, FUNDAMENTALS OF (MULTI-)FERROICS

T. .. >-t-c-and-t-<-t-c,

. , Temperature dependence of the order parameter (a) Q and (b) P and (c) the electric susceptibility ? for improper ferroelectrics

, Temperature dependence of the order parameter (a) Q and (b) P and (c) the electric susceptibility ? for pseudo-proper ferroelectrics

. , Crystal structure of orthorhombic RM O 3 with P bnm space group and its cubic prototype, visualized by VESTA [14]

. .. , Conventional collinear spin orders in P bnm unit cell, p.11

. , Experimentally obtained magnetoelectric phase diagram of RMnO 3 and solid-solution systems in the plane of temperature and (effective) ionic radius of the R ion [15]

. , Magnetic and dielectric anomalies of TbMnO 3

. , Three types of spin density wave from expression (1.38)

, Unit cell of two kinds E-AFM order in P bnm space group, p.19

E. Two and .. .. Collinear-spin-orders,

. , B-site) are shown. J ab and J c are the in-plane and out-of-plane nearest interactions, while J a is the in-plane next-nearest interaction, Schematic diagram of exchange interactions in P bnm lattice, for simplicity, only magnetic atoms

, Dzyaloshinsky-Moriya interactions associated with different Mn-O-Mn bonds, Mn is in blue and O is in red, the A-site ions are neglected for simplicity, p.25

. , 15 (a) Phase diagram and (b) the corresponding ground states UUDD and (?, 0) (0, ?)

. , Magnetic and electric phase diagram of (a) the (010)-oriented and (b) the (001)-oriented TbMnO 3 thin film as well as (c) the (010)-oriented and (d) the (001)-oriented EuMnO 3 thin film

A. , Non-collinear spin-canted order

, Néel and spin-reorientation temperatures for the Fe spin order in RFeO 3 perovskites. Filled circles, open circles and squares indicate the establishment of spin order G x A y F z , F x C y G z and A x G y C z respectively, p.90

J. Of-gd-gd and F. .. Gd-fe, , p.92

, Atom magnetization as a function of temperature for GdFeO 3 , magnetization of Fe is labeled by red line, while that of Gd is by blue line, p.94

C. Ederer and N. A. Spaldin, Recent progress in first-principles studies of magnetoelectric multiferroics. Current Opinion in Solid State and Materials Science, vol.9, pp.128-139, 2005.

S. Picozzi and C. Ederer, First principles studies of multiferroic materials, Journal of Physics: Condensed Matter, vol.21, issue.30, p.303201, 2009.
DOI : 10.1088/0953-8984/21/30/303201

URL : http://arxiv.org/pdf/0904.3736

S. Picozzi and A. Stroppa, Advances in ab-initio theory of multiferroics. The European, Physical Journal B, vol.85, issue.7, p.240, 2001.

. Richard-m-martin, Electronic structure: basic theory and practical methods. Cambridge university press, 2004.

K. M. Rabe, C. H. Ahn, and J. M. Triscone, Physics of Ferroelectrics: A Modern Perspective. Topics in Applied Physics, vol.45, p.98, 2007.
DOI : 10.1007/978-3-540-34591-6_1

. Valery-l-pokrovsky, Landau and modern physics, Physics-Uspekhi, vol.52, issue.11, p.1169, 2009.

J. L. Ribeiro and L. G. Vieira, Landau model for the phase diagrams of the orthorhombic rare-earth manganites rmno 3 (r = Eu, gd, tb, dy, ho), Phys. Rev. B, vol.82, p.64410, 2001.

L. Davidovich-landau and E. Lifshitz, Statistical physics. Course of theoretical physics, Trans. from the Russian, vol.3, 1968.

A. P. Levanyuk, Contribution to the theory of light scattering near the second-order phase transition points, Sov. Phys.-JETP, vol.9, issue.3, p.571, 1959.

V. L. Ginzburg and V. L. Ginzburgm, Some remarks on second order phase transitions and microscopic theory of ferroelectrics, Fiz. Tverd. Tela, vol.2, issue.9, pp.2031-2034, 1960.

V. L. Ginzburg, Some remarks on phase transitions of the 2nd kind and the microscopic theory of ferroelectric materials. Soviet Physics-Solid State, vol.2, pp.1824-1834, 1961.

A. Boris, . Strukov, . Arkadi, and . Levanyuk, Ferroelectric phenomena in crystals: physical foundations, vol.3, p.5, 2012.

L. Davidovich-landau, . Bell, . Kearsley, E. M. Lp-pitaevskii, J. B. Lifshitz et al., Electrodynamics of continuous media, vol.8, 2013.

K. Momma and F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, vol.44, issue.6, p.97, 2011.
DOI : 10.1107/s0021889811038970

Y. Tokura, S. Seki, and N. Nagaosa, Multiferroics of spin origin, Reports on Progress in Physics, vol.77, issue.7, p.97, 2014.
DOI : 10.1088/0034-4885/77/7/076501

S. Ishiwata, Y. Kaneko, Y. Tokunaga, and Y. Taguchi,

Y. Arima and . Tokura, Perovskite manganites hosting versatile multiferroic phases with symmetric and antisymmetric exchange strictions, Phys. Rev. B, vol.81, p.11, 2010.

S. Quezel, F. Tcheou, J. Rossat-mignod, G. Quezel, and E. Roudaut, Magnetic structure of the perovskite-like compound tbmno3, Physica B+C, vol.86, p.12, 1977.

T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima et al., Magnetic control of ferroelectric polarization, Nature, vol.426, issue.6962, p.97, 2003.

R. Kajimoto, H. Yoshizawa, H. Shintani, T. Kimura, and Y. Tokura, Magnetic structure of tbmno 3 by neutron diffraction, Phys. Rev. B, vol.70, p.12, 2004.

M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer et al.,

S. Zhang, O. P. Cheong, J. W. Vajk, and . Lynn, Magnetic inversion symmetry breaking and ferroelectricity in tbmno 3, Phys. Rev. Lett, vol.95, p.12, 2005.

S. B. Wilkins, T. R. Forrest, T. A. Beale, S. R. Bland, H. C. Walker et al.,

. Mcmorrow, Nature of the magnetic order and origin of induced ferroelectricity in tbmno 3, Phys. Rev. Lett, vol.103, p.12, 2009.

T. Aoyama, K. Yamauchi, A. Iyama, S. Picozzi, K. Shimizu et al., Giant spin-driven ferroelectric polarization in tbmno3 under high pressure, Nature Communications, vol.5, p.99, 2014.

K. Shimamoto, S. Mukherjee, S. Manz, J. S. White, M. Trassin et al., Tuning the multiferroic mechanisms of tbmno3 by epitaxial strain, Scientific Reports, vol.7, p.83, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691856

T. Kimura, Spiral magnets as magnetoelectrics, Annual Review of Materials Research, vol.37, issue.1, p.14, 2007.

. Ie-dzyaloshinskii, On the magneto-electrical effect in antiferromagnets, Soviet Physics Jetp-Ussr, vol.10, issue.3, p.17, 1960.

. Ie-dzyaloshinskii, Theory of helicoidal structures in antiferromagnets. 1. nonmetals, Sov. Phys. JETP, vol.19, p.17, 1964.

M. Mostovoy, Ferroelectricity in spiral magnets, Phys. Rev. Lett, vol.96, p.67601, 2006.

J. M. Mois-ilia-aroyo, C. Perez-mato, E. Capillas, S. Kroumova, G. Ivantchev et al., Bilbao crystallographic server: I. databases and crystallographic computing programs. Zeitschrift für Kristallographie-Crystalline Materials, vol.221, p.19, 2006.

P. W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev, vol.115, pp.2-13, 1922.

I. Dzyaloshinsky, A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics, Journal of Physics and Chemistry of Solids, vol.4, issue.4, p.24, 1958.

T. Moriya, New mechanism of anisotropic superexchange interaction, Phys. Rev. Lett, vol.4, pp.228-230, 1924.

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev, vol.120, pp.91-98, 1924.

L. X. Hayden, T. A. Kaplan, and S. D. Mahanti, Frustrated classical heisenberg and xy models in two dimensions with nearest-neighbor biquadratic exchange: Exact solution for the ground-state phase diagram, Phys. Rev. Lett, vol.105, p.47203, 1926.

Y. S. Hou, J. H. Yang, X. G. Gong, and H. J. Xiang, Prediction of a multiferroic state with large electric polarization in tensile-strained tbmno 3, Phys. Rev. B, vol.88, p.27, 2013.

I. A. Sergienko and E. Dagotto, Role of the dzyaloshinskii-moriya interaction in multiferroic perovskites, Phys. Rev. B, vol.73, p.57, 1928.

H. Katsura, N. Nagaosa, and A. V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett, vol.95, p.57, 1929.

P. A. Dirac, Quantum mechanics of many-electron systems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.123, issue.792, p.31, 1929.

E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev, vol.28, p.31, 1926.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, issue.5, p.34, 1927.

E. Fermi, Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente, Zeitschrift für Physik, vol.48, issue.1, p.34, 1928.
DOI : 10.1007/bf01351576

P. A. Dirac, Note on exchange phenomena in the thomas atom, Mathematical Proceedings of the Cambridge Philosophical Society, vol.26, issue.3, p.35, 1930.
DOI : 10.1017/s0305004100016108

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6C5FF7297CD96F49A8B8E9E3EA50E412/S0305004100016108a.pdf/div-class-title-note-on-exchange-phenomena-in-the-thomas-atom-div.pdf

E. Wigner and F. Seitz, On the constitution of metallic sodium, Phys. Rev, vol.43, pp.804-810, 1931.

E. Wigner and F. Seitz, On the constitution of metallic sodium. ii, Phys. Rev, vol.46, p.31, 1934.

J. C. Slater, Wave functions in a periodic potential, Phys. Rev, vol.51, pp.846-851, 1931.
DOI : 10.1103/physrev.51.846

J. C. Slater, A simplification of the hartree-fock method, Phys. Rev, vol.81, p.31, 1951.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, p.38, 1931.
DOI : 10.1103/physrev.140.a1133

URL : http://link.aps.org/pdf/10.1103/PhysRev.140.A1133

M. Born and R. Oppenheimer, Zur quantentheorie der molekeln, Annalen der Physik, vol.389, issue.20, p.32, 1927.
DOI : 10.1007/978-3-642-61659-4_16

D. R. Hartree, The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.1, p.33, 1928.

D. R. Hartree, The wave mechanics of an atom with a non-coulomb central field. part ii. some results and discussion, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.1, p.33, 1928.

J. C. Slater, Note on hartree's method, Phys. Rev, vol.35, p.33, 1930.

V. Fock, Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems, Zeitschrift für Physik, vol.61, issue.1, p.34, 1930.
DOI : 10.1007/bf01340294

E. Fermi, Un metodo statistico par la determinazione di alcuno proprietà dell'atome

, Rendiconti Accademia Nazionale des Lincei, Cl. sci. fis., mat. e. nat, vol.6, p.34, 1927.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, p.35, 1964.

D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett, vol.45, p.38, 1980.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, vol.38, p.39, 1988.
DOI : 10.1103/physreva.38.3098

V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and mott insulators: Hubbard u instead of stoner i, Phys. Rev. B, vol.44, p.40, 1991.

. Vladimir-i-anisimov, A. Aryasetiawan, and . Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda + u method, Journal of Physics: Condensed Matter, vol.9, issue.4, p.74, 1997.

H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B, vol.13, p.41, 1976.

D. R. Hamann, Norm-conserving pseudopotentials, Physical Review Letters, vol.43, issue.20, p.41, 1979.
DOI : 10.1103/physrevlett.43.1494

P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, issue.24, p.42, 1994.

R. D. King-smith and D. Vanderbilt, Theory of polarization of crystalline solids
DOI : 10.1103/physrevb.47.1651

, Phys. Rev. B, vol.47, pp.1651-1654, 1943.

. Fd-morrison, . Luo, . Szafraniak, . Nagarajan, . Rb-wehrspohn et al., Ferroelectric nanotubes, Rev. Adv. Mater. Sci, vol.4, p.45, 2003.

A. Gruverman and A. Kholkin, Nanoscale ferroelectrics: processing, characterization and future trends, Reports on Progress in Physics, vol.69, issue.8, p.45, 2006.

J. F. Scott, Applications of modern ferroelectrics. science, vol.315, p.45, 2007.

A. N. Morozovska, M. D. Glinchuk, and E. A. Eliseev, Phase transitions induced by confinement of ferroic nanoparticles, Phys. Rev. B, vol.76, p.46, 2007.

A. N. Morozovska, M. D. Glinchuk, and E. A. Eliseev, Ferroelectricity enhancement in ferroelectric nanotubes, Phase Transitions, vol.80, issue.1-2, p.46, 2007.

A. P. Levanyuk and . Blinc, Ferroelectric phase transitions in small particles and local regions, Physical review letters, vol.111, issue.9, p.47, 2013.

M. Anoufa, J. M. Kiat, I. Kornev, and C. Bogicevic, Vortices of polarization in BaTiO 3 core-shell nanoceramics: Calculations based on ab initio derived Hamiltonian versus Landau theory, Phys. Rev. B, vol.88, issue.14, p.46, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02277221

R. Herchig, K. Schultz, K. Mccash, and I. Ponomareva, Terahertz sensing using ferroelectric nanowires, Nanotechnology, vol.24, issue.4, p.45, 2013.

B. Lee, S. M. Nakhmanson, and O. Heinonen, Strain induced vortex-to-uniform polarization transitions in soft-ferroelectric nanoparticles, Applied Physics Letters, vol.104, issue.26, p.45, 2014.

L. Baudry, A. Sené, I. A. Luk'yanchuk, L. Lahoche, and J. Scott, Polarization vortex domains induced by switching electric field in ferroelectric films with circular electrodes, Physical Review B, vol.90, issue.2, p.46, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01055080

Z. Gui, L. Wang, and L. Bellaiche, Electronic Properties of Electrical Vortices in Ferroelectric Nanocomposites from Large-Scale Ab Initio Computations, Nano Letters, vol.15, p.45, 2015.

A. Bernal, A. Tselev, S. Kalinin, and N. Bassiri-gharb, Freestanding ferroelectric nanotubes processed via soft-template infiltration, Advanced Materials, vol.24, issue.9, p.45, 2012.

G. Philippot, C. Elissalde, M. Maglione, and C. Aymonier, Supercritical fluid technology: A reliable process for high quality batio 3 based nanomaterials, Advanced Powder Technology, vol.25, issue.5, p.45, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082170

M. Liu and J. Wang, Giant electrocaloric effect in ferroelectric nanotubes near room temperature, Sci. Rep, vol.5, pp.1-2015

H. Fu and L. Bellaiche, Ferroelectricity in barium titanate quantum dots and wires, Phys. Rev. Lett, vol.91, p.45, 2003.

. Ivan-i-naumov, H. Bellaiche, and . Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature, vol.432, issue.7018, p.45, 2004.

G. Geneste, E. Bousquet, J. Junquera, and P. Ghosez, Finite-size effects in batio 3 nanowires, Applied physics letters, vol.88, issue.11, p.45, 2006.
DOI : 10.1063/1.2186104

URL : https://repositorio.unican.es/xmlui/bitstream/10902/4175/1/Finite-size%20effects%20in%20BaTiO.pdf

A. M. Bratkovsky and A. P. Levanyuk, Continuous theory of ferroelectric states in ultrathin films with real electrodes, Journal of Computational and Theoretical Nanoscience, vol.6, issue.3, p.50, 2009.

E. Durgun, P. Ghosez, X. Shaltaf, J. Gonze, and . Raty, Polarization vortices in germanium telluride nanoplatelets: A theoretical study, Physical review letters, vol.103, issue.24, p.45, 2009.
DOI : 10.1103/physrevlett.103.247601

A. K. Tagantsev, N. Gerra, and . Setter, Short-range and long-range contributions to the size effect in metal-ferroelectric-metal heterostructures, Physical Review B, vol.77, issue.17, p.45, 2008.

J. Hong, G. Catalan, D. N. Fang, E. Artacho, and J. F. Scott, Topology of the polarization field in ferroelectric nanowires from first principles, Phys. Rev

B. , , vol.81, p.45, 2010.

J. Junquera and P. Ghosez, First-principles study of ferroelectric oxide epitaxial thin films and superlattices: role of the mechanical and electrical boundary conditions, Journal of Computational and theoretical nanoscience, vol.5, issue.11, p.47, 2008.

A. K. Tagantsev and G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films, Journal of Applied Physics, vol.100, issue.5, p.47, 2006.

S. Jin, T. H. Tiefel, M. Mccormack, R. A. Fastnacht, R. Ramesh et al., Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films, Science, vol.264, issue.5157, p.55, 1994.

A. Ramirez, Colossal magnetoresistance, Journal of Physics: Condensed Matter, vol.9, issue.39, p.55, 1997.
URL : https://hal.archives-ouvertes.fr/jpa-00254966

I. Loa, P. Adler, A. Grzechnik, K. Syassen, U. Schwarz et al.,

P. Rozenberg, M. P. Gorodetsky, and . Pasternak, Pressure-induced quenching of the jahn-teller distortion and insulator-to-metal transition in lamno 3, Phys. Rev. Lett, vol.87, p.61, 2001.

A. Yamasaki, M. Feldbacher, Y. Yang, O. K. Andersen, and K. Held, Pressureinduced metal-insulator transition in lamno 3 is not of mott-hubbard type, Phys. Rev. Lett, vol.96, p.61, 2006.

A. Y. Ramos, N. M. Souza-neto, H. C. Tolentino, O. Bunau, Y. Joly et al., Bandwidth-driven nature of the pressure-induced metal state of lamno 3, Europhysics Letters), vol.96, issue.3, p.61, 1955.
URL : https://hal.archives-ouvertes.fr/hal-00634500

E. Bousquet and A. Cano, Non-collinear magnetism in multiferroic perovskites, Journal of Physics: Condensed Matter, vol.28, issue.12, p.91, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01307996

M. Mochizuki and N. Furukawa, Microscopic model and phase diagrams of the multiferroic perovskite manganites, Phys. Rev. B, vol.80, p.57, 2009.

M. Mochizuki, N. Furukawa, and N. Nagaosa, Theory of spin-phonon coupling in multiferroic manganese perovskites rmno 3, Phys. Rev. B, vol.84, p.84, 2011.

S. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nat Mater, vol.6, issue.1, p.57, 2007.

A. Munoz, J. A. Casáis, . Alonso, . Martínez-lope, M. T. Martinez et al., Complex magnetism and magnetic structures of the metastable homno3 perovskite, Inorganic chemistry, vol.40, issue.5, p.56, 2001.

B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in homno 3, Phys. Rev. Lett, vol.92, p.56, 2004.
DOI : 10.1103/physrevlett.92.087204

URL : http://arxiv.org/pdf/cond-mat/0310367

A. Ivan, . Sergienko, E. Cengiz-s-¸en, and . Dagotto, Ferroelectricity in the magnetic e-phase of orthorhombic perovskites, Phys. Rev. Lett, vol.97, p.59, 2006.

T. Aoyama, A. Iyama, K. Shimizu, and T. Kimura, Multiferroicity in orthorhombic rmno3 (r=dy, tb, and gd) under high pressure, Phys. Rev
DOI : 10.1103/physrevb.91.081107

B. , , vol.91, p.58, 2015.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, p.74, 1999.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, p.74, 1996.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, and G. E. ,

L. A. Scuseria, X. Constantin, K. Zhou, and . Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett, vol.100, p.74, 2008.

I. Solovyev, N. Hamada, and K. Terakura, Crucial role of the lattice distortion in the magnetism of lamno 3, Phys. Rev. Lett, vol.76, p.57, 1996.

P. Rivero, V. Meunier, and W. Shelton, Electronic, structural, and magnetic properties of lamno 3 phase transition at high temperature, Phys. Rev. B, vol.93, p.61, 2016.

P. Rivero, V. Meunier, and W. Shelton, Uniaxial pressure-induced half-metallic ferromagnetic phase transition in lamno 3, Phys. Rev. B, vol.93, p.61, 2016.

J. Branton, H. T. Campbell, D. E. Stokes, D. M. Tanner, and . Hatch, ISODISPLACE: a web-based tool for exploring structural distortions, Journal of Applied Crystallography, vol.39, issue.4, p.59, 2006.

A. Michael, C. J. Carpenter, and . Howard, Symmetry rules and strain/orderparameter relationships for coupling between octahedral tilting and cooperative jahn-teller transitions in abx3 perovskites. i. theory, Acta Crystallographica Section B, vol.65, issue.2, p.60, 2009.

D. A. Mota, A. Almeida, V. H. Rodrigues, M. M. Costa, P. Tavares et al., Dynamic and structural properties of orthorhombic rare-earth manganites under high pressure, Phys. Rev. B, vol.90, p.99, 1962.
URL : https://hal.archives-ouvertes.fr/hal-01684136

N. S. Fedorova, C. Ederer, N. A. Spaldin, and A. Scaramucci, Biquadratic and ring exchange interactions in orthorhombic perovskite manganites

, Phys. Rev. B, vol.91, p.165122, 1966.

S. Dong, R. Yu, S. Yunoki, J. Liu, and E. Dagotto, Origin of multiferroic spiral spin order in the rmno 3 perovskites, Phys. Rev. B, vol.78, p.68, 2008.

I. O. Troyanchuk, N. V. Samsonenko, H. Szymczak, and A. Nabialek, Magnetic study of the ca1xeuxmno3(0x1) perovskites, Journal of Solid State Chemistry, vol.131, issue.1, p.69, 1997.

J. S. Smart, Effective Field Theories of Magnetism. Studies in physics and chemistry, 216. Saunders, p.69, 1966.

P. W. Anderson and E. I. Blount, Symmetry considerations on martensitic transformations: "ferroelectric" metals?, Phys. Rev. Lett, vol.14, p.83, 1965.

Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin et al., A ferroelectric-like structural transition in a metal, Nat Mater, vol.12, issue.11, p.83, 2013.

L. Yin, W. Mi, and X. Wang, Ferroelectric metal in tetragonal bicoo3/bifeo3 bilayers and its electric field effect, Scientific Reports, vol.6, p.83, 2016.

T. H. Kim, D. Puggioni, Y. Yuan, L. Xie, H. Zhou et al., Polar metals by geometric design, Nature, vol.533, issue.7601, p.83, 1972.

N. A. Benedek and T. Birol, ferroelectric' metals reexamined: fundamental mechanisms and design considerations for new materials, J. Mater. Chem. C, vol.4, p.83, 2016.

A. Filippetti, V. Fiorentini, F. Ricci, P. Delugas, and J. Iñiguez, Prediction of a native ferroelectric metal, Nature Communications, vol.7, p.74, 2016.

O. L. Makarova, I. Mirebeau, S. E. Kichanov, J. Rodriguez-carvajal, and A. , Forget. Pressure-induced change in the magnetic ordering of tbmno 3, Phys. Rev. B, vol.84, p.74, 2011.

M. Nakamura, Y. Tokunaga, M. Kawasaki, and Y. Tokura, Multiferroicity in an orthorhombic ymno3 single-crystal film, Applied Physics Letters, vol.98, issue.8, p.74, 2011.

H. Jun, K. M. Lee, and . Rabe, Epitaxial-strain-induced multiferroicity in srmno 3 from first principles, Phys. Rev. Lett, vol.104, p.74, 2010.

R. Jaramillo, S. D. Ha, D. M. Silevitch, and S. Ramanathan, Origins of badmetal conductivity and the insulator-metal

, Nat Phys, vol.10, issue.4, pp.304-307, 1974.

V. Bisogni, S. Catalano, R. J. Green, M. Gibert, R. Scherwitzl et al., Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates, Nature Communications, vol.7, p.74, 2016.

D. Rubi, C. De-graaf, C. J. Daumont, D. Mannix, R. Broer et al., Ferromagnetism and increased ionicity in epitaxially grown tbmno 3 films, Phys. Rev

B. , , vol.79, p.14416, 1974.

X. Marti, V. Skumryev, C. Ferrater, M. V. García-cuenca, M. Varela et al., Emergence of ferromagnetism in antiferromagnetic tbmno3 by epitaxial strain, Applied Physics Letters, vol.96, issue.22, p.83, 2010.

K. Shimamoto, S. Mukherjee, S. Manz, J. S. White, M. Trassin et al., Tuning the multiferroic mechanisms of TbMnO3 by epitaxial strain, p.74, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01691856

M. Mochizuki, Spin model of magnetostrictions in multiferroic mn perovskites, Physical Review Letters, vol.105, issue.3, p.84, 2010.

E. F. Bertaut, H. Gt-rado, and . Suhl, Magnetism iii, vol.149, p.89, 1963.

R. L. White, Review of recent work on the magnetic and spectroscopic properties of the rareearth orthoferrites, Journal of Applied Physics, vol.40, issue.3, p.89, 1969.

T. Yamaguchi, Theory of spin reorientation in rare-earth orthochromites and orthoferrites, Journal of Physics and Chemistry of Solids, vol.35, issue.4, p.90, 1974.

L. Chen, T. Li, S. Cao, S. Yuan, F. Hong et al., The role of 4f-electron on spin reorientation transition of ndfeo3: A first principle study, Journal of Applied Physics, vol.111, issue.10, p.90, 2012.

C. Kuo, Y. Drees, M. T. Fernández-díaz, L. Zhao, L. Vasylechko et al.,

P. Li, A. Adler, R. Todorova, A. Küchler, L. H. Steppke et al.,

, Komarek. k = 0 magnetic structure and absence of ferroelectricity in smfeo3, Phys. Rev. Lett, vol.113, p.90, 2014.

H. Shen, Z. Cheng, F. Hong, J. Xu, S. Yuan et al., Magnetic field induced discontinuous spin reorientation in erfeo3 single crystal, Applied Physics Letters, vol.103, issue.19, p.90, 2013.
DOI : 10.1063/1.4829468

URL : https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1937&context=aiimpapers

Y. Tokunaga, N. Furukawa, H. Sakai, and Y. Taguchi,

Y. Arima and . Tokura, Composite domain walls in a multiferroic perovskite ferrite, Nat Mater, vol.8, issue.7, p.91, 2009.

G. Thomas, A phenomenological theory of damping in ferromagnetic materials, IEEE Transactions on Magnetics, vol.40, issue.6, p.91, 2004.

T. A. Ostler, Computer Simulations of Ultrafast Magnetisation Reversal, p.92, 2012.

R. Qiu, E. Bousquet, and A. Cano, Ferroelectric instability in nanotubes and spherical nanoshells, Europhysics Letters), vol.112, issue.3, 2015.
DOI : 10.1209/0295-5075/112/37006

URL : https://hal.archives-ouvertes.fr/hal-01262723

R. Qiu, E. Bousquet, and A. Cano, Pressure-induced insulator-metal transition in EuMnO 3, Journal of physics: Condensed matter, vol.29, issue.30, 2017.
DOI : 10.1088/1361-648x/aa75be

URL : https://hal.archives-ouvertes.fr/hal-01546993

R. Qiu, E. Bousquet, and A. Cano, Epitaxial-strain-induced multiferroic and polar metallic phases in RMnO 3