plasma neutrophil gelatinaseassociated lipocalin levels predict mortality in elderly patients with chronic heart failure, Rejuvenation Res, vol.12, pp.7-14, 2009.

V. M. Van-deursen, K. Damman, and A. A. Voors, Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure, Circ Heart Fail, vol.7, pp.35-42, 2014.

H. Villacorta, M. Santos, R. A. , B. Marroig, and M. A. , Prognostic value of plasma neutrophil gelatinase-associated lipocalin in patients with heart failure, Rev Port Cardiol Engl Ed, vol.34, pp.473-478, 2015.

B. De-berardinis, H. K. Gaggin, and L. Magrini, Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure, Clin Chem Lab Med, vol.53, pp.613-621, 2015.

M. Hasegawa, J. Ishii, and F. Kitagawa, Plasma Neutrophil GelatinaseAssociated Lipocalin as a Predictor of Cardiovascular Events in Patients with Chronic Kidney Disease, BioMed Res Int, vol.2016, pp.1-7, 2016.

Y. Solak, M. I. Yilmaz, and D. Siriopol, Serum neutrophil gelatinase-associated lipocalin is associated with cardiovascular events in patients with chronic kidney disease, Int Urol Nephrol, vol.47, 1993.

L. B. Daniels, E. Barrett-connor, and P. Clopton, Plasma Neutrophil GelatinaseAssociated Lipocalin Is Independently Associated With Cardiovascular Disease and Mortality in Community-Dwelling Older Adults, J Am Coll Cardiol, vol.59, pp.1101-1109, 2012.

M. Katagiri, M. Takahashi, and K. Doi, Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease, Heart Vessels, 2015.

G. Wu, H. Li, and Q. Fang, Elevated circulating lipocalin-2 levels independently predict incident cardiovascular events in men in a population-based cohort, Arterioscler Thromb Vasc Biol ATVBAHA-114, 2014.

S. Lindberg, J. S. Jensen, and R. Mogelvang, Plasma Neutrophil GelatinaseAssociated Lipocalinin in the General Population Association With Inflammation and Prognosis, Arterioscler Thromb Vasc Biol, vol.34, pp.2135-2142, 2014.

W. Eilenberg, S. Stojkovic, and A. Kaider, NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis, Clin Chem Lab Med CCLM, 2017.

B. Yang, P. Fan, and A. Xu, Improved functional recovery to I/R injury in hearts from lipocalin-2 deficiency mice: restoration of mitochondrial function and phospholipids remodeling, Am. J. Transl. Res, 2012.

M. Folkesson, M. Kazi, and C. Zhu, Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms, Thromb Haemost, 2007.

C. Tarín, C. E. Fernandez-garcia, and E. Burillo, Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice, Cardiovasc Res, vol.111, pp.262-273, 2016.

Y. K. Chan, H. K. Sung, and J. Jahng, Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells, Mol Cell Endocrinol, vol.430, pp.68-76, 2016.

H. K. Sung, Y. K. Chan, and M. Han, Lipocalin-2 (NGAL) Attenuates Autophagy to Exacerbate Cardiac Apoptosis Induced by Myocardial Ischemia: LIPOCALIN-2, AUTOPHAGY AND CELL DEATH, J Cell Physiol, 2017.

Y. Wang, Small lipid-binding proteins in regulating endothelial and vascular functions: focusing on adipocyte fatty acid binding protein and lipocalin-2: Lipid chaperones in cardiovascular diseases, Br J Pharmacol, vol.165, pp.603-621, 2012.

A. Tarjus, E. Martínez-martínez, and C. Amador, Neutrophil GelatinaseAssociated Lipocalin, a Novel Mineralocorticoid Biotarget, Mediates Vascular Profibrotic Effects of Mineralocorticoids, vol.66, pp.158-166, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01755057

J. T. Liu, E. Song, and A. Xu, Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition: Lipocalin-2 and endothelial dysfunction, Br J Pharmacol, vol.165, pp.520-531, 2012.

E. Song, P. Fan, and B. Huang, Deamidated Lipocalin-2 Induces Endothelial Dysfunction and Hypertension in Dietary Obese Mice, J Am Heart Assoc, vol.3, pp.837-000837, 2014.

I. Law, A. Xu, and K. Lam, Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity, Diabetes, vol.59, pp.872-882, 2010.

E. A. Jankowska, S. Von-haehling, and S. D. Anker, Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives, Eur Heart J, vol.34, pp.816-829, 2013.

E. Lapice, M. Masulli, and O. Vaccaro, Iron Deficiency and Cardiovascular Disease: An Updated Review of the Evidence, Curr Atheroscler Rep, vol.15, p.358, 2013.

G. Xu, J. Ahn, and S. Chang, Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation, J Biol Chem, vol.287, pp.4808-4817, 2012.

Q. Wang, A. A. Domenighetti, and S. C. Schafer, Impact of salt on cardiac differential gene expression and coronary lesion in normotensive mineralocorticoid-treated mice, AJP Regul Integr Comp Physiol, vol.302, 2012.

F. Montecucco, L. Liberale, and A. Bonaventura, The Role of Inflammation in Cardiovascular Outcome, Curr Atheroscler Rep, 2017.

V. Abella, M. Scotece, and J. Conde, The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases, Biomarkers, vol.20, pp.565-571, 2015.

C. Li and Y. R. Chan, Lipocalin 2 regulation and its complex role in inflammation and cancer, Cytokine, vol.56, pp.435-441, 2011.

A. R. Moschen, T. E. Adolph, and R. R. Gerner, Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation, Trends Endocrinol Metab, 2017.

Y. Sun and K. T. Weber, Animal models of cardiac fibrosis, Fibros Res Methods Protoc, pp.273-290, 2005.

H. Mahmud, W. M. Candido, and L. Van-genne, Cardiac Function and Architecture Are Maintained in a Model of Cardiorestricted Overexpression of the ProreninRenin Receptor, PLoS ONE, vol.9, p.89929, 2014.

T. Tang, N. C. Lai, and A. T. Wright, Adenylyl cyclase 6 deletion increases mortality during sustained ?-adrenergic receptor stimulation, J Mol Cell Cardiol, vol.60, pp.60-67, 2013.

S. K. Verma, P. Krishnamurthy, and D. Barefield, IL 10 Treatment Attenuates Pressure Overload-Induced Hypertrophic Remodeling and Improves Heart Function via STAT3 Dependent Inhibition of NF?B, Circulation CIRCULATIONAHA, p.112, 2012.

G. Vergaro, M. Prud'homme, and L. Fazal, Inhibition of Galectin-3 Pathway Prevents Isoproterenol-Induced Left Ventricular Dysfunction and Fibrosis in MiceNovelty and Significance, Hypertension, vol.67, pp.606-612, 2016.

K. Helanova, J. Spinar, and J. Parenica, Diagnostic and Prognostic Utility of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Patients with Cardiovascular Diseases-Review, Kidney Blood Press Res, vol.39, pp.623-629, 2014.

K. Yang, C. Luo, and B. M. Cheung, Lipocalin-2 Deficiency Protects against Aldosterone-Induced Hypertension and Organ Damages by Inhibiting Mineralocorticoid Receptor Signaling, FASEB J, vol.30, pp.942-948, 2016.

K. El-karoui, A. Viau, and O. Dellis, Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2, Nat Commun, vol.7, p.10330, 2016.

T. Rubinstein, M. Pitashny, and C. Putterman, The novel role of neutrophil gelatinase-B associated lipocalin (NGAL)/Lipocalin-2 as a biomarker for lupus nephritis, Autoimmun Rev, vol.7, pp.229-234, 2008.

A. Fiebeler, F. Schmidt, and D. N. Müller, Mineralocorticoid receptor affects AP1 and nuclear factor-?B activation in angiotensin II-induced cardiac injury, Hypertension, vol.37, pp.787-793, 2001.

S. Johar, Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase, FASEB J, vol.20, pp.1546-1548, 2006.

W. Kawarazaki, M. Nagase, and S. Yoshida, Angiotensin II-and Salt-Induced Kidney Injury through Rac1-Mediated Mineralocorticoid Receptor Activation, J Am Soc Nephrol JASN, vol.23, pp.997-1007, 2012.

W. Zhao, ANG II-induced cardiac molecular and cellular events: role of aldosterone, AJP Heart Circ Physiol, vol.291, pp.336-343, 2006.

P. K. Mehta and K. K. Griendling, Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system, AJP Cell Physiol, vol.292, pp.82-97, 2006.

I. Z. Jaffe, Angiotensin II and Aldosterone Regulate Gene Transcription Via Functional Mineralocortocoid Receptors in Human Coronary Artery Smooth Muscle Cells, Circ Res, vol.96, pp.643-650, 2005.

V. Robert, C. Heymes, and J. Silvestre, Angiotensin AT1 Receptor Subtype as a Cardiac Target of Aldosterone : Role in Aldosterone-Salt-Induced Fibrosis, Hypertension, vol.33, pp.981-986, 1999.

G. E. González, N. Rhaleb, D. Ambrosio, and M. A. , Cardiac-deleterious role of galectin-3 in chronic angiotensin II-induced hypertension, Am J Physiol-Heart Circ Physiol, vol.311, pp.1287-1296, 2016.

Y. Suzuki, M. Ruiz-ortega, and O. Lorenzo, Inflammation and angiotensin II, Int J Biochem Cell Biol, vol.35, pp.881-900, 2003.

J. Cai, X. Chen, and X. Chen, Anti-Fibrosis Effect of Relaxin and Spironolactone Combined on Isoprenaline-Induced Myocardial Fibrosis in Rats via Inhibition of Endothelial-Mesenchymal Transition, Cell Physiol Biochem, vol.41, pp.1167-1178, 2017.

M. Gallego, L. Espiña, and L. Vegas, Spironolactone and captopril attenuates isoproterenol-induced cardiac remodelling in rats, Pharmacol Res, vol.44, pp.311-315, 2001.

Y. Hori, K. Yoshioka, and K. Kanai, Spironolactone decreases isoproterenolinduced ventricular fibrosis and matrix metalloproteinase-2 in rats, Biol Pharm Bull, vol.34, pp.61-65, 2011.

B. Martín-fernández, N. De-las-heras, and M. Miana, Spironolactone prevents alterations associated with cardiac hypertrophy produced by isoproterenol in rats: involvement of serum-and glucocorticoid-regulated kinase type 1: Isoproterenol-induced cardiac alterations, Exp Physiol, vol.97, pp.710-718, 2012.

N. M. Reddy, U. B. Mahajan, and C. R. Patil, Eplerenone attenuates cardiac dysfunction and oxidative stress in ?-receptor stimulated myocardial infarcted rats, Am J Transl Res, vol.7, p.1602, 2015.

J. A. Victorio, S. P. Clerici, and R. Palacios, Spironolactone Prevents Endothelial Nitric Oxide Synthase Uncoupling and Vascular Dysfunction Induced by ?-Adrenergic Overstimulation: Role of Perivascular Adipose Tissue, Hypertens Dallas Tex, vol.68, pp.726-735, 1979.

H. Zhou, D. Xi, and J. Liu, Spirolactone provides protection from renal fibrosis by inhibiting the endothelial–mesenchymal transition in isoprenaline-induced heart failure in rats, Drug Des Devel Ther 1581, 2016.

M. Christ, M. Wehling, and E. Kirsch, Enhancement of ?-adrenergic cAMPsignaling by the mineralocorticoid receptor, Mol Cell Endocrinol, vol.231, pp.23-31, 2005.

K. Helanova, S. Littnerova, and P. Kubena, Prognostic impact of neutrophil gelatinase-associated lipocalin and B-type natriuretic in patients with ST-elevation myocardial infarction treated by primary PCI: a prospective observational cohort study, BMJ Open, vol.5, p.6872, 2015.

S. Lindberg, S. H. Pedersen, and R. Mogelvang, Prognostic Utility of Neutrophil Gelatinase-Associated Lipocalin in Predicting Mortality and Cardiovascular Events in Patients With ST-Segment Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention, J Am Coll Cardiol, vol.60, pp.339-345, 2012.

E. Singer, L. Markó, and N. Paragas, Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications, Acta Physiol, vol.207, pp.663-672, 2013.

K. M. Choi, J. S. Lee, and E. J. Kim, Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease, Eur J Endocrinol, vol.158, pp.203-207, 2008.

T. Zografos, A. Haliassos, and S. Korovesis, Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease, Am J Cardiol, vol.104, pp.917-920, 2009.

J. S. Janicki and G. L. Brower, The role of myocardial fibrillar collagen in ventricular remodeling and function, J Card Fail, vol.8, pp.319-325, 2002.

M. A. Pfeffer and E. Braunwald, Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications, Circulation, vol.81, pp.1161-1172, 1990.

A. J. Woodiwiss, O. J. Tsotetsi, and S. Sprott, Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction, Circulation, vol.103, pp.155-160, 2001.

S. Lee, J. Kim, and J. Kim, Lipocalin-2 Is a Chemokine Inducer in the Central Nervous System: ROLE OF CHEMOKINE LIGAND 10 (CXCL10) IN LIPOCALIN2-INDUCED CELL MIGRATION, J Biol Chem, vol.286, pp.43855-43870, 2011.

H. Wang, M. Wu, and M. Chan, Long-term low-dose exposure of human urothelial cells to sodium arsenite activates lipocalin-2 via promoter hypomethylation, Arch Toxicol, vol.88, pp.1549-1559, 2014.

S. Sickinger, H. Maier, and S. König, Lipocalin-2 as mediator of chemokine expression and granulocyte infiltration during ischemia and reperfusion, Transpl Int, vol.26, pp.761-769, 2013.

L. Cai, J. Rubin, and W. Han, The origin of multiple molecular forms in urine of HNL/NGAL, Clin J Am Soc Nephrol, vol.5, pp.2229-2235, 2010.

Y. K. Chan, H. K. Sung, and G. Sweeney, Iron metabolism and regulation by neutrophil gelatinase-associated lipocalin in cardiomyopathy, Clin Sci, vol.129, pp.851-862, 2015.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat Rev Immunol, vol.11, pp.723-737, 2011.

M. Benoit, B. Desnues, and J. Mege, Macrophage Polarization in Bacterial Infections, J Immunol, vol.181, pp.3733-3739, 2008.

P. Italiani and D. Boraschi, From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol, 2014.

A. Vinh, W. Chen, and Y. Blinder, Inhibition and Genetic Ablation of the B7/CD28 T-Cell Costimulation Axis Prevents Experimental Hypertension, Circulation, vol.122, pp.2529-2537, 2010.

X. Wang, G. Zhang, and X. Jiang, Neutrophil to lymphocyte ratio in relation to risk of all-cause mortality and cardiovascular events among patients undergoing angiography or cardiac revascularization: A meta-analysis of observational studies, Atherosclerosis, vol.234, pp.206-213, 2014.

C. Digangi, Neutrophil-lymphocyte ratio: Predicting cardiovascular and renal complications in patients with diabetes: Neutrophil-lymphocyte ratio, J Am Assoc Nurse Pract, vol.28, pp.410-414, 2016.

A. Gilet, F. Zou, and M. Boumenir, Aldosterone up-regulates MMP-9 and MMP-9/NGAL expression in human neutrophils through p38, ERK1/2 and PI3K pathways, Exp Cell Res, vol.331, pp.152-163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01481923

N. V. Kamat, S. R. Thabet, and L. Xiao, Renal Transporter Activation During Angiotensin-II Hypertension is Blunted in Interferon-? ?/? and Interleukin-17A ?/? MiceNovelty and Significance, Hypertension, vol.65, pp.569-576, 2015.

A. E. Norlander, M. A. Saleh, and N. V. Kamat, Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced HypertensionNovelty and Significance, Hypertension, vol.68, pp.167-174, 2016.

K. Ong, A. Tso, and S. S. Cherny, Role of Genetic Variants in the Gene Encoding Lipocalin-2 in the Development of Elevated Blood Pressure, Clin Exp Hypertens, vol.33, pp.484-491, 2011.

C. G. Park and K. M. Choi, Lipocalin-2, A-FABP and inflammatory markers in relation to flow-mediated vasodilatation in patients with essential hypertension, Clin Exp Hypertens, vol.36, pp.478-483, 2014.

C. Cuspidi, M. Ciulla, and A. Zanchetti, Hypertensive myocardial fibrosis, Nephrol Dial Transplant, vol.21, pp.20-23, 2006.

B. , C. C. , and D. , Progression et régression de la fibrose rénale, Actual Néphrologiques Jean Hambg, pp.67-78, 2004.

C. G. Brilla, L. S. Matsubara, and K. T. Weber, Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism, J Mol Cell Cardiol, vol.25, pp.563-575, 1993.

T. Nakamura and S. Mizuno, The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine, Proc Jpn Acad Ser B, vol.86, pp.588-610, 2010.

D. Fan, A. Takawale, J. Lee, and Z. Kassiri, Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease, Fibrogenesis Tissue Repair, vol.5, p.15, 2012.

T. Lawrence, K. Van-der-heiden, S. Cuhlmann, and L. A. Luong, Role of nuclear factor ?B in cardiovascular health and disease, Cold Spring Harb Perspect Biol, vol.1, pp.593-605, 2009.

Y. Mebratu and Y. Tesfaigzi, How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer?, Cell Cycle, vol.8, pp.1168-1175, 2009.

S. H. Ko, J. Jung, and Y. Kim, Bacteroides fragilis enterotoxin upregulates lipocalin-2 expression in intestinal epithelial cells, Lab Invest, vol.93, p.384, 2013.

. Zhang, Increased expression of neutrophil gelatinase-associated lipocalin receptor by interleukin-1? in human mesangial cells via MAPK/ERK activation, Int J Mol Med, 2011.

G. Ding, J. Fang, and S. Tong, Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer: LCN2/ERK/SLUG Axis Promotes PCa Aggression, The Prostate, vol.75, pp.957-968, 2015.